WO2021131269A1 - Automatic analysis device - Google Patents

Automatic analysis device Download PDF

Info

Publication number
WO2021131269A1
WO2021131269A1 PCT/JP2020/039267 JP2020039267W WO2021131269A1 WO 2021131269 A1 WO2021131269 A1 WO 2021131269A1 JP 2020039267 W JP2020039267 W JP 2020039267W WO 2021131269 A1 WO2021131269 A1 WO 2021131269A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
irradiation treatment
ultrasonic irradiation
bubbles
ultrasonic
Prior art date
Application number
PCT/JP2020/039267
Other languages
French (fr)
Japanese (ja)
Inventor
和方 山澤
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to JP2021566852A priority Critical patent/JP7343612B2/en
Publication of WO2021131269A1 publication Critical patent/WO2021131269A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Definitions

  • the present invention relates to an automatic analyzer.
  • the samples and reagents are reacted to measure color development and luminescence.
  • each of the sample and the reagent is dispensed from the supply container to the reaction container for analysis.
  • the tip of the dispensing probe is brought into contact with and immersed in the liquid to be dispensed to suck the liquid to be dispensed. Therefore, if the amount of immersion of the dispensing probe is large, it is applied to the outer wall of the dispensing probe. The amount of liquid adhering increases, and there is concern that cross-contamination with the next liquid to be dispensed will occur.
  • an automatic analyzer the user is alerted to avoid analysis on a sample in which bubbles or liquid films are present.
  • the sample is put into the automatic analyzer with the bubbles and liquid film present. There is a possibility that it will be done.
  • Patent Document 1 describes a technique for confirming the presence of bubbles or a liquid film before dispensing a sample and, if present, defoaming with a defoamer.
  • bubbles and liquid film on the liquid to be dispensed hinder the accurate detection of the liquid level of the liquid to be dispensed, which hinders the dispensing of the required amount and can output accurate analysis results. Although it is a factor that causes it to disappear, it is generally only a warning to the user regarding bubbles and liquid films.
  • the confirmation work of bubbles and liquid film is a burden for the user, and there is a concern that the confirmation omission by the user may be omitted. Therefore, it is desirable to perform defoaming treatment on the liquid to be dispensed before dispensing.
  • the defoaming treatment reliably removes bubbles and liquid film on the liquid to be dispensed, thereby removing the liquid to be dispensed. It is desirable to prevent dispensing with bubbles or liquid film remaining on the top. Further, when the liquid to be dispensed is defoamed and then dispensed, the liquid to be dispensed may be deteriorated by the defoaming treatment depending on the conditions of the defoaming treatment. If the liquid to be dispensed is altered by the defoaming treatment, the reliability of the analysis result by the automatic analyzer will be reduced. Therefore, when the liquid to be dispensed is defoamed and then dispensed, it is desired to reduce the risk of the liquid to be dispensed being defoamed by the defoaming treatment as much as possible.
  • the automatic analyzer includes a determination unit for determining the presence or absence of bubbles in the liquid contained in the container, and an irradiation unit for irradiating the liquid contained in the container with ultrasonic waves. And have.
  • the irradiation unit performs a first ultrasonic irradiation treatment on the liquid in the container, and the determination unit performs a foam in the liquid in the container on which the first ultrasonic irradiation treatment is performed.
  • the determination unit determines that the liquid in the container to which the first ultrasonic irradiation treatment has been performed has bubbles
  • the irradiation unit has been subjected to the first ultrasonic irradiation treatment.
  • the liquid in the container is subjected to a second ultrasonic irradiation treatment having a larger defoaming effect than the first ultrasonic irradiation treatment.
  • the reliability of the analysis result by the automatic analyzer can be improved.
  • the block diagram which shows the structure of the automatic analyzer in one Embodiment.
  • the explanatory view which shows the flow of the defoaming process in the automatic analyzer of one Embodiment.
  • the flowchart which shows the flow of the defoaming process in the automatic analyzer of one Embodiment.
  • Explanatory drawing which shows the state of irradiating the sample in a sample containment vessel with ultrasonic waves while moving a sample containment vessel. It is explanatory drawing which shows the state of irradiating the sample in a sample containment vessel with ultrasonic waves from a horn. It is explanatory drawing which shows the state of irradiating the sample in a sample containment vessel with ultrasonic waves from a horn.
  • the block diagram which shows the structure of the automatic analyzer in another embodiment.
  • the explanatory view which shows the flow of the defoaming process in the automatic analyzer of another embodiment.
  • the flowchart which shows the flow of the defoaming process in the automatic analyzer of another embodiment.
  • FIG. 1 is a configuration diagram showing a configuration of an automatic analyzer according to the present embodiment.
  • a configuration around a portion for determining bubbles and defoaming bubbles and a configuration around a portion for dispensing are performed. Is shown.
  • the automatic analyzer includes an apparatus control unit 1 that controls the entire automatic analyzer, a bubble identification unit 2, a bubble determination unit 3, and an ultrasonic wave generating ultrasonic waves.
  • a sound wave generation source 4 an ultrasonic wave source driving unit 5 that drives the ultrasonic wave generation source 4, an ultrasonic wave output control unit 6 that controls the ultrasonic wave generation source driving unit 5, and a dispensing probe 7 are provided.
  • the automatic analyzer according to this embodiment is controlled by the device control unit 1 including other configurations (not shown).
  • the bubble identification unit 2 is connected to the bubble determination unit 3, and the bubble determination unit 3 is connected to the device control unit 1. Further, the ultrasonic wave generation source 4 is connected to the ultrasonic wave generation source driving unit 5, the ultrasonic wave generating source driving unit 5 is connected to the ultrasonic wave output control unit 6, and the ultrasonic wave output control unit 6 is a device control unit. It is connected to 1. A horn 8 for amplifying ultrasonic waves is attached to the tip of the ultrasonic wave generation source 4. The dispensing probe 7 is connected to the device control unit 1.
  • the sample (liquid) 10 to be analyzed by the automatic analyzer is placed in the sample storage container 11, the sample storage container 11 is erected in the sample storage container erection unit (sample rack) 12, and the transfer unit (transport mechanism) or the like. Is conveyed in the automatic analyzer.
  • the sample 10 stored (contained) in the sample containment vessel 11 is a liquid, for example, a biological sample such as blood or urine.
  • a container that can be used is often specified depending on the automatic analyzer, but various containers can be used.
  • an automatic analyzer in which several sample containment vessels 11 are grouped together and used by erection on the sample containment vessel erection unit 12, and an automatic analyzer in which a large number of sample containment vessels 11 are erected at once on a disk for analysis. There is also an automatic analyzer in which the sample containment vessels 11 are transported one by one.
  • a bar code (not shown) for identifying the type of the sample 10 in the sample containment vessel 11 or the like is given to the sample containment vessel 11 itself or the sample containment vessel erection portion 12 on which the sample containment vessel 11 is erected. You can also keep it.
  • the automatic analyzer can recognize the type of the sample 10 in the sample containment vessel 11 by stopping the sample containment vessel erection unit 12 at the barcode reading position and reading the barcode with the barcode reader. it can. At this barcode reading position, it is also possible to determine the presence or absence of bubbles in the sample 10 in the sample containment vessel 11 and perform defoaming treatment.
  • the sample 10 is stored (contained) in the sample storage container 11, but when bubbles 13 are present on the liquid surface (surface) of the sample 10 in the sample storage container 11, or when the sample is stored in the sample storage container 11.
  • the liquid film 14 may be present above the liquid level of 10.
  • the bubble identification unit 2 acquires information that enables it to determine whether or not the bubbles 13 or the liquid film 14 are present in the sample 10 in the sample containment vessel 11.
  • the sample storage container 11 is conveyed under the foam identification unit 2 by the sample storage container erection unit 12, and the foam identification unit 2 refers to the sample 10 in the sample storage container 11 located below the foam identification unit 2 with bubbles.
  • the bubble determination unit 3 determines the presence or absence of the bubble 13 or the liquid film 14, and the bubble determination unit 3 notifies the device control unit 1 of the determination result.
  • the information acquired by the bubble identification unit 2 is, for example, image data.
  • the bubble identification unit 2 includes an imaging unit capable of acquiring image data of the sample 10 in the sample storage container 11, and the bubble determination unit 3 is a sample based on the image data acquired by the bubble identification unit 2. The presence or absence of bubbles 13 or liquid film 14 in the storage container 11 can be determined.
  • the sample 10 in the sample containment vessel 11 it is determined whether or not the bubbles 13 on the liquid surface or the liquid film 14 above the liquid surface are present. It will be called “to do”. Therefore, when it is referred to as "determining the presence or absence of bubbles", it corresponds to determining the presence or absence of bubbles 13 or liquid film 14. Therefore, when determining the presence or absence of bubbles, if at least one of the bubbles 13 and the liquid film 14 is present, it is determined that "there are bubbles", and if neither the bubbles 13 nor the liquid film 14 is present, "the bubbles are present". It is judged that there is no such thing.
  • the foam identification unit 2 acquires information capable of determining the presence or absence of bubbles in the sample containment vessel erection unit 12, and based on the information, the foam determination unit 3 determines the bubbles in the sample containment vessel erection unit 12. Judge the presence or absence of. Therefore, the combination of the bubble identification unit 2 and the bubble determination unit 3 can be regarded as a determination unit for determining the presence or absence of bubbles.
  • the ultrasonic wave generation source 4 is driven by the ultrasonic wave generation source driving unit 5 to generate ultrasonic waves.
  • the ultrasonic waves generated by the ultrasonic wave generation source 4 are emitted from the horn 8 attached to the tip of the ultrasonic wave generation source 4.
  • the ultrasonic wave source driving unit 5 is controlled by the ultrasonic wave output control unit 6. Therefore, the intensity or frequency of the ultrasonic waves generated by the ultrasonic wave generation source 4 can be controlled by the ultrasonic wave output control unit 6.
  • the ultrasonic output control unit 6 is controlled by the device control unit 1.
  • the ultrasonic waves emitted from the horn 8 are emitted toward the sample 10 in the sample containment vessel 11 located below the horn 8. Since the ultrasonic waves are emitted from the horn 8, the horn 8 itself or the combination of the horn 8 and the ultrasonic wave generation source 4 can be regarded as an irradiation unit that irradiates the ultrasonic waves.
  • the sample 10 is irradiated.
  • the ultrasonic wave has an action of erasing (disappearing or removing) the bubble 13 or the liquid film 14.
  • the elimination of the bubbles 13 on the liquid surface or the liquid film 14 above the liquid surface is referred to as "defoaming". Therefore, in the present application, the term "defoaming" includes not only the case of extinguishing the bubbles 13 on the liquid surface but also the case of extinguishing the liquid film 14 above the liquid surface.
  • the process of irradiating the sample 10 in the sample containment vessel 11 with ultrasonic waves from the horn 8 can be regarded as a defoaming process (defoaming process by ultrasonic waves).
  • the dispensing probe (probe for dispensing) 7 is a dispensing probe for a sample, which is controlled by the device control unit 1 and dispenses the sample 10 in the sample containment vessel 11 into another container (reaction vessel). To do. That is, a part of the sample 10 in the sample containment vessel 11 is sucked by the dispensing probe 7, and the sample 10 sucked by the dispensing probe 7 is discharged to another container (reaction container). As a result, a part of the sample 10 in the sample containment vessel 11 is transferred to another vessel (reaction vessel) by the dispensing probe 7. A syringe (not shown) for sucking and discharging the sample 10 is connected to the dispensing probe 7.
  • the automatic analyzer also has a reagent dispensing probe (not shown), and the reagent in the reagent storage container is dispensed into the reaction vessel using the reagent dispensing probe. .. As a result, the sample and the reagent can be mixed and reacted in the reaction vessel.
  • the automatic analyzer also includes an analysis unit (not shown), which analyzes the liquid (reaction solution of the sample and the reagent) in the reaction vessel by a predetermined analysis (for example, optical characteristics). Measurement) can be performed. This makes it possible to analyze the components of the sample and the like.
  • the device control unit 1 can control the detailed operation of each component unit of the automatic analyzer in an integrated manner. Therefore, the device control unit 1 can appropriately control the timing of information acquisition by the bubble identification unit 2, the timing of defoaming processing by ultrasonic waves, the timing of dispensing processing by the dispensing probe 7, and the like. .. In addition, the device control unit 1 can also monitor the occurrence of an abnormal state in each component unit of the automatic analyzer and perform appropriate abnormal state processing.
  • FIG. 2 is an explanatory diagram showing the flow of defoaming processing in the automatic analyzer
  • FIG. 3 is a flowchart showing the flow of defoaming processing in the automatic analyzer.
  • the device control unit 1, the bubble determination unit 3, the ultrasonic wave generation source drive unit 5, and the ultrasonic wave output control unit 6 shown in FIG. 1 are not shown.
  • the sample 10 is stored (accommodated) in the sample containment vessel 11.
  • the device control unit 1 controls the transport unit or the like to transport the sample containment vessel 11 to a position below the bubble identification unit 2.
  • the bubble identification unit 2 and the bubble determination unit 3 determine the presence or absence of bubbles in the sample 10 in the sample containment vessel 11 (step S1 in FIGS. 2 and 3).
  • the bubble identification unit 2 acquires information about the sample 10 in the sample storage container 11 (information that enables it to determine whether or not the bubbles 13 or the liquid film 14 are present).
  • the foam determination unit 3 determines the presence or absence of the foam 13 or the liquid film 14 in the sample storage container 11.
  • the bubble determination unit 3 notifies the device control unit 1 of the determination result.
  • acquisition of information by the bubble identification unit 2 in step S1 for example, acquisition of image data is schematically shown with reference numeral 21.
  • step S1 The sample storage container 11 determined to have no bubbles (no bubbles 13 or liquid film 14) in step S1 is not subjected to the ultrasonic irradiation treatment of step S2 described later, and the dispensing probe 7 is later subjected to. It is conveyed to a certain dispensing position and the dispensing process is performed by the dispensing probe 7.
  • the device control unit 1 is a transport unit or the like based on the notification result from the foam determination unit 3. Is conveyed below the horn 8. Then, the device control unit 1 controls the ultrasonic output control unit 6 to generate ultrasonic waves at the ultrasonic wave generation source 4, so that the sample in the sample storage container 11 in which the bubbles 13 or the liquid film 14 are present is generated from the horn 8. Irradiate ultrasonic waves toward 10.
  • the sample 10 in the sample containment vessel 11 in which the bubbles 13 or the liquid film 14 is present is subjected to ultrasonic irradiation treatment (step S2 in FIGS. 2 and 3).
  • the ultrasonic irradiation treatment (first ultrasonic irradiation treatment) in step S2 has a defoaming action.
  • the ultrasonic waves emitted from the horn 8 in step S2 are schematically shown with reference numerals 22.
  • the sample containment vessel 11 subjected to the ultrasonic irradiation treatment in step S2 is conveyed to a position below the bubble identification unit 2 by the device control unit 1 controlling the transfer unit and the like. Then, the bubble identification unit 2 and the bubble determination unit 3 determine the presence or absence of bubbles in the sample 10 in the sample containment vessel 11 (step S3 in FIGS. 2 and 3). Specifically, the bubble identification unit 2 acquires information about the sample 10 in the sample storage container 11 (information that enables it to determine whether or not the bubbles 13 or the liquid film 14 are present).
  • the foam determination unit 3 determines the presence or absence of the foam 13 or the liquid film 14 in the sample 10 in the sample storage container 11 subjected to the ultrasonic irradiation treatment in step S2.
  • the bubble determination unit 3 notifies the device control unit 1 of the determination result.
  • acquisition of information by the bubble identification unit 2 in step S3, for example, acquisition of image data is schematically shown with reference numeral 23.
  • the sample storage container 11 determined to have bubbles (the presence of the bubbles 13 or the liquid film 14) in step S3 (that is, the sample in which the bubbles 13 or the liquid film 14 did not disappear in the ultrasonic irradiation treatment in step S2).
  • the storage container 11) is conveyed below the horn 8 by the device control unit 1 controlling the transfer unit or the like based on the notification result from the bubble determination unit 3.
  • the device control unit 1 controls the ultrasonic output control unit 6 to generate ultrasonic waves at the ultrasonic wave generation source 4, so that the sample in the sample storage container 11 in which the bubbles 13 or the liquid film 14 are present is generated from the horn 8. Irradiate ultrasonic waves toward 10.
  • the sample 10 in the sample containment vessel 11 in which the bubbles 13 or the liquid film 14 is present is subjected to ultrasonic irradiation treatment (step S4 in FIGS. 2 and 3).
  • the ultrasonic irradiation treatment (second ultrasonic irradiation treatment) in step S4 has a defoaming action.
  • the ultrasonic waves emitted from the horn 8 in step S4 are schematically shown with reference numerals 24.
  • the defoaming action of the ultrasonic irradiation treatment in step S4 is larger than the defoaming action of the ultrasonic irradiation treatment in step S2. That is, the conditions of the ultrasonic irradiation treatment of step S2 and the ultrasonic irradiation treatment of step S4 are set so that the ultrasonic irradiation treatment of step S4 has a larger defoaming action than the ultrasonic irradiation treatment of step S2. Set.
  • the sample containment vessel 11 subjected to the ultrasonic irradiation treatment in step S4 is transported to a position below the bubble identification unit 2 by the device control unit 1 controlling the transport unit and the like. Then, the bubble identification unit 2 and the bubble determination unit 3 determine the presence or absence of bubbles in the sample 10 in the sample containment vessel 11 (step S5 in FIGS. 2 and 3). Specifically, the bubble identification unit 2 acquires information about the sample 10 in the sample storage container 11 (information that enables it to determine whether or not the bubbles 13 or the liquid film 14 are present).
  • the foam determination unit 3 determines the presence or absence of the foam 13 or the liquid film 14 in the sample 10 in the sample storage container 11 subjected to the ultrasonic irradiation treatment in step S4.
  • the bubble determination unit 3 notifies the device control unit 1 of the determination result.
  • acquisition of information by the bubble identification unit 2 in step S5 for example, acquisition of image data is schematically shown with reference numeral 25.
  • the sample storage container 11 determined to have bubbles (the presence of the bubbles 13 or the liquid film 14) in step S5 (that is, the sample in which the bubbles 13 or the liquid film 14 did not disappear in the ultrasonic irradiation treatment in step S4).
  • the steps S4 (ultrasonic irradiation treatment) and step S5 (determination of the presence or absence of bubbles) are repeated until it is determined that there are no bubbles.
  • the upper limit of the number of repetitions (number of cycles) of steps S4 and S5 is set in advance, and it is determined that bubbles are present even if steps S4 and S5 are repeated up to the upper limit (that is, bubbles 13 or liquid film 14). If the sample 10 in the sample storage container 11 does not disappear, an appropriate abnormality treatment (abnormality response treatment) can be performed without performing the dispensing treatment by the dispensing probe 7.
  • the upper limit of the number of repetitions can be any number, and can also be set according to the characteristics of the sample.
  • the method of inputting the upper limit of the number of repetitions is arbitrary, and for example, a method of selecting a numerical value on the operation screen or a method of directly inputting a numerical value may be used.
  • the upper limit of the number of repetitions (number of cycles) of steps S4 and S5 can be set to a plurality of times (for example, 2 times or 3 times), but can also be set to 1 time.
  • the upper limit of the number of repetitions is 1, after performing step S1, step S2, step S3, step S4 and step S5 in order, the sample 10 in the sample containment vessel 11 determined to have bubbles in step S5. No further ultrasonic irradiation treatment is applied.
  • step S4 and S5 when steps S4 and S5 are repeated a plurality of times (multiple cycles), the defoaming action of the repeated ultrasonic irradiation treatment of step S4 should be the same without changing the conditions of the ultrasonic irradiation treatment of step S4. Can be done. For example, when step S4 and step S5 are repeated twice, the conditions of ultrasonic irradiation are the same in the first step S4 and the subsequent step S4, and the defoaming action of the ultrasonic irradiation treatment in the first step S4 is performed.
  • the defoaming action of the ultrasonic irradiation treatment in the later step S4 can be made to the same degree. This can also be applied to step S4a of the second embodiment described later.
  • step S4 and step S5 each time step S4 and step S5 are repeated, the defoaming action of the ultrasonic irradiation treatment in step S5 can be increased.
  • step S4 and step S5 are repeated twice, the conditions of ultrasonic irradiation are changed between the first step S4 and the subsequent step S4, and the defoaming action of the ultrasonic irradiation treatment of the first step S4 is more important. It is also possible to increase the defoaming action of the ultrasonic irradiation treatment in the later step S4. This can also be applied to step S4a of the second embodiment described later.
  • the device control unit 1 controls the transport unit and the like, so that the dispensing position where the sample dispensing probe 7 is located is located.
  • the sample 10 in the sample storage container 11 is dispensed into another container (reaction container) using the dispensing probe 7. That is, a part of the sample 10 in the sample containment vessel 11 is sucked by the dispensing probe 7, and the sample 10 sucked by the dispensing probe 7 is discharged to another container (reaction container). Further, the reagent in the reagent containment vessel is dispensed into the reaction vessel using a reagent dispensing probe (not shown).
  • the sample and the reagent are mixed and reacted in the reaction vessel.
  • a predetermined analysis for example, measurement of optical properties
  • the liquid reaction solution of the sample and the reagent
  • step S3 determination of the presence or absence of bubbles again
  • step S3 determination of the presence or absence of bubbles again
  • step S3 the other samples are dispensed.
  • the timing of reanalysis may be performed after all the steps have been carried out.
  • a method of determining the presence or absence of the bubbles 13 and the liquid film 14 a method of determining from an image or the like (method described in the first embodiment) and a method of determining from a suction state or a discharge state at the time of dispensing (embodiment).
  • the method described in 2) can be considered, but the method is arbitrary as long as the presence or absence of the bubbles 13 and the liquid film 14 can be determined.
  • the ultrasonic irradiation treatment of steps S2 and S4 is performed to eliminate (disappear, remove) the bubbles 13 or the liquid film 14 in the sample containment vessel 11.
  • the ultrasonic irradiation treatment can be performed in a non-contact manner, has a high defoaming action, and can easily suppress deterioration of the sample. Further, it is relatively easy to equip the automatic analyzer with the equipment necessary for ultrasonic irradiation. Therefore, in the present embodiment, the ultrasonic irradiation treatment is adopted as the defoaming treatment, and the ultrasonic irradiation treatment is performed in steps S2 and S4.
  • the ultrasonic irradiation treatment is adopted as the defoaming treatment, there is a possibility (risk) that the sample is altered by the ultrasonic irradiation treatment. That is, there is a risk that the chemical properties of the sample will change as the sample is irradiated with ultrasonic waves. If the sample is altered by the ultrasonic irradiation treatment, there is a risk that the subsequent analysis of the sample (for example, component analysis) cannot be performed accurately. For example, alteration of a sample can cause an error in the analysis result of the sample. This leads to a decrease in the reliability of the analysis result by the automatic analyzer.
  • the ultrasonic irradiation treatment is adopted as the defoaming treatment, it is desired to suppress the deterioration of the sample due to the ultrasonic irradiation treatment.
  • the defoaming action of the ultrasonic irradiation treatment is also reduced accordingly.
  • the ultrasonic irradiation treatment having a small defoaming action is unlikely to cause deterioration of the sample by the ultrasonic irradiation treatment, and the ultrasonic irradiation treatment having a large defoaming action may cause the deterioration of the sample by the ultrasonic irradiation treatment.
  • Highly sexual. This is because increasing the defoaming action of the ultrasonic irradiation treatment leads to an increase in the energy applied to the sample, so that the sample tends to deteriorate due to an increase in the temperature of the sample. That is, there is a trade-off relationship between the magnitude of the defoaming action of the ultrasonic irradiation treatment and the possibility (risk) of deterioration of the sample due to the ultrasonic irradiation treatment.
  • the ultrasonic irradiation treatment in step S2 and the ultrasonic irradiation in step S4 are performed so that the ultrasonic irradiation treatment in step S4 has a greater defoaming effect than the ultrasonic irradiation treatment in step S2.
  • Each condition of processing is set.
  • the ultrasonic irradiation treatment having the same defoaming action is performed in step S2 and step S4, and this case will be referred to as the first study example below. ..
  • the first study example by making the conditions of the ultrasonic irradiation treatment the same in steps S2 and S4, the magnitude of the defoaming action of the ultrasonic irradiation treatment in step S2 and the ultrasonic irradiation treatment in step S4
  • the magnitude of the defoaming action of the above is the same as that of each other.
  • step S4 since the magnitude of the defoaming action is the same in step S2 and step S4, if the ultrasonic irradiation treatment having a small defoaming action is performed in step S2, inevitably, the step The defoaming action of the ultrasonic irradiation treatment of S4 is also reduced, while the defoaming action of the ultrasonic irradiation treatment of step S4 is inevitably increased when the ultrasonic irradiation treatment having a large defoaming action is performed in step S2. ..
  • the ultrasonic irradiation treatment having a small defoaming action when the ultrasonic irradiation treatment having a small defoaming action is performed in both steps S2 and S4, the possibility that the sample is deteriorated by the ultrasonic irradiation treatment can be reduced.
  • the defoaming action is not sufficient in the ultrasonic irradiation treatment having a small defoaming action, and the bubbles tend to remain without disappearing even if the ultrasonic irradiation treatment is performed.
  • the ultrasonic irradiation treatment having a small defoaming action is performed in step S2, even if the large bubbles disappear, the small bubbles remain.
  • the ultrasonic irradiation treatment having a small defoaming action is also performed in step S4, the ultrasonic irradiation treatment has a small defoaming action. It is difficult to eliminate the small bubbles remaining in step S2 by the ultrasonic irradiation treatment in step S4. Therefore, the relatively small bubbles tend to remain without disappearing even after the ultrasonic irradiation treatment in step S2 and the ultrasonic irradiation treatment in step S4. Therefore, even if the ultrasonic irradiation treatment in step S2 and the ultrasonic irradiation treatment in step S4 are performed, there is a high possibility that the bubbles 13 or the liquid film 14 will remain in the sample storage container 11.
  • the dispensing process using the dispensing probe 7 cannot be performed accurately, so that the sample is placed in the sample storage container 11 after the ultrasonic irradiation treatment in step S4.
  • the possibility that the foam 13 or the liquid film 14 remains should be reduced.
  • the ultrasonic irradiation treatment in step S4 has a greater defoaming effect than the ultrasonic irradiation treatment in step S2. Therefore, the defoaming action of the ultrasonic irradiation treatment in step S2 can be reduced, and the defoaming action of the ultrasonic irradiation treatment in step S4 can be made larger than the defoaming action of the ultrasonic irradiation treatment in step S2.
  • the possibility (risk) that the sample is altered by the ultrasonic irradiation treatment in step S2 can be reduced.
  • the defoaming action of the ultrasonic irradiation treatment in step S2 even if the large bubbles can be eliminated by the ultrasonic irradiation treatment in step S2, relatively small bubbles are likely to remain. Since the defoaming action of the ultrasonic irradiation treatment in step S4 is made larger than the defoaming action of the ultrasonic irradiation treatment in step S2, smaller bubbles can be eliminated in step S4 as compared with step S2.
  • step S4 the ultrasonic irradiation treatment having a larger defoaming action than step S2. Therefore, in the present embodiment, it is possible to reduce the possibility that the bubbles 13 or the liquid film 14 remain in the sample containment vessel 11 even if the ultrasonic irradiation treatment of step S4 is performed.
  • the sample containment vessel 11 there may be a case where there are no small bubbles and only large bubbles are present, and there are cases where small bubbles are present.
  • the large bubbles can be eliminated by the ultrasonic irradiation treatment in step S2, so that the large bubbles can be eliminated in step S4.
  • No ultrasonic irradiation treatment is applied. Therefore, when there are no small bubbles and only large bubbles in the sample storage container 11, the ultrasonic irradiation treatment (step S2) having a small defoaming action is performed, but the defoaming action is large.
  • step S4 Since the ultrasonic irradiation treatment (step S4) is not performed, the possibility (risk) that the sample is denatured by the ultrasonic irradiation treatment can be sufficiently reduced.
  • the ultrasonic irradiation treatment in step S2 can eliminate the large bubbles but the small bubbles cannot be eliminated, but the ultrasonic irradiation treatment in step S4 can eliminate the small bubbles. You can eliminate bubbles. Therefore, when small bubbles are present in the sample containment vessel 11, the bubbles remain unerased while allowing the possibility of deterioration of the sample by performing the ultrasonic irradiation treatment (step S4) having a large defoaming action. Can be reduced.
  • step S2 when there are no small bubbles and only large bubbles in the sample containment vessel 11, the large bubbles can be eliminated and the ultrasonic irradiation treatment having a small defoaming action ( Only step S2) is performed.
  • step S4 when small bubbles are present in the sample storage container 11, in addition to the ultrasonic irradiation treatment (step S2) having a small defoaming action, ultrasonic irradiation having a large defoaming action capable of eliminating the small bubbles.
  • step S4 is also performed.
  • step S4 when there are no small bubbles and only large bubbles in the sample containment vessel 11, it is not necessary to perform the ultrasonic irradiation treatment (step S4) having a large defoaming action, so that the sample can be altered. The sex can be reduced. Further, when small bubbles are present in the sample storage container 11, the small bubbles can be eliminated by the ultrasonic irradiation treatment (step S4) having a large defoaming action, so that the ultrasonic irradiation treatment of step S4 is performed. Also, the possibility that the foam 13 or the liquid film 14 remains in the sample storage container 11 can be reduced.
  • the ultrasonic irradiation treatment of step S4 is performed as compared with the present embodiment. Later, there is a high possibility that the bubbles 13 or the liquid film 14 will remain in the sample storage container 11. Further, in the case of the first study example, if the defoaming action of the ultrasonic irradiation treatment is increased in both steps S2 and S4, there are cases where small bubbles are present in the sample storage container 11 and cases where the sample is stored.
  • the ultrasonic irradiation treatment having a large defoaming action is performed. That is, regardless of the size of the bubbles in the sample containment vessel 11, the ultrasonic irradiation treatment having a large defoaming action is performed. Therefore, the possibility of deterioration of the sample due to the ultrasonic irradiation treatment increases.
  • the ultrasonic irradiation treatment (step S2) having a small defoaming action is followed by the ultrasonic irradiation treatment (step S4) having a large defoaming action
  • the ultrasonic irradiation treatment having a large defoaming action is performed.
  • the number of samples subjected to (step S4) can be reduced. That is, when there are no small bubbles and only large bubbles in the sample containment vessel 11, the ultrasonic irradiation treatment (step S4) having a large defoaming action does not need to be performed. Therefore, the possibility of deterioration of the sample can be reduced.
  • the sample can be accurately dispensed. Further, in the present embodiment, the possibility of deterioration of the sample due to the ultrasonic irradiation treatment can be reduced. Therefore, the reliability of the analysis result by the automatic analyzer can be improved.
  • the ultrasonic irradiation treatment of step S2 and the ultrasonic irradiation treatment of step S4 are performed so that the ultrasonic irradiation treatment of step S4 has a greater defoaming effect than the ultrasonic irradiation treatment of step S2.
  • Each condition is set. There are the following four factors (first to fourth factors) as factors that contribute to the magnitude of the defoaming action of the ultrasonic irradiation treatment.
  • the first factor is the intensity of ultrasonic waves.
  • the intensity of the ultrasonic wave corresponds to the amplitude of the ultrasonic wave.
  • the high intensity of ultrasonic waves means that the amplitude of ultrasonic waves is large. Further, since the sound pressure of the ultrasonic wave is also related to the amplitude of the ultrasonic wave, the intensity of the ultrasonic wave can be regarded as the sound pressure of the ultrasonic wave.
  • the high intensity of the ultrasonic wave means that the amplitude of the ultrasonic wave is large, and as a result, the sound pressure of the ultrasonic wave is large. The greater the intensity of the ultrasonic wave, the greater the defoaming effect of the ultrasonic wave.
  • the intensity of the ultrasonic wave in the ultrasonic irradiation process of step S4 is extinguished in step S4 rather than step S2.
  • the foaming action can be increased.
  • the intensity of the ultrasonic wave can be set as the intensity of the ultrasonic wave emitted from the horn 8, and is emitted from the horn 8 in step S4 rather than the intensity of the ultrasonic wave emitted from the horn 8 in step S2.
  • the intensity of the ultrasonic waves may be increased.
  • the intensity of ultrasonic waves can be set so that bubbles having a diameter of 1 mm or more can be ruptured.
  • the ultrasonic intensity is 600 Pa in step S2
  • the bubbles remaining after the ultrasonic irradiation treatment in step S2 are bubbles having a diameter of less than 1 mm. Therefore, in the ultrasonic irradiation treatment in step S4, for example, the intensity of the ultrasonic wave can be set so that bubbles having a diameter of 0.5 mm or more can be broken. In that case, the ultrasonic wave can be set according to the Laplace equation.
  • the intensity is about 1200 Pa (sound pressure).
  • the intensity of the ultrasonic waves in steps S2 and S4 can be set to an optimum value in consideration of the size of bubbles that are likely to be generated on the liquid surface of the sample. Further, in order to change the intensity of ultrasonic waves in steps S2 and S4, various methods such as a method of changing the sound pressure level from the sound source (ultrasonic wave generation source 4) can be applied.
  • the ultrasonic source driving unit 5 uses a sound pressure level that can be changed. In that case, the ultrasonic source driving unit 5 may be able to change the sound pressure level in a wide variety of ways, but may be capable of setting at least two types of sound pressure levels.
  • the second factor is the ultrasonic irradiation time.
  • the longer the irradiation time of the ultrasonic waves the greater the defoaming action of the ultrasonic waves. Therefore, by making the ultrasonic wave irradiation time in the ultrasonic wave irradiation process in step S4 longer than the ultrasonic wave irradiation time in the ultrasonic wave irradiation process in step S2, the ultrasonic wave irradiation process is performed in step S4 rather than step S2. Can increase the defoaming effect of.
  • the ultrasonic irradiation time in step S2 can be, for example, about 0.5 to 5 ms (milliseconds), and the ultrasonic wave irradiation time in step S2 can be, for example, 100 ms (milliseconds) or more.
  • FIG. 4 is an explanatory diagram showing a state in which ultrasonic waves are applied to the sample 10 in the sample containment vessel 11 while moving the sample containment vessel 11.
  • the horn 8 is used with respect to the sample 10 in the sample containment vessel 11 while moving the sample containment vessel 11. Ultrasonic waves are being emitted from.
  • the arrow in FIG. 4 indicates a case where the moving direction is a reciprocating movement, but the moving direction may be a single direction.
  • step S4 By irradiating the sample 10 in the sample storage container 11 with ultrasonic waves from the horn 8 while moving the sample storage container 11, the ultrasonic waves are locally concentrated and irradiated in the sample 10 in the sample storage container 11. It is possible to prevent the sample from being unevenly irradiated on the surface of the sample in the sample storage container 11.
  • step S4 since the ultrasonic irradiation treatment having a long irradiation time and a large defoaming action is performed, the sample may be deteriorated.
  • the sample in the sample storage container 11 is subjected to the ultrasonic irradiation treatment.
  • the third factor is the frequency of ultrasonic waves.
  • the higher (higher) the frequency of the ultrasonic waves the greater the defoaming action of the ultrasonic waves. Therefore, by making the frequency of the ultrasonic wave in the ultrasonic wave irradiation process of step S4 larger (higher) than the frequency of the ultrasonic wave in the ultrasonic wave irradiation process of step S2, the ultrasonic wave irradiation in step S4 is higher than that of step S2.
  • the defoaming effect of the treatment can be increased.
  • the frequency of the ultrasonic wave emitted from the horn 8 is preferably a frequency in the range of 20 kHz to 100 kHz, which is said to propagate in the air.
  • the frequency of the ultrasonic wave in step S2 can be, for example, about 20 kHz, and the frequency of the ultrasonic wave in step S2 can be, for example, about 35 kHz.
  • ultrasonic waves can be irradiated while changing the frequency.
  • the fourth factor is the distance from the horn 8 (ultrasonic wave irradiation unit) to the sample 10.
  • 5 and 6 are explanatory views showing how the sample 10 in the sample containment vessel 11 is irradiated with ultrasonic waves from the horn 8.
  • the horn 8 is used more than in the case of FIG.
  • the distance to sample 10 is shortened.
  • the ultrasonic waves When irradiating ultrasonic waves from the horn 8 toward the sample 10 in the sample storage container 11, the ultrasonic waves propagate in the space (in the air) between the horn 8 and the sample 10, but until they reach the sample 10. During this time, the intensity of the ultrasonic waves gradually attenuates. As shown in FIG. 6, if the distance from the horn 8 to the sample 10 is short, the degree of attenuation of the ultrasonic wave intensity is small, but as shown in FIG. 5, if the distance from the horn 8 to the sample 10 is long, the ultrasonic wave is emitted. The degree of attenuation of the intensity of is increased. Therefore, when the intensity of the ultrasonic wave immediately after being emitted from the horn 8 is the same in the cases of FIG.
  • the horn is horned as compared with the case of FIG. 6 where the distance from the horn 8 to the sample 10 is short.
  • the attenuation of the ultrasonic wave intensity is large, and therefore the intensity of the ultrasonic wave reaching the sample 10 is small. Therefore, when irradiating ultrasonic waves from the horn 8 toward the sample 10 in the sample storage container 11, the defoaming action of the ultrasonic waves can be reduced by increasing the distance from the horn 8 to the sample 10. it can. Therefore, by performing step S2 as shown in FIG. 5 and step S4 as shown in FIG. 6, the defoaming action of the ultrasonic irradiation treatment can be increased in step S4 as compared with step S2.
  • the distance from the horn 8 in the ultrasonic irradiation process in step S4 to the sample 10 in the sample storage container 11 is set rather than the distance from the horn 8 in the ultrasonic irradiation process in step S2 to the sample 10 in the sample storage container 11.
  • the defoaming action of the ultrasonic irradiation treatment can be increased in step S4 rather than step S2.
  • the distance from the horn 8 in the ultrasonic irradiation process in step S4 to the sample 10 in the sample storage container 11 is shorter than the distance from the horn 8 in the ultrasonic irradiation process in step S2 to the sample 10 in the sample storage container 11.
  • the height position of the horn 8 in step S4 may be lower than the height position of the horn 8 in step S2.
  • the difference between the distance from the horn 8 in the ultrasonic irradiation treatment in step S2 to the sample 10 in the sample storage container 11 and the distance from the horn 8 in the ultrasonic irradiation treatment in step S4 to the sample 10 in the sample storage container 11 is For example, it can be 40 mm or more.
  • the first factor (ultrasonic intensity) contributes most to the magnitude of the defoaming action of the ultrasonic irradiation treatment. Therefore, among the first to fourth factors, it is preferable to adjust the magnitude of the defoaming action of the ultrasonic irradiation treatment in steps S2 and S4 by adjusting the intensity of the ultrasonic wave which is the first factor. Therefore, it is preferable to increase the intensity of the ultrasonic waves in the ultrasonic irradiation process of step S4 rather than the intensity of the ultrasonic waves in the ultrasonic irradiation process of step S2.
  • step S2 the defoaming action of the ultrasonic irradiation treatment can be reduced, and in step S4, the defoaming action of the ultrasonic irradiation treatment can be accurately increased as compared with step S2.
  • the ultrasonic waves in steps S2 and S4 are due to the first factor, the second factor and the fourth factor rather than the third factor (ultrasonic frequency). It is more advantageous to adjust the magnitude of the defoaming action of the irradiation treatment.
  • the fourth factor can be adjusted by adjusting the height position of the horn 8, there is no need to change the ultrasonic wave generation mechanism. Therefore, the adjustment of the fourth factor is advantageous from the viewpoint of simplification of the automatic control device.
  • the fourth factor contributes less to the magnitude of the defoaming action of the ultrasonic irradiation treatment than the first to third factors. That is, compared with the first to third factors, it is difficult for the fourth factor to secure the difference in defoaming action between step S2 and step S4.
  • step S2 the defoaming action of the ultrasonic irradiation treatment is reduced, and in step S4, the defoaming action of the ultrasonic irradiation treatment is larger than that of step S2, a fourth factor (horn 8 to sample 10). It is more advantageous to adjust the first factor, the second factor and the third factor than the distance), and it is most advantageous to adjust with the first factor.
  • step S2 and step S4 any one of the first to fourth factors is adjusted, and the other factors are shared, so that the ultrasonic wave is obtained in step S4 rather than step S2.
  • the defoaming action of the irradiation treatment can be increased.
  • the conditions of step S2 and step S4 can be easily set.
  • step S4 by adjusting two or more of the first to fourth factors in step S2 and step S4, the defoaming action of the ultrasonic irradiation treatment is performed in step S4 rather than step S2. It can also be made larger.
  • ⁇ Modification example> a modified example of the flow of the defoaming process in the automatic analyzer of the present embodiment will be described.
  • the modified example corresponds to the case where step S1 is omitted in FIGS. 2 and 3. That is, in the case of the modified example, the ultrasonic irradiation process of step S2 is performed without performing step S1.
  • the device control unit 1 controls the transport unit and the like before performing the dispensing process of the sample 10 in the sample containment vessel 11 without performing the step S1 to control the sample containment vessel 11. It is conveyed below the horn 8. Then, the device control unit 1 controls the ultrasonic output control unit 6 to generate ultrasonic waves at the ultrasonic wave generation source 4, so that the sample in the sample storage container 11 in which the bubbles 13 or the liquid film 14 are present is generated from the horn 8. Irradiate ultrasonic waves toward 10. That is, the ultrasonic irradiation treatment of step S2 is performed on the sample 10 of the sample containment vessel 11 in which the bubbles 13 or the liquid film 14 are present. After the ultrasonic irradiation treatment in step S2, the modified example is basically the same as the case of FIGS. 2 and 3, so the repeated description thereof will be omitted here.
  • step S2 (ultrasonic irradiation treatment) and step S3 (determination of the presence or absence of bubbles) can be sequentially performed for each sample containment vessel 11, but step S2 (ultrasonic irradiation treatment) is performed in a plurality of steps. It is also possible to collectively perform step S3 (determination of the presence or absence of bubbles) for the plurality of sample storage containers 11 after collectively performing the sample storage container 11 of the above.
  • step S1 determination of the presence or absence of bubbles
  • step S2 the ultrasonic irradiation treatment of step S2 is performed on the sample 10 of the sample containment vessel 11 without determining whether or not the bubbles 13 or the liquid film 14 are present in the sample containment vessel 11. Is given. Therefore, in the case of the modified example, the ultrasonic irradiation treatment in step S2 also does not have the bubbles 13 or the liquid film 14 with respect to the sample 10 of the sample storage container 11 in which the bubbles 13 or the liquid film 14 are present. This is also performed for the sample 10 in the sample storage container 11.
  • step S2 since the defoaming action of the ultrasonic irradiation treatment in step S2 is reduced and the defoaming action of the ultrasonic irradiation treatment in step S4 is larger than that in step S2, the sample is produced by the ultrasonic irradiation treatment. While reducing the possibility of deterioration (risk), it is possible to reduce the possibility of residual bubbles remaining in step S4. Therefore, the reliability of the analysis result by the automatic analyzer can be improved.
  • step S1 since the above step S1 is not performed, the ultrasonic irradiation treatment of step S2 is also applied to the sample 10 of the sample containment vessel 11 in which the bubbles 13 and the liquid film 14 do not exist at all. ..
  • step S1 when the step S1 is also performed (FIGS. 2 and 3), the ultrasonic irradiation treatment of the step S2 is applied to the sample 10 of the sample containment vessel 11 in which the bubbles 13 and the liquid film 14 are not present at all. You don't have to. Therefore, from the viewpoint of preventing the deterioration of the sample due to the ultrasonic irradiation treatment as much as possible, the case of performing the above step S1 (FIGS.
  • step S2 is more advantageous than the case of the modified example in which the above step S1 is not performed. is there.
  • the ultrasonic irradiation treatment of step S2 is not performed on the sample 10 of the sample storage container 11 in which the bubbles 13 and the liquid film 14 do not exist at all, so that the bubbles 13 and the liquid film 14 are completely absent. It is possible to eliminate the possibility (risk) that the sample in the non-existent sample storage container 11 is altered by ultrasonic irradiation.
  • FIG. 7 is a configuration diagram showing the configuration of the automatic analyzer according to the second embodiment, and corresponds to the above-mentioned FIG. 1 of the first embodiment.
  • the automatic analyzer (FIG. 7) in the second embodiment is different from the automatic analyzer (FIG. 1) in the first embodiment in the following points. That is, in the first embodiment, the bubble identification unit 2 and the dispensing probe 7 are separately provided, and the information acquired by the bubble identification unit 2 is acquired when the sample is sucked or discharged by the dispensing probe 7. It wasn't something to do. On the other hand, in the second embodiment, the bubble identification unit 2 and the dispensing probe 7 are connected to each other, and specifically, when the dispensing process is performed by the dispensing probe 7, the dispensing probe 7 is used. At the time of suction or discharge of the sample, the bubble identification unit 2 acquires information (information that enables it to determine whether or not the bubble 13 or the liquid film 14 is present).
  • the bubble identification unit 2 acquires the information obtained when the dispensing probe 7 sucks or discharges the sample 10 in the sample storage container 11, and the bubble identification unit 2 acquires the information. Based on the information, the bubble determination unit 3 determines the presence or absence of the bubble 13 or the liquid film 14, and the bubble determination unit 3 notifies the device control unit 1 of the determination result. For example, the suction speed or suction pressure when the dispensing probe 7 sucks the sample 10 in the sample storage container 11 differs depending on whether the bubble 13 or the liquid film 14 is present or present. ing.
  • the tip of the dispensing probe 7 is immersed in the sample 10 in the sample storage container 11, and the sample 10 is dispensed at a predetermined suction rate. It is sucked into 7.
  • the position of the liquid surface of the sample 10 in the sample storage container 11 is erroneously recognized, so that the tip of the dispensing probe 7 stores the sample.
  • the sample 10 in the container 11 is not immersed, and the dispensing probe 7 sucks air instead of the sample 10.
  • the bubble identification unit 2 acquires information that can discriminate between the two (for example, suction speed or suction pressure), and based on the information acquired by the bubble identification unit 2, the bubble determination unit 3 determines the bubbles in the sample storage container 11. The presence or absence of 13 or the liquid film 14 can be determined.
  • FIG. 8 is an explanatory diagram showing the flow of defoaming processing in the automatic analyzer of the second embodiment
  • FIG. 9 is a flowchart showing the flow of defoaming processing in the automatic analyzer of the second embodiment.
  • the device control unit 1, the bubble identification unit 2, the bubble determination unit 3, the ultrasonic wave source drive unit 5, and the ultrasonic wave output control unit 6 shown in FIG. 7 are not shown. ..
  • the sample 10 is stored (accommodated) in the sample containment vessel 11.
  • the device control unit 1 controls the transport unit and the like to transport the sample containment vessel 11 to the dispensing position where the dispensing probe 7 is located.
  • the sample 10 in the sample containment vessel 11 is dispensed into another vessel (reaction vessel) using the dispensing probe 7. That is, a part of the sample 10 in the sample containment vessel 11 is sucked by the dispensing probe 7, and the sample 10 sucked by the dispensing probe 7 is discharged to another container (reaction container).
  • reaction container a container
  • a part of the sample 10 in the sample containment vessel 11 is transferred to another vessel (reaction vessel) by the dispensing probe 7.
  • the bubble identification unit 2 can determine information (information capable of determining whether or not the bubble 13 or the liquid film 14 is present in the sample storage container 11). ), And the foam determination unit 3 determines the presence / absence of bubbles (presence / absence of bubbles 13 or liquid film 14) in the sample storage container 11 based on the acquired information (steps S1a in FIGS. 8 and 9). The bubble determination unit 3 notifies the device control unit 1 of the determination result.
  • the dispensing process is normally completed. That is, the sample dispensed (transferred) from the sample containment vessel 11 determined to have no bubbles in step S1a to the reaction vessel using the dispensing probe 7 is later reacted with the reagent and then analyzed. Served.
  • step S1a On the other hand, for the sample containment vessel 11 determined to have bubbles (the presence of bubbles 13 or liquid film 14) in step S1a, the dispensing process is stopped. Then, the device control unit 1 controls the transport unit and the like based on the notification result from the foam determination unit 3, so that the sample containment vessel 11 determined to have bubbles in step S1a is transported below the horn 8. .. Then, the device control unit 1 controls the ultrasonic output control unit 6 to generate ultrasonic waves at the ultrasonic wave generation source 4, so that the sample in the sample storage container 11 in which the bubbles 13 or the liquid film 14 are present is generated from the horn 8. Irradiate ultrasonic waves toward 10.
  • the sample 10 in the sample 10 containment vessel 11 in which the bubbles 13 or the liquid film 14 is present is subjected to ultrasonic irradiation treatment (step S2a in FIGS. 8 and 9).
  • the ultrasonic irradiation treatment (first ultrasonic irradiation treatment) in step S2a has a defoaming action.
  • the ultrasonic waves emitted from the horn 8 in step S2a are schematically shown with reference numerals 31.
  • step S1a After performing the dispensing process of step S1a and determining the presence or absence of bubbles in the plurality of sample containment vessels 11, the sample containment vessel in which the bubbles 13 or the liquid film 14 is present among the plurality of sample containment vessels 11 It is also possible to carry the 11 below the horn 8 and perform the ultrasonic irradiation treatment of step S2a.
  • the sample containment vessel 11 subjected to the ultrasonic irradiation treatment in step S2a is transported to the dispensing position where the dispensing probe 7 is located by the device control unit 1 controlling the transport unit and the like. Then, the sample 10 in the sample containment vessel 11 subjected to the ultrasonic irradiation treatment of step S2a is dispensed into another vessel (reaction vessel) using the dispensing probe 7. That is, a part of the sample 10 in the sample storage container 11 subjected to the ultrasonic irradiation treatment in step S2a is sucked by the dispensing probe 7, and the sample 10 sucked by the dispensing probe 7 is sucked into another container (reaction container). ).
  • the bubble identification unit 2 can determine information (information capable of determining whether or not the bubble 13 or the liquid film 14 is present in the sample storage container 11). ) Is acquired, and the foam determination unit 3 determines the presence / absence of bubbles (presence / absence of bubbles 13 or liquid film 14) in the sample storage container 11 subjected to the ultrasonic irradiation treatment of step S2a based on the acquired information. (Step S3a in FIGS. 8 and 9). The bubble determination unit 3 notifies the device control unit 1 of the determination result.
  • the sample storage container 11 determined in step S3a to be free of bubbles (there is no bubble 13 or liquid film 14) that is, the sample storage container 11 in which the bubbles 13 and liquid film 14 disappeared by the ultrasonic irradiation treatment in step S2a).
  • the dispensing process is completed normally. That is, the sample dispensed (transferred) from the sample containment vessel 11 determined to have no bubbles in step S3a to the reaction vessel using the dispensing probe 7 is later reacted with the reagent and then analyzed. Served.
  • the sample storage container 11 determined to have bubbles (the presence of the bubbles 13 or the liquid film 14) in step S3a (that is, the sample in which the bubbles 13 and the liquid film 14 did not disappear by the ultrasonic irradiation treatment in step S2a).
  • the dispensing process is stopped.
  • the device control unit 1 controls the transport unit and the like based on the notification result from the foam determination unit 3, so that the sample containment vessel 11 determined to have bubbles in step S3a is transported below the horn 8. To.
  • the device control unit 1 controls the ultrasonic output control unit 6 to generate ultrasonic waves at the ultrasonic wave generation source 4, so that the sample in the sample storage container 11 in which the bubbles 13 or the liquid film 14 are present is generated from the horn 8.
  • the ultrasonic irradiation treatment (second ultrasonic irradiation treatment) in step S4a has a defoaming action.
  • the ultrasonic waves emitted from the horn 8 in step S4a are schematically shown with reference numerals 32.
  • the ultrasonic irradiation process of step S2a in the second embodiment is basically the same as the ultrasonic irradiation process of step S2 in the first embodiment. Further, the ultrasonic irradiation process of step S4a in the second embodiment is basically the same as the ultrasonic irradiation process of step S4 in the first embodiment. Therefore, similarly to the first embodiment, also in the second embodiment, the defoaming action of the ultrasonic irradiation treatment of step S4a is larger than the defoaming action of the ultrasonic irradiation treatment of step S2a.
  • the sample containment vessel 11 subjected to the ultrasonic irradiation treatment in step S4a is transported to the dispensing position where the dispensing probe 7 is located by the device control unit 1 controlling the transport unit and the like. Then, the sample 10 in the sample containment vessel 11 subjected to the ultrasonic irradiation treatment in step S4a is dispensed into another vessel (reaction vessel) using the dispensing probe 7. That is, a part of the sample 10 in the sample storage container 11 subjected to the ultrasonic irradiation treatment in step S4a is sucked by the dispensing probe 7, and the sample 10 sucked by the dispensing probe 7 is sucked into another container (reaction container). ).
  • the bubble identification unit 2 can determine information (information capable of determining whether or not the bubble 13 or the liquid film 14 is present in the sample storage container 11). ) Is acquired, and the foam determination unit 3 determines the presence / absence of bubbles (presence / absence of bubbles 13 or liquid film 14) in the sample storage container 11 subjected to the ultrasonic irradiation treatment of step S4a based on the acquired information. (Step S5a in FIGS. 8 and 9). The bubble determination unit 3 notifies the device control unit 1 of the determination result.
  • the sample storage container 11 determined to have no bubbles (there is no bubble 13 or liquid film 14) in step S5a that is, the sample storage container 11 in which the bubbles 13 and liquid film 14 disappeared by the ultrasonic irradiation treatment in step S4a).
  • the dispensing process is completed normally. That is, the sample dispensed (transferred) from the sample containment vessel 11 determined to have no bubbles in step S5a to the reaction vessel using the dispensing probe 7 is later reacted with the reagent and then analyzed. Served.
  • the sample storage container 11 determined to have bubbles (the presence of the bubbles 13 or the liquid film 14) in step S5a (that is, the sample in which the bubbles 13 and the liquid film 14 did not disappear by the ultrasonic irradiation treatment in step S4a).
  • the dispensing process is stopped.
  • the sample containment vessel 11 determined to have bubbles in step S5a, it is determined that there are no bubbles in step S4a (ultrasonic irradiation treatment) and step S5a (determination of the presence or absence of bubbles).
  • the upper limit of the number of repetitions (number of cycles) of steps S4a and S5a is set in advance, and if it is determined that bubbles are present even if steps S4a and S5a are repeated up to the upper limit, the sample containment vessel is used. Appropriate abnormality treatment (abnormality response processing) can be performed on the sample 10 in 11.
  • the upper limit of the number of repetitions can be set to any number of times.
  • the reagent in the reagent containment vessel is a dispensing probe for the reagent. Dispensed using (not shown). As a result, the sample and the reagent are mixed and reacted in the reaction vessel. After that, a predetermined analysis (for example, measurement of optical properties) is performed on the liquid (reaction solution of the sample and the reagent) in the reaction vessel. This makes it possible to analyze the components of the sample and the like.
  • step S3 determination of the presence or absence of bubbles due to re-dispensing
  • step S3 determination of the presence or absence of bubbles due to re-dispensing
  • step S3 can be performed immediately after the ultrasonic irradiation treatment in step S2, but not immediately after the ultrasonic irradiation treatment in step S2. It may be performed after the dispensing process has been performed for other samples (for example, the timing of reanalysis).
  • the defoaming action of the ultrasonic irradiation treatment in step S2a is reduced, and the defoaming action of the ultrasonic irradiation treatment in step S4a is larger than that in step S2a.
  • the device constituting the bubble identification unit 2 can be simplified as compared with the first embodiment.
  • the bubble identification unit 2 does not require a device (photographing device) for obtaining image data.
  • the number of transports between the dispensing position and the ultrasonic irradiation processing position can be reduced, so that the total processing time can be reduced as compared with the case of the second embodiment. Can be shortened.
  • the modified example corresponds to the case where step S1a is omitted in FIGS. 8 and 9. That is, in the case of the modified example, the ultrasonic irradiation process of step S2a is performed without performing step S1a.
  • the sample containment vessel 11 is conveyed below the horn 8 by the device control unit 1 controlling the transfer unit and the like before performing the dispensing process using the dispensing probe 7. Then, the device control unit 1 controls the ultrasonic output control unit 6 to generate ultrasonic waves at the ultrasonic wave generation source 4, so that the sample in the sample storage container 11 in which the bubbles 13 or the liquid film 14 are present is generated from the horn 8. Irradiate ultrasonic waves toward 10. That is, the ultrasonic irradiation treatment of step S2a is performed on the sample 10 of the sample containment vessel 11 in which the bubbles 13 or the liquid film 14 are present. After the ultrasonic irradiation treatment in step S2a, the modified example is basically the same as the case of FIGS. 8 and 9, and thus the repeated description thereof will be omitted here.
  • step S2a (ultrasonic irradiation treatment) and step S3a (dispensing and determination of the presence or absence of bubbles) can be sequentially performed for each sample containment vessel 11, but step S2a (ultrasonic irradiation treatment). ) Can be collectively performed on the plurality of sample containment vessels 11, and then step S3a (dispensing and determination of the presence or absence of bubbles) can be collectively performed on the plurality of sample containment vessels 11.
  • the dispensing process of the sample 10 in the sample containment vessel 11 and the above step S1a are not performed before the ultrasonic irradiation treatment in step S2a. That is, in the case of the modified example, the ultrasonic irradiation treatment of step S2a is performed on the sample in the sample containment vessel 11 without determining whether or not the bubbles 13 or the liquid film 14 are present in the sample containment vessel 11. It is given. Therefore, in the case of the modified example, in the ultrasonic irradiation treatment of step S2a, the foam 13 or the liquid film 14 is not present even for the sample 10 of the sample storage container 11 in which the foam 13 or the liquid film 14 is present. This is also performed for the sample 10 in the sample storage container 11.
  • the defoaming action of the ultrasonic irradiation treatment in step S2a is reduced, and the defoaming action of the ultrasonic irradiation treatment in step S4a is made larger than that of step S2a. While reducing the possibility (risk) of deterioration, it is possible to reduce the possibility that bubbles remain unerased in step S4a. Therefore, the reliability of the analysis result by the automatic analyzer can be improved.
  • step S1a since the above step S1a is not performed, the ultrasonic irradiation treatment of step S2a is also applied to the sample 10 of the sample containment vessel 11 in which the bubbles 13 and the liquid film 14 do not exist at all. ..
  • step S1a when the step S1a is also performed (FIGS. 8 and 9), the ultrasonic irradiation treatment of the step S2a is applied to the sample 10 of the sample containment vessel 11 in which the bubbles 13 and the liquid film 14 are not present at all. You don't have to. Therefore, from the viewpoint of preventing the deterioration of the sample due to the ultrasonic irradiation treatment as much as possible, the case of performing the above step S1a (FIGS.
  • step S2a is more advantageous than the case of the modified example in which the above step S1a is not performed. is there.
  • the ultrasonic irradiation treatment of step S2a is not applied to the sample 10 of the sample storage container 11 in which the bubbles 13 and the liquid film 14 do not exist at all, so that the bubbles 13 and the liquid film 14 are completely removed. It is possible to eliminate the possibility (risk) that the sample 10 of the non-existent sample storage container 11 is altered by ultrasonic irradiation.
  • the case where the defoaming treatment by ultrasonic waves is performed on the sample 10 contained in the sample containment vessel 11 has been described, but the reagent housed in the reagent containment vessel has been described. It can also be applied when defoaming with ultrasonic waves. Therefore, the technical idea described in the first and second embodiments can be applied to the case where the liquid contained in the container is defoamed by ultrasonic waves in the automatic analyzer.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

This automatic analysis device comprises: a determination unit which determines whether there are bubbles in a sample 10 in a sample storage vessel 11; and an irradiation unit which irradiates the sample 10 in the sample storage vessel 11 with ultrasonic waves. The irradiation unit performs a first ultrasonic irradiation treatment on the sample 10 in the sample storage vessel 11, and the determination unit determines whether there are bubbles in the sample 10 in the sample storage vessel 11 subjected to the first ultrasonic irradiation treatment. When it is determined that the sample 10 in the sample storage vessel 11 subjected to the first ultrasonic irradiation treatment has bubbles, the sample 10 in the sample storage container 11 subjected to the first ultrasonic irradiation treatment is subjected to a second ultrasonic irradiation treatment having a larger defoaming effect than the first ultrasonic irradiation treatment.

Description

自動分析装置Automatic analyzer
 本発明は、自動分析装置に関する。 The present invention relates to an automatic analyzer.
 自動分析装置では、血液や尿等の生体試料の成分分析を行うために、試料と試薬を反応させて発色や発光の測定を行っている。試料と試薬を反応させるために、試料と試薬のそれぞれを提供用の容器から反応用容器に分注して分析を行う。分注する際には、分注対象液に分注プローブの先端を接触、浸漬させて分注対象液を吸引するため、分注プローブの浸漬量が大きい場合は、分注プローブの外壁への液体付着量が増し、次の分注対象液とのクロスコンタミネーションの発生が懸念される。このため、分注の際には、分注プローブの浸漬量を低減するために、分注対象液の液面を検出し、液面近傍で液体の吸引を行うのが一般的である。この場合、分注対象液の液面上部に泡や液膜が存在していると、泡や液膜を液面と判断して分注対象液に分注プローブが触れずに吸引を行ってしまい、必要量の分注が行われず、正確な分析結果を出力できない可能性を有していた。 In the automatic analyzer, in order to analyze the components of biological samples such as blood and urine, the samples and reagents are reacted to measure color development and luminescence. In order to react the sample and the reagent, each of the sample and the reagent is dispensed from the supply container to the reaction container for analysis. When dispensing, the tip of the dispensing probe is brought into contact with and immersed in the liquid to be dispensed to suck the liquid to be dispensed. Therefore, if the amount of immersion of the dispensing probe is large, it is applied to the outer wall of the dispensing probe. The amount of liquid adhering increases, and there is concern that cross-contamination with the next liquid to be dispensed will occur. Therefore, at the time of dispensing, in order to reduce the immersion amount of the dispensing probe, it is common to detect the liquid level of the liquid to be dispensed and suck the liquid in the vicinity of the liquid level. In this case, if bubbles or liquid film are present above the liquid level of the liquid to be dispensed, the bubbles or liquid film are judged to be the liquid level, and suction is performed without the dispensing probe touching the liquid to be dispensed. As a result, the required amount of dispensing was not performed, and there was a possibility that accurate analysis results could not be output.
 一般的に、自動分析装置においては、ユーザへの注意喚起により、泡や液膜が存在する試料での分析を回避するようにしている。しかしながら、ユーザによる確認漏れや、自動前処理システムでの自動分析装置用容器への試料分注時に泡を発生させてしまうことなどにより、泡や液膜が存在したまま自動分析装置に試料が投入されてしまう可能性がある。 Generally, in an automatic analyzer, the user is alerted to avoid analysis on a sample in which bubbles or liquid films are present. However, due to omission of confirmation by the user and the generation of bubbles when the sample is dispensed into the container for the automatic analyzer in the automatic pretreatment system, the sample is put into the automatic analyzer with the bubbles and liquid film present. There is a possibility that it will be done.
 特開2014-145621号公報(特許文献1)には、試料の分注前に泡や液膜の存在を確認し、存在した場合には消泡器により消泡する技術が記載されている。 Japanese Unexamined Patent Publication No. 2014-145621 (Patent Document 1) describes a technique for confirming the presence of bubbles or a liquid film before dispensing a sample and, if present, defoaming with a defoamer.
特開2014-145621号公報Japanese Unexamined Patent Publication No. 2014-145621
 自動分析装置においては、分注対象液上の泡や液膜は、分注対象液の液面を正確に検出することの障害となり、必要量の分注を妨げて正確な分析結果が出力できなくなってしまう要因となっているが、泡や液膜に関してはユーザへの注意喚起にとどまっていることが一般的である。しかしながら、ユーザにとって、泡や液膜の確認作業は負担となり、また、ユーザによる確認漏れも懸念される。このため、分注の前に、分注対象液に対して消泡処理を施すことが望まれる。 In the automatic analyzer, bubbles and liquid film on the liquid to be dispensed hinder the accurate detection of the liquid level of the liquid to be dispensed, which hinders the dispensing of the required amount and can output accurate analysis results. Although it is a factor that causes it to disappear, it is generally only a warning to the user regarding bubbles and liquid films. However, the confirmation work of bubbles and liquid film is a burden for the user, and there is a concern that the confirmation omission by the user may be omitted. Therefore, it is desirable to perform defoaming treatment on the liquid to be dispensed before dispensing.
 分注対象液に対して消泡処理を施してから分注を行う場合、消泡処理の条件によっては、分注対象液に対して十分な消泡効果を得られない。分注対象液に対する消泡処理が不十分だと、分注対象液上に泡や液膜が残った状態で分注を行ってしまうことになるため、分注を適切に行うことができない虞がある。分注を適切に行うことができないと、自動分析装置による分析結果の信頼性の低下を招いてしまう。このため、分注対象液に対して消泡処理を施してから分注を行う場合、消泡処理により分注対象液上の泡や液膜を確実に除去し、それによって、分注対象液上に泡や液膜が残った状態で分注を行ってしまうことを防ぐことが望まれる。また、分注対象液に対して消泡処理を施してから分注を行う場合、消泡処理の条件によっては、分注対象液が消泡処理によって変質してしまう虞がある。分注対象液が消泡処理によって変質してしまうと、自動分析装置による分析結果の信頼性の低下を招いてしまう。このため、分注対象液に対して消泡処理を施してから分注を行う場合、分注対象液が消泡処理によって変質してしまうリスクをできるだけ低減することが望まれる。 When dispensing is performed after defoaming the liquid to be dispensed, a sufficient defoaming effect cannot be obtained for the liquid to be dispensed depending on the conditions of the defoaming treatment. If the defoaming treatment for the liquid to be dispensed is insufficient, the liquid will be dispensed with bubbles and liquid film remaining on the liquid to be dispensed, so that the dispensing may not be performed properly. There is. If dispensing is not performed properly, the reliability of the analysis results by the automatic analyzer will be reduced. For this reason, when the liquid to be dispensed is defoamed before dispensing, the defoaming treatment reliably removes bubbles and liquid film on the liquid to be dispensed, thereby removing the liquid to be dispensed. It is desirable to prevent dispensing with bubbles or liquid film remaining on the top. Further, when the liquid to be dispensed is defoamed and then dispensed, the liquid to be dispensed may be deteriorated by the defoaming treatment depending on the conditions of the defoaming treatment. If the liquid to be dispensed is altered by the defoaming treatment, the reliability of the analysis result by the automatic analyzer will be reduced. Therefore, when the liquid to be dispensed is defoamed and then dispensed, it is desired to reduce the risk of the liquid to be dispensed being defoamed by the defoaming treatment as much as possible.
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 Other issues and new features will become apparent from the description and accompanying drawings herein.
 本願において開示される実施の形態のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 Among the embodiments disclosed in the present application, a brief outline of typical ones is as follows.
 一実施の形態によれば、自動分析装置は、容器内に収容された液体における泡の有無を判断する判断部と、前記容器内に収容された前記液体に対して超音波を照射する照射部と、を備えている。前記照射部は、前記容器内の前記液体に対して第1の超音波照射処理を行い、前記判断部は、前記第1の超音波照射処理が行われた前記容器内の前記液体における泡の有無を判断する。前記第1の超音波照射処理が行われた前記容器内の前記液体に泡が有ると前記判断部が判断した場合には、前記照射部は、前記第1の超音波照射処理が行われた前記容器内の前記液体に対して、前記第1の超音波照射処理よりも消泡作用が大きい第2の超音波照射処理を行う。 According to one embodiment, the automatic analyzer includes a determination unit for determining the presence or absence of bubbles in the liquid contained in the container, and an irradiation unit for irradiating the liquid contained in the container with ultrasonic waves. And have. The irradiation unit performs a first ultrasonic irradiation treatment on the liquid in the container, and the determination unit performs a foam in the liquid in the container on which the first ultrasonic irradiation treatment is performed. Judge the presence or absence. When the determination unit determines that the liquid in the container to which the first ultrasonic irradiation treatment has been performed has bubbles, the irradiation unit has been subjected to the first ultrasonic irradiation treatment. The liquid in the container is subjected to a second ultrasonic irradiation treatment having a larger defoaming effect than the first ultrasonic irradiation treatment.
 代表的な実施の形態によれば、自動分析装置による分析結果の信頼性を向上させることができる。 According to a typical embodiment, the reliability of the analysis result by the automatic analyzer can be improved.
一実施の形態における自動分析装置の構成を示す構成図。The block diagram which shows the structure of the automatic analyzer in one Embodiment. 一実施の形態の自動分析装置における消泡処理の流れを示す説明図。The explanatory view which shows the flow of the defoaming process in the automatic analyzer of one Embodiment. 一実施の形態の自動分析装置における消泡処理の流れを示すフローチャート。The flowchart which shows the flow of the defoaming process in the automatic analyzer of one Embodiment. 試料格納容器を動かしながら試料格納容器内の試料に対して超音波を照射する様子を示す説明図。Explanatory drawing which shows the state of irradiating the sample in a sample containment vessel with ultrasonic waves while moving a sample containment vessel. ホーンから試料格納容器内の試料に対して超音波を照射する様子を示す説明図である。It is explanatory drawing which shows the state of irradiating the sample in a sample containment vessel with ultrasonic waves from a horn. ホーンから試料格納容器内の試料に対して超音波を照射する様子を示す説明図である。It is explanatory drawing which shows the state of irradiating the sample in a sample containment vessel with ultrasonic waves from a horn. 他の実施の形態における自動分析装置の構成を示す構成図。The block diagram which shows the structure of the automatic analyzer in another embodiment. 他の実施の形態の自動分析装置における消泡処理の流れを示す説明図。The explanatory view which shows the flow of the defoaming process in the automatic analyzer of another embodiment. 他の実施の形態の自動分析装置における消泡処理の流れを示すフローチャート。The flowchart which shows the flow of the defoaming process in the automatic analyzer of another embodiment.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態では、特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In all the drawings for explaining the embodiment, the members having the same function are designated by the same reference numerals, and the repeated description thereof will be omitted. Further, in the following embodiments, the description of the same or similar parts is not repeated in principle except when it is particularly necessary.
 (実施の形態1)
 <自動分析装置の構成>
 図1を参照して、本実施の形態における自動分析装置の構成について説明する。図1は、本実施の形態における自動分析装置の構成を示す構成図であり、自動分析装置において、泡の判断および泡の消泡を行う部分周辺の構成と、分注を行う部分周辺の構成とが、示されている。
(Embodiment 1)
<Configuration of automatic analyzer>
The configuration of the automatic analyzer according to the present embodiment will be described with reference to FIG. FIG. 1 is a configuration diagram showing a configuration of an automatic analyzer according to the present embodiment. In the automatic analyzer, a configuration around a portion for determining bubbles and defoaming bubbles and a configuration around a portion for dispensing are performed. Is shown.
 図1に示されるように、本実施の形態における自動分析装置は、自動分析装置全体の制御を行う装置制御部1と、泡識別部2と、泡判断部3と、超音波を発生する超音波発生源4と、超音波発生源4を駆動する超音波発生源駆動部5と、超音波発生源駆動部5を制御する超音波出力コントロール部6と、分注プローブ7と、を備えている。本実施の形態における自動分析装置は、図示しない他の構成を含めて、装置制御部1によって制御されている。 As shown in FIG. 1, the automatic analyzer according to the present embodiment includes an apparatus control unit 1 that controls the entire automatic analyzer, a bubble identification unit 2, a bubble determination unit 3, and an ultrasonic wave generating ultrasonic waves. A sound wave generation source 4, an ultrasonic wave source driving unit 5 that drives the ultrasonic wave generation source 4, an ultrasonic wave output control unit 6 that controls the ultrasonic wave generation source driving unit 5, and a dispensing probe 7 are provided. There is. The automatic analyzer according to this embodiment is controlled by the device control unit 1 including other configurations (not shown).
 泡識別部2は、泡判断部3に接続され、泡判断部3は、装置制御部1に接続されている。また、超音波発生源4は、超音波発生源駆動部5に接続され、超音波発生源駆動部5は、超音波出力コントロール部6に接続され、超音波出力コントロール部6は、装置制御部1に接続されている。超音波発生源4の先端には、超音波を増幅するためのホーン8が取り付けられている。分注プローブ7は、装置制御部1に接続されている。 The bubble identification unit 2 is connected to the bubble determination unit 3, and the bubble determination unit 3 is connected to the device control unit 1. Further, the ultrasonic wave generation source 4 is connected to the ultrasonic wave generation source driving unit 5, the ultrasonic wave generating source driving unit 5 is connected to the ultrasonic wave output control unit 6, and the ultrasonic wave output control unit 6 is a device control unit. It is connected to 1. A horn 8 for amplifying ultrasonic waves is attached to the tip of the ultrasonic wave generation source 4. The dispensing probe 7 is connected to the device control unit 1.
 自動分析装置の分析対象の試料(液体)10は、試料格納容器11に入れられており、試料格納容器11は試料格納容器架設部(サンプルラック)12に架設され、搬送部(搬送機構)などにより、自動分析装置内を搬送される。試料格納容器11に格納(収容)されている試料10は、液体であり、例えば、血液または尿などの生体試料である。試料格納容器11は、自動分析装置によっては使用可能な容器が規定されていることが多いが、様々な容器が使用され得る。また、試料格納容器11を数本ひとまとめにして試料格納容器架設部12に架設して使用する自動分析装置や、ディスク上に多量の試料格納容器11を一度に架設して分析する自動分析装置や、1つずつ試料格納容器11が搬送される自動分析装置もある。 The sample (liquid) 10 to be analyzed by the automatic analyzer is placed in the sample storage container 11, the sample storage container 11 is erected in the sample storage container erection unit (sample rack) 12, and the transfer unit (transport mechanism) or the like. Is conveyed in the automatic analyzer. The sample 10 stored (contained) in the sample containment vessel 11 is a liquid, for example, a biological sample such as blood or urine. As the sample containment vessel 11, a container that can be used is often specified depending on the automatic analyzer, but various containers can be used. Further, an automatic analyzer in which several sample containment vessels 11 are grouped together and used by erection on the sample containment vessel erection unit 12, and an automatic analyzer in which a large number of sample containment vessels 11 are erected at once on a disk for analysis. There is also an automatic analyzer in which the sample containment vessels 11 are transported one by one.
 また、試料格納容器11自体または試料格納容器11を架設する試料格納容器架設部12には、試料格納容器11内の試料10の種類などを識別するためのバーコード(図示せず)など付与しておくこともできる。その場合、自動分析装置において、バーコード読み取り位置で試料格納容器架設部12を停止させてバーコードをバーコードリーダで読み取ることにより、試料格納容器11内の試料10の種類などを認識することができる。このバーコード読み取り位置において、試料格納容器11内の試料10に対する泡の有無の判断や消泡処理を行うこともできる。 Further, a bar code (not shown) for identifying the type of the sample 10 in the sample containment vessel 11 or the like is given to the sample containment vessel 11 itself or the sample containment vessel erection portion 12 on which the sample containment vessel 11 is erected. You can also keep it. In that case, the automatic analyzer can recognize the type of the sample 10 in the sample containment vessel 11 by stopping the sample containment vessel erection unit 12 at the barcode reading position and reading the barcode with the barcode reader. it can. At this barcode reading position, it is also possible to determine the presence or absence of bubbles in the sample 10 in the sample containment vessel 11 and perform defoaming treatment.
 試料格納容器11には試料10が格納(収容)されているが、試料格納容器11内の試料10の液面(表面)に泡13が存在している場合や、試料格納容器11内において試料10の液面よりも上方に液膜14が存在している場合がある。泡識別部2は、試料格納容器11内の試料10について、泡13または液膜14が存在しているか否かを判断するのが可能となる情報を取得する。例えば、試料格納容器架設部12により試料格納容器11が泡識別部2の下に搬送され、泡識別部2は、泡識別部2の下方に位置する試料格納容器11内の試料10について、泡13または液膜14が存在しているか否かを判断するのが可能となる情報を取得する。泡識別部2で得た情報を基に、泡判断部3により泡13または液膜14の有無が判断され、その判断結果は、泡判断部3から装置制御部1に通知される。 The sample 10 is stored (contained) in the sample storage container 11, but when bubbles 13 are present on the liquid surface (surface) of the sample 10 in the sample storage container 11, or when the sample is stored in the sample storage container 11. The liquid film 14 may be present above the liquid level of 10. The bubble identification unit 2 acquires information that enables it to determine whether or not the bubbles 13 or the liquid film 14 are present in the sample 10 in the sample containment vessel 11. For example, the sample storage container 11 is conveyed under the foam identification unit 2 by the sample storage container erection unit 12, and the foam identification unit 2 refers to the sample 10 in the sample storage container 11 located below the foam identification unit 2 with bubbles. Obtain information that makes it possible to determine whether or not 13 or the liquid film 14 is present. Based on the information obtained by the bubble identification unit 2, the bubble determination unit 3 determines the presence or absence of the bubble 13 or the liquid film 14, and the bubble determination unit 3 notifies the device control unit 1 of the determination result.
 泡識別部2が取得する情報は、例えば、画像データなどである。例えば、泡識別部2は、試料格納容器11内の試料10の画像データを取得可能な撮像部を含んでおり、泡識別部2が取得した画像データを基に、泡判断部3は、試料格納容器11内の泡13または液膜14の有無を判断することができる。 The information acquired by the bubble identification unit 2 is, for example, image data. For example, the bubble identification unit 2 includes an imaging unit capable of acquiring image data of the sample 10 in the sample storage container 11, and the bubble determination unit 3 is a sample based on the image data acquired by the bubble identification unit 2. The presence or absence of bubbles 13 or liquid film 14 in the storage container 11 can be determined.
 ここで、試料格納容器11内の試料10について、液面の泡13または液面よりも上方の液膜14が存在しているか否かを判断することを、以下では、「泡の有無を判断する」と称することとする。このため、「泡の有無を判断する」と称する場合、泡13または液膜14の有無を判断することに対応している。従って、泡の有無を判断する場合、泡13と液膜14のうちの少なくとも一方が存在すると、「泡が有る」と判断され、泡13と液膜14のどちらも存在しないと、「泡が無い」と判断される。泡識別部2は、試料格納容器架設部12内の泡の有無を判断することが可能な情報を取得し、その情報に基づいて、泡判断部3は、試料格納容器架設部12内の泡の有無を判断する。このため、泡識別部2と泡判断部3とを合わせたものを、泡の有無を判断する判断部とみなすこともできる。 Here, for the sample 10 in the sample containment vessel 11, it is determined whether or not the bubbles 13 on the liquid surface or the liquid film 14 above the liquid surface are present. It will be called "to do". Therefore, when it is referred to as "determining the presence or absence of bubbles", it corresponds to determining the presence or absence of bubbles 13 or liquid film 14. Therefore, when determining the presence or absence of bubbles, if at least one of the bubbles 13 and the liquid film 14 is present, it is determined that "there are bubbles", and if neither the bubbles 13 nor the liquid film 14 is present, "the bubbles are present". It is judged that there is no such thing. The foam identification unit 2 acquires information capable of determining the presence or absence of bubbles in the sample containment vessel erection unit 12, and based on the information, the foam determination unit 3 determines the bubbles in the sample containment vessel erection unit 12. Judge the presence or absence of. Therefore, the combination of the bubble identification unit 2 and the bubble determination unit 3 can be regarded as a determination unit for determining the presence or absence of bubbles.
 超音波発生源4は、超音波発生源駆動部5によって駆動されて、超音波を発生する。超音波発生源4で発生した超音波は、超音波発生源4の先端に取り付けられているホーン8から照射される。超音波発生源駆動部5は、超音波出力コントロール部6により制御される。このため、超音波発生源4により発生する超音波の強度または周波数は、超音波出力コントロール部6により制御することができる。超音波出力コントロール部6は、装置制御部1により制御される。 The ultrasonic wave generation source 4 is driven by the ultrasonic wave generation source driving unit 5 to generate ultrasonic waves. The ultrasonic waves generated by the ultrasonic wave generation source 4 are emitted from the horn 8 attached to the tip of the ultrasonic wave generation source 4. The ultrasonic wave source driving unit 5 is controlled by the ultrasonic wave output control unit 6. Therefore, the intensity or frequency of the ultrasonic waves generated by the ultrasonic wave generation source 4 can be controlled by the ultrasonic wave output control unit 6. The ultrasonic output control unit 6 is controlled by the device control unit 1.
 ホーン8から照射される超音波は、ホーン8の下方に位置する試料格納容器11内の試料10に向かって照射される。超音波はホーン8から出射されるので、ホーン8自身、または、ホーン8と超音波発生源4とを合わせたものを、超音波を照射する照射部とみなすことができる。 The ultrasonic waves emitted from the horn 8 are emitted toward the sample 10 in the sample containment vessel 11 located below the horn 8. Since the ultrasonic waves are emitted from the horn 8, the horn 8 itself or the combination of the horn 8 and the ultrasonic wave generation source 4 can be regarded as an irradiation unit that irradiates the ultrasonic waves.
 ホーン8の下方に位置する試料格納容器11内の試料10(すなわちホーン8からの超音波が照射される試料10)において、泡13または液膜14が存在している場合には、照射される超音波は、その泡13または液膜14を消す(消滅させる、除去する)作用を有している。ここで、液面の泡13または液面よりも上方の液膜14を消すことを、「消泡」と称することとする。このため、本願において、「消泡」と称する場合、液面の泡13を消す場合だけでなく、液面よりも上方の液膜14を消す場合も含むものとする。ホーン8から試料格納容器11内の試料10に超音波を照射する処理は、消泡処理(超音波による消泡処理)とみなすことができる。 If the bubble 13 or the liquid film 14 is present in the sample 10 (that is, the sample 10 to which the ultrasonic waves from the horn 8 are irradiated) in the sample storage container 11 located below the horn 8, the sample 10 is irradiated. The ultrasonic wave has an action of erasing (disappearing or removing) the bubble 13 or the liquid film 14. Here, the elimination of the bubbles 13 on the liquid surface or the liquid film 14 above the liquid surface is referred to as "defoaming". Therefore, in the present application, the term "defoaming" includes not only the case of extinguishing the bubbles 13 on the liquid surface but also the case of extinguishing the liquid film 14 above the liquid surface. The process of irradiating the sample 10 in the sample containment vessel 11 with ultrasonic waves from the horn 8 can be regarded as a defoaming process (defoaming process by ultrasonic waves).
 分注プローブ(分注用のプローブ)7は、試料用の分注プローブであり、装置制御部1によって制御され、試料格納容器11内の試料10を他の容器(反応用容器)に分注する。すなわち、試料格納容器11内の試料10の一部を分注プローブ7で吸引し、分注プローブ7で吸引した試料10を他の容器(反応用容器)に吐出する。これにより、試料格納容器11内の試料10の一部が、分注プローブ7によって、他の容器(反応用容器)に移される。分注プローブ7は、試料10を吸引、吐出するためのシリンジ(図示せず)などが接続されている。また、自動分析装置は、試薬用の分注プローブ(図示せず)も有しており、その試薬用の分注プローブを用いて、試薬格納容器内の試薬が反応用容器に分注される。これにより、反応用容器内で試料と試薬とを混合して反応させることができる。自動分析装置は、分析部(図示せず)も備えており、この分析部により、反応用容器内の液体(試料と試薬との反応溶液)に対して、所定の分析(例えば光学的特性の測定)を行うことができる。これにより、試料の成分などを分析することができる。 The dispensing probe (probe for dispensing) 7 is a dispensing probe for a sample, which is controlled by the device control unit 1 and dispenses the sample 10 in the sample containment vessel 11 into another container (reaction vessel). To do. That is, a part of the sample 10 in the sample containment vessel 11 is sucked by the dispensing probe 7, and the sample 10 sucked by the dispensing probe 7 is discharged to another container (reaction container). As a result, a part of the sample 10 in the sample containment vessel 11 is transferred to another vessel (reaction vessel) by the dispensing probe 7. A syringe (not shown) for sucking and discharging the sample 10 is connected to the dispensing probe 7. The automatic analyzer also has a reagent dispensing probe (not shown), and the reagent in the reagent storage container is dispensed into the reaction vessel using the reagent dispensing probe. .. As a result, the sample and the reagent can be mixed and reacted in the reaction vessel. The automatic analyzer also includes an analysis unit (not shown), which analyzes the liquid (reaction solution of the sample and the reagent) in the reaction vessel by a predetermined analysis (for example, optical characteristics). Measurement) can be performed. This makes it possible to analyze the components of the sample and the like.
 装置制御部1は、自動分析装置の各構成ユニットの詳細動作を統括して制御することができる。このため、装置制御部1は、泡識別部2による情報の取得のタイミング、超音波による消泡処理のタイミング、および分注プローブ7による分注処理のタイミングなどを、適切に制御することができる。また、装置制御部1は、自動分析装置の各構成ユニットの異常状態の発生も監視し、適切な異常時処理を行うことができる。 The device control unit 1 can control the detailed operation of each component unit of the automatic analyzer in an integrated manner. Therefore, the device control unit 1 can appropriately control the timing of information acquisition by the bubble identification unit 2, the timing of defoaming processing by ultrasonic waves, the timing of dispensing processing by the dispensing probe 7, and the like. .. In addition, the device control unit 1 can also monitor the occurrence of an abnormal state in each component unit of the automatic analyzer and perform appropriate abnormal state processing.
 <自動分析装置における消泡処理の流れについて>
 図2は、自動分析装置における消泡処理の流れを示す説明図であり、図3は、自動分析装置における消泡処理の流れを示すフローチャートである。なお、図2では、上記図1に示される装置制御部1、泡判断部3、超音波発生源駆動部5および超音波出力コントロール部6については、図示を省略している。
<Flow of defoaming process in automatic analyzer>
FIG. 2 is an explanatory diagram showing the flow of defoaming processing in the automatic analyzer, and FIG. 3 is a flowchart showing the flow of defoaming processing in the automatic analyzer. In FIG. 2, the device control unit 1, the bubble determination unit 3, the ultrasonic wave generation source drive unit 5, and the ultrasonic wave output control unit 6 shown in FIG. 1 are not shown.
 試料格納容器11内には、試料10が格納(収容)されている。まず、試料格納容器11内の試料10の分注処理を行う前に、装置制御部1が搬送部などを制御することにより、試料格納容器11を泡識別部2の下方の位置に搬送する。それから、泡識別部2および泡判断部3により、試料格納容器11内の試料10における泡の有無を判断する(図2および図3のステップS1)。具体的には、泡識別部2が、試料格納容器11内の試料10についての情報(泡13または液膜14が存在しているか否かを判断するのが可能となる情報)を取得し、その取得した情報を基に泡判断部3が試料格納容器11内の泡13または液膜14の有無を判断する。泡判断部3は、その判断結果を装置制御部1に通知する。図2では、ステップS1における泡識別部2による情報の取得、例えば画像データの取得を、符号21を付して模式的に示してある。 The sample 10 is stored (accommodated) in the sample containment vessel 11. First, before the sample 10 in the sample containment vessel 11 is dispensed, the device control unit 1 controls the transport unit or the like to transport the sample containment vessel 11 to a position below the bubble identification unit 2. Then, the bubble identification unit 2 and the bubble determination unit 3 determine the presence or absence of bubbles in the sample 10 in the sample containment vessel 11 (step S1 in FIGS. 2 and 3). Specifically, the bubble identification unit 2 acquires information about the sample 10 in the sample storage container 11 (information that enables it to determine whether or not the bubbles 13 or the liquid film 14 are present). Based on the acquired information, the foam determination unit 3 determines the presence or absence of the foam 13 or the liquid film 14 in the sample storage container 11. The bubble determination unit 3 notifies the device control unit 1 of the determination result. In FIG. 2, acquisition of information by the bubble identification unit 2 in step S1, for example, acquisition of image data is schematically shown with reference numeral 21.
 ステップS1で泡が無い(泡13や液膜14が存在していない)と判断された試料格納容器11は、後述のステップS2の超音波照射処理は施されず、後で分注プローブ7がある分注位置に搬送されて分注プローブ7による分注処理が行われる。 The sample storage container 11 determined to have no bubbles (no bubbles 13 or liquid film 14) in step S1 is not subjected to the ultrasonic irradiation treatment of step S2 described later, and the dispensing probe 7 is later subjected to. It is conveyed to a certain dispensing position and the dispensing process is performed by the dispensing probe 7.
 一方、ステップS1で泡が有る(泡13または液膜14が存在している)と判断された試料格納容器11は、泡判断部3からの通知結果に基づいて装置制御部1が搬送部などを制御することにより、ホーン8の下方に搬送される。そして、装置制御部1が超音波出力コントロール部6を制御して超音波発生源4で超音波を発生させることにより、ホーン8から、泡13または液膜14が存在する試料格納容器11の試料10に向けて超音波を照射する。すなわち、泡13または液膜14が存在する試料格納容器11の試料10に対して、超音波照射処理を施す(図2および図3のステップS2)。このステップS2の超音波照射処理(1回目の超音波照射処理)は、消泡作用を有する。図2では、ステップS2においてホーン8から照射される超音波を、符号22を付して模式的に示してある。 On the other hand, in the sample containment vessel 11 in which it is determined in step S1 that there are bubbles (the bubbles 13 or the liquid film 14 are present), the device control unit 1 is a transport unit or the like based on the notification result from the foam determination unit 3. Is conveyed below the horn 8. Then, the device control unit 1 controls the ultrasonic output control unit 6 to generate ultrasonic waves at the ultrasonic wave generation source 4, so that the sample in the sample storage container 11 in which the bubbles 13 or the liquid film 14 are present is generated from the horn 8. Irradiate ultrasonic waves toward 10. That is, the sample 10 in the sample containment vessel 11 in which the bubbles 13 or the liquid film 14 is present is subjected to ultrasonic irradiation treatment (step S2 in FIGS. 2 and 3). The ultrasonic irradiation treatment (first ultrasonic irradiation treatment) in step S2 has a defoaming action. In FIG. 2, the ultrasonic waves emitted from the horn 8 in step S2 are schematically shown with reference numerals 22.
 ステップS2の超音波照射処理が施された試料格納容器11は、装置制御部1が搬送部などを制御することにより、泡識別部2の下方の位置に搬送される。それから、泡識別部2および泡判断部3により、試料格納容器11内の試料10における泡の有無を判断する(図2および図3のステップS3)。具体的には、泡識別部2が、試料格納容器11内の試料10についての情報(泡13または液膜14が存在しているか否かを判断するのが可能となる情報)を取得し、その取得した情報に基づいて、泡判断部3が、ステップS2の超音波照射処理が施された試料格納容器11内の試料10について泡13または液膜14の有無を判断する。泡判断部3は、その判断結果を装置制御部1に通知する。図2では、ステップS3における泡識別部2による情報の取得、例えば画像データの取得を、符号23を付して模式的に示してある。 The sample containment vessel 11 subjected to the ultrasonic irradiation treatment in step S2 is conveyed to a position below the bubble identification unit 2 by the device control unit 1 controlling the transfer unit and the like. Then, the bubble identification unit 2 and the bubble determination unit 3 determine the presence or absence of bubbles in the sample 10 in the sample containment vessel 11 (step S3 in FIGS. 2 and 3). Specifically, the bubble identification unit 2 acquires information about the sample 10 in the sample storage container 11 (information that enables it to determine whether or not the bubbles 13 or the liquid film 14 are present). Based on the acquired information, the foam determination unit 3 determines the presence or absence of the foam 13 or the liquid film 14 in the sample 10 in the sample storage container 11 subjected to the ultrasonic irradiation treatment in step S2. The bubble determination unit 3 notifies the device control unit 1 of the determination result. In FIG. 2, acquisition of information by the bubble identification unit 2 in step S3, for example, acquisition of image data is schematically shown with reference numeral 23.
 ステップS3で泡が無い(泡13や液膜14が存在していない)と判断された試料格納容器11(すなわちステップS2の超音波照射処理で泡13または液膜14が消えた試料格納容器11)は、後述のステップS4の超音波照射処理は施されず、後で分注プローブ7がある分注位置に搬送されて分注プローブ7による分注処理が行われる。 The sample storage container 11 determined in step S3 to have no bubbles (there are no bubbles 13 or liquid film 14) (that is, the sample storage container 11 in which the bubbles 13 or liquid film 14 disappeared in the ultrasonic irradiation treatment in step S2). ) Is not subjected to the ultrasonic irradiation treatment of step S4 described later, but is later conveyed to the dispensing position where the dispensing probe 7 is located, and the dispensing treatment is performed by the dispensing probe 7.
 一方、ステップS3で泡が有る(泡13または液膜14が存在している)と判断された試料格納容器11(すなわちステップS2の超音波照射処理で泡13または液膜14が消えなかった試料格納容器11)は、泡判断部3からの通知結果に基づいて装置制御部1が搬送部などを制御することにより、ホーン8の下方に搬送される。そして、装置制御部1が超音波出力コントロール部6を制御して超音波発生源4で超音波を発生させることにより、ホーン8から、泡13または液膜14が存在する試料格納容器11の試料10に向けて超音波を照射する。すなわち、泡13または液膜14が存在する試料格納容器11の試料10に対して、超音波照射処理を施す(図2および図3のステップS4)。このステップS4の超音波照射処理(2回目の超音波照射処理)は、消泡作用を有する。図2では、ステップS4においてホーン8から照射される超音波を、符号24を付して模式的に示してある。 On the other hand, the sample storage container 11 determined to have bubbles (the presence of the bubbles 13 or the liquid film 14) in step S3 (that is, the sample in which the bubbles 13 or the liquid film 14 did not disappear in the ultrasonic irradiation treatment in step S2). The storage container 11) is conveyed below the horn 8 by the device control unit 1 controlling the transfer unit or the like based on the notification result from the bubble determination unit 3. Then, the device control unit 1 controls the ultrasonic output control unit 6 to generate ultrasonic waves at the ultrasonic wave generation source 4, so that the sample in the sample storage container 11 in which the bubbles 13 or the liquid film 14 are present is generated from the horn 8. Irradiate ultrasonic waves toward 10. That is, the sample 10 in the sample containment vessel 11 in which the bubbles 13 or the liquid film 14 is present is subjected to ultrasonic irradiation treatment (step S4 in FIGS. 2 and 3). The ultrasonic irradiation treatment (second ultrasonic irradiation treatment) in step S4 has a defoaming action. In FIG. 2, the ultrasonic waves emitted from the horn 8 in step S4 are schematically shown with reference numerals 24.
 ここで特徴的なのは、ステップS2の超音波照射処理の消泡作用に比べて、ステップS4の超音波照射処理の消泡作用が大きいことである。すなわち、ステップS2の超音波照射処理よりもステップS4の超音波照射処理の方が消泡作用が大きくなるように、ステップS2の超音波照射処理とステップS4の超音波照射処理のそれぞれの条件を設定する。 What is characteristic here is that the defoaming action of the ultrasonic irradiation treatment in step S4 is larger than the defoaming action of the ultrasonic irradiation treatment in step S2. That is, the conditions of the ultrasonic irradiation treatment of step S2 and the ultrasonic irradiation treatment of step S4 are set so that the ultrasonic irradiation treatment of step S4 has a larger defoaming action than the ultrasonic irradiation treatment of step S2. Set.
 ステップS4の超音波照射処理が施された試料格納容器11は、装置制御部1が搬送部などを制御することにより、泡識別部2の下方の位置に搬送される。それから、泡識別部2および泡判断部3により、試料格納容器11内の試料10における泡の有無を判断する(図2および図3のステップS5)。具体的には、泡識別部2が、試料格納容器11内の試料10についての情報(泡13または液膜14が存在しているか否かを判断するのが可能となる情報)を取得し、その取得した情報に基づいて、泡判断部3が、ステップS4の超音波照射処理が施された試料格納容器11内の試料10について泡13または液膜14の有無を判断する。泡判断部3は、その判断結果を装置制御部1に通知する。図2では、ステップS5における泡識別部2による情報の取得、例えば画像データの取得を、符号25を付して模式的に示してある。 The sample containment vessel 11 subjected to the ultrasonic irradiation treatment in step S4 is transported to a position below the bubble identification unit 2 by the device control unit 1 controlling the transport unit and the like. Then, the bubble identification unit 2 and the bubble determination unit 3 determine the presence or absence of bubbles in the sample 10 in the sample containment vessel 11 (step S5 in FIGS. 2 and 3). Specifically, the bubble identification unit 2 acquires information about the sample 10 in the sample storage container 11 (information that enables it to determine whether or not the bubbles 13 or the liquid film 14 are present). Based on the acquired information, the foam determination unit 3 determines the presence or absence of the foam 13 or the liquid film 14 in the sample 10 in the sample storage container 11 subjected to the ultrasonic irradiation treatment in step S4. The bubble determination unit 3 notifies the device control unit 1 of the determination result. In FIG. 2, acquisition of information by the bubble identification unit 2 in step S5, for example, acquisition of image data is schematically shown with reference numeral 25.
 ステップS5で泡が無い(泡13または液膜14が存在していない)と判断された試料格納容器11(すなわちステップS4の超音波照射処理で泡13または液膜14が消えた試料格納容器11)は、次の超音波照射処理は施されず、後で分注プローブ7がある分注位置に搬送されて分注プローブ7による分注処理が行われる。 The sample storage container 11 determined in step S5 to be free of bubbles (there is no bubble 13 or liquid film 14) (that is, the sample storage container 11 in which the bubbles 13 or liquid film 14 disappeared by the ultrasonic irradiation treatment in step S4). ) Is not subjected to the next ultrasonic irradiation treatment, but is later conveyed to the dispensing position where the dispensing probe 7 is located, and the dispensing treatment is performed by the dispensing probe 7.
 一方、ステップS5で泡が有る(泡13または液膜14が存在している)と判断された試料格納容器11(すなわちステップS4の超音波照射処理で泡13または液膜14が消えなかった試料格納容器11)に対しては、上記ステップS4(超音波照射処理)と上記ステップS5(泡の有無の判断)とを、泡が無いと判断されるまで繰り返す。 On the other hand, the sample storage container 11 determined to have bubbles (the presence of the bubbles 13 or the liquid film 14) in step S5 (that is, the sample in which the bubbles 13 or the liquid film 14 did not disappear in the ultrasonic irradiation treatment in step S4). For the storage container 11), the steps S4 (ultrasonic irradiation treatment) and step S5 (determination of the presence or absence of bubbles) are repeated until it is determined that there are no bubbles.
 ステップS4およびステップS5の繰り返し回数(サイクル数)の上限を予め設定しておき、その上限回数までステップS4とステップS5とを繰り返しても泡が有ると判断された(すなわち泡13または液膜14が消えなかった)場合には、その試料格納容器11内の試料10については、分注プローブ7による分注処理を行わずに、適切な異常処理(異常対応処理)を行うことができる。繰り返し回数の上限は、任意の回数とすることができ、試料の特性に合わせて設定することもできる。繰り返し回数の上限の入力法は任意であり、例えば、操作画面上で数値を選択する手法でも、あるいは、直接、数値を入力する手法でもよい。 The upper limit of the number of repetitions (number of cycles) of steps S4 and S5 is set in advance, and it is determined that bubbles are present even if steps S4 and S5 are repeated up to the upper limit (that is, bubbles 13 or liquid film 14). If the sample 10 in the sample storage container 11 does not disappear, an appropriate abnormality treatment (abnormality response treatment) can be performed without performing the dispensing treatment by the dispensing probe 7. The upper limit of the number of repetitions can be any number, and can also be set according to the characteristics of the sample. The method of inputting the upper limit of the number of repetitions is arbitrary, and for example, a method of selecting a numerical value on the operation screen or a method of directly inputting a numerical value may be used.
 また、ステップS4およびステップS5の繰り返し回数(サイクル数)の上限は、複数回数(例えば2回または3回など)に設定することもできるが、1回に設定することもできる。繰り返し回数の上限が1回の場合は、ステップS1、ステップS2、ステップS3、ステップS4およびステップS5を順に行った後は、ステップS5で泡が有ると判断された試料格納容器11内の試料10については、それ以上の超音波照射処理は施されない。 Further, the upper limit of the number of repetitions (number of cycles) of steps S4 and S5 can be set to a plurality of times (for example, 2 times or 3 times), but can also be set to 1 time. When the upper limit of the number of repetitions is 1, after performing step S1, step S2, step S3, step S4 and step S5 in order, the sample 10 in the sample containment vessel 11 determined to have bubbles in step S5. No further ultrasonic irradiation treatment is applied.
 また、ステップS4およびステップS5を複数回数(複数サイクル)繰り返す場合、ステップS4の超音波照射処理の条件は変えずに、繰り返されるステップS4の超音波照射処理の消泡作用を同程度とすることができる。例えば、ステップS4およびステップS5を2回繰り返す場合は、最初のステップS4と後のステップS4とで超音波照射の条件を同じにして、最初のステップS4の超音波照射処理の消泡作用と、後のステップS4の超音波照射処理の消泡作用とを、同程度とすることができる。これは、後述の実施の形態2のステップS4aにも適用できる。 Further, when steps S4 and S5 are repeated a plurality of times (multiple cycles), the defoaming action of the repeated ultrasonic irradiation treatment of step S4 should be the same without changing the conditions of the ultrasonic irradiation treatment of step S4. Can be done. For example, when step S4 and step S5 are repeated twice, the conditions of ultrasonic irradiation are the same in the first step S4 and the subsequent step S4, and the defoaming action of the ultrasonic irradiation treatment in the first step S4 is performed. The defoaming action of the ultrasonic irradiation treatment in the later step S4 can be made to the same degree. This can also be applied to step S4a of the second embodiment described later.
 他の形態として、ステップS4およびステップS5を繰り返すごとに、ステップS5の超音波照射処理の消泡作用を大きくすることもできる。例えば、ステップS4およびステップS5を2回繰り返す場合は、最初のステップS4と後のステップS4とで超音波照射の条件を変えて、最初のステップS4の超音波照射処理の消泡作用よりも、後のステップS4の超音波照射処理の消泡作用を大きくすることもできる。これは、後述の実施の形態2のステップS4aにも適用できる。 As another form, each time step S4 and step S5 are repeated, the defoaming action of the ultrasonic irradiation treatment in step S5 can be increased. For example, when step S4 and step S5 are repeated twice, the conditions of ultrasonic irradiation are changed between the first step S4 and the subsequent step S4, and the defoaming action of the ultrasonic irradiation treatment of the first step S4 is more important. It is also possible to increase the defoaming action of the ultrasonic irradiation treatment in the later step S4. This can also be applied to step S4a of the second embodiment described later.
 なお、ステップS1、ステップS3またはステップS5で泡が無いと判断された試料格納容器11は、装置制御部1が搬送部などを制御することにより、試料用の分注プローブ7がある分注位置に搬送され、その試料格納容器11内の試料10が、分注プローブ7を用いて他の容器(反応用容器)に分注される。すなわち、試料格納容器11内の試料10の一部を分注プローブ7で吸引し、分注プローブ7で吸引した試料10を他の容器(反応用容器)に吐出する。また、試薬格納容器内の試薬が、試薬用の分注プローブ(図示せず)を用いて反応用容器に分注される。これにより、反応用容器内で試料と試薬とが混合されて反応する。その後、反応用容器内の液体(試料と試薬との反応溶液)に対して、所定の分析(例えば光学的特性の測定)が行われる。これにより、試料の成分などを分析することができる。 In the sample storage container 11 determined to have no bubbles in step S1, step S3 or step S5, the device control unit 1 controls the transport unit and the like, so that the dispensing position where the sample dispensing probe 7 is located is located. The sample 10 in the sample storage container 11 is dispensed into another container (reaction container) using the dispensing probe 7. That is, a part of the sample 10 in the sample containment vessel 11 is sucked by the dispensing probe 7, and the sample 10 sucked by the dispensing probe 7 is discharged to another container (reaction container). Further, the reagent in the reagent containment vessel is dispensed into the reaction vessel using a reagent dispensing probe (not shown). As a result, the sample and the reagent are mixed and reacted in the reaction vessel. After that, a predetermined analysis (for example, measurement of optical properties) is performed on the liquid (reaction solution of the sample and the reagent) in the reaction vessel. This makes it possible to analyze the components of the sample and the like.
 また、ステップS3(再度の泡の有無の判断)は、ステップS2の超音波照射処理の直後にすぐに行うこともできるが、ステップS2の超音波照射処理の後、他の試料について分注処理をひと通り実施した後(例えば再分析のタイミング)で行ってもよい。 Further, step S3 (determination of the presence or absence of bubbles again) can be performed immediately after the ultrasonic irradiation treatment of step S2, but after the ultrasonic irradiation treatment of step S2, the other samples are dispensed. (For example, the timing of reanalysis) may be performed after all the steps have been carried out.
 また、泡13や液膜14の有無を判断する手法としては、画像などから判断する方式(実施形態1で説明した方式)、分注時に吸引状況や吐出状況などから判断する方式(実施の形態2で説明する方式)などが考えられるが、泡13や液膜14の有無が判断できれば、その手法は任意である。 Further, as a method of determining the presence or absence of the bubbles 13 and the liquid film 14, a method of determining from an image or the like (method described in the first embodiment) and a method of determining from a suction state or a discharge state at the time of dispensing (embodiment). The method described in 2) can be considered, but the method is arbitrary as long as the presence or absence of the bubbles 13 and the liquid film 14 can be determined.
 <超音波照射処理について>
 ステップS2およびステップS4の超音波照射処理は、試料格納容器11内の泡13または液膜14を消す(消滅させる、除去する)ために行われる。消泡作用を有する処理としては、種々の処理があり得るが、その中でも超音波照射処理は、非接触で行え、消泡作用が高く、また、試料の変質を抑えやすい。また、超音波照射に必要な機器を自動分析装置に備えさせるのは、比較的容易である。このため、本実施の形態では、消泡処理として、超音波照射処理を採用しており、ステップS2およびステップS4で超音波照射処理を行っている。
<About ultrasonic irradiation processing>
The ultrasonic irradiation treatment of steps S2 and S4 is performed to eliminate (disappear, remove) the bubbles 13 or the liquid film 14 in the sample containment vessel 11. There may be various treatments having a defoaming action, and among them, the ultrasonic irradiation treatment can be performed in a non-contact manner, has a high defoaming action, and can easily suppress deterioration of the sample. Further, it is relatively easy to equip the automatic analyzer with the equipment necessary for ultrasonic irradiation. Therefore, in the present embodiment, the ultrasonic irradiation treatment is adopted as the defoaming treatment, and the ultrasonic irradiation treatment is performed in steps S2 and S4.
 しかしながら、消泡処理として超音波照射処理を採用した場合でも、超音波照射処理によって試料が変質する可能性(リスク)は存在している。すなわち、試料に超音波が照射されることに伴い、試料の化学的性質が変化してしまう虞がある。超音波照射処理によって試料が変質してしまうと、その後の試料の分析(例えば成分分析)が的確に行えなくなる虞がある。例えば、試料の変質は、試料の分析結果の誤差の原因となり得る。これは、自動分析装置による分析結果の信頼性の低下につながってしまう。 However, even if the ultrasonic irradiation treatment is adopted as the defoaming treatment, there is a possibility (risk) that the sample is altered by the ultrasonic irradiation treatment. That is, there is a risk that the chemical properties of the sample will change as the sample is irradiated with ultrasonic waves. If the sample is altered by the ultrasonic irradiation treatment, there is a risk that the subsequent analysis of the sample (for example, component analysis) cannot be performed accurately. For example, alteration of a sample can cause an error in the analysis result of the sample. This leads to a decrease in the reliability of the analysis result by the automatic analyzer.
 このため、消泡処理として超音波照射処理を採用した場合でも、超音波照射処理による試料の変質を抑制することが望まれる。しかしながら、超音波照射処理による試料の変質を抑制しようとすると、それに伴い超音波照射処理の消泡作用も小さくなってしまう。すなわち、消泡作用が小さな超音波照射処理は、超音波照射処理による試料の変質を招く可能性が低く、消泡作用が大きな超音波照射処理は、超音波照射処理による試料の変質を招く可能性が高い。なぜなら、超音波照射処理の消泡作用を大きくすることは、試料に加わるエネルギーが大きくなることにつながるため、試料の温度が上昇するなどして試料が変質しやすくなるからである。つまり、超音波照射処理の消泡作用の大きさと、超音波照射処理により試料が変質する可能性(リスク)とは、トレードオフの関係にある。 Therefore, even when the ultrasonic irradiation treatment is adopted as the defoaming treatment, it is desired to suppress the deterioration of the sample due to the ultrasonic irradiation treatment. However, if an attempt is made to suppress the deterioration of the sample due to the ultrasonic irradiation treatment, the defoaming action of the ultrasonic irradiation treatment is also reduced accordingly. That is, the ultrasonic irradiation treatment having a small defoaming action is unlikely to cause deterioration of the sample by the ultrasonic irradiation treatment, and the ultrasonic irradiation treatment having a large defoaming action may cause the deterioration of the sample by the ultrasonic irradiation treatment. Highly sexual. This is because increasing the defoaming action of the ultrasonic irradiation treatment leads to an increase in the energy applied to the sample, so that the sample tends to deteriorate due to an increase in the temperature of the sample. That is, there is a trade-off relationship between the magnitude of the defoaming action of the ultrasonic irradiation treatment and the possibility (risk) of deterioration of the sample due to the ultrasonic irradiation treatment.
 そこで、本実施の形態では、ステップS2の超音波照射処理よりもステップS4の超音波照射処理の方が消泡作用が大きくなるように、ステップS2の超音波照射処理とステップS4の超音波照射処理のそれぞれの条件を設定している。 Therefore, in the present embodiment, the ultrasonic irradiation treatment in step S2 and the ultrasonic irradiation in step S4 are performed so that the ultrasonic irradiation treatment in step S4 has a greater defoaming effect than the ultrasonic irradiation treatment in step S2. Each condition of processing is set.
 本実施の形態とは異なり、ステップS2とステップS4とで同程度の消泡作用を有する超音波照射処理を行った場合を仮定し、この場合を、以下では第1検討例と称することとする。第1検討例の場合は、ステップS2とステップS4とで超音波照射処理の条件を同じにすることで、ステップS2の超音波照射処理の消泡作用の大きさと、ステップS4の超音波照射処理の消泡作用の大きさとを、互いに同じにしている。 Unlike the present embodiment, it is assumed that the ultrasonic irradiation treatment having the same defoaming action is performed in step S2 and step S4, and this case will be referred to as the first study example below. .. In the case of the first study example, by making the conditions of the ultrasonic irradiation treatment the same in steps S2 and S4, the magnitude of the defoaming action of the ultrasonic irradiation treatment in step S2 and the ultrasonic irradiation treatment in step S4 The magnitude of the defoaming action of the above is the same as that of each other.
 しかしながら、この第1検討例の場合、ステップS2とステップS4とで消泡作用の大きさが同じであるため、ステップS2で消泡作用が小さい超音波照射処理を行うと、必然的に、ステップS4の超音波照射処理の消泡作用も小さくなり、一方、ステップS2で消泡作用が大きい超音波照射処理を行うと、必然的に、ステップS4の超音波照射処理の消泡作用も大きくなる。 However, in the case of this first study example, since the magnitude of the defoaming action is the same in step S2 and step S4, if the ultrasonic irradiation treatment having a small defoaming action is performed in step S2, inevitably, the step The defoaming action of the ultrasonic irradiation treatment of S4 is also reduced, while the defoaming action of the ultrasonic irradiation treatment of step S4 is inevitably increased when the ultrasonic irradiation treatment having a large defoaming action is performed in step S2. ..
 ここで、超音波照射処理を行うと、大きな泡は、小さな泡に比べて消えやすい。このため、大きな泡は、消泡作用が小さな超音波照射処理でも容易に消すことができるが、小さな泡は、消泡作用が小さな超音波照射処理では消しにくい。このため、消泡作用が小さな超音波照射処理を行った場合は、大きな泡は消すことができるが、小さな泡は消えずに残ってしまう。一方、消泡作用が大きな超音波照射処理を行った場合は、大きな泡だけでなく、小さな泡も消すことができる。 Here, when ultrasonic irradiation treatment is performed, large bubbles are more likely to disappear than small bubbles. Therefore, large bubbles can be easily eliminated by ultrasonic irradiation treatment having a small defoaming action, but small bubbles are difficult to eliminate by ultrasonic irradiation treatment having a small defoaming action. Therefore, when the ultrasonic irradiation treatment having a small defoaming action is performed, the large bubbles can be eliminated, but the small bubbles remain without disappearing. On the other hand, when the ultrasonic irradiation treatment having a large defoaming action is performed, not only large bubbles but also small bubbles can be eliminated.
 第1検討例において、ステップS2とステップS4の両方で消泡作用が小さな超音波照射処理を行った場合、超音波照射処理により試料が変質してしまう可能性を低くすることができる。しかしながら、この場合、消泡作用が小さな超音波照射処理では、消泡作用が十分ではなく、超音波照射処理を行っても泡が消えずに残りやすい。ステップS2で消泡作用が小さな超音波照射処理を行うと、大きな泡は消えても、小さな泡が残ってしまうが、ステップS4でも消泡作用が小さな超音波照射処理を行うことになるため、ステップS2で消えずに残った小さな泡をステップS4の超音波照射処理で消すことは難しい。このため、比較的小さな泡は、ステップS2の超音波照射処理およびステップS4の超音波照射処理を行っても、消えずに残りやすい。このため、ステップS2の超音波照射処理およびステップS4の超音波照射処理を行っても、試料格納容器11内に泡13または液膜14が残存してしまう可能性が高くなる。泡13または液膜14が残存する試料格納容器11内の試料については、分注プローブ7を用いた分注処理が的確に行えなくなるため、ステップS4の超音波照射処理後に試料格納容器11内に泡13または液膜14が残存する可能性は、低くする必要がある。 In the first study example, when the ultrasonic irradiation treatment having a small defoaming action is performed in both steps S2 and S4, the possibility that the sample is deteriorated by the ultrasonic irradiation treatment can be reduced. However, in this case, the defoaming action is not sufficient in the ultrasonic irradiation treatment having a small defoaming action, and the bubbles tend to remain without disappearing even if the ultrasonic irradiation treatment is performed. When the ultrasonic irradiation treatment having a small defoaming action is performed in step S2, even if the large bubbles disappear, the small bubbles remain. However, since the ultrasonic irradiation treatment having a small defoaming action is also performed in step S4, the ultrasonic irradiation treatment has a small defoaming action. It is difficult to eliminate the small bubbles remaining in step S2 by the ultrasonic irradiation treatment in step S4. Therefore, the relatively small bubbles tend to remain without disappearing even after the ultrasonic irradiation treatment in step S2 and the ultrasonic irradiation treatment in step S4. Therefore, even if the ultrasonic irradiation treatment in step S2 and the ultrasonic irradiation treatment in step S4 are performed, there is a high possibility that the bubbles 13 or the liquid film 14 will remain in the sample storage container 11. With respect to the sample in the sample storage container 11 in which the bubbles 13 or the liquid film 14 remain, the dispensing process using the dispensing probe 7 cannot be performed accurately, so that the sample is placed in the sample storage container 11 after the ultrasonic irradiation treatment in step S4. The possibility that the foam 13 or the liquid film 14 remains should be reduced.
 第1検討例において、ステップS2とステップS4の両方で消泡作用が大きな超音波照射処理を行った場合には、超音波照射処理によって大きな泡だけでなく小さな泡も消すことができるため、超音波照射処理後に試料格納容器11内に泡13または液膜14が残存する可能性は低くなるが、超音波照射処理により試料が変質してしまう可能性が高くなってしまう。 In the first study example, when the ultrasonic irradiation treatment having a large defoaming action is performed in both steps S2 and S4, not only the large bubbles but also the small bubbles can be eliminated by the ultrasonic irradiation treatment. The possibility that the foam 13 or the liquid film 14 remains in the sample storage container 11 after the ultrasonic irradiation treatment is low, but the possibility that the sample is altered by the ultrasonic irradiation treatment is high.
 それに対して、本実施の形態では、ステップS2の超音波照射処理よりもステップS4の超音波照射処理の方が、消泡作用が大きい。このため、ステップS2の超音波照射処理の消泡作用を小さくし、ステップS4の超音波照射処理の消泡作用をステップS2の超音波照射処理の消泡作用よりも大きくすることができる。 On the other hand, in the present embodiment, the ultrasonic irradiation treatment in step S4 has a greater defoaming effect than the ultrasonic irradiation treatment in step S2. Therefore, the defoaming action of the ultrasonic irradiation treatment in step S2 can be reduced, and the defoaming action of the ultrasonic irradiation treatment in step S4 can be made larger than the defoaming action of the ultrasonic irradiation treatment in step S2.
 本実施の形態では、ステップS2の超音波照射処理の消泡作用を小さくすることにより、ステップS2の超音波照射処理によって試料が変質してしまう可能性(リスク)を低くすることができる。ステップS2の超音波照射処理の消泡作用を小さくしたことで、ステップS2の超音波照射処理によって大きな泡は消せても、比較的小さな泡は残りやすくなってしまうが、本実施の形態では、ステップS4の超音波照射処理の消泡作用をステップS2の超音波照射処理の消泡作用よりも大きくしているため、ステップS2に比べて、ステップS4では、より小さな泡を消すことができる。このため、ステップS2の超音波照射処理を行っても消せずに残存した比較的小さな泡を、ステップS2よりも消泡作用が大きな超音波照射処理(ステップS4)によって、消すことができる。このため、本実施の形態では、ステップS4の超音波照射処理を行っても試料格納容器11内に泡13または液膜14が残存してしまう可能性を、低くすることができる。 In the present embodiment, by reducing the defoaming action of the ultrasonic irradiation treatment in step S2, the possibility (risk) that the sample is altered by the ultrasonic irradiation treatment in step S2 can be reduced. By reducing the defoaming action of the ultrasonic irradiation treatment in step S2, even if the large bubbles can be eliminated by the ultrasonic irradiation treatment in step S2, relatively small bubbles are likely to remain. Since the defoaming action of the ultrasonic irradiation treatment in step S4 is made larger than the defoaming action of the ultrasonic irradiation treatment in step S2, smaller bubbles can be eliminated in step S4 as compared with step S2. Therefore, the relatively small bubbles remaining unerased even after the ultrasonic irradiation treatment of step S2 can be eliminated by the ultrasonic irradiation treatment (step S4) having a larger defoaming action than step S2. Therefore, in the present embodiment, it is possible to reduce the possibility that the bubbles 13 or the liquid film 14 remain in the sample containment vessel 11 even if the ultrasonic irradiation treatment of step S4 is performed.
 ここで、試料格納容器11内には、小さな泡は存在せずに、大きな泡のみが存在する場合と、小さな泡が存在する場合とがあり得る。本実施の形態では、試料格納容器11内に、小さな泡は存在せずに大きな泡のみが存在する場合は、ステップS2の超音波照射処理でその大きな泡を消すことができるため、ステップS4の超音波照射処理は施されない。このため、試料格納容器11内に小さな泡は存在せずに大きな泡のみが存在する場合は、消泡作用が小さな超音波照射処理(ステップS2)は施されるが、消泡作用が大きな超音波照射処理(ステップS4)は施されないため、超音波照射処理により試料が変質してしまう可能性(リスク)を、十分に低くすることができる。一方、試料格納容器11内に小さな泡が存在する場合は、ステップS2の超音波照射処理では、大きな泡は消せても小さな泡は消すことができないが、ステップS4の超音波照射処理で、小さな泡を消すことができる。このため、試料格納容器11内に小さな泡が存在する場合は、消泡作用が大きな超音波照射処理(ステップS4)を施すことで、試料の変質の可能性を許容しながら、泡の消し残りが発生する可能性を低くすることができる。 Here, in the sample containment vessel 11, there may be a case where there are no small bubbles and only large bubbles are present, and there are cases where small bubbles are present. In the present embodiment, when there are no small bubbles and only large bubbles in the sample storage container 11, the large bubbles can be eliminated by the ultrasonic irradiation treatment in step S2, so that the large bubbles can be eliminated in step S4. No ultrasonic irradiation treatment is applied. Therefore, when there are no small bubbles and only large bubbles in the sample storage container 11, the ultrasonic irradiation treatment (step S2) having a small defoaming action is performed, but the defoaming action is large. Since the ultrasonic irradiation treatment (step S4) is not performed, the possibility (risk) that the sample is denatured by the ultrasonic irradiation treatment can be sufficiently reduced. On the other hand, when small bubbles are present in the sample storage container 11, the ultrasonic irradiation treatment in step S2 can eliminate the large bubbles but the small bubbles cannot be eliminated, but the ultrasonic irradiation treatment in step S4 can eliminate the small bubbles. You can eliminate bubbles. Therefore, when small bubbles are present in the sample containment vessel 11, the bubbles remain unerased while allowing the possibility of deterioration of the sample by performing the ultrasonic irradiation treatment (step S4) having a large defoaming action. Can be reduced.
 つまり、本実施の形態においては、試料格納容器11内に小さな泡は存在せずに大きな泡のみが存在する場合は、大きな泡を消すことが可能な、消泡作用が小さい超音波照射処理(ステップS2)のみを施す。一方、試料格納容器11内に小さな泡が存在する場合は、消泡作用が小さい超音波照射処理(ステップS2)に加えて、小さな泡を消すことが可能な、消泡作用が大きい超音波照射処理(ステップS4)も施す。これにより、試料格納容器11内に小さな泡は存在せずに大きな泡のみが存在する場合は、消泡作用が大きな超音波照射処理(ステップS4)は施さずに済むため、試料の変質の可能性を低減することができる。また、試料格納容器11内に小さな泡が存在する場合は、消泡作用が大きい超音波照射処理(ステップS4)により、小さな泡を消すことができるため、ステップS4の超音波照射処理を行っても試料格納容器11内に泡13または液膜14が残存してしまう可能性を、低くすることができる。 That is, in the present embodiment, when there are no small bubbles and only large bubbles in the sample containment vessel 11, the large bubbles can be eliminated and the ultrasonic irradiation treatment having a small defoaming action ( Only step S2) is performed. On the other hand, when small bubbles are present in the sample storage container 11, in addition to the ultrasonic irradiation treatment (step S2) having a small defoaming action, ultrasonic irradiation having a large defoaming action capable of eliminating the small bubbles. The process (step S4) is also performed. As a result, when there are no small bubbles and only large bubbles in the sample containment vessel 11, it is not necessary to perform the ultrasonic irradiation treatment (step S4) having a large defoaming action, so that the sample can be altered. The sex can be reduced. Further, when small bubbles are present in the sample storage container 11, the small bubbles can be eliminated by the ultrasonic irradiation treatment (step S4) having a large defoaming action, so that the ultrasonic irradiation treatment of step S4 is performed. Also, the possibility that the foam 13 or the liquid film 14 remains in the sample storage container 11 can be reduced.
 第1検討例の場合は、ステップS2とステップS4との両方で超音波照射処理の消泡作用を小さくしてしまうと、本実施の形態に比べて、ステップS4の超音波照射処理を行った後に試料格納容器11内に泡13または液膜14が残存してしまう可能性が高くなってしまう。また、第1検討例の場合は、ステップS2とステップS4との両方で超音波照射処理の消泡作用を大きくしてしまうと、試料格納容器11内に小さな泡が存在する場合と、試料格納容器11内に小さな泡は存在せずに大きな泡のみが存在する場合との両方で、消泡作用が大きい超音波照射処理が施されてしまう。すなわち、試料格納容器11内の泡の大きさによらず、消泡作用が大きい超音波照射処理が施されてしまう。このため、超音波照射処理による試料の変質の可能性が高くなってしまう。 In the case of the first study example, if the defoaming action of the ultrasonic irradiation treatment is reduced in both steps S2 and S4, the ultrasonic irradiation treatment of step S4 is performed as compared with the present embodiment. Later, there is a high possibility that the bubbles 13 or the liquid film 14 will remain in the sample storage container 11. Further, in the case of the first study example, if the defoaming action of the ultrasonic irradiation treatment is increased in both steps S2 and S4, there are cases where small bubbles are present in the sample storage container 11 and cases where the sample is stored. In both cases where there are no small bubbles and only large bubbles in the container 11, the ultrasonic irradiation treatment having a large defoaming action is performed. That is, regardless of the size of the bubbles in the sample containment vessel 11, the ultrasonic irradiation treatment having a large defoaming action is performed. Therefore, the possibility of deterioration of the sample due to the ultrasonic irradiation treatment increases.
 本実施の形態では、消泡作用が小さい超音波照射処理(ステップS2)の後に、消泡作用が大きい超音波照射処理(ステップS4)を行っているため、消泡作用が大きい超音波照射処理(ステップS4)が施される試料の数を減らすことができる。すなわち、試料格納容器11内に小さな泡は存在せずに大きな泡のみが存在する場合には、消泡作用が大きい超音波照射処理(ステップS4)が施されずに済む。このため、試料の変質の可能性を低減することができる。 In the present embodiment, since the ultrasonic irradiation treatment (step S2) having a small defoaming action is followed by the ultrasonic irradiation treatment (step S4) having a large defoaming action, the ultrasonic irradiation treatment having a large defoaming action is performed. The number of samples subjected to (step S4) can be reduced. That is, when there are no small bubbles and only large bubbles in the sample containment vessel 11, the ultrasonic irradiation treatment (step S4) having a large defoaming action does not need to be performed. Therefore, the possibility of deterioration of the sample can be reduced.
 本実施の形態では、ステップS4の超音波照射処理を行った後に試料格納容器11内に泡13または液膜14が残存してしまう可能性を低くすることができる。このため、試料の分注処理を的確に行うことができる。また、本実施の形態では、超音波照射処理による試料の変質の可能性を低減することができる。このため、自動分析装置による分析結果の信頼性を向上させることができる。 In the present embodiment, it is possible to reduce the possibility that the foam 13 or the liquid film 14 remains in the sample containment vessel 11 after the ultrasonic irradiation treatment in step S4. Therefore, the sample can be accurately dispensed. Further, in the present embodiment, the possibility of deterioration of the sample due to the ultrasonic irradiation treatment can be reduced. Therefore, the reliability of the analysis result by the automatic analyzer can be improved.
 次に、超音波照射処理の消泡作用を制御するための因子について説明する。本実施の形態では、ステップS2の超音波照射処理よりもステップS4の超音波照射処理の方が消泡作用が大きくなるように、ステップS2の超音波照射処理とステップS4の超音波照射処理のそれぞれの条件を設定している。超音波照射処理の消泡作用の大きさに寄与する因子として、次の4つの因子(第1~第4の因子)がある。 Next, the factors for controlling the defoaming action of the ultrasonic irradiation treatment will be described. In the present embodiment, the ultrasonic irradiation treatment of step S2 and the ultrasonic irradiation treatment of step S4 are performed so that the ultrasonic irradiation treatment of step S4 has a greater defoaming effect than the ultrasonic irradiation treatment of step S2. Each condition is set. There are the following four factors (first to fourth factors) as factors that contribute to the magnitude of the defoaming action of the ultrasonic irradiation treatment.
 第1の因子は、超音波の強度である。なお、超音波の強度とは、その超音波の振幅に対応している。超音波の強度が大きいことは、超音波の振幅が大きいことを意味している。また、超音波の音圧も、超音波の振幅に関連しているので、超音波の強度を、超音波の音圧とみなすこともできる。超音波の強度が大きいことは、超音波の振幅が大きいことを意味し、結果として、超音波の音圧が大きいことになる。超音波の強度を大きくするほど、その超音波の消泡作用は大きくなる。このため、ステップS2の超音波照射処理における超音波の強度よりも、ステップS4の超音波照射処理における超音波の強度を大きくすることにより、ステップS2よりもステップS4で、超音波照射処理の消泡作用を大きくすることができる。また、超音波の強度は、ホーン8から出射される超音波の強度として設定することができ、ステップS2でホーン8から出射される超音波の強度よりも、ステップS4でホーン8から出射される超音波の強度を大きくすればよい。 The first factor is the intensity of ultrasonic waves. The intensity of the ultrasonic wave corresponds to the amplitude of the ultrasonic wave. The high intensity of ultrasonic waves means that the amplitude of ultrasonic waves is large. Further, since the sound pressure of the ultrasonic wave is also related to the amplitude of the ultrasonic wave, the intensity of the ultrasonic wave can be regarded as the sound pressure of the ultrasonic wave. The high intensity of the ultrasonic wave means that the amplitude of the ultrasonic wave is large, and as a result, the sound pressure of the ultrasonic wave is large. The greater the intensity of the ultrasonic wave, the greater the defoaming effect of the ultrasonic wave. Therefore, by making the intensity of the ultrasonic wave in the ultrasonic irradiation process of step S4 larger than the intensity of the ultrasonic wave in the ultrasonic wave irradiation process of step S2, the ultrasonic wave irradiation process is extinguished in step S4 rather than step S2. The foaming action can be increased. Further, the intensity of the ultrasonic wave can be set as the intensity of the ultrasonic wave emitted from the horn 8, and is emitted from the horn 8 in step S4 rather than the intensity of the ultrasonic wave emitted from the horn 8 in step S2. The intensity of the ultrasonic waves may be increased.
 ステップS2の超音波照射処理では、例えば、直径1mm以上の泡を破泡できるように、超音波の強度を設定することができる。直径1mmの泡を破泡するために必要な超音波の強度は、泡(気泡)の内圧をP、大気圧をP0、試料の表面張力をγ、泡の半径をRとして、ラプラスの式P-P0=4γ/Rにより見積もることができる。泡の主成分が水であるとすれば、水の表面張力は、約73mN/mである。これを適用すると、直径1mmの泡を破泡するために必要な超音波の強度は、600Pa程度(音圧)となる。 In the ultrasonic irradiation process of step S2, for example, the intensity of ultrasonic waves can be set so that bubbles having a diameter of 1 mm or more can be ruptured. The intensity of ultrasonic waves required to break a bubble with a diameter of 1 mm is Laplace's formula P, where P is the internal pressure of the bubble (bubble), P0 is the atmospheric pressure, γ is the surface tension of the sample, and R is the radius of the bubble. It can be estimated by −P0 = 4γ / R. If the main component of the foam is water, the surface tension of water is about 73 mN / m. When this is applied, the intensity of ultrasonic waves required to break a bubble having a diameter of 1 mm is about 600 Pa (sound pressure).
 ステップS2において、超音波の強度を600Paとした場合は、ステップS2の超音波照射処理の後に残る泡は、直径1mm未満の泡と推定できる。このため、ステップS4の超音波照射処理では、例えば、直径0.5mm以上の泡を破泡できるように、超音波の強度を設定することができ、その場合、ラプラスの式より、超音波の強度は、1200Pa程度(音圧)となる。 When the ultrasonic intensity is 600 Pa in step S2, it can be estimated that the bubbles remaining after the ultrasonic irradiation treatment in step S2 are bubbles having a diameter of less than 1 mm. Therefore, in the ultrasonic irradiation treatment in step S4, for example, the intensity of the ultrasonic wave can be set so that bubbles having a diameter of 0.5 mm or more can be broken. In that case, the ultrasonic wave can be set according to the Laplace equation. The intensity is about 1200 Pa (sound pressure).
 ステップS2およびステップS4の超音波の強度は、試料の液面に発生しやすい泡の大きさなどを考慮して、最適な値に設定することができる。また、ステップS2とステップS4とで超音波の強度を変えるためには、音源(超音波発生源4)からの音圧レベルを変更する手法など、種々の手法を適用することができる。音圧レベルを変更する場合は、超音波発生源駆動部5は、音圧レベルを変更可能なものを用いる。その場合、超音波発生源駆動部5は、多岐にわたり音圧レベルを変更できてもよいが、最低2種類の音圧レベルが設定できるものでもよい。 The intensity of the ultrasonic waves in steps S2 and S4 can be set to an optimum value in consideration of the size of bubbles that are likely to be generated on the liquid surface of the sample. Further, in order to change the intensity of ultrasonic waves in steps S2 and S4, various methods such as a method of changing the sound pressure level from the sound source (ultrasonic wave generation source 4) can be applied. When changing the sound pressure level, the ultrasonic source driving unit 5 uses a sound pressure level that can be changed. In that case, the ultrasonic source driving unit 5 may be able to change the sound pressure level in a wide variety of ways, but may be capable of setting at least two types of sound pressure levels.
 第2の因子は、超音波の照射時間である。試料格納容器11内の試料10に向かって超音波を照射する際に、超音波の照射時間が長くなるほど、その超音波の消泡作用は大きくなる。このため、ステップS2の超音波照射処理における超音波の照射時間よりも、ステップS4の超音波照射処理における超音波の照射時間を長くすることにより、ステップS2よりもステップS4で、超音波照射処理の消泡作用を大きくすることができる。ステップS2における超音波の照射時間は、例えば0.5~5ms(ミリ秒)程度とすることができ、ステップS2における超音波の照射時間は、例えば100ms(ミリ秒)以上とすることができる。 The second factor is the ultrasonic irradiation time. When irradiating the sample 10 in the sample storage container 11 with ultrasonic waves, the longer the irradiation time of the ultrasonic waves, the greater the defoaming action of the ultrasonic waves. Therefore, by making the ultrasonic wave irradiation time in the ultrasonic wave irradiation process in step S4 longer than the ultrasonic wave irradiation time in the ultrasonic wave irradiation process in step S2, the ultrasonic wave irradiation process is performed in step S4 rather than step S2. Can increase the defoaming effect of. The ultrasonic irradiation time in step S2 can be, for example, about 0.5 to 5 ms (milliseconds), and the ultrasonic wave irradiation time in step S2 can be, for example, 100 ms (milliseconds) or more.
 また、ステップS4では、超音波の照射時間を長くしているため、試料格納容器11を動かしながら(移動させながら)、試料格納容器11内の試料10に対して超音波を照射することができる。図4は、試料格納容器11を動かしながら試料格納容器11内の試料10に対して超音波を照射する様子を示す説明図である。図4では、試料格納容器11を架設する試料格納容器架設部12を矢印で示されるように移動させることで、試料格納容器11を動かしながら、試料格納容器11内の試料10に対してホーン8から超音波が照射されている。図4中の矢印は、移動方向が往復移動である場合を示しているが、移動方向は単一方向であってもよい。 Further, in step S4, since the ultrasonic irradiation time is lengthened, it is possible to irradiate the sample 10 in the sample containment vessel 11 with ultrasonic waves while moving (moving) the sample containment vessel 11. .. FIG. 4 is an explanatory diagram showing a state in which ultrasonic waves are applied to the sample 10 in the sample containment vessel 11 while moving the sample containment vessel 11. In FIG. 4, by moving the sample containment vessel erection portion 12 on which the sample containment vessel 11 is erected as indicated by an arrow, the horn 8 is used with respect to the sample 10 in the sample containment vessel 11 while moving the sample containment vessel 11. Ultrasonic waves are being emitted from. The arrow in FIG. 4 indicates a case where the moving direction is a reciprocating movement, but the moving direction may be a single direction.
 試料格納容器11を動かしながら、試料格納容器11内の試料10に対してホーン8から超音波を照射することにより、試料格納容器11内の試料10において、超音波が局所的に集中して照射されることを防ぎ、試料格納容器11内の試料表面における超音波の照射むらが生じるのを防ぐことができる。ステップS4では、照射時間が長く、消泡作用が大きな超音波照射処理を行うため、試料の変質を招く可能性があるが、試料格納容器11を動かしながら、試料格納容器11内の試料に対して超音波を照射することにより、試料格納容器11内の試料表面における超音波の照射むらを抑制して、試料が変質する可能性を低減することができる。 By irradiating the sample 10 in the sample storage container 11 with ultrasonic waves from the horn 8 while moving the sample storage container 11, the ultrasonic waves are locally concentrated and irradiated in the sample 10 in the sample storage container 11. It is possible to prevent the sample from being unevenly irradiated on the surface of the sample in the sample storage container 11. In step S4, since the ultrasonic irradiation treatment having a long irradiation time and a large defoaming action is performed, the sample may be deteriorated. However, while moving the sample storage container 11, the sample in the sample storage container 11 is subjected to the ultrasonic irradiation treatment. By irradiating the sample with ultrasonic waves, it is possible to suppress uneven irradiation of ultrasonic waves on the sample surface in the sample storage container 11 and reduce the possibility of deterioration of the sample.
 第3の因子は、超音波の周波数である。試料格納容器11内の試料10に向かって超音波を照射する際に、超音波の周波数が大きく(高く)なるほど、その超音波の消泡作用は大きくなる。このため、ステップS2の超音波照射処理における超音波の周波数よりも、ステップS4の超音波照射処理における超音波の周波数を大きく(高く)することにより、ステップS2よりもステップS4で、超音波照射処理の消泡作用を大きくすることができる。ステップS2,S4において、ホーン8から照射される超音波の周波数は、空気中を伝搬するといわれている20kHZ~100kHzの範囲内の周波数が好ましい。ステップS2における超音波の周波数は、例えば20kHz程度とすることができ、ステップS2における超音波の周波数は、例えば35kHz程度とすることができる。ステップS4において、周波数を変えながら超音波を照射することもできる。 The third factor is the frequency of ultrasonic waves. When irradiating the sample 10 in the sample storage container 11 with ultrasonic waves, the higher (higher) the frequency of the ultrasonic waves, the greater the defoaming action of the ultrasonic waves. Therefore, by making the frequency of the ultrasonic wave in the ultrasonic wave irradiation process of step S4 larger (higher) than the frequency of the ultrasonic wave in the ultrasonic wave irradiation process of step S2, the ultrasonic wave irradiation in step S4 is higher than that of step S2. The defoaming effect of the treatment can be increased. In steps S2 and S4, the frequency of the ultrasonic wave emitted from the horn 8 is preferably a frequency in the range of 20 kHz to 100 kHz, which is said to propagate in the air. The frequency of the ultrasonic wave in step S2 can be, for example, about 20 kHz, and the frequency of the ultrasonic wave in step S2 can be, for example, about 35 kHz. In step S4, ultrasonic waves can be irradiated while changing the frequency.
 第4の因子は、ホーン8(超音波照射部)から試料10までの距離である。図5および図6は、ホーン8から試料格納容器11内の試料10に対して超音波を照射する様子を示す説明図であり、図6の場合は、図5の場合よりも、ホーン8から試料10までの距離が短くなっている。 The fourth factor is the distance from the horn 8 (ultrasonic wave irradiation unit) to the sample 10. 5 and 6 are explanatory views showing how the sample 10 in the sample containment vessel 11 is irradiated with ultrasonic waves from the horn 8. In the case of FIG. 6, the horn 8 is used more than in the case of FIG. The distance to sample 10 is shortened.
 ホーン8から試料格納容器11内の試料10に向かって超音波を照射する際に、超音波はホーン8と試料10との間の空間(空気中)を伝搬するが、試料10に到達するまでの間に超音波の強度は徐々に減衰する。図6のように、ホーン8から試料10までの距離が短ければ、超音波の強度の減衰の程度は小さいが、図5のように、ホーン8から試料10までの距離が長ければ、超音波の強度の減衰の程度は大きくなる。このため、図5と図6の場合とで、ホーン8から出射した直後の超音波の強度が同じである場合には、ホーン8から試料10までの距離が短い図6の場合よりも、ホーン8から試料10までの距離が長い図5の場合の方が、超音波の強度の減衰が大きくなり、それゆえ、試料10に到達した超音波の強度が小さくなる。従って、ホーン8から試料格納容器11内の試料10に向かって超音波を照射する際に、ホーン8から試料10までの距離を長くすることで、その超音波の消泡作用を小さくすることができる。このため、ステップS2を図5のように行い、ステップS4を図6のように行うことで、ステップS2よりもステップS4で、超音波照射処理の消泡作用を大きくすることができる。 When irradiating ultrasonic waves from the horn 8 toward the sample 10 in the sample storage container 11, the ultrasonic waves propagate in the space (in the air) between the horn 8 and the sample 10, but until they reach the sample 10. During this time, the intensity of the ultrasonic waves gradually attenuates. As shown in FIG. 6, if the distance from the horn 8 to the sample 10 is short, the degree of attenuation of the ultrasonic wave intensity is small, but as shown in FIG. 5, if the distance from the horn 8 to the sample 10 is long, the ultrasonic wave is emitted. The degree of attenuation of the intensity of is increased. Therefore, when the intensity of the ultrasonic wave immediately after being emitted from the horn 8 is the same in the cases of FIG. 5 and FIG. 6, the horn is horned as compared with the case of FIG. 6 where the distance from the horn 8 to the sample 10 is short. In the case of FIG. 5 in which the distance from 8 to the sample 10 is long, the attenuation of the ultrasonic wave intensity is large, and therefore the intensity of the ultrasonic wave reaching the sample 10 is small. Therefore, when irradiating ultrasonic waves from the horn 8 toward the sample 10 in the sample storage container 11, the defoaming action of the ultrasonic waves can be reduced by increasing the distance from the horn 8 to the sample 10. it can. Therefore, by performing step S2 as shown in FIG. 5 and step S4 as shown in FIG. 6, the defoaming action of the ultrasonic irradiation treatment can be increased in step S4 as compared with step S2.
 すなわち、ステップS2の超音波照射処理におけるホーン8から試料格納容器11内の試料10までの距離よりも、ステップS4の超音波照射処理におけるホーン8から試料格納容器11内の試料10までの距離を短くすることにより、ステップS2よりもステップS4で、超音波照射処理の消泡作用を大きくすることができる。ステップS2の超音波照射処理におけるホーン8から試料格納容器11内の試料10までの距離よりも、ステップS4の超音波照射処理におけるホーン8から試料格納容器11内の試料10までの距離を短くするには、ステップS2におけるホーン8の高さ位置よりも、ステップS4におけるホーン8の高さ位置を低くすればよい。ステップS2の超音波照射処理におけるホーン8から試料格納容器11内の試料10までの距離と、ステップS4の超音波照射処理におけるホーン8から試料格納容器11内の試料10までの距離との差は、例えば40mm以上とすることができる。 That is, the distance from the horn 8 in the ultrasonic irradiation process in step S4 to the sample 10 in the sample storage container 11 is set rather than the distance from the horn 8 in the ultrasonic irradiation process in step S2 to the sample 10 in the sample storage container 11. By shortening the length, the defoaming action of the ultrasonic irradiation treatment can be increased in step S4 rather than step S2. The distance from the horn 8 in the ultrasonic irradiation process in step S4 to the sample 10 in the sample storage container 11 is shorter than the distance from the horn 8 in the ultrasonic irradiation process in step S2 to the sample 10 in the sample storage container 11. The height position of the horn 8 in step S4 may be lower than the height position of the horn 8 in step S2. The difference between the distance from the horn 8 in the ultrasonic irradiation treatment in step S2 to the sample 10 in the sample storage container 11 and the distance from the horn 8 in the ultrasonic irradiation treatment in step S4 to the sample 10 in the sample storage container 11 is For example, it can be 40 mm or more.
 上述した第1~第4の因子のうち、第1の因子(超音波の強度)が、超音波照射処理の消泡作用の大きさに最も寄与する。このため、第1~第4の因子のうち、第1の因子である超音波の強度により、ステップS2およびステップS4における超音波照射処理の消泡作用の大きさを調整することが好ましい。このため、ステップS2の超音波照射処理における超音波の強度よりも、ステップS4の超音波照射処理における超音波の強度を、大きくすることが好ましい。これにより、ステップS2では、超音波照射処理の消泡作用を小さくし、ステップS4では、ステップS2よりも超音波照射処理の消泡作用を的確に大きくすることができる。 Of the above-mentioned first to fourth factors, the first factor (ultrasonic intensity) contributes most to the magnitude of the defoaming action of the ultrasonic irradiation treatment. Therefore, among the first to fourth factors, it is preferable to adjust the magnitude of the defoaming action of the ultrasonic irradiation treatment in steps S2 and S4 by adjusting the intensity of the ultrasonic wave which is the first factor. Therefore, it is preferable to increase the intensity of the ultrasonic waves in the ultrasonic irradiation process of step S4 rather than the intensity of the ultrasonic waves in the ultrasonic irradiation process of step S2. As a result, in step S2, the defoaming action of the ultrasonic irradiation treatment can be reduced, and in step S4, the defoaming action of the ultrasonic irradiation treatment can be accurately increased as compared with step S2.
 また、超音波の照射時間の調整は比較的容易である。このため、第1~第4の因子のうち、第2の因子である超音波の照射時間により、ステップS2およびステップS4における超音波照射処理の消泡作用の大きさを調整する場合は、自動制御装置の簡略化が可能である。 Also, it is relatively easy to adjust the ultrasonic irradiation time. Therefore, when the magnitude of the defoaming action of the ultrasonic irradiation treatment in steps S2 and S4 is adjusted by the irradiation time of ultrasonic waves, which is the second factor among the first to fourth factors, it is automatic. The control device can be simplified.
 また、超音波の周波数を変えるためには、周波数を変えることができる超音波発生源を用意するか、あるいは、単独の周波数を発生させることができる超音波発生源を複数用意する必要がある。このため、自動制御装置の簡略化の観点では、第3の因子(超音波の周波数)よりも、第1の因子、第2の因子および第4の因子により、ステップS2およびステップS4における超音波照射処理の消泡作用の大きさを調整する方が有利である。 Further, in order to change the frequency of ultrasonic waves, it is necessary to prepare an ultrasonic wave generation source capable of changing the frequency, or to prepare a plurality of ultrasonic wave generation sources capable of generating a single frequency. Therefore, from the viewpoint of simplification of the automatic control device, the ultrasonic waves in steps S2 and S4 are due to the first factor, the second factor and the fourth factor rather than the third factor (ultrasonic frequency). It is more advantageous to adjust the magnitude of the defoaming action of the irradiation treatment.
 また、第4の因子は、ホーン8の高さ位置を調整により調整できるため、超音波発生機構に変更を加える必要が無い。このため、第4の因子の調整は、自動制御装置の簡略化の観点で有利である。しかしながら、第4の因子は、第1~第3の因子に比べて、超音波照射処理の消泡作用の大きさへの寄与が小さい。すなわち、第1~第3の因子に比べて、第4の因子は、ステップS2とステップS4との消泡作用の差を確保しにくい。このため、ステップS2では超音波照射処理の消泡作用を小さくし、ステップS4ではステップS2よりも超音波照射処理の消泡作用を大きくするには、第4の因子(ホーン8から試料10までの距離)よりも、第1の因子、第2の因子および第3の因子を調整した方が有利であり、第1の因子で調整すると、最も有利である。 Further, since the fourth factor can be adjusted by adjusting the height position of the horn 8, there is no need to change the ultrasonic wave generation mechanism. Therefore, the adjustment of the fourth factor is advantageous from the viewpoint of simplification of the automatic control device. However, the fourth factor contributes less to the magnitude of the defoaming action of the ultrasonic irradiation treatment than the first to third factors. That is, compared with the first to third factors, it is difficult for the fourth factor to secure the difference in defoaming action between step S2 and step S4. Therefore, in step S2, the defoaming action of the ultrasonic irradiation treatment is reduced, and in step S4, the defoaming action of the ultrasonic irradiation treatment is larger than that of step S2, a fourth factor (horn 8 to sample 10). It is more advantageous to adjust the first factor, the second factor and the third factor than the distance), and it is most advantageous to adjust with the first factor.
 また、ステップS2とステップS4とで、第1~第4の因子のうち、いずれか一つの因子を調整し、それ以外の因子を共通とすることにより、ステップS2よりもステップS4で、超音波照射処理の消泡作用を大きくすることができる。この場合、ステップS2およびステップS4の条件の設定が容易になる。他の形態として、ステップS2とステップS4とで、第1~第4の因子のうちの2つ以上の因子を調整することにより、ステップS2よりもステップS4で超音波照射処理の消泡作用を大きくすることもできる。 Further, in step S2 and step S4, any one of the first to fourth factors is adjusted, and the other factors are shared, so that the ultrasonic wave is obtained in step S4 rather than step S2. The defoaming action of the irradiation treatment can be increased. In this case, the conditions of step S2 and step S4 can be easily set. As another form, by adjusting two or more of the first to fourth factors in step S2 and step S4, the defoaming action of the ultrasonic irradiation treatment is performed in step S4 rather than step S2. It can also be made larger.
 <変形例>
 次に、本実施の形態の自動分析装置における消泡処理の流れの変形例について、説明する。変形例は、上記図2および図3において、ステップS1を省略した場合に対応している。すなわち、変形例の場合は、ステップS1を行うことなく、ステップS2の超音波照射処理を行う。
<Modification example>
Next, a modified example of the flow of the defoaming process in the automatic analyzer of the present embodiment will be described. The modified example corresponds to the case where step S1 is omitted in FIGS. 2 and 3. That is, in the case of the modified example, the ultrasonic irradiation process of step S2 is performed without performing step S1.
 変形例の場合は、試料格納容器11内の試料10の分注処理を行う前に、上記ステップS1を行うことなく、装置制御部1が搬送部などを制御することにより、試料格納容器11をホーン8の下方に搬送する。そして、装置制御部1が超音波出力コントロール部6を制御して超音波発生源4で超音波を発生させることにより、ホーン8から、泡13または液膜14が存在する試料格納容器11の試料10に向けて超音波を照射する。すなわち、泡13または液膜14が存在する試料格納容器11の試料10に対して、ステップS2の超音波照射処理を施す。ステップS2の超音波照射処理の後は、変形例の場合も、上記図2および図3の場合と基本的には同じであるので、ここでその繰り返しの説明は省略する。 In the case of the modified example, the device control unit 1 controls the transport unit and the like before performing the dispensing process of the sample 10 in the sample containment vessel 11 without performing the step S1 to control the sample containment vessel 11. It is conveyed below the horn 8. Then, the device control unit 1 controls the ultrasonic output control unit 6 to generate ultrasonic waves at the ultrasonic wave generation source 4, so that the sample in the sample storage container 11 in which the bubbles 13 or the liquid film 14 are present is generated from the horn 8. Irradiate ultrasonic waves toward 10. That is, the ultrasonic irradiation treatment of step S2 is performed on the sample 10 of the sample containment vessel 11 in which the bubbles 13 or the liquid film 14 are present. After the ultrasonic irradiation treatment in step S2, the modified example is basically the same as the case of FIGS. 2 and 3, so the repeated description thereof will be omitted here.
 また、変形例において、スッテプS2(超音波照射処理)とステップS3(泡の有無の判断)とは、試料格納容器11毎に順次行うこともできるが、ステップS2(超音波照射処理)を複数の試料格納容器11に対してまとめて実施した後に、それら複数の試料格納容器11に対してステップS3(泡の有無の判断)をまとめて行うこともできる。 Further, in the modified example, step S2 (ultrasonic irradiation treatment) and step S3 (determination of the presence or absence of bubbles) can be sequentially performed for each sample containment vessel 11, but step S2 (ultrasonic irradiation treatment) is performed in a plurality of steps. It is also possible to collectively perform step S3 (determination of the presence or absence of bubbles) for the plurality of sample storage containers 11 after collectively performing the sample storage container 11 of the above.
 変形例の場合は、ステップS2の超音波照射処理の前に、上記ステップS1(泡の有無の判断)は行わない。すなわち、変形例の場合は、試料格納容器11内に泡13または液膜14が存在しているか否かを判断せずに、試料格納容器11の試料10に対してステップS2の超音波照射処理を施している。このため、変形例の場合は、ステップS2の超音波照射処理は、泡13または液膜14が存在する試料格納容器11の試料10に対しても、また、泡13や液膜14が存在しない試料格納容器11の試料10に対しても、行われる。 In the case of the modified example, the above step S1 (determination of the presence or absence of bubbles) is not performed before the ultrasonic irradiation treatment in step S2. That is, in the case of the modified example, the ultrasonic irradiation treatment of step S2 is performed on the sample 10 of the sample containment vessel 11 without determining whether or not the bubbles 13 or the liquid film 14 are present in the sample containment vessel 11. Is given. Therefore, in the case of the modified example, the ultrasonic irradiation treatment in step S2 also does not have the bubbles 13 or the liquid film 14 with respect to the sample 10 of the sample storage container 11 in which the bubbles 13 or the liquid film 14 are present. This is also performed for the sample 10 in the sample storage container 11.
 変形例の場合も、ステップS2の超音波照射処理の消泡作用を小さくし、ステップS4の超音波照射処理の消泡作用をステップS2よりも大きくしているため、超音波照射処理により試料が変質してしまう可能性(リスク)を低くしながら、ステップS4で泡の消し残りが発生する可能性を低くすることができる。このため、自動分析装置による分析結果の信頼性を向上させることができる。 Also in the case of the modified example, since the defoaming action of the ultrasonic irradiation treatment in step S2 is reduced and the defoaming action of the ultrasonic irradiation treatment in step S4 is larger than that in step S2, the sample is produced by the ultrasonic irradiation treatment. While reducing the possibility of deterioration (risk), it is possible to reduce the possibility of residual bubbles remaining in step S4. Therefore, the reliability of the analysis result by the automatic analyzer can be improved.
 但し、変形例の場合は、上記ステップS1を行わないため、泡13や液膜14が全く存在しない試料格納容器11の試料10に対しても、ステップS2の超音波照射処理が施されてしまう。一方、上記ステップS1も行われる場合(図2および図3)は、泡13や液膜14が全く存在しない試料格納容器11の試料10に対しては、ステップS2の超音波照射処理は施されずに済む。このため、超音波照射処理による試料の変質をできるだけ防ぐという観点では、上記ステップS1を行わない変形例の場合よりも、上記ステップS1を行う場合(図2および図3)の方が、有利である。上記ステップS1を行うことにより、泡13や液膜14が全く存在しない試料格納容器11の試料10に対して、ステップS2の超音波照射処理が施されなくなるため、泡13や液膜14が全く存在しない試料格納容器11の試料が超音波照射によって変質する可能性(リスク)を排除することができる。 However, in the case of the modified example, since the above step S1 is not performed, the ultrasonic irradiation treatment of step S2 is also applied to the sample 10 of the sample containment vessel 11 in which the bubbles 13 and the liquid film 14 do not exist at all. .. On the other hand, when the step S1 is also performed (FIGS. 2 and 3), the ultrasonic irradiation treatment of the step S2 is applied to the sample 10 of the sample containment vessel 11 in which the bubbles 13 and the liquid film 14 are not present at all. You don't have to. Therefore, from the viewpoint of preventing the deterioration of the sample due to the ultrasonic irradiation treatment as much as possible, the case of performing the above step S1 (FIGS. 2 and 3) is more advantageous than the case of the modified example in which the above step S1 is not performed. is there. By performing the above step S1, the ultrasonic irradiation treatment of step S2 is not performed on the sample 10 of the sample storage container 11 in which the bubbles 13 and the liquid film 14 do not exist at all, so that the bubbles 13 and the liquid film 14 are completely absent. It is possible to eliminate the possibility (risk) that the sample in the non-existent sample storage container 11 is altered by ultrasonic irradiation.
 (実施の形態2)
 図7を参照して、本実施の形態2における自動分析装置の構成について説明する。図7は、本実施の形態2における自動分析装置の構成を示す構成図であり、上記実施の形態1の上記図1に対応するものである。
(Embodiment 2)
The configuration of the automatic analyzer according to the second embodiment will be described with reference to FIG. 7. FIG. 7 is a configuration diagram showing the configuration of the automatic analyzer according to the second embodiment, and corresponds to the above-mentioned FIG. 1 of the first embodiment.
 本実施の形態2における自動分析装置(図7)が、上記本実施の形態1における自動分析装置(図1)と相違しているのは、以下の点である。すなわち、上記実施の形態1では、泡識別部2と分注プローブ7とは、別々に設けられており、泡識別部2により取得する情報は、分注プローブ7による試料の吸引または吐出時に取得するものではなかった。それに対して、本実施の形態2では、泡識別部2と分注プローブ7とは互いに接続されており、分注プローブ7による分注処理の際に、具体的には、分注プローブ7による試料の吸引または吐出の際に、泡識別部2が情報(泡13または液膜14が存在しているか否かを判断するのが可能となる情報)を取得するようになっている。 The automatic analyzer (FIG. 7) in the second embodiment is different from the automatic analyzer (FIG. 1) in the first embodiment in the following points. That is, in the first embodiment, the bubble identification unit 2 and the dispensing probe 7 are separately provided, and the information acquired by the bubble identification unit 2 is acquired when the sample is sucked or discharged by the dispensing probe 7. It wasn't something to do. On the other hand, in the second embodiment, the bubble identification unit 2 and the dispensing probe 7 are connected to each other, and specifically, when the dispensing process is performed by the dispensing probe 7, the dispensing probe 7 is used. At the time of suction or discharge of the sample, the bubble identification unit 2 acquires information (information that enables it to determine whether or not the bubble 13 or the liquid film 14 is present).
 すなわち、本実施の形態2においては、試料格納容器11内の試料10を分注プローブ7が吸引または吐出する際に得られる情報を、泡識別部2が取得し、泡識別部2で取得した情報を基に、泡判断部3により泡13または液膜14の有無が判断され、その判断結果は、泡判断部3から装置制御部1に通知される。例えば、泡13または液膜14が存在していない場合と存在している場合とで、試料格納容器11内の試料10を分注プローブ7が吸引する際の吸引速度または吸引圧力などが相違している。試料格納容器11内に泡13や液膜14が存在していない場合は、分注プローブ7の先端は、試料格納容器11内の試料10に浸かり、所定の吸引速度で試料10が分注プローブ7に吸引される。一方、試料格納容器11内に泡13または液膜14が存在している場合は、試料格納容器11内の試料10の液面の位置が誤認されるため、分注プローブ7の先端は試料格納容器11内の試料10には浸からず、分注プローブ7は試料10ではなく空気を吸引してしまう。この両者の違いを判別できる情報(例えば吸引速度または吸引圧力など)を泡識別部2が取得し、泡識別部2が取得した情報を基づいて、泡判断部3が試料格納容器11内の泡13または液膜14の有無を判断することができる。 That is, in the second embodiment, the bubble identification unit 2 acquires the information obtained when the dispensing probe 7 sucks or discharges the sample 10 in the sample storage container 11, and the bubble identification unit 2 acquires the information. Based on the information, the bubble determination unit 3 determines the presence or absence of the bubble 13 or the liquid film 14, and the bubble determination unit 3 notifies the device control unit 1 of the determination result. For example, the suction speed or suction pressure when the dispensing probe 7 sucks the sample 10 in the sample storage container 11 differs depending on whether the bubble 13 or the liquid film 14 is present or present. ing. When the bubbles 13 and the liquid film 14 are not present in the sample storage container 11, the tip of the dispensing probe 7 is immersed in the sample 10 in the sample storage container 11, and the sample 10 is dispensed at a predetermined suction rate. It is sucked into 7. On the other hand, when the foam 13 or the liquid film 14 is present in the sample storage container 11, the position of the liquid surface of the sample 10 in the sample storage container 11 is erroneously recognized, so that the tip of the dispensing probe 7 stores the sample. The sample 10 in the container 11 is not immersed, and the dispensing probe 7 sucks air instead of the sample 10. The bubble identification unit 2 acquires information that can discriminate between the two (for example, suction speed or suction pressure), and based on the information acquired by the bubble identification unit 2, the bubble determination unit 3 determines the bubbles in the sample storage container 11. The presence or absence of 13 or the liquid film 14 can be determined.
 他の構成は、本実施の形態2における自動分析装置(図7)も、上記本実施の形態1における自動分析装置(図1)と類似しているので、ここではその繰り返しの説明は省略する。また、図7では、試料の分注位置と試料に超音波を照射する位置とを別々の位置として示しているが、両者を同じ位置とする場合もあり得る。 Since the other configuration is similar to the automatic analyzer (FIG. 7) in the second embodiment and the automatic analyzer (FIG. 1) in the first embodiment, the repeated description thereof will be omitted here. .. Further, in FIG. 7, the dispensing position of the sample and the position of irradiating the sample with ultrasonic waves are shown as separate positions, but both may be the same position.
 次に、本実施の形態2の自動分析装置における消泡処理の流れについて、図8および図9を参照して説明する。 Next, the flow of the defoaming process in the automatic analyzer of the second embodiment will be described with reference to FIGS. 8 and 9.
 図8は、本実施の形態2の自動分析装置における消泡処理の流れを示す説明図であり、図9は、本実施の形態2の自動分析装置における消泡処理の流れを示すフローチャートであり、上記実施の形態1の上記図2および図3にそれぞれ対応するものである。なお、図8では、上記図7に示される装置制御部1、泡識別部2、泡判断部3、超音波発生源駆動部5および超音波出力コントロール部6については、図示を省略している。 FIG. 8 is an explanatory diagram showing the flow of defoaming processing in the automatic analyzer of the second embodiment, and FIG. 9 is a flowchart showing the flow of defoaming processing in the automatic analyzer of the second embodiment. , Corresponding to FIGS. 2 and 3 of the first embodiment, respectively. In FIG. 8, the device control unit 1, the bubble identification unit 2, the bubble determination unit 3, the ultrasonic wave source drive unit 5, and the ultrasonic wave output control unit 6 shown in FIG. 7 are not shown. ..
 試料格納容器11内には、試料10が格納(収容)されている。まず、装置制御部1が搬送部などを制御することにより、試料格納容器11を、分注プローブ7がある分注位置に搬送する。それから、試料格納容器11内の試料10が、分注プローブ7を用いて他の容器(反応用容器)に分注される。すなわち、試料格納容器11内の試料10の一部を分注プローブ7で吸引し、分注プローブ7で吸引した試料10を他の容器(反応用容器)に吐出する。これにより、試料格納容器11内の試料10の一部が、分注プローブ7によって、他の容器(反応用容器)に移される。分注プローブ7による試料10の吸引または吐出の際に、泡識別部2は情報(試料格納容器11内に泡13または液膜14が存在しているか否かを判断するのが可能となる情報)を取得し、その取得した情報を基に泡判断部3が試料格納容器11内の泡の有無(泡13または液膜14の有無)を判断する(図8および図9のステップS1a)。泡判断部3は、その判断結果を装置制御部1に通知する。 The sample 10 is stored (accommodated) in the sample containment vessel 11. First, the device control unit 1 controls the transport unit and the like to transport the sample containment vessel 11 to the dispensing position where the dispensing probe 7 is located. Then, the sample 10 in the sample containment vessel 11 is dispensed into another vessel (reaction vessel) using the dispensing probe 7. That is, a part of the sample 10 in the sample containment vessel 11 is sucked by the dispensing probe 7, and the sample 10 sucked by the dispensing probe 7 is discharged to another container (reaction container). As a result, a part of the sample 10 in the sample containment vessel 11 is transferred to another vessel (reaction vessel) by the dispensing probe 7. At the time of suction or discharge of the sample 10 by the dispensing probe 7, the bubble identification unit 2 can determine information (information capable of determining whether or not the bubble 13 or the liquid film 14 is present in the sample storage container 11). ), And the foam determination unit 3 determines the presence / absence of bubbles (presence / absence of bubbles 13 or liquid film 14) in the sample storage container 11 based on the acquired information (steps S1a in FIGS. 8 and 9). The bubble determination unit 3 notifies the device control unit 1 of the determination result.
 ステップS1aで泡が無い(泡13または液膜14が存在していない)と判断された試料格納容器11については、分注処理を正常に終了する。すなわち、ステップS1aで泡が無いと判断された試料格納容器11から分注プローブ7を用いて反応用容器に分注された(移された)試料は、後で試薬と反応させてから分析に供される。 For the sample containment vessel 11 determined to have no bubbles (no bubbles 13 or liquid film 14) in step S1a, the dispensing process is normally completed. That is, the sample dispensed (transferred) from the sample containment vessel 11 determined to have no bubbles in step S1a to the reaction vessel using the dispensing probe 7 is later reacted with the reagent and then analyzed. Served.
 一方、ステップS1aで泡が有る(泡13または液膜14が存在している)と判断された試料格納容器11については、分注処理を中止する。そして、泡判断部3からの通知結果に基づいて装置制御部1が搬送部などを制御することにより、ステップS1aで泡が有る判断された試料格納容器11は、ホーン8の下方に搬送される。そして、装置制御部1が超音波出力コントロール部6を制御して超音波発生源4で超音波を発生させることにより、ホーン8から、泡13または液膜14が存在する試料格納容器11の試料10に向けて超音波を照射する。すなわち、泡13または液膜14が存在する試料10格納容器11の試料10に対して、超音波照射処理を施す(図8および図9のステップS2a)。このステップS2aの超音波照射処理(1回目の超音波照射処理)は、消泡作用を有する。図8では、ステップS2aにおいてホーン8から照射される超音波を、符号31を付して模式的に示してある。 On the other hand, for the sample containment vessel 11 determined to have bubbles (the presence of bubbles 13 or liquid film 14) in step S1a, the dispensing process is stopped. Then, the device control unit 1 controls the transport unit and the like based on the notification result from the foam determination unit 3, so that the sample containment vessel 11 determined to have bubbles in step S1a is transported below the horn 8. .. Then, the device control unit 1 controls the ultrasonic output control unit 6 to generate ultrasonic waves at the ultrasonic wave generation source 4, so that the sample in the sample storage container 11 in which the bubbles 13 or the liquid film 14 are present is generated from the horn 8. Irradiate ultrasonic waves toward 10. That is, the sample 10 in the sample 10 containment vessel 11 in which the bubbles 13 or the liquid film 14 is present is subjected to ultrasonic irradiation treatment (step S2a in FIGS. 8 and 9). The ultrasonic irradiation treatment (first ultrasonic irradiation treatment) in step S2a has a defoaming action. In FIG. 8, the ultrasonic waves emitted from the horn 8 in step S2a are schematically shown with reference numerals 31.
 また、複数の試料格納容器11に対してステップS1aの分注処理および泡の有無の判断を行った後に、それら複数の試料格納容器11のうち、泡13または液膜14が存在する試料格納容器11をホーン8の下方に搬送して、ステップS2aの超音波照射処理を施すこともできる。 Further, after performing the dispensing process of step S1a and determining the presence or absence of bubbles in the plurality of sample containment vessels 11, the sample containment vessel in which the bubbles 13 or the liquid film 14 is present among the plurality of sample containment vessels 11 It is also possible to carry the 11 below the horn 8 and perform the ultrasonic irradiation treatment of step S2a.
 ステップS2aの超音波照射処理が施された試料格納容器11は、装置制御部1が搬送部などを制御することにより、分注プローブ7がある分注位置に搬送される。それから、ステップS2aの超音波照射処理が施された試料格納容器11内の試料10が、分注プローブ7を用いて他の容器(反応用容器)に分注される。すなわち、ステップS2aの超音波照射処理が施された試料格納容器11内の試料10の一部を分注プローブ7で吸引し、分注プローブ7で吸引した試料10を他の容器(反応用容器)に吐出する。これにより、ステップS2aの超音波照射処理が施された試料格納容器11内の試料10の一部が、分注プローブ7によって、他の容器(反応用容器)に移される。分注プローブ7による試料10の吸引または吐出の際に、泡識別部2は情報(試料格納容器11内に泡13または液膜14が存在しているか否かを判断するのが可能となる情報)を取得し、その取得した情報を基に泡判断部3が、ステップS2aの超音波照射処理が施された試料格納容器11内の泡の有無(泡13または液膜14の有無)を判断する(図8および図9のステップS3a)。泡判断部3は、その判断結果を装置制御部1に通知する。 The sample containment vessel 11 subjected to the ultrasonic irradiation treatment in step S2a is transported to the dispensing position where the dispensing probe 7 is located by the device control unit 1 controlling the transport unit and the like. Then, the sample 10 in the sample containment vessel 11 subjected to the ultrasonic irradiation treatment of step S2a is dispensed into another vessel (reaction vessel) using the dispensing probe 7. That is, a part of the sample 10 in the sample storage container 11 subjected to the ultrasonic irradiation treatment in step S2a is sucked by the dispensing probe 7, and the sample 10 sucked by the dispensing probe 7 is sucked into another container (reaction container). ). As a result, a part of the sample 10 in the sample containment vessel 11 subjected to the ultrasonic irradiation treatment in step S2a is transferred to another vessel (reaction vessel) by the dispensing probe 7. At the time of suction or discharge of the sample 10 by the dispensing probe 7, the bubble identification unit 2 can determine information (information capable of determining whether or not the bubble 13 or the liquid film 14 is present in the sample storage container 11). ) Is acquired, and the foam determination unit 3 determines the presence / absence of bubbles (presence / absence of bubbles 13 or liquid film 14) in the sample storage container 11 subjected to the ultrasonic irradiation treatment of step S2a based on the acquired information. (Step S3a in FIGS. 8 and 9). The bubble determination unit 3 notifies the device control unit 1 of the determination result.
 ステップS3aで泡が無い(泡13または液膜14が存在していない)と判断された試料格納容器11(すなわちステップS2aの超音波照射処理で泡13や液膜14が消えた試料格納容器11)については、分注処理を正常に終了する。すなわち、ステップS3aで泡が無いと判断された試料格納容器11から分注プローブ7を用いて反応用容器に分注された(移された)試料は、後で試薬と反応させてから分析に供される。 The sample storage container 11 determined in step S3a to be free of bubbles (there is no bubble 13 or liquid film 14) (that is, the sample storage container 11 in which the bubbles 13 and liquid film 14 disappeared by the ultrasonic irradiation treatment in step S2a). ), The dispensing process is completed normally. That is, the sample dispensed (transferred) from the sample containment vessel 11 determined to have no bubbles in step S3a to the reaction vessel using the dispensing probe 7 is later reacted with the reagent and then analyzed. Served.
 一方、ステップS3aで泡が有る(泡13または液膜14が存在している)と判断された試料格納容器11(すなわちステップS2aの超音波照射処理で泡13や液膜14が消えなかった試料格納容器11)については、分注処理を中止する。そして、泡判断部3からの通知結果に基づいて装置制御部1が搬送部などを制御することにより、ステップS3aで泡が有ると判断された試料格納容器11は、ホーン8の下方に搬送される。そして、装置制御部1が超音波出力コントロール部6を制御して超音波発生源4で超音波を発生させることにより、ホーン8から、泡13または液膜14が存在する試料格納容器11の試料10に向けて超音波を照射する。すなわち、泡13または液膜14が存在する試料格納容器11の試料10に対して、超音波照射処理を施す(図8および図9のステップS4a)。このステップS4aの超音波照射処理(2回目の超音波照射処理)は、消泡作用を有する。図8では、ステップS4aにおいてホーン8から照射される超音波を、符号32を付して模式的に示してある。 On the other hand, the sample storage container 11 determined to have bubbles (the presence of the bubbles 13 or the liquid film 14) in step S3a (that is, the sample in which the bubbles 13 and the liquid film 14 did not disappear by the ultrasonic irradiation treatment in step S2a). For the storage container 11), the dispensing process is stopped. Then, the device control unit 1 controls the transport unit and the like based on the notification result from the foam determination unit 3, so that the sample containment vessel 11 determined to have bubbles in step S3a is transported below the horn 8. To. Then, the device control unit 1 controls the ultrasonic output control unit 6 to generate ultrasonic waves at the ultrasonic wave generation source 4, so that the sample in the sample storage container 11 in which the bubbles 13 or the liquid film 14 are present is generated from the horn 8. Irradiate ultrasonic waves toward 10. That is, the sample 10 in the sample containment vessel 11 in which the bubbles 13 or the liquid film 14 is present is subjected to ultrasonic irradiation treatment (step S4a in FIGS. 8 and 9). The ultrasonic irradiation treatment (second ultrasonic irradiation treatment) in step S4a has a defoaming action. In FIG. 8, the ultrasonic waves emitted from the horn 8 in step S4a are schematically shown with reference numerals 32.
 本実施の形態2におけるステップS2aの超音波照射処理は、上記実施の形態1におけるステップS2の超音波照射処理と、基本的には同じである。また、本実施の形態2におけるステップS4aの超音波照射処理は、上記実施の形態1におけるステップS4の超音波照射処理と、基本的には同じである。このため、上記実施の形態1と同様に、本実施の形態2においても、ステップS2aの超音波照射処理の消泡作用に比べて、ステップS4aの超音波照射処理の消泡作用が大きい。 The ultrasonic irradiation process of step S2a in the second embodiment is basically the same as the ultrasonic irradiation process of step S2 in the first embodiment. Further, the ultrasonic irradiation process of step S4a in the second embodiment is basically the same as the ultrasonic irradiation process of step S4 in the first embodiment. Therefore, similarly to the first embodiment, also in the second embodiment, the defoaming action of the ultrasonic irradiation treatment of step S4a is larger than the defoaming action of the ultrasonic irradiation treatment of step S2a.
 ステップS4aの超音波照射処理が施された試料格納容器11は、装置制御部1が搬送部などを制御することにより、分注プローブ7がある分注位置に搬送される。それから、ステップS4aの超音波照射処理が施された試料格納容器11内の試料10が、分注プローブ7を用いて他の容器(反応用容器)に分注される。すなわち、ステップS4aの超音波照射処理が施された試料格納容器11内の試料10の一部を分注プローブ7で吸引し、分注プローブ7で吸引した試料10を他の容器(反応用容器)に吐出する。これにより、ステップS4aの超音波照射処理が施された試料格納容器11内の試料10の一部が、分注プローブ7によって、他の容器(反応用容器)に移される。分注プローブ7による試料10の吸引または吐出の際に、泡識別部2は情報(試料格納容器11内に泡13または液膜14が存在しているか否かを判断するのが可能となる情報)を取得し、その取得した情報を基に泡判断部3が、ステップS4aの超音波照射処理が施された試料格納容器11内の泡の有無(泡13または液膜14の有無)を判断する(図8および図9のステップS5a)。泡判断部3は、その判断結果を装置制御部1に通知する。 The sample containment vessel 11 subjected to the ultrasonic irradiation treatment in step S4a is transported to the dispensing position where the dispensing probe 7 is located by the device control unit 1 controlling the transport unit and the like. Then, the sample 10 in the sample containment vessel 11 subjected to the ultrasonic irradiation treatment in step S4a is dispensed into another vessel (reaction vessel) using the dispensing probe 7. That is, a part of the sample 10 in the sample storage container 11 subjected to the ultrasonic irradiation treatment in step S4a is sucked by the dispensing probe 7, and the sample 10 sucked by the dispensing probe 7 is sucked into another container (reaction container). ). As a result, a part of the sample 10 in the sample containment vessel 11 subjected to the ultrasonic irradiation treatment in step S4a is transferred to another vessel (reaction vessel) by the dispensing probe 7. At the time of suction or discharge of the sample 10 by the dispensing probe 7, the bubble identification unit 2 can determine information (information capable of determining whether or not the bubble 13 or the liquid film 14 is present in the sample storage container 11). ) Is acquired, and the foam determination unit 3 determines the presence / absence of bubbles (presence / absence of bubbles 13 or liquid film 14) in the sample storage container 11 subjected to the ultrasonic irradiation treatment of step S4a based on the acquired information. (Step S5a in FIGS. 8 and 9). The bubble determination unit 3 notifies the device control unit 1 of the determination result.
 ステップS5aで泡が無い(泡13または液膜14が存在していない)と判断された試料格納容器11(すなわちステップS4aの超音波照射処理で泡13や液膜14が消えた試料格納容器11)については、分注処理を正常に終了する。すなわち、ステップS5aで泡が無いと判断された試料格納容器11から分注プローブ7を用いて反応用容器に分注された(移された)試料は、後で試薬と反応させてから分析に供される。 The sample storage container 11 determined to have no bubbles (there is no bubble 13 or liquid film 14) in step S5a (that is, the sample storage container 11 in which the bubbles 13 and liquid film 14 disappeared by the ultrasonic irradiation treatment in step S4a). ), The dispensing process is completed normally. That is, the sample dispensed (transferred) from the sample containment vessel 11 determined to have no bubbles in step S5a to the reaction vessel using the dispensing probe 7 is later reacted with the reagent and then analyzed. Served.
 一方、ステップS5aで泡が有る(泡13または液膜14が存在している)と判断された試料格納容器11(すなわちステップS4aの超音波照射処理で泡13や液膜14が消えなかった試料格納容器11)については、分注処理を中止する。そして、ステップS5aで泡が有ると判断された試料格納容器11に対しては、上記ステップS4a(超音波照射処理)と上記ステップS5a(泡の有無の判断)とを、泡が無いと判断されるまで繰り返す。 On the other hand, the sample storage container 11 determined to have bubbles (the presence of the bubbles 13 or the liquid film 14) in step S5a (that is, the sample in which the bubbles 13 and the liquid film 14 did not disappear by the ultrasonic irradiation treatment in step S4a). For the storage container 11), the dispensing process is stopped. Then, for the sample containment vessel 11 determined to have bubbles in step S5a, it is determined that there are no bubbles in step S4a (ultrasonic irradiation treatment) and step S5a (determination of the presence or absence of bubbles). Repeat until
 ステップS4aおよびステップS5aの繰り返し回数(サイクル数)の上限を予め設定しておき、その上限回数までステップS4aとステップS5aとを繰り返しても泡が有ると判断された場合には、その試料格納容器11内の試料10については、適切な異常処理(異常対応処理)を行うことができる。繰り返し回数の上限は、任意の回数に設定することができる。 The upper limit of the number of repetitions (number of cycles) of steps S4a and S5a is set in advance, and if it is determined that bubbles are present even if steps S4a and S5a are repeated up to the upper limit, the sample containment vessel is used. Appropriate abnormality treatment (abnormality response processing) can be performed on the sample 10 in 11. The upper limit of the number of repetitions can be set to any number of times.
 なお、ステップS1a、ステップS3aまたはステップS5aで泡が無いと判断された試料格納容器11の試料10が分注された反応用容器には、試薬格納容器内の試薬が、試薬用の分注プローブ(図示せず)を用いて分注される。これにより、反応用容器内で試料と試薬とが混合されて反応する。その後、反応用容器内の液体(試料と試薬との反応溶液)に対して、所定の分析(例えば光学的特性の測定)が行われる。これにより、試料の成分などを分析することができる。 In the reaction vessel into which the sample 10 of the sample containment vessel 11 determined to have no bubbles in step S1a, step S3a or step S5a was dispensed, the reagent in the reagent containment vessel is a dispensing probe for the reagent. Dispensed using (not shown). As a result, the sample and the reagent are mixed and reacted in the reaction vessel. After that, a predetermined analysis (for example, measurement of optical properties) is performed on the liquid (reaction solution of the sample and the reagent) in the reaction vessel. This makes it possible to analyze the components of the sample and the like.
 また、ステップS3(再度の分注に伴う泡の有無の判断)は、ステップS2の超音波照射処理の直後にすぐに行うこともできるが、ステップS2の超音波照射処理の直後すぐではなく、他の試料について分注処理をひと通り実施した後(例えば再分析のタイミング)で行ってもよい。 Further, step S3 (determination of the presence or absence of bubbles due to re-dispensing) can be performed immediately after the ultrasonic irradiation treatment in step S2, but not immediately after the ultrasonic irradiation treatment in step S2. It may be performed after the dispensing process has been performed for other samples (for example, the timing of reanalysis).
 上記実施の形態1と同様に、本実施の形態2の場合も、ステップS2aの超音波照射処理の消泡作用を小さくし、ステップS4aの超音波照射処理の消泡作用をステップS2aよりも大きくすることにより、超音波照射処理により試料が変質してしまう可能性(リスク)を低くしながら、ステップS4aで泡の消し残りが発生する可能性を低くすることができる。このため、自動分析装置による分析結果の信頼性を向上させることができる。 Similar to the first embodiment, also in the second embodiment, the defoaming action of the ultrasonic irradiation treatment in step S2a is reduced, and the defoaming action of the ultrasonic irradiation treatment in step S4a is larger than that in step S2a. By doing so, it is possible to reduce the possibility (risk) that the sample is denatured by the ultrasonic irradiation treatment, and at the same time, reduce the possibility that the foam remains unerased in step S4a. Therefore, the reliability of the analysis result by the automatic analyzer can be improved.
 また、本実施の形態2の場合は、上記実施の形態1に比べて、泡識別部2を構成する機器を簡略化することができる。例えば、本実施の形態2の場合は、泡識別部2において、画像データを得るための機器(撮影機器)は不要となる。 Further, in the case of the second embodiment, the device constituting the bubble identification unit 2 can be simplified as compared with the first embodiment. For example, in the case of the second embodiment, the bubble identification unit 2 does not require a device (photographing device) for obtaining image data.
 一方、上記実施の形態1の場合は、分注位置と超音波照射処理の位置との間の搬送回数を減らすことができるため、本実施の形態2の場合に比べて、全体の処理時間を短くすることができる。 On the other hand, in the case of the first embodiment, the number of transports between the dispensing position and the ultrasonic irradiation processing position can be reduced, so that the total processing time can be reduced as compared with the case of the second embodiment. Can be shortened.
 次に、本実施の形態2の自動分析装置における消泡処理の流れの変形例について、説明する。変形例は、上記図8および図9において、ステップS1aを省略した場合に対応している。すなわち、変形例の場合は、ステップS1aを行うことなく、ステップS2aの超音波照射処理を行う。 Next, a modified example of the flow of the defoaming process in the automatic analyzer of the second embodiment will be described. The modified example corresponds to the case where step S1a is omitted in FIGS. 8 and 9. That is, in the case of the modified example, the ultrasonic irradiation process of step S2a is performed without performing step S1a.
 変形例の場合は、分注プローブ7を用いた分注処理を行う前に、装置制御部1が搬送部などを制御することにより、試料格納容器11をホーン8の下方に搬送する。そして、装置制御部1が超音波出力コントロール部6を制御して超音波発生源4で超音波を発生させることにより、ホーン8から、泡13または液膜14が存在する試料格納容器11の試料10に向けて超音波を照射する。すなわち、泡13または液膜14が存在する試料格納容器11の試料10に対して、ステップS2aの超音波照射処理を施す。ステップS2aの超音波照射処理の後は、変形例の場合も、上記図8および図9の場合と基本的には同じであるので、ここでその繰り返しの説明は省略する。 In the case of the modified example, the sample containment vessel 11 is conveyed below the horn 8 by the device control unit 1 controlling the transfer unit and the like before performing the dispensing process using the dispensing probe 7. Then, the device control unit 1 controls the ultrasonic output control unit 6 to generate ultrasonic waves at the ultrasonic wave generation source 4, so that the sample in the sample storage container 11 in which the bubbles 13 or the liquid film 14 are present is generated from the horn 8. Irradiate ultrasonic waves toward 10. That is, the ultrasonic irradiation treatment of step S2a is performed on the sample 10 of the sample containment vessel 11 in which the bubbles 13 or the liquid film 14 are present. After the ultrasonic irradiation treatment in step S2a, the modified example is basically the same as the case of FIGS. 8 and 9, and thus the repeated description thereof will be omitted here.
 また、変形例において、スッテプS2a(超音波照射処理)とステップS3a(分注および泡の有無の判断)とは、試料格納容器11毎に順次行うこともできるが、ステップS2a(超音波照射処理)を複数の試料格納容器11に対してまとめて実施した後に、それら複数の試料格納容器11に対してステップS3a(分注および泡の有無の判断)をまとめて行うこともできる。 Further, in the modified example, step S2a (ultrasonic irradiation treatment) and step S3a (dispensing and determination of the presence or absence of bubbles) can be sequentially performed for each sample containment vessel 11, but step S2a (ultrasonic irradiation treatment). ) Can be collectively performed on the plurality of sample containment vessels 11, and then step S3a (dispensing and determination of the presence or absence of bubbles) can be collectively performed on the plurality of sample containment vessels 11.
 変形例の場合は、ステップS2aの超音波照射処理の前に、試料格納容器11の試料10の分注処理や上記ステップS1a(泡の有無の判断)は行わない。すなわち、変形例の場合は、試料格納容器11内に泡13または液膜14が存在しているか否かを判断せずに、試料格納容器11の試料に対してステップS2aの超音波照射処理を施している。このため、変形例の場合は、ステップS2aの超音波照射処理は、泡13または液膜14が存在する試料格納容器11の試料10に対しても、また、泡13や液膜14が存在しない試料格納容器11の試料10に対しても、行われる。 In the case of the modified example, the dispensing process of the sample 10 in the sample containment vessel 11 and the above step S1a (determination of the presence or absence of bubbles) are not performed before the ultrasonic irradiation treatment in step S2a. That is, in the case of the modified example, the ultrasonic irradiation treatment of step S2a is performed on the sample in the sample containment vessel 11 without determining whether or not the bubbles 13 or the liquid film 14 are present in the sample containment vessel 11. It is given. Therefore, in the case of the modified example, in the ultrasonic irradiation treatment of step S2a, the foam 13 or the liquid film 14 is not present even for the sample 10 of the sample storage container 11 in which the foam 13 or the liquid film 14 is present. This is also performed for the sample 10 in the sample storage container 11.
 変形例の場合も、ステップS2aの超音波照射処理の消泡作用を小さくし、ステップS4aの超音波照射処理の消泡作用をステップS2aよりも大きくしているため、超音波照射処理により試料が変質してしまう可能性(リスク)を低くしながら、ステップS4aで泡の消し残りが発生する可能性を低くすることができる。このため、自動分析装置による分析結果の信頼性を向上させることができる。 Also in the modified example, the defoaming action of the ultrasonic irradiation treatment in step S2a is reduced, and the defoaming action of the ultrasonic irradiation treatment in step S4a is made larger than that of step S2a. While reducing the possibility (risk) of deterioration, it is possible to reduce the possibility that bubbles remain unerased in step S4a. Therefore, the reliability of the analysis result by the automatic analyzer can be improved.
 但し、変形例の場合は、上記ステップS1aを行わないため、泡13や液膜14が全く存在しない試料格納容器11の試料10に対しても、ステップS2aの超音波照射処理が施されてしまう。一方、上記ステップS1aも行われる場合(図8および図9)は、泡13や液膜14が全く存在しない試料格納容器11の試料10に対しては、ステップS2aの超音波照射処理は施されずに済む。このため、超音波照射処理による試料の変質をできるだけ防ぐという観点では、上記ステップS1aを行わない変形例の場合よりも、上記ステップS1aを行う場合(図8および図9)の方が、有利である。上記ステップS1aを行うことにより、泡13や液膜14が全く存在しない試料格納容器11の試料10に対して、ステップS2aの超音波照射処理が施されなくなるため、泡13や液膜14が全く存在しない試料格納容器11の試料10が超音波照射によって変質する可能性(リスク)を排除することができる。 However, in the case of the modified example, since the above step S1a is not performed, the ultrasonic irradiation treatment of step S2a is also applied to the sample 10 of the sample containment vessel 11 in which the bubbles 13 and the liquid film 14 do not exist at all. .. On the other hand, when the step S1a is also performed (FIGS. 8 and 9), the ultrasonic irradiation treatment of the step S2a is applied to the sample 10 of the sample containment vessel 11 in which the bubbles 13 and the liquid film 14 are not present at all. You don't have to. Therefore, from the viewpoint of preventing the deterioration of the sample due to the ultrasonic irradiation treatment as much as possible, the case of performing the above step S1a (FIGS. 8 and 9) is more advantageous than the case of the modified example in which the above step S1a is not performed. is there. By performing the above step S1a, the ultrasonic irradiation treatment of step S2a is not applied to the sample 10 of the sample storage container 11 in which the bubbles 13 and the liquid film 14 do not exist at all, so that the bubbles 13 and the liquid film 14 are completely removed. It is possible to eliminate the possibility (risk) that the sample 10 of the non-existent sample storage container 11 is altered by ultrasonic irradiation.
 一方、変形例の場合は、上記ステップS1aを行わない分、分注位置から超音波照射処理の位置への搬送回数を減らすことができるため、上記ステップS1aを行う場合に比べて、全体の処理時間を短くすることができる。 On the other hand, in the case of the modified example, since the number of transports from the dispensing position to the position of the ultrasonic irradiation processing can be reduced because the step S1a is not performed, the entire processing is performed as compared with the case where the step S1a is performed. The time can be shortened.
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。 Although the invention made by the present inventor has been specifically described above based on the embodiment thereof, the present invention is not limited to the embodiment and can be variously modified without departing from the gist thereof. Needless to say.
 例えば、上記実施の形態1,2では、超音波による消泡処理を、試料格納容器11に収容された試料10に対して行う場合について説明したが、試薬格納容器内に収容された試薬に対して超音波による消泡処理を行う場合に適用することもできる。このため、上記実施の形態1,2で説明した技術思想は、自動分析装置において、容器に収容された液体に対して超音波による消泡処理を行う場合に適用することができる。 For example, in the first and second embodiments, the case where the defoaming treatment by ultrasonic waves is performed on the sample 10 contained in the sample containment vessel 11 has been described, but the reagent housed in the reagent containment vessel has been described. It can also be applied when defoaming with ultrasonic waves. Therefore, the technical idea described in the first and second embodiments can be applied to the case where the liquid contained in the container is defoamed by ultrasonic waves in the automatic analyzer.
1 装置制御部
2 泡識別部
3 泡判断部
4 超音波発生源
5 超音波発生源駆動部
6 超音波出力コントロール部
7 分注プローブ
8 ホーン
10 試料
11 試料格納容器
12 試料格納容器架設部
13 泡
14 液膜
1 Device control unit 2 Bubble identification unit 3 Bubble judgment unit 4 Ultrasonic source 5 Ultrasonic source drive unit 6 Ultrasonic output control unit 7 Dispensing probe 8 Horn 10 Sample 11 Sample storage container 12 Sample storage container erection unit 13 Bubbles 14 Liquid film

Claims (11)

  1.  容器内に収容された液体における泡の有無を判断する判断部と、
     前記容器内に収容された前記液体に対して超音波を照射する照射部と、
     を備え、
     前記照射部は、前記容器内の前記液体に対して第1の超音波照射処理を行い、
     前記判断部は、前記第1の超音波照射処理が行われた前記容器内の前記液体における泡の有無を判断し、
     前記第1の超音波照射処理が行われた前記容器内の前記液体に泡が有ると前記判断部が判断した場合には、前記照射部は、前記第1の超音波照射処理が行われた前記容器内の前記液体に対して、前記第1の超音波照射処理よりも消泡作用が大きい第2の超音波照射処理を行う、自動分析装置。
    A judgment unit that determines the presence or absence of bubbles in the liquid contained in the container,
    An irradiation unit that irradiates the liquid contained in the container with ultrasonic waves,
    With
    The irradiation unit performs a first ultrasonic irradiation treatment on the liquid in the container, and then performs a first ultrasonic irradiation treatment.
    The determination unit determines the presence or absence of bubbles in the liquid in the container to which the first ultrasonic irradiation treatment has been performed.
    When the determination unit determines that the liquid in the container to which the first ultrasonic irradiation treatment has been performed has bubbles, the irradiation unit has been subjected to the first ultrasonic irradiation treatment. An automatic analyzer that performs a second ultrasonic irradiation treatment on the liquid in the container, which has a larger defoaming effect than the first ultrasonic irradiation treatment.
  2.  請求項1記載の自動分析装置において、
     前記第2の超音波照射処理は、前記第1の超音波照射処理よりも、超音波の強度が大きい、自動分析装置。
    In the automatic analyzer according to claim 1,
    The second ultrasonic irradiation treatment is an automatic analyzer in which the intensity of ultrasonic waves is higher than that of the first ultrasonic irradiation treatment.
  3.  請求項1記載の自動分析装置において、
     前記第2の超音波照射処理は、前記第1の超音波照射処理よりも、超音波の周波数が高い、自動分析装置。
    In the automatic analyzer according to claim 1,
    The second ultrasonic irradiation treatment is an automatic analyzer having a higher ultrasonic frequency than the first ultrasonic irradiation treatment.
  4.  請求項1記載の自動分析装置において、
     前記第2の超音波照射処理は、前記第1の超音波照射処理よりも、超音波の照射時間が長い、自動分析装置。
    In the automatic analyzer according to claim 1,
    The second ultrasonic irradiation treatment is an automatic analyzer in which the ultrasonic irradiation time is longer than that of the first ultrasonic irradiation treatment.
  5.  請求項4記載の自動分析装置において、
     前記第2の超音波照射処理では、前記容器を動かしながら前記容器内の前記液体に対して超音波が照射される、自動分析装置。
    In the automatic analyzer according to claim 4,
    In the second ultrasonic irradiation process, an automatic analyzer that irradiates the liquid in the container with ultrasonic waves while moving the container.
  6.  請求項1記載の自動分析装置において、
     前記第2の超音波照射処理は、前記第1の超音波照射処理よりも、前記照射部から前記液体までの距離が短い、自動分析装置。
    In the automatic analyzer according to claim 1,
    The second ultrasonic irradiation treatment is an automatic analyzer in which the distance from the irradiation unit to the liquid is shorter than that of the first ultrasonic irradiation treatment.
  7.  請求項1記載の自動分析装置において、
     前記判断部は、前記第1の超音波照射処理が行われる前の前記容器内の前記液体における泡の有無を判断し、
     前記第1の超音波照射処理は、泡が有ると判断された前記容器内の前記液体に対して行われる、自動分析装置。
    In the automatic analyzer according to claim 1,
    The determination unit determines the presence or absence of bubbles in the liquid in the container before the first ultrasonic irradiation treatment is performed.
    The first ultrasonic irradiation treatment is performed on the liquid in the container determined to have bubbles, and is an automatic analyzer.
  8.  請求項1記載の自動分析装置において、
     前記第1の超音波照射処理が行われる前の前記容器内の前記液体については、前記判断部は泡の有無を判断しない、自動分析装置。
    In the automatic analyzer according to claim 1,
    An automatic analyzer in which the determination unit does not determine the presence or absence of bubbles with respect to the liquid in the container before the first ultrasonic irradiation treatment is performed.
  9.  請求項1記載の自動分析装置において、
     前記判断部は、前記第2の超音波照射処理が行われた前記容器内の前記液体における泡の有無を判断する、自動分析装置。
    In the automatic analyzer according to claim 1,
    The determination unit is an automatic analyzer that determines the presence or absence of bubbles in the liquid in the container to which the second ultrasonic irradiation treatment has been performed.
  10.  請求項9記載の自動分析装置において、
     前記容器内に収容された前記液体を分注するための分注プローブを備え、
     前記第2の超音波照射処理が行われた前記容器内の前記液体に泡が無いと前記判断部が判断した場合には、前記分注プローブは、前記第2の超音波照射処理が行われた前記容器内の前記液体を分注する、自動分析装置。
    In the automatic analyzer according to claim 9,
    A dispensing probe for dispensing the liquid contained in the container is provided.
    When the determination unit determines that the liquid in the container to which the second ultrasonic irradiation treatment has been performed has no bubbles, the dispensing probe is subjected to the second ultrasonic irradiation treatment. An automatic analyzer that dispenses the liquid in the container.
  11.  請求項1記載の自動分析装置において、
     前記容器内に収容された前記液体を分注するための分注プローブを備え、
     前記第1の超音波照射処理が行われた前記容器内の前記液体に泡が無いと前記判断部が判断した場合には、前記分注プローブは、前記第1の超音波照射処理が行われた前記容器内の前記液体を分注する、自動分析装置。
    In the automatic analyzer according to claim 1,
    A dispensing probe for dispensing the liquid contained in the container is provided.
    When the determination unit determines that the liquid in the container to which the first ultrasonic irradiation treatment has been performed has no bubbles, the dispensing probe is subjected to the first ultrasonic irradiation treatment. An automatic analyzer that dispenses the liquid in the container.
PCT/JP2020/039267 2019-12-23 2020-10-19 Automatic analysis device WO2021131269A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021566852A JP7343612B2 (en) 2019-12-23 2020-10-19 automatic analyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-231267 2019-12-23
JP2019231267 2019-12-23

Publications (1)

Publication Number Publication Date
WO2021131269A1 true WO2021131269A1 (en) 2021-07-01

Family

ID=76574146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039267 WO2021131269A1 (en) 2019-12-23 2020-10-19 Automatic analysis device

Country Status (2)

Country Link
JP (1) JP7343612B2 (en)
WO (1) WO2021131269A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11314012A (en) * 1998-05-07 1999-11-16 Konica Corp Defoaming method
JP2014145621A (en) * 2013-01-28 2014-08-14 Hitachi High-Technologies Corp Automatic analyzer
JP2016202744A (en) * 2015-04-27 2016-12-08 三菱電機株式会社 Washing device and kitchen sink

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143821A (en) * 1994-11-18 1996-06-04 Meiji Seika Kaisha Ltd Processing of gelatin
MX368673B (en) 2013-03-15 2019-10-10 Theranos Ip Co Llc Devices, systems and methods for sample preparation.
CN108474033B (en) 2016-02-22 2022-07-08 东丽株式会社 Method for evaluating quality of miRNA derived from body fluid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11314012A (en) * 1998-05-07 1999-11-16 Konica Corp Defoaming method
JP2014145621A (en) * 2013-01-28 2014-08-14 Hitachi High-Technologies Corp Automatic analyzer
JP2016202744A (en) * 2015-04-27 2016-12-08 三菱電機株式会社 Washing device and kitchen sink

Also Published As

Publication number Publication date
JPWO2021131269A1 (en) 2021-07-01
JP7343612B2 (en) 2023-09-12

Similar Documents

Publication Publication Date Title
JP2007309888A (en) Dispensing device
JP4491477B2 (en) Automatic analyzer
JP2014145621A (en) Automatic analyzer
JP2009222593A (en) Nozzle-cleaning method and nozzle-cleaning apparatus
EP2023145A1 (en) Automatic analyzer and method of determining dispensing failure
JP6268288B2 (en) Blood coagulation test equipment
JP2007309889A (en) Foreign matter detector and foreign matter detecting method
JP6470390B2 (en) Automatic analyzer
JP6654881B2 (en) Automatic analyzer and method for determining abnormality of automatic analyzer
CN106353519A (en) Method for pipetting liquids in an automated analysis apparatus
CN110618194A (en) Ultrasonic inspection apparatus, control apparatus, and inspection method
WO2021131269A1 (en) Automatic analysis device
JP7033668B2 (en) Automatic analysis system
JP2010169579A (en) Automatic analyzer
JP2007047083A (en) Dispensing device and method for determining presence or absence of air bubble in the same
JPWO2011093347A1 (en) Automatic analyzer
JP2010091469A (en) Specimen dispensing device, method of dispensing specimen, and analyzer
JP2010096640A (en) Dispenser
JP4110082B2 (en) Automatic analyzer
JP6338898B2 (en) Automatic analyzer
JPH06229892A (en) Sampling monitoring device
JP2021092509A (en) Biochemical analyzer and biochemical analysis method
WO2013042551A1 (en) Automatic analysis apparatus
JPWO2016009765A1 (en) Automatic analyzer
JP2016125877A (en) Automatic analysis device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021566852

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904290

Country of ref document: EP

Kind code of ref document: A1