WO2021131233A1 - Wireless terminal and transmission method therefor, and base station and reception method therefor - Google Patents

Wireless terminal and transmission method therefor, and base station and reception method therefor Download PDF

Info

Publication number
WO2021131233A1
WO2021131233A1 PCT/JP2020/038449 JP2020038449W WO2021131233A1 WO 2021131233 A1 WO2021131233 A1 WO 2021131233A1 JP 2020038449 W JP2020038449 W JP 2020038449W WO 2021131233 A1 WO2021131233 A1 WO 2021131233A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio
wireless
frame
transmission
determined
Prior art date
Application number
PCT/JP2020/038449
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 雅典
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2021566835A priority Critical patent/JPWO2021131233A1/ja
Publication of WO2021131233A1 publication Critical patent/WO2021131233A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control

Definitions

  • This technology is related to wireless systems. More specifically, the present invention relates to a wireless system in which a base station receives a wireless frame transmitted from a wireless terminal, and a processing method in these.
  • the IoT (Internet of Things) area is expected to create new value by acquiring and analyzing information from various objects.
  • Various requirements are expected for the wireless technology used for acquiring information, and in particular, there are high expectations for low power consumption and long-distance transmission of wireless terminals.
  • the wireless terminal can be miniaturized so that it can be used for more purposes. This is to become.
  • long-distance transmission is possible, it becomes possible to collect information from a distant place, and it becomes possible to obtain information that could not be obtained in the past.
  • Simplification of communication procedures is being considered as a technology to realize low power consumption of wireless terminals.
  • wireless terminals receive control signals periodically transmitted by base stations and access points and signals called beacons, transmit connection requests, and receive connection permission. After that, data can be transmitted.
  • many control signals need to be exchanged before data transmission, and more power is consumed in this part.
  • the data transmitted by the wireless terminal is mainly a small amount of sensor information of about several tens of bytes such as position information, temperature, and humidity. Therefore, the overhead of the control signal with respect to the data is large, which is a big problem in realizing low power consumption of the wireless terminal.
  • the wireless resource rules that determine the time and frequency of data transmission from the transmission cycle, the time obtained from GPS, and the terminal identifier (ID) are set as wireless standards in advance between the wireless terminal and the base station. It is shared.
  • the wireless terminal determines the transmission time and frequency from a pre-assigned transmission cycle, a time obtained from GPS, and a terminal identifier.
  • the base station also determines the time and frequency to be received. As a result, the base station can limit the time and frequency of reception in advance, so that it can be realized at a low price.
  • the error correction technique is a technique for improving the reception success rate on the receiving side by adding a redundant bit to the information transmitted by signal processing represented by, for example, LDPC (Low Density Parity check Code) and transmitting the information. Therefore, a technique called HARQ (Hybrid Automatic Repeat reQuest), which combines a repeat transmission technique and an error correction technique, is used.
  • HARQ Hybrid Automatic Repeat reQuest
  • the SN ratio improves with the number of repetitive transmissions, but it is known that the rate of improvement becomes a logarithmic function, and even if the number of repetitive transmissions is increased, the improvement in the SN ratio is saturated. It ends up. Further, in the error correction technology, it is possible to improve the SN ratio by increasing the number of redundant bits to be added, but as the number of redundant bits increases, the amount of information transmitted at one time increases and the one transmission time becomes long. Therefore, the power consumption associated with transmission increases.
  • HARQ is a combination of these technologies and is useful as a method for realizing long-distance transmission. For example, a method of transmitting via a channel using HARQ has been proposed (see, for example, Patent Document 1).
  • This technology was created in view of such a situation, and aims to transmit a wireless frame by HARQ without transmitting header information.
  • the present technology has been made to solve the above-mentioned problems, and the first aspect thereof determines the radio resources to be used for transmission based on the information synchronized with the receiving device and the identifier of the wireless terminal.
  • a part of the error correction code of the transmission target data is determined as a redundant bit based on the wireless resource determination unit to be transmitted, and a wireless frame using the transmission target data and the redundant bit as a payload is generated.
  • It is a radio terminal including a frame generation unit and a radio transmission unit that transmits the radio frame to the reception device using the determined radio resource, and a transmission method thereof.
  • a part of the error correction code of the data to be transmitted is determined as a redundant bit based on the determined radio resource, and the radio frame including the redundant bit is transmitted.
  • the frame generation unit uses each of the plurality of partial codes obtained by dividing the error correction code as the redundant bits, and uses a plurality of radios for the transmission target data based on the determined radio resources.
  • the frame may be generated, and the radio transmission unit may transmit the plurality of radio frames. This has the effect of transmitting a radio frame containing each of the plurality of partial codes obtained by dividing the error correction code as redundant bits.
  • the radio resource determination unit may determine the transmission order of the plurality of partial codes as a part of the radio resource. This has the effect of determining the transmission order of the plurality of partial codes as a part of the wireless resource in the wireless terminal.
  • the radio resource determination unit may determine the transmission order according to the information synchronized with the receiving device and the pseudo-random number sequence having the identifier as the initial value. This has the effect of uniquely determining the transmission order of the plurality of partial codes from the information synchronized with the receiving device and the above identifier.
  • the radio resource determination unit may determine the transmission order based on the transmission frequency included in the radio resource. This has the effect of uniquely determining the transmission order of the plurality of partial codes from the transmission frequency.
  • the radio resource determination unit generates synchronization information indicating which of the plurality of partial codes is transmitted as the redundant bit, and the radio transmission unit is the radio frame.
  • the synchronization information may be transmitted prior to transmission. This has the effect of causing the receiving side to uniquely determine the transmission order of the plurality of partial codes from the synchronization information.
  • the second aspect of the present technology is a radio resource determination unit that determines radio resources to be used for reception based on information synchronized with the radio terminal and the identifier of the radio terminal, and the determined radio resources.
  • Which of the wireless receiver that receives the received data and the wireless frame including the redundant bit from the wireless terminal by using and the plurality of partial codes obtained by dividing the error correction code of the received data is included as the redundant bit.
  • a base station provided with a frame synthesizing unit for synthesizing frames based on the radio resources determined above, and a receiving method thereof. This has the effect of determining which of the plurality of partial codes is included as the redundant bit based on the determined radio resource.
  • the radio receiving unit receives a plurality of radio frames including the received data
  • the frame synthesizing unit uses the redundant bits of the plurality of radio frames as the determined radio resource.
  • the error correction code may be restored by rearranging based on. This has the effect of restoring the error correction code based on the determined radio resource.
  • the radio resource determination unit includes any of the plurality of partial codes as the redundant bits according to the information synchronized with the receiving device and the pseudo-random number sequence having the identifier as the initial value. You may try to determine if you are there. This has the effect of uniquely determining the transmission order of the plurality of partial codes from the information synchronized with the receiving device and the above identifier.
  • the radio resource determination unit determines which of the plurality of partial codes is included as the redundant bit based on the reception frequency at which the radio frame is received. May be good. This has the effect of uniquely determining the transmission order of the plurality of partial codes from the reception frequency.
  • a plurality of synchronization information indicating which of the plurality of partial codes is included as the redundant bit in the wireless frame.
  • a plurality of frame detection units are further provided corresponding to each to detect wireless frames matching the synchronization information, and the frame synthesis unit is determined by which of the plurality of frame detection units is detected. It may be determined which of the plurality of partial codes is included as the redundant bit. This has the effect of uniquely determining the transmission order of the plurality of partial codes from the synchronization information.
  • FIG. 1 is a diagram showing an overall configuration example of a wireless system according to an embodiment of the present technology.
  • This wireless system includes a wireless terminal 100 and a base station 200.
  • the wireless terminal 100 has a function of detecting or acquiring predetermined data, and wirelessly transmits the data to the base station 200 as sensor data.
  • Another device is connected to the base station 200, and sensor data is appropriately transmitted.
  • wireless terminal 100 Although one wireless terminal 100 and one base station 200 are shown here, a plurality of these may exist. As will be described later, the wireless terminal 100 is given a terminal identifier, and the base station 200 can identify each of them.
  • FIG. 2 is a diagram showing a configuration example of the wireless terminal 100 according to the embodiment of the present technology.
  • the wireless terminal 100 includes a GPS receiving unit 110, a terminal identifier holding unit 120, a wireless resource determination unit 130, a wireless control unit 140, a wireless transmission unit 150, a sensor data acquisition unit 160, and a frame generation unit 170. Be prepared.
  • the GPS receiving unit 110 receives GPS signals from GPS satellites and acquires time information and position information.
  • the terminal identifier holding unit 120 holds the terminal identifier of the wireless terminal 100.
  • the terminal identifier is a unique identifier assigned to the wireless terminal 100 in advance.
  • the radio resource determination unit 130 determines the transmission time, transmission frequency, and redundant bits to be transmitted based on the radio resource determination rule described later.
  • the sensor data acquisition unit 160 acquires the target sensor data.
  • the sensor data acquisition unit 160 may acquire sensor data periodically or periodically (for example, once per second), or acquire sensor data when a change occurs in the sensor. May be good.
  • the frame generation unit 170 generates a wireless frame based on the sensor data acquired by the sensor data acquisition unit 160, the terminal identifier held in the terminal identifier holding unit 120, and information on redundant bits described later.
  • the radio control unit 140 controls the radio transmission unit 150 so as to transmit a radio frame according to the transmission time and transmission frequency determined by the radio resource determination unit 130.
  • the radio transmission unit 150 is an RF (Radio Frequency) circuit that converts a radio frame generated by the frame generation unit 170 into an electromagnetic wave via an antenna and transmits it to space at a specified transmission time and transmission frequency.
  • RF Radio Frequency
  • FIG. 3 is a diagram showing a configuration example of the base station 200 according to the embodiment of the present technology.
  • the base station 200 includes a GPS reception unit 210, a reception terminal identifier holding unit 220, a radio resource determination unit 230, a radio control unit 240, a radio reception unit 250, a frame detection unit 260, and a frame synthesis unit 270. It includes a frame demodulation unit 280 and a data acquisition unit 290.
  • the GPS receiving unit 210 receives GPS signals from GPS satellites and acquires time information and position information.
  • the receiving terminal identifier holding unit 220 holds the terminal identifier of the wireless terminal 100 to be received.
  • the base station 200 may set a terminal identifier in advance, or may acquire a terminal identifier from another device (for example, a cloud server or the like) as needed.
  • the radio resource determination unit 230 determines the reception time, the reception frequency, and the redundant bits included in the received radio frame based on the radio resource determination rule described later.
  • the radio control unit 240 controls the radio reception unit 250 so that reception is performed according to the reception time and reception frequency specified by the radio resource determination unit 230.
  • the wireless reception unit 250 is an RF circuit that converts an electromagnetic wave into a reception signal via an antenna at a designated reception time and reception frequency.
  • the frame detection unit 260 detects a wireless frame from the received signal received by the wireless reception unit 250 by using the synchronization information described later.
  • the frame synthesizing unit 270 synthesizes frames based on the information of the detected wireless frame and the redundant bits included in the received wireless frame, and reconstructs the frame. Specifically, the information transmitted repeatedly is waveform-synthesized, and the redundant bits are rearranged in the original order. The details of this process will be described later.
  • the frame demodulation unit 280 performs decoding processing by error correction.
  • the data acquisition unit 290 calculates a CRC (Cyclic Redundancy Check) using the terminal identifier of the decoded data and the sensor data, and determines whether or not it matches the decoded CRC. If the CRCs match, it is determined that the data has been received normally, and the data is provided to the processing block or server in the subsequent stage.
  • CRC Cyclic Redundancy Check
  • FIG. 4 is a diagram for explaining an outline of HARQ used in the embodiment of the present technology.
  • the sensor data transmitted by the wireless terminal 100 is together with the terminal identifier of the wireless terminal 100 (represented as “ID” in the figure), the sensor data and the CRC calculated using the terminal identifier.
  • Original data (represented as "D” in the figure) is formed.
  • the error correction code is calculated by an error correction technology such as LDPC (Low-Density Parity-Check).
  • LDPC Low-Density Parity-Check
  • the redundant bits P1 to P4 are examples of a plurality of partial codes described in the claims.
  • the wireless frame is transmitted four times.
  • the original data and the redundant bit P1 are transmitted in the first wireless frame.
  • the original data and the redundant bit P2 are transmitted.
  • the original data and the redundant bit P3 are transmitted.
  • the original data and the redundant bit P4 are transmitted.
  • the base station 200 receives these four radio frames and performs frame composition as shown in d in the figure. At this time, waveform synthesis is performed for the same information (that is, original data) included in the frame. Then, when all the wireless frames can be detected as in case # A, the redundant bits P1 to P4 are rearranged to restore the original error correction code. On the other hand, as in case # B, for example, when the detection of the second radio frame fails, zero is inserted in the portion corresponding to the redundant bit P2.
  • the decoding process is performed by the error correction technology.
  • the CRC By confirming the CRC, it becomes possible to determine whether or not the reception was normally performed.
  • FIG. 5 is a diagram for explaining the transmission time in HARQ used in the embodiment of the present technology.
  • both the wireless terminal 100 and the base station 200 are provided with GPS receiving units 110 and 210, and the wireless resources are determined using the time information obtained by each.
  • the transmission time of the wireless terminal 100 will be described as one of the wireless resources.
  • the time in the wireless system is specified by a superframe (SP: Superframe), a time slot (TS: Time-Slot), and a grid (grid).
  • SP Superframe
  • TS Time-Slot
  • grid grid
  • one superframe is divided into four time slots.
  • eight start times are defined as a grid.
  • the current SP number and the start time of the SP number are determined from the GPS time information.
  • t be the GPS time obtained from GPS.
  • the time obtained from the GPS time is based on January 6, 1980, 0:00:00.
  • the length of the SP section is SP_duration.
  • the length of the SP section is determined in advance as a wireless system.
  • the operator div () indicates the quotient of division.
  • the SP number that the wireless terminal 100 can transmit is determined. This is determined using a pre-assigned transmission cycle (Period) and terminal identifier (ID). Since the determination is made using the terminal ID, a different SP number is assigned to each wireless terminal even if the transmission cycle is the same.
  • Period pre-assigned transmission cycle
  • ID terminal identifier
  • the transmission cycle (seconds) is converted into the SP number interval (m) by the following equation.
  • m div (Period, SP duration )
  • the offset value m of t is calculated in order to change the SP number for each wireless terminal.
  • the operator mod () indicates the remainder of division.
  • m oft mod (ID, m)
  • mod (n) that the wireless terminal 100 can transmit is determined.
  • mod (n + m oft , m) 0
  • the wireless terminal 100 can perform transmission.
  • the wireless terminal 100 shall repeatedly transmit in each time slot. In repeated transmission, it is possible to increase the success rate of communication by sending the same sensor data a plurality of times, and it is possible to realize long-distance communication.
  • the number of time slots in the super frame may be one. In that case, it is an example of not performing repeated transmission.
  • Each wireless terminal transmits is specified in the time slot.
  • eight start times from grid (0) to grid (7) are specified.
  • the grid on which each wireless terminal transmits is determined by a pseudo-random number sequence.
  • FIG. 6 is a diagram showing an example of a pseudo-random number sequence generator in HARQ used in the embodiment of the present technology.
  • the initial value refers to a bit of 0 or 1 set as the initial value of the delay element indicated by the square box in the figure. In this example, since it is composed of 24 delay elements from 1 to 24, a 24-bit initial value is set.
  • PN sequence Physical Random Numbers
  • FIG. 7 is a diagram showing a first generation example by the generator of the pseudo-random number sequence in HARQ used in the embodiment of the present technology.
  • the terminal ID and SP number are set as the initial values of the pseudo-random number sequence, and a 12-bit pseudo-random number sequence is generated.
  • a total of 24 bits which is the remainder of 8 bits obtained by dividing the 16 bits of the ID and the SP number n by 256, is set as the initial value.
  • the clock is rotated 12 times to generate a 12-bit pseudo-random number sequence.
  • FIG. 8 is a diagram showing an example of determining a grid number in HARQ used in the embodiment of the present technology.
  • the grid number in each time slot is determined from the 12 bits obtained by the above processing.
  • the 12 bits are divided into four groups of every 3 bits, and each 3 bits converted into a decimal number is determined as a grid number to be transmitted in each time slot.
  • the terminal ID and SP number is used as the initial value, but by using the pseudo-random number sequence with more delay elements, a longer terminal is used. It is possible to use the ID and SP number as initial values. Also, since the number of time slots in the superframe is 4 and the number of grids in the time slot is 8, the grid number was determined from the 12-bit series, but the number of time slots and the number of grids in the time slot are different. Even in this case, it can be dealt with by generating a pseudo-random number of the required length.
  • FIG. 9 is a diagram showing a second generation example by the generator of the pseudo-random number sequence in HARQ used in the embodiment of the present technology.
  • nF the number of frequency channels that can be used as a wireless system.
  • nF 4.
  • transmission is performed four times within the super frame, an example of determining the transmission frequency used for the four transmissions is shown.
  • an additional 8-bit pseudo-random number sequence is generated.
  • the newly generated pseudo-random number sequence is 13 to 20.
  • FIG. 10 is a diagram showing an example of determining the frequency in HARQ used in the embodiment of the present technology.
  • nF 4
  • the frequency number (0 to 3) to be transmitted is defined as a value obtained by dividing each 2 bits into 4 by 2 bits and converting each 2 bits into a decimal number.
  • Each of the frequency numbers corresponds to the center frequency of the carrier frequency when actually transmitting.
  • these can be expanded by generating a pseudo-random number sequence of the required length, depending on the available frequencies and the number of time slots.
  • FIG. 11 is a diagram showing a third generation example by the generator of the pseudo-random number sequence in HARQ used in the embodiment of the present technology.
  • the redundant bit to be transmitted is determined by the four transmissions.
  • the coding rate R 1/5 and there are four types of redundant bits as described above.
  • a further 5 bit pseudo-random number sequence is generated.
  • the newly generated pseudo-random number sequence is 21 to 25.
  • the redundant bits to be transmitted from these 5 bits in the transmission of the wireless frame are determined as follows.
  • FIG. 12 is a diagram showing an example of determining a redundant bit pattern in HARQ used in the embodiment of the present technology.
  • the redundant bits P1 to P4 are transmitted separately by four wireless frames.
  • the correspondence between the four wireless frames and the four redundant bits is classified as a pattern, there are 24 patterns shown here. That is, this pattern indicates the transmission order of the four redundant bits.
  • the redundant bits P1 to P4 can be correctly rearranged in the base station 200. Since it is inefficient to explicitly transmit this pattern by a header or the like, in this embodiment, the pattern is determined by using a pseudo-random number sequence in each of the wireless terminal 100 and the base station 200.
  • the 5-bit PT5 of the above-mentioned pseudo-random number sequences 21 to 25 is converted into a decimal number, and the remainder divided by 24 is determined as a redundant bit pattern. That is, the redundant bit pattern pattern is determined by the following equation.
  • the wireless terminal 100 and the base station 200 can independently determine which of P1 to P4 each redundant bit of the wireless frame is. Therefore, it is not necessary to separately transmit which of P1 to P4 the redundant bit is.
  • FIG. 13 is a diagram showing an example of a field configuration of a wireless frame according to an embodiment of the present technology.
  • the original data D is composed of the terminal identifier ID, the sensor data, and their CRC.
  • redundant bits P1 to P4 are calculated by an error correction technique such as LDPC.
  • Each of the radio resource determination units 130 and 230 determines the redundant bit pattern using the above-mentioned pseudo-random number sequence. Thereby, it is determined whether the redundant bit included in the payload of the radio frame is P1 to P4. In the example of the figure, an example in which the redundant bit P2 is included in the payload is shown.
  • the synchronization information Sync is transmitted prior to the payload.
  • This synchronization information Sync is known information for frame detection.
  • the base station 200 detects a radio frame by detecting a signal that matches the synchronization information Sync.
  • the header information can be omitted as in this example.
  • FIG. 14 is a sequence diagram showing an operation example of the wireless system according to the embodiment of the present technology.
  • the wireless terminal 100 After acquiring the sensor data (811), the wireless terminal 100 determines the wireless resource (812). At this time, GPS reception is performed, and the transmission time, transmission frequency, and redundant bits to be transmitted in each wireless frame are determined using the information and the terminal identifier. Repeated transmission is performed based on the determined radio resource (813 to 816).
  • the base station 200 periodically performs GPS reception, and uses the terminal identifier to be received to calculate the reception time, the reception frequency, and the redundant bit information included in the wireless frame (821).
  • the wireless frame is received according to the calculated reception time and reception frequency (822 to 825). Then, frame synthesis is performed on those wireless frames (826), and received data is acquired (827).
  • FIG. 15 is a flow chart showing an example of a processing procedure of the wireless terminal 100 according to the embodiment of the present technology.
  • the sensor data acquisition unit 160 acquires sensor data periodically or periodically, or when a change occurs in the sensor (step S911).
  • the GPS receiving unit 110 receives the GPS signal and acquires the time information (step S912).
  • the radio resource determination unit 130 determines the transmission time, transmission frequency, and redundant bits to be transmitted from the acquired time information and the terminal identifier for the radio frames to be transmitted (for example, for 4 frames) (step S913). Then, "1" is set in the count value for counting the wireless frame number (step S914).
  • the frame generation unit 170 generates a radio frame based on the radio frame number and the parameters determined in the radio resource determination (step S915).
  • the radio transmission unit 150 transmits the radio frame based on the radio frame number and the parameters determined in the radio resource determination (step S916).
  • step S917 Check if the number of wireless frame transmissions has reached the upper limit (for example, 4 frames) (step S917).
  • the transmission process ends.
  • step S917: No the count value of the radio frame number is added (step S918) to generate the next radio frame (step S915).
  • FIG. 16 is a flow chart showing an example of a processing procedure of the base station 200 according to the embodiment of the present technology.
  • the GPS receiving unit 210 periodically receives GPS signals to acquire time information (step S921).
  • the radio resource determination unit 230 determines the reception time, the reception frequency, and the redundant bit information included in the reception radio frame by using the terminal identifier of the reception target and the GPS reception information (step S922). Then, "1" is set in the count value for counting the wireless frame number (step S923).
  • the radio receiving unit 250 performs a receiving operation based on the radio frame number and the parameters determined in the radio resource determination (step S924).
  • the frame detection unit 260 detects a frame using the synchronization information Sync, which is known information (step S925). If the frame can be detected (step S925: Yes), the frame synthesizing unit 270 synthesizes the radio frame based on the radio frame number and the parameters determined in the radio resource determination (step S926). Specifically, it is waveform synthesis of the same information and rearrangement of redundant bits. If the frame cannot be detected (step S925: No), the frame composition is not performed and the corresponding redundant bit is treated as zero.
  • step S927 Check if the number of wireless frame transmissions has reached the upper limit (step S927).
  • step S927: Yes the frame demodulation unit 280 performs a decoding process on the synthesized wireless frame by an error correction technique (step S931). Then, the data acquisition unit 290 determines whether or not the CRC has correctly received the data using the decoding result (step S932).
  • step S927 if the number of transmissions has not reached the upper limit (step S927: No), the count value of the radio frame number is added (step S928), and the next reception operation is performed (step S924).
  • the information regarding the redundant bits is explicitly transmitted.
  • HARQ can be used without any need.
  • the header information can be omitted, the power consumption of the wireless terminal 100 can be suppressed, and the long-distance transmission can be performed while reducing the transmission power of the wireless terminal 100.
  • the redundant bit pattern is determined by the pseudo-random number sequence in each of the wireless terminal 100 and the base station 200, but in the second embodiment, the redundant bit pattern is transmitted. Determined from frequency. Since the configuration itself as a wireless system is the same as that of the first embodiment described above, detailed description thereof will be omitted.
  • the transmission frequency and the redundant bit to be transmitted are associated and determined. Therefore, the relationship between the transmission frequency and the redundant bit is fixed, for example, if the frequency is # 1, the redundant bit # 1.
  • the base station 200 can obtain the information of the redundant bits included in the received wireless frame from the information of the reception frequency, the wireless frame can be reconstructed.
  • the process of determining the redundant bit pattern can be simplified.
  • the pattern of the redundant bits is determined by the pseudo-random number sequence in each of the wireless terminal 100 and the base station 200, but in the third embodiment, the redundant bits are determined in the base station 200.
  • the pattern of is determined from the synchronization information. Since the configuration itself as a wireless system is the same as that of the first embodiment described above, detailed description thereof will be omitted.
  • the wireless terminal 100 determines the transmission redundant bit in the same manner as in the first embodiment described above. Then, the payload of the radio frame is also formed in the same manner as in the first embodiment described above. However, as described below, the wireless terminal 100 transmits synchronization information according to the redundant bits prior to the payload.
  • FIG. 17 is a diagram showing an example of a field configuration of a radio frame according to a third embodiment of the present technology.
  • the radio frame in the third embodiment is the same as that in the first embodiment described above with respect to the payload portion. The same applies to the point that the synchronization information is transmitted prior to the payload and the point that the header information is not transmitted.
  • a is a case where the redundant bit P2 is transmitted, and at this time, a unique known sequence called Sync2 is used as the synchronization information used for frame detection.
  • b in the figure is a case where the redundant bit P3 is transmitted, and at this time, a unique known sequence called Sync3 is used as the synchronization information used for frame detection.
  • unique known sequences (Sync1, Sync4) are used for the redundant bits P1 and P4.
  • FIG. 18 is a diagram showing a configuration example of the base station 200 according to the third embodiment of the present technology.
  • the configuration of the base station 200 in the third embodiment is basically the same as that in the first embodiment described above. However, in order to individually detect each unique known series (Sync1 to Sync4), frame detection units 261 to 264 are provided.
  • the frame synthesizing unit 270 is performed based on which of the frame detecting units 261 to 264 detects the frame, that is, which known sequence the synchronization information of the received radio frame is. This makes it possible for the base station 200 to omit the process of calculating the redundant bits of the wireless frame.
  • the processing procedure described in the above-described embodiment may be regarded as a method having these series of procedures, or as a program for causing a computer to execute these series of procedures or as a recording medium for storing the program. You may catch it.
  • this recording medium for example, a CD (Compact Disc), MD (MiniDisc), DVD (Digital Versatile Disc), memory card, Blu-ray disc (Blu-ray (registered trademark) Disc) or the like can be used.
  • the present technology can have the following configurations.
  • a radio resource determination unit that determines radio resources to be used for transmission based on the information synchronized with the receiving device and the identifier of the wireless terminal.
  • a frame generation unit that determines a part of the error correction code of the transmission target data as a redundant bit based on the determined radio resource and generates a radio frame using the transmission target data and the redundant bit as a payload.
  • a wireless terminal including a wireless transmission unit that transmits the wireless frame to the receiving device using the determined wireless resource.
  • the frame generation unit generates a plurality of radio frames for the transmission target data based on the determined radio resource by using each of the plurality of partial codes obtained by dividing the error correction code as the redundant bit.
  • the wireless resource determination unit determines the transmission order of the plurality of partial codes as a part of the wireless resource.
  • the wireless resource determination unit determines the transmission order according to a pseudo-random number sequence having information synchronized with the receiving device and the identifier as initial values.
  • the wireless terminal according to (3), wherein the wireless resource determination unit determines the transmission order based on the transmission frequency included in the wireless resource.
  • the radio resource determination unit generates synchronization information indicating which of the plurality of partial codes is transmitted as the redundant bit.
  • the wireless terminal wherein the wireless transmission unit transmits the synchronization information prior to transmission of the wireless frame.
  • a wireless resource determination unit that determines wireless resources to be used for reception based on information synchronized with the wireless terminal and the identifier of the wireless terminal.
  • a radio receiver that uses the determined radio resources to receive radio frames containing received data and redundant bits from the radio terminal. It is provided with a frame synthesizing unit that determines which of the plurality of partial codes obtained by dividing the error correction code of the received data is included as the redundant bit based on the determined radio resource and synthesizes the frames. base station.
  • the radio receiving unit receives a plurality of radio frames including the received data, and receives the radio frame.
  • the base station according to (7), wherein the frame synthesizing unit rearranges the redundant bits of the plurality of radio frames based on the determined radio resource and restores the error correction code.
  • the radio resource determination unit determines which of the plurality of partial codes is included as the redundant bit according to the information synchronized with the receiving device and the pseudo-random number sequence having the identifier as the initial value.
  • the base station according to (8).
  • the base station determines which of the plurality of partial codes is included as the redundant bit based on the reception frequency of receiving the radio frame. ..
  • each of the plurality of synchronization information indicating which of the plurality of partial codes is included as the redundant bit in the wireless frame is provided corresponding to each of the plurality of synchronization information. It is further provided with a plurality of frame detection units that detect wireless frames that match the synchronization information.
  • the radio resource determination unit determines the radio resource to be used for transmission based on the information synchronized with the receiving device and the identifier of the radio terminal.
  • the frame generation unit determines a part of the error correction code of the transmission target data as a redundant bit based on the determined radio resource, and generates a radio frame using the transmission target data and the redundant bit as a payload.
  • a transmission method of a wireless terminal in which a wireless transmission unit transmits the wireless frame to the receiving device using the determined wireless resource.
  • the radio resource determination unit determines the radio resource to be used for reception based on the information synchronized with the radio terminal and the identifier of the radio terminal.
  • the radio receiver uses the determined radio resource to receive a radio frame containing received data and redundant bits from the radio terminal.
  • a base station in which the frame synthesizing unit determines which of the plurality of partial codes obtained by dividing the error correction code of the received data is included as the redundant bit based on the determined radio resource, and synthesizes the frame. How to receive.
  • Wireless terminal 100
  • GPS receiver 120
  • Terminal identifier holder 130
  • Wireless resource determination unit 140
  • Wireless control unit 150
  • Sensor data acquisition unit 170
  • Frame generator 200
  • Base station 210
  • GPS receiver 220 Receiver terminal identifier holder 230
  • Wireless resources Determination unit 240
  • Wireless control unit 250
  • Wireless receiver unit 260 to 264 Frame detection unit 270
  • Frame synthesis unit 280
  • Frame demodulation unit 290 Data acquisition unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

According to the present invention, a wireless frame is transmitted by using HARQ without transmitting header information. A wireless resource determination unit determines a wireless resource used for transmission, on the basis of information synchronized with a reception device and an identifier of a host wireless terminal. A frame generation unit determines, on the basis of the determined wireless resource, a part of an error correction code of data to be transmitted as a redundancy bit, and generates a wireless frame including the data to be transmitted and the redundancy bit as payloads. A wireless transmission unit transmits the wireless frame to the reception device by using the determined wireless resource.

Description

無線端末とその送信方法、および、基地局とその受信方法Wireless terminals and their transmission methods, and base stations and their reception methods
 本技術は、無線システムに関する。詳しくは、無線端末から送信された無線フレームを基地局が受信する無線システム、および、これらにおける処理方法に関する。 This technology is related to wireless systems. More specifically, the present invention relates to a wireless system in which a base station receives a wireless frame transmitted from a wireless terminal, and a processing method in these.
 IoT(Internet of Things)領域は、様々な物体から情報を取得して分析することにより、新たな価値を生み出すことが期待されている。情報を取得するために使用される無線技術には、様々な要求事項が期待されているが、特に無線端末の低消費電力化および長距離伝送に対する期待が高い。無線端末の消費電力が低減されることによって、より長時間の駆動が可能になり、または、より小型の電池を用いることによって無線端末の小型化が可能となり、より多くの用途に利用できるようになるためである。また、長距離伝送ができれば遠くの場所から情報を収集することが可能となり、従来では得られなかった情報を得ることができるようになるためである。 The IoT (Internet of Things) area is expected to create new value by acquiring and analyzing information from various objects. Various requirements are expected for the wireless technology used for acquiring information, and in particular, there are high expectations for low power consumption and long-distance transmission of wireless terminals. By reducing the power consumption of the wireless terminal, it is possible to drive for a longer time, or by using a smaller battery, the wireless terminal can be miniaturized so that it can be used for more purposes. This is to become. Further, if long-distance transmission is possible, it becomes possible to collect information from a distant place, and it becomes possible to obtain information that could not be obtained in the past.
 無線端末の低消費電力化を実現する技術として、通信手順の簡略化が検討されている。従来の携帯電話や無線LANなどでは、無線端末は基地局やアクセスポイントが周期的に送信している制御信号や、ビーコンと呼ばれる信号を受信して、接続要求を送信し、接続許可を受信し、その後にデータの送信が可能となる。一連の手順ではデータの送信までに、多くの制御信号のやり取りが必要であり、この部分により多くの電力を消費することになる。特にIoT領域では、無線端末が送信するデータは、位置情報、温度、湿度など数十バイト程度の少量のセンサ情報が主なデータである。このため、データに対する制御信号のオーバヘッドが大きく、無線端末の低消費電力化を実現するうえで大きな課題となっている。このため、制御情報のやり取りをなくして、無線端末がデータ送信を行う方法が検討されている。この方法では、無線端末は制御信号の受信をすることなくデータ送信が可能になるため、無線端末の低消費電力化が可能となる。しかしながら、この方法では、基地局は、無線端末がどの時刻、どの周波数で送信するのか事前に把握することができないため、常時無線フレームの検出と復調を行う必要があり、基地局の高機能化が必要となる。そのため、無線システム全体のコストが高くなるという課題が生じる。そこで、無線端末および基地局がともに、GPS(Global Positioning System)受信機を使って共通の時刻に基づいて時間同期する無線システムが考えられている。この無線システムでは、送信周期、GPSから得られる時刻、端末識別子(ID)から、データを送信する時刻、周波数を決定する無線資源規則が事前に無線規格として、無線端末と基地局との間で共有されている。無線端末は、事前に割り当てられた送信周期、GPSから得られる時刻、端末識別子から、送信時刻および周波数を決定する。一方で、基地局も同様に受信すべき時刻と周波数を決定する。これにより、基地局は事前に受信する時刻および周波数を限定することができるため、低価格で実現することが可能となる。 Simplification of communication procedures is being considered as a technology to realize low power consumption of wireless terminals. In conventional mobile phones and wireless LANs, wireless terminals receive control signals periodically transmitted by base stations and access points and signals called beacons, transmit connection requests, and receive connection permission. After that, data can be transmitted. In a series of procedures, many control signals need to be exchanged before data transmission, and more power is consumed in this part. In particular, in the IoT region, the data transmitted by the wireless terminal is mainly a small amount of sensor information of about several tens of bytes such as position information, temperature, and humidity. Therefore, the overhead of the control signal with respect to the data is large, which is a big problem in realizing low power consumption of the wireless terminal. Therefore, a method in which a wireless terminal transmits data without exchanging control information is being studied. In this method, since the wireless terminal can transmit data without receiving the control signal, the power consumption of the wireless terminal can be reduced. However, in this method, since the base station cannot know in advance at what time and at what frequency the wireless terminal transmits, it is necessary to constantly detect and demodulate the wireless frame, which enhances the functionality of the base station. Is required. Therefore, there arises a problem that the cost of the entire wireless system becomes high. Therefore, a wireless system in which both a wireless terminal and a base station synchronize time based on a common time using a GPS (Global Positioning System) receiver has been considered. In this wireless system, the wireless resource rules that determine the time and frequency of data transmission from the transmission cycle, the time obtained from GPS, and the terminal identifier (ID) are set as wireless standards in advance between the wireless terminal and the base station. It is shared. The wireless terminal determines the transmission time and frequency from a pre-assigned transmission cycle, a time obtained from GPS, and a terminal identifier. On the other hand, the base station also determines the time and frequency to be received. As a result, the base station can limit the time and frequency of reception in advance, so that it can be realized at a low price.
 長距離伝送を実現する技術として、耐雑音性を高めるために、同一情報を繰り返し送信する繰り返し送信技術や、誤り訂正技術がある。繰り返し送信技術では、基地局で受信した信号を波形合成することによってランダムな雑音の影響を軽減し、受信信号のSN比(Signal to Noise ratio: 信号電力対雑音電力比)を向上することによって長距離伝送を実現している。誤り訂正技術は、例えばLDPC(Low Density Parity check Code)などに代表される信号処理により送信する情報に冗長ビットを付加して送信することによって受信側での受信成功率を向上させる技術である。
 そこで、繰り返し送信技術と誤り訂正技術を組み合わせたHARQ(Hybrid Automatic Repeat reQuest)と呼ばれる技術が利用されている。繰り返し送信技術では、繰り返し送信する回数に伴いSN比が向上するが、その向上の割合は対数関数になることが知られており、繰り返し送信回数を多くしてもSN比の向上は飽和してしまう。また、誤り訂正技術では、付加する冗長ビットを多くすることによってSN比を向上させることが可能であるが、冗長ビットが多くなると一度に送信する情報量が多くなり、1回の送信時間が長くなるため送信に伴う消費電力が増加する。HARQは、これらの技術を組み合わせたものであり、長距離伝送を実現する方法として有用である。例えば、HARQを使用するチャネルを介して送信する方法が提案されている(例えば、特許文献1参照。)。
As a technology for realizing long-distance transmission, there are a repetitive transmission technology for repeatedly transmitting the same information and an error correction technology for improving noise immunity. In the repetitive transmission technology, the influence of random noise is reduced by synthesizing the waveform of the signal received at the base station, and the signal-to-noise ratio (SN ratio) of the received signal is improved. Realizes distance transmission. The error correction technique is a technique for improving the reception success rate on the receiving side by adding a redundant bit to the information transmitted by signal processing represented by, for example, LDPC (Low Density Parity check Code) and transmitting the information.
Therefore, a technique called HARQ (Hybrid Automatic Repeat reQuest), which combines a repeat transmission technique and an error correction technique, is used. In the repetitive transmission technology, the SN ratio improves with the number of repetitive transmissions, but it is known that the rate of improvement becomes a logarithmic function, and even if the number of repetitive transmissions is increased, the improvement in the SN ratio is saturated. It ends up. Further, in the error correction technology, it is possible to improve the SN ratio by increasing the number of redundant bits to be added, but as the number of redundant bits increases, the amount of information transmitted at one time increases and the one transmission time becomes long. Therefore, the power consumption associated with transmission increases. HARQ is a combination of these technologies and is useful as a method for realizing long-distance transmission. For example, a method of transmitting via a channel using HARQ has been proposed (see, for example, Patent Document 1).
特開2019-033541号公報Japanese Unexamined Patent Publication No. 2019-033541
 HARQを使用する上述の従来技術では、受信側で受信した無線フレームに含まれる冗長ビットを適切に並び替えるために無線フレームにヘッダ情報を付加する必要がある。ヘッダ情報が正しく受信できることが前提となるため、ヘッダ情報の耐雑音性を高くする必要があり、送信時間を長くしてビット当たりの電力を高めるなどの対策が必要となる。IoT向けの無線技術では、送信する情報がセンサ情報であるため数十ビット程度であり、相対的にヘッダ情報の割合が高くなるため、無線フレームの送信時間が長くなり、消費電力的に非効率になってしまうという課題がある。 In the above-mentioned conventional technique using HARQ, it is necessary to add header information to the wireless frame in order to appropriately rearrange the redundant bits included in the wireless frame received on the receiving side. Since it is a prerequisite that the header information can be received correctly, it is necessary to improve the noise immunity of the header information, and it is necessary to take measures such as lengthening the transmission time and increasing the power per bit. In wireless technology for IoT, since the information to be transmitted is sensor information, it is about several tens of bits, and the ratio of header information is relatively high, so that the transmission time of the wireless frame becomes long, which is inefficient in terms of power consumption. There is a problem that it becomes.
 本技術はこのような状況に鑑みて生み出されたものであり、ヘッダ情報を送信することなくHARQによる無線フレームを送信することを目的とする。 This technology was created in view of such a situation, and aims to transmit a wireless frame by HARQ without transmitting header information.
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、受信装置と同期した情報および無線端末の識別子に基づいて送信に使用するための無線資源を決定する無線資源決定部と、上記決定された無線資源に基づいて送信対象データの誤り訂正符号の一部を冗長ビットとして決定して上記送信対象データおよび上記冗長ビットをペイロードとする無線フレームを生成するフレーム生成部と、上記決定された無線資源を使用して上記無線フレームを上記受信装置に送信する無線送信部とを具備する無線端末およびその送信方法である。これにより、決定された無線資源に基づいて送信対象データの誤り訂正符号の一部を冗長ビットとして決定し、その冗長ビットを含む無線フレームを送信するという作用をもたらす。 The present technology has been made to solve the above-mentioned problems, and the first aspect thereof determines the radio resources to be used for transmission based on the information synchronized with the receiving device and the identifier of the wireless terminal. A part of the error correction code of the transmission target data is determined as a redundant bit based on the wireless resource determination unit to be transmitted, and a wireless frame using the transmission target data and the redundant bit as a payload is generated. It is a radio terminal including a frame generation unit and a radio transmission unit that transmits the radio frame to the reception device using the determined radio resource, and a transmission method thereof. As a result, a part of the error correction code of the data to be transmitted is determined as a redundant bit based on the determined radio resource, and the radio frame including the redundant bit is transmitted.
 また、この第1の側面において、上記フレーム生成部は、上記誤り訂正符号を分割した複数の部分符号の各々を上記冗長ビットとして上記決定された無線資源に基づいて上記送信対象データについて複数の無線フレームを生成し、上記無線送信部は、上記複数の無線フレームを送信するようにしてもよい。これにより、誤り訂正符号を分割した複数の部分符号の各々を冗長ビットとして含む無線フレームを送信するという作用をもたらす。 Further, in the first aspect, the frame generation unit uses each of the plurality of partial codes obtained by dividing the error correction code as the redundant bits, and uses a plurality of radios for the transmission target data based on the determined radio resources. The frame may be generated, and the radio transmission unit may transmit the plurality of radio frames. This has the effect of transmitting a radio frame containing each of the plurality of partial codes obtained by dividing the error correction code as redundant bits.
 また、この第1の側面において、上記無線資源決定部は、上記複数の部分符号の送信順序を上記無線資源の一部として決定するようにしてもよい。これにより、無線端末において、複数の部分符号の送信順序を無線資源の一部として決定するという作用をもたらす。 Further, in the first aspect, the radio resource determination unit may determine the transmission order of the plurality of partial codes as a part of the radio resource. This has the effect of determining the transmission order of the plurality of partial codes as a part of the wireless resource in the wireless terminal.
 また、この第1の側面において、上記無線資源決定部は、上記受信装置と同期した情報および上記識別子を初期値とする疑似乱数系列に従って上記送信順序を決定するようにしてもよい。これにより、受信装置と同期した情報および上記識別子から一意に複数の部分符号の送信順序を決定するという作用をもたらす。 Further, in the first aspect, the radio resource determination unit may determine the transmission order according to the information synchronized with the receiving device and the pseudo-random number sequence having the identifier as the initial value. This has the effect of uniquely determining the transmission order of the plurality of partial codes from the information synchronized with the receiving device and the above identifier.
 また、この第1の側面において、上記無線資源決定部は、上記無線資源に含まれる送信周波数に基づいて上記送信順序を決定するようにしてもよい。これにより、送信周波数から一意に複数の部分符号の送信順序を決定するという作用をもたらす。 Further, in the first aspect, the radio resource determination unit may determine the transmission order based on the transmission frequency included in the radio resource. This has the effect of uniquely determining the transmission order of the plurality of partial codes from the transmission frequency.
 また、この第1の側面において、上記無線資源決定部は、上記複数の部分符号の何れが上記冗長ビットとして送信されるかを示す同期情報を生成し、上記無線送信部は、上記無線フレームの送信に先立って上記同期情報を送信するようにしてもよい。これにより、受信側において、同期情報から一意に複数の部分符号の送信順序を決定させるという作用をもたらす。 Further, in the first aspect, the radio resource determination unit generates synchronization information indicating which of the plurality of partial codes is transmitted as the redundant bit, and the radio transmission unit is the radio frame. The synchronization information may be transmitted prior to transmission. This has the effect of causing the receiving side to uniquely determine the transmission order of the plurality of partial codes from the synchronization information.
 また、本技術の第2の側面は、無線端末と同期した情報および上記無線端末の識別子に基づいて受信に使用するための無線資源を決定する無線資源決定部と、上記決定された無線資源を使用して上記無線端末から受信データおよび冗長ビットを含む無線フレームを受信する無線受信部と、上記受信データの誤り訂正符号を分割した複数の部分符号の何れが上記冗長ビットとして含まれているのかを上記決定された無線資源に基づいて判断してフレームを合成するフレーム合成部とを具備する基地局およびその受信方法である。これにより、決定された無線資源に基づいて、複数の部分符号の何れが冗長ビットとして含まれているのかを判断するという作用をもたらす。 In addition, the second aspect of the present technology is a radio resource determination unit that determines radio resources to be used for reception based on information synchronized with the radio terminal and the identifier of the radio terminal, and the determined radio resources. Which of the wireless receiver that receives the received data and the wireless frame including the redundant bit from the wireless terminal by using and the plurality of partial codes obtained by dividing the error correction code of the received data is included as the redundant bit. Is a base station provided with a frame synthesizing unit for synthesizing frames based on the radio resources determined above, and a receiving method thereof. This has the effect of determining which of the plurality of partial codes is included as the redundant bit based on the determined radio resource.
 また、この第2の側面において、上記無線受信部は、上記受信データを含む複数の無線フレームを受信し、上記フレーム合成部は、上記複数の無線フレームの上記冗長ビットを上記決定された無線資源に基づいて並び替えて上記誤り訂正符号を復元するようにしてもよい。これにより、決定された無線資源に基づいて、誤り訂正符号を復元するという作用をもたらす。 Further, in the second aspect, the radio receiving unit receives a plurality of radio frames including the received data, and the frame synthesizing unit uses the redundant bits of the plurality of radio frames as the determined radio resource. The error correction code may be restored by rearranging based on. This has the effect of restoring the error correction code based on the determined radio resource.
 また、この第2の側面において、上記無線資源決定部は、上記受信装置と同期した情報および上記識別子を初期値とする疑似乱数系列に従って上記複数の部分符号の何れが上記冗長ビットとして含まれているのかを判断するようにしてもよい。これにより、受信装置と同期した情報および上記識別子から一意に複数の部分符号の送信順序を決定するという作用をもたらす。 Further, in the second aspect, the radio resource determination unit includes any of the plurality of partial codes as the redundant bits according to the information synchronized with the receiving device and the pseudo-random number sequence having the identifier as the initial value. You may try to determine if you are there. This has the effect of uniquely determining the transmission order of the plurality of partial codes from the information synchronized with the receiving device and the above identifier.
 また、この第2の側面において、上記無線資源決定部は、上記無線フレームを受信した受信周波数に基づいて上記複数の部分符号の何れが上記冗長ビットとして含まれているのかを判断するようにしてもよい。これにより、受信周波数から一意に複数の部分符号の送信順序を決定するという作用をもたらす。 Further, in the second aspect, the radio resource determination unit determines which of the plurality of partial codes is included as the redundant bit based on the reception frequency at which the radio frame is received. May be good. This has the effect of uniquely determining the transmission order of the plurality of partial codes from the reception frequency.
 また、この第2の側面において、上記無線受信部によって受信された無線フレームに先立って当該無線フレームにおいて上記複数の部分符号の何れが上記冗長ビットとして含まれているのかを示す複数の同期情報の各々に対応して設けられて当該同期情報に合致する無線フレームを検出する複数のフレーム検出部をさらに具備し、上記フレーム合成部は、上記複数のフレーム検出部の何れにおいて検出されたかに応じて上記複数の部分符号の何れが上記冗長ビットとして含まれているのかを判断するようにしてもよい。これにより、同期情報から一意に複数の部分符号の送信順序を決定するという作用をもたらす。 Further, in the second aspect, prior to the wireless frame received by the wireless receiving unit, a plurality of synchronization information indicating which of the plurality of partial codes is included as the redundant bit in the wireless frame. A plurality of frame detection units are further provided corresponding to each to detect wireless frames matching the synchronization information, and the frame synthesis unit is determined by which of the plurality of frame detection units is detected. It may be determined which of the plurality of partial codes is included as the redundant bit. This has the effect of uniquely determining the transmission order of the plurality of partial codes from the synchronization information.
本技術の実施の形態における無線システムの全体構成例を示す図である。It is a figure which shows the whole configuration example of the wireless system in embodiment of this technique. 本技術の実施の形態における無線端末100の構成例を示す図である。It is a figure which shows the configuration example of the wireless terminal 100 in embodiment of this technique. 本技術の実施の形態における基地局200の構成例を示す図である。It is a figure which shows the configuration example of the base station 200 in embodiment of this technique. 本技術の実施の形態において使用するHARQの概要を説明するための図である。It is a figure for demonstrating the outline of HARQ used in embodiment of this technique. 本技術の実施の形態において使用するHARQにおける送信時刻を説明するための図である。It is a figure for demonstrating transmission time in HARQ used in embodiment of this technique. 本技術の実施の形態において使用するHARQにおける疑似乱数系列の生成器の一例を示す図である。It is a figure which shows an example of the generator of the pseudo-random number sequence in HARQ used in embodiment of this technique. 本技術の実施の形態において使用するHARQにおける疑似乱数系列の生成器による第1の生成例を示す図である。It is a figure which shows the 1st generation example by the generator of the pseudo-random number sequence in HARQ used in embodiment of this technique. 本技術の実施の形態において使用するHARQにおけるグリッド番号の決定例を示す図である。It is a figure which shows the determination example of the grid number in HARQ used in embodiment of this technique. 本技術の実施の形態において使用するHARQにおける疑似乱数系列の生成器による第2の生成例を示す図である。It is a figure which shows the 2nd generation example by the generator of the pseudo-random number sequence in HARQ used in embodiment of this technique. 本技術の実施の形態において使用するHARQにおける周波数の決定例を示す図である。It is a figure which shows the determination example of the frequency in HARQ used in embodiment of this technique. 本技術の実施の形態において使用するHARQにおける疑似乱数系列の生成器による第3の生成例を示す図である。It is a figure which shows the 3rd generation example by the generator of the pseudo-random number sequence in HARQ used in embodiment of this technique. 本技術の実施の形態において使用するHARQにおける冗長ビットのパターンの決定例を示す図である。It is a figure which shows the determination example of the redundant bit pattern in HARQ used in embodiment of this technique. 本技術の実施の形態における無線フレームのフィールド構成例を示す図である。It is a figure which shows the field composition example of the radio frame in embodiment of this technique. 本技術の実施の形態における無線システムの動作例を示すシーケンス図である。It is a sequence diagram which shows the operation example of the wireless system in embodiment of this technique. 本技術の実施の形態における無線端末100の処理手順例を示す流れ図である。It is a flow chart which shows the processing procedure example of the wireless terminal 100 in embodiment of this technique. 本技術の実施の形態における基地局200の処理手順例を示す流れ図である。It is a flow chart which shows the processing procedure example of the base station 200 in embodiment of this technique. 本技術の第3の実施の形態における無線フレームのフィールド構成例を示す図である。It is a figure which shows the field composition example of the radio frame in the 3rd Embodiment of this technique. 本技術の第3の実施の形態における基地局200の構成例を示す図である。It is a figure which shows the configuration example of the base station 200 in the 3rd Embodiment of this technique.
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(疑似乱数系列によって冗長ビットのパターンを決定する例)
 2.第2の実施の形態(送信周波数と冗長ビットとの関係を固定する例)
 3.第3の実施の形態(同期情報と冗長ビットとの関係を固定する例)
Hereinafter, embodiments for carrying out the present technology (hereinafter referred to as embodiments) will be described. The explanation will be given in the following order.
1. 1. First Embodiment (Example of determining a redundant bit pattern by a pseudo-random number sequence)
2. Second embodiment (example of fixing the relationship between the transmission frequency and the redundant bit)
3. 3. Third Embodiment (Example of fixing the relationship between synchronization information and redundant bits)
 <1.第1の実施の形態>
 [無線システム]
 図1は、本技術の実施の形態における無線システムの全体構成例を示す図である。
<1. First Embodiment>
[Wireless system]
FIG. 1 is a diagram showing an overall configuration example of a wireless system according to an embodiment of the present technology.
 この無線システムは、無線端末100と、基地局200とを備える。この例では、無線端末100は、所定のデータを検知または取得する機能を備え、そのデータをセンサデータとして基地局200に無線伝送することを想定する。基地局200にはさらに他の装置が接続され、センサデータが適宜送信される。 This wireless system includes a wireless terminal 100 and a base station 200. In this example, it is assumed that the wireless terminal 100 has a function of detecting or acquiring predetermined data, and wirelessly transmits the data to the base station 200 as sensor data. Another device is connected to the base station 200, and sensor data is appropriately transmitted.
 なお、ここでは、無線端末100および基地局200をそれぞれ1台ずつ示しているが、これらは複数台存在していてもよい。無線端末100には、後述するように、端末識別子が付与されており、基地局200においてそれぞれを識別することができる。 Although one wireless terminal 100 and one base station 200 are shown here, a plurality of these may exist. As will be described later, the wireless terminal 100 is given a terminal identifier, and the base station 200 can identify each of them.
 [無線端末]
 図2は、本技術の実施の形態における無線端末100の構成例を示す図である。
[Wireless terminal]
FIG. 2 is a diagram showing a configuration example of the wireless terminal 100 according to the embodiment of the present technology.
 無線端末100は、GPS受信部110と、端末識別子保持部120と、無線資源決定部130と、無線制御部140と、無線送信部150と、センサデータ取得部160と、フレーム生成部170とを備える。 The wireless terminal 100 includes a GPS receiving unit 110, a terminal identifier holding unit 120, a wireless resource determination unit 130, a wireless control unit 140, a wireless transmission unit 150, a sensor data acquisition unit 160, and a frame generation unit 170. Be prepared.
 GPS受信部110は、GPS衛星からGPS信号を受信して、時刻情報および位置情報を取得するものである。 The GPS receiving unit 110 receives GPS signals from GPS satellites and acquires time information and position information.
 端末識別子保持部120は、この無線端末100の端末識別子を保持するものである。端末識別子は、この無線端末100に事前に割り当てられた固有の識別子である。 The terminal identifier holding unit 120 holds the terminal identifier of the wireless terminal 100. The terminal identifier is a unique identifier assigned to the wireless terminal 100 in advance.
 無線資源決定部130は、後述する無線資源決定規則に基づいて、送信時刻、送信周波数、送信する冗長ビットを決定するものである。 The radio resource determination unit 130 determines the transmission time, transmission frequency, and redundant bits to be transmitted based on the radio resource determination rule described later.
 センサデータ取得部160は、対象となるセンサデータを取得するものである。このセンサデータ取得部160は、例えば、周期的または定期的に(例えば、1秒間に1回)センサデータを取得してもよく、また、センサに変化が生じたときにセンサデータを取得してもよい。 The sensor data acquisition unit 160 acquires the target sensor data. The sensor data acquisition unit 160 may acquire sensor data periodically or periodically (for example, once per second), or acquire sensor data when a change occurs in the sensor. May be good.
 フレーム生成部170は、センサデータ取得部160によって取得されたセンサデータ、端末識別子保持部120に保持された端末識別子、後述する冗長ビットに関する情報に基づいて無線フレームを生成するものである。 The frame generation unit 170 generates a wireless frame based on the sensor data acquired by the sensor data acquisition unit 160, the terminal identifier held in the terminal identifier holding unit 120, and information on redundant bits described later.
 無線制御部140は、無線資源決定部130によって決定された送信時刻および送信周波数によって無線フレームを送信するように、無線送信部150を制御するものである。 The radio control unit 140 controls the radio transmission unit 150 so as to transmit a radio frame according to the transmission time and transmission frequency determined by the radio resource determination unit 130.
 無線送信部150は、指定された送信時刻および送信周波数で、フレーム生成部170によって生成された無線フレームを、アンテナを介して電磁波に変換して空間へ送信するRF(Radio Frequency)回路である。 The radio transmission unit 150 is an RF (Radio Frequency) circuit that converts a radio frame generated by the frame generation unit 170 into an electromagnetic wave via an antenna and transmits it to space at a specified transmission time and transmission frequency.
 [基地局]
 図3は、本技術の実施の形態における基地局200の構成例を示す図である。
[base station]
FIG. 3 is a diagram showing a configuration example of the base station 200 according to the embodiment of the present technology.
 基地局200は、GPS受信部210と、受信端末識別子保持部220と、無線資源決定部230と、無線制御部240と、無線受信部250と、フレーム検出部260と、フレーム合成部270と、フレーム復調部280と、データ取得部290とを備える。 The base station 200 includes a GPS reception unit 210, a reception terminal identifier holding unit 220, a radio resource determination unit 230, a radio control unit 240, a radio reception unit 250, a frame detection unit 260, and a frame synthesis unit 270. It includes a frame demodulation unit 280 and a data acquisition unit 290.
 GPS受信部210は、GPS衛星からGPS信号を受信して、時刻情報および位置情報を取得するものである。 The GPS receiving unit 210 receives GPS signals from GPS satellites and acquires time information and position information.
 受信端末識別子保持部220は、受信対象となる無線端末100の端末識別子を保持するものである。基地局200は、予め端末識別子を設定していてもよく、また、必要に応じて他の装置(例えば、クラウドサーバなど)から端末識別子を取得してもよい。 The receiving terminal identifier holding unit 220 holds the terminal identifier of the wireless terminal 100 to be received. The base station 200 may set a terminal identifier in advance, or may acquire a terminal identifier from another device (for example, a cloud server or the like) as needed.
 無線資源決定部230は、後述する無線資源決定規則に基づいて、受信時刻、受信周波数、受信した無線フレームに含まれる冗長ビットを決定するものである。 The radio resource determination unit 230 determines the reception time, the reception frequency, and the redundant bits included in the received radio frame based on the radio resource determination rule described later.
 無線制御部240は、無線資源決定部230から指定された受信時刻および受信周波数によって受信を行うように、無線受信部250を制御するものである。 The radio control unit 240 controls the radio reception unit 250 so that reception is performed according to the reception time and reception frequency specified by the radio resource determination unit 230.
 無線受信部250は、指定された受信時刻および受信周波数において、アンテナを介して電磁波を受信信号に変換するRF回路である。 The wireless reception unit 250 is an RF circuit that converts an electromagnetic wave into a reception signal via an antenna at a designated reception time and reception frequency.
 フレーム検出部260は、後述する同期情報を用いて、無線受信部250によって受信された受信信号から無線フレームを検出するものである。 The frame detection unit 260 detects a wireless frame from the received signal received by the wireless reception unit 250 by using the synchronization information described later.
 フレーム合成部270は、検出した無線フレームおよび受信した無線フレームに含まれる冗長ビットの情報に基づいてフレームを合成して、フレームの再構成を行うものである。具体的には繰り返し送信される情報は波形合成し、冗長ビットについてはもとの順番通りに並び替えを行う。この処理の詳細については後述する。 The frame synthesizing unit 270 synthesizes frames based on the information of the detected wireless frame and the redundant bits included in the received wireless frame, and reconstructs the frame. Specifically, the information transmitted repeatedly is waveform-synthesized, and the redundant bits are rearranged in the original order. The details of this process will be described later.
 フレーム復調部280は、誤り訂正による復号処理を行うものである。 The frame demodulation unit 280 performs decoding processing by error correction.
 データ取得部290は、復号されたデータの端末識別子とセンサデータを用いて、CRC(Cyclic Redundancy Check)を計算し、復号されたCRCと一致するかの判定を行うものである。CRCが一致した場合にはデータが正常に受信できたものと判断し、後段の処理ブロックやサーバ等にそのデータを提供する。 The data acquisition unit 290 calculates a CRC (Cyclic Redundancy Check) using the terminal identifier of the decoded data and the sensor data, and determines whether or not it matches the decoded CRC. If the CRCs match, it is determined that the data has been received normally, and the data is provided to the processing block or server in the subsequent stage.
 [HARQ]
 図4は、本技術の実施の形態において使用するHARQの概要を説明するための図である。
[HARQ]
FIG. 4 is a diagram for explaining an outline of HARQ used in the embodiment of the present technology.
 同図におけるaに示すように、無線端末100が送信するセンサデータは、無線端末100の端末識別子(同図において「ID」と表す。)、センサデータおよび端末識別子を用いて計算されるCRCとともに、オリジナルデータ(同図において「D」と表す。)を形成する。 As shown in a in the figure, the sensor data transmitted by the wireless terminal 100 is together with the terminal identifier of the wireless terminal 100 (represented as “ID” in the figure), the sensor data and the CRC calculated using the terminal identifier. , Original data (represented as "D" in the figure) is formed.
 オリジナルデータは、例えば、LDPC(Low-Density Parity-Check)などの誤り訂正技術により誤り訂正符号が計算される。同図におけるbに示すように、この例では、オリジナルデータの誤り訂正符号は4分割されて、4つの冗長ビットP1乃至P4として表される。すなわち、この例は、符号化率R=1/5の例となっている。なお、冗長ビットP1乃至P4は、特許請求の範囲に記載の複数の部分符号の一例である。 For the original data, the error correction code is calculated by an error correction technology such as LDPC (Low-Density Parity-Check). As shown in b in the figure, in this example, the error correction code of the original data is divided into four and represented as four redundant bits P1 to P4. That is, this example is an example of a coding rate R = 1/5. The redundant bits P1 to P4 are examples of a plurality of partial codes described in the claims.
 ここでは、無線フレームを4回送信するものとする。同図におけるcに示すように、1番目の無線フレームでは、オリジナルデータと冗長ビットP1を送信する。2番目の無線フレームでは、オリジナルデータと冗長ビットP2を送信する。3番目の無線フレームでは、オリジナルデータと冗長ビットP3を送信する。4番目の無線フレームでは、オリジナルデータと冗長ビットP4を送信する。 Here, it is assumed that the wireless frame is transmitted four times. As shown in c in the figure, the original data and the redundant bit P1 are transmitted in the first wireless frame. In the second radio frame, the original data and the redundant bit P2 are transmitted. In the third radio frame, the original data and the redundant bit P3 are transmitted. In the fourth radio frame, the original data and the redundant bit P4 are transmitted.
 基地局200は、これら4つの無線フレームを受信して、同図におけるdに示すように、フレーム合成を行う。このとき、フレームに含まれる同一情報(すなわち、オリジナルデータ)については波形合成を行う。そして、ケース#Aのように、全ての無線フレームが検出できた場合には、冗長ビットP1乃至P4を並び替えて元の誤り訂正符号を復元する。一方、ケース#Bのように、例えば2番目の無線フレームの検出に失敗した場合には、冗長ビットP2に該当する部分にはゼロを挿入する。 The base station 200 receives these four radio frames and performs frame composition as shown in d in the figure. At this time, waveform synthesis is performed for the same information (that is, original data) included in the frame. Then, when all the wireless frames can be detected as in case # A, the redundant bits P1 to P4 are rearranged to restore the original error correction code. On the other hand, as in case # B, for example, when the detection of the second radio frame fails, zero is inserted in the portion corresponding to the redundant bit P2.
 このように並び替えた後に、同図におけるeに示すように、誤り訂正技術による復号処理を行う。CRCを確認することによって、正常に受信できたか否かの判定を行うことが可能となる。 After sorting in this way, as shown in e in the figure, the decoding process is performed by the error correction technology. By confirming the CRC, it becomes possible to determine whether or not the reception was normally performed.
 図5は、本技術の実施の形態において使用するHARQにおける送信時刻を説明するための図である。 FIG. 5 is a diagram for explaining the transmission time in HARQ used in the embodiment of the present technology.
 HARQを利用するために、無線端末100および基地局200はともにGPS受信部110および210を備え、それぞれが得られた時刻情報を用いて無線資源を決定する。ここでは、無線資源の一つとして、無線端末100の送信時刻について説明する。 In order to use HARQ, both the wireless terminal 100 and the base station 200 are provided with GPS receiving units 110 and 210, and the wireless resources are determined using the time information obtained by each. Here, the transmission time of the wireless terminal 100 will be described as one of the wireless resources.
 無線システム内の時間は、スーパフレーム(SP:Superframe)、タイムスロット(TS:Time-Slot)、および、グリッド(grid)によって特定される。この例では、1つのスーパフレームは、4つのタイムスロットに分割されている。また、1つのタイムスロットにおいては、8か所の開始時刻がグリッドとして規定されている。 The time in the wireless system is specified by a superframe (SP: Superframe), a time slot (TS: Time-Slot), and a grid (grid). In this example, one superframe is divided into four time slots. Further, in one time slot, eight start times are defined as a grid.
 まず、GPSの時刻情報から現在のSP番号と、そのSP番号の開始時刻を決定する。GPSから取得したGPS時刻をtとする。GPS時刻から得られる時刻は、1980年1月6日0時0分0秒を基準としたものである。ここでは秒単位として考える。また、SP区間の長さはSP_durationとする。SP区間の長さは無線システムとして事前に決定する。このとき、SP番号をnとし、番号nのSP開始時刻をSP(n)start-timeとすると、次のように決定することができる。なお、演算子div()は、割り算の商を示している。
  n=div(t,SPduration
  SP(n)start-time=n×SPduration
First, the current SP number and the start time of the SP number are determined from the GPS time information. Let t be the GPS time obtained from GPS. The time obtained from the GPS time is based on January 6, 1980, 0:00:00. Here, it is considered as a second unit. The length of the SP section is SP_duration. The length of the SP section is determined in advance as a wireless system. At this time, assuming that the SP number is n and the SP start time of the number n is SP (n) start-time , the determination can be made as follows. The operator div () indicates the quotient of division.
n = div (t, SP duration )
SP (n) start-time = n × SP duration
 例えば、SPduration=20秒、GPS時刻=105秒のとき、n=5、 SP(5)start-time=100秒となる。 For example, when SP duration = 20 seconds and GPS time = 105 seconds, n = 5, SP (5) start-time = 100 seconds.
 次に、無線端末100が送信することができるSP番号を決定する。これには事前に割り当てられる送信周期(Period)と端末識別子(ID)を用いて決定する。端末IDを用いて決定するため、同一送信周期であっても無線端末毎に異なるSP番号が割り当てられる。 Next, the SP number that the wireless terminal 100 can transmit is determined. This is determined using a pre-assigned transmission cycle (Period) and terminal identifier (ID). Since the determination is made using the terminal ID, a different SP number is assigned to each wireless terminal even if the transmission cycle is the same.
 次式により、送信周期(秒)をSP番号の間隔(m)に変換する。
  m=div(Period,SPduration
The transmission cycle (seconds) is converted into the SP number interval (m) by the following equation.
m = div (Period, SP duration )
 次に、無線端末毎にSP番号を変えるためにオフセット値moftを計算する。なお、演算子mod()は、割り算の余りを示している。
  moft=mod(ID,m)
これにより、無線端末100が送信することができるSP番号(n)を決定する。
  mod(n+moft,m)=0
上式を満たすSP番号(n)の時に、無線端末100は送信を行うことができる。
Next, the offset value m of t is calculated in order to change the SP number for each wireless terminal. The operator mod () indicates the remainder of division.
m oft = mod (ID, m)
Thereby, the SP number (n) that the wireless terminal 100 can transmit is determined.
mod (n + m oft , m) = 0
When the SP number (n) satisfies the above equation, the wireless terminal 100 can perform transmission.
 例えば、SPduration=20秒、GPS時刻=105秒、送信周期3分(180秒)、ID=1のとき、m=9, moft=1となり、SP番号がn=8,17,26,…のときに送信が可能となる。これは、SPdurationが20秒であるから、160秒(n=8)、340秒(n=17)、520秒(n=26)と、送信周期3分(18秒)毎に、送信機会が割り当てられていることになる。 For example, when SP duration = 20 seconds, GPS time = 105 seconds, transmission cycle 3 minutes (180 seconds), ID = 1, m = 9, m oft = 1, and SP numbers are n = 8, 17, 26, It is possible to send when ... This is because the SP duration is 20 seconds, so the transmission opportunity is 160 seconds (n = 8), 340 seconds (n = 17), 520 seconds (n = 26), and every 3 minutes (18 seconds) of the transmission cycle. Will be assigned.
 次に、上述のように決定したスーパフレーム(SP)番号内での送信時間を決定する。無線端末100は、各タイムスロットにおいて、繰返し送信を行うものとする。繰返し送信は同一のセンサデータを複数回送ることにより通信の成功率を高めることが可能であり、長距離通信を実現することが可能となる。なお、スーパフレーム内のタイムスロットが1つとしてもよい。その場合は繰返し送信を行わない例となる。 Next, the transmission time within the super frame (SP) number determined as described above is determined. The wireless terminal 100 shall repeatedly transmit in each time slot. In repeated transmission, it is possible to increase the success rate of communication by sending the same sensor data a plurality of times, and it is possible to realize long-distance communication. The number of time slots in the super frame may be one. In that case, it is an example of not performing repeated transmission.
 各タイムスロットの開始時刻は、そのスーパフレームの開始時刻と、スーパフレーム内のタイムスロット数により決定することが可能である。SP(n)におけるタイムスロットの分割数をnTSとすれば、各TS(k), k=0~(nTS-1)の開始時刻TS(k)start-time in SP(n)は、以下のように決定される。なお、この例ではnTS=4である。
  TS(k)start-time in SP(n)=SP(n)start-time+k×SPduration/nTS
The start time of each time slot can be determined by the start time of the super frame and the number of time slots in the super frame. Assuming that the number of divisions of the time slot in SP (n) is nTS, the start time TS (k) start-time in SP (n) of each TS (k), k = 0 to (nTS-1) is as follows. Is decided. In this example, nTS = 4.
TS (k) start-time in SP (n) = SP (n) start-time + k × SP duration / nTS
 タイムスロット内にはグリッドと呼ばれる送信開始時刻が複数規定されている。この例ではgrid(0)乃至grid(7)までの8か所の開始時刻が規定されている。各無線端末が送信を行うグリッドは疑似乱数系列によって決定される。 Multiple transmission start times called grids are specified in the time slot. In this example, eight start times from grid (0) to grid (7) are specified. The grid on which each wireless terminal transmits is determined by a pseudo-random number sequence.
 図6は、本技術の実施の形態において使用するHARQにおける疑似乱数系列の生成器の一例を示す図である。 FIG. 6 is a diagram showing an example of a pseudo-random number sequence generator in HARQ used in the embodiment of the present technology.
 これは一般的なPN系列(Pseudorandom Numbers)の生成器の1つである。最初に初期値を設定する。初期値は、図中の四角箱で示される遅延素子の初期値として設定する0または1のビットを指す。この例では、1から24までの24個の遅延素子によって構成されているため、24ビットの初期値を設定することになる。このような疑似乱数系列生成器では、初期値が異なると生成される疑似乱数系列が異なるものになるという特性がある。 This is one of the general PN sequence (Pseudorandom Numbers) generators. First, set the initial value. The initial value refers to a bit of 0 or 1 set as the initial value of the delay element indicated by the square box in the figure. In this example, since it is composed of 24 delay elements from 1 to 24, a 24-bit initial value is set. Such a pseudo-random number sequence generator has a characteristic that if the initial values are different, the generated pseudo-random number sequences will be different.
 初期値を設定した後、生成器のクロックを1つ動かすことによって、出力(OUTPUT)が1ビット出力される。すなわち、図中の遅延素子1に設定された値が出力される。それと同時に、出力は、図中の線で結ばれた箇所に提供される。図中の丸に×印は、排他的論理和(XOR)の論理演算を示している。例えば、出力は、遅延素子2の出力とのXORが計算され、遅延素子1に蓄えられる。以下同様に必要な演算を行い各遅延素子の値を更新する。順次クロックを動かすことによって、必要な長さの出力ビットを得ることが可能となる。 After setting the initial value, by moving one clock of the generator, 1 bit of output (OUTPUT) is output. That is, the value set for the delay element 1 in the figure is output. At the same time, the output is provided at the points connected by the lines in the figure. A circle in the figure indicates a logical operation of exclusive OR (XOR). For example, the XOR of the output with the output of the delay element 2 is calculated and stored in the delay element 1. Hereinafter, the necessary calculation is performed in the same manner, and the value of each delay element is updated. By moving the clock sequentially, it is possible to obtain output bits of the required length.
 図7は、本技術の実施の形態において使用するHARQにおける疑似乱数系列の生成器による第1の生成例を示す図である。 FIG. 7 is a diagram showing a first generation example by the generator of the pseudo-random number sequence in HARQ used in the embodiment of the present technology.
 無線端末100が送信を行うグリッドを決めるため、疑似乱数系列の初期値として端末IDとSP番号を設定し、12ビットの疑似乱数系列を生成する。この例ではIDの16ビットとSP番号nを256で割った余り8ビットの計24ビットを初期値として設定する。その後、クロックを12回動かし、12ビットの疑似乱数系列を生成する。 In order to determine the grid on which the wireless terminal 100 transmits, the terminal ID and SP number are set as the initial values of the pseudo-random number sequence, and a 12-bit pseudo-random number sequence is generated. In this example, a total of 24 bits, which is the remainder of 8 bits obtained by dividing the 16 bits of the ID and the SP number n by 256, is set as the initial value. After that, the clock is rotated 12 times to generate a 12-bit pseudo-random number sequence.
 図8は、本技術の実施の形態において使用するHARQにおけるグリッド番号の決定例を示す図である。 FIG. 8 is a diagram showing an example of determining a grid number in HARQ used in the embodiment of the present technology.
 上述の処理により得られた12ビットから、各タイムスロットでのグリッド番号を決定する。12ビットを3ビット毎の4つのグループに分割し、それぞれの3ビットを10進数に変換したものを、それぞれのタイムスロットで送信するグリッド番号として決定する。 The grid number in each time slot is determined from the 12 bits obtained by the above processing. The 12 bits are divided into four groups of every 3 bits, and each 3 bits converted into a decimal number is determined as a grid number to be transmitted in each time slot.
 なお、この例では疑似乱数系列の遅延素子が24個であるため、端末IDとSP番号の一部を初期値としたが、より遅延素子の多い疑似乱数系列を使用することによって、より長い端末IDやSP番号を初期値として用いることが可能である。また、スーパフレーム内のタイムスロット数が4つ、タイムスロット内のグリッド数が8つであるため、12ビットの系列からグリッド番号を決定したが、タイムスロット数およびタイムスロット内のグリッド数が異なる場合でも、必要な長さの疑似乱数を生成することによって対応可能である。 In this example, since there are 24 delay elements in the pseudo-random number sequence, a part of the terminal ID and SP number is used as the initial value, but by using the pseudo-random number sequence with more delay elements, a longer terminal is used. It is possible to use the ID and SP number as initial values. Also, since the number of time slots in the superframe is 4 and the number of grids in the time slot is 8, the grid number was determined from the 12-bit series, but the number of time slots and the number of grids in the time slot are different. Even in this case, it can be dealt with by generating a pseudo-random number of the required length.
 図9は、本技術の実施の形態において使用するHARQにおける疑似乱数系列の生成器による第2の生成例を示す図である。 FIG. 9 is a diagram showing a second generation example by the generator of the pseudo-random number sequence in HARQ used in the embodiment of the present technology.
 無線システムとして利用可能な周波数チャネルの数をnFとする。ここではnF=4として説明する。この例ではスーパフレーム内で4回の送信を行うため、その4回の送信に使用する送信周波数を決定する例を示す。 Let nF be the number of frequency channels that can be used as a wireless system. Here, it will be described as nF = 4. In this example, since transmission is performed four times within the super frame, an example of determining the transmission frequency used for the four transmissions is shown.
 上述の送信時刻を決定するために生成した12ビットの後に、さらに8ビットの疑似乱数系列を生成する。新たに生成した疑似乱数系列が13から20である。 After the 12 bits generated to determine the transmission time described above, an additional 8-bit pseudo-random number sequence is generated. The newly generated pseudo-random number sequence is 13 to 20.
 図10は、本技術の実施の形態において使用するHARQにおける周波数の決定例を示す図である。 FIG. 10 is a diagram showing an example of determining the frequency in HARQ used in the embodiment of the present technology.
 上述の処理により得られた8ビットから各タイムスロットの送信に使用する周波数の決定方法を示す。nF=4であるため、2ビットずつ、4つに分割し、各2ビットを10進数に変換した値を、送信する周波数番号(0~3)とする。周波数番号のそれぞれは、実際に送信する場合の搬送波周波数の中心周波数に対応する。 The method of determining the frequency used for transmission of each time slot from the 8 bits obtained by the above processing is shown. Since nF = 4, the frequency number (0 to 3) to be transmitted is defined as a value obtained by dividing each 2 bits into 4 by 2 bits and converting each 2 bits into a decimal number. Each of the frequency numbers corresponds to the center frequency of the carrier frequency when actually transmitting.
 なお、この例では、利用できる周波数の数が4つ(nF=4)の場合であり、2ビットずつ、TSが4つであることから、4つのグループで計8ビットから決定した。ただし、これらは利用できる周波数やタイムスロットの数に応じて、必要な長さの疑似乱数系列を生成することにより拡張可能である。 In this example, the number of frequencies that can be used is 4 (nF = 4), and since there are 2 bits each and 4 TSs, it was determined from a total of 8 bits in 4 groups. However, these can be expanded by generating a pseudo-random number sequence of the required length, depending on the available frequencies and the number of time slots.
 図11は、本技術の実施の形態において使用するHARQにおける疑似乱数系列の生成器による第3の生成例を示す図である。 FIG. 11 is a diagram showing a third generation example by the generator of the pseudo-random number sequence in HARQ used in the embodiment of the present technology.
 この例ではスーパフレーム内で4回の送信を行うため、その4回の送信で送信する冗長ビットを決定する。誤り訂正は、上述のように符号化率R=1/5で、冗長ビットが4種類あるものとする。 In this example, since transmission is performed four times within the super frame, the redundant bit to be transmitted is determined by the four transmissions. For error correction, it is assumed that the coding rate R = 1/5 and there are four types of redundant bits as described above.
 上述の処理により得られた送信時刻および送信周波数を決定するための20ビットの後に、さらに5ビットの疑似乱数系列を生成する。新たに生成した疑似乱数系列が21から25である。この5ビットから無線フレームの送信で送信する冗長ビットを以下のように決定する。 After 20 bits for determining the transmission time and transmission frequency obtained by the above processing, a further 5 bit pseudo-random number sequence is generated. The newly generated pseudo-random number sequence is 21 to 25. The redundant bits to be transmitted from these 5 bits in the transmission of the wireless frame are determined as follows.
 図12は、本技術の実施の形態において使用するHARQにおける冗長ビットのパターンの決定例を示す図である。 FIG. 12 is a diagram showing an example of determining a redundant bit pattern in HARQ used in the embodiment of the present technology.
 この例では、4つの無線フレームによって冗長ビットP1乃至P4を分けて送信することを想定している。4つの無線フレームと4つの冗長ビットとの対応関係をパターンとして分類すると、ここに示す24通りとなる。すなわち、このパターンは、4つの冗長ビットの送信順序を示している。 In this example, it is assumed that the redundant bits P1 to P4 are transmitted separately by four wireless frames. When the correspondence between the four wireless frames and the four redundant bits is classified as a pattern, there are 24 patterns shown here. That is, this pattern indicates the transmission order of the four redundant bits.
 無線端末100と基地局200との間で、同じパターンを利用することにより、基地局200において冗長ビットP1乃至P4を正しく並べ替えることができる。このパターンをヘッダ等によって明示的に送信することは、非効率であるため、この実施の形態では、無線端末100および基地局200のそれぞれにおいて疑似乱数系列を用いてパターンを決定する。 By using the same pattern between the wireless terminal 100 and the base station 200, the redundant bits P1 to P4 can be correctly rearranged in the base station 200. Since it is inefficient to explicitly transmit this pattern by a header or the like, in this embodiment, the pattern is determined by using a pseudo-random number sequence in each of the wireless terminal 100 and the base station 200.
 上述の疑似乱数系列21から25の5ビットPT5を十進数に変換して、24で割った余りを冗長ビットのパターンとして決定する。すなわち、冗長ビットのパターンpatternは次式により決定される。なお、演算子dec()は、2進数のビットパターンを十進数に変換した結果を示している。
  pattern=mod(dec(PT5),24)
The 5-bit PT5 of the above-mentioned pseudo-random number sequences 21 to 25 is converted into a decimal number, and the remainder divided by 24 is determined as a redundant bit pattern. That is, the redundant bit pattern pattern is determined by the following equation. The operator dec () shows the result of converting the binary bit pattern into a decimal number.
pattern = mod (dec (PT5), 24)
 これにより、無線端末100および基地局200は、無線フレームのそれぞれの冗長ビットがP1乃至P4の何れであるかを、独立に決定することができる。したがって、冗長ビットがP1乃至P4の何れであるかを、別途送信する必要はない。 Thereby, the wireless terminal 100 and the base station 200 can independently determine which of P1 to P4 each redundant bit of the wireless frame is. Therefore, it is not necessary to separately transmit which of P1 to P4 the redundant bit is.
 [無線フレーム]
 図13は、本技術の実施の形態における無線フレームのフィールド構成例を示す図である。
[Wireless frame]
FIG. 13 is a diagram showing an example of a field configuration of a wireless frame according to an embodiment of the present technology.
 上述のように、端末識別子ID、センサデータ、および、それらのCRCによってオリジナルデータDが構成される。これらは、LDPCのような誤り訂正技術により冗長ビットP1乃至P4が計算される。 As described above, the original data D is composed of the terminal identifier ID, the sensor data, and their CRC. For these, redundant bits P1 to P4 are calculated by an error correction technique such as LDPC.
 無線資源決定部130および230のそれぞれは、上述の疑似乱数系列を用いて冗長ビットのパターンを決定する。これにより、無線フレームのペイロードに含まれる冗長ビットがP1乃至P4の何れであるかが決定される。同図の例では、冗長ビットP2がペイロードに含まれる例を示している。 Each of the radio resource determination units 130 and 230 determines the redundant bit pattern using the above-mentioned pseudo-random number sequence. Thereby, it is determined whether the redundant bit included in the payload of the radio frame is P1 to P4. In the example of the figure, an example in which the redundant bit P2 is included in the payload is shown.
 無線端末100が無線フレームを送信する際には、ペイロードに先立って同期情報Syncを送信する。この同期情報Syncは、フレーム検出用の既知情報である。基地局200は、同期情報Syncに合致する信号を検知することにより、無線フレームを検出する。 When the wireless terminal 100 transmits a wireless frame, the synchronization information Sync is transmitted prior to the payload. This synchronization information Sync is known information for frame detection. The base station 200 detects a radio frame by detecting a signal that matches the synchronization information Sync.
 ただし、冗長ビットがP1乃至P4の何れであるかを、無線端末100および基地局200のそれぞれにおいて独立に決定することができるため、明示的に送信する必要はない。したがって、フレーム長が固定されている場合などには、この例のようにヘッダ情報を省略することが可能である。 However, since it is possible for each of the wireless terminal 100 and the base station 200 to independently determine which of the redundant bits is P1 to P4, it is not necessary to explicitly transmit. Therefore, when the frame length is fixed, the header information can be omitted as in this example.
 [動作]
 図14は、本技術の実施の形態における無線システムの動作例を示すシーケンス図である。
[motion]
FIG. 14 is a sequence diagram showing an operation example of the wireless system according to the embodiment of the present technology.
 無線端末100は、センサデータを取得後(811)、無線資源を決定する(812)。このとき、GPS受信を行い、その情報と端末識別子を用いて、送信時刻、送信周波数、各無線フレームで送信する冗長ビットを決定する。決定した無線資源に基づいて、繰り返し送信を行う(813乃至816)。 After acquiring the sensor data (811), the wireless terminal 100 determines the wireless resource (812). At this time, GPS reception is performed, and the transmission time, transmission frequency, and redundant bits to be transmitted in each wireless frame are determined using the information and the terminal identifier. Repeated transmission is performed based on the determined radio resource (813 to 816).
 基地局200は、周期的にGPS受信を行い、受信すべき端末識別子も用いて、受信時刻、受信周波数および無線フレームに含まれる冗長ビットの情報を計算する(821)。計算した受信時刻、受信周波数によって無線フレームの受信を行う(822乃至825)。そして、それら無線フレームについてフレーム合成を行い(826)、受信データを取得する(827)。 The base station 200 periodically performs GPS reception, and uses the terminal identifier to be received to calculate the reception time, the reception frequency, and the redundant bit information included in the wireless frame (821). The wireless frame is received according to the calculated reception time and reception frequency (822 to 825). Then, frame synthesis is performed on those wireless frames (826), and received data is acquired (827).
 図15は、本技術の実施の形態における無線端末100の処理手順例を示す流れ図である。 FIG. 15 is a flow chart showing an example of a processing procedure of the wireless terminal 100 according to the embodiment of the present technology.
 センサデータ取得部160は、周期的または定期的に、または、センサに変化が生じたときにセンサデータを取得する(ステップS911)。センサデータを取得すると(ステップS911:Yes)、GPS受信部110は、GPS信号を受信して、時刻情報を取得する(ステップS912)。 The sensor data acquisition unit 160 acquires sensor data periodically or periodically, or when a change occurs in the sensor (step S911). When the sensor data is acquired (step S911: Yes), the GPS receiving unit 110 receives the GPS signal and acquires the time information (step S912).
 無線資源決定部130は、取得した時刻情報と端末識別子から送信時刻、送信周波数、送信する冗長ビットを、送信する無線フレーム(例えば、4フレーム分)について決定する(ステップS913)。そして、無線フレーム番号をカウントするカウント値に「1」を設定する(ステップS914)。 The radio resource determination unit 130 determines the transmission time, transmission frequency, and redundant bits to be transmitted from the acquired time information and the terminal identifier for the radio frames to be transmitted (for example, for 4 frames) (step S913). Then, "1" is set in the count value for counting the wireless frame number (step S914).
 フレーム生成部170は、無線フレーム番号と、無線資源決定で決定したパラメータに基づいて無線フレームを生成する(ステップS915)。無線送信部150は、無線フレーム番号と、無線資源決定で決定したパラメータに基づいて無線フレームの送信を行う(ステップS916)。 The frame generation unit 170 generates a radio frame based on the radio frame number and the parameters determined in the radio resource determination (step S915). The radio transmission unit 150 transmits the radio frame based on the radio frame number and the parameters determined in the radio resource determination (step S916).
 無線フレームの送信回数が上限(例えば、4フレーム分)に達したかを確認する(ステップS917)。送信回数が上限に達した場合は(ステップS917:Yes)、送信処理を終了する。一方、送信回数が上限以下の場合は(ステップS917:No)、無線フレーム番号のカウント値を加算して(ステップS918)、次の無線フレームを生成する(ステップS915)。 Check if the number of wireless frame transmissions has reached the upper limit (for example, 4 frames) (step S917). When the number of transmissions reaches the upper limit (step S917: Yes), the transmission process ends. On the other hand, when the number of transmissions is equal to or less than the upper limit (step S917: No), the count value of the radio frame number is added (step S918) to generate the next radio frame (step S915).
 図16は、本技術の実施の形態における基地局200の処理手順例を示す流れ図である。 FIG. 16 is a flow chart showing an example of a processing procedure of the base station 200 according to the embodiment of the present technology.
 GPS受信部210は、周期的にGPS信号を受信して、時刻情報を取得する(ステップS921)。 The GPS receiving unit 210 periodically receives GPS signals to acquire time information (step S921).
 無線資源決定部230は、受信対象の端末識別子とGPS受信情報を用いて、受信時刻、受信周波数、受信無線フレームに含まれる冗長ビットの情報を決定する(ステップS922)。そして、無線フレーム番号をカウントするカウント値に「1」を設定する(ステップS923)。 The radio resource determination unit 230 determines the reception time, the reception frequency, and the redundant bit information included in the reception radio frame by using the terminal identifier of the reception target and the GPS reception information (step S922). Then, "1" is set in the count value for counting the wireless frame number (step S923).
 無線受信部250は、無線フレーム番号と無線資源決定で決定したパラメータに基づいて受信動作を行う(ステップS924)。 The radio receiving unit 250 performs a receiving operation based on the radio frame number and the parameters determined in the radio resource determination (step S924).
 フレーム検出部260は、既知情報である同期情報Syncを用いてフレームの検出を行う(ステップS925)。フレームを検出できた場合には(ステップS925:Yes)、フレーム合成部270は、無線フレーム番号と無線資源決定で決定したパラメータに基づいて無線フレームの合成を行う(ステップS926)。具体的には同一情報の波形合成と冗長ビットの並び替えである。フレームを検出できなかった場合には(ステップS925:No)、フレーム合成を行なわず、対応する冗長ビットはゼロとして取り扱われる。 The frame detection unit 260 detects a frame using the synchronization information Sync, which is known information (step S925). If the frame can be detected (step S925: Yes), the frame synthesizing unit 270 synthesizes the radio frame based on the radio frame number and the parameters determined in the radio resource determination (step S926). Specifically, it is waveform synthesis of the same information and rearrangement of redundant bits. If the frame cannot be detected (step S925: No), the frame composition is not performed and the corresponding redundant bit is treated as zero.
 無線フレームの送信回数が上限に達したかを確認する(ステップS927)。送信回数が上限に達した場合は(ステップS927:Yes)、フレーム復調部280は、合成した無線フレームについて誤り訂正技術によって復号処理を行う(ステップS931)。そして、データ取得部290は、復号結果を用いてCRCで正しく受信できたかの判定を行う(ステップS932)。 Check if the number of wireless frame transmissions has reached the upper limit (step S927). When the number of transmissions reaches the upper limit (step S927: Yes), the frame demodulation unit 280 performs a decoding process on the synthesized wireless frame by an error correction technique (step S931). Then, the data acquisition unit 290 determines whether or not the CRC has correctly received the data using the decoding result (step S932).
 一方、送信回数が上限に達していない場合は(ステップS927:No)、無線フレーム番号のカウント値を加算して(ステップS928)、次の受信動作を行う(ステップS924)。 On the other hand, if the number of transmissions has not reached the upper limit (step S927: No), the count value of the radio frame number is added (step S928), and the next reception operation is performed (step S924).
 このように、本技術の第1の実施の形態によれば、無線端末100および基地局200のそれぞれにおいて疑似乱数系列によって冗長ビットのパターンを決定するため、冗長ビットに関する情報を明示的に送信することなくHARQを利用することができる。この場合、ヘッダ情報を省略することができるため、無線端末100における消費電力を抑制することができ、無線端末100の送信電力を低減しながら長距離伝送を行うことができる。 As described above, according to the first embodiment of the present technology, in order to determine the redundant bit pattern by the pseudo-random number sequence in each of the wireless terminal 100 and the base station 200, the information regarding the redundant bits is explicitly transmitted. HARQ can be used without any need. In this case, since the header information can be omitted, the power consumption of the wireless terminal 100 can be suppressed, and the long-distance transmission can be performed while reducing the transmission power of the wireless terminal 100.
 <2.第2の実施の形態>
 上述の第1の実施の形態では、無線端末100および基地局200のそれぞれにおいて疑似乱数系列によって冗長ビットのパターンを決定していたが、この第2の実施の形態では、冗長ビットのパターンを送信周波数から決定する。なお、無線システムとしての構成自体は上述の第1の実施の形態と同様であるため、詳細な説明は省略する。
<2. Second Embodiment>
In the first embodiment described above, the redundant bit pattern is determined by the pseudo-random number sequence in each of the wireless terminal 100 and the base station 200, but in the second embodiment, the redundant bit pattern is transmitted. Determined from frequency. Since the configuration itself as a wireless system is the same as that of the first embodiment described above, detailed description thereof will be omitted.
 上述のように、無線資源決定部130および230において、送信周波数が決定される。決定した周波数をfとする。また、送信しうる冗長ビットの種類は、上述の第1の実施の形態と同様にP1乃至P4の4種類あるものとする。このとき、以下のように、送信周波数から送信する冗長ビットを決定する。ただし、Pは送信する冗長ビットの番号を示す。
  P=mod(f,4)
As described above, the radio resource determination units 130 and 230 determine the transmission frequency. Let f be the determined frequency. Further, it is assumed that there are four types of redundant bits that can be transmitted, P1 to P4, as in the first embodiment described above. At this time, the redundant bits to be transmitted from the transmission frequency are determined as follows. However, P indicates the number of the redundant bit to be transmitted.
P = mod (f, 4)
 すなわち、この第2の実施の形態では、送信周波数と送信する冗長ビットとを紐づけて決定する。したがって、例えば周波数#1ならば冗長ビット#1というように、送信周波数と冗長ビットとの関係は固定される。これにより無線端末100および基地局200において無線フレームの冗長ビットを計算する過程を省略することが可能となる。特に、基地局200では受信周波数の情報から受信した無線フレームに含まれる冗長ビットの情報を得ることができるため、これにより無線フレームの再構成が可能となる。 That is, in this second embodiment, the transmission frequency and the redundant bit to be transmitted are associated and determined. Therefore, the relationship between the transmission frequency and the redundant bit is fixed, for example, if the frequency is # 1, the redundant bit # 1. This makes it possible to omit the process of calculating the redundant bits of the wireless frame in the wireless terminal 100 and the base station 200. In particular, since the base station 200 can obtain the information of the redundant bits included in the received wireless frame from the information of the reception frequency, the wireless frame can be reconstructed.
 このように、本技術の第2の実施の形態によれば、送信周波数と冗長ビットとの関係を固定することにより、冗長ビットのパターンを決定する処理を簡略化することができる。 As described above, according to the second embodiment of the present technology, by fixing the relationship between the transmission frequency and the redundant bit, the process of determining the redundant bit pattern can be simplified.
 <3.第3の実施の形態>
 上述の第1の実施の形態では、無線端末100および基地局200のそれぞれにおいて疑似乱数系列によって冗長ビットのパターンを決定していたが、この第3の実施の形態では、基地局200において冗長ビットのパターンを同期情報から決定する。なお、無線システムとしての構成自体は上述の第1の実施の形態と同様であるため、詳細な説明は省略する。
<3. Third Embodiment>
In the first embodiment described above, the pattern of the redundant bits is determined by the pseudo-random number sequence in each of the wireless terminal 100 and the base station 200, but in the third embodiment, the redundant bits are determined in the base station 200. The pattern of is determined from the synchronization information. Since the configuration itself as a wireless system is the same as that of the first embodiment described above, detailed description thereof will be omitted.
 この第3の実施の形態において、無線端末100は、上述の第1の実施の形態と同様に送信冗長ビットの決定を行う。そして、無線フレームのペイロードも、上述の第1の実施の形態と同様に形成する。ただし、以下に説明するように、無線端末100は、ペイロードに先立って、冗長ビットに応じた同期情報を送信する。 In the third embodiment, the wireless terminal 100 determines the transmission redundant bit in the same manner as in the first embodiment described above. Then, the payload of the radio frame is also formed in the same manner as in the first embodiment described above. However, as described below, the wireless terminal 100 transmits synchronization information according to the redundant bits prior to the payload.
 [無線フレーム]
 図17は、本技術の第3の実施の形態における無線フレームのフィールド構成例を示す図である。
[Wireless frame]
FIG. 17 is a diagram showing an example of a field configuration of a radio frame according to a third embodiment of the present technology.
 この第3の実施の形態における無線フレームは、ペイロード部分については、上述の第1の実施の形態のものと同様である。また、ペイロードに先立って同期情報を送信する点や、ヘッダ情報を送信しない点も同様である。 The radio frame in the third embodiment is the same as that in the first embodiment described above with respect to the payload portion. The same applies to the point that the synchronization information is transmitted prior to the payload and the point that the header information is not transmitted.
 同図におけるaは、冗長ビットP2を送信する場合であり、このときフレーム検出に用いる同期情報として、Sync2という固有の既知系列を用いる。また、同図におけるbは、冗長ビットP3を送信する場合であり、このときフレーム検出に用いる同期情報として、Sync3という固有の既知系列を用いる。冗長ビットP1およびP4についても同様に固有の既知系列(Sync1、Sync4)を用いるものとする。これにより無線フレームに含まれる冗長ビットの種類を同期情報の既知系列と紐付けることができる。 In the figure, a is a case where the redundant bit P2 is transmitted, and at this time, a unique known sequence called Sync2 is used as the synchronization information used for frame detection. Further, b in the figure is a case where the redundant bit P3 is transmitted, and at this time, a unique known sequence called Sync3 is used as the synchronization information used for frame detection. Similarly, unique known sequences (Sync1, Sync4) are used for the redundant bits P1 and P4. As a result, the type of redundant bit included in the wireless frame can be associated with the known sequence of synchronization information.
 [基地局]
 図18は、本技術の第3の実施の形態における基地局200の構成例を示す図である。
[base station]
FIG. 18 is a diagram showing a configuration example of the base station 200 according to the third embodiment of the present technology.
 この第3の実施の形態における基地局200の構成は、基本的には、上述の第1の実施の形態のものと同様である。ただし、それぞれ固有の既知系列(Sync1乃至Sync4)を個別に検出するため、フレーム検出部261乃至264を設けている。 The configuration of the base station 200 in the third embodiment is basically the same as that in the first embodiment described above. However, in order to individually detect each unique known series (Sync1 to Sync4), frame detection units 261 to 264 are provided.
 フレーム合成部270は、フレーム検出部261乃至264の何れでフレームを検出したか、つまり受信無線フレームの同期情報がいずれの既知系列であったかに基づいて行われる。これにより、基地局200では、無線フレームの冗長ビットを計算する過程を省略することが可能となる。 The frame synthesizing unit 270 is performed based on which of the frame detecting units 261 to 264 detects the frame, that is, which known sequence the synchronization information of the received radio frame is. This makes it possible for the base station 200 to omit the process of calculating the redundant bits of the wireless frame.
 このように、本技術の第3の実施の形態によれば、同期情報と冗長ビットとの関係を固定することにより、基地局200において冗長ビットのパターンを決定する処理を簡略化することができる。 As described above, according to the third embodiment of the present technology, by fixing the relationship between the synchronization information and the redundant bits, it is possible to simplify the process of determining the redundant bit pattern in the base station 200. ..
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。 Note that the above-described embodiment shows an example for embodying the present technology, and the matters in the embodiment and the matters specifying the invention in the claims have a corresponding relationship with each other. Similarly, the matters specifying the invention within the scope of claims and the matters in the embodiment of the present technology having the same name have a corresponding relationship with each other. However, the present technology is not limited to the embodiment, and can be embodied by applying various modifications to the embodiment without departing from the gist thereof.
 また、上述の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(MiniDisc)、DVD(Digital Versatile Disc)、メモリカード、ブルーレイディスク(Blu-ray(登録商標)Disc)等を用いることができる。 Further, the processing procedure described in the above-described embodiment may be regarded as a method having these series of procedures, or as a program for causing a computer to execute these series of procedures or as a recording medium for storing the program. You may catch it. As this recording medium, for example, a CD (Compact Disc), MD (MiniDisc), DVD (Digital Versatile Disc), memory card, Blu-ray disc (Blu-ray (registered trademark) Disc) or the like can be used.
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。 It should be noted that the effects described in the present specification are merely examples and are not limited, and other effects may be obtained.
 なお、本技術は以下のような構成もとることができる。
(1)受信装置と同期した情報および無線端末の識別子に基づいて送信に使用するための無線資源を決定する無線資源決定部と、
 前記決定された無線資源に基づいて送信対象データの誤り訂正符号の一部を冗長ビットとして決定して前記送信対象データおよび前記冗長ビットをペイロードとする無線フレームを生成するフレーム生成部と、
 前記決定された無線資源を使用して前記無線フレームを前記受信装置に送信する無線送信部と
を具備する無線端末。
(2)前記フレーム生成部は、前記誤り訂正符号を分割した複数の部分符号の各々を前記冗長ビットとして前記決定された無線資源に基づいて前記送信対象データについて複数の無線フレームを生成し、
 前記無線送信部は、前記複数の無線フレームを送信する
前記(1)に記載の無線端末。
(3)前記無線資源決定部は、前記複数の部分符号の送信順序を前記無線資源の一部として決定する
前記(2)に記載の無線端末。
(4)前記無線資源決定部は、前記受信装置と同期した情報および前記識別子を初期値とする疑似乱数系列に従って前記送信順序を決定する
前記(3)に記載の無線端末。
(5)前記無線資源決定部は、前記無線資源に含まれる送信周波数に基づいて前記送信順序を決定する
前記(3)に記載の無線端末。
(6)前記無線資源決定部は、前記複数の部分符号の何れが前記冗長ビットとして送信されるかを示す同期情報を生成し、
 前記無線送信部は、前記無線フレームの送信に先立って前記同期情報を送信する
前記(3)に記載の無線端末。
(7)無線端末と同期した情報および前記無線端末の識別子に基づいて受信に使用するための無線資源を決定する無線資源決定部と、
 前記決定された無線資源を使用して前記無線端末から受信データおよび冗長ビットを含む無線フレームを受信する無線受信部と、
 前記受信データの誤り訂正符号を分割した複数の部分符号の何れが前記冗長ビットとして含まれているのかを前記決定された無線資源に基づいて判断してフレームを合成するフレーム合成部と
を具備する基地局。
(8)前記無線受信部は、前記受信データを含む複数の無線フレームを受信し、
 前記フレーム合成部は、前記複数の無線フレームの前記冗長ビットを前記決定された無線資源に基づいて並び替えて前記誤り訂正符号を復元する
前記(7)に記載の基地局。
(9)前記無線資源決定部は、前記受信装置と同期した情報および前記識別子を初期値とする疑似乱数系列に従って前記複数の部分符号の何れが前記冗長ビットとして含まれているのかを判断する
前記(8)に記載の基地局。
(10)前記無線資源決定部は、前記無線フレームを受信した受信周波数に基づいて前記複数の部分符号の何れが前記冗長ビットとして含まれているのかを判断する
前記(8)に記載の基地局。
(11)前記無線受信部によって受信された無線フレームに先立って当該無線フレームにおいて前記複数の部分符号の何れが前記冗長ビットとして含まれているのかを示す複数の同期情報の各々に対応して設けられて当該同期情報に合致する無線フレームを検出する複数のフレーム検出部をさらに具備し、
 前記フレーム合成部は、前記複数のフレーム検出部の何れにおいて検出されたかに応じて前記複数の部分符号の何れが前記冗長ビットとして含まれているのかを判断する
前記(8)に記載の基地局。
(12)無線資源決定部が、受信装置と同期した情報および無線端末の識別子に基づいて送信に使用するための無線資源を決定し、
 フレーム生成部が、前記決定された無線資源に基づいて送信対象データの誤り訂正符号の一部を冗長ビットとして決定して前記送信対象データおよび前記冗長ビットをペイロードとする無線フレームを生成し、
 無線送信部が、前記決定された無線資源を使用して前記無線フレームを前記受信装置に送信する
無線端末の送信方法。
(13)無線資源決定部が、無線端末と同期した情報および前記無線端末の識別子に基づいて受信に使用するための無線資源を決定し、
 無線受信部が、前記決定された無線資源を使用して前記無線端末から受信データおよび冗長ビットを含む無線フレームを受信し、
 フレーム合成部が、前記受信データの誤り訂正符号を分割した複数の部分符号の何れが前記冗長ビットとして含まれているのかを前記決定された無線資源に基づいて判断してフレームを合成する
基地局の受信方法。
The present technology can have the following configurations.
(1) A radio resource determination unit that determines radio resources to be used for transmission based on the information synchronized with the receiving device and the identifier of the wireless terminal.
A frame generation unit that determines a part of the error correction code of the transmission target data as a redundant bit based on the determined radio resource and generates a radio frame using the transmission target data and the redundant bit as a payload.
A wireless terminal including a wireless transmission unit that transmits the wireless frame to the receiving device using the determined wireless resource.
(2) The frame generation unit generates a plurality of radio frames for the transmission target data based on the determined radio resource by using each of the plurality of partial codes obtained by dividing the error correction code as the redundant bit.
The wireless terminal according to (1) above, wherein the wireless transmission unit transmits the plurality of wireless frames.
(3) The wireless terminal according to (2) above, wherein the wireless resource determination unit determines the transmission order of the plurality of partial codes as a part of the wireless resource.
(4) The wireless terminal according to (3), wherein the wireless resource determination unit determines the transmission order according to a pseudo-random number sequence having information synchronized with the receiving device and the identifier as initial values.
(5) The wireless terminal according to (3), wherein the wireless resource determination unit determines the transmission order based on the transmission frequency included in the wireless resource.
(6) The radio resource determination unit generates synchronization information indicating which of the plurality of partial codes is transmitted as the redundant bit.
The wireless terminal according to (3), wherein the wireless transmission unit transmits the synchronization information prior to transmission of the wireless frame.
(7) A wireless resource determination unit that determines wireless resources to be used for reception based on information synchronized with the wireless terminal and the identifier of the wireless terminal.
A radio receiver that uses the determined radio resources to receive radio frames containing received data and redundant bits from the radio terminal.
It is provided with a frame synthesizing unit that determines which of the plurality of partial codes obtained by dividing the error correction code of the received data is included as the redundant bit based on the determined radio resource and synthesizes the frames. base station.
(8) The radio receiving unit receives a plurality of radio frames including the received data, and receives the radio frame.
The base station according to (7), wherein the frame synthesizing unit rearranges the redundant bits of the plurality of radio frames based on the determined radio resource and restores the error correction code.
(9) The radio resource determination unit determines which of the plurality of partial codes is included as the redundant bit according to the information synchronized with the receiving device and the pseudo-random number sequence having the identifier as the initial value. The base station according to (8).
(10) The base station according to (8) above, wherein the radio resource determination unit determines which of the plurality of partial codes is included as the redundant bit based on the reception frequency of receiving the radio frame. ..
(11) Prior to the wireless frame received by the wireless receiving unit, each of the plurality of synchronization information indicating which of the plurality of partial codes is included as the redundant bit in the wireless frame is provided corresponding to each of the plurality of synchronization information. It is further provided with a plurality of frame detection units that detect wireless frames that match the synchronization information.
The base station according to (8) above, wherein the frame synthesizing unit determines which of the plurality of partial codes is included as the redundant bit depending on which of the plurality of frame detecting units is detected. ..
(12) The radio resource determination unit determines the radio resource to be used for transmission based on the information synchronized with the receiving device and the identifier of the radio terminal.
The frame generation unit determines a part of the error correction code of the transmission target data as a redundant bit based on the determined radio resource, and generates a radio frame using the transmission target data and the redundant bit as a payload.
A transmission method of a wireless terminal in which a wireless transmission unit transmits the wireless frame to the receiving device using the determined wireless resource.
(13) The radio resource determination unit determines the radio resource to be used for reception based on the information synchronized with the radio terminal and the identifier of the radio terminal.
The radio receiver uses the determined radio resource to receive a radio frame containing received data and redundant bits from the radio terminal.
A base station in which the frame synthesizing unit determines which of the plurality of partial codes obtained by dividing the error correction code of the received data is included as the redundant bit based on the determined radio resource, and synthesizes the frame. How to receive.
 100 無線端末
 110 GPS受信部
 120 端末識別子保持部
 130 無線資源決定部
 140 無線制御部
 150 無線送信部
 160 センサデータ取得部
 170 フレーム生成部
 200 基地局
 210 GPS受信部
 220 受信端末識別子保持部
 230 無線資源決定部
 240 無線制御部
 250 無線受信部
 260~264 フレーム検出部
 270 フレーム合成部
 280 フレーム復調部
 290 データ取得部
100 Wireless terminal 110 GPS receiver 120 Terminal identifier holder 130 Wireless resource determination unit 140 Wireless control unit 150 Wireless transmitter 160 Sensor data acquisition unit 170 Frame generator 200 Base station 210 GPS receiver 220 Receiver terminal identifier holder 230 Wireless resources Determination unit 240 Wireless control unit 250 Wireless receiver unit 260 to 264 Frame detection unit 270 Frame synthesis unit 280 Frame demodulation unit 290 Data acquisition unit

Claims (13)

  1.  受信装置と同期した情報および無線端末の識別子に基づいて送信に使用するための無線資源を決定する無線資源決定部と、
     前記決定された無線資源に基づいて送信対象データの誤り訂正符号の一部を冗長ビットとして決定して前記送信対象データおよび前記冗長ビットをペイロードとする無線フレームを生成するフレーム生成部と、
     前記決定された無線資源を使用して前記無線フレームを前記受信装置に送信する無線送信部と
    を具備する無線端末。
    A radio resource determination unit that determines the radio resources to be used for transmission based on the information synchronized with the receiving device and the identifier of the radio terminal.
    A frame generation unit that determines a part of the error correction code of the transmission target data as a redundant bit based on the determined radio resource and generates a radio frame using the transmission target data and the redundant bit as a payload.
    A wireless terminal including a wireless transmission unit that transmits the wireless frame to the receiving device using the determined wireless resource.
  2.  前記フレーム生成部は、前記誤り訂正符号を分割した複数の部分符号の各々を前記冗長ビットとして前記決定された無線資源に基づいて前記送信対象データについて複数の無線フレームを生成し、
     前記無線送信部は、前記複数の無線フレームを送信する
    請求項1記載の無線端末。
    The frame generation unit generates a plurality of radio frames for the transmission target data based on the determined radio resource by using each of the plurality of partial codes obtained by dividing the error correction code as the redundant bit.
    The wireless terminal according to claim 1, wherein the wireless transmission unit transmits the plurality of wireless frames.
  3.  前記無線資源決定部は、前記複数の部分符号の送信順序を前記無線資源の一部として決定する
    請求項2記載の無線端末。
    The wireless terminal according to claim 2, wherein the wireless resource determination unit determines the transmission order of the plurality of partial codes as a part of the wireless resource.
  4.  前記無線資源決定部は、前記受信装置と同期した情報および前記識別子を初期値とする疑似乱数系列に従って前記送信順序を決定する
    請求項3記載の無線端末。
    The wireless terminal according to claim 3, wherein the wireless resource determination unit determines the transmission order according to information synchronized with the receiving device and a pseudo-random number sequence having the identifier as an initial value.
  5.  前記無線資源決定部は、前記無線資源に含まれる送信周波数に基づいて前記送信順序を決定する
    請求項3記載の無線端末。
    The wireless terminal according to claim 3, wherein the wireless resource determination unit determines the transmission order based on the transmission frequency included in the wireless resource.
  6.  前記無線資源決定部は、前記複数の部分符号の何れが前記冗長ビットとして送信されるかを示す同期情報を生成し、
     前記無線送信部は、前記無線フレームの送信に先立って前記同期情報を送信する
    請求項3記載の無線端末。
    The radio resource determination unit generates synchronization information indicating which of the plurality of partial codes is transmitted as the redundant bit.
    The wireless terminal according to claim 3, wherein the wireless transmission unit transmits the synchronization information prior to transmission of the wireless frame.
  7.  無線端末と同期した情報および前記無線端末の識別子に基づいて受信に使用するための無線資源を決定する無線資源決定部と、
     前記決定された無線資源を使用して前記無線端末から受信データおよび冗長ビットを含む無線フレームを受信する無線受信部と、
     前記受信データの誤り訂正符号を分割した複数の部分符号の何れが前記冗長ビットとして含まれているのかを前記決定された無線資源に基づいて判断してフレームを合成するフレーム合成部と
    を具備する基地局。
    A radio resource determination unit that determines radio resources to be used for reception based on information synchronized with the radio terminal and the identifier of the radio terminal.
    A radio receiver that uses the determined radio resources to receive radio frames containing received data and redundant bits from the radio terminal.
    It is provided with a frame synthesizing unit that determines which of the plurality of partial codes obtained by dividing the error correction code of the received data is included as the redundant bit based on the determined radio resource and synthesizes the frames. base station.
  8.  前記無線受信部は、前記受信データを含む複数の無線フレームを受信し、
     前記フレーム合成部は、前記複数の無線フレームの前記冗長ビットを前記決定された無線資源に基づいて並び替えて前記誤り訂正符号を復元する
    請求項7記載の基地局。
    The radio receiving unit receives a plurality of radio frames including the received data, and receives the radio frame.
    The base station according to claim 7, wherein the frame synthesizing unit rearranges the redundant bits of the plurality of radio frames based on the determined radio resource and restores the error correction code.
  9.  前記無線資源決定部は、前記受信装置と同期した情報および前記識別子を初期値とする疑似乱数系列に従って前記複数の部分符号の何れが前記冗長ビットとして含まれているのかを判断する
    請求項8記載の基地局。
    The eighth aspect of claim 8, wherein the radio resource determination unit determines which of the plurality of partial codes is included as the redundant bit according to the information synchronized with the receiving device and the pseudo-random number sequence having the identifier as the initial value. Base station.
  10.  前記無線資源決定部は、前記無線フレームを受信した受信周波数に基づいて前記複数の部分符号の何れが前記冗長ビットとして含まれているのかを判断する
    請求項8記載の基地局。
    The base station according to claim 8, wherein the radio resource determination unit determines which of the plurality of partial codes is included as the redundant bit based on the reception frequency at which the radio frame is received.
  11.  前記無線受信部によって受信された無線フレームに先立って当該無線フレームにおいて前記複数の部分符号の何れが前記冗長ビットとして含まれているのかを示す複数の同期情報の各々に対応して設けられて当該同期情報に合致する無線フレームを検出する複数のフレーム検出部をさらに具備し、
     前記フレーム合成部は、前記複数のフレーム検出部の何れにおいて検出されたかに応じて前記複数の部分符号の何れが前記冗長ビットとして含まれているのかを判断する
    請求項8記載の基地局。
    Prior to the radio frame received by the radio receiver, the radio frame is provided corresponding to each of a plurality of synchronization information indicating which of the plurality of partial codes is included as the redundant bit. It further includes a plurality of frame detection units that detect wireless frames that match the synchronization information.
    The base station according to claim 8, wherein the frame synthesizing unit determines which of the plurality of partial codes is included as the redundant bit depending on which of the plurality of frame detecting units is detected.
  12.  無線資源決定部が、受信装置と同期した情報および無線端末の識別子に基づいて送信に使用するための無線資源を決定し、
     フレーム生成部が、前記決定された無線資源に基づいて送信対象データの誤り訂正符号の一部を冗長ビットとして決定して前記送信対象データおよび前記冗長ビットをペイロードとする無線フレームを生成し、
     無線送信部が、前記決定された無線資源を使用して前記無線フレームを前記受信装置に送信する
    無線端末の送信方法。
    The radio resource determination unit determines the radio resource to be used for transmission based on the information synchronized with the receiving device and the identifier of the radio terminal.
    The frame generation unit determines a part of the error correction code of the transmission target data as a redundant bit based on the determined radio resource, and generates a radio frame using the transmission target data and the redundant bit as a payload.
    A transmission method of a wireless terminal in which a wireless transmission unit transmits the wireless frame to the receiving device using the determined wireless resource.
  13.  無線資源決定部が、無線端末と同期した情報および前記無線端末の識別子に基づいて受信に使用するための無線資源を決定し、
     無線受信部が、前記決定された無線資源を使用して前記無線端末から受信データおよび冗長ビットを含む無線フレームを受信し、
     フレーム合成部が、前記受信データの誤り訂正符号を分割した複数の部分符号の何れが前記冗長ビットとして含まれているのかを前記決定された無線資源に基づいて判断してフレームを合成する
    基地局の受信方法。
    The radio resource determination unit determines the radio resource to be used for reception based on the information synchronized with the radio terminal and the identifier of the radio terminal.
    The radio receiver uses the determined radio resource to receive a radio frame containing received data and redundant bits from the radio terminal.
    A base station in which the frame synthesizing unit determines which of the plurality of partial codes obtained by dividing the error correction code of the received data is included as the redundant bit based on the determined radio resource, and synthesizes the frame. How to receive.
PCT/JP2020/038449 2019-12-24 2020-10-12 Wireless terminal and transmission method therefor, and base station and reception method therefor WO2021131233A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021566835A JPWO2021131233A1 (en) 2019-12-24 2020-10-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-232175 2019-12-24
JP2019232175 2019-12-24

Publications (1)

Publication Number Publication Date
WO2021131233A1 true WO2021131233A1 (en) 2021-07-01

Family

ID=76574153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038449 WO2021131233A1 (en) 2019-12-24 2020-10-12 Wireless terminal and transmission method therefor, and base station and reception method therefor

Country Status (2)

Country Link
JP (1) JPWO2021131233A1 (en)
WO (1) WO2021131233A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017528980A (en) * 2014-09-25 2017-09-28 インテル アイピー コーポレイション Transmission of common control messages for machine-type communication (MRC) user equipment with reduced bandwidth
WO2018012126A1 (en) * 2016-07-13 2018-01-18 ソニー株式会社 Communication device and communication method
JP2019033541A (en) * 2014-02-18 2019-02-28 華為技術有限公司Huawei Technologies Co.,Ltd. Harq frame data structure and method of transmitting and receiving with harq in systems using blind detection
WO2019051485A1 (en) * 2017-09-11 2019-03-14 Qualcomm Incorporated Uplink acknowledgment mapping and resource allocation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019033541A (en) * 2014-02-18 2019-02-28 華為技術有限公司Huawei Technologies Co.,Ltd. Harq frame data structure and method of transmitting and receiving with harq in systems using blind detection
JP2017528980A (en) * 2014-09-25 2017-09-28 インテル アイピー コーポレイション Transmission of common control messages for machine-type communication (MRC) user equipment with reduced bandwidth
WO2018012126A1 (en) * 2016-07-13 2018-01-18 ソニー株式会社 Communication device and communication method
WO2019051485A1 (en) * 2017-09-11 2019-03-14 Qualcomm Incorporated Uplink acknowledgment mapping and resource allocation

Also Published As

Publication number Publication date
JPWO2021131233A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
CN110036591B (en) Jump pattern for different sensor nodes and variable data length based on telegram split transmission method optimization
CN110089158B (en) Variable sub-packet length for telegram splitting in low power networks
RU2754433C2 (en) Method and device for transmitting
KR20200004378A (en) Techniques for Delivering Synchronization Signal Timing Information
JP6586222B2 (en) Wireless transmission method for simple receiver
US8165064B2 (en) Enhancements to the positioning pilot channel
US11171741B2 (en) Polar code transmission method and apparatus
KR20100065192A (en) Multi-layer cyclic redundancy check code in wireless communication system
MX2012005179A (en) Method and apparatus for generating, transmitting, and receiving a data frame in a wireless communication system.
US20210194538A1 (en) Synchronization beacon
US11336426B2 (en) Authenticated confirmation and activation message
CN111600677A (en) Data transmission method and device
US11026244B2 (en) Method and device in terminal and base station for dynamic scheduling
JP7077276B2 (en) Transmitter and transmit method, receiver and receive method, and program
CN108282249B (en) Control information transmission method and device
RU2743100C1 (en) Methods and devices for transmitting and processing data, network side device and terminal
CN111567074A (en) Channel transmission method and device
WO2021131233A1 (en) Wireless terminal and transmission method therefor, and base station and reception method therefor
CN112753178B (en) Bit selection for hybrid automatic repeat request
JPH1141114A (en) Transmitting device and receiving device and communication method and radio communication system
US11979344B2 (en) Communication device and method
CN113472476B (en) Rate de-matching method, device, computer equipment and storage medium
CN110622529A (en) Communication method of broadcast channel
CN108702236B (en) Communication device for transmitting data packets in a wireless communication network and method therein
CN117279038A (en) Information transmission method, apparatus, base station, device, storage medium, and program product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906778

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021566835

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906778

Country of ref document: EP

Kind code of ref document: A1