WO2021130444A1 - Dispositif d'injection sous haute pression d'un mélange humide - Google Patents

Dispositif d'injection sous haute pression d'un mélange humide Download PDF

Info

Publication number
WO2021130444A1
WO2021130444A1 PCT/FR2020/052588 FR2020052588W WO2021130444A1 WO 2021130444 A1 WO2021130444 A1 WO 2021130444A1 FR 2020052588 W FR2020052588 W FR 2020052588W WO 2021130444 A1 WO2021130444 A1 WO 2021130444A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
injection
reservoirs
filling
wet mixture
Prior art date
Application number
PCT/FR2020/052588
Other languages
English (en)
Inventor
Thierry Chataing
Julien ROUSSELY
Original Assignee
Syctom L'agence Metropolitaine Des Dechets Menagers
Syndicat Interdepartemental Pour L'assainissement De L'agglomeration Parisienne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Syctom L'agence Metropolitaine Des Dechets Menagers, Syndicat Interdepartemental Pour L'assainissement De L'agglomeration Parisienne filed Critical Syctom L'agence Metropolitaine Des Dechets Menagers
Publication of WO2021130444A1 publication Critical patent/WO2021130444A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/78High-pressure apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F1/00Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped
    • F04F1/06Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped the fluid medium acting on the surface of the liquid to be pumped
    • F04F1/10Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped the fluid medium acting on the surface of the liquid to be pumped of multiple type, e.g. with two or more units in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F1/00Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped
    • F04F1/06Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped the fluid medium acting on the surface of the liquid to be pumped
    • F04F1/14Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped the fluid medium acting on the surface of the liquid to be pumped adapted to pump specific liquids, e.g. corrosive or hot liquids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/154Pushing devices, e.g. pistons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • C10J2300/0923Sludge, e.g. from water treatment plant
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0979Water as supercritical steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Definitions

  • the invention relates to the field of the reprocessing of organic waste, and in particular to organic waste of little value such as digestates (or co-digestate).
  • the present invention relates to a device and a method intended to inject a co-digestate at high pressure, and in particular a pressure greater than 250 bars, or even 300 bars, into a supercritical water gasification reactor (GESC).
  • GESC supercritical water gasification reactor
  • This technique makes it possible in particular to treat carbonaceous materials included in effluents such as sludge from purification stations, waste, micro-algae, black liquor from paper mills, or even co-digestates, etc.
  • the viscosity of this type of effluent exhibits a high variability as a function of the pressure which is applied to it.
  • the viscosity can in this respect vary between 110 cPoise and 87,000 cPoise.
  • piston pumps although widely used in the fields of construction or oil as described in documents [1], [2] and [3] cited at the end of the description, do not meet the requirements inherent in gasification in supercritical water.
  • these pumps do not make it possible to inject effluents, and in particular co-digestates, at pressures greater than 200 bars.
  • co-digestates in addition to their non-Newtonian behavior, are subject to water desorption when they are compressed by this type of pump.
  • pressurization and injection devices have been developed for the high pressure injection of fluids such as water and oil. These devices include gear pumps, diaphragm pumps, as well as LEWA valve or ball pumps. These devices are used on an industrial scale for gasification in supercritical water with injection of oxygen for the destruction of liquid chemicals.
  • these devices do not allow fine and optimized metering of an effluent, such as a co-digestate, injected into the gasification reactor in supercritical water.
  • an effluent such as a co-digestate
  • these pressurization devices use a dilution of the co-digestate which consumes large quantities of water which is difficult to recycle.
  • co-digestates comprise a large proportion of solids, in particular abrasive particles which are liable to damage the pressurization devices, and thus lead to long periods of maintenance.
  • An aim of the present invention is therefore to provide a device for pressurizing a wet mixture loaded with organic matter, for example a co-digestate, making it possible to impose on the latter a pressure of at least 250 bars, or even at minus 300 bars, with a view to its injection into a gasification reactor in supercritical water.
  • Another object of the present invention is to provide a device for pressurizing the humic mixture that is more robust, and making it possible to limit any failure liable to occur in the presence of solid matter.
  • Another object of the present invention is to provide a device for pressurizing the humic mixture which allows precise metering of the latter with a view to its injection into a gasification reactor in supercritical water.
  • Another object of the present invention is to provide a device for pressurizing the humic mixture making it possible to limit the consumption of water.
  • the aims of the invention are, at least in part, achieved by a device for injecting under high pressure a wet mixture comprising organic material, in particular a co-digestate in a supercritical water gasification reactor, the device comprising:
  • tubular shaped reservoirs each comprising an upper end and a lower end, preferably said reservoirs having no piston;
  • a filling means making it possible to selectively fill one and the other of the two reservoirs with a wet mixture at their lower end;
  • a water compression means making it possible to compress selectively, by injecting water at the level of the upper end of one or the other of the reservoirs, the wet mixture likely to be present in one and the other other of the two tanks;
  • the device according to the present invention thus makes it possible to impose a high pressure, in particular a pressure greater than 250 bars, or even greater than 300 bars, on the wet mixture without circulation of the latter in the means of compression.
  • the compression means are thus preserved from any damage liable to be induced by the presence of solids in the wet mixture.
  • the filling means comprises a filling pump as well as two filling conduits, each associated with a filling valve valve, intended to inject, selectively, the wet mixture into one or the other. other of the two tanks.
  • the compression means comprises a compression pump as well as two compression conduits, each associated with a compression valve, intended to selectively inject high pressure water into one and the other. other of the two tanks.
  • said device further comprises means for recycling the water injected at high pressure into one and the other of the two reservoirs, and provided with a recycling pipe intended to take said water. at the upper end of said reservoirs.
  • the recycling means thus makes it possible to limit water consumption.
  • the recycling duct is arranged to impose recirculation of the water in the compression means.
  • the recycling means comprises two recycling valves making it possible to take water selectively from one and the other of the reservoirs.
  • the recycling means comprises a buffer tank intended to store the water taken from one and the other of the tanks.
  • the compression means is arranged to take the water stored in the buffer tank with a view to injecting it under pressure into one or the other of the tanks.
  • the reservoirs each form a coil.
  • the reservoirs form a tube of length L and of diameter D, and so that the ratio of the length L to the diameter D is greater than 30.
  • the diameter D is less than 500 mm, or even less than 250 mm.
  • the invention also relates to an installation for gasification with supercritical water of a wet mixture comprising organic matter, in particular a co-digestate, which comprises:
  • the invention also relates to a method for injecting a wet mixture comprising organic material, in particular a co-digestate, at high pressure into a supercritical water gasification reactor using the injection device according to the present invention.
  • the method comprising filling / injection cycles executed so as to inject into the reactor, and from the reservoirs, the wet mixture in an essentially continuous manner and at high pressure, each filling / injection cycle comprising a phase of filling in mixture wet from one or the other of the reservoirs, followed by a phase of injection, into the reactor, of said wet mixture subjected to the high pressure imposed by the water injected by the compression means.
  • the water likely to be present in the latter is discharged.
  • the water evacuated during the filling phase is reinjected into the compression means.
  • the injection phase comprises the compression of the wet mixture injected during the filling phase with the water injected by the compression means, at a pressure greater than 250 bars, or even greater than 300 bars. , and injecting the wet mixture into the reactor via the injection means.
  • the injection phase comprises the complete injection of the wet mixture present in the reservoir concerned, as well as a fraction of the water injected by the compression means into said reservoir. According to one embodiment, as soon as one of the reservoirs is in the filling phase, the other is in the injection phase.
  • FIG. 1 is a schematic representation of a high pressure co-digestate injection device according to a first embodiment of the present invention
  • FIG. 2 is a schematic representation of a high pressure co-digestate injection device according to a second exemplary embodiment of the present invention
  • FIG. 3 is a schematic representation of the implementation of the injection method according to the present invention, in particular, FIG. 3 represents the phase of filling the first reservoir and the phase of injection of the co-digestate, present in the second tank, in the reactor;
  • FIG. 4 represents the phase of injection, towards the reactor, of the co-digestate as well as a fraction of the water present in the second tank;
  • FIG. 5 is a schematic representation of the implementation of the injection method according to the present invention, in particular, FIG. 3 represents the phase of filling the second reservoir and the phase of injection of the co-digestate, present in the first tank, in the reactor;
  • FIG. 6 represents the phase of injection, towards the reactor, of the co-digestate as well as a fraction of the water present in the first tank.
  • FIG. 1 one can see a first embodiment of a device 10 for injecting at high pressure a humic mixture comprising organic material into a reactor 11 for high pressure gasification.
  • the wet mixture comprising organic material intended to be pressurized can in particular comprise a “co-digestate”.
  • said mixture may comprise waste from agriculture, in particular manure.
  • co-digestate is understood to mean a mixture of digestate and sewage plant sludge.
  • digestate is meant a residue from the methanization process of natural organic materials or organic waste products.
  • a co-digestate is a wet mixture (containing water) of organic matter and solid matter, and more particularly of inorganic solid matter.
  • high pressure is understood to mean a pressure greater than 250 bars, or even greater than 300 bars.
  • the co-digestate according to the terms of the present invention can have a Higher Calorific Value (or “PCS”) of less than 12 Megajoules / kilogram.
  • PCS Higher Calorific Value
  • the injection device 10 comprises two so-called reservoirs, respectively, first reservoir 101 and second reservoir 102.
  • Each of the two reservoirs has a tubular shape and extends between an upper end 101a, 102a and a lower end 101b, 102b.
  • the reservoirs 101 and 102 can form a tube of length L and diameter D, and so that the ratio of the length L to the diameter D is greater than 30.
  • the diameter D is less than 500 mm. see less than 250 mm.
  • the tanks 101 and 102 can also include 316L stainless steel.
  • the wall of the reservoir may have a thickness of between 5 mm and 15 mm, in particular 7.11 mm.
  • the length L of a tank may be between 3 m and 15 m, in particular be equal to 4 m.
  • the two reservoirs 101 and 102 can advantageously be devoid of a movable piston.
  • the injection device 10 also comprises a filling means 200 which makes it possible to fill in co-digestate both the first 101 and the second 102 reservoir.
  • the filling of both of the first 101 and of the second 102 reservoir is carried out in particular at the level of the lower end of each of the reservoirs 101 and 102.
  • the filling means 200 may comprise a filling pump 203, intended to take the co-digestate from a co-digestate tank 206.
  • the filling pump may for example be a pump of the NOV brand and of the C23BC11RMA type.
  • the filling means 200 can also comprise a first filling duct 204 and a second filling duct 205 in which the co-digestate taken by the filling pump 203 is conveyed to, respectively, the first reservoir 101 and the second reservoir 102.
  • first filling duct 204 and the second filling duct 205 connect the filling pump 203 and the lower end 101b, 102b, respectively, of the first reservoir 101 and of the second reservoir 102.
  • the first filling duct 204 and the second filling duct 205 are also provided, respectively, with a first filling valve 201 and a second filling valve 202.
  • the injection device 10 also comprises a water compression means 300 making it possible to compress selectively, by injecting water into the water. level of the upper end 101a, 102b, of one or the other of the first reservoir 101 and of the second reservoir 102, the co-digestate capable of being present in either of the two reservoirs.
  • the water compression means 300 may include a compression pump 303, as well as a first compression duct 304 and a second compression duct 305 in which high pressure water exiting from the compression pump. 303 is routed to, respectively, the first reservoir 101 and the second reservoir 102.
  • the compression pump 303 is for example a diaphragm metering pump associated with LEWA brand ball valves.
  • first compression duct 304 and the second compression duct 305 connect the compression pump 303 and the high end 101a, 102a, respectively, of the first reservoir 101 and of the second reservoir 102.
  • the first compression duct 304 and the second compression duct 305 are also provided, respectively, with a first compression valve 301 and a second compression valve 302.
  • the injection device 10 also comprises an injection means
  • the injection means 400 is intended to allow the injection, into the reactor 11, of the co-digestate likely to be present in one and the other of the two reservoirs, and compressed by the injected water. by the compression means 300.
  • the injection means 400 may comprise a first injection duct 404 and a second injection duct 405 in which the co-digestate under high pressure exiting from the lower end 101b, 102b of one or more. the other from the first tank 101 and from the second tank 102 is routed to the reactor.
  • first injection duct 404 and the second injection duct 405 connect the reactor 11 to the lower end 101b, 102b, respectively, of the first tank 101 and of the second tank 102.
  • the first injection duct 404 and the second injection duct 405 are also provided, respectively, with a first injection valve 401 and with a second injection valve 402.
  • the injection device 10 can also comprise a means 500 for recycling the water injected at high pressure into both of the first tank 101 and of the second tank 102.
  • the recycling means 500 is in particular provided with a recycling pipe 503 intended to take the water injected into one and the other of the first reservoir 101 and of the second reservoir at their upper end 101a, 102a.
  • the recycling means 500 comprises a first recycling valve 501 and a second recycling valve 502 making it possible to selectively take water from the first tank 101 and from the second tank 102.
  • the recycling duct 500 can be arranged to impose recirculation of the water taken from the water compression means 300.
  • This arrangement thus makes it possible to limit the consumption of water and its reprocessing.
  • the recycling means comprises a buffer tank 506 intended to store the water taken from one and the other of the tanks.
  • the water compression means 300 is arranged to take the water stored in the buffer tank 506 with a view to injecting it under pressure into one or the other of the first tank 101 and the second. tank 102.
  • FIG. 2 illustrates a second exemplary embodiment of a device 10 for injecting a co-digestate at high pressure into a reactor 11 for high pressure gasification.
  • This second example differs from the first example in that the first reservoir 101 and the second reservoir 102 form a coil.
  • This arrangement makes it possible to increase the length L of each of the reservoirs while limiting the space occupied by the injection device 10.
  • the invention also relates to an installation for gasification with supercritical water of a co-digestate which comprises the reactor 11 for gasification with supercritical water, and the injection device 10 according to the present invention.
  • the invention also relates to a method for injecting a co-digestate at high pressure into the supercritical water gasification reactor using the injection device 10.
  • This method comprises in particular filling / injection cycles executed so as to inject into the reactor, and from the first tank 101 and from the second tank 102, the co-digestate in an essentially continuous manner and at high pressure.
  • each filling / injection cycle comprises a phase of filling the first tank 101 or the second tank 102 with co-digestate, followed by a phase of injecting, into the reactor 11, said co-digestate subjected to the process.
  • high pressure imposed by water injected by the water compression means 300 high pressure imposed by water injected by the water compression means 300.
  • the phase of filling the first tank comprises the withdrawal, by the filling pump, of co-digestate from the co-digestate tank 206.
  • the opening of the first filling valve 201 and the closing of the second filling valve 202 makes it possible to direct the co-digestate taken by the filling pump into the first tank 101.
  • the water likely to be present in the first tank 101 is also discharged at the level from its upper end 101a in the recycling means 500. This evacuation of the water is in particular permitted by the opening of the first recycling valve 501 while the second recycling valve remains closed.
  • an injection phase is carried out from the second reservoir 102.
  • the injection comprises the transfer of the co-digestate present in the second reservoir 102 to the reactor 11.
  • This phase notably implements the water compression means 300 which injects water at high pressure at the upper end 102a of the second reservoir 102.
  • the second valve of 302 is open while the first compression valve 301 remains closed.
  • the high pressure injection of the water is furthermore carried out by means of the compression pump 303.
  • the pressure exerted by the injected water makes it possible to impose a high pressure on the co-digestate present in the second reservoir 102.
  • the opening of the second injection valve 402, both in keeping the first injection valve closed, allows the co-digestate under high pressure to flow through the second injection pipe into the reactor 11.
  • the water injected into the second reservoir forms a water piston.
  • the consideration of a small internal diameter D of the reservoir, and in particular less than 250 mm limits, or even prevents, any infiltration of water between the internal wall of the reservoir concerned and the co-digestate.
  • the immiscibility between the water and the co-digestate eliminates the need for the presence of a mobile piston.
  • the water evacuated from the first reservoir during its filling phase can be injected into the second reservoir 102.
  • This aspect advantageously makes it possible to limit the consumption of water.
  • the injection phase continues until complete injection of the co-digestate present in the second reservoir 102.
  • a fraction of the water it contains is also injected into the reactor 11. This procedure makes it possible to rinse the second injection valve 402, and to entrain any solid material liable to be stuck at said valve.
  • the filling phase of the latter is implemented, while the co-digestate present in the first tank is injected into the reactor during a phase of injection.
  • the phase of filling the second tank comprises the withdrawal, by the filling pump, of co-digestate from the co-digestate tank 206.
  • the opening of the second filling valve 202 and the closing of the first filling valve 201 makes it possible to direct the co-digestate taken by the filling pump into the second tank 102.
  • the water likely to be present in the second tank 102 is also discharged at the level of its upper end 102a in the recycling means 500. This evacuation of the water is in particular permitted by the opening of the second recycling valve 502 while the first recycling valve remains closed.
  • an injection phase is performed from the first reservoir 101.
  • the injection comprises the transfer of the co-digestate present in the first reservoir 101 to the reactor 11. .
  • This phase notably implements the water compression means 300 which injects water at high pressure at the high end 101a of the first reservoir 102.
  • the first valve of 301 is open while the second compression valve 302 remains closed.
  • the high pressure injection of the water is furthermore carried out by means of the compression pump 303.
  • the pressure exerted by the injected water makes it possible to impose a high pressure on the co-digestate present in the first reservoir 101.
  • the opening of the first injection valve 401 both in keeping the second injection valve closed, allows the co-digestate under high pressure to flow through the first injection pipe into the reactor 11.
  • the water injected into the first reservoir forms a water piston.
  • the very nature of the co-disgestate, and in particular its non-Newtonian behavior limits the miscibility of the water piston and said co-disgestate. A slight miscibility, without consequence on the co-disgestate, can be observed at the level of the interface formed between the water piston and the co-disgestate.
  • the consideration of a small internal diameter D of the reservoir and in particular less than 500 mm, or even less than 250 mm, limits, or even prevents, any infiltration of water between the internal wall of the reservoir concerned and the co-digestate.
  • the water discharged from the second reservoir during its filling phase can be injected into the first reservoir 102.
  • This aspect advantageously makes it possible to limit the consumption of water.
  • the injection phase continues until complete injection of the co-digestate present in the first reservoir 101.
  • a fraction of the water that it contains is also the reactor 11. This procedure makes it possible to rinse the first injection valve 401, and to entrain any solid material liable to be stuck at the level of said valve.
  • the injection device according to the present invention is thus arranged to prevent any passage of solid material into the compression pump.
  • the latter is thus protected from abrasion due to the passage of the solid material included in the co-digestate.
  • the injection device limits, or even prevents, any dilution of the co-digestate with the water injected into one or the other of the two reservoirs. This thus results in a better dosage of the co-digestate injected into the reactor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Processing Of Solid Wastes (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

L'invention concerne un dispositif d'injection (10) sous haute pression d'un mélange humide dans un réacteur de gazéification en eau supercritique, le dispositif comprenant : - deux réservoirs (101, 102) de forme tubulaire comprenant chacun une extrémité haute (101a, 102a) et une extrémité basse (101b, 102b); - un moyen de remplissage (200) permettant de remplir en mélange humide sélectivement l'un et l'autre des deux réservoirs (101, 102) au niveau de leur extrémité basse (101b, 102b); - un moyen de compression à eau (300) permettant de compresser sélectivement, par injection d'eau au niveau de l'extrémité haute (101a, 102a) de l'un ou l'autre des réservoirs (101, 102), le mélange humide susceptible d'être présent dans l'un et l'autre des deux réservoirs (101, 102); - un moyen d'injection (400), dans le réacteur, du mélange humide susceptible d'être présent dans l'un et l'autre des deux réservoirs (101, 102), et compressé par l'eau injectée.

Description

Description
Titre : DISPOSITIF D'INJECTION SOUS HAUTE PRESSION D'UN MELANGE HUMIDE DOMAINE TECHNIQUE
L'invention se rapporte au domaine du retraitement des déchets organiques, et notamment aux déchets organiques peu valorisables tels que les digestats (ou co-digestat).
En particulier, la présente invention concerne un dispositif et un procédé destinés à injecter un co-digestat à haute pression, et notamment une pression supérieure à 250 bars, voire 300 bars, dans un réacteur de gazéification en eau supercritique (GESC).
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
La gazéification en eau supercritique de biomasse humide, comprenant par exemple plus de 70 % d'eau est aujourd'hui bien connue de l'homme et est abondamment décrite dans la littérature.
Cette technique permet notamment de traiter les matières carbonées comprises dans des effluents tels que les boues de stations d'épurations, les déchets, les micro-algues, la liqueur noire issue de papeterie, ou encore les co-digestats....
Notamment, le traitement de ces matières carbonées par gazéification en eau supercritique permet de transformer ces dernières en un mélange gazeux, appelé « syngaz », qui comprend en particulier les espèces gazeuses suivantes : CH4, H2, CO2, CO.
La mise en œuvre de ce procédé requiert néanmoins l'injection de l'effluent sous haute pression, et notamment à une pression supérieure à 250 bars, voire 300 bars.
Toutefois, parmi les effluents susceptibles d'être considérés, certains, et notamment les co-digestats, présentent un comportement non Newtonien. En particulier, la viscosité de ce type d'effluent présente une forte variabilité en fonction de la pression qui lui est appliquée. La viscosité peut à cet égard varier entre 110 cPoise et 87000 cPoise.
Ainsi, les pompes à piston, bien que largement mises en œuvre dans les domaines du bâtiment ou du pétrole tel que décrit dans les documents [1], [2] et [3] cités à la fin de la description, ne répondent pas aux exigences inhérentes à la gazéification en eau supercritique.
En particulier, ces pompes ne permettent pas d'injecter des effluents, et notamment des co-digestats, à des pressions supérieures à 200 bars.
Par ailleurs, les co-digestats, en plus de leur comportement non- Newtonien sont sujets à une désorption d'eau lorsqu'ils sont comprimés par ce type de pompe.
De manière alternative, des solutions de convoyage/transfert, décrites dans les documents [4] et [5] cités à la fin de la description, ont pu être proposées. Toutefois, à l'instar des pompes à piston, ces solutions ne permettent pas d'atteindre les pressions d'injection requises.
D'autres dispositifs de pressurisation et d'injection ont été développés pour l'injection à haute pression de fluides tels que l'eau et l'huile. Parmi ces dispositifs figurent les pompes à engrenages, les pompes à membrane, ou encore les pompes à clapets ou à bille LEWA. Ces dispositifs sont utilisés à l'échelle industrielle pour la gazéification en eau supercritique avec injection d'oxygène pour la destruction de produits chimiques liquides.
Cependant, ces dispositifs ne permettent pas un dosage fin et optimisé d'un effluent, tel qu'un co-digestat, injecté dans le réacteur de gazéification en eau supercritique. Notamment, ces dispositifs de pressurisation mettent en œuvre une dilution du co-digestat qui est consommatrice de grandes quantités d'eau difficilement recyclable.
Par ailleurs, les co-digestats comprennent une large proportion de matières solides, notamment des particules abrasives qui sont susceptibles d'endommager les dispositifs de pressurisation, et ainsi entraîner de longues périodes de maintenance.
Un but de la présente invention est donc de proposer un dispositif de pressurisation d'un mélange humide chargé en matière organique, par exemple d'un co- digestat, permettant d'imposer à ce dernier une pression d'au moins 250 bars, voire d'au moins 300 bars, en vue de son injection dans un réacteur de gazéification en eau supercritique.
Un autre but de la présente invention est de proposer un dispositif de pressurisation du mélange humique plus robuste, et permettant de limiter toute défaillance susceptible d'intervenir en présence de matière solide.
Un autre but de la présente invention est de proposer un dispositif de pressurisation du mélange humique qui permet un dosage précis de ce dernier en vue de son injection dans un réacteur de gazéification en eau supercritique.
Un autre but de la présente invention est de proposer un dispositif de pressurisation du mélange humique permettant de limiter la consommation d'eau. EXPOSÉ DE L'INVENTION
Les buts de l'invention sont, au moins en partie, atteints par un dispositif d'injection sous haute pression d'un mélange humide comprenant de la matière organique, notamment un co-digestat dans un réacteur de gazéification en eau supercritique, le dispositif comprenant :
- deux réservoirs de forme tubulaire comprenant chacun une extrémité haute et une extrémité basse, de préférence lesdits réservoirs étant dépourvus de piston ;
- un moyen de remplissage permettant de remplir en mélange humide sélectivement l'un et l'autre des deux réservoirs au niveau de leur extrémité basse ;
- un moyen de compression à eau permettant de compresser sélectivement, par injection d'eau au niveau de l'extrémité haute de l'un ou l'autre des réservoirs, le mélange humide susceptible d'être présent dans l'un et l'autre des deux réservoirs ;
- un moyen d'injection, dans le réacteur, du mélange humide susceptible d'être présent dans l'un et l'autre des deux réservoirs, et compressé par l'eau injectée.
Le dispositif selon la présente invention permet ainsi d'imposer une pression importante, notamment une pression supérieure à 250 bars, voire supérieure à 300 bars, au mélange humide sans circulation de ce dernier dans les moyens de compression. Les moyens de compression sont ainsi préservés de tout endommagement susceptible d'être induit par la présence de matières solides dans le mélange humide.
Selon un mode de mise en œuvre, le moyen de remplissage comprend une pompe de remplissage ainsi que deux conduits de remplissage, associés chacun à une vanne de vanne de remplissage, destinés à injecter, sélectivement, le mélange humide dans l'un ou l'autre des deux réservoirs.
Selon un mode de mise en œuvre, le moyen de compression comprend une pompe de compression ainsi que deux conduits de compression, associés chacun à une vanne de compression, destinés à injecter sélectivement de l'eau à haute pression dans l'un et l'autre des deux réservoirs.
Selon un mode de mise en œuvre, ledit dispositif comprend en outre un moyen de recyclage de l'eau injectée à haute pression dans l'un et l'autre des deux réservoirs, et pourvu d'un conduit de recyclage destiné à prélever ladite eau au niveau de l'extrémité haute desdits réservoirs.
Le moyen de recyclage permet ainsi de limiter la consommation d'eau.
Selon un mode de mise en œuvre, le conduit de recyclage est agencé pour imposer une recirculation de l'eau dans le moyen de compression.
Selon un mode de mise en œuvre, le moyen de recyclage comprend deux vannes de recyclage permettant de prélever l'eau sélectivement dans l'un et l'autre des réservoirs.
Selon un mode de mise en œuvre, le moyen de recyclage comprend un réservoir tampon destiné à stocker l'eau prélevée dans l'un et l'autre des réservoirs.
Selon un mode de mise en œuvre, le moyen de compression est agencé pour prélever l'eau stockée dans le réservoir tampon en vue de l'injecter sous pression dans l'un ou l'autre des réservoirs.
Selon un mode de mise en œuvre, les réservoirs forment chacun un serpentin.
Selon un mode de mise en œuvre, les réservoirs forment un tube de longueur L et de diamètre D, et de sorte que le rapport de la longueur L sur le diamètre D est supérieur à 30. Selon un mode de mise en œuvre, le diamètre D est inférieur à 500 mm, voire inférieure à 250 mm.
L'invention concerne également une installation de gazéification en eau supercritique d'un mélange humide comprenant de la matière organique, notamment un co-digestat, qui comprend :
- un réacteur de gazéification en eau supercritique
- le dispositif d'injection selon la présente invention.
L'invention concerne également un procédé d'injection d'un mélange humide comprenant de la matière organique, notamment un co-digestat, à haute pression dans un réacteur de gazéification en eau supercritique mettant en œuvre le dispositif d'injection selon la présente invention, le procédé comprenant des cycles de remplissage/injection exécutés de manière à injecter dans le réacteur, et à partir des réservoirs, le mélange humide de manière essentiellement continue et à haute pression, chaque cycle de remplissage/injection comprenant une phase de remplissage en mélange humide de l'un ou l'autre des réservoirs, suivie d'une phase d'injection, dans le réacteur, dudit mélange humide soumis à la haute pression imposée par de l'eau injectée par le moyen de compression.
Selon un mode de mise en œuvre, lors de la phase de remplissage d'un des réservoirs, l'eau susceptible d'être présente dans ce dernier est évacuée.
Selon un mode de mise en œuvre, l'eau évacuée lors de la phase de remplissage est réinjectée dans le moyen de compression.
Selon un mode de mise en œuvre, la phase d'injection comprend la compression du mélange humide injecté lors de la phase de remplissage par l'eau injectée par le moyen de compression, à une pression supérieure à 250 bars, voire supérieure à 300 bars, et l'injection du mélange humide dans le réacteur via le moyen d'injection.
Selon un mode de mise en œuvre, la phase d'injection comprend l'injection complète du mélange humide présent dans le réservoir concerné, ainsi qu'une fraction de l'eau injectée par le moyen de compression dans ledit réservoir. Selon un mode de mise en œuvre, dès lors qu'un des réservoirs est en phase de remplissage, l'autre est en phase d'injection.
BRÈVE DESCRIPTION DES DESSINS
D'autres caractéristiques et avantages apparaîtront dans la description qui va suivre d'un dispositif d'injection d'un mélange humide comprenant de la matière organique à haute pression selon l'invention, donnés à titre d'exemples non limitatifs, en référence aux dessins annexés dans lesquels :
La figure 1 est une représentation schématique d'un dispositif d'injection de co-digestat à haute pression selon un premier exemple de réalisation de la présente invention ;
La figure 2 est une représentation schématique d'un dispositif d'injection de co-digestat à haute pression selon un deuxième exemple de réalisation de la présente invention ;
La figure 3 est une représentation schématique de la mise en œuvre du procédé d'injection selon la présente invention, en particulier, la figure 3 représente la phase de remplissage du premier réservoir et la phase d'injection du co-digestat, présent dans le deuxième réservoir, dans le réacteur ;
La figure 4 représente la phase d'injection, vers le réacteur, du co- digestat ainsi qu'une fraction de l'eau présents dans le deuxième réservoir ;
La figure 5 est une représentation schématique de la mise en œuvre du procédé d'injection selon la présente invention, en particulier, la figure 3 représente la phase de remplissage du deuxième réservoir et la phase d'injection du co-digestat, présent dans le premier réservoir, dans le réacteur ;
La figure 6 représente la phase d'injection, vers le réacteur, du co- digestat ainsi qu'une fraction de l'eau présente dans le premier réservoir.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Par souci de clarté, seuls les éléments qui sont utiles à la compréhension des modes de réalisation de l'invention ont été représentés et sont détaillés. En particulier, la mise en œuvre de la gazéification en eau supercritique n'est pas détaillée. Sur la figure 1, on peut voir un premier exemple de réalisation d'un dispositif d'injection 10 à haute pression d'un mélange humique comprenant de la matière organique dans un réacteur 11 de gazéification à haute pression.
Le mélange humide comprenant de la matière organique destiné à être mis sous pression peut notamment comprendre un « co-digestat ».
À cet égard, la suite de la description ne fait référence qu'à un co- digestat. Il est toutefois clair que l'invention n'est limitée à ce seul aspect. Ainsi, tout mélange humide chargé en matière organique, et présentant éventuellement un comportement non-newtonien, peut également être considéré.
Notamment, ledit mélange peut comprendre des déchets issus de l'agriculture, notamment du fumier.
Par « co-digestat », on entend un mélange de digestat et de boue de station d'épuration.
Par « digestat », on entend un résidu du processus de méthanisation de matières organiques naturelles ou de produits résiduaires organiques.
En d'autres termes, un co-digestat est un mélange humide (contenant de l'eau) de matière organique et de matière solide, et plus particulièrement de matière solide minérale.
Par « haute pression », on entend une pression supérieure à 250 bars, voire supérieure à 300 bars.
Le co-digestat selon les termes de la présente invention peut présenter un Pouvoir Calorifique Supérieur (ou « PCS ») inférieure à 12 Mégajoules / kilogramme.
Le dispositif d'injection 10 comprend deux réservoirs dits, respectivement, premier réservoir 101 et deuxième réservoir 102.
Chacun des deux réservoirs présente une forme tubulaire et s'étend entre une extrémité haute 101a, 102a et une extrémité basse 101b, 102b.
Plus particulièrement, les réservoirs 101 et 102 peuvent former un tube de longueur L et de diamètre D, et de sorte que le rapport de la longueur L sur le diamètre D est supérieur à 30. Par exemple, le diamètre D est inférieur à 500 mm voire inférieur à 250 mm. Les réservoirs 101 et 102 peuvent par ailleurs comprendre l'inox 316L.
Toujours à titre d'exemple, la paroi du réservoir peut présenter une épaisseur comprise entre 5 mm et 15 mm, notamment 7,11 mm. Par ailleurs, la longueur L d'un réservoir peut être comprise entre 3 m et 15 m, notamment être égale à 4 m.
Les deux réservoirs 101 et 102 peuvent avantageusement être dépourvus de piston mobile.
Le dispositif d'injection 10 comprend également un moyen de remplissage 200 qui permet de remplir en co-digestat l'un et l'autre du premier 101 et du deuxième 102 réservoir.
Le remplissage de l'un et l'autre du premier 101 et du deuxième 102 réservoir est notamment exécuté au niveau de l'extrémité basse de chacun des réservoirs 101 et 102.
À cet égard, le moyen de remplissage 200 peut comprendre une pompe de remplissage 203, destiné à prélever le co-digestat d'un réservoir de co-digestat 206.
La pompe de remplissage peut par exemple être une pompe de marque NOV et du type C23BC11RMA.
Le moyen de remplissage 200 peut également comprend un premier conduit de remplissage 204 et un deuxième conduit de remplissage 205 dans lesquels le co-digestat prélevé par la pompe de remplissage 203 est acheminé vers, respectivement, le premier réservoir 101 et le deuxième réservoir 102.
En d'autres termes, le premier conduit de remplissage 204 et le deuxième conduit de remplissage 205 relient la pompe de remplissage 203 et l'extrémité basse 101b, 102b, respectivement, du premier réservoir 101 et du deuxième réservoir 102.
Le premier conduit de remplissage 204 et le deuxième conduit de remplissage 205 sont également pourvus, respectivement, d'une première vanne de remplissage 201 et d'une deuxième vanne de remplissage 202.
Le dispositif d'injection 10 comprend également un moyen de compression à eau 300 permettant de compresser sélectivement, par injection d'eau au niveau de l'extrémité haute 101a, 102b, de l'un ou l'autre du premier réservoir 101 et du deuxième réservoir 102, le co-digestat susceptible d'être présent dans l'un et l'autre des deux réservoirs.
À cet égard, le moyen de compression à eau 300 peut comprendre une pompe de compression 303, ainsi qu'un premier conduit de compression 304 et un deuxième conduit de compression 305 dans lesquels de l'eau sous haute pression sortant de la pompe de compression 303 est acheminée vers, respectivement, le premier réservoir 101 et le deuxième réservoir 102.
La pompe de compression 303 est par exemple une pompe doseuse à membrane associée à des clapets à bille de la marque LEWA.
En d'autres termes, le premier conduit de compression 304 et le deuxième conduit de compression 305 relient la pompe de compression 303 et l'extrémité haute 101a, 102a, respectivement, du premier réservoir 101 et du deuxième réservoir 102.
Le premier conduit de compression 304 et le deuxième conduit de compression 305 sont également pourvus, respectivement, d'une première vanne de compression 301 et d'une deuxième vanne de compression 302.
Le dispositif d'injection 10 comprend également un moyen d'injection
400.
En particulier, le moyen d'injection 400 est destiné à permettre l'injection, dans le réacteur 11, du co-digestat susceptible d'être présent dans l'un et l'autre des deux réservoirs, et compressé par l'eau injectée par le moyen de compression 300.
À cet égard, le moyen d'injection 400 peut comprendre un premier conduit d'injection 404 et un deuxième conduit d'injection 405 dans lesquels le co- digestat sous haute pression sortant de l'extrémité basse 101b, 102b de l'un ou l'autre du premier réservoir 101 et du deuxième réservoir 102 est acheminé vers le réacteur.
En d'autres termes, le premier conduit d'injection 404 et le deuxième conduit d'injection 405 relient le réacteur 11 à l'extrémité basse 101b, 102b, respectivement, du premier réservoir 101 et du deuxième réservoir 102. Le premier conduit d'injection 404 et le deuxième conduit d'injection 405 sont également pourvus, respectivement, d'une première vanne d'injection 401 et d'une deuxième vanne d'injection 402.
Le dispositif d'injection 10 peut également comprendre un moyen de recyclage 500 de l'eau injectée à haute pression dans l'un et l'autre du premier réservoir 101 et du deuxième réservoir 102. Le moyen de recyclage 500 est notamment pourvu d'un conduit de recyclage 503 destiné à prélever l'eau injecté dans l'un et l'autre du premier réservoir 101 et du deuxième réservoir au niveau de leur extrémité haute 101a, 102a.
Plus particulièrement, le moyen de recyclage 500 comprend une première vanne de recyclage 501 et une deuxième vanne de recyclage 502 permettant de prélever sélectivement l'eau du premier réservoir 101 et du deuxième réservoir 102.
De manière avantageuse, le conduit de recyclage 500 peut être agencé pour imposer une recirculation de l'eau prélevée dans le moyen de compression à eau 300.
Cet agencement permet ainsi de limiter la consommation d'eau et son retraitement.
Selon un mode de réalisation avantageux, le moyen de recyclage comprend un réservoir tampon 506 destiné à stocker l'eau prélevée dans l'un et l'autre des réservoirs. Toujours selon ce mode de réalisation, le moyen de compression à eau 300 est agencé pour prélever l'eau stockée dans le réservoir tampon 506 en vue de l'injecter sous pression dans l'un ou l'autre du premier réservoir 101 et du deuxième réservoir 102.
La figure 2 illustre un deuxième exemple de réalisation d'un dispositif d'injection 10 à haute pression d'un co-digestat dans un réacteur 11 de gazéification à haute pression.
Ce deuxième exemple diffère du premier exemple en ce que le premier réservoir 101 et le deuxième réservoir 102 forment un serpentin. Cet agencement permet d'augmenter la longueur L de chacun des réservoirs tout en limitant l'espace occupé par le dispositif d'injection 10. L'invention concerne également une installation de gazéification en eau supercritique d'un co-digestat qui comprend le réacteur 11 de gazéification en eau supercritique, et le dispositif d'injection 10 selon la présente invention.
L'invention concerne également un procédé d'injection d'un co-digestat à haute pression dans le réacteur de gazéification en eau supercritique mettant en œuvre le dispositif d'injection 10.
Ce procédé comprend en particulier des cycles de remplissage/injection exécutés de manière à injecter dans le réacteur, et à partir du premier réservoir 101 et du deuxième réservoir 102, le co-digestat de manière essentiellement continue et à haute pression.
A cet égard, chaque cycle de remplissage/injection comprend une phase de remplissage en co-digestat du premier réservoir 101 ou du deuxième réservoir 102, suivie d'une phase d'injection, dans le réacteur 11, dudit co-digestat soumis à la haute pression imposée par de l'eau injectée par le moyen de compression à eau 300.
En d'autres termes, dès lors qu'une phase de remplissage est exécutée au niveau d'un du premier et du deuxième réservoir, une phase d'injection est exécutée au niveau de l'autre du premier et du deuxième réservoir. Cet enchaînement permet d'assurer une injection continue de co-digestat dans le réacteur.
Ainsi, tel qu'illustré à la figure 3, la phase de remplissage du premier réservoir comprend le prélèvement, par la pompe de remplissage, de co-digestat dans le réservoir de co-digestat 206. L'ouverture de la première vanne de remplissage 201 et la fermeture de la deuxième vanne de remplissage 202, permet de diriger le co-digestat prélevé par la pompe de remplissage dans le premier réservoir 101. L'eau susceptible d'être présente dans le premier réservoir 101 est par ailleurs évacuée au niveau de son extrémité haute 101a dans le moyen de recyclage 500. Cette évacuation de l'eau est notamment permise par l'ouverture de la première vanne de recyclage 501 tandis que la deuxième vanne de recyclage reste fermée.
De manière simultanée (figure 3) à la phase de remplissage du premier réservoir 101, une phase d'injection est exécutée à partir du deuxième réservoir 102. En particulier, l'injection comprend le transfert du co-digestat présent dans le deuxième réservoir 102 vers le réacteur 11.
Cette phase met notamment en œuvre, le moyen de compression à eau 300 qui injecte de l'eau à haute pression au niveau de l'extrémité haute 102a du deuxième réservoir 102. Lors de cette phase, la deuxième vanne de 302 est ouverte tandis que la première vanne de compression 301 reste fermée.
L'injection à haute pression de l'eau est par ailleurs exécutée au moyen de la pompe de compression 303.
Ainsi, lors de cette phase d'injection, la pression exercée par l'eau injectée permet d'imposer une haute pression au co-digestat présent dans le deuxième réservoir 102. L'ouverture de la deuxième vanne d'injection 402, tant en conservant la première vanne d'injection fermée, permet au co-digestat sous haute pression de s'écouler via le deuxième conduit d'injection dans le réacteur 11.
Ainsi, l'eau injectée dans le deuxième réservoir forme un piston d'eau. La nature même du co-disgestat, et en particulier son comportement non-newtonien, limite la miscibilité du piston d'eau et dudit co-disgestat. Une légère miscibilité, sans conséquence sur le co-disgestat, pourra être observée au niveau de l'interface formée entre le piston d'eau et le co-disgstat. En outre, la considération d'un faible diamètre interne D de réservoir, et notamment inférieur à 250 mm limite, voire prévient, toute infiltration d'eau entre la paroi interne du réservoir concerné et le co-digestat.
L'immiscibilité entre l'eau et le co-digestat permet de s'affranchir de la présence d'un piston mobile.
De manière particulièrement avantageuse, l'eau évacuée du premier réservoir lors de sa phase de remplissage, peut être injectée dans le deuxième réservoir 102. Cet aspect permet avantageusement de limiter la consommation d'eau.
La phase d'injection se poursuit jusqu'à injection complète du co- digestat présent dans le deuxième réservoir 102. De manière avantageuse, et tel qu'illustré à la figure 4, à l'issue de l'injection complète du co-digestat présent dans le deuxième réservoir 102, une fraction de l'eau qu'il contient est également injectée dans le réacteur 11. Cette procédure permet de rincer la deuxième vanne d'injection 402, et d'entraîner toute matière solide susceptible d'être coincée au niveau de ladite vanne.
A l'issue de la phase d'injection à partir du deuxième réservoir, la phase de remplissage de ce dernier est mise en œuvre, tandis que le co-digestat présent dans le premier réservoir est injecté dans le réacteur lors d'une phase de d'injection.
Ainsi, tel qu'illustré à la figure 5, la phase de remplissage du deuxième réservoir comprend le prélèvement, par la pompe de remplissage, de co-digestat dans le réservoir de co-digestat 206. L'ouverture de la deuxième vanne de remplissage 202 et la fermeture de la première vanne de remplissage 201, permet de diriger le co-digestat prélevé par la pompe de remplissage dans le deuxième réservoir 102. L'eau susceptible d'être présente dans le deuxième réservoir 102 est par ailleurs évacuée au niveau de son extrémité haute 102a dans le moyen de recyclage 500. Cette évacuation de l'eau est notamment permise par l'ouverture de la deuxième vanne de recyclage 502 tandis que la première vanne de recyclage reste fermée.
De manière simultanée à la phase de remplissage du deuxième réservoir 102, une phase d'injection est exécutée à partir du premier réservoir 101. En particulier, l'injection comprend le transfert du co-digestat présent dans le premier réservoir 101 vers le réacteur 11.
Cette phase met notamment en œuvre, le moyen de compression à eau 300 qui injecte de l'eau à haute pression au niveau de l'extrémité haute 101a du premier réservoir 102. Lors de cette phase, la première vanne de 301 est ouverte tandis que la deuxième vanne de compression 302 reste fermée.
L'injection à haute pression de l'eau est par ailleurs exécutée au moyen de la pompe de compression 303.
Ainsi, lors de cette phase d'injection, la pression exercée par l'eau injectée permet d'imposer une haute pression au co-digestat présent dans le premier réservoir 101. L'ouverture de la première vanne d'injection 401, tant en conservant la deuxième vanne d'injection fermée, permet au co-digestat sous haute pression de s'écouler via le premier conduit d'injection dans le réacteur 11. Ainsi, l'eau injectée dans le premier réservoir forme un piston d'eau. La nature même du co-disgestat, et en particulier son comportement non-newtonien, limite la miscibilité du piston d'eau et dudit co-disgestat. Une légère miscibilité, sans conséquence sur le co-disgestat, pourra être observée au niveau de l'interface formée entre le piston d'eau et le co-disgestat. En outre, la considération d'un faible diamètre interne D de réservoir, et notamment inférieur à 500 mm, voire inférieur à 250 mm limite, voire prévient, toute infiltration d'eau entre la paroi interne du réservoir concerné et le co-digestat.
De manière particulièrement avantageuse, l'eau évacuée du deuxième réservoir lors de sa phase de remplissage, peut être injectée dans le premier réservoir 102. Cet aspect permet avantageusement de limiter la consommation d'eau.
La phase d'injection se poursuit jusqu'à injection complète du co- digestat présent dans le premier réservoir 101. De manière avantageuse, et tel qu'illustré à la figure 6, à l'issue de l'injection complète du co-digestat présent dans le premier réservoir 101, une fraction de l'eau qu'il contient est également le réacteur 11. Cette procédure permet de rincer la première vanne d'injection 401, et d'entraîner toute matière solide susceptible d'être coincer au niveau de ladite vanne.
Le dispositif d'injection selon la présente invention est ainsi agencé pour éviter tout passage de matière solide dans la pompe de compression. Cette dernière est ainsi protégée de l'abrasion due au passage de la matière solide comprise dans le co- digestat.
Par ailleurs, le dispositif d'injection limite, voire prévient, toute dilution du co-digestat avec l'eau injectée dans l'un ou l'autre des deux réservoirs. Il en résulte ainsi un meilleur dosage du co-digestat injecté dans le réacteur. RÉFÉRENCES
[1] EP 2002121 Bl ;
[2] EP 0991864 ;
[3] EP1884656 ; [4] KR100885902 ;
[5] CN105626627;

Claims

Revendications
1. Dispositif d'injection (10) sous haute pression d'un mélange humide comprenant de la matière organique, notamment un co-digestat, dans un réacteur de gazéification en eau supercritique, le dispositif comprenant :
- deux réservoirs (101, 102) de forme tubulaire comprenant chacun une extrémité haute (101a, 102a) et une extrémité basse (101b, 102b) ;
- un moyen de remplissage (200) permettant de remplir en mélange humide sélectivement l'un et l'autre des deux réservoirs (101, 102) au niveau de leur extrémité basse (101b, 102b) ;
- un moyen de compression à eau (300) permettant de compresser sélectivement, par injection d'eau au niveau de l'extrémité haute (101a, 102a) de l'un ou l'autre des réservoirs (101, 102), le mélange humide susceptible d'être présent dans l'un et l'autre des deux réservoirs (101, 102) ;
- un moyen d'injection (400), dans le réacteur, du mélange humide susceptible d'être présent dans l'un et l'autre des deux réservoirs (101, 102), et compressé par l'eau injectée.
2. Dispositif d'injection (10) selon la revendication 1, dans lequel le moyen de remplissage (200) comprend une pompe de remplissage (203) ainsi que deux conduits de remplissage (204, 205), associés chacun à une vanne de vanne de remplissage (201, 202), destinés à injecter, sélectivement, le mélange humide dans l'un ou l'autre des deux réservoirs (101, 102).
3. Dispositif d'injection (10) selon la revendication 1 ou 2, dans lequel le moyen de compression à eau (300) comprend une pompe de compression (303) ainsi que deux conduits de compression (304, 305), associés chacun à une vanne de compression (301, 302), destinés à injecter sélectivement de l'eau à haute pression dans l'un et l'autre des deux réservoirs (101, 102).
4. Dispositif d'injection (10) selon l'une des revendications 1 à 3, dans lequel ledit dispositif comprend en outre un moyen de recyclage (500) de l'eau injectée à haute pression dans l'un et l'autre des deux réservoirs (101, 102), et pourvu d'un conduit de recyclage destiné à prélever ladite eau au niveau de l'extrémité haute (101a, 102a) desdits réservoirs (101, 102).
5. Dispositif d'injection (10) selon la revendication 4, dans lequel le conduit de recyclage est agencé pour imposer une recirculation de l'eau dans le moyen de compression à eau (300).
6. Dispositif d'injection (10) selon la revendication 4 ou 5, dans lequel le moyen de recyclage (500) comprend deux vannes de recyclage permettant de prélever l'eau sélectivement dans l'un et l'autre des réservoirs (101, 102).
7. Dispositif d'injection (10) selon l'une des revendications 4 à 6, dans lequel le moyen de recyclage (500) comprend un réservoir tampon (506) destiné à stocker l'eau prélevée dans l'un et l'autre des réservoirs (101, 102).
8. Dispositif d'injection (10) selon la revendication 7, dans lequel le moyen de compression à eau (300) est agencé pour prélever l'eau stockée dans le réservoir tampon (506) en vue de l'injecter sous pression dans l'un ou l'autre des réservoirs (101, 102).
9. Dispositif d'injection (10) selon l'une des revendications 1 à 8, dans lequel les réservoirs (101, 102) forment chacun un serpentin.
10. Dispositif d'injection (10) selon l'une des revendications 1 à 8, dans lequel les réservoirs (101, 102) forment un tube de longueur L et de diamètre D, et de sorte que le rapport de la longueur L sur le diamètre D est supérieur à 30.
11. Dispositif d'injection (10) selon la revendication 10, dans lequel le diamètre D est inférieur à 500 mm voire inférieur à 250 mm.
12. Installation de gazéification en eau supercritique d'un mélange humide comprenant de la matière organique qui comprend :
- un réacteur de gazéification en eau supercritique
- le dispositif d'injection (10) selon l'une des revendications 1 à 11.
13. Procédé d'injection d'un mélange humide comprenant de la matière organique, notamment un co-disgestat, à haute pression dans un réacteur de gazéification en eau supercritique mettant en œuvre le dispositif d'injection (10) selon l'une des revendications 1 à 11, le procédé comprenant des cycles de remplissage/injection exécutés de manière à injecter dans le réacteur, et à partir des réservoirs (101, 102), le mélange humide de manière essentiellement continue et à haute pression, chaque cycle de remplissage/injection comprenant une phase de remplissage en mélange humide de l'un ou l'autre des réservoirs (101, 102), suivie d'une phase d'injection, dans le réacteur, dudit mélange humide soumis à la haute pression imposée par de l'eau injectée par le moyen de compression à eau (300).
14. Procédé d'injection selon la revendication 13, dans lequel lors de la phase de remplissage d'un des réservoirs (101, 102), l'eau susceptible d'être présente dans ce dernier est évacuée.
15. Procédé d'injection selon la revendication 14, dans lequel l'eau évacuée lors de la phase de remplissage est réinjectée dans le moyen de compression à eau (300).
16. Procédé d'injection selon l'une des revendications 13 à 15, dans lequel la phase d'injection comprend la compression du mélange humide injecté lors de la phase de remplissage par l'eau injectée par le moyen de compression à eau (300), à une pression supérieure à 250 bars, voire supérieure à 300 bars, et l'injection du mélange humide dans le réacteur via le moyen d'injection (400).
17. Procédé d'injection selon la revendication 16, dans lequel la phase d'injection comprend l'injection complète du mélange humide présent dans le réservoir concerné, ainsi qu'une fraction de l'eau injectée par le moyen de compression à eau (300) dans ledit réservoir.
18. Procédé d'injection selon l'une des revendications 13 à 17, dans lequel dès lors qu'un des réservoirs (101, 102) est en phase de remplissage, l'autre est en phase d'injection.
19. Procédé d'injection selon l'une des revendications 13 à 18, dans lequel le mélange humide est un fluide non-newtonien.
PCT/FR2020/052588 2019-12-23 2020-12-22 Dispositif d'injection sous haute pression d'un mélange humide WO2021130444A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1915396 2019-12-23
FR1915396A FR3105207B1 (fr) 2019-12-23 2019-12-23 Dispositif d’injection sous haute pression d’un mélange humide

Publications (1)

Publication Number Publication Date
WO2021130444A1 true WO2021130444A1 (fr) 2021-07-01

Family

ID=70613995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/052588 WO2021130444A1 (fr) 2019-12-23 2020-12-22 Dispositif d'injection sous haute pression d'un mélange humide

Country Status (2)

Country Link
FR (1) FR3105207B1 (fr)
WO (1) WO2021130444A1 (fr)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2704034A (en) * 1951-10-20 1955-03-15 Aeroprojects Inc Pumping system
US4460318A (en) * 1982-08-13 1984-07-17 The United States Of America As Represented By The United States Department Of Energy Apparatus and method for transferring slurries
EP0991864A1 (fr) 1997-06-26 2000-04-12 Putzmeister Aktiengesellschaft Pompe a piston pour matieres consistantes
FR2874513A1 (fr) * 2004-08-25 2006-03-03 Commissariat Energie Atomique Dipositif et installation d'injection de matieres particulaires dans une enceinte et procede associe.
EP1884656A1 (fr) 2006-08-04 2008-02-06 Siemens Automotive Hydraulics Sa Pompe transfert pour injection d'essence à haute pression
KR100885902B1 (ko) 2008-03-06 2009-02-26 서정희 슬러지 및 음식물찌꺼기 등의 고점성 유체 이송용피스톤펌프
EP2002121B1 (fr) 2006-04-04 2010-10-13 Putzmeister Solid Pumps GmbH Pompe a piston pour substances epaisses
WO2013030027A1 (fr) * 2011-08-26 2013-03-07 Harinck John Appareil de réaction et procédé pour réaliser la gazéification de biomasse humide
CN105626627A (zh) 2016-03-17 2016-06-01 四川川润液压润滑设备有限公司 一种液压推力污泥高压柱塞泵

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2704034A (en) * 1951-10-20 1955-03-15 Aeroprojects Inc Pumping system
US4460318A (en) * 1982-08-13 1984-07-17 The United States Of America As Represented By The United States Department Of Energy Apparatus and method for transferring slurries
EP0991864A1 (fr) 1997-06-26 2000-04-12 Putzmeister Aktiengesellschaft Pompe a piston pour matieres consistantes
FR2874513A1 (fr) * 2004-08-25 2006-03-03 Commissariat Energie Atomique Dipositif et installation d'injection de matieres particulaires dans une enceinte et procede associe.
EP2002121B1 (fr) 2006-04-04 2010-10-13 Putzmeister Solid Pumps GmbH Pompe a piston pour substances epaisses
EP1884656A1 (fr) 2006-08-04 2008-02-06 Siemens Automotive Hydraulics Sa Pompe transfert pour injection d'essence à haute pression
KR100885902B1 (ko) 2008-03-06 2009-02-26 서정희 슬러지 및 음식물찌꺼기 등의 고점성 유체 이송용피스톤펌프
WO2013030027A1 (fr) * 2011-08-26 2013-03-07 Harinck John Appareil de réaction et procédé pour réaliser la gazéification de biomasse humide
CN105626627A (zh) 2016-03-17 2016-06-01 四川川润液压润滑设备有限公司 一种液压推力污泥高压柱塞泵

Also Published As

Publication number Publication date
FR3105207A1 (fr) 2021-06-25
FR3105207B1 (fr) 2022-04-29

Similar Documents

Publication Publication Date Title
FR3034836A1 (fr) Station et procede de remplissage d'un reservoir avec un gaz carburant
EP1802389B1 (fr) Dispositif et installation d'injection de matières particulaires dans une enceinte et procédé associé
FR2467628A1 (fr) Appareil de transfert de matieres solides entre des zones a pressions differentes, comportant un separateur solide-liquide
FR2890389A1 (fr) Procede d'epuration biologique d'eaux usees avec ajout d'agent oxydant
WO2005113459A1 (fr) Systeme a pressurisation et a purification automatiques et procede de production de methane par digestion anaerobie
WO2021130444A1 (fr) Dispositif d'injection sous haute pression d'un mélange humide
CA2987529A1 (fr) Procede et dispositif d'epuration d'eaux domestiques ou industrielles
EP2293888B1 (fr) Procede et installation de traitement de dechets et de production de methane
WO2021130445A1 (fr) Dispositif d'injection sous haute pression d'une ressource organique
EP3140030B1 (fr) Dispositif pour alimenter ou soutirer en continu un procede sous pression en solides divises
FR2473255A1 (fr) Procede et dispositif pour la production de biotmethane par fermentation anaerobie de pailles, fumiers et materiaux analogues
EP3932873A1 (fr) Dispositif d'injection sous haute pression d'un effluent
EP1838425A1 (fr) Procede de traitement physique et biologique d'une biomasse, et dispositif de mise en oevre de ce procede.
EP1542934A2 (fr) Procede de traitement d eaux residuaires par bio-reacteur a membranes
FR2952574A1 (fr) Procede pour le traitement de troncs d'arbres coupes, par impregnation des fibres d'une solution de traitement et installation pour le traimtement de troncs d'arbres coupes
EP3421114B1 (fr) Systeme de separation et d'epuration de deux gaz constitutifs d'un melange gazeux
WO2021123693A1 (fr) Installation de gazéification hydrothermale de biomasse, comprenant, en aval du réacteur de gazéification, un système de détente du flux aqueux tolérant la présence de particules solides. procédé associé de fonctionnement de l'installation.
CA2797686A1 (fr) Systeme de recuperation d'eaux grises
EP2086891B1 (fr) Procédé et installation de traitement anaérobie de matières à concentration de matière sèche élevée
FR2972643A1 (fr) Dispositif de recuperation de dioxyde de carbone a partir d'un biogaz
WO2021123695A1 (fr) Réacteur échangeur thermique
FR2822150A1 (fr) Procede et installation pour le traitement des eaux mettant en oeuvre au moins un bio-reacteur a membrane immergee
FR2947187A1 (fr) Procede et dispositif de traitement d'un compose chimique et/ou une espece chimique et/ou transporte par un liquide et/ou un gaz
EP2799534A1 (fr) Procédé et appareil de digestion de matière organique
BE897693A (fr) Procede et installation de traitement principalement de residus liquides semi-liquides comprenant une fermentation pour la production de biogaz ou d'acides gras ou d'autres molecules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20851289

Country of ref document: EP

Kind code of ref document: A1