WO2021129506A1 - 旁链路参考信号接收功率的测量方法及装置、通信设备 - Google Patents

旁链路参考信号接收功率的测量方法及装置、通信设备 Download PDF

Info

Publication number
WO2021129506A1
WO2021129506A1 PCT/CN2020/137142 CN2020137142W WO2021129506A1 WO 2021129506 A1 WO2021129506 A1 WO 2021129506A1 CN 2020137142 W CN2020137142 W CN 2020137142W WO 2021129506 A1 WO2021129506 A1 WO 2021129506A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
reference signal
side link
rsrp
received power
Prior art date
Application number
PCT/CN2020/137142
Other languages
English (en)
French (fr)
Inventor
彭淑燕
纪子超
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2022527113A priority Critical patent/JP2023500970A/ja
Priority to BR112022012375A priority patent/BR112022012375A2/pt
Priority to EP20905543.3A priority patent/EP4084364A4/en
Priority to KR1020227021237A priority patent/KR20220104024A/ko
Publication of WO2021129506A1 publication Critical patent/WO2021129506A1/zh
Priority to US17/839,768 priority patent/US20220312252A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/383TPC being performed in particular situations power control in peer-to-peer links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/26Monitoring; Testing of receivers using historical data, averaging values or statistics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to the field of communication technology, and in particular to a method and device for measuring the received power of a side link reference signal, and communication equipment.
  • the path loss can be calculated based on the measured RSRP as the reference RSRP, which can be used for SL open-loop power control or autonomous resource selection In the mode (mode 2), judge whether the resource is occupied, etc.
  • PSSCH Physical sidelink shared channel
  • DMRS Demodulation Reference Signal
  • RSRP Reference Signal Received Power
  • the embodiment of the present invention provides a method and device for measuring the received power of a side link reference signal, and communication equipment, which can ensure the throughput of the communication system.
  • an embodiment of the present invention also provides an apparatus for measuring the received power of a side link reference signal, which is applied to a terminal, and includes:
  • Processing module used to determine the measurement port of the side link reference signal
  • an embodiment of the present invention also provides a communication device.
  • the communication device includes a processor, a memory, and a computer program stored on the memory and running on the processor, and the processor executes all
  • the computer program implements the steps of the method for measuring the received power of the side link reference signal as described above.
  • an embodiment of the present invention provides a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the side link reference signal as described above is realized The steps of the received power measurement method.
  • an embodiment of the present invention provides a computer program product, which is executed by at least one processor to implement the method for measuring the received power of a side link reference signal as described above.
  • an embodiment of the present invention provides an apparatus for measuring the received power of a side link reference signal, and the apparatus is configured to perform the above-mentioned method for measuring the received power of a side link reference signal.
  • the measurement port of the side link reference signal is determined, and the reference signal receiving power is obtained based on the determined measurement port.
  • the obtained reference signal receiving power can accurately measure the communication status of the receiving end, and the obtained reference signal receiving power can be used as a reference Power is used to calculate path loss, and can be used for power control, judgment of available resources in autonomous resource selection mode, etc., so as to optimize the interference between systems and improve the throughput of the communication system.
  • Fig. 1 shows a block diagram of a mobile communication system to which an embodiment of the present invention can be applied
  • FIG. 2 shows a schematic flowchart of a method for measuring the received power of a side link reference signal of a terminal according to an embodiment of the present invention
  • FIG. 3 shows a schematic diagram of a module structure of a terminal according to an embodiment of the present invention
  • Fig. 4 shows a block diagram of a terminal according to an embodiment of the present invention.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Single-carrier Frequency-Division Multiple Access
  • the terms "system” and “network” are often used interchangeably.
  • the CDMA system can implement radio technologies such as CDMA2000 and Universal Terrestrial Radio Access (UTRA).
  • UTRA includes Wideband Code Division Multiple Access (WCDMA) and other CDMA variants.
  • the TDMA system can implement radio technologies such as the Global System for Mobile Communication (GSM).
  • the OFDMA system can implement radios such as UltraMobile Broadband (UMB), Evolved UTRA (Evolution-UTRA, E-UTRA), IEEE802.11 (Wi-Fi), IEEE802.16 (WiMAX), IEEE802.20, Flash-OFDM, etc. technology.
  • UMB UltraMobile Broadband
  • Evolved UTRA Evolution-UTRA
  • E-UTRA Evolved UTRA
  • IEEE802.11 Wi-Fi
  • IEEE802.16 WiMAX
  • IEEE802.20 Flash-OFDM
  • Flash-OFDM Flash-OFDM
  • UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS).
  • LTE and more advanced LTE such as LTE-A
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named "3rd Generation Partnership Project" (3GPP).
  • CDMA2000 and UMB are described in documents from an organization named "3rd Generation Partnership Project 2" (3GPP2).
  • 3GPP2 3rd Generation Partnership Project 2
  • the techniques described in this article can be used for the systems and radio technologies mentioned above, as well as other systems and radio technologies.
  • the following description describes the NR system for exemplary purposes, and NR terminology is used in most of the following description, although these techniques can also be applied to applications other than NR system applications.
  • FIG. 1 shows a block diagram of a wireless communication system to which an embodiment of the present invention can be applied.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet (Personal Computer), a laptop (Laptop Computer), or a personal digital assistant (Personal Digital Assistant).
  • PDA mobile Internet device
  • MID mobile Internet Device
  • Wearable Device wearable device
  • in-vehicle equipment and other terminal side devices it should be noted that the specific type of terminal 11 is not limited in the embodiment of the present invention .
  • the network side device 12 may be a base station or a core network, where the above-mentioned base station may be a base station of 5G and later versions (for example: gNB, 5G NR NB, etc.), or a base station in other communication systems (for example: eNB, WLAN access point) , Or other access points, etc.), or a location server (for example: E-SMLC or LMF (Location Manager Function)), where the base station can be called Node B, Evolved Node B, Access Point, Base Transceiver Station (Base Transceiver Station, BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home B Node, home evolved Node B, WLAN access point, WiFi node, or some other appropriate term in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary. It should be noted that in this In the embodiment of the
  • the base station may perform wireless communication with the terminal 11 via one or more access point antennas. Each base station can provide communication coverage for its corresponding coverage area. The coverage area of an access point can be divided into sectors that constitute only a part of the coverage area.
  • the wireless communication system may include different types of base stations (for example, a macro base station, a micro base station, or a pico base station).
  • the base station can also utilize different radio technologies, such as cellular or WLAN radio access technologies.
  • the base stations can be associated with the same or different access networks or operator deployments.
  • the coverage areas of different base stations may overlap.
  • the communication link in the wireless communication system may include an uplink for carrying uplink (Uplink, UL) transmission (for example, from the terminal 11 to the network side device 12), or for carrying a downlink (Downlink, DL) transmission. )
  • the downlink of transmission (for example, from the network side device 12 to the terminal 11), which is used to carry the sidelink (sidelink, SL, or translated as secondary link, side link) between the terminal 11 and other terminals 11 , Side link, etc.).
  • UL transmission may also be referred to as reverse link transmission
  • DL transmission may also be referred to as forward link transmission.
  • Downlink transmission can use licensed frequency bands, unlicensed frequency bands, or both.
  • uplink transmission can be performed using licensed frequency bands, unlicensed frequency bands, or both.
  • LTE Long Term Evolution
  • UE User Equipment
  • LTE sidelink is suitable for specific public safety affairs (such as emergency communication in fire sites or disaster sites such as earthquakes), or vehicle to everything (V2X) communications.
  • IoV communications include various services, such as basic safety communications, advanced (autonomous) driving, formation, sensor expansion, and so on. Since LTE sidelink only supports broadcast communications, it is mainly used for basic security communications. Other advanced V2X services that have strict Quality of Service (QoS) requirements in terms of delay and reliability will pass through the New Radio (New Radio, NR) sidelink support.
  • QoS Quality of Service
  • the UE sends sidelink control information (Sidelink Control Information, SCI) through the Physical Sidelink Control Channel (PSCCH), and schedules the transmission of the Physical Sidelink Shared Channel (PSSCH) to send data .
  • SCI Sidelink Control Information
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • Sidelink transmission is mainly divided into broadcast (broadcast), multicast (groupcast), unicast (unicast) several transmission forms: unicast, as the name implies, is one to one transmission; multicast is one to many (one to many) ) Transmission; broadcasting is also one to many transmission, but broadcasting does not have the concept that UEs belong to the same group.
  • Layer 1 (Layer 1, L1) RSRP is measured at the PSCCH port and/or PSSCH port
  • Layer 3 (Layer 3, L3) RSRP is the weight of L1 RSRP measured by the terminal over a period of time.
  • NR V2X defines two modes (mode), one is mode1, the base station scheduling resources, and the other is mode2.
  • the UE decides what resources to use for transmission.
  • the resource information may come from a broadcast message or pre-configuration of the base station.
  • the sending terminal needs to perform sensing, including demodulating the SCI, acquiring the RSRP threshold, and comparing the measured RSRP value with the acquired RSRP threshold to determine whether the resource is occupied.
  • the upper layer configures SL L1 RSRP whether to measure based on PSCCHDMRS or PSSCHDMRS. If it is based on PSSCH DMRS, as mentioned above, PSSCH DMRS can be configured for a single port or two ports.
  • the terminal needs to define whether to measure based on one of the ports, or to measure based on two ports, as the L1 RSRP measurement value, and the indicated The RSRP threshold is compared to determine whether the resource is excluded. If it is not defined, the sending terminal cannot measure the detected RSRP level, resulting in inaccurate resource exclusion results. Resources that may interfere with more serious interference are reserved, causing resource collisions and causing system throughput to drop.
  • the terminal when performing RSRP measurement, if DMRS is transmitted based on two ports or two layers, the terminal needs to define whether the measurement is based on one of the ports or the measurement is based on two ports. Otherwise, the sending end cannot measure the RSRP level detected by the receiving end, resulting in inaccurate calculation of path loss, which may lead to imbalances in the effects of different link compensations, or inaccurate detections may lead to collisions in resource selection, which will change the system throughput performance. difference.
  • the embodiment of the present invention provides a method for measuring the received power of a side link reference signal, which is applied to a terminal, as shown in FIG. 2, including:
  • Step 102 Obtain reference signal received power based on the determined measurement port.
  • the measurement port of the side link reference signal is determined, and the reference signal receiving power is obtained based on the determined measurement port.
  • the obtained reference signal receiving power can accurately measure the communication status of the receiving end, and the obtained reference signal receiving power can be used for Power control and independent resource selection mode determine the available resources, etc., so as to optimize the interference between systems and improve the throughput of the communication system.
  • the measurement port determined according to the side link configuration information
  • the aforementioned measurement ports include a physical side link control channel PSCCH port and/or a physical side link shared channel PSSCH port.
  • the side link configuration information includes at least one of the following:
  • the side link configuration information is for a first object, and the first object uses at least one of the following:
  • the side link configuration information can be configured in the unit of bandwidth part, and different side link configuration information can be configured for different bandwidth parts; the side link configuration information can also be configured in the unit of resource pool, and different side link configuration information can be configured for different resource pools.
  • Link configuration information; side link configuration information can also be configured in units of side links, and different side link configuration information can be configured for different side links; side link configuration information can also be configured in units of terminals, which are different The terminal is configured with different side link configuration information.
  • the side link is configured for single-port transmission and/or single-layer transmission
  • the measurement port is any one of the following:
  • the measurement of PSSCH RSRP and/or DMRS RSRP and/or L1 RSRP is performed based on the PSSCH and/or DMRS port 1000.
  • the port number is defined based on PSSCH.
  • DMRS represents the port of PSSCH.
  • the PSSCH is configured with a single port, that is, the PSSCH DMRS is configured with a single port.
  • the reference signal received power includes the layer 1 reference signal received power L1 RSRP
  • the measurement result of L1 RSRP is the resource element (Resource element) carrying the reference signal (for example, DMRS) at the configured measurement time-frequency position.
  • the linear average of the energy on RE is the resource element (Resource element) carrying the reference signal (for example, DMRS) at the configured measurement time-frequency position.
  • the reference signal received power further includes the layer 3 reference signal received power L3 RSRP, where L3 RSRP is a weighted calculation of L1 RSRP using predefined, or pre-configured, or configured filter formulas and/or filter coefficients get.
  • L1 RSRP used for calculating L3 RSRP adopts at least one of the following:
  • L1 RSRP used to calculate L3 RSRP adopts at least one of the following:
  • N is a predefined, pre-configured or configured integer, and N can be pre-configured or configured by the terminal or base station;
  • the RSRP measurement value in the pre-defined, pre-configured or configured measurement period may be pre-configured or configured by the terminal or the base station.
  • the side link is configured with multi-port transmission and/or multi-layer transmission
  • the measurement port is any one of the following:
  • PSSCH RSRP and/or DMRS RSRP and/or L1 RSRP can be performed based on PSSCH and/or DMRS ports 1000, 1001.
  • a port with a pre-configured port number A port with a pre-configured port number.
  • the reference signal received power includes L1 RSRP, and if the measurement ports are multiple ports, and the multiple ports adopt a code division multiple access multiplexing mode, the L1 RSRP is any one of the following:
  • the RSRP measurement values of the multiple ports are first combined and then averaged;
  • the RSRP measurement values of the multiple ports are averaged and then combined;
  • the average can be arithmetic average, geometric average, or harmonic average.
  • the RSRP measurement value is the linear average value of the RE carrying the DMRS at the configured measurement time-frequency position. Specifically, when calculating L1 RSRP, the measured RSRP values of multiple ports or multiple layers of RSRP values can be combined first, and then the linear average value of the RE carrying DMRS at the configured measurement time-frequency position can be calculated. Or, conversely, first calculate the linear average value of the RE carrying DMRS at the configured measurement time-frequency position, and then combine the multi-port RSRP value or the multi-layer RSRP value.
  • one of the multiple ports is any one of the following:
  • the port with the lowest port number among the plurality of ports is the port with the lowest port number among the plurality of ports
  • the reference signal received power includes L1 RSRP. If the measurement port is one of all ports configured for sidelink transmission, when any of the following conditions is met, the L1 RSRP is equal to Multiplying the RSRP measurement value obtained by the port measurement by a preset coefficient;
  • the port adopts a code division multiple access multiplexing mode
  • Configure multi-port transmission by side link for example, configure port 1000 or 1001 for measurement
  • the side link configures multi-layer transmission.
  • the preset coefficient is any one of the following:
  • the reference signal received power further includes L3 RSRP, and L3 RSRP is obtained by weighting L1 RSRP by using a predefined, or pre-configured, or configured filtering formula.
  • N is a predefined, pre-configured or configured integer, and N can be pre-configured or configured by the terminal or base station;
  • the RSRP measurement value in the pre-defined, pre-configured or configured measurement period may be pre-configured or configured by the terminal or the base station.
  • the number of configured transmission opportunities can be independently configured for the third object, and the third object adopts any of the following:
  • Filter formulas and/or filter coefficients can be configured in units of bandwidth parts, and different filter formulas and/or filter coefficients can be configured for different bandwidth parts; filter formulas and/or filter coefficients can also be configured in units of resource pools, which are different The resource pool is configured with different filter formulas and/or filter coefficients; the filter formulas and/or filter coefficients can also be configured in units of side links, and different filter formulas and/or filter coefficients can be configured for different side links;
  • the terminal is configured with filter formulas and/or filter coefficients for units, and different terminals are configured with different filter formulas and/or filter coefficients.
  • the method for measuring the received power of the side link reference signal includes the following steps:
  • the pre-defined DMRS transmitted on port 1000 is used to determine DMRS and RSRP.
  • the terminal demodulates the SCI to obtain port configuration information and/or DMRS configuration information.
  • the measurement result of DMRS RSRP measured on port 1000 is the linear average of the energy on the RE carrying the DMRS at the configured measurement time-frequency position, which is the layer 1 (layer 1, L1) at that moment RSRP measurement results.
  • the measurement result of DMRS RSRP on port 1000 is the linear average of the energy on the RE carrying the DMRS at the configured measurement time-frequency position.
  • the actual measured energy is the double of the RSRP measurement value. L1 RSRP measurement result at this moment.
  • L1 RSRP values at different moments can be weighted. If it is a two-port CDM, L1 RSRP is twice the measured value of DMRS RSRP on a single port.
  • the L1 RSRP value can be determined according to the above method.
  • the method for measuring the received power of the side link reference signal includes the following steps:
  • the predefined ports 1000 and 1001 can be used for PSSCH and RSRP measurement.
  • the terminal receives the SCI and obtains port configuration information and/or DMRS configuration information.
  • the measurement result of DMRS RSRP on port 1000 is the linear average of the energy on the RE carrying the DMRS at the configured measurement time-frequency position, that is, the RSRP measurement value, which is the L1 RSRP at that moment Measurement results.
  • the RSRP measurement result is the linear average value of the energy on the RE carrying the DMRS at the configured measurement time-frequency position. Perform the measurement results on the port 1000 and port 1001. Merged, the merged value is the L1 RSRP measurement result at that moment.
  • L1 RSRP is the combined value of the DMRS RSRP measured values on the two ports.
  • the method for measuring the received power of the side link reference signal includes the following steps:
  • the predefined port 1000 is used for PSSCH and RSRP measurement.
  • the terminal receives the SCI and obtains port configuration information and/or DMRS configuration information.
  • the measurement result of DMRS RSRP on port 1000 is the linear average of the energy on the RE carrying the DMRS at the configured measurement time-frequency position, that is, the RSRP measurement value, which is the L1 RSRP at that moment Measurement results.
  • the L1 RSRP value can be determined according to the above method.
  • the method for measuring the received power of the side link reference signal includes the following steps:
  • the terminal receives the SCI and obtains port configuration information and/or DMRS configuration information.
  • the L1 RSRP value can be determined according to the above method.
  • the method for measuring the received power of the side link reference signal includes the following steps:
  • the predefined ports 1000, 1001 can be used for PSSCH and RSRP measurement.
  • the terminal receives the SCI and obtains port configuration information and/or DMRS configuration information.
  • the measurement result of DMRS RSRP on port 1000 is the linear average of the energy on the RE carrying the DMRS at the configured measurement time-frequency position, that is, the RSRP measurement value, which is the L1 RSRP at that moment Measurement results.
  • the measurement result of DMRS RSRP on ports 1000 and 1001 is the linear average value of the energy on the RE carrying DMRS at the configured measurement time-frequency position, and the measurement results of port 1000 and port 1001 are performed Merged, the merged value is the L1 RSRP measurement result at that moment.
  • the processing module 310 is configured to determine the measurement port of the side link reference signal
  • the obtaining module 320 is configured to obtain the reference signal received power based on the determined measurement port.
  • the terminal determines the measurement port of the side link reference signal, and obtains the reference signal receiving power based on the determined measurement port.
  • the obtained reference signal receiving power can accurately measure the communication status of the receiving end, and the obtained reference signal receiving power can be used Judge the available resources in power control and autonomous resource selection modes, so as to optimize the interference between systems and improve the throughput of the communication system.
  • the measurement port is any one of the following:
  • the measurement port determined according to the side link configuration information
  • the aforementioned measurement ports include a physical side link control channel PSCCH port and/or a physical side link shared channel PSSCH port.
  • the side link configuration information includes at least one of the following:
  • the side link configuration information is for a first object, and the first object uses at least one of the following:
  • the side link is configured for single-port transmission and/or single-layer transmission
  • the measurement port is any one of the following:
  • the measurement of PSSCH RSRP and/or DMRS RSRP and/or L1 RSRP is performed based on the PSSCH and/or DMRS port 1000.
  • the port number is defined based on PSSCH.
  • DMRS represents the port of PSSCH.
  • the PSSCH is configured with a single port, that is, the PSSCH DMRS is configured with a single port.
  • the reference signal received power includes the layer 1 reference signal received power L1 RSRP
  • the measurement result of L1 RSRP is the resource element (Resource element) carrying the reference signal (for example, DMRS) at the configured measurement time-frequency position.
  • the linear average of the energy on RE is the resource element (Resource element) carrying the reference signal (for example, DMRS) at the configured measurement time-frequency position.
  • L1 RSRP used for calculating L3 RSRP adopts at least one of the following:
  • L1 RSRP used to calculate L3 RSRP adopts at least one of the following:
  • the RSRP measurement value in the pre-defined, pre-configured or configured measurement period may be pre-configured or configured by the terminal or the base station.
  • the side link is configured with multi-port transmission and/or multi-layer transmission
  • the measurement port is any one of the following:
  • PSSCH RSRP and/or DMRS RSRP and/or L1 RSRP can be performed based on PSSCH and/or DMRS ports 1000, 1001.
  • the one port is any one of the following:
  • a port with a pre-configured port number A port with a pre-configured port number.
  • the reference signal received power includes L1 RSRP, and if the measurement ports are multiple ports, and the multiple ports adopt a code division multiple access multiplexing mode, the L1 RSRP is any one of the following:
  • the average can be arithmetic average, geometric average, or harmonic average.
  • the RSRP value is the linear average value of the RE carrying the DMRS at the configured measurement time-frequency position.
  • the reference signal received power includes L1 RSRP
  • the L1 RSRP is The average of the RSRP measurement values of the multiple ports or the RSRP measurement value of one of the ports, where the L1 RSRP measurement result is the linearity of the energy on the RE carrying the reference signal (for example, DMRS) at the configured measurement time-frequency position average value.
  • one of the multiple ports is any one of the following:
  • the port with the lowest port number among the plurality of ports is the port with the lowest port number among the plurality of ports
  • a port with a pre-configured port number among the multiple ports is
  • the reference signal received power includes L1 RSRP. If the measurement port is one of all ports configured for sidelink transmission, when any of the following conditions is met, the L1 RSRP is equal to Multiplying the RSRP measurement value obtained by the port measurement by a preset coefficient;
  • Configure multi-port transmission by side link for example, configure port 1000 or 1001 for measurement
  • the side link configures multi-layer transmission.
  • the preset coefficient is any one of the following:
  • the multiplexing number of CDM for example, FD-CDM2, that is, CDM multiplexing is performed in the frequency domain. If the multiplexing number is 2, the preset coefficient is 2.
  • the reference signal received power further includes L3 RSRP, and L3 RSRP is obtained by weighting L1 RSRP by using a predefined, or pre-configured, or configured filtering formula.
  • L1 RSRP used for calculating L3 RSRP adopts at least one of the following:
  • L1 RSRP used to calculate L3 RSRP adopts at least one of the following:
  • the RSRP measurement value in the pre-defined, pre-configured or configured measurement period may be pre-configured or configured by the terminal or the base station.
  • the number of configured transmission opportunities can be independently configured for the third object, and the third object adopts any of the following:
  • Each resource pool (per resource pool).
  • the filter formula and/or filter coefficient are for a second object, and the second object adopts at least one of the following:
  • FIG. 4 is a schematic diagram of the hardware structure of a terminal for implementing various embodiments of the present invention.
  • the terminal 40 includes but is not limited to: a radio frequency unit 41, a network module 42, an audio output unit 43, The input unit 44, the sensor 45, the display unit 46, the user input unit 47, the interface unit 48, the memory 49, the processor 410, and the power supply 411 and other components.
  • the terminal structure shown in FIG. 4 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted terminal, a wearable device, a pedometer, and the like.
  • the processor 410 is configured to determine a measurement port of the side link reference signal; and obtain the reference signal received power based on the determined measurement port.
  • the radio frequency unit 41 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, after receiving the downlink data from the base station, it is processed by the processor 410; Uplink data is sent to the base station.
  • the radio frequency unit 41 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 41 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 42, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 43 may convert the audio data received by the radio frequency unit 41 or the network module 42 or stored in the memory 49 into an audio signal and output it as sound. Moreover, the audio output unit 43 may also provide audio output related to a specific function performed by the terminal 40 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 43 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 44 is used to receive audio or video signals.
  • the input unit 44 may include a graphics processing unit (GPU) 441 and a microphone 442, and the graphics processor 441 is configured to respond to still pictures or video images obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame may be displayed on the display unit 46.
  • the image frame processed by the graphics processor 441 may be stored in the memory 49 (or other storage medium) or sent via the radio frequency unit 41 or the network module 42.
  • the microphone 442 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 41 for output in the case of a telephone call mode.
  • the terminal 40 also includes at least one sensor 45, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 461 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 461 and/or when the terminal 40 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal gestures (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensors 45 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, infrared rays Sensors, etc., will not be repeated here.
  • the display unit 46 is used to display information input by the user or information provided to the user.
  • the display unit 46 may include a display panel 461, and the display panel 461 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 47 may be used to receive inputted number or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 47 includes a touch panel 471 and other input devices 472.
  • the touch panel 471 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 471 or near the touch panel 471. operating).
  • the touch panel 471 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 410, the command sent by the processor 410 is received and executed.
  • the touch panel 471 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 47 may also include other input devices 472.
  • other input devices 472 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 471 may cover the display panel 461. When the touch panel 471 detects a touch operation on or near it, it transmits it to the processor 410 to determine the type of the touch event, and then the processor 410 determines the type of the touch event according to the touch. The type of event provides corresponding visual output on the display panel 461.
  • the touch panel 471 and the display panel 461 are used as two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 471 and the display panel 461 may be integrated Realize the input and output functions of the terminal, the specifics are not limited here.
  • the interface unit 48 is an interface for connecting an external device to the terminal 40.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 48 may be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 40 or may be used to communicate between the terminal 40 and the external device. Transfer data between.
  • the memory 49 can be used to store software programs and various data.
  • the memory 49 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 49 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 410 is the control center of the terminal. It uses various interfaces and lines to connect various parts of the entire terminal, and executes by running or executing software programs and/or modules stored in the memory 49 and calling data stored in the memory 49. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 410 may include one or more processing units; preferably, the processor 410 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface and application programs, etc., the modem
  • the processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 410.
  • the terminal 40 may also include a power source 411 (such as a battery) for supplying power to various components.
  • a power source 411 such as a battery
  • the power source 411 may be logically connected to the processor 410 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system.
  • the terminal 40 includes some functional modules not shown, which will not be repeated here.
  • the embodiment of the present invention also provides a terminal, including a processor 410, a memory 49, a computer program stored in the memory 49 and running on the processor 410, and the computer program is implemented when the processor 410 is executed.
  • a terminal including a processor 410, a memory 49, a computer program stored in the memory 49 and running on the processor 410, and the computer program is implemented when the processor 410 is executed.
  • the terminal can be a wireless terminal or a wired terminal.
  • the wireless terminal can be a device that provides voice and/or other service data connectivity to the user, a handheld device with a wireless connection function, or other processing equipment connected to a wireless modem .
  • a wireless terminal can communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal
  • a mobile terminal such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal
  • they can be portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices that exchange language and/or data with the wireless access network.
  • PCS personal communication service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Wireless terminal can also be called system, subscriber unit (Subscriber Unit), subscriber station (Subscriber Station), mobile station (Mobile Station), mobile station (Mobile), remote station (Remote Station), remote terminal (Remote Terminal), connection The access terminal (Access Terminal), user terminal (User Terminal), user agent (User Agent), and user equipment (User Device or User Equipment) are not limited here.
  • the embodiment of the present invention also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the embodiment of the method for measuring the received power of the side link reference signal on the terminal side is realized.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network-side device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • each component or each step can be decomposed and/or recombined.
  • These decomposition and/or recombination should be regarded as equivalent solutions of the present invention.
  • the steps of performing the above series of processing can naturally be performed in a chronological order in the order of description, but do not necessarily need to be performed in a chronological order, and some steps can be performed in parallel or independently of each other.
  • a person of ordinary skill in the art can understand that all or any of the steps or components of the method and device of the present invention can be used in any computing device (including a processor, storage medium, etc.) or a network of computing devices with hardware and firmware. , Software, or a combination of them, this can be achieved by those of ordinary skill in the art using their basic programming skills after reading the description of the present invention.
  • the purpose of the present invention can also be achieved by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the purpose of the present invention can also be achieved only by providing a program product containing program code for realizing the method or device.
  • a program product also constitutes the present invention
  • a storage medium storing such a program product also constitutes the present invention.
  • the storage medium may be any well-known storage medium or any storage medium developed in the future. It should also be pointed out that in the device and method of the present invention, obviously, each component or each step can be decomposed and/or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Probability & Statistics with Applications (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本发明实施例公开了一种旁链路参考信号接收功率的测量方法及装置、通信设备。旁链路参考信号接收功率的测量方法,应用于终端,包括:确定旁链路参考信号的测量端口;基于所确定的测量端口获取参考信号接收功率。

Description

旁链路参考信号接收功率的测量方法及装置、通信设备
相关申请的交叉引用
本申请主张在2019年12月24日在中国提交的中国专利申请号No.201911350899.9的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及通信技术领域,尤其涉及一种旁链路参考信号接收功率的测量方法及装置、通信设备。
背景技术
相关技术的旁链路(sidelink,SL,或译为副链路,侧链路,边链路等)中,支持基于SL物理旁链路共享信道(Physical Sidelink Shared Channel,PSSCH)解调参考信号(Demodulation Reference Signal,DMRS)进行参考信号接收功率(Reference Signal Received Power,RSRP)测量,可根据测量所得的RSRP作为参考的RSRP计算路损,可用于SL开环功率控制,也可用于自主资源选择模式(mode 2)下判断资源是否被占用等。
在进行RSRP测量的时候,如果基于两端口或两层传输DMRS,发送端终端无法衡量接收端检测到的RSRP的水平,导致计算路损不准确,可能导致不同链路补偿后效果不平衡,或者是检测不准确导致资源选择发生碰撞,使得***吞吐量性能变差。
发明内容
本发明实施例提供了一种旁链路参考信号接收功率的测量方法及装置、通信设备,能够保证通信***的吞吐量。
第一方面,本发明实施例提供了一种旁链路参考信号接收功率的测量方法,应用于终端,包括:
确定旁链路参考信号的测量端口;
基于所确定的测量端口获取参考信号接收功率。
第二方面,本发明实施例还提供了一种旁链路参考信号接收功率的测量装置,应用于终端,包括:
处理模块,用于确定旁链路参考信号的测量端口;
获取模块,用于基于所确定的测量端口获取参考信号接收功率。
第三方面,本发明实施例还提供了一种通信设备,所述通信设备包括处理器、存储器以及存储于所述存储器上并在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述的旁链路参考信号接收功率的测量方法的步骤。
第四方面,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的旁链路参考信号接收功率的测量方法的步骤。
第五方面,本发明实施例提供了一种计算机程序产品,所述程序产品被至少一个处理器执行以实现如上所述的旁链路参考信号接收功率的测量方法。
第六方面,本发明实施例提供了一种旁链路参考信号接收功率的测量装置,所述装置被配置成用于执行如上所述的旁链路参考信号接收功率的测量方法。
上述方案中,确定旁链路参考信号的测量端口,基于所确定的测量端口获取参考信号接收功率,获取的参考信号接收功率可以准确衡量接收端的通信状况,获取的参考信号接收功率可以作为参考的功率用于计算路损,可以用于功控、自主资源选择模式下判断可用资源等,从而优化***之间的干扰,提高通信***的吞吐量。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示本发明实施例可应用的一种移动通信***框图;
图2表示本发明实施例终端的旁链路参考信号接收功率的测量方法的流 程示意图;
图3表示本发明实施例终端的模块结构示意图;
图4表示本发明实施例的终端框图。
具体实施方式
下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
本文所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,并且也可用于各种无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他***。术语“***”和“网络”常被可互换地使用。CDMA***可实现诸如CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技术。UTRA包括宽带CDMA(Wideband Code Division Multiple Access,WCDMA)和其他CDMA变体。TDMA***可实现诸如全球移动通信***(Global System for Mobile Communication,GSM)之 类的无线电技术。OFDMA***可实现诸如超移动宽带(UltraMobileBroadband,UMB)、演进型UTRA(Evolution-UTRA,E-UTRA)、IEEE802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信***(Universal Mobile Telecommunications System,UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。然而,以下描述出于示例目的描述了NR***,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR***应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
请参见图1,图1示出本发明实施例可应用的一种无线通信***的框图。无线通信***包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本发明实施例中并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,上述基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信***中的基站(例如:eNB、WLAN接入点、或其他接入点等),或者为位置服务器(例如:E-SMLC或LMF(Location Manager Function)),其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基 本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本发明实施例中仅以NR***中的基站为例,但是并不限定基站的具体类型。
基站可在基站控制器的控制下与终端11通信,在各种示例中,基站控制器可以是核心网或某些基站的一部分。一些基站可通过回程与核心网进行控制信息或用户数据的通信。在一些示例中,这些基站中的一些可以通过回程链路直接或间接地彼此通信,回程链路可以是有线或无线通信链路。无线通信***可支持多个载波(不同频率的波形信号)上的操作。多载波发射机能同时在这多个载波上传送经调制信号。例如,每条通信链路可以是根据各种无线电技术来调制的多载波信号。每个已调信号可在不同的载波上发送并且可携带控制信息(例如,参考信号、控制信道等)、开销信息、数据等。
基站可经由一个或多个接入点天线与终端11进行无线通信。每个基站可以为各自相应的覆盖区域提供通信覆盖。接入点的覆盖区域可被划分成仅构成该覆盖区域的一部分的扇区。无线通信***可包括不同类型的基站(例如宏基站、微基站、或微微基站)。基站也可利用不同的无线电技术,诸如蜂窝或WLAN无线电接入技术。基站可以与相同或不同的接入网或运营商部署相关联。不同基站的覆盖区域(包括相同或不同类型的基站的覆盖区域、利用相同或不同无线电技术的覆盖区域、或属于相同或不同接入网的覆盖区域)可以交叠。
无线通信***中的通信链路可包括用于承载上行链路(Uplink,UL)传输(例如,从终端11到网络侧设备12)的上行链路,或用于承载下行链路(Downlink,DL)传输(例如,从网络侧设备12到终端11)的下行链路,用于承载终端11到其他终端11之间传输的旁链路(sidelink,SL,或译为副链路,侧链路,边链路等)。UL传输还可被称为反向链路传输,而DL传输还可被称为前向链路传输。下行链路传输可以使用授权频段、非授权频段或这两者来进行。类似地,上行链路传输可以使用有授权频段、非授权频段或这两者来进行。
长期演进(Long Term Evolution,LTE)***支持SL,用于终端(User Equipment,UE)之间不通过网络设备直接进行数据传输。
LTE sidelink的设计适用于特定的公共安全事务(如火灾场所或地震等灾难场所进行紧急通讯),或车联网(vehicle to everything,V2X)通信等。车联网通信包括各种业务,例如,基本安全类通信,高级(自动)驾驶,编队,传感器扩展等等。由于LTE sidelink只支持广播通信,因此主要用于基本安全类通信,其他在时延、可靠性等方面具有严格服务质量(Quality of Service,QoS)需求的高级V2X业务将通过新空口(New Radio,NR)sidelink支持。
UE通过物理旁链路控制信道(Physical Sidelink Control Channel,PSCCH)发送旁链路控制信息(Sidelink Control Information,SCI),调度物理旁链路共享信道(Physical Sidelink Shared Channel,PSSCH)的传输以发送数据。
sidelink传输主要分广播(broadcast),组播(groupcast),单播(unicast)几种传输形式:单播顾名思义就是一到一(one to one)的传输;组播为一到多(one to many)的传输;广播也是one to many的传输,但是广播并没有UE属于同一个组的概念。
相关技术的sidelink中,支持基于SL PSSCH解调参考信号(Demodulation Reference Signal,DMRS)进行参考信号接收功率(Reference Signal Received Power,RSRP)测量,可以作为参考功率用于计算路损,可用于SL开环功率控制、自主资源选择模式(mode 2)下判断资源是否被占用等。
层1(Layer 1,L1)RSRP为在PSCCH端口和/或PSSCH端口测量所得,层3(Layer 3,L3)RSRP为一段时间内,终端测量的L1 RSRP的加权。
其中,用于开环功率控制的RSRP为终端测量上报的L3 RSRP,用于功控的L3 RSRP为基于PSSCH端口测量或PSCCH端口测量的L1 RSRP的加权。用于mode 2下判断资源是否被占用为L1 RSRP的值,为基于PSCCH端口或PSSCH端口测量所得的L1 RSRP。高层配置是基于PSCCH端口还是基于PSSCH端口进行测量。
NR V2X定义了两种模式(mode),一种是mode1,基站调度资源,一种是mode2,UE自己决定使用什么资源进行传输,此时资源信息可能来自基站的广播消息或者预配置。在mode 2资源分配模式下,发送终端需要进行检测 (sensing),包括解调SCI,获取RSRP门限值,根据测量的RSRP值与获取的RSRP门限值进行比较,判断资源是否被占用。
相关技术中,SL上开环功率控制基于终端上报的L3 RSRP进行调整。RSRP基于PSSCHDMRS进行测量。PSSCH DMRS可以由SCI指示为单端口传输,还是两端口传输。在进行RSRP测量的时候,如果基于两端口传输DMRS,终端需要定义是基于其中某一个端口进行测量,或者基于两个端口进行测量。否则,发送端根据上报的结果,无法衡量接收端检测到的RSRP的水平,可能导致不同链路补偿后效果不平衡,***吞吐量性能变差。
在一段时间内,发送端可能某些时刻为单端口传输,某些时刻为两端口传输,接收终端计算L3 RSRP的时候,需要定义基于什么端口的测量结果进行加权,否则,发送端对接收端检测到的RSRP水平估计不准确,导致SL开环功控不准确,导致***中干扰协调不好,使得***吞吐量性能变差。
另外,mode 2资源分配下,高层配置SL L1 RSRP是基于PSCCHDMRS还是基于PSSCHDMRS进行测量。若基于PSSCH DMRS,如上所述,PSSCH DMRS可以为单端口或两端口配置,终端需要定义是基于其中某一个端口进行测量,或者基于两个端口进行测量,作为L1 RSRP的测量值,与指示的RSRP门限值进行对比,判断资源是否被排除。若不定义,发送终端无法衡量检测到的RSRP的水平,导致资源排除的结果不准确。可能干扰更严重的资源被预留,导致资源碰撞,造成***吞吐量下降。
综上所述,在进行RSRP测量的时候,如果基于两端口或两层传输DMRS,终端需要定义是基于其中某一个端口进行测量,或者基于两个端口进行测量。否则,发送端无法衡量接收端检测到的RSRP的水平,导致计算路损不准确,可能导致不同链路补偿后效果不平衡,或者是检测不准确导致资源选择发生碰撞,使得***吞吐量性能变差。
本发明实施例提供了一种旁链路参考信号接收功率的测量方法,应用于终端,如图2所示,包括:
步骤101:确定旁链路参考信号的测量端口;
步骤102:基于所确定的测量端口获取参考信号接收功率。
本实施例中,确定旁链路参考信号的测量端口,基于所确定的测量端口 获取参考信号接收功率,获取的参考信号接收功率可以准确衡量接收端的通信状况,获取的参考信号接收功率可以用于功控、自主资源选择模式下判断可用资源等,从而优化***之间的干扰,提高通信***的吞吐量。
可选地,所述测量端口为以下任一种:
根据旁链路配置信息确定的测量端口;
预定义的测量端口。
本实施例中,上述所述测量端口包括物理旁链路控制信道PSCCH端口和/或物理旁链路共享信道PSSCH端口。
可选地,所述旁链路配置信息包括以下至少一种:
物理旁链路共享信道PSSCH配置信息;
参考信号配置信息;
物理旁链路控制信道PSCCH配置信息。
本发明实施例中,所述旁链路配置信息针对第一对象,所述第一对象采用以下至少一种:
带宽部分;
资源池;
旁链路;
终端。
可以以带宽部分为单位配置旁链路配置信息,为不同的带宽部分配置不同的旁链路配置信息;也可以以资源池为单位配置旁链路配置信息,为不同的资源池配置不同的旁链路配置信息;也可以以旁链路为单位配置旁链路配置信息,为不同的旁链路配置不同的旁链路配置信息;也可以以终端为单位配置旁链路配置信息,为不同的终端配置不同的旁链路配置信息。
本发明一示例性实施例中,旁链路配置单端口传输和/或单层传输,所述测量端口为以下任一种:
具有最低端口号的端口;
具有最高端口号的端口;
具有预配置端口号的端口;
比如基于PSSCH和/或DMRS端口1000进行PSSCH RSRP和/或DMRS  RSRP和/或L1 RSRP的测量。
其中,端口号是基于PSSCH进行定义的。DMRS来表示PSSCH的端口。端口号和PSSCH DMRS的端口一一对应的。所以,这里PSSCH配置单端口,也就是PSSCH DMRS配置单端口。
可选地,所述参考信号接收功率包括层1的参考信号接收功率L1 RSRP,L1 RSRP的测量结果为所配置的测量时频位置上携带参考信号(例如:DMRS)的资源元素(Resource element,RE)上能量的线性平均值。
可选地,所述参考信号接收功率还包括层3的参考信号接收功率L3 RSRP,L3 RSRP为利用预定义,或者预配置,或者配置的滤波公式和/或滤波系数对L1 RSRP进行加权计算后得到。
可选地,计算L3 RSRP所使用的L1 RSRP采用以下至少一种:
单端口传输机会内的RSRP测量值;
多端口传输机会内的RSRP测量值。
其中,计算L3 RSRP所使用的L1 RSRP采用以下至少一种:
至少N个传输机会内的RSRP测量值,N为预定义、预配置或配置的整数,可以由终端或基站对N进行预配置或者配置;
预定义、预配置或配置的测量周期内的RSRP测量值,可以由终端或基站对测量周期进行预配置或者配置。
本发明另一示例性实施例中,旁链路配置多端口传输和/或多层传输,所述测量端口为以下任一种:
配置的所有用于旁链路传输的端口;
配置的所有用于旁链路传输的端口中的多个端口;
配置的所有用于旁链路传输的端口中的一个端口;
比如,可以基于PSSCH和/或DMRS端口1000,1001进行PSSCH RSRP和/或DMRS RSRP和/或L1 RSRP的测量。
可选地,所述一个端口为以下任一种:
具有最低端口号的端口;
具有最高端口号的端口;
具有预配置端口号的端口。
可选地,所述参考信号接收功率包括L1 RSRP,若所述测量端口为多个端口,且所述多个端口采用码分多址的复用方式,所述L1 RSRP为以下任一种:
所述多个端口的RSRP测量值进行先合并后平均得到;
所述多个端口的RSRP测量值进行先平均后合并得到;
对其中一个端口的RSRP测量值乘以预设系数得到。
其中,平均可以是算数平均、几何平均或调和平均等。RSRP测量值为所配置的测量时频位置上携带DMRS的RE进行能量的线性平均值。具体地,在计算L1 RSRP时,可以先对测量所得的多个端口的RSRP值或者多层的RSRP值进行合并,再计算所配置的测量时频位置上携带DMRS的RE进行能量的线性平均值;或者,反过来,先计算所配置的测量时频位置上携带DMRS的RE进行能量的线性平均值,再对多端口的RSRP值或者多层的RSRP值进行合并。
可选地,所述参考信号接收功率包括L1 RSRP,若所述测量端口为多个端口,且所述多个端口采用时分多址或频分多址的复用方式,所述L1 RSRP为所述多个端口的RSRP测量值的平均值或其中一个端口的RSRP测量值,其中,L1 RSRP的测量结果为所配置的测量时频位置上携带参考信号(例如:DMRS)的RE上能量的线性平均值。
其中,所述多个端口的其中一个端口为以下任一种:
所述多个端口中具有最低端口号的端口;
所述多个端口中具有最高端口号的端口;
所述多个端口中具有预配置端口号的端口。
可选地,所述参考信号接收功率包括L1 RSRP,若所述测量端口为配置的所有用于旁链路传输的端口中的一个端口,在满足以下任一条件时,所述L1 RSRP等于在所述端口测量得到的RSRP测量值乘以预设系数;
所述端口采用码分多址的复用方式;
旁链路配置多端口传输,比如配置用端口1000或1001进行测量;
旁链路配置多层传输。
可选地,所述预设系数为以下任一种:
预定义的值;
预配置的值;
配置的值;
与端口数相关的值;
与层数相关的值;
CDM的复用数目,比如为FD-CDM2,也即是在频域上进行CDM复用,复用数为2,则预设系数为2。
可选地,所述参考信号接收功率还包括L3 RSRP,L3 RSRP为利用预定义,或者预配置,或者配置的滤波公式对L1 RSRP进行加权计算后得到。
可选地,计算L3 RSRP所使用的L1 RSRP采用以下至少一种:
单端口传输机会内的RSRP测量值;
多端口传输机会内的RSRP测量值。
其中,计算L3 RSRP所使用的L1 RSRP采用以下至少一种:
至少N个传输机会内的RSRP测量值,N为预定义、预配置或配置的整数,可以由终端或基站对N进行预配置或者配置;
预定义、预配置或配置的测量周期内的RSRP测量值,可以由终端或基站对测量周期进行预配置或者配置。
其中,配置的传输机会的数目可以针对第三对象独立配置,第三对象采用以下任一种:
单端口传输;
多端口传输;
单端口传输和多端口传输;
单层和多层传输;
每一资源池(per resource pool)。
可选地,所述滤波公式和/或滤波系数针对第二对象,所述第二对象采用以下至少一种:
带宽部分;
资源池;
旁链路;
终端。
可以以带宽部分为单位配置滤波公式和/或滤波系数,为不同的带宽部分配置不同的滤波公式和/或滤波系数;也可以以资源池为单位配置滤波公式和/或滤波系数,为不同的资源池配置不同的滤波公式和/或滤波系数;也可以以旁链路为单位配置滤波公式和/或滤波系数,为不同的旁链路配置不同的滤波公式和/或滤波系数;也可以以终端为单位配置滤波公式和/或滤波系数,为不同的终端配置不同的滤波公式和/或滤波系数。
本发明一具体实施例中,旁链路参考信号接收功率的测量方法包括以下步骤:
预定义在端口1000上传输的DMRS用于DMRS RSRP的确定。
终端解调SCI,获取端口配置信息和/或DMRS配置信息。
如果为单端口传输的PSSCH,在端口1000上测量DMRS RSRP的测量结果为所配置的测量时频位置上携带DMRS的RE上能量的线性平均值,为该时刻的层1(layer 1,L1)RSRP的测量结果。
如果为两端口传输的PSSCH,在端口1000上测量DMRS RSRP的测量结果为所配置的测量时频位置上携带DMRS的RE上能量的线性平均值,实际测量的能量即RSRP测量值的翻倍为该时刻的L1 RSRP的测量结果。
根据预定义的计算L3 RSRP的滤波公式,以及预配置的滤波系数计算L3 RSRP的值,将计算所得的L3 RSRP上报给发送终端。
进一步地,可以对不同时刻上的L1 RSRP值进行加权。如果是两端口CDM,L1 RSRP为单端口上DMRS RSRP测量值的两倍。
若发送端测量RSRP用于sensing,判断资源是否可用,可根据上述方式确定L1 RSRP的值。
本发明另一具体实施例中,旁链路参考信号接收功率的测量方法包括以下步骤:
预定义端口1000和1001可用于PSSCH RSRP的测量。
终端接收SCI,获取端口配置信息和/或DMRS配置信息。
若PSSCH DMRS在单端口上传输,则在端口1000上测量DMRS RSRP的测量结果为所配置的测量时频位置上携带DMRS的RE上能量的线性平均 值即RSRP测量值,为该时刻的L1 RSRP的测量结果。
如果为两端口传输的PSSCH,在端口1000,1001上测量DMRS RSRP的测量结果为所配置的测量时频位置上携带DMRS的RE上能量的线性平均值,对端口1000和端口1001的测量结果进行合并,合并的值为该时刻的L1 RSRP的测量结果。
根据预定义的计算L3 RSRP的滤波公式,以及预配置的滤波系数计算L3 RSRP的值,将计算所得的L3 RSRP上报给发送终端。
进一步地,可以对不同时刻上的L1 RSRP值进行加权。两端口传输时,L1 RSRP为两端口上DMRS RSRP测量值的合并值。
若发送端测量RSRP用于sensing,判断资源是否可用,可根据上述方式确定L1 RSRP的值。
本发明另一具体实施例中,旁链路参考信号接收功率的测量方法包括以下步骤:
预定义端口1000用于PSSCH RSRP的测量。
终端接收SCI,获取端口配置信息和/或DMRS配置信息。
若PSSCH DMRS在单端口上传输,则在端口1000上测量DMRS RSRP的测量结果为所配置的测量时频位置上携带DMRS的RE上能量的线性平均值即RSRP测量值,为该时刻的L1 RSRP的测量结果。
根据预定义的计算L3 RSRP的滤波公式,以及预配置的滤波系数计算L3 RSRP的值,将计算所得的L3 RSRP上报给发送终端。
其中,两端口是否测量以及如何测量取决于终端,计算L3 RSRP上报值时,只考虑单端口传输机会内的测量结果。
若发送端测量RSRP用于sensing,判断资源是否可用,可根据上述方式确定L1 RSRP的值。
本发明另一具体实施例中,旁链路参考信号接收功率的测量方法包括以下步骤:
预定义端口1000用于PSSCH RSRP的测量。
终端接收SCI,获取端口配置信息和/或DMRS配置信息。
若PSSCH DMRS在单端口上传输,则在端口1000上测量DMRS RSRP 的测量结果为所配置的测量时频位置上携带DMRS的RE上能量的线性平均值即RSRP测量值,为该时刻的L1 RSRP的测量结果。
如果为两端口传输的PSSCH,
若两端口为FDM或TDM复用,则在端口1000上测量DMRS RSRP的测量结果为所配置的测量时频位置上携带DMRS的RE上能量的线性平均值即RSRP测量值,为该时刻的L1 RSRP的测量结果。
若两端口为CDM复用,则在端口1000上测量DMRS RSRP的测量结果为所配置的测量时频位置上携带DMRS的RE上能量的线性平均值即RSRP测量值,实际测量的RSRP测量值的两倍为该时刻的L1 RSRP的测量结果。
根据预定义的计算L3 RSRP的滤波公式,以及预配置的滤波系数计算L3 RSRP的值,将计算所得的L3 RSRP上报给发送终端。
若发送端测量RSRP用于sensing,判断资源是否可用,可根据上述方式确定L1 RSRP的值。
本发明另一具体实施例中,旁链路参考信号接收功率的测量方法包括以下步骤:
预定义端口1000,1001可用于PSSCH RSRP的测量。
终端接收SCI,获取端口配置信息和/或DMRS配置信息。
若PSSCH DMRS在单端口上传输,则在端口1000上测量DMRS RSRP的测量结果为所配置的测量时频位置上携带DMRS的RE上能量的线性平均值即RSRP测量值,为该时刻的L1 RSRP的测量结果。
如果为两端口传输的PSSCH,
若两端口为FDM或TDM复用,则在端口1000上测量DMRS RSRP的测量结果为所配置的测量时频位置上携带DMRS的RE上能量的线性平均值,为该时刻的L1 RSRP的测量结果。
若两端口为CDM复用,在端口1000,1001上测量DMRS RSRP的测量结果为所配置的测量时频位置上携带DMRS的RE上能量的线性平均值,对端口1000和端口1001的测量结果进行合并,合并的值为该时刻的L1 RSRP的测量结果。
根据预定义的计算L3 RSRP的滤波公式,以及预配置的滤波系数计算L3 RSRP的值,将计算所得的L3 RSRP上报给发送终端。
若发送端测量RSRP用于sensing,判断资源是否可用,可根据上述方式确定L1 RSRP的值。
如图3所示,本发明实施例的终端300,包括旁链路参考信号接收功率的测量装置,能实现上述实施例中旁链路参考信号接收功率的测量方法,并达到相同的效果,该终端300具体包括以下功能模块:
处理模块310,用于确定旁链路参考信号的测量端口;
获取模块320,用于基于所确定的测量端口获取参考信号接收功率。
本实施例中,终端确定旁链路参考信号的测量端口,基于所确定的测量端口获取参考信号接收功率,获取的参考信号接收功率可以准确衡量接收端的通信状况,获取的参考信号接收功率可以用于功控、自主资源选择模式下判断可用资源等,从而优化***之间的干扰,提高通信***的吞吐量。
可选地,所述测量端口为以下任一种:
根据旁链路配置信息确定的测量端口;
预定义的测量端口。
本实施例中,上述所述测量端口包括物理旁链路控制信道PSCCH端口和/或物理旁链路共享信道PSSCH端口。
可选地,所述旁链路配置信息包括以下至少一种:
物理旁链路共享信道PSSCH配置信息;
参考信号配置信息;
物理旁链路控制信道PSCCH配置信息。
其中,所述旁链路配置信息针对第一对象,所述第一对象采用以下至少一种:
带宽部分;
资源池;
旁链路;
终端。
本发明一示例性实施例中,旁链路配置单端口传输和/或单层传输,所述测量端口为以下任一种:
具有最低端口号的端口;
具有最高端口号的端口;
具有预配置端口号的端口;
比如基于PSSCH和/或DMRS端口1000进行PSSCH RSRP和/或DMRS RSRP和/或L1 RSRP的测量。
其中,端口号是基于PSSCH进行定义的。DMRS来表示PSSCH的端口。端口号和PSSCH DMRS的端口一一对应的。所以,这里PSSCH配置单端口,也就是PSSCH DMRS配置单端口。
可选地,所述参考信号接收功率包括层1的参考信号接收功率L1 RSRP,L1 RSRP的测量结果为所配置的测量时频位置上携带参考信号(例如:DMRS)的资源元素(Resource element,RE)上能量的线性平均值。
可选地,所述参考信号接收功率还包括层3的参考信号接收功率L3 RSRP,L3 RSRP为利用预定义,或者预配置,或者配置的滤波公式和/或滤波系数对L1 RSRP进行加权计算后得到。
可选地,计算L3 RSRP所使用的L1 RSRP采用以下至少一种:
单端口传输机会内的RSRP测量值;
多端口传输机会内的RSRP测量值。
其中,计算L3 RSRP所使用的L1 RSRP采用以下至少一种:
至少N个传输机会内的RSRP测量值,N为预定义、预配置或配置的整数,可以由终端或基站对N进行预配置或者配置;
预定义、预配置或配置的测量周期内的RSRP测量值,可以由终端或基站对测量周期进行预配置或者配置。
本发明另一示例性实施例中,旁链路配置多端口传输和/或多层传输,所述测量端口为以下任一种:
配置的所有用于旁链路传输的端口;
配置的多个用于旁链路传输的端口;
配置的所有用于旁链路传输的端口中的一个端口;
比如,可以基于PSSCH和/或DMRS端口1000,1001进行PSSCH RSRP和/或DMRS RSRP和/或L1 RSRP的测量。
可选地,所述一个端口为以下任一种:
具有最低端口号的端口;
具有最高端口号的端口;
具有预配置端口号的端口。
可选地,所述参考信号接收功率包括L1 RSRP,若所述测量端口为多个端口,且所述多个端口采用码分多址的复用方式,所述L1 RSRP为以下任一种:
所述多个端口的RSRP测量值进行先合并后平均得到;
所述多个端口的RSRP测量值进行先平均后合并得到;
对其中一个端口的RSRP测量值乘以预设系数得到。
其中,平均可以是算数平均、几何平均或调和平均等。RSRP值为所配置的测量时频位置上携带DMRS的RE进行能量的线性平均值。具体地,在计算L1 RSRP时,可以先对测量所得的多个端口RSRP的值或者多层的RSRP值进行合并,再计算所配置的测量时频位置上携带DMRS的RE进行能量的线性平均值;或者,反过来,先计算所配置的测量时频位置上携带DMRS的RE进行能量的线性平均值,再对多端口的RSRP值或者多层的RSRP值进行合并。
可选地,所述参考信号接收功率包括L1 RSRP,若所述测量端口为多个端口,且所述多个端口采用时分多址或频分多址的复用方式,所述L1 RSRP为所述多个端口的RSRP测量值的平均值或其中一个端口的RSRP测量值,其中,L1 RSRP的测量结果为所配置的测量时频位置上携带参考信号(例如:DMRS)的RE上能量的线性平均值。
其中,所述多个端口的其中一个端口为以下任一种:
所述多个端口中具有最低端口号的端口;
所述多个端口中具有最高端口号的端口;
所述多个端口中具有预配置端口号的端口。
可选地,所述参考信号接收功率包括L1 RSRP,若所述测量端口为配置的所有用于旁链路传输的端口中的一个端口,在满足以下任一条件时,所述L1 RSRP等于在所述端口测量得到的RSRP测量值乘以预设系数;
所述端口采用码分多址的复用方式;
旁链路配置多端口传输,比如配置用端口1000或1001进行测量;
旁链路配置多层传输。
可选地,所述预设系数为以下任一种:
预定义的值;
预配置的值;
配置的值;
与端口数相关的值;
与层数相关的值;
CDM的复用数目,比如为FD-CDM2,也即是在频域上进行CDM复用,复用数为2,则预设系数为2.。
可选地,所述参考信号接收功率还包括L3 RSRP,L3 RSRP为利用预定义,或者预配置,或者配置的滤波公式对L1 RSRP进行加权计算后得到。
可选地,计算L3 RSRP所使用的L1 RSRP采用以下至少一种:
单端口传输机会内的RSRP测量值;
多端口传输机会内的RSRP测量值。
其中,计算L3 RSRP所使用的L1 RSRP采用以下至少一种:
至少N个传输机会内的RSRP测量值,N为预定义、预配置或配置的整数,可以由终端或基站对N进行预配置或者配置;
预定义、预配置或配置的测量周期内的RSRP测量值,可以由终端或基站对测量周期进行预配置或者配置。
其中,配置的传输机会的数目可以针对第三对象独立配置,第三对象采用以下任一种:
单端口传输;
多端口传输;
单端口传输和多端口传输;
单层和多层传输;
每一资源池(per resource pool)。
可选地,所述滤波公式和/或滤波系数针对第二对象,所述第二对象采用 以下至少一种:
带宽部分;
资源池;
旁链路;
终端。
为了更好的实现上述目的,进一步地,图4为实现本发明各个实施例的一种终端的硬件结构示意图,该终端40包括但不限于:射频单元41、网络模块42、音频输出单元43、输入单元44、传感器45、显示单元46、用户输入单元47、接口单元48、存储器49、处理器410、以及电源411等部件。本领域技术人员可以理解,图4中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,处理器410,用于确定旁链路参考信号的测量端口;基于所确定的测量端口获取参考信号接收功率。
应理解的是,本发明实施例中,射频单元41可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器410处理;另外,将上行的数据发送给基站。通常,射频单元41包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元41还可以通过无线通信***与网络和其他设备通信。
终端通过网络模块42为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元43可以将射频单元41或网络模块42接收的或者在存储器49中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元43还可以提供与终端40执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元43包括扬声器、蜂鸣器以及受话器等。
输入单元44用于接收音频或视频信号。输入单元44可以包括图形处理器(Graphics Processing Unit,GPU)441和麦克风442,图形处理器441对在 视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元46上。经图形处理器441处理后的图像帧可以存储在存储器49(或其它存储介质)中或者经由射频单元41或网络模块42进行发送。麦克风442可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元41发送到移动通信基站的格式输出。
终端40还包括至少一种传感器45,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板461的亮度,接近传感器可在终端40移动到耳边时,关闭显示面板461和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器45还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元46用于显示由用户输入的信息或提供给用户的信息。显示单元46可包括显示面板461,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板461。
用户输入单元47可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元47包括触控面板471以及其他输入设备472。触控面板471,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板471上或在触控面板471附近的操作)。触控面板471可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器410,接收处理器410发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板471。除了触控面板471,用户 输入单元47还可以包括其他输入设备472。具体地,其他输入设备472可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板471可覆盖在显示面板461上,当触控面板471检测到在其上或附近的触摸操作后,传送给处理器410以确定触摸事件的类型,随后处理器410根据触摸事件的类型在显示面板461上提供相应的视觉输出。虽然在图4中,触控面板471与显示面板461是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板471与显示面板461集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元48为外部装置与终端40连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元48可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端40内的一个或多个元件或者可以用于在终端40和外部装置之间传输数据。
存储器49可用于存储软件程序以及各种数据。存储器49可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器49可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器410是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器49内的软件程序和/或模块,以及调用存储在存储器49内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器410可包括一个或多个处理单元;优选的,处理器410可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器410中。
终端40还可以包括给各个部件供电的电源411(比如电池),优选的,电 源411可以通过电源管理***与处理器410逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。
另外,终端40包括一些未示出的功能模块,在此不再赘述。
优选的,本发明实施例还提供一种终端,包括处理器410,存储器49,存储在存储器49上并可在所述处理器410上运行的计算机程序,该计算机程序被处理器410执行时实现上述旁链路参考信号接收功率的测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为***、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述终端侧的旁链路参考信号接收功率的测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结 合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络侧设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本发明的装置和方法中,显然,各部件或各步骤 是可以分解和/或重新组合的。这些分解和/或重新组合应视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本发明的说明的情况下运用他们的基本编程技能就能实现的。
因此,本发明的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本发明的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本发明,并且存储有这样的程序产品的存储介质也构成本发明。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本发明的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述的是本发明的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本发明所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本发明的保护范围内。

Claims (38)

  1. 一种旁链路参考信号接收功率的测量方法,应用于终端,包括:
    确定旁链路参考信号的测量端口;
    基于所确定的测量端口获取参考信号接收功率。
  2. 根据权利要求1所述的旁链路参考信号接收功率的测量方法,其中,所述测量端口为以下任一种:
    根据旁链路配置信息确定的测量端口;
    预定义的测量端口。
  3. 根据权利要求2所述的旁链路参考信号接收功率的测量方法,其中,所述旁链路配置信息包括以下至少一种:
    物理旁链路共享信道PSSCH配置信息;
    参考信号配置信息;
    物理旁链路控制信道PSCCH配置信息。
  4. 根据权利要求1所述的旁链路参考信号接收功率的测量方法,其中,在多端口传输和/或多层传输的情况下,所述测量端口为以下任一种:
    配置的所有用于旁链路传输的端口;
    配置的所有用于旁链路传输的端口中的一个端口或多个端口。
  5. 根据权利要求4所述的旁链路参考信号接收功率的测量方法,其中,所述一个端口为以下任一种:
    具有最低端口号的端口;
    具有最高端口号的端口;
    具有预配置端口号的端口。
  6. 根据权利要求4所述的旁链路参考信号接收功率的测量方法,其中,所述参考信号接收功率包括L1 RSRP,若所述测量端口为多个端口,且所述多个端口采用码分多址的复用方式,所述L1 RSRP为以下任一种:
    所述多个端口的RSRP测量值进行先合并后平均得到;
    所述多个端口的RSRP测量值进行先平均后合并得到;
    对其中一个端口的RSRP测量值乘以预设系数得到。
  7. 根据权利要求4所述的旁链路参考信号接收功率的测量方法,其中,所述参考信号接收功率包括L1 RSRP,若所述测量端口为多个端口,且所述多个端口采用时分多址或频分多址的复用方式,所述L1 RSRP为所述多个端口的RSRP测量值的平均值或所述多个端口中一个端口的RSRP测量值。
  8. 根据权利要求7所述的旁链路参考信号接收功率的测量方法,其中,所述多个端口的其中一个端口为以下任一种:
    所述多个端口中具有最低端口号的端口;
    所述多个端口中具有最高端口号的端口;
    所述多个端口中具有预配置端口号的端口。
  9. 根据权利要求4所述的旁链路参考信号接收功率的测量方法,其中,所述参考信号接收功率包括L1 RSRP,若所述测量端口为配置的所有用于旁链路传输的端口中的一个端口,在满足以下任一条件时,所述L1 RSRP等于在所述端口测量得到的RSRP测量值乘以预设系数;
    所述端口采用码分多址的复用方式;
    旁链路配置多端口传输;
    旁链路配置多层传输。
  10. 根据权利要求6或9所述的旁链路参考信号接收功率的测量方法,其中,所述预设系数为以下任一种:
    预定义的值;
    预配置的值;
    配置的值;
    与端口数相关的值;
    与层数相关的值;
    CDM的复用数目。
  11. 根据权利要求1所述的旁链路参考信号接收功率的测量方法,其中,在单端口传输和/或单层传输的情况下,所述测量端口为以下任一种:
    具有最低端口号的端口;
    具有最高端口号的端口;
    具有预配置端口号的端口。
  12. 根据权利要求11所述的旁链路参考信号接收功率的测量方法,其中,所述参考信号接收功率包括层1的参考信号接收功率L1 RSRP。
  13. 根据权利要求6、7、9、12中任一项所述的旁链路参考信号接收功率的测量方法,其中,所述参考信号接收功率还包括层3的参考信号接收功率L3 RSRP,
    L3 RSRP为利用滤波公式和/或滤波系数对L1 RSRP进行加权计算后得到;其中,所述滤波公式和/或滤波系数是预定义、或者预配置、或者配置的。
  14. 根据权利要求13所述的旁链路参考信号接收功率的测量方法,其中,计算L3 RSRP所使用的L1 RSRP采用以下至少一种:
    单端口传输机会内的RSRP测量值;
    多端口传输机会内的RSRP测量值。
  15. 根据权利要求13或14所述的旁链路参考信号接收功率的测量方法,其中,计算L3 RSRP所使用的L1 RSRP采用以下至少一种:
    至少N个传输机会内的RSRP测量值,N为预定义、预配置或配置的整数;
    预定义、预配置或配置的测量周期内的RSRP测量值。
  16. 根据权利要求13所述的旁链路参考信号接收功率的测量方法,其中,所述滤波公式和/或滤波系数针对第二对象,所述第二对象采用以下至少一种:
    带宽部分;
    资源池;
    旁链路;
    终端。
  17. 根据权利要求2-12中任一项所述的旁链路参考信号接收功率的测量方法,其中,所述旁链路配置信息针对第一对象,所述第一对象采用以下至少一种:
    带宽部分;
    资源池;
    旁链路;
    终端。
  18. 一种旁链路参考信号接收功率的测量装置,应用于终端,包括:
    处理模块,用于确定旁链路参考信号的测量端口;
    获取模块,用于基于所确定的测量端口获取参考信号接收功率。
  19. 根据权利要求18所述的旁链路参考信号接收功率的测量装置,其中,所述测量端口为以下任一种:
    根据旁链路配置信息确定的测量端口;
    预定义的测量端口。
  20. 根据权利要求19所述的旁链路参考信号接收功率的测量装置,其中,所述旁链路配置信息包括以下至少一种:
    物理旁链路共享信道PSSCH配置信息;
    参考信号配置信息;
    物理旁链路控制信道PSCCH配置信息。
  21. 根据权利要求18所述的旁链路参考信号接收功率的测量装置,其中,在多端口传输和/或多层传输的情况下,所述测量端口为以下任一种:
    配置的所有用于旁链路传输的端口;
    配置的所有用于旁链路传输的端口中的一个端口或多个端口。
  22. 根据权利要求21所述的旁链路参考信号接收功率的测量装置,其中,所述一个端口为以下任一种:
    具有最低端口号的端口;
    具有最高端口号的端口;
    具有预配置端口号的端口。
  23. 根据权利要求21所述的旁链路参考信号接收功率的测量装置,其中,所述参考信号接收功率包括L1 RSRP,若所述测量端口为多个端口,且所述多个端口采用码分多址的复用方式,所述L1 RSRP为以下任一种:
    所述多个端口的RSRP测量值进行先合并后平均得到;
    所述多个端口的RSRP测量值进行先平均后合并得到;
    对其中一个端口的RSRP测量值乘以预设系数得到。
  24. 根据权利要求21所述的旁链路参考信号接收功率的测量装置,其中,所述参考信号接收功率包括L1 RSRP,若所述测量端口为多个端口,且所述 多个端口采用时分多址或频分多址的复用方式,所述L1 RSRP为所述多个端口的RSRP测量值的平均值或所述多个端口中一个端口的RSRP测量值。
  25. 根据权利要求24所述的旁链路参考信号接收功率的测量装置,其中,所述多个端口的其中一个端口为以下任一种:
    所述多个端口中具有最低端口号的端口;
    所述多个端口中具有最高端口号的端口;
    所述多个端口中具有预配置端口号的端口。
  26. 根据权利要求21所述的旁链路参考信号接收功率的测量装置,其中,所述参考信号接收功率包括L1 RSRP,若所述测量端口为配置的所有用于旁链路传输的端口中的一个端口,在满足以下任一条件时,所述L1 RSRP等于在所述端口测量得到的RSRP测量值乘以预设系数;
    所述端口采用码分多址的复用方式;
    旁链路配置多端口传输;
    旁链路配置多层传输。
  27. 根据权利要求23或26所述的旁链路参考信号接收功率的测量装置,其中,所述预设系数为以下任一种:
    预定义的值;
    预配置的值;
    配置的值;
    与端口数相关的值;
    与层数相关的值;
    CDM的复用数目。
  28. 根据权利要求18所述的旁链路参考信号接收功率的测量装置,其中,在单端口传输和/或单层传输的情况下,所述测量端口为以下任一种:
    具有最低端口号的端口;
    具有最高端口号的端口;
    具有预配置端口号的端口。
  29. 根据权利要求28所述的旁链路参考信号接收功率的测量装置,其中,所述参考信号接收功率包括层1的参考信号接收功率L1 RSRP。
  30. 根据权利要求23、24、26、29中任一项所述的旁链路参考信号接收功率的测量装置,其中,所述参考信号接收功率还包括层3的参考信号接收功率L3 RSRP,
    L3 RSRP为利用滤波公式和/或滤波系数对L1 RSRP进行加权计算后得到;其中,所述滤波公式和/或滤波系数是预定义、或者预配置、或者配置的。
  31. 根据权利要求30所述的旁链路参考信号接收功率的测量装置,其中,计算L3 RSRP所使用的L1 RSRP采用以下至少一种:
    单端口传输机会内的RSRP测量值;
    多端口传输机会内的RSRP测量值。
  32. 根据权利要求30或31所述的旁链路参考信号接收功率的测量装置,其中,计算L3 RSRP所使用的L1 RSRP采用以下至少一种:
    至少N个传输机会内的RSRP测量值,N为预定义、预配置或配置的整数;
    预定义、预配置或配置的测量周期内的RSRP测量值。
  33. 根据权利要求30所述的旁链路参考信号接收功率的测量装置,其中,所述滤波公式和/或滤波系数针对第二对象,所述第二对象采用以下至少一种:
    带宽部分;
    资源池;
    旁链路;
    终端。
  34. 根据权利要求19-29中任一项所述的旁链路参考信号接收功率的测量装置,其中,所述旁链路配置信息针对第一对象,所述第一对象采用以下至少一种:
    带宽部分;
    资源池;
    旁链路;
    终端。
  35. 一种通信设备,所述通信设备包括处理器、存储器以及存储于所述存储器上并在所述处理器上运行的计算机程序,所述处理器执行所述计算机 程序时实现如权利要求1至17任一项所述的旁链路参考信号接收功率的测量方法的步骤。
  36. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至17中任一项所述的旁链路参考信号接收功率的测量方法的步骤。
  37. 一种计算机程序产品,所述程序产品被至少一个处理器执行以实现如权利要求1-17任一项所述的旁链路参考信号接收功率的测量方法。
  38. 一种旁链路参考信号接收功率的测量装置,所述装置被配置成用于执行如权利要求1-17任一项所述的旁链路参考信号接收功率的测量方法。
PCT/CN2020/137142 2019-12-24 2020-12-17 旁链路参考信号接收功率的测量方法及装置、通信设备 WO2021129506A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022527113A JP2023500970A (ja) 2019-12-24 2020-12-17 サイドリンクリファレンス信号受信パワーの測定方法及び装置、通信機器
BR112022012375A BR112022012375A2 (pt) 2019-12-24 2020-12-17 Método e aparelho para medir a potência recebida do sinal de referência de sidelink e dispositivo de comunicação
EP20905543.3A EP4084364A4 (en) 2019-12-24 2020-12-17 Method and device for measuring sidelink reference signal received power, and communication apparatus
KR1020227021237A KR20220104024A (ko) 2019-12-24 2020-12-17 사이드 링크 기준 신호 수신 파워의 측량 방법 및 장치, 통신기기
US17/839,768 US20220312252A1 (en) 2019-12-24 2022-06-14 Method and apparatus for measuring sidelink reference signal received power, and communications device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911350899.9 2019-12-24
CN201911350899.9A CN113037403B (zh) 2019-12-24 2019-12-24 旁链路参考信号接收功率的测量方法及装置、通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/839,768 Continuation US20220312252A1 (en) 2019-12-24 2022-06-14 Method and apparatus for measuring sidelink reference signal received power, and communications device

Publications (1)

Publication Number Publication Date
WO2021129506A1 true WO2021129506A1 (zh) 2021-07-01

Family

ID=76452127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137142 WO2021129506A1 (zh) 2019-12-24 2020-12-17 旁链路参考信号接收功率的测量方法及装置、通信设备

Country Status (7)

Country Link
US (1) US20220312252A1 (zh)
EP (1) EP4084364A4 (zh)
JP (1) JP2023500970A (zh)
KR (1) KR20220104024A (zh)
CN (1) CN113037403B (zh)
BR (1) BR112022012375A2 (zh)
WO (1) WO2021129506A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170215097A1 (en) * 2014-08-08 2017-07-27 Lg Electronics Inc. Method for performing measurement in wireless communication system and apparatus for same
CN108882314A (zh) * 2017-05-12 2018-11-23 北京三星通信技术研究有限公司 多端口数据传输的方法及设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9974039B2 (en) * 2015-12-21 2018-05-15 Intel IP Corporation User equipment and method for measurement of side-link reference signal received power (S-RSRP)
CN106982184B (zh) * 2016-01-15 2020-11-10 中兴通讯股份有限公司 一种实现测量参考符号传输的方法及装置
US20180019794A1 (en) * 2016-07-14 2018-01-18 Sharp Laboratories Of America, Inc. Systems and methods for downlink control information for multiple-user superposition transmission
US11101902B2 (en) * 2017-03-03 2021-08-24 Lg Electronics Inc. Method for measuring signal reception power of terminal in wireless communication system and terminal using method
CN109392069A (zh) * 2017-08-10 2019-02-26 中兴通讯股份有限公司 一种功率控制方法及装置
WO2019087371A1 (ja) * 2017-11-02 2019-05-09 株式会社Nttドコモ ユーザ装置、及び制御情報送信方法
US11357015B2 (en) * 2017-12-22 2022-06-07 Qualcomm Incorporated Sidelink signal measurement and resource selection in vehicle-to-everything communications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170215097A1 (en) * 2014-08-08 2017-07-27 Lg Electronics Inc. Method for performing measurement in wireless communication system and apparatus for same
CN108882314A (zh) * 2017-05-12 2018-11-23 北京三星通信技术研究有限公司 多端口数据传输的方法及设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: ""Transmit diversity solutions for R15 sidelink"", 3GPP TSG RAN WG1 MEETING #90, R1-1712097, 25 August 2017 (2017-08-25), XP051314917 *
VIVO: ""Remaining aspects for NR V2X"", 3GPP TSG-RAN WG1 MEETING #100BIS, R1-2001668, 30 April 2020 (2020-04-30), XP051873265 *
VIVO: ""Remaining aspects for NR V2X"", 3GPP TSG-RAN WG1 MEETING #101, R1-2003386, 5 June 2020 (2020-06-05), XP051885175 *

Also Published As

Publication number Publication date
CN113037403B (zh) 2023-08-15
KR20220104024A (ko) 2022-07-25
EP4084364A4 (en) 2023-06-28
JP2023500970A (ja) 2023-01-11
BR112022012375A2 (pt) 2022-08-30
EP4084364A1 (en) 2022-11-02
CN113037403A (zh) 2021-06-25
US20220312252A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
WO2020164593A1 (zh) 混合自动重传请求harq反馈方法、终端及网络设备
CN110958636B (zh) Csi报告的上报方法、终端设备及网络设备
WO2019141057A1 (zh) 上行功率控制参数配置方法、终端及网络设备
WO2020192573A1 (zh) 定位参考信号配置方法、网络设备及终端
WO2019072077A1 (zh) 解调参考信号传输方法、网络设备及终端
WO2020147817A1 (zh) 随机接入过程的信息传输方法及终端
WO2020151743A1 (zh) 随机接入方法及终端
WO2019192472A1 (zh) 信道传输方法、终端及网络设备
WO2020200098A1 (zh) 随机接入过程的信息传输方法及终端
WO2019196826A1 (zh) 旁链路信息的传输方法及设备
CN111148125B (zh) 下行信息的监听方法、配置方法、终端及网络设备
CN110138525B (zh) 解调参考信号的配置方法、传输方法、终端及网络侧设备
WO2021093707A1 (zh) 测量配置方法、装置及***
WO2021147761A1 (zh) 上行传输处理方法及装置、终端
CN110868240A (zh) Pusch重复传输时的跳频方法、终端及网络设备
WO2020057317A1 (zh) 传输指示信号的传输方法、网络设备及终端
WO2020125399A1 (zh) 信号资源测量方法及终端
CN109803403B (zh) 一种时隙格式指示检测方法、配置方法及装置
WO2020228537A1 (zh) 资源确定方法、资源指示方法、终端及网络侧设备
JP7229364B2 (ja) 非許可スケジューリング配置の方法、端末及びネットワーク側機器
CN111263393B (zh) 无线链路监测方法、终端及网络设备
CN110708764B (zh) 一种信息传输方法、网络设备及终端
CN109802902B (zh) 一种物理资源块捆绑大小确定方法、终端设备及网络设备
CN111182636A (zh) 下行控制信息检测方法、网络侧设备及终端设备
WO2020151706A1 (zh) 随机接入传输方法及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905543

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022527113

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227021237

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022012375

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020905543

Country of ref document: EP

Effective date: 20220725

ENP Entry into the national phase

Ref document number: 112022012375

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220621