WO2021129238A1 - 薄膜光波导及其制备方法 - Google Patents

薄膜光波导及其制备方法 Download PDF

Info

Publication number
WO2021129238A1
WO2021129238A1 PCT/CN2020/129669 CN2020129669W WO2021129238A1 WO 2021129238 A1 WO2021129238 A1 WO 2021129238A1 CN 2020129669 W CN2020129669 W CN 2020129669W WO 2021129238 A1 WO2021129238 A1 WO 2021129238A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
thin film
thermo
film
optical
Prior art date
Application number
PCT/CN2020/129669
Other languages
English (en)
French (fr)
Inventor
陈亦凡
黄萌
Original Assignee
苏州易锐光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州易锐光电科技有限公司 filed Critical 苏州易锐光电科技有限公司
Priority to US17/632,809 priority Critical patent/US20220268995A1/en
Publication of WO2021129238A1 publication Critical patent/WO2021129238A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12038Glass (SiO2 based materials)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/1204Lithium niobate (LiNbO3)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12061Silicon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12069Organic material
    • G02B2006/12076Polyamide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/1213Constructional arrangements comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods

Definitions

  • the invention relates to a thin film optical waveguide and a preparation method thereof.
  • the two-dimensional lattice sub-wavelength thin film optical waveguide is a new type of single-mode optical waveguide that utilizes sub-wavelength characteristics.
  • This optical waveguide is composed of a silicon dioxide film, an optical waveguide dielectric film, a two-dimensional lattice film material interlayer arranged in the center of the optical waveguide dielectric film, and a cladding of the optical waveguide dielectric film and a two-dimensional lattice film material
  • the interlayer consists of a silica cladding layer.
  • the lattice constant of the two-dimensional lattice in the optical waveguide is generally below 400nm, which is much lower than the wavelength of the propagating light, and the diffraction of light is suppressed.
  • optical waveguide can be equivalent to a uniform dielectric optical waveguide, which is very suitable for traditional optical communications at 1310nm and 1550nm. Wavelength range.
  • the low loss characteristics of the optical waveguide make it an ideal optical waveguide structure for various optoelectronic devices such as Mach-Zehnder modulators, micro-ring resonators and other devices.
  • Common optical waveguide dielectric film materials such as silicon, doped silicon dioxide or lithium niobate, have positive thermo-optical coefficients, so their refractive index will increase when the temperature rises, causing the effective refractive index of the optical waveguide to increase .
  • the effective refractive index of the optical waveguide is one of the important parameters of the device performance, the increase of the effective refractive index when the temperature rises will seriously affect the working efficiency of the device.
  • thermal stability is one of the important factors that determine the practical application capability of an optical waveguide.
  • Commonly used temperature control methods include a temperature control system that actively adjusts based on feedback. However, this method does not enhance the inherent thermal stability of the optical waveguide. It also increases the complexity of the system and cannot guarantee uniform temperature control.
  • the non-thermosensitive optical waveguide structure using the negative thermo-optical coefficient coating requires an additional negative thermo-optical coefficient coating, which increases the complexity and cost of the process.
  • the purpose of the present invention is to provide a two-dimensional lattice subwavelength thin film optical waveguide material with negative thermo-optical coefficient to compensate the optical waveguide dielectric film to obtain a thermally stable thin-film optical waveguide.
  • a thin film optical waveguide comprising a silicon-based substrate, a cladding layer provided on the silicon-based substrate, and an optical waveguide provided on the silicon-based substrate
  • the optical waveguide core layer is arranged in the cladding layer and the refractive index of the optical waveguide core layer is higher than the refractive index of the cladding layer.
  • the optical waveguide core layer includes a double-layer optical waveguide dielectric film and A thin film material interlayer arranged between the double-layer optical waveguide dielectric films, the thin film material interlayer is a two-dimensional lattice sub-wavelength structure, and the thin film material interlayer is used to perform thermo-optical coefficients on the optical waveguide dielectric film Compensated negative thermo-optical coefficient material.
  • the negative thermo-optical coefficient material is one of titanium dioxide, zinc oxide, and magnesium-doped zinc oxide.
  • the effective thermo-optical coefficient of the negative thermo-optical coefficient material is negatively related to the thickness of the negative thermo-optical coefficient material.
  • optical waveguide dielectric film is a positive thermo-optical coefficient material.
  • optical waveguide dielectric film is doped silicon dioxide.
  • the doped silica is 2% germanium doped silica.
  • the two-dimensional lattice sub-wavelength structure is a Bravais lattice structure or a quasi lattice structure.
  • the Bravais lattice structure is square or hexagonal.
  • the quasi-lattice structure is octagonal, decagonal or dodecagonal.
  • the two-dimensional lattice sub-wavelength structure includes lattice points, and the lattice points are one of a circle, an ellipse, a cross, a hexagon, and an octagon.
  • the present invention also provides a preparation method for preparing the thin film optical waveguide, and the preparation method is as follows:
  • a silicon-based substrate is provided, and a lower optical waveguide dielectric film is formed on the silicon-based substrate;
  • the thin film material interlayer of the thin film optical waveguide provided by the present invention is a negative thermo-optical coefficient material
  • the negative thermo-optical coefficient material is used to compensate the optical waveguide dielectric film for thermo-optical coefficient, so no additional negative heat is required.
  • the optical coefficient coating reduces the complexity and cost of the process, ensures uniform temperature control, simplifies the structure of the thin film optical waveguide and ensures the thermal stability of the thin film optical waveguide.
  • FIG. 1 is a schematic diagram of the structure of a two-dimensional lattice sub-wavelength thin film optical waveguide in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the structure of the two-dimensional lattice sub-wavelength thin film optical waveguide in another direction in FIG. 1;
  • Fig. 3 is the effective refractive index of the two-dimensional lattice sub-wavelength thin film optical waveguide with thermo-optic coefficient compensation in Fig. 1 at different temperatures;
  • Fig. 4 shows the effective thermo-optical coefficient of the thin film optical waveguide in Fig. 1 at different thicknesses of titanium dioxide.
  • the thin-film optical waveguide shown in an embodiment of the present invention includes a silicon-based substrate 1, an optical waveguide core layer 2 provided on the silicon-based substrate 1, and an optical waveguide core layer 2 provided on the silicon-based substrate 1.
  • a cladding layer (not shown) on the base substrate 1, the optical waveguide core layer 2 is provided in the cladding layer, and the refractive index of the optical waveguide core layer 2 is higher than the refractive index of the cladding layer.
  • the optical waveguide core layer 2 includes a double-layer optical waveguide dielectric film 21 with the same thickness and a film material interlayer 22 arranged between the double-layer optical waveguide dielectric films 21.
  • the optical waveguide dielectric film 21 generally uses doped silica with a positive thermo-optic coefficient.
  • the thin film material interlayer 22 is a negative thermo-optical coefficient material used to compensate the thermo-optic coefficient of the optical waveguide dielectric film 21.
  • the thin film material interlayer 22 is titanium dioxide, zinc oxide, and magnesium-doped zinc oxide negative thermo-optical One of the coefficient materials.
  • the thin film material interlayer 22 has a two-dimensional lattice sub-wavelength structure, and the two-dimensional lattice sub-wavelength structure includes lattice points 221.
  • the two-dimensional lattice sub-wavelength structure is a Bravais lattice structure or a quasi-lattice structure, the Bravais lattice is a square or a hexagon, and the quasi-lattice structure is an octagon or a decagon Or dodecagon.
  • the two-dimensional lattice array is an abstract image.
  • the lattice point 221 is the position of the center of mass of the unit cell.
  • the lattice constant ⁇ is the side length of the unit cell. In Fig. 2, it can be regarded as two adjacent crystals.
  • the lattice points 211 are one of a circle, an ellipse, a cross, a hexagon, and an octagon.
  • the thin-film optical waveguide includes a silicon dioxide substrate 1, a 2% germanium-doped silicon dioxide double-layer optical waveguide dielectric film 21, a titanium dioxide thin film material interlayer 22, and a cladding double-layer optical waveguide dielectric film 21 and The silicon dioxide cladding of the thin film material sandwich 22.
  • the titanium dioxide thin film material interlayer 22 uses a two-dimensional lattice sub-wavelength structure of a square Bravais lattice, and the lattice points 221 are circular.
  • the optical waveguide dielectric film 21 in the thin-film optical waveguide is the main optical waveguide structure, which ensures the single-mode operating mode of the thin-film optical waveguide.
  • the two-dimensional lattice sub-wavelength structure formed in the thin film material interlayer 22 can be regarded as a single-mode optical waveguide structure of a uniform medium.
  • the lattice constant and the duty cycle of the two-dimensional lattice sub-wavelength structure can be obtained.
  • this embodiment uses the scalar Heimholtz formula as a guide, namely:
  • can be any field component
  • k 0 is the vacuum wave number
  • n is the refractive index
  • the z direction is the propagation direction
  • x and y are the vertical and parallel directions of the cross section.
  • F and G are mode distributions
  • n eff is the effective refractive index
  • is the propagation constant.
  • the incident light wavelength is selected as 1550 nm, and the effect of the thin-film material interlayer 22 made of the negative thermo-optical coefficient material titanium dioxide on the effective thermo-optical coefficient of the thin-film optical waveguide is described in detail.
  • the effective thermo-optic coefficient of a thin film optical waveguide is the rate of change of the effective refractive index with temperature, which can be obtained from the slope of the curve prepared by the effective refractive index at different temperatures.
  • the effective thermo-optic coefficient of the waveguide is 7.31 ⁇ 10 -6 .
  • the effective thermo-optical coefficient of thin film optical waveguides made of titanium dioxide of different thicknesses decreases with the increase of the thickness of titanium dioxide, and the effective thermo-optical coefficient is kept below 10 -5 , which shows that the negative thermo-optical coefficient material
  • the effective thermo-optic coefficient of the film is negatively correlated with the thickness of the negative thermo-optic coefficient material, and the effective thermo-optic coefficient of the thin film optical waveguide is greatly reduced and close to 0, so that the effective refractive index of the thin film optical waveguide changes with temperature greatly.
  • the self-structure of the two-dimensional lattice sub-wavelength structure thin film optical waveguide is used to prepare the thin film material sandwich 22 from the negative thermo-optic coefficient material, so that the positive thermo-optic coefficient of the double-layer optical waveguide dielectric film 21 is compensated, and the thin film optical waveguide effectively heats The optical coefficient is greatly reduced to close to zero, and the thermal stability of the thin film optical waveguide is improved.
  • the present invention also provides a preparation method for preparing the above-mentioned thin-film optical waveguide, and the preparation method is as follows:
  • a silicon-based substrate 1 specifically a silicon dioxide substrate 1, on which a plasma-enhanced chemical vapor deposition (PECVD) method is used to coat the doped silicon dioxide material to form a lower optical waveguide Dielectric film, wherein the doped silicon dioxide material is 2% germanium doped silicon dioxide;
  • PECVD plasma-enhanced chemical vapor deposition
  • the titanium dioxide thin film material interlayer is prepared into the two-dimensional lattice subwavelength structure by nanoimprinting (NIL) or electron beam lithography or optical lithography, wherein
  • NIL nanoimprinting
  • the two-dimensional lattice sub-wavelength structure includes lattice points 221, and the lattice points 221 are circular;
  • PECVD plasma-enhanced chemical vapor deposition
  • a silicon dioxide cladding is prepared on the outer circumference of the double-layer optical waveguide dielectric film 21 and the film material interlayer 22.
  • the film material interlayer of the thin film optical waveguide provided by the present invention is a negative thermo-optical coefficient material, and the negative thermo-optical coefficient material is used to compensate the optical waveguide dielectric film, so there is no need to provide an additional negative thermo-optical coefficient coating.
  • the complexity and cost of the process are reduced, uniform temperature control is ensured, the structure of the thin film optical waveguide is simplified, and the thermal stability of the thin film optical waveguide is ensured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种薄膜光波导,包括硅基衬底(1)、设置在硅基衬底(1)上的包层以及设置在硅基衬底(1)上的光波导芯层(2),光波导芯层(2)设于包层之中并且光波导芯层(2)折射率高于包层的折射率,光波导芯层(2)包括双层光波导介质薄膜(21)以及设置于双层光波导介质薄膜(21)之间的薄膜材料夹层(22),薄膜材料夹层(22)为二维晶格亚波长结构,薄膜材料夹层(22)为用以对光波导介质薄膜(21)进行热光系数补偿的负热光系数材料。利用二维晶格亚波长薄膜光波导的负热光系数材料对光波导介质薄膜(21)进行热光系数补偿,无需设置额外的负热光系数镀层,降低了工艺的复杂程度和成本,确保了均匀控温,简化了薄膜光波导的结构并保证了薄膜光波导的热稳定性能。

Description

薄膜光波导及其制备方法
本申请要求了申请日为2019年12月25日,申请号为201911360469.5的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种薄膜光波导及其制备方法。
背景技术
二维晶格亚波长薄膜光波导是一种利用亚波长特性的新型单模光波导。这种光波导由包括二氧化硅薄膜、光波导介质薄膜、设置在所述光波导介质薄膜中心的二维晶格薄膜材料夹层、以及包覆所述光波导介质薄膜和二维晶格薄膜材料夹层的二氧化硅包层组成。光波导中的二维晶格的晶格常数一般在400nm以下,远低于传播的光波长,光的衍射被抑制,因此可以等价于均匀介质光波导,非常适合传统光通信1310nm和1550nm的波长范围。该光波导的低损耗特性,使其成为多种光电器件如马赫曾德尔调制器、微环共振器等器件的理想光波导结构。常见的光波导介质薄膜材料,如硅、掺杂二氧化硅或铌酸锂都具有正热光系数,因此在温度升高时其折射率也会升高,造成光波导的有效折射率增大。由于光波导的有效折射率是器件性能的重要参数之一,有效折射率在温度升高时而增大会严重影响器件的工作效能。在光波导的正常使用过程中,其温度往往会有较大变化,因此热稳定性是决定一个光波导实际应用能力的重要因素之一。常用控温手段包括根据反馈主动调节的温控***,然而这种方式并不能增强光波导固有的热稳定性,还有增加***的复杂度、无法保证均匀温控等缺点。使用负热光系数镀层的非热敏光波导结构,需要额外的负热光系数镀层,增加了工艺的复杂度和成本。
发明内容
本发明的目的在于提供一种利用二维晶格亚波长薄膜光波导的负热光系数材料对光波导介质薄膜进行热光系数补偿,以得到具有热稳定性的薄膜光波导。
为达到上述目的,本发明提供如下技术方案:一种薄膜光波导,包括硅基衬底、设置在所述硅基衬底上的包层、以及设置在所述硅基衬底上的光波导芯 层,所述光波导芯层设于所述包层之中并且所述光波导芯层折射率高于所述包层的折射率,所述光波导芯层包括双层光波导介质薄膜以及设置于所述双层光波导介质薄膜之间的薄膜材料夹层,所述薄膜材料夹层为二维晶格亚波长结构,所述薄膜材料夹层为用以对所述光波导介质薄膜进行热光系数补偿的负热光系数材料。
进一步地,所述负热光系数材料为二氧化钛、氧化锌和镁掺杂氧化锌中的一种。
进一步地,所述负热光系数材料的有效热光系数与所述负热光系数材料的厚度负相关。
进一步地,所述光波导介质薄膜为正热光系数材料。
进一步地,所述光波导介质薄膜为掺杂二氧化硅。
进一步地,所述掺杂二氧化硅为2%锗掺杂二氧化硅。
进一步地,所述二维晶格亚波长结构为布拉维晶格结构或准晶格结构。
进一步地,所述布拉维晶格结构为正方形或六角形。
进一步地,所述准晶格结构为八边形或十边形或十二边形。
进一步地,所述二维晶格亚波长结构包括晶格点,所述晶格点为圆形、椭圆形、十字交叉形、六角形、八角形中的一种。
本发明还提供了一种用以制备所述薄膜光波导的制备方法,所述制备方法如下:
S1、提供硅基衬底,在所述硅基衬底上形成下层光波导介质薄膜;
S2、使用负热光系数材料制备所述薄膜材料夹层;
S3、将所述薄膜材料夹层制备成所述二维晶格亚波长结构;
S4、制备上层光波导介质薄膜,所述下层光波导介质薄膜和所述下层光波导介质薄膜形成所述双层光波导介质薄膜;
S5、制备所述包层。
本发明的有益效果在于:本发明所提供的薄膜光波导的薄膜材料夹层为负热光系数材料,利用负热光系数材料对光波导介质薄膜进行热光系数补偿,故 无需设置额外的负热光系数镀层,降低了工艺的复杂成度和成本,确保了均匀控温,简化了薄膜光波导的结构并保证了薄膜光波导的热稳定性能。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1为为本发明一实施例中二维晶格亚波长薄膜光波导的结构示意图;
图2为图1中二维晶格亚波长薄膜光波导的另一方向的结构示意图;
图3为图1中热光系数补偿的二维晶格亚波长薄膜光波导在不同温度下的有效折射率;
图4为图1中薄膜光波导在不同二氧化钛厚度下的有效热光系数。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的机构或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
请参见图1和图2,本发明一实施例所示的薄膜光波导,包括硅基衬底1、设置在所述硅基衬底1上的光波导芯层2、以及设置在所述硅基衬底1上的包层(未图示),所述光波导芯层2设于所述包层之中并且所述光波导芯层2折射率高于所述包层的折射率。具体的,所述光波导芯层2包括厚度相同的双层光波导介质薄膜21以及设置于所述双层光波导介质薄膜21之间的薄膜材料夹层22。所述光波导介质薄膜21一般使用正热光系数的掺杂二氧化硅。所述薄膜材料夹层22为用以对所述光波导介质薄膜21进行热光系数补偿的负热光系数材料,具体的,薄膜材料夹层22为二氧化钛、氧化锌以及镁掺杂氧化锌负热光系数材料中的一种。
所述薄膜材料夹层22为二维晶格亚波长结构,所述二维晶格亚波长结构包括晶格点221。所述二维晶格亚波长结构为布拉维晶格结构或准晶格结构,所述布拉维晶格为包括正方形或六角形,所述准晶格结构为八边形或十边形或十二边形。请参见图2,二维晶格阵列为抽象图,晶格点221为晶胞质心所在的位置,晶格常数Λ为晶胞的边长,在图2中,可视为两个相邻晶格点221之间的距离。所述晶格点211为圆形、椭圆形、十字交叉形、六角形以及八角形中的一种。
本实施例中,薄膜光波导包括二氧化硅衬底1、2%锗掺杂二氧化硅的双层光波导介质薄膜21、二氧化钛薄膜材料夹层22、以及包覆双层光波导介质薄膜21和薄膜材料夹层22的二氧化硅包层。二氧化钛薄膜材料夹层22使用正方形布拉维晶格的二维晶格亚波长结构,晶格点221为圆形。薄膜光波导中的所述光波导介质薄膜21是主要的光波导结构,保证薄膜光波导的单模工作模式。薄膜材料夹层22中形成的二维晶格亚波长结构,可以被视为均匀介质的单模光波导结构。同时,通过调整二维晶格亚波长结构的晶格常数和占空比,可以得到相应的薄膜光波导的有效折射率。
在对薄膜光波导结构的设计中,本实施例以标量海姆霍兹公式作为指导,即:
Figure PCTCN2020129669-appb-000001
其中Ψ可为任何场分量,k 0为真空波数,n为折射率,z方向为传播方向,x、y为横截面的竖直、平行方向。为得到此方程的解,可通过有效折射率法简化为:
Figure PCTCN2020129669-appb-000002
Figure PCTCN2020129669-appb-000003
其中F、G为模分布,n eff为有效折射率,β为传播常数。通过此方法,可以计算得出光波导的传播常数和有效折射率。
现以本实施例所示薄膜光波导为例,入射光波长选择为1550nm,进行详细说明负热光系数材料二氧化钛制备的薄膜材料夹层22对薄膜光波导的有效热光系数的影响。
请参见图3,薄膜光波导的有效热光系数为有效折射率随温度的变化率,可由在不同温度下的有效折射率制备的曲线的斜率得到,图3中的热光系数补偿的薄膜光波导的有效热光系数为7.31×10 -6
因二氧化钛薄膜材料夹层22的整体宽度(即薄膜光波导的宽度)对薄膜光波导有效热光系数的影响不大,在此不做探究。请参见图4,由不同厚度二氧化钛制备的薄膜光波导的有效热光系数随着二氧化钛的厚度的增加减小,并且有效热光系数保持在低于10 -5,由此可知负热光系数材料的有效热光系数与所述负热光系数材料的厚度负相关,薄膜光波导的有效热光系数大大降低并接近于0,从而薄膜光波导有效折射率随温度的变化大大降低。
本实施例利用二维晶格亚波长结构薄膜光波导的自身结构,将负热光系数材料制备薄膜材料夹层22,使双层光波导介质薄膜21的正热光系数补偿,薄膜光波导有效热光系数被大大降低至接近于0,薄膜光波导的热稳定性得到提高。
本发明还提供了一种用以制备上述薄膜光波导的制备方法,所述制备方法如下:
S1、提供硅基衬底1,具体为二氧化硅衬底1,在二氧化硅衬底1上使用等离子体增强化学气相沉积法(PECVD)将掺杂二氧化硅材料进行镀膜形成下层光 波导介质薄膜,其中掺杂二氧化硅材料为2%锗掺杂二氧化硅;
S2、使用原子层沉积法(ALD)将二氧化钛材料制备薄膜材料夹层22;
S3、将二氧化钛薄膜材料夹层通过纳米压印(NIL)或电子束光刻技术(electron beam lithography)或光学光刻技术(optical lithography)制备成所述二维晶格亚波长结构,其中,所述二维晶格亚波长结构包括晶格点221,所述晶格点221为圆形;
S4、使用等离子体增强化学气相沉积法(PECVD)将2%锗掺杂二氧化硅材料进行镀膜制备上层光波导介质薄膜,所述下层光波导介质薄膜和所述下层光波导介质薄膜形成所述双层光波导介质薄膜21;
S5、在双层光波导介质薄膜21和薄膜材料夹层22外圆周制备二氧化硅包层。
综上,本发明所提供的薄膜光波导的薄膜材料夹层为负热光系数材料,利用负热光系数材料对光波导介质薄膜进行热光系数补偿,故无需设置额外的负热光系数镀层,降低了工艺的复杂成度和成本,确保了均匀控温,简化了薄膜光波导的结构并保证了薄膜光波导的热稳定性能。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种薄膜光波导,包括硅基衬底以及设置在所述硅基衬底上的包层,其特征在于,所述薄膜光波导还包括设置在所述硅基衬底上的光波导芯层,所述光波导芯层设于所述包层之中并且所述光波导芯层折射率高于所述包层的折射率,所述光波导芯层包括双层光波导介质薄膜以及设置于所述双层光波导介质薄膜之间的薄膜材料夹层,所述薄膜材料夹层为二维晶格亚波长结构,所述薄膜材料夹层为用以对所述光波导介质薄膜进行热光系数补偿的负热光系数材料。
  2. 如权利要求1所述的薄膜光波导,其特征在于,所述负热光系数材料为二氧化钛、氧化锌和镁掺杂氧化锌中的一种。
  3. 如权利要求1所述的薄膜光波导,其特征在于,所述负热光系数材料的有效热光系数与所述负热光系数材料的厚度负相关。
  4. 如权利要求1所述的薄膜光波导,其特征在于,所述光波导介质薄膜为正热光系数材料。
  5. 如权利要求1所述的薄膜光波导,其特征在于,所述光波导介质薄膜为掺杂二氧化硅。
  6. 如权利要求5所述的薄膜光波导,其特征在于,所述掺杂二氧化硅为2%锗掺杂二氧化硅。
  7. 如权利要求1所述的薄膜光波导,其特征在于,所述二维晶格亚波长结构为布拉维晶格结构或准晶格结构。
  8. 如权利要求7所述的薄膜光波导,其特征在于,所述布拉维晶格结构为正方形或六角形。
  9. 如权利要求7所述的薄膜光波导,其特征在于,所述准晶格结构为八边形或十边形或十二边形。
  10. 如权利要求1所述的薄膜光波导,其特征在于,所述二维晶格亚波长结构包括晶格点,所述晶格点为圆形、椭圆形、十字交叉形、六角形、八角形中的一种。
  11. 一种用以制备权利要求1至10项中任一项所述的薄膜光波导的制备方法,其特征在于,所述制备方法如下:
    S1、提供硅基衬底,在所述硅基衬底上形成下层光波导介质薄膜;
    S2、使用负热光系数材料制备所述薄膜材料夹层;
    S3、将所述薄膜材料夹层制备成所述二维晶格亚波长结构;
    S4、制备上层光波导介质薄膜,所述下层光波导介质薄膜和所述下层光波导介质薄膜形成所述双层光波导介质薄膜;
    S5、制备所述包层。
PCT/CN2020/129669 2019-12-25 2020-11-18 薄膜光波导及其制备方法 WO2021129238A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/632,809 US20220268995A1 (en) 2019-12-25 2020-11-18 Thin film optical waveguide and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911360469.5A CN110989078A (zh) 2019-12-25 2019-12-25 薄膜光波导及其制备方法
CN201911360469.5 2019-12-25

Publications (1)

Publication Number Publication Date
WO2021129238A1 true WO2021129238A1 (zh) 2021-07-01

Family

ID=70076637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129669 WO2021129238A1 (zh) 2019-12-25 2020-11-18 薄膜光波导及其制备方法

Country Status (3)

Country Link
US (1) US20220268995A1 (zh)
CN (1) CN110989078A (zh)
WO (1) WO2021129238A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110989077A (zh) * 2019-12-25 2020-04-10 易锐光电科技(安徽)有限公司 薄膜光波导及其制备方法
CN110989078A (zh) * 2019-12-25 2020-04-10 易锐光电科技(安徽)有限公司 薄膜光波导及其制备方法
CN114355508B (zh) * 2022-01-24 2023-12-05 吉林大学 一种基于定向耦合结构的少模波导功率分配器及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004126399A (ja) * 2002-10-04 2004-04-22 Nippon Telegr & Teleph Corp <Ntt> 光導波路および光導波回路
CN104932120A (zh) * 2015-04-03 2015-09-23 中国空间技术研究院 一种基于二维光子晶体的微粒精密控制器
CN105759352A (zh) * 2015-07-03 2016-07-13 苏州峰通光电有限公司 热不敏感型平面光波导及其制备方法
CN108123365A (zh) * 2017-12-25 2018-06-05 武汉邮电科学研究院 一种无温漂的片上集成激光器及其制备方法
CN110376677A (zh) * 2019-08-30 2019-10-25 易锐光电科技(安徽)有限公司 一种无热阵列波导光栅
CN110989077A (zh) * 2019-12-25 2020-04-10 易锐光电科技(安徽)有限公司 薄膜光波导及其制备方法
CN110989078A (zh) * 2019-12-25 2020-04-10 易锐光电科技(安徽)有限公司 薄膜光波导及其制备方法
CN111045145A (zh) * 2019-12-25 2020-04-21 易锐光电科技(安徽)有限公司 薄膜光波导及其制备方法
CN211826602U (zh) * 2019-12-25 2020-10-30 易锐光电科技(安徽)有限公司 薄膜光波导

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9710062D0 (en) * 1997-05-16 1997-07-09 British Tech Group Optical devices and methods of fabrication thereof
CN100349340C (zh) * 2005-07-15 2007-11-14 中国科学院半导体研究所 2.5维光子晶体面发射激光器
CN101499617A (zh) * 2008-01-30 2009-08-05 中国科学院半导体研究所 采用光子晶体微腔和晶片键合技术实现电注入的单光子源
CN104966769B (zh) * 2015-05-28 2018-03-20 东南大学 一种具有双光子晶体结构的量子点发光二极管

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004126399A (ja) * 2002-10-04 2004-04-22 Nippon Telegr & Teleph Corp <Ntt> 光導波路および光導波回路
CN104932120A (zh) * 2015-04-03 2015-09-23 中国空间技术研究院 一种基于二维光子晶体的微粒精密控制器
CN105759352A (zh) * 2015-07-03 2016-07-13 苏州峰通光电有限公司 热不敏感型平面光波导及其制备方法
CN108123365A (zh) * 2017-12-25 2018-06-05 武汉邮电科学研究院 一种无温漂的片上集成激光器及其制备方法
CN110376677A (zh) * 2019-08-30 2019-10-25 易锐光电科技(安徽)有限公司 一种无热阵列波导光栅
CN110989077A (zh) * 2019-12-25 2020-04-10 易锐光电科技(安徽)有限公司 薄膜光波导及其制备方法
CN110989078A (zh) * 2019-12-25 2020-04-10 易锐光电科技(安徽)有限公司 薄膜光波导及其制备方法
CN111045145A (zh) * 2019-12-25 2020-04-21 易锐光电科技(安徽)有限公司 薄膜光波导及其制备方法
CN211826602U (zh) * 2019-12-25 2020-10-30 易锐光电科技(安徽)有限公司 薄膜光波导

Also Published As

Publication number Publication date
CN110989078A (zh) 2020-04-10
US20220268995A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
WO2021129238A1 (zh) 薄膜光波导及其制备方法
Abel et al. A hybrid barium titanate–silicon photonics platform for ultraefficient electro-optic tuning
WO2021129237A1 (zh) 薄膜光波导及其制备方法
WO2021031416A1 (zh) 铌酸锂光波导芯片
US20150185413A1 (en) Highly efficient optical gratings with reduced thickness requirements and impedance-matching layers
JPWO2006046347A1 (ja) 分散補償素子
WO2021129239A1 (zh) 薄膜光波导及其制备方法
JP5367820B2 (ja) 表面プラズモン型光変調器
WO2022012434A1 (zh) 一种高密度集成光波导
Chen et al. An efficient directional coupling from dielectric waveguide to hybrid long-range plasmonic waveguide on a silicon platform
CN211826602U (zh) 薄膜光波导
WO2020118625A1 (zh) 光耦合结构、***及光耦合结构的制备方法
JP4078527B2 (ja) 1次元フォトニック結晶への反射防止膜の構造およびその形成方法
CN211826601U (zh) 薄膜光波导
CN211826600U (zh) 薄膜光波导
Deng et al. Fano resonance in a metasurface composed of graphene ribbon superlattice
TW588167B (en) Polarization-insensitive planar lightwave circuits and method for fabricating the same
TW200933224A (en) Metal-diffused single polarization light waveguide chip and manufacturing method thereof
US20200264374A1 (en) Light polarizing element and method of forming the same
KR20190114420A (ko) 원형 공진기, 이를 포함하는 광 변환기 및 광학 소자
JP2014209107A (ja) X線導波路
Cicek et al. Coupling between opposite-parity modes in parallel photonic crystal waveguides and its application in unidirectional light transmission
Uranus et al. Considerations on material composition for low-loss hollow-core integrated optical waveguides
CN116430515B (zh) 一种基于硫化物和铌酸锂的波导装置
CN115128731B (zh) 光波导结构、色散控制方法、制备方法及集成光源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20905016

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20905016

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.03.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20905016

Country of ref document: EP

Kind code of ref document: A1