WO2021129220A1 - 定位大气波导干扰的方法、基站及计算机可读存储介质 - Google Patents

定位大气波导干扰的方法、基站及计算机可读存储介质 Download PDF

Info

Publication number
WO2021129220A1
WO2021129220A1 PCT/CN2020/128409 CN2020128409W WO2021129220A1 WO 2021129220 A1 WO2021129220 A1 WO 2021129220A1 CN 2020128409 W CN2020128409 W CN 2020128409W WO 2021129220 A1 WO2021129220 A1 WO 2021129220A1
Authority
WO
WIPO (PCT)
Prior art keywords
characteristic sequence
serving cell
target characteristic
target
sequence
Prior art date
Application number
PCT/CN2020/128409
Other languages
English (en)
French (fr)
Inventor
吴江
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021129220A1 publication Critical patent/WO2021129220A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth

Definitions

  • the embodiments of the present disclosure relate to, but are not limited to, the field of communication technology, and in particular to, but are not limited to, a method for locating atmospheric duct interference, a base station, and a computer-readable storage medium.
  • TDD-LTE Time Division Duplexing-long Term Evolution
  • TDD-LTE Time Division Duplexing-long Term Evolution
  • the feature of TDD-LTE is that the uplink and downlink share the same spectrum, and time division multiplexing is used to transmit uplink and downlink information. Between (D subframe) and uplink (U subframe), the S subframe is used for isolation. There is a guard interval GP (Guard Period).
  • GP Guard Period
  • the function of GP is to prevent the delay caused by long-distance transmission and make the remote site's
  • the downlink interferes with the uplink subframe of this site, which causes the demodulation performance to decrease;
  • electromagnetic waves propagating in the atmospheric boundary layer, especially in the near-surface layer are affected by atmospheric refraction and their propagation trajectory bends to the ground.
  • the curvature exceeds the curvature of the earth's surface, part of the electromagnetic wave will be trapped in a certain thickness of the thin layer of the atmosphere, just like electromagnetic waves propagate in a metal waveguide. This phenomenon is called electromagnetic wave propagation in atmospheric ducts.
  • the atmospheric duct phenomenon can cause the TDD-LTE downlink wireless signal to propagate very far.
  • the propagation distance exceeds the protection distance of the TDD-LTE system uplink and downlink protection time slots, resulting in this remote TDD-LTE downlink
  • the wireless signal interferes with the local TDD-LTE uplink wireless signal.
  • the countermeasures include detection, mitigation, and avoidance.
  • the theoretical premise of the avoidance scheme is that the interference between the far-end base station and the near-end base station is mutual when the duct interference occurs, that is, the uplink of the remote base station is also affected.
  • the downlink interference of the near-end base station so the interfering station can send a characteristic sequence containing site information in the downlink, and the interfered station can uniquely identify the interfering station by detecting the characteristic sequence in the uplink.
  • the characteristic sequence detection The high complexity and large amount of calculations make it impossible to use the atmospheric duct positioning function.
  • the method for locating atmospheric duct interference mainly solves the technical problem of the high complexity of feature sequence detection and large amount of calculation, which makes it impossible to use the atmospheric duct positioning function.
  • embodiments of the present disclosure provide a method for locating air duct interference, including:
  • the target characteristic sequence that matches the actual bandwidth of the serving cell is determined according to the characteristic sequence, and the target characteristic sequence is sent.
  • the embodiments of the present disclosure provide another method for locating air duct interference, including:
  • the target characteristic sequence is obtained by the serving cell the characteristic sequence corresponding to the standard bandwidth length, a target characteristic sequence matching the actual bandwidth of the serving cell is obtained according to the characteristic sequence.
  • the embodiment of the present disclosure also provides a base station, including a processor, a memory, and a communication bus;
  • the communication bus is used to realize the connection and communication between the processor and the memory
  • the processor is used to execute one or more programs stored in the memory to implement the steps of the method for locating atmospheric duct interference as described above.
  • the embodiments of the present disclosure also provide a computer storage medium, and the computer-readable storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to realize the above Steps of the method of locating atmospheric duct interference.
  • Fig. 1 is a schematic diagram of the basic flow of a method for locating air duct interference according to the first embodiment of the disclosure
  • FIG. 2 is a schematic diagram of the basic configuration of the site networking configuration in the first embodiment of the disclosure
  • FIG. 3 is a basic schematic diagram of the sending position of a characteristic sequence in a method for locating air duct interference according to Embodiment 1 of the disclosure;
  • FIG. 3 is a basic schematic diagram of the sending position of a characteristic sequence in a method for locating air duct interference according to Embodiment 1 of the disclosure;
  • FIG. 4 is a schematic diagram of the basic flow of another method for locating air duct interference according to Embodiment 1 of the present disclosure
  • FIG. 5 is a schematic diagram of the basic flow of another method for locating air duct interference according to the second embodiment of the disclosure.
  • FIG. 6 is a schematic diagram of the basic structure of a base station according to the third embodiment of the disclosure.
  • the embodiment of the present disclosure proposes a method for locating air duct interference implemented by a base station side.
  • the method for locating air duct interference includes:
  • the serving cell serving as the transmitting end obtains the characteristic sequence corresponding to the standard bandwidth.
  • the general site network configuration is shown in Figure 2.
  • the standard bandwidth is a preset bandwidth standard, and subsequent acquisition of the characteristic sequence is obtained with the standard bandwidth; in the embodiment of the present disclosure, the standard bandwidth is a 10M bandwidth, that is, the characteristic sequence uniformly uses the corresponding points of the 10M bandwidth; specifically For example, when the actual bandwidth of the serving cell of the sending end is 20M, the characteristic sequence corresponding to the 10M bandwidth is also obtained; when the actual bandwidth of the serving cell of the sending end is 15M, the characteristic sequence corresponding to the 10M bandwidth is
  • the target characteristic sequence matching the actual bandwidth of the serving cell is determined according to the characteristic sequence, and sending the target characteristic sequence includes: when the points of the characteristic sequence are the same as the characteristic sequence points corresponding to the length of the actual bandwidth of the serving cell, the characteristic The sequence is used as the target feature sequence, and the target feature sequence is sent.
  • the characteristic sequence corresponding to the number of points of the 10M bandwidth is obtained, that is, after the 512 point characteristic sequence, the number of points of the characteristic sequence is determined to be the length of the actual bandwidth of the serving cell of the sending end If the corresponding feature sequence points are consistent with 512 points, then the feature sequence feature is regarded as the target sequence feature, and the target sequence feature is sent.
  • the target characteristic sequence that matches the actual bandwidth of the serving cell is determined according to the characteristic sequence, and sending the target characteristic sequence includes: when the points of the characteristic sequence are inconsistent with the points of the characteristic sequence corresponding to the length of the actual bandwidth of the serving cell, correct The obtained feature sequence is supplemented to obtain the target feature sequence.
  • the number of points of the target feature sequence is consistent with the number of feature sequence points corresponding to the actual bandwidth of the serving cell; the target feature sequence is sent; specifically, for example, in the 30M effective frequency spectrum, when When the actual bandwidth of the serving cell of the sending end is 15M, the characteristic sequence corresponding to the 10M bandwidth is obtained, that is, after 512 points, it is judged that the points of the characteristic sequence are inconsistent with the 768 points corresponding to the length of the actual bandwidth of the serving cell of the sending end, then Add 0 to the frequency domain of the characteristic sequence, perform FFT (fast Fourier transform) to a length of 15M, that is, perform FFT transform to 768 as the target sequence characteristic, and send the target sequence characteristic; or, for example, when the sender's When the actual bandwidth of the serving cell is 20M, after obtaining the characteristic sequence corresponding to the number of points of the 10M bandwidth, it is determined that the number of characteristic sequence points is inconsistent with the number of characteristic sequence points corresponding to the length of the actual bandwidth of the serving cell of the sending end
  • performing supplementary processing on the characteristic sequence to obtain the target characteristic sequence includes: determining the position of the serving cell in the frequency band according to the cell identifier carried in the characteristic sequence, and when the serving cell is located in the high frequency position of the frequency band, pass Perform supplementary processing at the front end of the characteristic sequence in the frequency domain to obtain the target characteristic sequence; specifically, for example, in the 30M effective spectrum, when the actual bandwidth of the serving cell of the transmitting end is 15M, after obtaining the characteristic sequence corresponding to the number of points of the 10M bandwidth, it is determined
  • the number of characteristic sequence points is inconsistent with the number of characteristic sequence points corresponding to the length of the actual bandwidth of the serving cell of the sending end, and the serving cell of the sending end is at a high frequency position in the spectrum, then 0 is added to the frequency domain front end of the characteristic sequence, and FFT is performed to 15M bandwidth.
  • the number of characteristic sequence points is then used as the target sequence characteristic, so that the number of target sequence characteristic points is consistent with the number of characteristic sequence points corresponding to
  • performing supplementary processing on the characteristic sequence to obtain the target characteristic sequence includes: determining the position of the serving cell in the frequency band according to the cell identifier carried in the characteristic sequence, and when the serving cell is located in the low frequency position of the frequency band, The back-end of the characteristic sequence performs supplementary processing to obtain the target characteristic sequence; specifically, for example, in the 30M effective spectrum, when the actual bandwidth of the serving cell of the sending end is 15M, after obtaining the characteristic sequence corresponding to the number of points of the 10M bandwidth, the characteristic is judged When the number of sequence points is inconsistent with the number of characteristic sequence points corresponding to the actual bandwidth of the serving cell of the sending end, and the serving cell of the sending end is at a low frequency position in the spectrum, add 0 at the back end of the characteristic sequence frequency domain and do FFT to 15M bandwidth. The number of characteristic sequence points is then used as the target sequence characteristic, so that the number of characteristic sequence points of the target sequence is consistent with the number of characteristic sequence points corresponding to the length of the actual bandwidth of
  • the target characteristic sequence will only be sent at the 10M higher or lower 10M position of the frequency band.
  • the target characteristic sequence will only be sent at the 10M higher or lower 10M position of the frequency band, as shown in Figure 3.
  • the embodiment of the present disclosure also provides a method for locating air duct interference implemented by another base station side. As shown in FIG. 4, the method for locating air duct interference includes:
  • the serving cell of the receiving end receives the target characteristic sequence, where the target characteristic sequence is obtained by the serving cell after the characteristic sequence corresponding to the standard bandwidth length is obtained, and the target characteristic sequence matching the actual bandwidth of the serving cell is obtained according to the characteristic sequence.
  • S202 Determine a serving cell that sends the target characteristic sequence according to the target characteristic sequence.
  • determining the serving cell to send the target characteristic sequence according to the target characteristic sequence includes: determining, according to the cell identifier carried in the target characteristic sequence, that the broadband of the serving cell is in a high-frequency position or a low-frequency position in the frequency band.
  • the target feature sequence matching the actual bandwidth of the serving cell obtained according to the feature sequence includes: when the number of points of the feature sequence is inconsistent with the number of feature sequence points corresponding to the length of the actual bandwidth of the serving cell, performing supplementary processing on the feature sequence , The target characteristic sequence is obtained, and the number of points of the target characteristic sequence is consistent with the number of characteristic sequence points corresponding to the length of the actual bandwidth of the serving cell.
  • the method for locating atmospheric duct interference described in the embodiments of the present disclosure is not used to limit the effective spectrum bandwidth of 30M.
  • This method can be applied to other bandwidths, and only needs to increase constraints: the frequency band of the serving cell must be configured in Only the service cell at the boundary of the operator's effective frequency band can enable the detection and transmission of the atmospheric duct characteristic sequence. Through this constraint, the frequency band planning of the service cells of the entire network is carried out to achieve the air duct positioning function under the mixed bandwidth configuration.
  • the method for locating atmospheric duct interference obtains a characteristic sequence corresponding to a standard bandwidth; determines a target characteristic sequence matching the actual bandwidth of a serving cell according to the characteristic sequence, and sends the target characteristic sequence; and receives the target characteristic Sequence, the serving cell that sends the target characteristic sequence is determined according to the target characteristic sequence; after the target characteristic sequence is obtained by the serving cell the characteristic sequence corresponding to the standard bandwidth length, the target characteristic sequence is obtained according to the characteristic sequence and corresponds to the service
  • the target feature sequence that matches the actual bandwidth of the cell solves the problem that the bandwidth of each serving cell on the same frequency band cannot be completely aligned, which makes the detection of the feature sequence more complicated and computationally expensive, which leads to the inability to use the atmospheric duct positioning function, and reduces the detection of the feature sequence.
  • the serving cell of the sender will only send the target characteristic sequence at the 10M and lower 10M positions of the frequency band.
  • the serving cell of the receiving end there is no need to determine the service of the sender corresponding to the received target characteristic sequence. Only one method is used to detect the type of cell, which reduces the computational complexity of feature sequence detection.
  • the embodiments of the present disclosure provide a more specific example to illustrate the conference control method.
  • the method for locating atmospheric duct interference includes:
  • the serving cell of the sending end determines a target characteristic sequence that matches the actual bandwidth of the serving cell according to the acquired characteristic sequence corresponding to the standard bandwidth.
  • the target characteristic sequence that matches the actual bandwidth of the serving cell is determined according to the characteristic sequence. Specifically, for example, in the 30M effective frequency spectrum, when the actual bandwidth of the serving cell of the transmitting end is 15M, the corresponding 10M bandwidth is obtained. After determining the characteristic sequence of the points, it is determined that the characteristic sequence points are inconsistent with the characteristic sequence points corresponding to the length of the actual bandwidth of the serving cell of the sending end, and when the serving cell of the sending end is at a low frequency position in the frequency spectrum, it is after the frequency domain of the characteristic sequence. Padded with 0 at the end, do the FFT to the length of 15M and use the characteristic sequence points as the target sequence characteristic, so that the target sequence characteristic points are consistent with the characteristic sequence points corresponding to the length of the actual bandwidth of the serving cell of the sending end.
  • S502 The serving cell of the sending end sends the target sequence feature
  • the target sequence feature is obtained, it is sent at the 10M lower position of the serving cell of the sending end.
  • S503 The serving cell of the receiving end receives the target sequence feature
  • the serving cell of the receiving end receives the target characteristic sequence, where the target characteristic sequence is obtained by the serving cell after the characteristic sequence corresponding to the standard bandwidth length is obtained, and the target characteristic sequence matching the actual bandwidth of the serving cell is obtained according to the characteristic sequence.
  • S504 The serving cell of the receiving end locates the serving cell that sends the target characteristic sequence according to the target characteristic sequence.
  • locating the serving cell that sends the target characteristic sequence according to the target characteristic sequence includes: locating the broadband of the serving cell in a high-frequency position or a low-frequency position in the frequency band according to the cell identifier carried in the target characteristic sequence.
  • the target feature sequence matching the actual bandwidth of the serving cell obtained according to the feature sequence includes: when the number of points of the feature sequence is inconsistent with the number of feature sequence points corresponding to the length of the actual bandwidth of the serving cell, performing supplementary processing on the feature sequence , The target characteristic sequence is obtained, and the number of points of the target characteristic sequence is consistent with the number of characteristic sequence points corresponding to the length of the actual bandwidth of the serving cell.
  • the serving cell of the transmitting end determines the target characteristic sequence matching the actual bandwidth of the serving cell according to the characteristic sequence corresponding to the obtained standard bandwidth, and sends the target sequence characteristic so that the characteristic sequence is only Send in the high 10M and low 10M positions of the frequency band; so that the serving cell of the receiving end does not care about the bandwidth type of the serving cell of the sending end, and only one method is used for detection, which greatly reduces the computational complexity of sequence detection.
  • the embodiment of the present disclosure also provides a base station, as shown in FIG. 6, which includes a processor 601, a memory 602, and a communication bus 603, where:
  • the communication bus 603 is used to implement connection and communication between the processor 601 and the memory 602;
  • the processor 601 is configured to execute one or more computer programs stored in the memory 602 to implement at least one step in the method for locating atmospheric duct interference in the first embodiment and/or the second embodiment.
  • the embodiments of the present disclosure also provide a computer-readable storage medium, which is included in any method or technology for storing information (such as computer-readable instructions, data structures, computer program modules, or other data) Implementation of volatile or non-volatile, removable or non-removable media.
  • Computer-readable storage media include but are not limited to RAM (Random Access Memory), ROM (Read-Only Memory, read-only memory), EEPROM (Electrically Erasable Programmable read only memory, charged Erasable Programmable Read-Only Memory) ), flash memory or other memory technology, CD-ROM (Compact Disc Read-Only Memory), digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, Or any other medium that can be used to store desired information and that can be accessed by a computer.
  • the computer-readable storage medium in the embodiments of the present disclosure may be used to store one or more computer programs, and the stored one or more computer programs may be executed by a processor, so as to implement the above-mentioned embodiment 1 and/or embodiment 2 At least one step of the method of locating air duct interference.
  • the method obtains a characteristic sequence corresponding to a standard bandwidth; determines a target characteristic sequence matching the actual bandwidth of a serving cell according to the characteristic sequence, and sends the target characteristic sequence;
  • the target characteristic sequence is received, and the serving cell that sends the target characteristic sequence is determined according to the target characteristic sequence; after the target characteristic sequence is obtained by the serving cell the characteristic sequence corresponding to the standard bandwidth length, the value obtained according to the characteristic sequence and
  • the target feature sequence matching the actual bandwidth of the serving cell solves the technical problem that the bandwidth of each serving cell on the same frequency band cannot be completely aligned, which makes the detection of the feature sequence more complicated and the amount of calculation, which leads to the inability to use the atmospheric duct positioning function, and reduces The calculation amount of feature sequence detection is improved, and the user experience is improved.
  • communication media usually contain computer-readable instructions, data structures, computer program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery medium. Therefore, the present disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

根据本公开实施例提供的定位大气波导干扰的方法,通过获取标准带宽对应的特征序列;根据所述特征序列确定与服务小区实际带宽匹配的目标特征序列,发送所述目标特征序列;通过接收目标特征序列,根据所述目标特征序列确定发送所述目标特征序列的服务小区;所述目标特征序列由所述服务小区获取标准带宽长度对应的特征序列后,根据所述特征序列得到的与所述服务小区实际带宽匹配的目标特征序列,解决了同频段上各服务小区带宽无法完全对齐,使得特征序列检测复杂度高,运算量大,从而无法使用大气波导定位功能的技术问题。

Description

定位大气波导干扰的方法、基站及计算机可读存储介质
相关申请的交叉引用
本公开要求享有2019年12月24日提交的名称为“定位大气波导干扰的方法、基站及计算机可读存储介质”的中国专利申请CN201911350268.7的优先权,其全部内容通过引用并入本公开中。
技术领域
本公开实施例涉及但不限于通信技术领域,尤其涉及但不限于一种定位大气波导干扰的方法、基站及计算机可读存储介质。
背景技术
TDD-LTE(Time Division Duplexing-long Term Evolution)分时长期演进是当前4G的两种制式标准之一,TDD-LTE的特点是上下行共用同一段频谱,采用时分复用传输上下行信息,下行(D子帧)和上行之间(U子帧),采用S子帧进行隔离,其中有一段保护间隔GP(Guard Period),GP的作用是防止远距离传输引起的时延使得远端站点的下行干扰到了本站点的上行子帧,从而引起解调性能下降;在一定的气象条件下,在大气边界层尤其是在近地层传播的电磁波受大气折射的影响其传播轨迹弯向地面,当曲率超过地球表面曲率时,电磁波部分会被陷获在一定厚度的大气薄层内,就像电磁波在金属波导管中传播一样,这种现象称为电磁波的大气波导传播。
然而,在一定的气象条件下,大气波导现象能使TDD-LTE下行无线信号传播很远,由于传播距离超过TDD-LTE***上下行保护时隙的保护距离,导致这种远端TDD-LTE下行无线信号干扰到本地TDD-LTE上行无线信号。
针对大气波导干扰,应对方案有检测、缓解和规避等,其中规避方案的理论前提是认为大气波导干扰发生时远端基站和近端基站间的干扰是相互的,即远端基站的上行也受到近端基站下行的干扰,所以施扰站下行可以发送一种含有站点信息的特征序列,被干扰的站点上行通过检测特征序列,可以唯一的确认施扰站点,而目前相关技术中,特征序列检测复杂度高,运算量大,从而导致无法使用大气波导定位功能。
发明内容
本公开实施例提供的定位大气波导干扰的方法,主要解决的技术问题是特征序列检测 复杂度高,运算量大,从而导致无法使用大气波导定位功能。
为解决上述技术问题,本公开实施例提供一种定位大气波导干扰的方法,包括:
获取标准带宽对应的特征序列;
根据所述特征序列确定与服务小区实际带宽匹配的目标特征序列,发送所述目标特征序列。
本公开实施例提供另一种定位大气波导干扰的方法,包括:
接收目标特征序列,根据所述目标特征序列确定发送所述目标特征序列的服务小区;
所述目标特征序列由所述服务小区获取标准带宽长度对应的特征序列后,根据所述特征序列得到的与所述服务小区实际带宽匹配的目标特征序列。
本公开实施例还提供一种基站,包括处理器、存储器及通信总线;
所述通信总线用于实现处理器和存储器之间的连接通信;
所述处理器用于执行存储器中存储的一个或者多个程序,以实现如上所述的定位大气波导干扰的方法的步骤。
本公开实施例还提供一种计算机存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如上所述的定位大气波导干扰的方法的步骤。
本公开本公开本公开其他特征和相应的有益效果在说明书的后面部分进行阐述说明,且应当理解,至少部分有益效果从本公开说明书中的记载变的显而易见。
附图说明
图1为本公开实施例一的一种定位大气波导干扰的方法的基本流程示意图;
图2为本公开实施例一的站点组网配置的基本配置示意图;
图3为本公开实施例一的一种定位大气波导干扰的方法中特征序列发送位置的基本示意图;
图4为本公开实施例一的另一种定位大气波导干扰的方法的基本流程示意图;
图5为本公开实施例二的再一种定位大气波导干扰的方法的基本流程示意图;
图6为本公开实施例三的一种基站的基本结构示意图。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,下面通过具体实施方式结合附图对本公开实施例作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
实施例一:
为了解决相关技术中,同频段上各服务小区带宽无法完全对齐,使得特征序列检测复杂度高,运算量大,从而导致无法使用大气波导定位功能的问题;
本公开实施例提出一种由一基站侧实施的定位大气波导干扰的方法,请参见图1,该定位大气波导干扰的方法包括:
S101、获取标准带宽对应的特征序列;
在本公开实施例中,作为发送端的服务小区获取标准带宽对应的特征序列,其中,在30M有效频谱下,一般站点组网配置如图2所示,存在A、B、C、三种配置方式,也即在该频谱内是10M、15M、20M服务小区混合组成的,也即服务小区包括但不限于以下任一带宽服务小区:10M带宽服务小区、15M带宽服务小区、20M带宽服务小区;其中,标准带宽为预先设置的一个带宽标准,后续获取特征序列都以该标准带宽来获取;在本公开实施例中,标准带宽为10M带宽,也即,特征序列统一采用10M带宽对应点数;具体的,例如,当发送端的服务小区实际带宽为20M时,同样获取10M带宽对应点数的特征序列;当发送端的服务小区实际带宽为15M时,同样获取10M带宽对应点数的特征序列;当发送端的服务小区实际带宽为10M时,同样获取10M带宽对应点数的特征序列。需要理解的是,一个服务小区对应一个TDD-LTE基站。
S102、根据所述特征序列确定与服务小区实际带宽匹配的目标特征序列,发送所述目标特征序列。
在本公开实施例中,根据特征序列确定与服务小区实际带宽匹配的目标特征序列,发送目标特征序列包括:当特征序列的点数与服务小区实际带宽的长度对应的特征序列点数一致时,将特征序列作为目标特征序列,并发送目标特征序列。具体的,例如,当发送端的服务小区实际带宽为10M时,获取到10M带宽对应点数的特征序列,也即512点特征序列后,判断到特征序列的点数与发送端的服务小区的实际带宽的长度对应的特征序列点数512点一致,则将该特征序列特征作为目标序列特征,并发送该目标序列特征。
在本公开实施例中,根据特征序列的确定与服务小区实际带宽匹配的目标特征序列,发送目标特征序列包括:当特征序列的点数与服务小区实际带宽的长度对应的特征序列点数不一致时,对得到的特征序列进行补充处理,从而得到目标特征序列,目标特征序列的点数与服务小区实际带宽的长度对应的特征序列点数一致;发送目标特征序列;具体的,例如,在30M有效频谱内,当发送端的服务小区实际带宽为15M时,获取到10M带宽对应点数的特征序列,也即512点后,判断到特征序列的点数与发送端的服务小区实际带宽的长度对应的点数768点不一致时,则将该特征序列频域补0,做FFT(fast Fourier transform)快速傅立叶变换到15M的长度,也即做FFT变换到768后作为目标序列特征,并发送该目 标序列特征;或例如,当发送端的服务小区实际带宽为20M时,获取到10M带宽对应点数的特征序列后,判断到特征序列的点数与发送端的服务小区实际带宽的长度对应的特征序列点数1024点不一致,则将该特征序列频域补0,做FFT使得该特征序列补充到1024点,达到与服务小区实际带宽长度对应的特征序列点数一致,也即20M对应的特征序列点数1024点后作为目标序列特征,并发送该目标序列特征。
在本公开实施例中,对特征序列进行补充处理,得到目标特征序列包括:根据特征序列携带的小区标识确定服务小区在频带中所处的位置,当服务小区位于频带的高频位置时,通过在特征序列频域前端进行补充处理,得到目标特征序列;具体的,例如,在30M有效频谱内,当发送端的服务小区实际带宽为15M时,获取到10M带宽对应点数的特征序列后,判断到特征序列的点数与发送端的服务小区实际带宽的长度对应的特征序列点数不一致,且发送端的服务小区处于频谱中高频的位置时,则在该特征序列频域前端补0,做FFT到15M带宽对应的特征序列点数后作为目标序列特征,使得该目标序列特征点数与发送端的服务小区的实际带宽对应的特征序列点数一致。
在本公开实施例中,对特征序列进行补充处理,得到目标特征序列包括:根据特征序列携带的小区标识确定服务小区在频带中所处的位置,当当服务小区位于频带的低频位置时,通过在特征序列的后端进行补充处理,得到目标特征序列;具体的,例如,在30M有效频谱内,当发送端的服务小区实际带宽为15M时,获取到10M带宽对应点数的特征序列后,判断到特征序列的点数与发送端的服务小区的实际带宽对应的特征序列点数不一致,且发送端的服务小区处于频谱中低频的位置时,则在该特征序列频域的后端补0,做FFT到15M带宽对应的特征序列点数后作为目标序列特征,使得该目标序列特征的点数与发送端的服务小区实际带宽的长度对应的特征序列点数一致。
在本公开实施例执行上述定位大气波导干扰的方法后,不论发送端的服务小区的实际带宽大小,目的特征序列只会在频带的高10M或低10M位置发送,以30M频谱为例,发送端的服务小区执行上述定位大气波导干扰的方法后,目标特征序列都只会在频带的高10M或低10M位置发送,如图3所示。
本公开实施例还提供一种由另一基站侧实施的定位大气波导干扰的方法,如图4所示,该定位大气波导干扰的方法包括:
S201、接收目标特征序列;
在本公开实施例中,接收端的服务小区接收目标特征序列,其中目标特征序列由服务小区获取标准带宽长度对应的特征序列后,根据特征序列得到的与服务小区实际带宽匹配的目标特征序列。
S202、根据目标特征序列确定发送目标特征序列的服务小区;
在本公开实施例中,根据目标特征序列确定发送目标特征序列的服务小区包括:根据目标特征序列中携带的小区标识确定服务小区的宽带在频带中处于高频位置或低频位置。
在本公开实施例中,根据特征序列得到的与服务小区实际带宽匹配的目标特征序列包括:当特征序列的点数与服务小区实际带宽的长度对应的特征序列点数不一致时,对特征序列进行补充处理,得到目标特征序列,目标特征序列的点数与服务小区实际带宽的长度对应的特征序列点数一致。
需要理解的是,本公开实施例所述的定位大气波导干扰的方法并不用于限定用于30M有效频谱带宽,本方法可以运用到别的带宽,只需要增加约束:服务小区的频带必须配置在运营商有效频带频带边界的服务小区,才可以打开大气波导特征序列检测与发送功能。通过此条约束,进行全网服务小区的频带规划,以达到支持混带宽配置下的大气波导定位功能。
本公开实施例提供的定位大气波导干扰的方法,通过获取标准带宽对应的特征序列;根据所述特征序列确定与服务小区实际带宽匹配的目标特征序列,发送所述目标特征序列;通过接收目标特征序列,根据所述目标特征序列确定发送所述目标特征序列的服务小区;所述目标特征序列由所述服务小区获取标准带宽长度对应的特征序列后,根据所述特征序列得到的与所述服务小区实际带宽匹配的目标特征序列,解决了同频段上各服务小区带宽无法完全对齐,使得特征序列检测复杂度高,运算量大,从而导致无法使用大气波导定位功能的问题,降低了特征序列检测的运算量;同时,发送端的服务小区在发送目标特征序列只会在频带的高10M和低10M位置发送,对于接收端的服务小区来说,不需要判断接收到的目标特征序列对应的发送端的服务小区的类型,只采用一种方法检测,降低了特征序列检测的运算量。
实施例二:
为了更好的理解本公开,本公开实施例提供一种较为具体的例子对会议控制方法进行说明,如图5所示,该定位大气波导干扰的方法包括:
S501、发送端的服务小区根据获取到的标准带宽对应的特征序列确定与服务小区实际带宽匹配的目标特征序列;
在本公开实施例中,根据特征序列的确定与服务小区实际带宽匹配的目标特征序列,具体的,例如,在30M有效频谱内,当发送端的服务小区实际带宽为15M时,获取到10M带宽对应点数的特征序列后,判断到特征序列的点数与发送端的服务小区实际带宽的长度对应的特征序列点数不一致,且发送端的服务小区处于频谱中低频的位置时,则在该特征序列频域的后端补0,做FFT到15M的长度对应的特征序列点数后作为目标序列特征,使 得该目标序列特征的点数与发送端的服务小区实际带宽的长度对应的特征序列点数一致。
S502、发送端的服务小区发送该目标序列特征;
在本公开实施例中,得到该目标序列特征后,在发送端的服务小区的低10M位置发送。
S503、接收端的服务小区接收该目标序列特征;
在本公开实施例中,接收端的服务小区接收目标特征序列,其中目标特征序列由服务小区获取标准带宽长度对应的特征序列后,根据特征序列得到的与服务小区实际带宽匹配的目标特征序列。
S504、接收端的服务小区根据目标特征序列定位发送目标特征序列的服务小区;
在本公开实施例中,根据目标特征序列定位发送目标特征序列的服务小区包括:根据目标特征序列中携带的小区标识定位服务小区的宽带在频带中处于高频位置或低频位置。
在本公开实施例中,根据特征序列得到的与服务小区实际带宽匹配的目标特征序列包括:当特征序列的点数与服务小区实际带宽的长度对应的特征序列点数不一致时,对特征序列进行补充处理,得到目标特征序列,目标特征序列的点数与服务小区实际带宽的长度对应的特征序列点数一致。
本公开实施例提供的定位大气波导干扰的方法,发送端的服务小区通过根据获取到的标准带宽对应的特征序列确定与服务小区实际带宽匹配的目标特征序列,发送该目标序列特征,使得特征序列只在在频带的高10M和低10M位置发送;使得接收端的服务小区不用管发送端的服务小区的带宽类型,只采用一种方法检测即可,大幅度降低序列检测的运算量。
实施例三:
本公开实施例还提供了一种基站,参见图6所示,其包括处理器601、存储器602及通信总线603,其中:
通信总线603用于实现处理器601和存储器602之间的连接通信;
处理器601用于执行存储器602中存储的一个或者多个计算机程序,以实现上述实施例一和/或实施例二中的定位大气波导干扰的方法中的至少一个步骤。
本公开实施例还提供了一种计算机可读存储介质,该计算机可读存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、计算机程序模块或其他数据)的任何方法或技术中实施的易失性或非易失性、可移除或不可移除的介质。计算机可读存储介质包括但不限于RAM(Random Access Memory,随机存取存储器),ROM(Read-Only Memory,只读存储器),EEPROM(Electrically Erasable Programmable read only memory,带电可擦可编程只读存储器)、闪存或其他存储器技术、CD-ROM(Compact Disc Read-Only Memory, 光盘只读存储器),数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。
本公开实施例中的计算机可读存储介质可用于存储一个或者多个计算机程序,其存储的一个或者多个计算机程序可被处理器执行,以实现上述实施例一和/或实施例二中的定位大气波导干扰的方法的至少一个步骤。
本公开的有益效果是:
根据本公开实施例提供的定位大气波导干扰的方法,该方法通过获取标准带宽对应的特征序列;根据所述特征序列确定与服务小区实际带宽匹配的目标特征序列,发送所述目标特征序列;通过接收目标特征序列,根据所述目标特征序列确定发送所述目标特征序列的服务小区;所述目标特征序列由所述服务小区获取标准带宽长度对应的特征序列后,根据所述特征序列得到的与所述服务小区实际带宽匹配的目标特征序列,解决了同频段上各服务小区带宽无法完全对齐,使得特征序列检测复杂度高,运算量大,从而导致无法使用大气波导定位功能的技术问题,降低了特征序列检测的运算量,提升了用户体验。
可见,本领域的技术人员应该明白,上文中所公开方法中的全部或某些步骤、***、装置中的功能模块/单元可以被实施为软件(可以用计算装置可执行的计算机程序代码来实现)、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。
此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、计算机程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。所以,本公开不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本公开实施例所作的进一步详细说明,不能认定本公开的具体实施只局限于这些说明。对于本公开所属技术领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本公开的保护范围。

Claims (10)

  1. 一种定位大气波导干扰的方法,包括:
    获取标准带宽对应的特征序列;
    根据所述特征序列确定与服务小区实际带宽匹配的目标特征序列,发送所述目标特征序列。
  2. 如权利要求1所述的定位大气波导干扰的方法,其特征在于,所述根据所述特征序列确定与服务小区实际带宽匹配的目标特征序列,发送所述目标特征序列包括:
    当所述特征序列的点数与服务小区实际带宽的长度对应的特征序列点数一致时,将所述特征序列作为目标特征序列,并发送所述目标特征序列。
  3. 如权利要求1所述的定位大气波导干扰的方法,其特征在于,所述根据所述特征序列确定与服务小区实际带宽匹配的目标特征序列,发送所述目标特征序列,包括:
    当所述特征序列的点数与服务小区实际带宽的长度对应的特征序列点数不一致时,对所述特征序列进行补充处理,得到目标特征序列,所述目标特征序列的点数与所述服务小区实际带宽的长度对应的特征序列点数一致;
    发送所述目标特征序列。
  4. 如权利要求3所述的定位大气波导干扰的方法,其特征在于,所述对所述特征序列进行补充处理,得到目标特征序列,包括:
    根据所述特征序列携带的小区标识确定服务小区在频带中所处的位置,当所述服务小区位于频带的高频位置时,通过在所述特征序列的前端进行补充处理,得到目标特征序列。
  5. 如权利要求3所述的定位大气波导干扰的方法,其特征在于,所述对所述特征序列进行补充处理,得到目标特征序列,包括:
    根据所述特征序列携带的小区标识确定服务小区在频带中所处的位置,当所述服务小区位于频带的低频位置时,通过在所述特征序列的后端进行补充处理,得到目标特征序列。
  6. 一种定位大气波导干扰的方法,包括:
    接收目标特征序列,根据所述目标特征序列确定发送所述目标特征序列的服务小区;
    所述目标特征序列是由所述服务小区获取标准带宽长度对应的特征序列后,根据所述特征序列得到的与所述服务小区实际带宽匹配的目标特征序列。
  7. 如权利要求6所述的定位大气波导干扰的方法,其特征在于,所述根据所述目标特征序列确定发送所述目标特征序列的服务小区,包括:
    根据所述目标特征序列中携带的小区标识确定所述服务小区的宽带在频带中处于高频位置或低频位置。
  8. 如权利要求6所述的定位大气波导干扰的方法,其特征在于,所述根据所述特征序列得到的与所述服务小区实际带宽匹配的目标特征序列,包括:
    当所述特征序列的点数与所述服务小区实际带宽的长度对应的特征序列点数不一致时,对所述特征序列进行补充处理,得到目标特征序列,所述目标特征序列的点数与所述服务小区实际带宽的长度对应的特征序列点数一致。
  9. 一种基站,其特征在于,所述基站包括处理器、存储器及通信总线;
    所述通信总线用于实现处理器和存储器之间的连接通信;
    所述处理器用于执行存储器中存储的一个或者多个程序,以实现如权利要求1至5中任一项所述的大气波导定位方法和/或如权利要求6至8中任一项所述的大气波导定位方法的步骤。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质,存储有一个或者多个计算机程序,所述一个或者多个计算机程序可被一个或者多个处理器执行,以实现如权利要求1至5中任一项所述的大气波导定位方法和/或如权利要求6至8中任一项所述的大气波导定位方法的步骤。
PCT/CN2020/128409 2019-12-24 2020-11-12 定位大气波导干扰的方法、基站及计算机可读存储介质 WO2021129220A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911350268.7A CN113038504A (zh) 2019-12-24 2019-12-24 定位大气波导干扰的方法、基站及计算机可读存储介质
CN201911350268.7 2019-12-24

Publications (1)

Publication Number Publication Date
WO2021129220A1 true WO2021129220A1 (zh) 2021-07-01

Family

ID=76451954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128409 WO2021129220A1 (zh) 2019-12-24 2020-11-12 定位大气波导干扰的方法、基站及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN113038504A (zh)
WO (1) WO2021129220A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013029433A1 (zh) * 2011-08-26 2013-03-07 华为技术有限公司 一种检测干扰信号码功率的方法、用户接入方法和接入设备
CN107819491A (zh) * 2016-09-12 2018-03-20 中兴通讯股份有限公司 一种干扰源定位的方法及装置
CN107920356A (zh) * 2016-10-08 2018-04-17 中兴通讯股份有限公司 干扰源小区定位方法和装置以及对应的基站
CN108123748A (zh) * 2016-11-30 2018-06-05 ***通信有限公司研究院 一种通信方法、装置和网络
CN108632857A (zh) * 2017-03-24 2018-10-09 ***通信有限公司研究院 下行信号传输方法、装置、计算机可读存储介质及基站
CN108712227A (zh) * 2018-05-08 2018-10-26 华中科技大学 一种大气波导精准定位及自动优化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013029433A1 (zh) * 2011-08-26 2013-03-07 华为技术有限公司 一种检测干扰信号码功率的方法、用户接入方法和接入设备
CN107819491A (zh) * 2016-09-12 2018-03-20 中兴通讯股份有限公司 一种干扰源定位的方法及装置
CN107920356A (zh) * 2016-10-08 2018-04-17 中兴通讯股份有限公司 干扰源小区定位方法和装置以及对应的基站
CN108123748A (zh) * 2016-11-30 2018-06-05 ***通信有限公司研究院 一种通信方法、装置和网络
CN108632857A (zh) * 2017-03-24 2018-10-09 ***通信有限公司研究院 下行信号传输方法、装置、计算机可读存储介质及基站
CN108712227A (zh) * 2018-05-08 2018-10-26 华中科技大学 一种大气波导精准定位及自动优化方法

Also Published As

Publication number Publication date
CN113038504A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
US20200162929A1 (en) Method and apparatus for dynamic protection area (dpa) protection
CN107534876B (zh) 用于识别通过大气波导传播的干扰的源的方法和设备
CN107493605A (zh) 频域资源的设置方法、装置及基站
US9325522B2 (en) Minimizing interference between communication networks
CN104735013B (zh) Ofdm***中的适应性信道预测和干扰减轻
CN110536285A (zh) 干扰控制、消息发送、转发方法、装置、通信设备及***
CN111343712A (zh) 一种无人机辅助认知无线网络通信安全的控制方法
CN108259112B (zh) 一种基于时隙的基站干扰消除方法和装置
EP3966942A1 (en) Automated frequency coordination for shared spectrum wireless systems
CN107171981B (zh) 通道校正方法及装置
US9800739B2 (en) Method and apparatus for allocating power levels to a transmission in a digital subscriber line network
US10652820B1 (en) Methods and apparatus for increasing the number of training and data tones in wireless communications systems
CN104243387A (zh) 一种ofdm***的通道校正方法及装置
WO2021129220A1 (zh) 定位大气波导干扰的方法、基站及计算机可读存储介质
CN107018530B (zh) 一种干扰源定位方法及装置
CN112217608B (zh) 数据速率的调整方法、装置、计算机可读介质及电子设备
US10116407B2 (en) System and method for improving narrowband interference performance
CN107852393A (zh) 发送、解调数据的方法、设备及***
US10917804B2 (en) Apparatus and method for flexible secure time of flight measurements
US20200003890A1 (en) Apparatus and method for transmitting a secure ranging packet with phase tracking
CN109792263B (zh) 数据传输方法及装置
CN113037658B (zh) 信号检测方法、装置、通信设备及计算机存储介质
CN114257319B (zh) 大气波导干扰定位方法、装置、计算设备及存储介质
CN114039820A (zh) 波束赋形的方法、装置、基站及计算机可读存储介质
US20230389042A1 (en) Method and apparatus for determining position of control channel element, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907389

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20907389

Country of ref document: EP

Kind code of ref document: A1