WO2021129180A1 - 一种共轴直升机及控制方法 - Google Patents

一种共轴直升机及控制方法 Download PDF

Info

Publication number
WO2021129180A1
WO2021129180A1 PCT/CN2020/126690 CN2020126690W WO2021129180A1 WO 2021129180 A1 WO2021129180 A1 WO 2021129180A1 CN 2020126690 W CN2020126690 W CN 2020126690W WO 2021129180 A1 WO2021129180 A1 WO 2021129180A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
hinged
rotating
pitch
tilting plate
Prior art date
Application number
PCT/CN2020/126690
Other languages
English (en)
French (fr)
Inventor
葛讯
沈元
郭述臻
李良伟
刘卫东
Original Assignee
苏州韬讯航空科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州韬讯航空科技有限公司 filed Critical 苏州韬讯航空科技有限公司
Priority to US17/335,085 priority Critical patent/US11597507B2/en
Publication of WO2021129180A1 publication Critical patent/WO2021129180A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/58Transmitting means, e.g. interrelated with initiating means or means acting on blades
    • B64C27/68Transmitting means, e.g. interrelated with initiating means or means acting on blades using electrical energy, e.g. having electrical power amplification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • B64C27/10Helicopters with two or more rotors arranged coaxially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/58Transmitting means, e.g. interrelated with initiating means or means acting on blades
    • B64C27/59Transmitting means, e.g. interrelated with initiating means or means acting on blades mechanical
    • B64C27/605Transmitting means, e.g. interrelated with initiating means or means acting on blades mechanical including swash plate, spider or cam mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/80Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement for differential adjustment of blade pitch between two or more lifting rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/58Transmitting means, e.g. interrelated with initiating means or means acting on blades
    • B64C27/64Transmitting means, e.g. interrelated with initiating means or means acting on blades using fluid pressure, e.g. having fluid power amplification

Definitions

  • the invention relates to the field of helicopters, in particular to a coaxial helicopter and a control method.
  • coaxial reverse-rotor helicopters Compared with single-rotor helicopters, coaxial reverse-rotor helicopters have the advantages of short rotor wings, low power consumption, no need to install a tail rotor to balance the reaction torque generated by the rotation of the rotor, and more flexible structural design.
  • the Ka-50 coaxial reversing helicopter designed and manufactured by the Kamov Design Bureau of Russia is a typical representative of this type of helicopter.
  • the coaxial helicopters with relatively simple structures in the prior art generally cannot perform single-propeller differential pitch and synchronous torque unification with the upper and lower rotors.
  • Such helicopters can achieve maneuvers such as lifting, rolling, pitching, yaw, and inverted flight.
  • pitch adjustment In addition to pitch adjustment, it also depends on the rotation speed adjustment of the rotor, which cannot be maneuvered by directly changing the pitch. Due to the influence of the inertia of the rotor system, this type of solution will cause the aircraft to maneuver slowly and be less efficient.
  • Patent 201510097444.6 and 201610673069.X respectively propose two variable pitch schemes that use four servo mechanisms for hybrid control, which can realize the difference of the independent pitch of the upper and lower rotors and the consistency of the periodic pitch. These two schemes maneuver by changing the pitch, which effectively solves the problem of low maneuvering efficiency of the helicopter.
  • Patent 201510097444.6 adopts a solution with four servo mechanisms placed underneath, in which three servo mechanisms are used to adjust the pitch of the upper and lower rotors, and the fourth servo mechanism is used to adjust the pitch of the upper rotors independently. In this solution, the control mechanism arranged around the transmission shaft is relatively complicated.
  • the bottom servo mechanism performs the consistent adjustment of the upper and lower rotor pitches
  • the upper servo mechanism performs independent adjustment of the upper rotor pitch.
  • the solution integrates the operating mechanism of the rotating tilting wheel to follow the rotor for synchronous rotation into the pitch change mechanism of the upper and lower rotors, eliminating the slender shaft passing through the rotor drive shaft, simplifying the operating mechanism, and improving to a certain extent.
  • Patent 201810177755.7 proposes a new pitch-changing scheme, which uses three lower servo mechanisms to independently control the pitch of the lower rotor, and a single upper servo mechanism independently controls the pitch of the upper rotor.
  • the solution has a simple and compact structure, and has high flight and control efficiency in micro and small helicopter applications. However, for medium and large helicopters, a single servo mechanism individually controls the rotor pitch to test its output power.
  • the hybrid variable pitch solution has a wider application range.
  • the scheme with four servo mechanisms underneath has a slender shaft passing through the rotor drive shaft, which will not only cause structural reliability and safety problems, but also wiring of electronic systems such as GPS. Obstacles are caused; while the solution with three servo mechanisms on the bottom and a single servo mechanism on the top requires an additional installation structure of the upper servo mechanism around the rotating shaft of the upper rotor, which will cause complex structures and affect the installation of GPS components and other defects.
  • the purpose of the present invention is to overcome the above-mentioned problems and provide a coaxial helicopter and a control method.
  • the method adopted in the present invention is: a coaxial helicopter, including a fuselage, an upper rotor actuator, a lower rotor actuator, an upper rotor drive shaft, a lower rotor drive shaft, an upper rotor system, and a lower rotor System, servo mechanism, periodic pitch changing mechanism, differential pitch changing mechanism.
  • the upper rotor wing actuator and the lower rotor wing actuator are located under the lower rotor system and fixedly connected to the fuselage.
  • One end of the lower rotor drive shaft is connected with the lower rotor actuator output shaft, and the other end is fixedly connected with the lower rotor system.
  • the cyclic pitch changing mechanism is provided with an upper rotary tilting plate, which is located between the upper rotor system and the lower rotor system and is slidably mounted on the outer side of the upper rotor drive shaft.
  • the differential pitch mechanism is provided with a rotating support sleeve, and the rotating support sleeve is slidably mounted on the outside of the lower rotor drive shaft and keeps rotating synchronously with the lower rotor drive shaft.
  • the periodic pitch changing mechanism is also provided with a lower rotating tilting plate, which is located between the lower rotor system and the fuselage and slidably mounted on the outside of the rotating support sleeve in the differential pitch changing mechanism.
  • Three of the four servo mechanisms directly drive the periodic pitch changing mechanism through a connecting rod, and adjust the pitches of the upper rotor system and the lower rotor system at the same time, so as to realize the periodic change of the upper and lower rotors.
  • the other servo mechanism of the four servo mechanisms drives the differential pitch changing mechanism through a connecting rod and a lever, and works together with the periodic pitch changing mechanism driven by the remaining three servo mechanisms on the lower rotor system to realize the lower rotor
  • the differential adjustment of the total pitch realizes the independent adjustment of the total pitch of the upper and lower rotors of the system.
  • the differential pitch mechanism includes No. 4 servo mechanism rocker arm, No. 4 servo mechanism link, fixed support frame, rotating support frame, lower lever support frame, non-rotating sliding plate, and rotating support sleeve , The upper lever support frame, the lower rotating tilting wheel lever, the lower rotor variable pitch lever.
  • One end of the rocker arm of the No. 4 servo mechanism is fixedly connected with the output shaft of the No. 4 servo mechanism among the four servo mechanisms, and the other end is hinged with one end of the connecting rod of the No. 4 servo mechanism.
  • the other end of the No. 4 servo mechanism connecting rod is hinged with one end of the lower lever support frame.
  • the fixed support frame is fixedly connected with the fuselage.
  • One end of the rotating support frame is hinged to the fixed support frame, and the other end is hinged to the middle of the lower lever support frame.
  • the other end of the lower lever support frame is hinged with the non-rotating sliding plate.
  • the non-rotating sliding plate is hinged with one end of the rotating support shaft sleeve through a bearing, and is sleeved on the outside of the lower rotor drive shaft together with the rotating support shaft sleeve.
  • the other end of the rotating support shaft sleeve is hinged with the upper lever support frame.
  • the middle part of the upper lever support frame is hinged with the pull rod of the lower rotary tilting plate, and the other end is hinged with the variable pitch rod of the lower rotor.
  • the variable pitch rod of the lower rotor is hinged with the lower rotor system.
  • the No. 4 servo mechanism rocker arm follows the No. 4 servo mechanism output shaft to rotate, driving the No. 4 servo mechanism link to move, and the No. 4 servo mechanism link pulls the lower lever support frame to rotate.
  • the lever support frame drives the non-rotating sliding plate to slide up and down along the drive shaft of the lower rotor, and the non-rotating sliding plate drives the rotating support sleeve to slide up and down along the drive shaft of the lower rotor.
  • the rotating support sleeve maintains synchronous rotation with the drive shaft of the lower rotor.
  • the upper lever support frame drives the lower rotor variable pitch lever to move under the combined action of the rotary support sleeve and the lower rotary tilting dial lever, and the lower rotor variable pitch lever drives the lower rotor system to perform differential pitch operation.
  • the periodic pitch changing mechanism includes a servo mechanism rocker arm, a servo mechanism link, a non-rotating tilting plate, a lower rotating tilting plate, a lower rotating tilting plate pull rod, a rotating support sleeve, an upper lever support frame, Tilting plate transition connecting rod, transitional rotating tilting plate, upper rotating tilting plate, upper rotor pitch change lever.
  • a servo mechanism rocker arm There are three servo mechanism rocker arms, and one end of each servo mechanism rocker arm is respectively fixedly connected with the output shaft of the first three servo mechanism.
  • each servo mechanism linkage rod is hinged to the other end of the three servo mechanism rocker arms, and the other end is hinged to the non-rotating tilting plate.
  • the non-rotating tilting plate and the lower rotating tilting plate are hinged through a bearing.
  • the lower rotary tilting plate is hinged to one end of the lower rotary tilting plate pull rod.
  • the other end of the pull rod of the lower rotating tilting plate is hinged with the middle part of the upper lever support frame in the differential pitch changing mechanism.
  • One end of the tilting plate transition connecting rod is hinged with the lower rotating tilting plate, and the other end is hinged with the transition rotating tilting plate.
  • the transitional rotating tilting plate and the upper rotating tilting plate are hinged through a bearing.
  • the upper rotating tilting plate is hingedly connected with the upper rotor variable pitch rod.
  • the variable pitch rod of the upper rotor is hinged with the upper rotor system.
  • the rocker arm of the servo mechanism rotates under the action of the output shaft of the servo mechanism to drive the servo mechanism linkage to move.
  • the rotating tilting plate drives the lower rotating tilting plate to tilt or move up and down
  • the lower rotating tilting plate drives the lower rotating tilting plate lever to move
  • the upper lever support frame drives the lower rotary wing to change pitch under the combined action of the lower rotating tilting plate lever and the rotating support bushing.
  • the pull rod moves, and the lower rotor variable pitch pull rod drives the lower rotor system to perform the variable pitch operation.
  • the lower rotating tilting plate drives the transitional connecting rod of the tilting plate to move
  • the tilting plate transitional connecting rod drives the transitional rotating tilting plate to tilt or lift
  • the transitional rotating tilt plate drives the upper rotating tilting plate to tilt or lift
  • the upper rotating tilting plate is tilted or lifted.
  • the turntable drives the upper rotor variable pitch lever to move
  • the upper rotor variable pitch lever drives the upper rotor system to perform the variable pitch operation.
  • the coaxial helicopter further includes an upper synchronous rotating mechanism.
  • the upper synchronous rotation mechanism includes an upper transmission shaft sleeve, an upper synchronization transition rod, and an upper synchronization connection rod.
  • the upper transmission shaft sleeve is fixedly connected with the upper rotor transmission shaft.
  • One end of the upper synchronization transition rod is hinged with the upper transmission shaft sleeve, and the other end is hinged with one end of the upper synchronization connecting rod.
  • the other end of the upper synchronization connecting rod is hinged with the upper rotating tilting plate.
  • the upper synchronous rotating mechanism drives the upper rotating tilting plate to rotate synchronously with the upper rotor drive shaft during operation.
  • the coaxial helicopter further includes a lower synchronous rotating mechanism.
  • the lower synchronous rotation mechanism includes a lower transmission shaft sleeve, a lower synchronization transition rod, and a lower synchronization connection rod.
  • the lower transmission shaft sleeve is fixedly connected with the lower rotor transmission shaft.
  • One end of the lower synchronization transition rod is hinged with the lower transmission shaft sleeve, and the other end is hinged with one end of the lower synchronization connecting rod.
  • the other end of the lower synchronization connecting rod can be directly hinged with the lower rotating tilting plate; the other end of the lower synchronization connecting rod can also be hinged with the lower rotating tilting plate lever, and the hinge position is the lower rotating tilting plate lever and the upper lever The hinge joint in the middle of the support frame.
  • the lower synchronous rotating mechanism drives the lower rotating tilting plate to rotate synchronously with the drive shaft of the lower rotor during operation.
  • the coaxial helicopter also includes a middle synchronous rotating mechanism.
  • the middle synchronous rotating mechanism includes a middle transmission shaft sleeve, a middle synchronization transition rod, and a middle synchronization connecting rod.
  • the middle transmission shaft sleeve is fixedly connected with the lower rotor system or the lower rotor transmission shaft.
  • One end of the middle synchronization transition rod is hinged with the middle transmission shaft sleeve, and the other end is hinged with one end of the middle synchronization connecting rod.
  • the other end of the middle synchronization connecting rod is hinged with the transition rotary tilting plate.
  • the middle synchronous rotating mechanism drives the transitional rotating tilting plate to follow the lower rotor drive shaft to rotate synchronously during operation.
  • the upper rotor system includes an upper propeller hub, an upper propeller hub sleeve, an upper tie rod connector, and an upper rotor.
  • the center of the upper hub is fixedly connected with the upper end of the upper rotor drive shaft.
  • One end of the upper hub sleeve is hinged with the end of the upper hub, and the other end is hinged with the root of the upper rotor.
  • the upper tie rod connector is fixedly installed on the side of the upper hub sleeve, and is hinged with the upper rotor wing variable pitch tie rod.
  • the lower rotor system includes a lower propeller hub, a lower propeller hub sleeve, a pull-down rod connector, and a lower rotor.
  • the center of the lower hub is fixedly connected with the upper end of the lower rotor drive shaft.
  • One end of the lower hub sleeve is hinged with the end of the lower hub, and the other end is hinged with the root of the lower rotor.
  • the pull-down rod connector is fixedly installed on the side of the lower hub sleeve and is hinged with the lower rotor pitch-changing pull rod.
  • the upper rotor drive shaft is a tubular shaft with a hollow inside.
  • tilting disk transition connecting rods there are at least three tilting disk transition connecting rods, and the center of gravity of all tilting disk transition connecting rods is located on the axis of the rotor drive shaft.
  • the hinged connection between the components can be a direct hinged connection of the components, or a hinged connection with a bearing added.
  • the upper rotor actuator and the lower rotor actuator can be any one of direct drive or deceleration actuators, electric or oil actuators, dual-power or single-power actuators Actuator.
  • the single-layer rotor of the upper and lower rotor system can be a two-blade solution or a multi-blade solution.
  • the rotor can be in a non-folding, transverse folding or longitudinal folding manner.
  • the servo mechanism may be a servo mechanism for torque output, or a servo mechanism for thrust and pull output.
  • the coaxial helicopter has a forward propulsion power system arranged at an appropriate position on the fuselage to form a high-speed helicopter solution.
  • the present invention also provides a coaxial helicopter control method, including the following methods:
  • the present invention adopts the technical solution of hybrid variable pitch with four lower servo mechanisms.
  • the pitch of the upper rotor and the lower rotor can be adjusted simultaneously while the pitch of the lower rotor is differentially adjusted to realize the upper and lower rotors.
  • the consistency of cyclic variable pitch and the differential adjustment function of the differential variable pitch of the lower rotor realize the synchronization of various flight actions of the coaxial aircraft, and support the semi-differential and full differential in the rotor variable speed or fixed speed mode.
  • This kind of flight control method has a broader application space.
  • the invention eliminates the slender shaft structure or the upper servo mechanism installation structure that independently adjusts the pitch of the upper rotor in the existing hybrid variable pitch scheme, and greatly improves the reliability and safety of the system.
  • This solution integrates the operating mechanism and the pitch-changing mechanism in which the rotating tilting disk follows the rotor drive shaft for synchronous rotation, which can effectively reduce the processing and assembly costs and further improve the reliability of the system.
  • the rotor drive shaft in this solution can be designed as a tubular shaft, and its interior can provide a good selection space for the routing of electronic equipment such as GPS on the top of the helicopter.
  • Figure 1 is a schematic diagram of the structure of a coaxial helicopter
  • Figure 2 is a schematic diagram of the coaxial helicopter structure
  • Figure 3 is a schematic diagram of the differential pitch mechanism of a coaxial helicopter
  • Figure 4 is a schematic diagram of the periodic pitch changing mechanism of a coaxial helicopter
  • Figure 5 is a schematic diagram of a synchronous rotating mechanism on a coaxial helicopter
  • Figure 6 is a schematic diagram of the lower synchronous rotation mechanism of a coaxial helicopter
  • Figure 7 is a schematic diagram of a synchronous rotating mechanism in a coaxial helicopter
  • Figure 8 is a schematic diagram of the upper rotor system of a coaxial helicopter
  • Figure 9 is a schematic diagram of the lower rotor system of a coaxial helicopter.
  • Fig. 10 is a schematic diagram of another lower synchronous rotating mechanism of a coaxial helicopter.
  • Figure 1 is a schematic diagram of the structure of a coaxial helicopter disclosed in the present invention.
  • the main feature of the coaxial helicopter disclosed in the present invention is that the pitch of the upper rotor and the lower rotor is linked through a periodic pitch changing mechanism, and the pitch of the lower rotor is independently controlled by a differential pitch changing mechanism.
  • a periodic pitch changing mechanism for various balance states and maneuvering states in the flight of a coaxial helicopter, there can be corresponding servo mechanism corner parameters to meet the requirements, so as to obtain various required flight states.
  • Figure 2 shows a coaxial helicopter disclosed in this embodiment, which is characterized in that it includes a fuselage 1, an upper rotor actuator 2, a lower rotor actuator 3, an upper rotor drive shaft 4, and a lower rotor drive shaft. 5.
  • the upper rotor actuator 2 and the lower rotor actuator 3 are located below the lower rotor system 7 and are fixedly connected to the fuselage 1.
  • One end of the lower rotor drive shaft 5 is connected with the output shaft of the lower rotor actuator 3, and the other end is fixedly connected with the lower rotor system 7.
  • One end of the upper rotor drive shaft 4 is connected to the output shaft of the upper rotor actuator 2, and the other end passes through the lower rotor drive shaft 5 and is fixedly connected to the upper rotor system 6.
  • the cyclic variable pitch mechanism 9 is provided with an upper rotary tilting plate 9h (as shown in FIG.
  • the variable pitch mechanism 10 is provided with a rotating support sleeve 10g (as shown in FIG. 3), and the rotating support sleeve 10g is slidably mounted on the outer side of the lower rotor drive shaft 5 and keeps the same with the lower rotor.
  • the transmission shaft 5 rotates synchronously.
  • the cyclic variable pitch mechanism 9 is also provided with a lower rotating tilting plate 9d (as shown in FIG. 4).
  • the lower rotating tilting plate 9d is located between the lower rotor system 7 and the fuselage 1 and is slidably mounted on the differential variable pitch.
  • the rotation support sleeve 10g in the mechanism 10 is outside.
  • Three of the four servo mechanisms 8 directly drive the periodic pitch changing mechanism 9 through connecting rods, and adjust the pitches of the upper rotor system 6 and the lower rotor system 7 at the same time to realize the up and down, Consistent adjustment of the cyclic pitch of the lower rotor and independent adjustment of the total pitch of the upper rotor.
  • the other servo mechanism of the four servo mechanisms 8 drives the differential pitch changing mechanism 10 through connecting rods and levers, and works together with the periodic pitch changing mechanism 9 driven by the remaining three servo mechanisms 8 on the lower rotor system 7. Realize the differential adjustment of the total pitch of the lower rotors, so as to realize the independent adjustment of the total pitch of the upper and lower rotors of the system.
  • FIG. 3 is a schematic diagram of the differential pitch changing mechanism 10 of the coaxial helicopter disclosed in this embodiment, which mainly includes the No. 4 servo mechanism rocker arm 10a, the No. 4 servo mechanism link 10b, the fixed support frame 10c, and the rotating support frame 10d. , The lower lever support frame 10e, the non-rotating sliding plate 10f, the rotating support sleeve 10g, the upper lever support frame 10h, the lower rotating tilting dial lever 9e, and the lower rotor variable pitch lever 10i.
  • One end of the No. 4 servo mechanism rocker arm 10a is fixedly connected to the output shaft of the No. 4 servo mechanism 8d of the four servo mechanisms 8, and the other end is hinged to one end of the No.
  • the other end of the No. 4 servo mechanism connecting rod 10b is hinged to one end of the lower lever support frame 10e.
  • the fixed support frame 10c is fixedly connected to the fuselage 1.
  • One end of the rotating support frame 10d is hinged to the fixed support frame 10c, and the other end is hinged to the middle of the lower lever support frame 10e.
  • the other end of the lower lever support frame 10e is hinged to the non-rotating sliding plate 10f.
  • the non-rotating sliding plate 10f is hinged with one end of the rotating support shaft sleeve 10g through a bearing, and is sleeved outside the lower rotor drive shaft 5 together with the rotating support shaft sleeve 10g.
  • the other end of the rotating support shaft sleeve 10g is hinged with the upper lever support frame 10h.
  • the upper lever support frame 10h is provided with two pieces, which are respectively hinged on both sides of the rotating support shaft sleeve 10g in a centrally symmetrical manner.
  • the middle part of the upper lever support frame 10h is hinged with the lower rotating tilting dial lever 9e, and the other end is variable distance with the lower rotor.
  • the tie rod 10i is hinged.
  • the lower rotor variable pitch rod 10i is hinged to the lower rotor system 7. When the lower rotor system 7 is differentially pitched, the No. 4 servo mechanism rocker arm 10a follows the No. 4 servo mechanism 8d output shaft to rotate, driving the No.
  • the upper lever support frame 10h drives the lower rotor variable pitch lever 10i to move under the combined action of the rotary support sleeve 10g and the lower rotary tilt dial lever 9e, and the lower rotor variable pitch lever 10i drives the lower rotor system 7 to perform differential pitch operation.
  • Figure 4 is a schematic diagram of the periodic pitch changing mechanism 9 of the coaxial helicopter disclosed in this embodiment, which mainly includes a servo mechanism rocker 9a, a servo mechanism link 9b, a non-rotating tilting plate 9c, a downward rotating tilting plate 9d, and a downward Rotating tilting wheel tie rod 9e, rotating support shaft sleeve 10g, upper lever support frame 10h, tilting wheel transition connecting rod 9f, transitional rotary tilting wheel 9g, upper rotary tilting wheel 9h, and upper rotary wing pitch change lever 9i.
  • a servo mechanism rocker 9a mainly includes a servo mechanism rocker 9a, a servo mechanism link 9b, a non-rotating tilting plate 9c, a downward rotating tilting plate 9d, and a downward Rotating tilting wheel tie rod 9e, rotating support shaft sleeve 10g, upper lever support frame 10h, tilting wheel transition connecting rod 9f, transitional rotary tilting wheel 9g, upper
  • each servo mechanism rocker arm 9a There are three servo mechanism rocker arms 9a, and one end of each servo mechanism rocker arm 9a is respectively fixedly connected with the output shaft of the first three servo mechanisms (8a, 8b, 8c). There are also three servo mechanism links 9b. One end of each servo mechanism link 9b is hinged to the other end of the three servo mechanism rocker arms 9a, and the other end is hinged to the non-rotating tilting turntable 9c.
  • the non-rotating tilting plate 9c and the lower rotating tilting plate 9d are hinged by bearings.
  • the lower rotary tilting plate 9d is hinged to one end of the lower rotary tilting plate pull rod 9e.
  • the other end of the lower rotary tilting plate pull rod 9e is hinged to the middle of the upper lever support frame 10h of the differential pitch changing mechanism 10.
  • One end of the tilting plate transition connecting rod 9f is hinged to the lower rotating tilting plate 9d, and the other end is hinged to the transitional rotating tilting plate 9g.
  • the transitional rotating tilting plate 9g and the upper rotating tilting plate 9h are hinged through a bearing.
  • the upper rotary tilting plate 9h is hinged with the upper rotor pitch change lever 9i.
  • the upper rotor variable pitch rod 9i is hinged to the upper rotor system 6.
  • the servo mechanism rocker arm 9a rotates under the action of the servo mechanism output shaft, driving the servo mechanism link 9b to move, and the servo mechanism link 9b pulls the non-rotating tilting turntable 9c to tilt Rotation or lifting motion
  • non-rotating tilting plate 9c drives the lower rotary tilting plate 9d to tilt or lift
  • the lower rotary tilting plate 9d drives the lower rotary tilting plate lever 9e to move
  • the upper lever support frame 10h rotates the tilting plate lever 9e and rotates at the bottom.
  • the supporting shaft sleeve 10g drives the lower rotor variable pitch rod 10i to move, and the lower rotor variable pitch rod 10i drives the lower rotor system 7 to perform a pitch operation.
  • the lower rotating tilting plate 9d drives the tilting plate transition connecting rod 9f to move
  • the tilting plate transitional connecting rod 9f drives the transitional rotating tilting plate 9g to tilt or lift
  • the transitional rotating tilting plate 9g drives the upper rotating tilting plate 9h to tilt or rotate.
  • the upper rotating tilt wheel 9h drives the upper rotor variable pitch lever 9i to move
  • the upper rotor variable pitch lever 9i drives the upper rotor system 6 to perform the variable pitch operation.
  • Fig. 5 is a schematic diagram of the upper synchronous rotating mechanism 11 of the coaxial helicopter disclosed in this embodiment, which mainly includes an upper transmission shaft sleeve 11a, an upper synchronous transition rod 11b, and an upper synchronous connecting rod 11c.
  • the upper transmission shaft sleeve 11a is fixedly connected with the upper rotor transmission shaft 4.
  • Both the upper synchronization transition rod 11b and the upper synchronization connection rod 11c are provided with two pieces.
  • the two upper synchronization transition rods 11b are respectively hinged on both sides of the upper transmission shaft sleeve 11a in a symmetrical manner, and the other end of each upper synchronization transition rod 11b is hinged with one end of the upper synchronization connection rod 11c.
  • the other end of the upper synchronization connecting rod 11c is hinged with the upper rotating tilting plate 9h.
  • the upper synchronous rotating mechanism 11 drives the upper rotating tilting plate 9h to follow the upper rotor drive shaft 4 to rotate synchronously during operation.
  • Fig. 6 is a schematic diagram of the lower synchronization rotating mechanism 12 of the coaxial helicopter disclosed in this embodiment, which mainly includes a lower transmission shaft sleeve 12a, a lower synchronization transition rod 12b, and a lower synchronization connecting rod 12c.
  • the lower transmission shaft sleeve 12a is fixedly connected to the lower rotor transmission shaft 5.
  • Both the lower synchronization transition rod 12b and the lower synchronization connecting rod 12c are provided with two pieces.
  • the two lower synchronization transition rods 12b are respectively hinged on both sides of the lower transmission shaft sleeve 12a in a symmetrical manner, and the other end of each lower synchronization transition rod 12b is hinged with one end of the lower synchronization connection rod 12c.
  • the other end of the lower synchronization connecting rod 12c is hinged to the lower rotating tilting plate 9d.
  • the lower synchronous rotating mechanism 12 drives the lower rotating tilting plate 9d to follow the lower rotor drive shaft 5 to rotate synchronously
  • FIG. 7 is a schematic diagram of the middle synchronization rotating mechanism 13 of the coaxial helicopter disclosed in this embodiment, which mainly includes a middle transmission shaft sleeve 13a, a middle synchronization transition rod 13b, and a middle synchronization connecting rod 13c.
  • the middle transmission shaft sleeve 13a is fixedly connected to the lower rotor system 7 or the lower rotor transmission shaft 5.
  • One end of the middle synchronization transition rod 13b is hinged with the middle transmission shaft sleeve 13a, and the other end is hinged with one end of the middle synchronization connecting rod 13c.
  • the other end of the middle synchronization connecting rod 13c is hinged with the transitional rotating tilting plate 9g.
  • the middle synchronous rotating mechanism 13 drives the transitional rotating tilting plate 9g to follow the lower rotor drive shaft 5 to rotate synchronously during operation.
  • Fig. 8 is a schematic diagram of the upper rotor system 6 of the coaxial helicopter disclosed in this embodiment, which mainly includes an upper hub 6a, an upper hub sleeve 6b, an upper tie rod connector 6c, and an upper rotor 6d.
  • the center of the upper hub 6a is fixedly connected to the upper end of the upper rotor drive shaft 4.
  • One end of the upper hub sleeve 6b is hinged with the end of the upper hub 6a, and the other end is hinged with the root of the upper rotor 6d.
  • the upper pull rod connector 6c is fixedly installed on the side of the upper hub sleeve 6b, and is hinged to the upper rotor variable pitch pull rod 9i.
  • Fig. 9 is a schematic diagram of the lower rotor system 7 of the coaxial helicopter disclosed in this embodiment, which mainly includes a lower propeller hub 7a, a lower propeller hub sleeve 7b, a pull-down rod connector 7c, and a lower rotor 7d.
  • the center of the lower hub 7a is fixedly connected to the upper end of the lower rotor drive shaft 5.
  • One end of the lower hub sleeve 7b is hinged to the end of the lower hub 7a, and the other end is hinged to the root of the lower rotor 7d.
  • the pull-down rod connector 7c is fixedly installed on the side of the lower hub sleeve 7b, and is hinged to the lower rotor pitch variable pull rod 10i.
  • the upper rotor drive shaft 4 is a tubular shaft with a hollow inside.
  • tilting wheel transition connecting rods 9f there are at least three tilting wheel transition connecting rods 9f, and the center of gravity of all tilting wheel transition connecting rods 9f is located on the axis of the rotor drive shaft 4 or 5.
  • the hinged connection between the components may be a direct hinged connection of the components, or a hinged connection with a bearing added.
  • the upper rotor actuator 2 and the lower rotor actuator 3 may be any one of a direct drive or a reduction actuator, an electric or oil actuator, a dual-power or a single-power actuator. kind of actuator.
  • the single-layer rotor of the upper and lower rotor system 6 or 7 can be a two-blade solution or a multi-blade solution.
  • the rotor 6d or 7d can be non-folded, horizontally folded or longitudinally folded.
  • the servo mechanism 8 may be a servo mechanism that outputs torque, or a servo mechanism that outputs thrust and tension.
  • the coaxial helicopter can be equipped with a forward propulsion power system at an appropriate position on the fuselage 1 to form a high-speed helicopter solution.
  • control methods can be used to control the coaxial helicopter, including the following methods:
  • the total pitch of the upper rotor system 6 is independently adjusted through the periodic pitch changing mechanism 9, and the lower rotor system 7 is independently adjusted in the same direction as the upper rotor system 6 through the periodic pitch changing mechanism 9 and the differential pitch changing mechanism 10, synchronized Increase or decrease the total distance of the upper and lower rotor systems 6, 7 to realize the lifting movement of the helicopter;
  • the total pitch of the upper rotor system 6 is independently adjusted through the periodic pitch changing mechanism 9, and the lower rotor system 7 is independently adjusted in the opposite direction to the upper rotor system 6 through the periodic pitch changing mechanism 9 and the differential pitch changing mechanism 10.
  • the total distance of the upper and lower rotor systems 6 and 7 can be adjusted dynamically to realize the yaw movement of the helicopter.
  • the difference between the second embodiment and the first embodiment is: as shown in FIG. 10, in the lower synchronous rotating mechanism 12, one end of the lower synchronous connecting rod 12c is hinged with the lower synchronous transition rod 12b, and the other end is hinged with the lower rotating tilting dial lever 9e Hinged, the hinged position is the hinged position of the lower rotary tilting plate pull rod 9e and the middle of the upper lever support frame 10h.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)
  • Transmission Devices (AREA)

Abstract

一种共轴直升机,包括机身(1)、上旋翼作动器(2)、下旋翼作动器(3)、上旋翼传动轴(4)、下旋翼传动轴(5)、上旋翼***(6)、下旋翼***(7)、伺服机构(8),还包括周期变距机构(9)以及差异变距机构(10);伺服机构(8)设置有四个,其中三个伺服机构通过连杆直接驱动周期变距机构(9);四个伺服机构中的另一个通过连杆和杠杆驱动差异变距机构(10)。该共轴直升机实现共轴飞行器多种飞行动作的同步进行,并支持在旋翼变速或定速模式下的半差动、全差动等多种飞行控制方式。还涉及一种共轴直升机的控制方法。

Description

一种共轴直升机及控制方法 技术领域
本发明涉及直升机领域,特别涉及一种共轴直升机及控制方法。
背景技术
与单旋翼直升机相比,共轴反转旋翼直升机具有旋翼臂展短、功率消耗低、不需安装尾桨来平衡旋翼旋转产生的反力矩、结构设计更灵活等优点。俄罗斯卡莫夫设计局设计制造的卡50共轴反转直升机是该类直升机的典型代表。现有技术中的结构相对简单的共轴直升机通常上、下旋翼无法进行单桨差异变距和同步变矩的统一,此类直升机在实现升降、滚转、俯仰、偏航和倒飞等机动时除了桨距调节之外还需要依赖旋翼的转速调节,无法通过直接改变桨距来进行机动。此类方案由于旋翼***惯性的影响会导致飞机机动缓慢,效率较低。
专利201510097444.6和201610673069.X中分别提出了两种通过四个伺服机构进行混合控制的变距方案,可实现上、下旋翼独立变距的差异性和周期变距的一致性。这两种方案通过改变桨距来进行机动,有效解决了直升机机动效率低下的问题。专利201510097444.6采用四个伺服机构下置的方案,其中三个伺服机构进行上、下旋翼桨距的一致性调节,第四个伺服机构进行上旋翼桨距的独立调节。该方案中传动轴周围布置的操纵机构较为复杂,除了控制上下旋翼桨距变化的机构之外,还设置有带动上下旋转倾转盘分别跟随上下旋翼同步旋转的两套操纵机构。除此之外,其下置的上旋翼桨距调节伺服机构与上旋翼桨距调节机构通过一根穿过传动轴内部的细长轴连接。这不仅导致加工制造成本较高,而且安装复杂,在实际飞行时会给整个操纵机构的可靠性和安全性带来较大的隐患。专利201610673069.X采用三个伺服机构下置,一个伺服机构上置的方案,其中下置伺服机构进行上、下旋翼桨距的一致性调节,上置伺服机构进行上旋翼桨距的独立调节。该方案将旋转倾转盘跟随旋翼进行同步旋转的操纵机构集成到了上、下旋翼的变距机构中,取消了穿过旋翼传动轴内部的细长轴,简化了操纵机构,在一定程度上改善了专利201510097444.6的缺陷。专利201810177755.7提出了一种新型变距方案,采用下置的三个伺服机构独立控制下旋翼桨距,上置单个伺服机构独立控制上旋翼桨距。该方案结构简单紧凑,在微型、小型直升机应用中具有较高的飞行和操纵效率。但对于中型、大型直升机而言,单个伺服机构单独控制旋翼桨距对其输出功率是个较为严峻的考验。
可以看出,在现有技术中,相比通常的变距方案而言,混合变距方案的应用范围较广。在现有的混合变距方案中,下置四个伺服机构的方案存在穿过旋翼传动轴内部的细长轴,不仅会造成结构的可靠性和安全性问题,还对GPS等电子***的布线造成障碍;而下置三个伺服机构、上置单个伺服机构的方案则需要在上旋翼的旋转轴周围额外布置上置伺服机构的安 装结构,会导致结构复杂、影响GPS元件的安装等缺陷。
发明内容
本发明的目的是为了克服上述问题,提供一种共轴直升机及控制方法。
为达到上述目的,本发明采用的方法是:一种共轴直升机,包括机身、上旋翼作动器、下旋翼作动器、上旋翼传动轴、下旋翼传动轴、上旋翼***、下旋翼***、伺服机构、周期变距机构、差异变距机构。所述的上旋翼作动器和下旋翼作动器位于下旋翼***下方与机身固定连接。所述的下旋翼传动轴一端与下旋翼作动器输出轴连接,另一端与下旋翼***固定连接。所述的上旋翼传动轴的一端与上旋翼作动器输出轴连接,另一端穿过下旋翼传动轴与上旋翼***固定连接。所述的伺服机构设置有四个,每个伺服机构均与机身固定连接。所述的周期变距机构中设置有上旋转倾转盘,上旋转倾转盘位于所述的上旋翼***和所述的下旋翼***中间并滑动安装在所述的上旋翼传动轴外侧。所述的差异变距机构中设置有旋转支撑轴套,旋转支撑轴套滑动安装在所述的下旋翼传动轴外侧并保持与所述的下旋翼传动轴同步转动。所述的周期变距机构中还设置有下旋转倾转盘,下旋转倾转盘位于下旋翼***和机身中间并滑动安装在所述的差异变距机构中的旋转支撑轴套外侧。
所述的四个伺服机构中的三个伺服机构通过连杆直接驱动所述的周期变距机构,同时调节所述的上旋翼***和下旋翼***的桨距,实现对上、下旋翼周期变距的一致性调节以及对上旋翼总距的独立调节。所述四个伺服机构中的另一个伺服机构通过连杆和杠杆驱动所述的差异变距机构,并与其余三个伺服机构所驱动的周期变距机构共同作用于下旋翼***,实现下旋翼总距的差异化调节,从而实现了***上、下旋翼总距的分别独立调节。
作为本发明的优选,所述的差异变距机构包括四号伺服机构摇臂、四号伺服机构连杆、固定支撑架、转动支撑架、下杠杆支撑架、不旋转滑动盘、旋转支撑轴套、上杠杆支撑架、下旋转倾转盘拉杆、下旋翼变距拉杆。所述的四号伺服机构摇臂一端与所述的四个伺服机构中的四号伺服机构输出轴固定连接,另一端与所述的四号伺服机构连杆一端铰接。所述的四号伺服机构连杆另一端与下杠杆支撑架一端铰接。所述的固定支撑架与机身固定连接。所述的转动支撑架一端与固定支撑架铰接,另一端与所述的下杠杆支撑架中部铰接。所述的下杠杆支撑架另一端与不旋转滑动盘铰接。所述的不旋转滑动盘与旋转支撑轴套一端通过轴承铰接,并与旋转支撑轴套一起套装在下旋翼传动轴外部。所述的旋转支撑轴套另一端与上杠杆支撑架铰接。所述的上杠杆支撑架中部与下旋转倾转盘拉杆铰接,另一端与下旋翼变距拉杆铰接。所述的下旋翼变距拉杆与下旋翼***铰接。当下旋翼***差异变距时,所述的四号伺服机构摇臂跟随四号伺服机构输出轴转动,带动四号伺服机构连杆移动,四号伺服机构连杆拉动下杠杆支撑架进行转动,下杠杆支撑架带动不旋转滑动盘沿着下旋翼传动轴上下滑动, 不旋转滑动盘带动旋转支撑轴套沿着下旋翼传动轴上下滑动,旋转支撑轴套保持与下旋翼传动轴的同步转动。上杠杆支撑架在旋转支撑轴套与下旋转倾转盘拉杆的共同作用下带动下旋翼变距拉杆移动,下旋翼变距拉杆带动下旋翼***进行差异变距操作。
作为本发明的优选,所述的周期变距机构包括伺服机构摇臂、伺服机构连杆、不旋转倾转盘、下旋转倾转盘、下旋转倾转盘拉杆、旋转支撑轴套、上杠杆支撑架、倾转盘过渡连接杆、过渡旋转倾转盘、上旋转倾转盘、上旋翼变距拉杆。所述的伺服机构摇臂设置有三根,每根伺服机构摇臂的一端分别与前三号伺服机构的输出轴固定连接。所述的伺服机构连杆也设置有三根,每根伺服机构连杆一端分别与三根伺服机构摇臂的另一端铰接,另一端分别与不旋转倾转盘铰接。所述的不旋转倾转盘与下旋转倾转盘通过轴承铰接。所述的下旋转倾转盘与下旋转倾转盘拉杆一端铰接。所述的下旋转倾转盘拉杆另一端与差异变距机构中的上杠杆支撑架中部铰接。所述的倾转盘过渡连接杆一端与下旋转倾转盘铰接,另一端与过渡旋转倾转盘铰接。所述的过渡旋转倾转盘与上旋转倾转盘通过轴承铰接。所述的上旋转倾转盘与上旋翼变距拉杆铰接。所述的上旋翼变距拉杆与上旋翼***铰接。当上旋翼***与下旋翼***周期变距时,伺服机构摇臂在伺服机构输出轴作用下旋转,带动伺服机构连杆移动,伺服机构连杆拉动不旋转倾转盘发生倾斜转动或升降运动,不旋转倾转盘带动下旋转倾转盘发生倾斜转动或升降运动,下旋转倾转盘带动下旋转倾转盘拉杆移动,上杠杆支撑架在下旋转倾转盘拉杆与旋转支撑轴套的共同作用下带动下旋翼变距拉杆移动,下旋翼变距拉杆带动下旋翼***进行变距操作。同时,下旋转倾转盘带动倾转盘过渡连接杆移动,倾转盘过渡连接杆带动过渡旋转倾转盘发生倾斜转动或升降运动,过渡旋转倾转盘带动上旋转倾转盘发生倾斜转动或升降运动,上旋转倾转盘带动上旋翼变距拉杆移动,上旋翼变距拉杆带动上旋翼***进行变距操作。
作为本发明的优选,所述的共轴直升机还包括上同步旋转机构。所述的上同步旋转机构包括上传动轴套筒、上同步过渡杆、上同步连接杆。所述的上传动轴套筒与上旋翼传动轴固定连接。所述的上同步过渡杆一端与上传动轴套筒铰接,另一端与上同步连接杆一端铰接。所述的上同步连接杆另一端与上旋转倾转盘铰接。所述的上同步旋转机构在工作时带动上旋转倾转盘跟随上旋翼传动轴同步转动。
作为本发明的优选,所述的共轴直升机还包括下同步旋转机构。所述的下同步旋转机构包括下传动轴套筒、下同步过渡杆、下同步连接杆。所述的下传动轴套筒与下旋翼传动轴固定连接。所述的下同步过渡杆一端与下传动轴套筒铰接,另一端与下同步连接杆一端铰接。所述的下同步连接杆另一端可以直接与下旋转倾转盘铰接;所述的下同步连接杆的另一端还可以与下旋转倾转盘拉杆铰接,该铰接位置为下旋转倾转盘拉杆与上杠杆支撑架中部铰接处。 所述的下同步旋转机构在工作时带动下旋转倾转盘跟随下旋翼传动轴同步转动。
作为本发明的优选,所述的共轴直升机还包括中同步旋转机构。所述的中同步旋转机构包括中传动轴套筒、中同步过渡杆、中同步连接杆。所述的中传动轴套筒与下旋翼***或下旋翼传动轴固定连接。所述的中同步过渡杆一端与中传动轴套筒铰接,另一端与中同步连接杆一端铰接。所述的中同步连接杆另一端与过渡旋转倾转盘铰接。所述的中同步旋转机构在工作时带动过渡旋转倾转盘跟随下旋翼传动轴同步转动。
作为本发明的优选,所述的上旋翼***包括上桨毂、上桨毂套筒、上拉杆连接件、上旋翼。所述的上桨毂中心与上旋翼传动轴上端固定连接。所述的上桨毂套筒一端与上桨毂端部铰接,另一端与上旋翼根部铰接。所述的上拉杆连接件固定安装在上桨毂套筒的侧边,并与上旋翼变距拉杆铰接。
作为本发明的优选,所述的下旋翼***包括下桨毂、下桨毂套筒、下拉杆连接件、下旋翼。所述的下桨毂中心与下旋翼传动轴上端固定连接。所述的下桨毂套筒一端与下桨毂端部铰接,另一端与下旋翼根部铰接。所述的下拉杆连接件固定安装在下桨毂套筒的侧边,并与下旋翼变距拉杆铰接。
作为本发明的优选,所述的上旋翼传动轴为内部中空的管状轴。
作为本发明的优选,所述的倾转盘过渡连接杆设置至少为三根,所述的全部倾转盘过渡连接杆的重心位于旋翼传动轴轴线上。
作为本发明的优选,所述的零部件之间的铰接连接可以是零部件直接铰接,也可以是加入了轴承的铰接连接。
作为本发明的优选,所述的上旋翼作动器与下旋翼作动器可以是直驱或减速作动器、电动或油动作动器、双动力或单动力作动器中的任意一种作动器。
作为本发明的优选,所述的上、下旋翼***的单层旋翼可以是两叶桨方案,也可以是多叶桨方案。所述旋翼可以是非折叠、横向折叠或纵向折叠方式。
作为本发明的优选,所述的伺服机构可以是扭力输出的一种伺服机构,也可以是推力和拉力输出的一种伺服机构。
作为本发明的优选,所述的共轴直升机,在机身适当位置布置向前推进的动力***,形成一种高速直升机方案。
本发明还提供了一种共轴直升机控制方法,包括如下方式:
通过周期变距机构对上、下旋转倾转盘进行同步倾转角度的调节,控制上、下旋翼***的同步周期变距力的方向,实现直升机的俯仰和横滚运动;
通过周期变距机构对上旋翼***进行总距独立调节、通过周期变距机构及差异变距机构 共同对下旋翼***进行与上旋翼***一致方向的总距独立调节,同步增减上、下旋翼***的总距,实现直升机的升降运动;
通过周期变距机构对上旋翼***进行总距独立调节、通过周期变距机构及差异变距机构共同对下旋翼***进行与上旋翼***相反方向的总距独立调节,差动调节上、下旋翼***的总距,实现直升机的偏航运动。
有益效果:
本发明采用下置四伺服机构混合变距的技术方案,相比现有方案,在上旋翼和下旋翼桨距联动调节的同时可对下旋翼桨距进行差异化调节,实现了上、下旋翼周期变距的一致性和下旋翼差异变距的差异性调节功能,实现共轴飞行器多种飞行动作的同步进行,并支持在旋翼变速或定速模式下的半差动、全差动等多种飞行控制方式,具有更加广阔的应用空间。本发明取消了现有混合变距方案中对上旋翼桨距独立调节的细长轴结构或上置伺服机构安装结构,大大提高了***的可靠性和安全性。本方案将旋转倾转盘跟随旋翼传动轴进行同步旋转的操纵机构与变距机构进行了集成,可有效降低加工与装配成本,进一步提高了***的可靠性。此外,本方案中的旋翼传动轴可设计为管状轴,其内部可为直升机顶部设置的GPS等电子设备走线提供良好的选择空间。
附图说明
图1为共轴直升机结构组成示意图;
图2为共轴直升机结构示意图;
图3为共轴直升机差异变距机构示意图;
图4为共轴直升机周期变距机构示意图;
图5为共轴直升机上同步旋转机构示意图;
图6为共轴直升机下同步旋转机构示意图;
图7为共轴直升机中同步旋转机构示意图;
图8为共轴直升机上旋翼***示意图;
图9为共轴直升机下旋翼***示意图;
图10为共轴直升机另一种下同步旋转机构示意图。
图2至图9中所示,1、机身,2、上旋翼作动器,3、下旋翼作动器,4、上旋翼传动轴,5、下旋翼传动轴,6、上旋翼***,7、下旋翼***,8、伺服机构,9、周期变距机构,10、差异变距机构,11、上同步旋转机构,12、下同步旋转机构,13、中同步旋转机构,6a、上桨毂,6b、上桨毂套筒,6c、上拉杆连接件,6d、上旋翼,7a、下桨毂,7b、下桨毂套筒,7c、下拉杆连接件,7d、下旋翼,8a、一号伺服机构,8b、二号伺服机构,8c、三号伺服机 构,8d、四号伺服机构,9a、伺服机构摇臂、9b、伺服机构连杆,9c、不旋转倾转盘,9d、下旋转倾转盘,9e、下旋转倾转盘拉杆,9f、倾转盘过渡连接杆,9g、过渡旋转倾转盘,9h、上旋转倾转盘,9i、上旋翼变距拉杆,10a、四号伺服机构摇臂,10b、四号伺服机构连杆,10c、固定支撑架,10d、转动支撑架,10e、下杠杆支撑架,10f、不旋转滑动盘,10g、旋转支撑轴套,10h、上杠杆支撑架,10i、下旋翼变距拉杆,11a、上传动轴套筒,11b、上同步过渡杆,11c、上同步连接杆,12a、下传动轴套筒,12b、下同步过渡杆,12c、下同步连接杆,13a、中传动轴套筒,13b、中同步过渡杆,13c、中同步连接杆。
具体实施方式
如图1所示为本发明公开的一种共轴直升机结构组成示意图。本发明公开的共轴直升机主要特征在于,通过周期变距机构对上旋翼和下旋翼的桨距进行联动控制,通过差异变距机构对下旋翼的桨距进行独立控制。在此基本方案下,对于共轴直升机飞行中的各种平衡状态和机动状态,可以有对应的伺服机构转角参数满足需求,从而获得所需的各种飞行状态。
下面结合附图和具体实施例,进一步阐明本发明,本实施例在以本发明技术方案为前提下进行实施,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围。
实施例1:
如图2所示为本实施例公开的一种共轴直升机,其特征在于:包括机身1、上旋翼作动器2、下旋翼作动器3、上旋翼传动轴4、下旋翼传动轴5、上旋翼***6、下旋翼***7、伺服机构8、周期变距机构9、差异变距机构10。
所述的上旋翼作动器2和下旋翼作动器3位于下旋翼***7下方,与机身1固定连接。所述的下旋翼传动轴5一端与下旋翼作动器3输出轴连接,另一端与下旋翼***7固定连接。所述的上旋翼传动轴4的一端与上旋翼作动器2输出轴连接,另一端穿过下旋翼传动轴5与上旋翼***6固定连接。所述的伺服机构8设置有四个,每个伺服机构均与机身1固定连接。所述的周期变距机构9中设置有上旋转倾转盘9h(如图4所示),上旋转倾转盘9h位于所述的上旋翼***6和所述的下旋翼***7中间并滑动安装在所述的上旋翼传动轴4外侧。所述的差异变距机构10中设置有旋转支撑轴套10g(如图3所示),旋转支撑轴套10g构滑动安装在所述的下旋翼传动轴5外侧并保持与所述的下旋翼传动轴5同步转动。所述的周期变距机构9中还设置有下旋转倾转盘9d(如图4所示),下旋转倾转盘9d位于下旋翼***7和机身1中间并滑动安装在所述的差异变距机构10中的旋转支撑轴套10g外侧。
所述的四个伺服机构8中的三个伺服机构通过连杆直接驱动所述的周期变距机构9,同时调节所述的上旋翼***6和下旋翼***7的桨距,实现对上、下旋翼周期变距的一致性调节以及对上旋翼总距的独立调节。所述四个伺服机构8中的另一个伺服机构通过连杆和杠杆 驱动所述的差异变距机构10,并与其余三个伺服机构8所驱动的周期变距机构9共同作用于下旋翼***7,实现下旋翼总距的差异化调节,从而实现了***上、下旋翼总距的分别独立调节。
如图3所示为本实施例公开的共轴直升机的差异变距机构10的示意图,主要包括四号伺服机构摇臂10a、四号伺服机构连杆10b、固定支撑架10c、转动支撑架10d、下杠杆支撑架10e、不旋转滑动盘10f、旋转支撑轴套10g、上杠杆支撑架10h、下旋转倾转盘拉杆9e、下旋翼变距拉杆10i。所述的四号伺服机构摇臂10a一端与所述的四个伺服机构8中的四号伺服机构8d输出轴固定连接,另一端与所述的四号伺服机构连杆10b一端铰接。所述的四号伺服机构连杆10b另一端与下杠杆支撑架10e一端铰接。所述的固定支撑架10c与机身1固定连接。所述的转动支撑架10d一端与固定支撑架10c铰接,另一端与所述的下杠杆支撑架10e中部铰接。所述的下杠杆支撑架10e另一端与不旋转滑动盘10f铰接。所述的不旋转滑动盘10f与旋转支撑轴套10g一端通过轴承铰接,并与旋转支撑轴套10g一起套装在下旋翼传动轴5外部。所述的旋转支撑轴套10g另一端与上杠杆支撑架10h铰接。所述的上杠杆支撑架10h设置有2件,以中心对称形式分别铰接于旋转支撑轴套10g两侧,上杠杆支撑架10h中部与下旋转倾转盘拉杆9e铰接,另一端与下旋翼变距拉杆10i铰接。所述的下旋翼变距拉杆10i与下旋翼***7铰接。当下旋翼***7差异变距时,所述的四号伺服机构摇臂10a跟随四号伺服机构8d输出轴转动,带动四号伺服机构连杆10b移动,四号伺服机构连杆10b拉动下杠杆支撑架10e进行转动,下杠杆支撑架10e带动不旋转滑动盘10f沿着下旋翼传动轴5上下滑动,不旋转滑动盘10f带动旋转支撑轴套10g沿着下旋翼传动轴5上下滑动,旋转支撑轴套10g保持与下旋翼传动轴5的同步转动。上杠杆支撑架10h在旋转支撑轴套10g与下旋转倾转盘拉杆9e的共同作用下带动下旋翼变距拉杆10i移动,下旋翼变距拉杆10i带动下旋翼***7进行差异变距操作。
如图4所示为本实施例公开的共轴直升机的周期变距机构9的示意图,主要包括伺服机构摇臂9a、伺服机构连杆9b、不旋转倾转盘9c、下旋转倾转盘9d、下旋转倾转盘拉杆9e、旋转支撑轴套10g、上杠杆支撑架10h、倾转盘过渡连接杆9f、过渡旋转倾转盘9g、上旋转倾转盘9h、上旋翼变距拉杆9i。所述的伺服机构摇臂9a设置有三根,每根伺服机构摇臂9a的一端分别与前三号伺服机构(8a、8b、8c)的输出轴固定连接。所述的伺服机构连杆9b也设置有三根,每根伺服机构连杆9b一端分别与三根伺服机构摇臂9a的另一端铰接,另一端分别与不旋转倾转盘9c铰接。所述的不旋转倾转盘9c与下旋转倾转盘9d通过轴承铰接。所述的下旋转倾转盘9d与下旋转倾转盘拉杆9e一端铰接。所述的下旋转倾转盘拉杆9e另一端与差异变距机构10中的上杠杆支撑架10h中部铰接。所述的倾转盘过渡连接杆9f一端与下旋 转倾转盘9d铰接,另一端与过渡旋转倾转盘9g铰接。所述的过渡旋转倾转盘9g与上旋转倾转盘9h通过轴承铰接。所述的上旋转倾转盘9h与上旋翼变距拉杆9i铰接。所述的上旋翼变距拉杆9i与上旋翼***6铰接。当上旋翼***6与下旋翼***7周期变距时,伺服机构摇臂9a在伺服机构输出轴作用下旋转,带动伺服机构连杆9b移动,伺服机构连杆9b拉动不旋转倾转盘9c发生倾斜转动或升降运动,不旋转倾转盘9c带动下旋转倾转盘9d发生倾斜转动或升降运动,下旋转倾转盘9d带动下旋转倾转盘拉杆9e移动,上杠杆支撑架10h在下旋转倾转盘拉杆9e与旋转支撑轴套10g的共同作用下带动下旋翼变距拉杆10i移动,下旋翼变距拉杆10i带动下旋翼***7进行变距操作。同时,下旋转倾转盘9d带动倾转盘过渡连接杆9f移动,倾转盘过渡连接杆9f带动过渡旋转倾转盘9g发生倾斜转动或升降运动,过渡旋转倾转盘9g带动上旋转倾转盘9h发生倾斜转动或升降运动,上旋转倾转盘9h带动上旋翼变距拉杆9i移动,上旋翼变距拉杆9i带动上旋翼***6进行变距操作。
如图5所示为本实施例公开的共轴直升机的上同步旋转机构11的示意图,主要包括上传动轴套筒11a、上同步过渡杆11b、上同步连接杆11c。所述的上传动轴套筒11a与上旋翼传动轴4固定连接。所述的上同步过渡杆11b与上同步连接杆11c均设置有2件。所述的2件上同步过渡杆11b以对称形式分别铰接于上传动轴套筒11a两侧,每件上同步过渡杆11b的另一端与上同步连接杆11c一端铰接。所述的上同步连接杆11c另一端与上旋转倾转盘9h铰接。所述的上同步旋转机构11在工作时带动上旋转倾转盘9h跟随上旋翼传动轴4同步转动。
如图6所示为本实施例公开的共轴直升机的下同步旋转机构12的示意图,主要包括下传动轴套筒12a、下同步过渡杆12b、下同步连接杆12c。所述的下传动轴套筒12a与下旋翼传动轴5固定连接。所述的下同步过渡杆12b与下同步连接杆12c均设置有2件。所述的2件下同步过渡杆12b以对称形式分别铰接于与下传动轴套筒12a两侧,每件下同步过渡杆12b的另一端与下同步连接杆12c的一端铰接。所述的下同步连接杆12c另一端与下旋转倾转盘9d铰接。所述的下同步旋转机构12在工作时带动下旋转倾转盘9d跟随下旋翼传动轴5同步转动。
如图7所示为本实施例公开的共轴直升机的中同步旋转机构13的示意图,主要包括中传动轴套筒13a、中同步过渡杆13b、中同步连接杆13c。所述的中传动轴套筒13a与下旋翼***7或下旋翼传动轴5固定连接。所述的中同步过渡杆13b一端与中传动轴套筒13a铰接,另一端与中同步连接杆13c一端铰接。所述的中同步连接杆13c另一端与过渡旋转倾转盘9g铰接。所述的中同步旋转机构13在工作时带动过渡旋转倾转盘9g跟随下旋翼传动轴5同步转动。
如图8所示为本实施例公开的共轴直升机的上旋翼***6的示意图,主要包括上桨毂6a、 上桨毂套筒6b、上拉杆连接件6c、上旋翼6d。所述的上桨毂6a中心与上旋翼传动轴4上端固定连接。所述的上桨毂套筒6b一端与上桨毂6a端部铰接,另一端与上旋翼6d根部铰接。所述的上拉杆连接件6c固定安装在上桨毂套筒6b的侧边,并与上旋翼变距拉杆9i铰接。
如图9所示为本实施例公开的共轴直升机的下旋翼***7的示意图,主要包括下桨毂7a、下桨毂套筒7b、下拉杆连接件7c、下旋翼7d。所述的下桨毂7a中心与下旋翼传动轴5上端固定连接。所述的下桨毂套筒7b一端与下桨毂7a端部铰接,另一端与下旋翼7d根部铰接。所述的下拉杆连接件7c固定安装在下桨毂套筒7b的侧边,并与下旋翼变距拉杆10i铰接。
本实施例中,所述的上旋翼传动轴4为内部中空的管状轴。
本实施例中,所述的倾转盘过渡连接杆9f设置至少为三根,所述的全部倾转盘过渡连接杆9f的重心位于旋翼传动轴4或5的轴线上。
本实施例中,所述的零部件之间的铰接连接可以是零部件直接铰接,也可以是加入了轴承的铰接连接。
本实施例中,所述的上旋翼作动器2与下旋翼作动器3可以是直驱或减速作动器、电动或油动作动器、双动力或单动力作动器中的任意一种作动器。
本实施例中,所述的上、下旋翼***6或7的单层旋翼可以是两叶桨方案,也可以是多叶桨方案。所述旋翼6d或7d可以是非折叠、横向折叠或纵向折叠方式。
本实施例中,所述的伺服机构8可以是扭力输出的一种伺服机构,也可以是推力和拉力输出的一种伺服机构。
本实施例中,所述的共轴直升机,可在机身1适当位置布置向前推进的动力***,形成一种高速直升机方案。
本实施例中,对共轴直升机的控制可采用如下控制方法,包括以下方式:
通过周期变距机构9对上、下旋转倾转盘9h、9d进行同步倾转角度的调节,控制上、下旋翼***6、7的同步周期变距力的方向,实现直升机的俯仰和横滚运动;
通过周期变距机构9对上旋翼***6进行总距独立调节、通过周期变距机构9及差异变距机构10共同对下旋翼***7进行与上旋翼***6一致方向的总距独立调节,同步增减上、下旋翼***6、7的总距,实现直升机的升降运动;
通过周期变距机构9对上旋翼***6进行总距独立调节、通过周期变距机构9及差异变距机构10共同对下旋翼***7进行与上旋翼***6相反方向的总距独立调节,差动调节上、下旋翼***6、7的总距,实现直升机的偏航运动。
实施例2:
实施例2与实施例1的区别在于:如图10所示,在下同步旋转机构12中,所述的下同 步连接杆12c一端与下同步过渡杆12b铰接,另一端与下旋转倾转盘拉杆9e铰接,该铰接位置为下旋转倾转盘拉杆9e与上杠杆支撑架10h中部铰接处。
本发明方案所公开的技术手段不仅限于上述技术手段所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。以上所述是本发明的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (16)

  1. 一种共轴直升机,包括机身、上旋翼作动器、下旋翼作动器、上旋翼传动轴、下旋翼传动轴、上旋翼***、下旋翼***、伺服机构,其特征在于:还包括周期变距机构以及差异变距机构;所述的上旋翼作动器和下旋翼作动器位于下旋翼***下方与机身固定连接;所述的下旋翼传动轴一端与下旋翼作动器输出轴连接,另一端与下旋翼***固定连接;所述的上旋翼传动轴的一端与上旋翼作动器输出轴连接,另一端穿过下旋翼传动轴与上旋翼***固定连接;所述的伺服机构设置有四个,每个伺服机构均与机身固定连接;所述的周期变距机构中设置有上旋转倾转盘,上旋转倾转盘位于所述的上旋翼***和所述的下旋翼***中间并滑动安装在所述的上旋翼传动轴外侧;所述的差异变距机构中设置有旋转支撑轴套,旋转支撑轴套滑动安装在所述的下旋翼传动轴的外侧并保持与所述的下旋翼传动轴同步转动;所述的周期变距机构中还设置有下旋转倾转盘,下旋转倾转盘位于下旋翼***和机身中间并滑动安装在所述的差异变距机构中的旋转支撑轴套外侧;
    所述的四个伺服机构中的三个伺服机构通过连杆直接驱动所述的周期变距机构,同时调节所述的上旋翼***和下旋翼***的桨距,实现对上、下旋翼周期变距的一致性调节以及对上旋翼总距的独立调节;所述四个伺服机构中的另一个伺服机构通过连杆和杠杆驱动所述的差异变距机构,并与其余三个伺服机构所驱动的周期变距机构共同作用于下旋翼***,实现下旋翼总距的差异化调节,从而实现了***上、下旋翼总距的分别独立调节。
  2. 根据权利要求1所述的一种共轴直升机,其特征在于,所述的差异变距机构包括四号伺服机构摇臂、四号伺服机构连杆、固定支撑架、转动支撑架、下杠杆支撑架、不旋转滑动盘、旋转支撑轴套、上杠杆支撑架、下旋转倾转盘拉杆、下旋翼变距拉杆;所述的四号伺服机构摇臂一端与所述的四个伺服机构中的四号伺服机构输出轴固定连接,另一端与所述的四号伺服机构连杆一端铰接;所述的四号伺服机构连杆另一端与下杠杆支撑架一端铰接;所述的固定支撑架与机身固定连接;所述的转动支撑架一端与固定支撑架铰接,另一端与所述的下杠杆支撑架中部铰接;所述的下杠杆支撑架另一端与不旋转滑动盘铰接;所述的不旋转滑动盘与旋转支撑轴套一端通过轴承铰接,并与旋转支撑轴套一起套装在下旋翼传动轴外部;所述的旋转支撑轴套另一端与上杠杆支撑架铰接;所述的上杠杆支撑架中部与下旋转倾转盘拉杆铰接,另一端与下旋翼变距拉杆铰接;所述的下旋翼变距拉杆与下旋翼***铰接;当下旋翼***差异变距时,所述的四号伺服机构摇臂跟随四号伺服机构输出轴转动,带动四号伺服机构连杆移动,四号伺服机构连杆拉动下杠杆支撑架进行转动,下杠杆支撑架带动不旋转滑动盘沿着下旋翼传动轴上下滑动,不旋转滑动盘带动旋转支撑轴套沿着下旋翼传动轴上下滑动,旋转支撑轴套保持与下旋翼 传动轴的同步转动;上杠杆支撑架在旋转支撑轴套与下旋转倾转盘拉杆的共同作用下带动下旋翼变距拉杆移动,下旋翼变距拉杆带动下旋翼***进行下旋翼差异化变距操作。
  3. 根据权利要求2所述的一种共轴直升机,其特征在于,所述的周期变距机构包括伺服机构摇臂、伺服机构连杆、不旋转倾转盘、下旋转倾转盘、下旋转倾转盘拉杆、旋转支撑轴套、上杠杆支撑架、倾转盘过渡连接杆、过渡旋转倾转盘、上旋转倾转盘、上旋翼变距拉杆。所述的伺服机构摇臂设置有三根,每根伺服机构摇臂的一端分别与前三号伺服机构的输出轴固定连接。所述的伺服机构连杆也设置有三根,每根伺服机构连杆一端分别与三根伺服机构摇臂的另一端铰接,另一端分别与不旋转倾转盘铰接。所述的不旋转倾转盘与下旋转倾转盘通过轴承铰接。所述的下旋转倾转盘与下旋转倾转盘拉杆一端铰接。所述的下旋转倾转盘拉杆另一端与上杠杆支撑架中部铰接。所述的倾转盘过渡连接杆一端与下旋转倾转盘铰接,另一端与过渡旋转倾转盘铰接。所述的过渡旋转倾转盘与上旋转倾转盘通过轴承铰接。所述的上旋转倾转盘与上旋翼变距拉杆铰接。所述的上旋翼变距拉杆与上旋翼***铰接。当上旋翼***与下旋翼***周期变距时,伺服机构摇臂在伺服机构输出轴作用下旋转,带动伺服机构连杆移动,伺服机构连杆拉动不旋转倾转盘发生倾斜转动或升降运动,不旋转倾转盘带动下旋转倾转盘发生倾斜转动或升降运动,下旋转倾转盘带动下旋转倾转盘拉杆移动,上杠杆支撑架在下旋转倾转盘拉杆与旋转支撑轴套的共同作用下带动下旋翼变距拉杆移动,下旋翼变距拉杆带动下旋翼***进行变距操作。同时,下旋转倾转盘带动倾转盘过渡连接杆移动,倾转盘过渡连接杆带动过渡旋转倾转盘发生倾斜转动或升降运动,过渡旋转倾转盘带动上旋转倾转盘发生倾斜转动或升降运动,上旋转倾转盘带动上旋翼变距拉杆移动,上旋翼变距拉杆带动上旋翼***进行上旋翼变距操作。
  4. 根据权利要求3所述的一种共轴直升机,其特征在于,所述的共轴直升机还包括上同步旋转机构。所述的上同步旋转机构包括上传动轴套筒、上同步过渡杆、上同步连接杆。所述的上传动轴套筒与上旋翼传动轴固定连接。所述的上同步过渡杆一端与上传动轴套筒铰接,另一端与上同步连接杆一端铰接。所述的上同步连接杆另一端与上旋转倾转盘铰接。所述的上同步旋转机构在工作时带动上旋转倾转盘跟随上旋翼传动轴同步转动。
  5. 根据权利要求3所述的一种共轴直升机,其特征在于,所述的共轴直升机还包括下同步旋转机构。所述的下同步旋转机构包括下传动轴套筒、下同步过渡杆、下同步连接杆。所述的下传动轴套筒与下旋翼传动轴固定连接。所述的下同步过渡杆一端与下传动轴套筒铰接,另一端与下同步连接杆一端铰接。所述的下同步连接杆另一端可以直接与下旋转倾转盘铰接;所述的下同步连接杆的另一端还可以与下旋转倾转盘拉杆铰接,该铰接 位置为下旋转倾转盘拉杆与上杠杆支撑架中部铰接处。所述的下同步旋转机构在工作时带动下旋转倾转盘跟随下旋翼传动轴同步转动。
  6. 根据权利要求3所述的一种共轴直升机,其特征在于,所述的共轴直升机还包括中同步旋转机构,所述的中同步旋转机构包括中传动轴套筒、中同步过渡杆、中同步连接杆;所述的中传动轴套筒与下旋翼***或下旋翼传动轴固定连接,所述的中同步过渡杆一端与中传动轴套筒铰接,另一端与中同步连接杆一端铰接,所述的中同步连接杆另一端与过渡旋转倾转盘铰接,所述的中同步旋转机构在工作时带动过渡旋转倾转盘跟随下旋翼传动轴同步转动。
  7. 根据权利要求1到3中任意一项所述的一种共轴直升机,其特征在于,所述的上旋翼***包括上桨毂、上桨毂套筒、上拉杆连接件、上旋翼。所述的上桨毂中心与上旋翼传动轴上端固定连接;所述的上桨毂套筒一端与上桨毂端部铰接,另一端与上旋翼根部铰接,所述的上拉杆连接件固定安装在上桨毂套筒的侧边,并与上旋翼变距拉杆铰接。
  8. 根据权利要求1到3中任意一项所述的一种共轴直升机,其特征在于,所述的下旋翼***包括下桨毂、下桨毂套筒、下拉杆连接件、下旋翼;所述的下桨毂中心与下旋翼传动轴上端固定连接,所述的下桨毂套筒一端与下桨毂端部铰接,另一端与下旋翼根部铰接,所述的下拉杆连接件固定安装在下桨毂套筒的侧边,并与下旋翼变距拉杆铰接。
  9. 根据权利要求1到3中任意一项所述的一种共轴直升机,其特征在于,所述的上旋翼传动轴为内部中空的管状轴。
  10. 根据权利要求3所述的一种共轴直升机,其特征在于,所述的倾转盘过渡连接杆设置至少为三根,所述的全部倾转盘过渡连接杆的重心位于旋翼传动轴轴线上。
  11. 根据权利要求3所述的一种共轴直升机,其特征在于,各个部件之间的铰接连接是零部件直接铰接,或者是加入了轴承的铰接连接。
  12. 根据权利要求1到3中任意一项所述的一种共轴直升机,其特征在于,所述的上旋翼作动器与下旋翼作动器是直驱或减速作动器、电动或油动作动器、双动力或单动力作动器中的任意一种作动器。
  13. 根据权利要求1所述的一种共轴直升机,其特征在于,所述的上、下旋翼***的单层旋翼是两叶桨,或者是多叶桨;所述旋翼是非折叠、横向折叠或纵向折叠方式。
  14. 根据权利要求1所述的一种共轴直升机,其特征在于,所述的伺服机构可以是扭力输出的一种伺服机构,也可以是推力和拉力输出的一种伺服机构。
  15. 根据权利要求1所述的一种共轴直升机,其特征在于,所述的共轴直升机,在机身适当位置布置向前推进的动力***,形成一种高速直升机方案。
  16. 一种共轴直升机控制方法,其特征在于,包括如下方式:
    通过周期变距机构对上、下旋转倾转盘进行同步倾转角度的调节,控制上、下旋翼***的同步周期变距力的方向,实现直升机的俯仰和横滚运动;
    通过周期变距机构对上旋翼***进行总距独立调节、通过周期变距机构及差异变距机构共同对下旋翼***进行与上旋翼***一致方向的总距独立调节,同步增减上、下旋翼***的总距,实现直升机的升降运动;
    通过周期变距机构对上旋翼***进行总距独立调节、通过周期变距机构及差异变距机构共同对下旋翼***进行与上旋翼***相反方向的总距独立调节,差动调节上、下旋翼***的总距,实现直升机的偏航运动。
PCT/CN2020/126690 2019-12-24 2020-11-05 一种共轴直升机及控制方法 WO2021129180A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/335,085 US11597507B2 (en) 2019-12-24 2021-06-01 Coaxial helicopter and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911350590.XA CN110979651B (zh) 2019-12-24 2019-12-24 一种共轴直升机及控制方法
CN201911350590.X 2019-12-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/335,085 Continuation US11597507B2 (en) 2019-12-24 2021-06-01 Coaxial helicopter and control method thereof

Publications (1)

Publication Number Publication Date
WO2021129180A1 true WO2021129180A1 (zh) 2021-07-01

Family

ID=70074907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126690 WO2021129180A1 (zh) 2019-12-24 2020-11-05 一种共轴直升机及控制方法

Country Status (3)

Country Link
US (1) US11597507B2 (zh)
CN (1) CN110979651B (zh)
WO (1) WO2021129180A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11427315B2 (en) * 2019-06-26 2022-08-30 Textron Innovations Inc. Rotor blade control system
CN110979651B (zh) 2019-12-24 2021-04-13 苏州韬讯航空科技有限公司 一种共轴直升机及控制方法
US11560224B2 (en) * 2020-01-09 2023-01-24 Lockheed Martin Corporation Eccentrically adjusted rotating scissor pitch control link
US11396370B2 (en) * 2020-03-19 2022-07-26 Textron Innovations Inc. Coaxial rotor systems for VTOL aircraft
KR102457292B1 (ko) * 2021-03-26 2022-10-21 충남대학교산학협력단 중공형 동축 반전 구조를 갖는 비행체
CN113247242B (zh) * 2021-04-12 2022-05-17 重庆大学 一种共轴双旋翼直升机上旋翼***传动机构
CN113772118B (zh) * 2021-09-03 2022-10-21 南京航空航天大学 用于共轴刚性双旋翼试验台的旋翼机构的操纵方法
CN114162338B (zh) * 2021-11-04 2023-06-06 中国空气动力研究与发展中心低速空气动力研究所 一种可独立变距的共轴对转螺旋桨传动***
CN114111530B (zh) * 2021-11-19 2023-09-01 中国直升机设计研究所 一种变距拉杆测角仪
CN116142509B (zh) * 2023-04-19 2023-06-23 北京瀚科智翔科技发展有限公司 一体式电机电调结构的共轴双桨微型变距无人机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104691752A (zh) * 2015-03-05 2015-06-10 葛讯 一种共轴高速直驱直升机及其飞行操纵方式
US9199729B1 (en) * 2014-05-08 2015-12-01 Hirobo Co., Ltd. Coaxial counter-rotating unmanned helicopter
CN206050067U (zh) * 2016-08-16 2017-03-29 葛讯 一种共轴直升机
CN109131861A (zh) * 2018-07-03 2019-01-04 北京海空行科技有限公司 一种上旋翼带伺服小翼的共轴直升机操纵***
CN109969388A (zh) * 2019-04-19 2019-07-05 北京海空行科技有限公司 一种用于共轴式无人直升机的操纵***
CN110979651A (zh) * 2019-12-24 2020-04-10 苏州韬讯航空科技有限公司 一种共轴直升机及控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9434471B2 (en) * 2005-04-14 2016-09-06 Paul E Arlton Rotary wing vehicle
CN105235900B (zh) * 2015-11-04 2017-04-19 中航维拓(北京)科技有限责任公司 一种上旋翼半差动航向控制的共轴式无人直升机操纵***
CN106428542B (zh) 2016-08-16 2018-11-06 南京韬讯航空科技有限公司 一种共轴直升机操纵机构
CN108275264A (zh) 2018-03-05 2018-07-13 南京韬讯航空科技有限公司 一种可折叠共轴双旋翼飞行器及其控制方法
CN209064352U (zh) * 2018-09-21 2019-07-05 江苏方阔航空科技有限公司 一种非三点共轴多旋翼直升机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9199729B1 (en) * 2014-05-08 2015-12-01 Hirobo Co., Ltd. Coaxial counter-rotating unmanned helicopter
CN104691752A (zh) * 2015-03-05 2015-06-10 葛讯 一种共轴高速直驱直升机及其飞行操纵方式
CN206050067U (zh) * 2016-08-16 2017-03-29 葛讯 一种共轴直升机
CN109131861A (zh) * 2018-07-03 2019-01-04 北京海空行科技有限公司 一种上旋翼带伺服小翼的共轴直升机操纵***
CN109969388A (zh) * 2019-04-19 2019-07-05 北京海空行科技有限公司 一种用于共轴式无人直升机的操纵***
CN110979651A (zh) * 2019-12-24 2020-04-10 苏州韬讯航空科技有限公司 一种共轴直升机及控制方法

Also Published As

Publication number Publication date
US11597507B2 (en) 2023-03-07
CN110979651A (zh) 2020-04-10
US20210323661A1 (en) 2021-10-21
CN110979651B (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
WO2021129180A1 (zh) 一种共轴直升机及控制方法
CN106915457B (zh) 一种上下旋翼倾斜器平行度可变的共轴式直升机操纵***
CN104859854B (zh) 一种大载荷低结构复杂度双共轴双旋翼无人飞行器
CN103723272B (zh) 飞行器和飞行时飞行器结构形态转换的方法
CN110979660B (zh) 一种三舵机直驱共轴旋翼***及控制策略
CN104908976A (zh) 一种简易共轴双旋翼直升机试验台旋翼机构
WO2016062223A1 (zh) 一种垂直起降飞行器
CN110979653A (zh) 一种三舵机共轴双旋翼***及其控制策略
CN106904271B (zh) 一种用于垂直起降无人机的变体机构
CN211033009U (zh) 一种小型共轴双旋翼无人机
CN213800172U (zh) 一种交叉式倾转旋翼机
CN110979652B (zh) 一种两舵机直驱共轴旋翼***及控制策略
CN110539881B (zh) 一种无人自转旋翼机操纵***
CN105480414A (zh) 一种同轴双桨直升机机芯及直升机
CN205150232U (zh) 一种同轴双桨直升机机芯及直升机
CN111003167B (zh) 一种两舵机共轴双旋翼***及控制策略
CN110053759A (zh) 一种变体机翼垂直起降无人机
CN100591400C (zh) 航模直升机转向机构
CN206984363U (zh) 一种用于直升机的x型周期螺距混控***
CN109665095A (zh) 横梁移动式直升机
CN113212746B (zh) 一种移轴反转双旋翼飞行器
CN106927038A (zh) 一种用于直升机的x型周期螺距混控***
CN112793779B (zh) 变幅器及应用该变幅器的飞行器
CN219584483U (zh) 一种倾转涵道垂直起降无人机
CN219884097U (zh) 纯机械差动共轴反桨式无人飞行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20905637

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20905637

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.01.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20905637

Country of ref document: EP

Kind code of ref document: A1