WO2021128145A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2021128145A1
WO2021128145A1 PCT/CN2019/128601 CN2019128601W WO2021128145A1 WO 2021128145 A1 WO2021128145 A1 WO 2021128145A1 CN 2019128601 W CN2019128601 W CN 2019128601W WO 2021128145 A1 WO2021128145 A1 WO 2021128145A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
optical lens
ttl
curvature
Prior art date
Application number
PCT/CN2019/128601
Other languages
English (en)
French (fr)
Inventor
寺西孝亮
张磊
崔元善
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Priority to PCT/CN2019/128601 priority Critical patent/WO2021128145A1/zh
Publication of WO2021128145A1 publication Critical patent/WO2021128145A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
  • the photosensitive devices of general photographic lenses are nothing more than photosensitive coupling devices (Charge Coupled Device, CCD) or complementary metal oxide semiconductor devices (Complementary Metal).
  • CCD Charge Coupled Device
  • CMOS Sensor complementary metal oxide semiconductor devices
  • the pixel size of photosensitive devices has been reduced, and the development trend of current electronic products with good functions, thin and short appearance, therefore, has a good
  • the miniaturized camera lens with image quality has become the mainstream in the current market.
  • the lenses traditionally mounted on mobile phone cameras mostly adopt a three-element or four-element lens structure.
  • the object of the present invention is to provide an imaging optical lens that can meet the requirements of ultra-thin and wide-angle while obtaining high imaging performance.
  • an embodiment of the present invention provides an imaging optical lens.
  • the imaging optical lens includes, in order from the object side to the image side, a first lens with negative refractive power, and a first lens with positive refractive power.
  • the axial thickness of a lens is d1
  • the axial thickness of the second lens is d3
  • the Abbe number of the second lens is v2
  • the Abbe number of the fourth lens is v4, which satisfies the following relationship: 100.00° ⁇ FOV ⁇ 135.00°, 0.85 ⁇ d1/d3 ⁇ 1.50, 4.00 ⁇ v2-v4 ⁇ 20.00.
  • the object side surface of the first lens is concave on the paraxial axis, and the image side surface is concave on the par axis;
  • the focal length of the first lens is f1
  • the focal length of the imaging optical lens is f
  • the first lens The curvature radius of the object side surface is R1
  • the curvature radius of the image side surface of the first lens is R2
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: -4.73 ⁇ f1/f ⁇ -1.09; -0.26 ⁇ (R1+R2)/(R1-R2) ⁇ 1.27; 0.02 ⁇ d1/TTL ⁇ 0.15.
  • the imaging optical lens satisfies the following relationship: -2.95 ⁇ f1/f ⁇ -1.36; -0.16 ⁇ (R1+R2)/(R1-R2) ⁇ 1.02; 0.03 ⁇ d1/TTL ⁇ 0.12.
  • the object side surface of the second lens is convex on the paraxial axis, and the image side surface is concave on the paraxial axis;
  • the focal length of the second lens is f2
  • the focal length of the imaging optical lens is f
  • the second lens The curvature radius of the object side surface is R3, the curvature radius of the second lens image side surface is R4, the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: 2.77 ⁇ f2/f ⁇ 88.56; -152.14 ⁇ ( R3+R4)/(R3-R4) ⁇ 25.57; 0.03 ⁇ d3/TTL ⁇ 0.10.
  • the imaging optical lens satisfies the following relationship: 4.43 ⁇ f2/f ⁇ 70.85; -95.09 ⁇ (R3+R4)/(R3-R4) ⁇ 20.46; 0.04 ⁇ d3/TTL ⁇ 0.08.
  • the object side surface of the third lens is convex on the paraxial axis, and the image side surface is convex on the paraxial axis;
  • the focal length of the third lens is f3, the focal length of the imaging optical lens is f
  • the third lens The radius of curvature of the object side surface of the third lens is R5, the radius of curvature of the image side surface of the third lens is R6, the axial thickness of the third lens is d5, the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied Formula: 0.39 ⁇ f3/f ⁇ 1.64; 0.11 ⁇ (R5+R6)/(R5-R6) ⁇ 0.62; 0.05 ⁇ d5/TTL ⁇ 0.20.
  • the imaging optical lens satisfies the following relationship: 0.62 ⁇ f3/f ⁇ 1.31; 0.18 ⁇ (R5+R6)/(R5-R6) ⁇ 0.50; 0.08 ⁇ d5/TTL ⁇ 0.16.
  • the object side of the fourth lens is convex on the paraxial axis, and the image side is concave on the paraxial;
  • the focal length of the fourth lens is f4
  • the focal length of the imaging optical lens is f
  • the fourth lens The curvature radius of the object side is R7
  • the curvature radius of the image side of the fourth lens is R8,
  • the axial thickness of the fourth lens is d7
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: -10.62 ⁇ f4/f ⁇ -1.41; 1.61 ⁇ (R7+R8)/(R7-R8) ⁇ 6.70; 0.02 ⁇ d7/TTL ⁇ 0.09.
  • the imaging optical lens satisfies the following relationship: -6.64 ⁇ f4/f ⁇ -1.76; 2.57 ⁇ (R7+R8)/(R7-R8) ⁇ 5.36; 0.03 ⁇ d7/TTL ⁇ 0.07.
  • the object side of the fifth lens is concave on the paraxial; the focal length of the fifth lens is f5, the focal length of the imaging optical lens is f, and the radius of curvature of the object side of the fifth lens is R9, so
  • the curvature radius of the image side surface of the fifth lens is R10, the axial thickness of the fifth lens is d9, the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: -205.53 ⁇ f5/f ⁇ 5.64; -47.24 ⁇ (R9+R10)/(R9-R10) ⁇ 1.72; 0.04 ⁇ d9/TTL ⁇ 0.17.
  • the imaging optical lens satisfies the following relationship: -128.46 ⁇ f5/f ⁇ 4.51; -29.53 ⁇ (R9+R10)/(R9-R10) ⁇ 1.38; 0.06 ⁇ d9/TTL ⁇ 0.13.
  • the focal length of the sixth lens is f6, the focal length of the imaging optical lens is f, the radius of curvature of the object side of the sixth lens is R11, and the radius of curvature of the image side of the sixth lens is R12, so
  • the axial thickness of the sixth lens is d11, and the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: -397.96 ⁇ f6/f ⁇ 1.33; -18.66 ⁇ (R11+R12)/(R11-R12) ⁇ 1.89; 0.02 ⁇ d11/TTL ⁇ 0.22.
  • the imaging optical lens satisfies the following relationship: -248.72 ⁇ f6/f ⁇ 1.06; -11.66 ⁇ (R11+R12)/(R11-R12) ⁇ 1.51; 0.03 ⁇ d11/TTL ⁇ 0.17.
  • the object side of the seventh lens is convex on the paraxial axis, and the image side is concave on the paraxial;
  • the focal length of the seventh lens is f7
  • the focal length of the imaging optical lens is f
  • the seventh lens The radius of curvature of the object side surface is R13
  • the radius of curvature of the image side surface of the seventh lens is R14
  • the axial thickness of the seventh lens is d13
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:- 3.67 ⁇ f7/f ⁇ 158.46; 0.89 ⁇ (R13+R14)/(R13-R14) ⁇ 15.29; 0.05 ⁇ d13/TTL ⁇ 0.27.
  • the imaging optical lens satisfies the following relationship:
  • the total optical length TTL of the imaging optical lens is less than or equal to 7.36 mm.
  • the total optical length TTL of the imaging optical lens is less than or equal to 7.03 mm.
  • the aperture F number of the imaging optical lens is less than or equal to 2.88.
  • the aperture F number of the imaging optical lens is less than or equal to 2.83.
  • the imaging optical lens according to the present invention has excellent optical characteristics, is ultra-thin, wide-angle and fully compensated for chromatic aberration, and is especially suitable for mobile phone camera lenses composed of high-pixel CCD, CMOS and other imaging elements Components and WEB camera lens.
  • FIG. 1 is a schematic diagram of the structure of an imaging optical lens according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 3 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 1;
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic diagram of the structure of an imaging optical lens according to a second embodiment of the present invention.
  • FIG. 6 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 7 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
  • FIG. 9 is a schematic diagram of the structure of an imaging optical lens according to a third embodiment of the present invention.
  • FIG. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 11 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 9;
  • FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9;
  • FIG. 13 is a schematic diagram of the structure of an imaging optical lens according to a fourth embodiment of the present invention.
  • FIG. 14 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 13;
  • FIG. 15 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 13;
  • FIG. 16 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 13;
  • FIG. 17 is a schematic diagram of the structure of an imaging optical lens according to a fifth embodiment of the present invention.
  • FIG. 18 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 17;
  • FIG. 19 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 17;
  • FIG. 20 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 17.
  • FIG. 1 shows an imaging optical lens 10 according to a first embodiment of the present invention.
  • the imaging optical lens 10 includes seven lenses. Specifically, the imaging optical lens 10, the imaging optical lens, from the object side to the image side sequentially includes: a first lens L1 with negative refractive power, a second lens L2 with positive refractive power, an aperture S1, The third lens L3 with positive refractive power, the fourth lens L4 with negative refractive power, the fifth lens L5, the sixth lens L6, and the seventh lens L7.
  • An optical element such as an optical filter GF may be provided on the image side of the seventh lens L7.
  • the first lens L1 is made of plastic
  • the second lens L2 is made of glass
  • the third lens L3 is made of plastic
  • the fourth lens L4 is made of plastic
  • the fifth lens L5 is made of plastic
  • the sixth lens L6 is made of plastic
  • the seventh lens is made of plastic.
  • the lens L7 is made of plastic.
  • the maximum angle of view of the imaging optical lens 10 is defined as FOV, which satisfies the following relationship: 100.00° ⁇ FOV ⁇ 135.00°.
  • FOV maximum angle of view of the imaging optical lens 10
  • ultra-wide-angle imaging can be achieved, and user experience can be improved.
  • the on-axis thickness of the first lens L1 is defined as d1
  • the on-axis thickness of the second lens is defined as d3, and the following relationship is satisfied: 0.85 ⁇ d1/d3 ⁇ 1.50.
  • the ratio of the on-axis thickness of the first lens L1 to the on-axis thickness of the second lens L2 is specified. When the ratio is within the range, it is beneficial for the lens to develop toward a wider angle.
  • the Abbe number of the second lens L2 as v2
  • the Abbe number of the fourth lens as v4, satisfying the following relationship: 4.00 ⁇ v2-v4 ⁇ 20.00.
  • the difference between the dispersion coefficients of the second lens L2 and the fourth lens L4 is specified. Within the range, it can effectively correct the dispersion of the imaging optical lens, improve the definition of imaging, close to the true color of the subject, and improve the imaging quality.
  • the imaging optical lens 10 of the present invention When the focal length of the imaging optical lens 10 of the present invention, the focal length of each lens, the refractive index of the relevant lens, the total optical length of the imaging optical lens, the axial thickness and the radius of curvature satisfy the above-mentioned relational expressions, the imaging optical lens 10 can be made to have a high Performance, and meet the design requirements of low TTL.
  • the object side surface of the first lens L1 is concave at the paraxial position, and the image side surface is concave at the paraxial position, and has a negative refractive power.
  • the focal length of the first lens is defined as f1
  • the focal length of the imaging optical lens is defined as f
  • the following relationship is satisfied: -4.73 ⁇ f1/f ⁇ -1.09.
  • the first lens L1 has an appropriate negative refractive power, which is beneficial to reduce system aberrations, and at the same time, is beneficial to the development of ultra-thin and wide-angle lenses.
  • the radius of curvature of the object side surface of the first lens as R1
  • the radius of curvature of the image side surface of the first lens as R2
  • the shape of the first lens L1 is specified, and within the scope of the conditional formula, the shape of the first lens L1 is reasonably controlled so that the first lens L1 can effectively correct the spherical aberration of the system.
  • the total optical length of the camera optical lens 10 is defined as TTL, and the following relationship is satisfied: 0.02 ⁇ d1/TTL ⁇ 0.15. Within the scope of the conditional formula, it is conducive to achieving ultra-thinness. Preferably, 0.03 ⁇ d1/TTL ⁇ 0.12.
  • the object side surface of the second lens L2 is convex on the paraxial axis, and the image side surface of the second lens L2 is concave on the paraxial axis.
  • the focal length of the second lens L2 is defined as f2, the focal length of the imaging optical lens 10 is f, and the following relationship is satisfied: 2.77 ⁇ f2/f ⁇ 88.56.
  • the ratio of the focal length f2 of the second lens L2 to the focal length f of the imaging optical lens 10 is specified.
  • it is beneficial to correct the aberration of the optical system Preferably, 4.43 ⁇ f2/f ⁇ 70.85.
  • the curvature radius of the object side surface of the second lens L2 is R3, and the curvature radius of the image side surface of the second lens L2 is R4, and the following relationship is satisfied: -152.14 ⁇ (R3+R4)/(R3-R4) ⁇ 25.57 .
  • the shape of the second lens L2 is specified.
  • the conditional expression as the lens becomes ultra-thin and wide-angle, it is beneficial to correct the problem of axial chromatic aberration.
  • the total optical length of the imaging optical lens 10 is TTL, and satisfies the following relationship: 0.03 ⁇ d3/TTL ⁇ 0.10. Within the scope of the conditional formula, it is beneficial to achieve ultra-thinness. Preferably, 0.04 ⁇ d3/TTL ⁇ 0.08.
  • the object side surface of the third lens L3 is convex on the paraxial axis, and the image side surface thereof is convex on the paraxial axis.
  • the focal length of the third lens L3 is defined as f3, the focal length of the imaging optical lens 10 is f, and the following relationship is satisfied: 0.39 ⁇ f3/f ⁇ 1.64.
  • the ratio of the focal length f3 of the third lens L3 to the focal length f of the imaging optical lens 10 is specified.
  • the system has better imaging quality and lower sensitivity through a reasonable distribution of optical power.
  • the curvature radius of the object side surface of the third lens L3 is R5, the curvature radius of the image side surface of the third lens L3 is R6, the axial thickness of the third lens L3 is d5, and the following relationship is satisfied: 0.11 ⁇ (R5+R6)/(R5-R6) ⁇ 0.62.
  • the shape of the third lens L3 can be effectively controlled, which is beneficial to the molding of the third lens L3, and avoids the formation of defects and stress caused by the excessive surface curvature of the third lens L3.
  • the total optical length of the imaging optical lens 10 is TTL, and satisfies the following relationship: 0.05 ⁇ d5/TTL ⁇ 0.20. Within the scope of the conditional formula, it is conducive to achieving ultra-thinness. Preferably, 0.08 ⁇ d5/TTL ⁇ 0.16.
  • the object side surface of the fourth lens is convex on the paraxial axis, and the image side surface is concave on the paraxial axis.
  • the focal length of the fourth lens L4 is defined as f4, the focal length of the imaging optical lens 10 is f, and the following relationship is satisfied: -10.62 ⁇ f4/f ⁇ -1.41, and the focal length f4 of the fourth lens L4 is defined as
  • the ratio of the focal length f of the imaging optical lens 10 is within the range of the conditional formula, and the reasonable distribution of the optical power makes the system have better imaging quality and lower sensitivity, which helps to improve the performance of the optical system.
  • the curvature radius of the object side surface of the fourth lens L4 is R7
  • the curvature radius of the image side surface of the fourth lens L4 is R8, and the following relationship is satisfied: 1.61 ⁇ (R7+R8)/(R7-R8) ⁇ 6.70.
  • the shape of the fourth lens L4 is specified.
  • the axial thickness of the fourth lens L4 is d7
  • the total optical length of the imaging optical lens 10 is TTL
  • the object side surface of the fifth lens L5 is concave on the paraxial axis.
  • the focal length of the fifth lens is defined as f5, the focal length of the imaging optical lens is f, and the following relationship is satisfied: -205.53 ⁇ f5/f ⁇ 5.64.
  • the ratio of the focal length f5 of the fifth lens L5 to the focal length f of the imaging optical lens 10 is specified.
  • the limitation of the fifth lens L5 can effectively make the light angle of the imaging optical lens 10 smooth and reduce tolerance sensitivity .
  • the radius of curvature of the object side surface of the fifth lens L5 is R9, and the radius of curvature of the image side surface of the fifth lens L5 is R10, and the following relationship is satisfied: -47.24 ⁇ (R9+R10)/(R9-R10) ⁇ 1.72 .
  • the shape of the fifth lens L5 is specified. When the condition is within the range, with the development of ultra-thin and wide-angle, it is beneficial to correct the aberration of the off-axis angle of view. Preferably, -29.53 ⁇ (R9+R10)/(R9-R10) ⁇ 1.38.
  • the axial thickness of the fifth lens L5 is d9, and the total optical length of the imaging optical lens 10 is TTL, and the following relationship is satisfied: 0.04 ⁇ d9/TTL ⁇ 0.17.
  • the focal length of the sixth lens is defined as f6, and the focal length of the imaging optical lens is defined as f, and the following relationship is satisfied: -397.96 ⁇ f6/f ⁇ 1.33.
  • the ratio of the focal length f6 of the sixth lens L6 to the focal length f of the imaging optical lens 10 is specified.
  • the system has better imaging quality and lower sensitivity through a reasonable distribution of optical power.
  • the radius of curvature of the object side surface of the sixth lens is R11
  • the radius of curvature of the image side surface of the sixth lens is R12, which satisfies the following relationship: -18.66 ⁇ (R11+R12)/(R11-R12) ⁇ 1.89.
  • What is specified is the shape of the sixth lens L6.
  • the axial thickness of the sixth lens is d11, and the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.02 ⁇ d11/TTL ⁇ 0.22. Within the scope of the conditional formula, it is conducive to achieving ultra-thinness. Preferably, 0.03 ⁇ d11/TTL ⁇ 0.17.
  • the object side of the seventh lens is convex on the paraxial axis, and the image side of the seventh lens is concave on the paraxial axis.
  • the focal length of the seventh lens L7 is defined as f7
  • the focal length of the imaging optical lens 10 is defined as f, and the following relationship is satisfied: -3.67 ⁇ f7/f ⁇ 158.46.
  • the ratio of the focal length f7 of the seventh lens L7 to the focal length f of the imaging optical lens 10 is specified.
  • the system has better imaging quality and lower sensitivity through a reasonable distribution of optical power.
  • the curvature radius of the object side surface of the seventh lens L7 is R13
  • the curvature radius of the image side surface of the seventh lens L7 is R14, which satisfies the following relationship: 0.89 ⁇ (R13+R14)/(R13-R14) ⁇ 15.29.
  • the shape of the seventh lens L7 is specified.
  • it is beneficial to correct the aberration of the off-axis angle of view Preferably, 1.43 ⁇ (R13+R14)/(R13-R14) ⁇ 12.24.
  • the axial thickness of the seventh lens L7 is d13, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.05 ⁇ d13/TTL ⁇ 0.27.
  • TTL total optical length of the imaging optical lens 10
  • the total optical length TTL of the imaging optical lens 10 is less than or equal to 7.36 mm. Conducive to ultra-thin. Preferably, the total optical length TTL of the imaging optical lens 10 is less than or equal to 7.03 mm.
  • the aperture F number of the imaging optical lens 10 is less than or equal to 2.88. It is conducive to achieving a large aperture and making the imaging performance good. Preferably, the aperture F number of the imaging optical lens 10 is less than or equal to 2.83.
  • the overall optical length TTL of the overall imaging optical lens 10 can be shortened as much as possible, and the characteristics of miniaturization can be maintained.
  • the imaging optical lens 10 of the present invention will be described below with an example.
  • the symbols described in each example are as follows.
  • the unit of focal length, distance on axis, radius of curvature, thickness on axis, position of inflection point, and position of stagnation point is mm.
  • TTL Total optical length (the on-axis distance from the object side of the first lens L1 to the imaging surface), the unit is mm;
  • the object side and/or the image side of the lens can also be provided with inflection points and/or stagnation points to meet high-quality imaging requirements.
  • inflection points and/or stagnation points for specific implementations, refer to the following.
  • Table 1 and Table 2 show design data of the imaging optical lens 10 according to the first embodiment of the present invention.
  • R The radius of curvature of the optical surface, and the radius of curvature of the center of the lens
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side surface of the second lens L2;
  • R4 the radius of curvature of the image side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the radius of curvature of the image side surface of the third lens L3;
  • R7 the radius of curvature of the object side of the fourth lens L4;
  • R8 the radius of curvature of the image side surface of the fourth lens L4;
  • R9 the radius of curvature of the object side surface of the fifth lens L5;
  • R10 the radius of curvature of the image side surface of the fifth lens L5;
  • R11 the radius of curvature of the object side surface of the sixth lens L6;
  • R12 the radius of curvature of the image side surface of the sixth lens L6;
  • R13 the radius of curvature of the object side surface of the seventh lens L7;
  • R14 the radius of curvature of the image side surface of the seventh lens L7;
  • R15 the radius of curvature of the object side of the optical filter GF
  • R16 the radius of curvature of the image side surface of the optical filter GF
  • d0 the on-axis distance from the aperture S1 to the object side of the first lens L1;
  • d2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;
  • d4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
  • d6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
  • d10 the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the sixth lens L6;
  • d11 the on-axis thickness of the sixth lens L6;
  • d12 the on-axis distance from the image side surface of the sixth lens L6 to the object side surface of the seventh lens L7;
  • d14 the on-axis distance from the image side surface of the seventh lens L7 to the object side surface of the optical filter GF;
  • d15 the axial thickness of the optical filter GF
  • d16 the on-axis distance from the image side surface of the optical filter GF to the image surface
  • nd refractive index of d-line
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd4 the refractive index of the d-line of the fourth lens L4;
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • nd6 the refractive index of the d-line of the sixth lens L6;
  • nd7 the refractive index of the d-line of the seventh lens L7;
  • ndg the refractive index of the d-line of the optical filter GF
  • vg Abbe number of optical filter GF.
  • Table 2 shows the aspheric surface data of each lens in the imaging optical lens 10 of the first embodiment of the present invention.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, A16 are the aspheric coefficients.
  • the aspheric surface of each lens surface uses the aspheric surface shown in the above formula (1).
  • the present invention is not limited to the aspheric polynomial form represented by the formula (1).
  • Table 3 and Table 4 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 10 of the first embodiment of the present invention.
  • P1R1 and P1R2 represent the object side and image side of the first lens L1 respectively
  • P2R1 and P2R2 represent the object side and image side of the second lens L2 respectively
  • P3R1 and P3R2 represent the object side and image side of the third lens L3 respectively.
  • P4R1, P4R2 represent the object side and image side of the fourth lens L4
  • P5R1, P5R2 represent the object side and image side of the fifth lens L5
  • P6R1, P6R2 represent the object side and image side of the sixth lens L6,
  • P7R1 P7R2 represents the object side and image side of the seventh lens L7, respectively.
  • the corresponding data in the “reflection point position” column is the vertical distance from the reflex point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • the data corresponding to the “stationary point position” column is the vertical distance from the stationary point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • FIG. 2 and 3 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 650 nm, 555 nm, and 470 nm pass through the imaging optical lens 10 of the first embodiment.
  • Fig. 4 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 10 of the first embodiment.
  • the field curvature S in Fig. 4 is the field curvature in the sagittal direction, and T is the field curvature in the meridian direction. song.
  • Table 21 shows the values corresponding to various values in each of Examples 1, 2, 3, 4, and 5 and the parameters that have been specified in the conditional expression.
  • the first embodiment satisfies various conditional expressions.
  • the imaging optical lens 10 has an entrance pupil diameter of 1.295mm, a full field of view image height of 3.25mm, a maximum field of view angle of 100.26°, wide-angle, ultra-thin, and its on-axis and off-axis color images The difference is fully corrected and has excellent optical characteristics.
  • the second embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • the first lens L1 is made of plastic
  • the second lens L2 is made of plastic
  • the third lens L3 is made of plastic
  • the fourth lens L4 is made of plastic
  • the fifth lens L5 is made of plastic
  • the sixth lens L6 is made of plastic
  • the seventh lens is made of plastic.
  • the lens L7 is made of plastic.
  • Table 5 and Table 6 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 6 shows the aspheric surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 7 and Table 8 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • FIG. 6 and 7 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 650 nm, 555 nm, and 470 nm pass through the imaging optical lens 20 of the second embodiment.
  • FIG. 8 shows a schematic diagram of field curvature and distortion after light with a wavelength of 555 nm passes through the imaging optical lens 20 of the second embodiment.
  • the second embodiment satisfies various conditional expressions.
  • the entrance pupil diameter of the imaging optical lens 20 is 1.014mm
  • the full field of view image height is 3.25mm
  • the maximum field of view is 108.02°
  • wide-angle, ultra-thin, and its on-axis and off-axis color images The difference is fully corrected and has excellent optical characteristics.
  • the third embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 9 and Table 10 show design data of the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 10 shows the aspheric surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 11 and Table 12 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 30 of the third embodiment of the present invention.
  • FIG. 10 and 11 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 650 nm, 555 nm, and 470 nm pass through the imaging optical lens 30 of the third embodiment.
  • FIG. 12 shows a schematic diagram of field curvature and distortion after light with a wavelength of 555 nm passes through the imaging optical lens 30 of the third embodiment.
  • the imaging optical lens 30 has an entrance pupil diameter of 1.159mm, a full field of view image height of 3.25mm, a maximum field of view angle of 114.45°, wide-angle, ultra-thin, and its on-axis and off-axis color images The difference is fully corrected and has excellent optical characteristics.
  • the fourth embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 13 and Table 14 show design data of the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • Table 14 shows the aspheric surface data of each lens in the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • Table 15 and Table 16 show the inflection point and stagnation point design data of each lens in the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • FIG. 15 and 16 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 650 nm, 555 nm, and 470 nm pass through the imaging optical lens 40 of the fourth embodiment.
  • FIG. 16 shows a schematic diagram of field curvature and distortion after light with a wavelength of 555 nm passes through the imaging optical lens 40 of the fourth embodiment.
  • the entrance pupil diameter of the imaging optical lens 40 is 1.063mm
  • the full field of view image height is 3.25mm
  • the maximum field of view is 116.21°
  • wide-angle, ultra-thin, and its on-axis and off-axis color images The difference is fully corrected and has excellent optical characteristics.
  • the fifth embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • the first lens L1 is made of plastic
  • the second lens L2 is made of plastic
  • the third lens L3 is made of plastic
  • the fourth lens L4 is made of plastic
  • the fifth lens L5 is made of plastic
  • the sixth lens L6 is made of plastic
  • the seventh lens is made of plastic.
  • the lens L7 is made of plastic.
  • Table 17 and Table 18 show design data of the imaging optical lens 50 according to the fifth embodiment of the present invention.
  • Table 18 shows the aspheric surface data of each lens in the imaging optical lens 50 of the fifth embodiment of the present invention.
  • Table 19 and Table 20 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 50 of the fifth embodiment of the present invention.
  • FIG. 19 and 20 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 650 nm, 555 nm and 470 nm passes through the imaging optical lens 50 of the fifth embodiment.
  • FIG. 20 shows a schematic diagram of field curvature and distortion after light with a wavelength of 555 nm passes through the imaging optical lens 50 of the fifth embodiment.
  • the imaging optical lens 50 has an entrance pupil diameter of 1.054mm, a full field of view image height of 3.25mm, a maximum field of view angle of 134.95°, wide-angle, ultra-thin, and its on-axis and off-axis color images The difference is fully corrected and has excellent optical characteristics.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 f 2.771 2.839 2.318 2.764 2.256 f1 -6.549 -4.864 -4.100 -4.521 -4.018 f2 163.589 19.426 12.845 20.126 28.329 f3 2.582 2.201 2.529 2.206 2.375 f4 -11.508 -6.004 -12.313 -7.083 -11.501 f5 -6.789 10.681 -238.197 4.623 -8.390 f6 1.768 -55.876 2.051 -550.001 1.758 f7 -2.641 299.954 -2.454 -5.079 -2.395 f12 -5.968 -5.981 -5.603 -5.424 -4.457 Fno 2.14 2.80 2.00 2.60 2.14 FOV 100.26° 108.02° 114.45° 116.21° 134.95° d1/d3 1.50 1.46 1.21 1.08 0.85
  • Fno is the aperture F number of the imaging optical lens.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像光学镜头(10),自物侧至像侧依序包含:具有负屈折力的第一透镜(L1),具有正屈折力的第二透镜(L2),具有正屈折力的第三透镜(L3),具有负屈折力的第四透镜(L4),第五透镜,第六透镜,以及第七透镜;摄像光学镜头的最大视场角为FOV,第一透镜的轴上厚度为d1,第二透镜的轴上厚度为d3,第二透镜的阿贝数为v2,第四透镜的阿贝数为v4,满足下列关系式:100.00°≤FOV≤135.00°,0.85≤d1/d3≤1.50,4.00≤v2-v4≤20.00。由此,能获得高成像性能的同时,获得低的摄像光学镜头光学总长。

Description

摄像光学镜头 技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-OxideSemiconductor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式或四片式透镜结构。并且,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且***对成像品质的要求不断提高的情况下,五片式、六片式、七片式透镜结构逐渐出现在镜头设计当中。迫切需求具有优秀的光学特征、超薄且色像差充分补正的广角摄像镜头。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,能在获得高成像性能的同时,满足超薄化和广角化的要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头,自物侧至像侧依序包含:具有负屈折力的第一透镜,具有正屈折力的第二透镜,具有正屈折力的第三透镜,具有负屈折力的第四透镜,第五透镜,第六透镜,以及第七透镜;所述摄像光学镜头的最大视场角为FOV,所述第一透镜的轴上厚度为d1,所述第二透镜的轴上厚度为d3,第二透镜的阿贝数为v2,第四透镜的阿贝数为v4,满足下列关系式:100.00°≤FOV≤135.00°,0.85≤d1/d3≤1.50,4.00≤v2-v4≤20.00。
优选的,所述第一透镜物侧面于近轴为凹面,其像侧面于近轴为 凹面;所述第一透镜的焦距为f1,所述摄像光学镜头的焦距为f,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-4.73≤f1/f≤-1.09;-0.26≤(R1+R2)/(R1-R2)≤1.27;0.02≤d1/TTL≤0.15。
优选的,所述摄像光学镜头满足下列关系式:-2.95≤f1/f≤-1.36;-0.16≤(R1+R2)/(R1-R2)≤1.02;0.03≤d1/TTL≤0.12。
优选的,所述第二透镜物侧面于近轴为凸面,其像侧面于近轴为凹面;所述第二透镜的焦距为f2,所述摄像光学镜头的焦距为f,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:2.77≤f2/f≤88.56;-152.14≤(R3+R4)/(R3-R4)≤25.57;0.03≤d3/TTL≤0.10。
优选的,所述摄像光学镜头满足下列关系式:4.43≤f2/f≤70.85;-95.09≤(R3+R4)/(R3-R4)≤20.46;0.04≤d3/TTL≤0.08。
优选的,所述第三透镜物侧面于近轴为凸面,其像侧面于近轴为凸面;所述第三透镜的焦距为f3,所述摄像光学镜头的焦距为f,所述第三透镜的物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.39≤f3/f≤1.64;0.11≤(R5+R6)/(R5-R6)≤0.62;0.05≤d5/TTL≤0.20。
优选的,所述摄像光学镜头满足下列关系式:0.62≤f3/f≤1.31;0.18≤(R5+R6)/(R5-R6)≤0.50;0.08≤d5/TTL≤0.16。
优选的,所述第四透镜物侧面于近轴为凸面,其像侧面于近轴为凹面;所述第四透镜的焦距为f4,所述摄像光学镜头的焦距为f,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-10.62≤f4/f≤-1.41;1.61≤(R7+R8)/(R7-R8)≤6.70;0.02≤d7/TTL≤0.09。
优选的,所述摄像光学镜头满足下列关系式:-6.64≤f4/f≤-1.76;2.57≤(R7+R8)/(R7-R8)≤5.36;0.03≤d7/TTL≤0.07。
优选的,所述第五透镜物侧面于近轴为凹面;所述第五透镜的焦距为f5,所述摄像光学镜头的焦距为f,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关 系式:-205.53≤f5/f≤5.64;-47.24≤(R9+R10)/(R9-R10)≤1.72;0.04≤d9/TTL≤0.17。
优选的,所述摄像光学镜头满足下列关系式:-128.46≤f5/f≤4.51;-29.53≤(R9+R10)/(R9-R10)≤1.38;0.06≤d9/TTL≤0.13。
优选的,所述第六透镜的焦距为f6,所述摄像光学镜头的焦距为f,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,满足下列关系式:-397.96≤f6/f≤1.33;-18.66≤(R11+R12)/(R11-R12)≤1.89;0.02≤d11/TTL≤0.22。
优选的,所述摄像光学镜头满足下列关系式:-248.72≤f6/f≤1.06;-11.66≤(R11+R12)/(R11-R12)≤1.51;0.03≤d11/TTL≤0.17。
优选的,所述第七透镜物侧面于近轴为凸面,其像侧面于近轴为凹面;所述第七透镜的焦距为f7,所述摄像光学镜头的焦距为f,所述第七透镜物侧面的曲率半径为R13,所述第七透镜像侧面的曲率半径为R14,所述第七透镜的轴上厚度为d13,所述摄像光学镜头的光学总长为TTL,满足下列关系式:-3.67≤f7/f≤158.46;0.89≤(R13+R14)/(R13-R14)≤15.29;0.05≤d13/TTL≤0.27。
优选的,所述摄像光学镜头满足下列关系式:
-2.30≤f7/f≤126.76;1.43≤(R13+R14)/(R13-R14)≤12.24;0.07≤d13/TTL≤0.22。
优选的,所述摄像光学镜头的光学总长TTL小于或等于7.36毫米。
优选的,所述摄像光学镜头的光学总长TTL小于或等于7.03毫米。
优选的,所述摄像光学镜头的光圈F数小于或等于2.88。
优选的,所述摄像光学镜头的光圈F数小于或等于2.83。
本发明的有益效果在于:根据本发明的摄像光学镜头具有优秀的光学特性,超薄,广角且色像差充分补正,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
附图说明
图1是本发明第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图;
图13是本发明第四实施方式的摄像光学镜头的结构示意图;
图14是图13所示摄像光学镜头的轴向像差示意图;
图15是图13所示摄像光学镜头的倍率色差示意图;
图16是图13所示摄像光学镜头的场曲及畸变示意图;
图17是本发明第五实施方式的摄像光学镜头的结构示意图;
图18是图17所示摄像光学镜头的轴向像差示意图;
图19是图17所示摄像光学镜头的倍率色差示意图;
图20是图17所示摄像光学镜头的场曲及畸变示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括七个透镜。具体的,所述摄像光学镜头10,所述摄像光学镜头,自物侧至像侧依序包含:具有负屈折力的第一透镜L1,具有正屈折力的第二透镜L2,光圈S1、具有正屈折力的第三透镜L3,具有负屈折力的第四透镜L4,第五透镜L5,第六透镜L6,以及第七透镜L7。第七透镜L7的像侧可设置有光学过滤片(filter)GF等光学元件。
第一透镜L1为塑料材质,第二透镜L2为玻璃材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质,第五透镜L5为塑料材质,第六 透镜L6为塑料材质,第七透镜L7为塑料材质。
定义所述摄像光学镜头10的最大视场角为FOV,满足下列关系式:100.00°≤FOV≤135.00°。在所述摄像光学镜头10的最大视场角满足关系式范围内,可以实现超广角摄像,提升用户体验。优选的,100.13°≤FOV≤134.97°。
定义所述第一透镜L1的轴上厚度为d1,所述第二透镜的轴上厚度为d3,满足下列关系式:0.85≤d1/d3≤1.50。规定了第一透镜L1的轴上厚度和第二透镜L2的轴上厚度的比值,在范围内时,有利于镜头向广角化发展。
定义第二透镜L2的阿贝数为v2,第四透镜的阿贝数为v4,满足下列关系式:4.00≤v2-v4≤20.00。规定了第二透镜L2与第四透镜L4的色散系数的差值,在范围内,可以有效校正摄像光学镜头的色散,提高摄像清晰度,贴近被摄物的真实色彩,提高成像质量。优选的,4.20≤v2-v4≤19.42。
当本发明所述摄像光学镜头10的焦距、各透镜的焦距、相关透镜的折射率、摄像光学镜头的光学总长、轴上厚度和曲率半径满足上述关系式时,可以使摄像光学镜头10具有高性能,且满足低TTL的设计需求。
本实施方式中,第一透镜L1的物侧面于近轴处为凹面,像侧面于近轴处为凹面,具有负屈折力。
本实施方式中,定义所述第一透镜的焦距为f1,所述摄像光学镜头的焦距为f,且满足下列关系式:-4.73≤f1/f≤-1.09。在规定的范围内时,所述第一透镜L1具有适当的负屈折力,有利于减小***像差,同时有利于镜头向超薄化、广角化发展。优选的,-2.95≤f1/f≤-1.36。
定义所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,,且满足下列关系式:-0.26≤(R1+R2)/(R1-R2)≤1.27。规定了第一透镜L1的形状,在条件式范围内,合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正***球差。优选的,-0.16≤(R1+R2)/(R1-R2)≤1.02。
定义所述摄像光学镜头10的光学总长为TTL,且满足下列关系式:0.02≤d1/TTL≤0.15。在条件式范围内,有利于实现超薄化。优选的,0.03≤d1/TTL≤0.12。
本实施方式中,所述第二透镜L2物侧面于近轴为凸面,其像侧面于近轴为凹面。
定义所述第二透镜L2的焦距为f2,所述摄像光学镜头10的焦距为f,且满足下列关系式:2.77≤f2/f≤88.56。规定了第二透镜L2的焦距f2与摄像光学镜头10的焦距f的比值,在条件式范围内,通过将第二透镜L2的正光焦度控制在合理范围,有利于矫正光学***的像差。优选的,4.43≤f2/f≤70.85。
所述第二透镜L2物侧面的曲率半径为R3,所述第二透镜L2像侧面的曲率半径为R4,且满足下列关系式:-152.14≤(R3+R4)/(R3-R4)≤25.57。规定了第二透镜L2的形状,在条件式范围内,随着镜头向超薄化、广角化发展,有利于补正轴上色像差问题。优选的,-95.09≤(R3+R4)/(R3-R4)≤20.46。
所述摄像光学镜头10的光学总长为TTL,且满足下列关系式:0.03≤d3/TTL≤0.10。在条件式范围内,有利于实现超薄化。优选的,0.04≤d3/TTL≤0.08。
本实施方式中,所述第三透镜L3物侧面于近轴为凸面,其像侧面于近轴为凸面。
定义所述第三透镜L3的焦距为f3,所述摄像光学镜头10的焦距为f,且满足下列关系式:0.39≤f3/f≤1.64。规定了第三透镜L3的焦距f3与摄像光学镜头10的焦距f的比值,在条件式范围内,通过光焦度的合理分配,使得***具有较佳的成像品质和较低的敏感性。优选的,0.62≤f3/f≤1.31。
所述第三透镜L3的物侧面的曲率半径为R5,所述第三透镜L3的像侧面的曲率半径为R6,所述第三透镜L3的轴上厚度为d5,且满足下列关系式:0.11≤(R5+R6)/(R5-R6)≤0.62。在条件式范围内,可有效控制第三透镜L3的形状,有利于第三透镜L3成型,并避免因第三透镜L3的表面曲率过大而导致成型不良与应力产生。优选的,0.18≤(R5+R6)/(R5-R6)≤0.50。
所述摄像光学镜头10的光学总长为TTL,且满足下列关系式:0.05≤d5/TTL≤0.20。在条件式范围内,有利于实现超薄化。优选的,0.08≤d5/TTL≤0.16。
本实施方式中,所述第四透镜物侧面于近轴为凸面,其像侧面于近轴为凹面。
定义所述第四透镜L4的焦距为f4,所述摄像光学镜头10的焦距为f,且满足下列关系式:-10.62≤f4/f≤-1.41,规定了第四透镜L4的焦距f4与所述摄像光学镜头10的焦距f的比值,在条件式范围内,通过光焦度的合理分配,使得***具有较佳的成像品质和较低的敏感 性,有助于提高光学***性能。优选的,-6.64≤f4/f≤-1.76。
所述第四透镜L4物侧面的曲率半径为R7,所述第四透镜L4像侧面的曲率半径为R8,且满足下列关系式:1.61≤(R7+R8)/(R7-R8)≤6.70。规定了第四透镜L4的形状,在条件式范围内,随着超薄化、广角化的发展,有利于补正轴外画角的像差等问题。优选的,2.57≤(R7+R8)/(R7-R8)≤5.36。
所述第四透镜L4的轴上厚度为d7,所述摄像光学镜头10的光学总长为TTL,且满足下列关系式:0.02≤d7/TTL≤0.09。在条件式范围内,有利于实现超薄化。优选的,0.03≤d7/TTL≤0.07。
本实施方式中,所述第五透镜L5物侧面于近轴为凹面。
定义所述第五透镜的焦距为f5,所述摄像光学镜头的焦距为f,且满足下列关系式:-205.53≤f5/f≤5.64。规定了第五透镜L5的焦距f5与摄像光学镜头10的焦距f的比值,在条件式范围内,对第五透镜L5的限定可有效的使得摄像光学镜头10的光线角度平缓,降低公差敏感度。优选的,-128.46≤f5/f≤4.51。
所述第五透镜L5物侧面的曲率半径为R9,所述第五透镜L5像侧面的曲率半径为R10,且满足下列关系式:-47.24≤(R9+R10)/(R9-R10)≤1.72。规定了第五透镜L5的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选的,-29.53≤(R9+R10)/(R9-R10)≤1.38。
所述第五透镜L5的轴上厚度为d9,所述摄像光学镜头10的光学总长为TTL,且满足下列关系式:0.04≤d9/TTL≤0.17。在条件式范围内,有利于实现超薄化。优选的,0.06≤d9/TTL≤0.13。
本实施方式中,定义所述第六透镜的焦距为f6,所述摄像光学镜头的焦距为f,满足下列关系式:-397.96≤f6/f≤1.33。规定了第六透镜L6的焦距f6与摄像光学镜头10的焦距f的比值,在条件式范围内,通过光焦度的合理分配,使得***具有较佳的成像品质和较低的敏感性。优选的,-248.72≤f6/f≤1.06。
所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,满足下列关系式:-18.66≤(R11+R12)/(R11-R12)≤1.89。规定的是第六透镜L6的形状,在条件式范围内,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选的,-11.66≤(R11+R12)/(R11-R12)≤1.51。
所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,满足下列关系式:0.02≤d11/TTL≤0.22。在条件式范围内, 有利于实现超薄化。优选的,0.03≤d11/TTL≤0.17。
本实施方式中,所述第七透镜物侧面于近轴为凸面,其像侧面于近轴为凹面。
定义所述第七透镜L7的焦距为f7,所述摄像光学镜头10的焦距为f,满足下列关系式:-3.67≤f7/f≤158.46。规定了第七透镜L7的焦距f7与摄像光学镜头10的焦距f的比值,在条件式范围内,通过光焦度的合理分配,使得***具有较佳的成像品质和较低的敏感性。优选的,-2.30≤f7/f≤126.76。
所述第七透镜L7物侧面的曲率半径为R13,所述第七透镜L7像侧面的曲率半径为R14,满足下列关系式:0.89≤(R13+R14)/(R13-R14)≤15.29。规定的是第七透镜L7的形状,在条件式范围内,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选的,1.43≤(R13+R14)/(R13-R14)≤12.24。
所述第七透镜L7的轴上厚度为d13,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.05≤d13/TTL≤0.27。在条件式范围内,有利于实现超薄化。优选的,0.07≤d13/TTL≤0.22。
本实施方式中,定义所述摄像光学镜头10的光学总长TTL小于或等于7.36毫米。有利于实现超薄化。优选的,所述摄像光学镜头10的光学总长TTL小于或等于7.03毫米。
本实施方式中,定义所述摄像光学镜头10的光圈F数小于或等于2.88。有利于实现大光圈,使得成像性能好。优选的,所述摄像光学镜头10的光圈F数小于或等于2.83。
如此设计,能够使得整体摄像光学镜头10的光学总长TTL尽量变短,维持小型化的特性。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学总长(第1透镜L1的物侧面到成像面的轴上距离),单位为mm;
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
Figure PCTCN2019128601-appb-000001
Figure PCTCN2019128601-appb-000002
其中,各符号的含义如下。
S1:光圈;
R:光学面的曲率半径、透镜时为中心曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:第六透镜L6的物侧面的曲率半径;
R12:第六透镜L6的像侧面的曲率半径;
R13:第七透镜L7的物侧面的曲率半径;
R14:第七透镜L7的像侧面的曲率半径;
R15:光学过滤片GF的物侧面的曲率半径;
R16:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度与透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到第七透镜L7的物侧面的轴上距离;
d13:第七透镜L7的轴上厚度;
d14:第七透镜L7的像侧面到光学过滤片GF的物侧面的轴上距离;
d15:光学过滤片GF的轴上厚度;
d16:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:第六透镜L6的d线的折射率;
nd7:第七透镜L7的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
v7:第七透镜L7的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球 面数据。
【表2】
Figure PCTCN2019128601-appb-000003
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16是非球面系数。
IH:像高
y=(x 2/R)/[1+{1-(k+1)(x 2/R 2)} 1/2]+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16           (1)
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面,P6R1、P6R2分别代表第六透镜L6的物侧面和像侧面,P7R1、P7R2分别代表第七透镜L7的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 3 0.155 1.665 1.825
P1R2 1 1.065 0 0
G2R1 1 0.865 0 0
G2R2 0 0 0 0
P3R1 0 0 0 0
P3R2 0 0 0 0
P4R1 1 0.205 0 0
P4R2 3 0.385 0.815 1.155
P5R1 2 0.535 1.195 0
P5R2 1 0.145 0 0
P6R1 2 0.335 1.415 0
P6R2 1 1.385 0 0
P7R1 2 0.425 1.735 0
P7R2 1 0.625 0 0
【表4】
  驻点个数 驻点位置1
P1R1 1 0.255
P1R2 0 0
G2R1 0 0
G2R2 0 0
P3R1 0 0
P3R2 0 0
P4R1 1 0.355
P4R2 0 0
P5R1 1 0.975
P5R2 1 0.235
P6R1 1 0.575
P6R2 0 0
P7R1 1 0.755
P7R2 1 1.635
图2、图3分别示出了波长为650nm、555nm、470nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了,波长为555nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表21示出各实例1、2、3、4、5中各种数值与条件式中已规定的参数所对应的值。
如表21所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头10的入瞳直径为1.295mm,全视场像高为3.25mm,最大视场角为100.26°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质,第五透镜L5为塑料材质,第六透镜L6为塑料材质,第七透镜L7为塑料材质。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
Figure PCTCN2019128601-appb-000004
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
Figure PCTCN2019128601-appb-000005
Figure PCTCN2019128601-appb-000006
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 2 0.285 1.655
P1R2 0 0 0
P2R1 1 0.735 0
P2R2 1 0.625 0
P3R1 0   0
P3R2 1 0.405 0
P4R1 1 0.425 0
P4R2 0 0 0
P5R1 2 0.045 1.165
P5R2 0 0 0
P6R1 1 1.355 0
P6R2 2 0.605 1.495
P7R1 2 0.565 1.625
P7R2 1 0.775 0
【表8】
  驻点个数 驻点位置1
P1R1 1 0.505
P1R2 0 0
P2R1 0 0
P2R2 0 0
P3R1 0 0
P3R2 0 0
P4R1 1 0.815
P4R2 0 0
P5R1 1 0.065
P5R2 0 0
P6R1 0 0
P6R2 1 0.845
P7R1 1 1.015
P7R2 1 1.655
图6、图7分别示出了波长为650nm、555nm和470nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为555nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。
如表21所示,第二实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头20的入瞳直径为1.014mm,全视场像高为3.25mm,最大视场角为108.02°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
Figure PCTCN2019128601-appb-000007
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
Figure PCTCN2019128601-appb-000008
Figure PCTCN2019128601-appb-000009
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 1 0.405 0 0
P1R2 0 0 0 0
G2R1 1 0.945 0 0
G2R2 0 0 0 0
P3R1 0 0 0 0
P3R2 0 0 0 0
P4R1 1 0.245 0 0
P4R2 3 0.485 1.105 1.185
P5R1 2 0.445 1.265 0
P5R2 0 0 0 0
P6R1 1 1.425 0 0
P6R2 1 1.405 0 0
P7R1 2 0.465 1.705 0
P7R2 2 0.615 2.625 0
【表12】
  驻点个数 驻点位置1 驻点位置2
P1R1 1 0.775 0
P1R2 0 0 0
G2R1 0 0 0
G2R2 0 0 0
P3R1 0 0 0
P3R2 0 0 0
P4R1 1 0.445 0
P4R2 0 0 0
P5R1 2 0.815 1.345
P5R2 0 0 0
P6R1 0 0 0
P6R2 0 0 0
P7R1 1 0.845 0
P7R2 1 1.655 0
图10、图11分别示出了波长为650nm、555nm和470nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了,波长为555nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。
以下表21按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学***满足上述的条件式。
在本实施方式中,所述摄像光学镜头30的入瞳直径为1.159mm, 全视场像高为3.25mm,最大视场角为114.45°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第四实施方式)
第四实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表13、表14示出本发明第四实施方式的摄像光学镜头40的设计数据。
【表13】
Figure PCTCN2019128601-appb-000010
表14示出本发明第四实施方式的摄像光学镜头40中各透镜的非球面数据。
【表14】
Figure PCTCN2019128601-appb-000011
Figure PCTCN2019128601-appb-000012
表15、表16示出本发明第四实施方式的摄像光学镜头40中各透镜的反曲点以及驻点设计数据。
【表15】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 2 0.325 1.515 0
P1R2 1 1.105 0 0
G2R1 0 0 0 0
G2R2 0 0 0 0
P3R1 0 0 0 0
P3R2 0 0 0 0
P4R1 1 0.445 0 0
P4R2 1 1.095 0 0
P5R1 2 0.165 1.155 0
P5R2 0 0 0 0
P6R1 1 1.345 0 0
P6R2 3 0.155 0.475 1.475
P7R1 2 0.445 1.625 0
P7R2 1 0.715 0 0
【表16】
  驻点个数 驻点位置1 驻点位置2
P1R1 1 0.575 0
P1R2 0 0 0
G2R1 0 0 0
G2R2 0 0 0
P3R1 0 0 0
P3R2 0 0 0
P4R1 1 0.825 0
P4R2 0 0 0
P5R1 1 0.305 0
P5R2 0 0 0
P6R1 0 0 0
P6R2 2 0.265 0.585
P7R1 1 0.755 0
P7R2 1 1.615 0
图15、图16分别示出了波长为650nm、555nm和470nm的光经过第四实施方式的摄像光学镜头40后的轴向像差以及倍率色差示意图。图16则示出了,波长为555nm的光经过第四实施方式的摄像光学镜头40后的场曲及畸变示意图。
以下表21按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学***满足上述的条件式。
在本实施方式中,所述摄像光学镜头40的入瞳直径为1.063mm,全视场像高为3.25mm,最大视场角为116.21°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第五实施方式)
第五实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质,第五透镜L5为塑料材质,第六透镜L6为塑料材质,第七透镜L7为塑料材质。
表17、表18示出本发明第五实施方式的摄像光学镜头50的设计数据。
【表17】
Figure PCTCN2019128601-appb-000013
表18示出本发明第五实施方式的摄像光学镜头50中各透镜的非球面数据。
【表18】
Figure PCTCN2019128601-appb-000014
Figure PCTCN2019128601-appb-000015
表19、表20示出本发明第五实施方式的摄像光学镜头50中各透镜的反曲点以及驻点设计数据。
【表19】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 3 0.345 1.765 2.075
P1R2 1 1.325 0 0
P2R1 1 0.855 0 0
P2R2 0 0 0 0
P3R1 0 0 0 0
P3R2 0 0 0 0
P4R1 1 0.245 0 0
P4R2 3 0.475 0.895 1.105
P5R1 2 0.535 1.245 0
P5R2 2 0.135 1.385 0
P6R1 2 0.235 1.375 0
P6R2 1 1.345 0 0
P7R1 2 0.435 1.685 0
P7R2 2 0.605 2.605 0
【表20】
  驻点个数 驻点位置1
P1R1 1 0.625
P1R2 0 0
P2R1 0 0
P2R2 0 0
P3R1 0 0
P3R2 0 0
P4R1 1 0.425
P4R2 1 1.255
P5R1 1 0.915
P5R2 1 0.235
P6R1 1 0.395
P6R2 0 0
P7R1 1 0.795
P7R2 1 1.625
图19、图20分别示出了波长为650nm、555nm和470nm的光经过第五实施方式的摄像光学镜头50后的轴向像差以及倍率色差示意图。 图20则示出了,波长为555nm的光经过第五实施方式的摄像光学镜头50后的场曲及畸变示意图。
以下表21按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学***满足上述的条件式。
在本实施方式中,所述摄像光学镜头50的入瞳直径为1.054mm,全视场像高为3.25mm,最大视场角为134.95°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
【表21】
参数及条件式 实施例1 实施例2 实施例3 实施例4 实施例5
f 2.771 2.839 2.318 2.764 2.256
f1 -6.549 -4.864 -4.100 -4.521 -4.018
f2 163.589 19.426 12.845 20.126 28.329
f3 2.582 2.201 2.529 2.206 2.375
f4 -11.508 -6.004 -12.313 -7.083 -11.501
f5 -6.789 10.681 -238.197 4.623 -8.390
f6 1.768 -55.876 2.051 -550.001 1.758
f7 -2.641 299.954 -2.454 -5.079 -2.395
f12 -5.968 -5.981 -5.603 -5.424 -4.457
Fno 2.14 2.80 2.00 2.60 2.14
FOV 100.26° 108.02° 114.45° 116.21° 134.95°
d1/d3 1.50 1.46 1.21 1.08 0.85
v2-v4 18.84 6.68 11.83 10.28 4.40
Fno为摄像光学镜头的光圈F数。
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (19)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头,自物侧至像侧依序包含:具有负屈折力的第一透镜,具有正屈折力的第二透镜,具有正屈折力的第三透镜,具有负屈折力的第四透镜,第五透镜,第六透镜,以及第七透镜;所述摄像光学镜头的最大视场角为FOV,所述第一透镜的轴上厚度为d1,所述第二透镜的轴上厚度为d3,第二透镜的阿贝数为v2,第四透镜的阿贝数为v4,满足下列关系式:
    100.00°≤FOV≤135.00°,0.85≤d1/d3≤1.50,4.00≤v2-v4≤20.00。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜物侧面于近轴为凹面,其像侧面于近轴为凹面;所述第一透镜的焦距为f1,所述摄像光学镜头的焦距为f,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -4.73≤f1/f≤-1.09;-0.26≤(R1+R2)/(R1-R2)≤1.27;0.02≤d1/TTL≤0.15。
  3. 根据权利要求2所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    -2.95≤f1/f≤-1.36;-0.16≤(R1+R2)/(R1-R2)≤1.02;0.03≤d1/TTL≤0.12。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜物侧面于近轴为凸面,其像侧面于近轴为凹面;所述第二透镜的焦距为f2,所述摄像光学镜头的焦距为f,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    2.77≤f2/f≤88.56;-152.14≤(R3+R4)/(R3-R4)≤25.57;0.03≤d3/TTL≤0.10。
  5. 根据权利要求4所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    4.43≤f2/f≤70.85;-95.09≤(R3+R4)/(R3-R4)≤20.46;0.04≤d3/TTL≤0.08。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜物侧面于近轴为凸面,其像侧面于近轴为凸面;所述第三透镜的焦距为f3,所述摄像光学镜头的焦距为f,所述第三透镜的物侧面的曲率半径为 R5,所述第三透镜的像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.39≤f3/f≤1.64;0.11≤(R5+R6)/(R5-R6)≤0.62;0.05≤d5/TTL≤0.20。
  7. 根据权利要求6所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    0.62≤f3/f≤1.31;0.18≤(R5+R6)/(R5-R6)≤0.50;0.08≤d5/TTL≤0.16。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜物侧面于近轴为凸面,其像侧面于近轴为凹面;所述第四透镜的焦距为f4,所述摄像光学镜头的焦距为f,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -10.62≤f4/f≤-1.41;1.61≤(R7+R8)/(R7-R8)≤6.70;0.02≤d7/TTL≤0.09。
  9. 根据权利要求8所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    -6.64≤f4/f≤-1.76;2.57≤(R7+R8)/(R7-R8)≤5.36;0.03≤d7/TTL≤0.07。
  10. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜物侧面于近轴为凹面;所述第五透镜的焦距为f5,所述摄像光学镜头的焦距为f,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -205.53≤f5/f≤5.64;-47.24≤(R9+R10)/(R9-R10)≤1.72;0.04≤d9/TTL≤0.17。
  11. 根据权利要求10所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:-128.46≤f5/f≤4.51;-29.53≤(R9+R10)/(R9-R10)≤1.38;0.06≤d9/TTL≤0.13。
  12. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜的焦距为f6,所述摄像光学镜头的焦距为f,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
    -397.96≤f6/f≤1.33;-18.66≤(R11+R12)/(R11-R12)≤1.89;0.02≤d11/TTL≤0.22。
  13. 根据权利要求12所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    -248.72≤f6/f≤1.06;-11.66≤(R11+R12)/(R11-R12)≤1.51;0.03≤d11/TTL≤0.17。
  14. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第七透镜物侧面于近轴为凸面,其像侧面于近轴为凹面;所述第七透镜的焦距为f7,所述摄像光学镜头的焦距为f,所述第七透镜物侧面的曲率半径为R13,所述第七透镜像侧面的曲率半径为R14,所述第七透镜的轴上厚度为d13,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
    -3.67≤f7/f≤158.46;0.89≤(R13+R14)/(R13-R14)≤15.29;0.05≤d13/TTL≤0.27。
  15. 根据权利要求14所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    -2.30≤f7/f≤126.76;1.43≤(R13+R14)/(R13-R14)≤12.24;0.07≤d13/TTL≤0.22。
  16. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长TTL小于或等于7.36毫米。
  17. 根据权利要求16所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长TTL小于或等于7.03毫米。
  18. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈F数小于或等于2.88。
  19. 根据权利要求18所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈F数小于或等于2.83。
PCT/CN2019/128601 2019-12-26 2019-12-26 摄像光学镜头 WO2021128145A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/128601 WO2021128145A1 (zh) 2019-12-26 2019-12-26 摄像光学镜头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/128601 WO2021128145A1 (zh) 2019-12-26 2019-12-26 摄像光学镜头

Publications (1)

Publication Number Publication Date
WO2021128145A1 true WO2021128145A1 (zh) 2021-07-01

Family

ID=76573387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128601 WO2021128145A1 (zh) 2019-12-26 2019-12-26 摄像光学镜头

Country Status (1)

Country Link
WO (1) WO2021128145A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017142363A (ja) * 2016-02-10 2017-08-17 株式会社トヨテック 広角レンズ
CN107942484A (zh) * 2017-10-19 2018-04-20 瑞声科技(新加坡)有限公司 摄像光学镜头
CN107942487A (zh) * 2017-10-19 2018-04-20 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108254872A (zh) * 2017-12-29 2018-07-06 瑞声科技(新加坡)有限公司 摄像光学镜头
US20190025554A1 (en) * 2014-10-16 2019-01-24 Samsung Electro-Mechanics Co., Ltd. Optical system
CN111007639A (zh) * 2019-12-26 2020-04-14 瑞声通讯科技(常州)有限公司 摄像光学镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190025554A1 (en) * 2014-10-16 2019-01-24 Samsung Electro-Mechanics Co., Ltd. Optical system
JP2017142363A (ja) * 2016-02-10 2017-08-17 株式会社トヨテック 広角レンズ
CN107942484A (zh) * 2017-10-19 2018-04-20 瑞声科技(新加坡)有限公司 摄像光学镜头
CN107942487A (zh) * 2017-10-19 2018-04-20 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108254872A (zh) * 2017-12-29 2018-07-06 瑞声科技(新加坡)有限公司 摄像光学镜头
CN111007639A (zh) * 2019-12-26 2020-04-14 瑞声通讯科技(常州)有限公司 摄像光学镜头

Similar Documents

Publication Publication Date Title
WO2021253516A1 (zh) 摄像光学镜头
WO2021232497A1 (zh) 摄像光学镜头
WO2021168889A1 (zh) 摄像光学镜头
WO2021253555A1 (zh) 摄像光学镜头
WO2021128123A1 (zh) 摄像光学镜头
WO2021109078A1 (zh) 摄像光学镜头
WO2021128137A1 (zh) 摄像光学镜头
WO2021127827A1 (zh) 摄像光学镜头
WO2021128195A1 (zh) 摄像光学镜头
WO2021128144A1 (zh) 摄像光学镜头
WO2021127895A1 (zh) 摄像光学镜头
WO2021128121A1 (zh) 摄像光学镜头
WO2021127893A1 (zh) 摄像光学镜头
WO2021128187A1 (zh) 摄像光学镜头
WO2021128122A1 (zh) 摄像光学镜头
WO2021119894A1 (zh) 摄像光学镜头
WO2021128145A1 (zh) 摄像光学镜头
WO2021128147A1 (zh) 摄像光学镜头
WO2021128132A1 (zh) 摄像光学镜头
WO2021128385A1 (zh) 摄像光学镜头
WO2021128399A1 (zh) 摄像光学镜头
WO2021128237A1 (zh) 摄像光学镜头
WO2021128130A1 (zh) 摄像光学镜头
WO2021128384A1 (zh) 摄像光学镜头
WO2021127914A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957656

Country of ref document: EP

Kind code of ref document: A1