WO2021125100A1 - Laminate and method for recycling same, and recycled resin composition and article containing same - Google Patents

Laminate and method for recycling same, and recycled resin composition and article containing same Download PDF

Info

Publication number
WO2021125100A1
WO2021125100A1 PCT/JP2020/046379 JP2020046379W WO2021125100A1 WO 2021125100 A1 WO2021125100 A1 WO 2021125100A1 JP 2020046379 W JP2020046379 W JP 2020046379W WO 2021125100 A1 WO2021125100 A1 WO 2021125100A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
laminate
gas barrier
resin composition
Prior art date
Application number
PCT/JP2020/046379
Other languages
French (fr)
Japanese (ja)
Inventor
寛之 若林
亮 田中
瞳 福武
暁 永井
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2021125100A1 publication Critical patent/WO2021125100A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/80Packaging reuse or recycling, e.g. of multilayer packaging

Definitions

  • the present disclosure relates to a laminate, a recycling method thereof, a recycled resin composition, and an article containing the same.
  • Patent Documents 1 and 2 disclose a packaging material in which a base material layer, an anchor coating agent layer, a delamination layer, and a seal layer are laminated in this order.
  • the present disclosure is useful for producing an article having excellent recyclability and maintaining sufficient strength and physical properties as compared with an article in which the virgin resin is used alone even when used in combination with the virgin resin as a recycled material. Provide the body.
  • the present disclosure also provides a recycled resin composition obtained from this laminate, an article containing the same, and a method for recycling the laminate.
  • the laminate according to one aspect of the present disclosure has a laminated structure including a first layer made of polyethylene resin and a second layer made of polypropylene resin, and at least one of the first layer and the second layer.
  • a polyethylene-polypropylene block copolymer hereinafter, sometimes referred to as “PE-PP block copolymer”
  • the PE-PP block copolymer previously contained in this laminate functions as a compatibilizer.
  • the content of the PE-PP block copolymer in the above-mentioned laminate is preferably 1 to 40 parts by mass.
  • the content of the PE-PP block copolymer is 1 part by mass or more, the dispersion effect of PE and PP can be sufficiently exhibited and sufficient physical characteristics can be ensured.
  • the content of the PE-PP block copolymer is 40 parts by mass or less, the original characteristics of PE and PP are maintained.
  • the laminate may have gas barrier properties. That is, the laminate further includes a vapor-deposited layer having a gas barrier property and a gas barrier coating layer, and even if the gas barrier coating layer contains a water-soluble polymer and a metal alkoxide or a hydrolyzate thereof. Good. Since the laminate has a gas barrier property, when it is used as a packaging material, deterioration of the contents due to moisture and oxygen can be prevented. In this case, an adhesion layer may be provided between the laminated body and the thin-film deposition layer.
  • the adhesion layer By providing the adhesion layer, the adhesion between the surface of the laminated body and the vapor deposition layer can be improved, and the surface on which the vapor deposition layer is formed can be smoothed to form a vapor deposition layer having excellent gas barrier properties. It will be possible.
  • the vapor deposition layer contains, for example, at least one element of Al and Si.
  • One aspect of the present disclosure relates to a recycled resin composition obtained by melt-kneading the above laminate.
  • One aspect of the present disclosure relates to an article containing this recycled resin composition. This article maintains sufficient strength and physical characteristics as compared with an article in which virgin resin is used alone.
  • Specific examples of articles include packaging materials, electrical / electronic parts, housings, and the like.
  • This recycling method includes a step of producing a crushed product of the above-mentioned laminate, a step of producing a melt-kneaded product of the crushed product, a step of producing a recycled resin composition (for example, pellet form) from the melt-kneaded product, and polyethylene. It includes a step of mixing at least one virgin resin of a resin and a polypropylene resin and a recycled resin composition to obtain a resin composition. According to this recycling method, it is possible to produce an article in which sufficient strength and physical characteristics are maintained as compared with an article in which the virgin resin is used alone. From the viewpoint of the strength and physical properties of the article containing the recycled resin composition, the content of the recycled resin composition in the resin composition is preferably 70 parts by mass or less based on the mass of the resin composition.
  • Laminates are provided. Further, the present disclosure provides a recycled resin composition obtained from this laminate, an article containing the same, and a method for recycling the laminate.
  • FIG. 1 is a cross-sectional view schematically showing an embodiment of the laminated body according to the present disclosure.
  • FIG. 2 is a cross-sectional view schematically showing another embodiment of the laminated body according to the present disclosure.
  • FIG. 3 is a cross-sectional view schematically showing another embodiment of the laminated body according to the present disclosure.
  • 4 (a) and 4 (b) are cross-sectional views schematically showing another embodiment of the laminated body according to the present disclosure.
  • FIG. 5 is a chart showing the process of Experiment 1.
  • FIG. 6 is a chart showing the process of Experiment 2.
  • FIG. 1 is a cross-sectional view schematically showing a laminated body according to the present embodiment.
  • the laminated body 10 shown in FIG. 1 has a two-layer structure composed of a first layer 1 and a second layer 2.
  • the first layer 1 contains a polyethylene resin 1a (PE resin) and a PE-PP block copolymer 1b dispersed therein.
  • the second layer 2 is made of polypropylene resin (PP resin).
  • the PE-PP block copolymer 1b contained in the first layer 1 functions as a compatibilizer when the laminate 10 is recycled.
  • the PE-PP block copolymer may be blended in the second layer 2. , May be blended in both the first layer 1 and the second layer 2.
  • the thicknesses of the first layer 1 and the second layer 2 may be appropriately set according to the use of the laminated body 10.
  • the thickness of the first layer 1 and the second layer 2 is preferably, for example, 0.1 to 300 ⁇ m, and is preferably 1 to 200 ⁇ m. Is more preferable, 5 to 150 ⁇ m is further preferable, and 10 to 100 ⁇ m is particularly preferable.
  • the content of the PE-PP block copolymer in the laminate 10 is preferably 1 to 40 parts by mass.
  • the content of the PE-PP block copolymer is 1 part by mass or more, the dispersion effect of PE and PP can be sufficiently exhibited and sufficient physical characteristics can be ensured.
  • the lower limit of the content of the PE-PP block copolymer may be 3 parts by mass or 8 parts by mass.
  • the content of the PE-PP block copolymer is 40 parts by mass or less, the original characteristics of PE and PP are maintained.
  • the upper limit of the content of the PE-PP block copolymer may be 38 parts by mass or 35 parts by mass.
  • the PE-PP block copolymer is composed of, for example, a polyethylene unit composed of polyethylene or an ethylene / ⁇ -olefin copolymer and a polypropylene unit composed of polypropylene or a propylene / ⁇ -olefin copolymer. It is possible to use a block copolymer. Such a block copolymer may have any structure of a diblock copolymer, a triblock copolymer, and a multi-block copolymer.
  • the polyethylene unit of the PE-PP block copolymer is compatible with the polyethylene resin constituting the first layer 1, and the polypropylene unit of the PE-PP block copolymer is compatible with the polypropylene resin constituting the second layer 2. To do.
  • FIG. 2 is a cross-sectional view schematically showing an example of a laminated body including the laminated body 10 having a gas barrier property.
  • the gas barrier laminate 30 shown in FIG. 2 is composed of a laminate 10, a gas barrier functional layer 20, and an adhesive layer 15 for adhering them.
  • the gas barrier functional layer 20 has a laminated structure including a base material 21, an adhesion layer 22, a vapor deposition layer 23, and a gas barrier coating layer 25.
  • the laminate 10 serves as a sealant layer.
  • FIG. 2 shows a case where the first layer 1 and the gas barrier coating layer 25 face each other via the adhesive layer 15, the second layer 2 and the gas barrier coating layer 25 are the adhesive layer 15.
  • the laminated body 10 and the gas barrier functional layer 20 may be bonded so as to face each other.
  • each layer of the gas barrier functional layer 20 and the adhesive layer 15 will be described.
  • the base material 21 is not particularly limited, and may be appropriately selected depending on the use of the gas barrier laminate 30.
  • Specific examples of the base material 21 include polyolefin film (PE, PP, etc.), polyester film (polyethylene terephthalate, polyethylene naphthalate, etc.), polyamide film (nylon-6, nylon-66, etc.), polystyrene film, poly. Examples thereof include vinyl chloride film, polyimide film, polycarbonate film, polyether sulfone film, acrylic film, and cellulose film (triacetyl cellulose, diacetyl cellulose, etc.).
  • polyethylene terephthalate or polyamide is preferably used for packaging of medical supplies, chemicals, foods and the like.
  • a polyolefin-based film as the base material 21.
  • the thickness of these resin films may be, for example, in the range of about 6 to 200 ⁇ m.
  • the resin film is not limited to those derived from petroleum, and may contain a resin material derived from a living organism (for example, PLA, PBS, bio-PE or bio-PET bio).
  • the base material 21 may contain additives such as an antistatic agent, an ultraviolet absorber, a plasticizer, a lubricant, and a colorant.
  • the base material 21 does not necessarily have to be a resin film, and may be, for example, paper.
  • the paper include high-quality paper, special high-quality paper, coated paper, art paper, cast-coated paper, imitation paper and kraft paper.
  • the thickness of these papers may be, for example, in the range of 100 to 800 ⁇ m.
  • the base material 21 may have various pretreatments such as corona treatment, plasma treatment, and frame treatment on the laminated surface, and a coat layer (for example, an easily adhesive layer) is provided on the laminated surface. It may be a thing.
  • the adhesion layer 22 is provided on the surface of the base material 21 for the purpose of improving the adhesion performance between the base material 21 and the vapor deposition layer 23.
  • the adhesion layer 22 is intended to uniformly form the vapor deposition layer 23 without defects by smoothing the surface on which the vapor deposition layer 23 is formed.
  • the adhesion layer 22 serves as a seal.
  • the adhesion layer 22 does not necessarily have to be provided when sufficient adhesion to the vapor deposition layer 23 can be obtained by applying the above-mentioned various pretreatments to the laminated surface of the base material 21.
  • a non-aqueous resin is preferable as the material constituting the adhesion layer 22, and specific examples thereof include a silane coupling agent, an organic titanate, a polyacrylic, a polyester, a polyurethane, a polycarbonate, a polyurea, a polyamide, a polyolefin-based emulsion, a polyimide, a melamine, and a phenol. Can be mentioned.
  • the adhesive layer 22 is imparted with heat-resistant water, it is more preferable that the adhesive layer 22 contains an organic polymer having one or more urethane bonds and urea bonds.
  • an isocyanate compound having an isocyanate group and a polyol such as acrylic or methacrylic polyol, or an amine resin having an amino group and an epoxy group and a glycidyl group
  • a urethane bond is formed by reacting an epoxy compound with, or a urea bond is formed by reacting an isocyanate compound with a solvent such as water or ethyl acetate, or an amine resin having an amino group. May be good.
  • a composite of an acrylic polyol, a polyester polyol, an isocyanate compound, a silane coupling agent, or the like is more preferable.
  • Acrylic polyol is a polymer compound obtained by polymerizing an acrylic acid derivative monomer, or a polymer compound obtained by copolymerizing an acrylic acid derivative monomer and another monomer, which has a hydroxyl group at the terminal. Is.
  • the acrylic polyol reacts with the isocyanate group of the isocyanate compound added later.
  • the polyester polyol is a polyester resin obtained from an acid raw material and an alcohol raw material by a well-known production method, and has two or more hydroxyl groups at the ends. The polyester polyol reacts with the isocyanate group of the isocyanate compound added later.
  • terephthalic acid isophthalic acid, phthalic acid, methylphthalic acid, trimellitic acid, pyromellitic acid, adipic acid, sebacic acid, succinic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, hexahydro
  • succinic acid maleic acid, fumaric acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, hexahydro
  • phthalic acid and reactive derivatives thereof include phthalic acid and reactive derivatives thereof.
  • alcohol raw materials ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-hexanediol, diethylene glycol, dipropylene glycol, 1,4-cyclohexanedimethanol, neopentyl glycol, bishydroxyethyl terephthalate, trimethylolmethane , Trimethylolpropane, glycerin, pentaerythritol and the like.
  • the isocyanate compound is added in order to improve the adhesion to the base material and the inorganic oxide by the urethane bond formed by reacting with the acrylic polyol and the polyester polyol.
  • the isocyanate compound mainly acts as a cross-linking agent or a curing agent.
  • the isocyanate compounds include aromatic-based toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), aliphatic-based xylene diisocyanate (XDI), hexaranged isocyanate (HMDI) and other monomers. These polymers and derivatives are used, and these are used alone or as a mixture or the like.
  • silane coupling agent a silane coupling agent containing any organic functional group can be used, for example, ethyltrimethoxysilane, vinyltrimethoxysilane, ⁇ -chloropropylmethyldimethoxysilane, ⁇ -chloropropyltrimethoxysilane. , Glycydooxypropyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane, or other silane coupling agents or hydrolyzates thereof, or two or more thereof can be used.
  • the adhesion layer 22 is formed through a step of applying a coating liquid on the surface of the base material 21.
  • a coating liquid As the coating method, the cast method, dipping method, roll coating method, gravure coating method, screen printing method, reverse coating method, spray coating method, kit coating method, die coating method, metering bar coating method, and chamber doctor are used together. Conventionally known methods such as a coating method and a curtain coating method can be used.
  • the adhesion layer 22 is formed by heating and drying the coating film formed by applying the coating liquid.
  • the thickness of the adhesion layer 22 is, for example, about 0.01 ⁇ m to 2 ⁇ m.
  • the vapor deposition layer 23 uses aluminum oxide (AlOx), silicon oxide (SiOx), magnesium fluoride (MgF 2 ), magnesium oxide (MgO), indium-tin oxide (ITO), or the like as a material having a high oxygen gas barrier property. be able to. From the viewpoint of material cost, barrier performance and transparency, the material constituting the vapor deposition layer 23 is preferably aluminum oxide or silicon oxide.
  • the vapor deposition layer 23 may be formed by vapor deposition of aluminum.
  • the thickness of the thin-film deposition layer 23 may be appropriately set depending on the intended use, but is preferably 10 to 300 nm, and more preferably 20 to 200 nm. By setting the thickness of the thin-film deposition layer 23 to 10 nm or more, it is easy to make the continuity of the thin-film deposition layer 23 sufficient, while by setting it to 300 nm or less, the occurrence of curls and cracks can be sufficiently suppressed, and sufficient barrier performance and sufficient barrier performance can be achieved. Easy to achieve flexibility.
  • the vapor deposition layer 23 can be deposited by a vacuum film forming means.
  • the vacuum deposition means there are known methods such as a vacuum deposition method, a sputtering method, and a chemical vapor deposition method (CVD method), but the vacuum deposition method is preferable because the film deposition rate is high and the productivity is high.
  • the film formation means by electron beam heating is particularly effective because the film formation rate can be easily controlled by the irradiation area and the electron beam current, and the temperature of the vapor deposition material can be raised and lowered in a short time. is there.
  • the gas barrier coating layer 25 protects the vapor-deposited layer 23 and contributes to the improvement of the water vapor barrier property, thereby exhibiting a high gas barrier property due to a synergistic effect with the vapor-deposited layer 23.
  • the gas barrier coating layer 25 is formed through a step of forming a coating film containing the following components on the surface of the vapor deposition layer 23. -At least one of a water-soluble polymer / metal alkoxide having a hydroxy group and its hydrolyzate
  • water-soluble polymer examples include polyvinyl alcohol, polyvinylpyrrolidone, starch, methyl cellulose, carboxymethyl cellulose, sodium alginate and the like.
  • polyvinyl alcohol hereinafter abbreviated as PVA
  • PVA polyvinyl alcohol
  • the PVA referred to here is generally obtained by saponifying polyvinyl acetate.
  • PVA partially saponified PVA in which several tens of percent of acetic acid groups remain, complete with only a few percent of acetic acid groups remaining. PVA or the like can be used.
  • the water-soluble polymer, together with the metal alkoxide and / its hydrolyzate forms an organic-inorganic composite by hydrolysis and dehydration condensation (eg, sol-gel method).
  • the metal alkoxide is a compound represented by the following general formula.
  • M represents a metal atom such as Si, Ti, Al, Zr, R represents an alkyl group such as -CH 3 , -C 2 H 5 , and n represents an integer corresponding to the valence of M.
  • Specific examples thereof include tetraethoxysilane [Si (OC 2 H 5 ) 4 ] and triisopropoxyaluminum [Al (O-iso-C 3 H 7 ) 3 ].
  • Tetraethoxysilane and triisopropoxyaluminum are preferable because they are relatively stable in an aqueous solvent after hydrolysis.
  • hydrolyzate and polymer of the metal alkoxide examples include the following compounds. ⁇ Hydrolysates and polymers of tetraethoxysilane: silicic acid (Si (OH) 4 ), etc. ⁇ Hydrolysates and polymers of tripropoxyaluminum: aluminum hydroxide (Al (OH) 3 ), etc.
  • the gas barrier coating layer 25 may further contain a silane coupling agent.
  • silane coupling agent examples include compounds represented by the following general formulas.
  • R 1 Si (OR 2 ) n R 1 indicates an organic functional group, and R 2 indicates an alkyl group such as CH 3 , C 2 H 5 or the like.
  • silane coupling agents such as methacryloxypropylmethyldimethoxysilane.
  • an isocyanate compound or a known additive such as a dispersant, a stabilizer, a viscosity regulator, or a colorant is added to the gas barrier coating layer 25 as necessary, as long as the gas barrier property is not impaired. Is also possible.
  • the thickness (film thickness) of the gas barrier coating layer 25 is preferably in the range of 50 to 1000 nm, and more preferably in the range of 100 to 500 nm. When the film thickness is 50 nm or more, a more sufficient gas barrier property tends to be obtained, and when the film thickness is 1000 nm or less, the thin film tends to maintain sufficient flexibility.
  • Examples of the solvent used for forming the coating film include water, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-propyl alcohol, n-butyl alcohol, n-pentyl alcohol, dimethylsulfoxide, dimethylformamide, and dimethylacetamide. , Toluene, hexane, heptane, cyclohexane, acetone, methyl ethyl ketone, diethyl ether, dioxane, tetrahydrofuran, ethyl acetate, butyl acetate. One of these solvents may be used alone, or two or more of these solvents may be used in combination.
  • methyl alcohol, ethyl alcohol, isopropyl alcohol, toluene, ethyl acetate, methyl ethyl ketone and water are preferable from the viewpoint of coatability.
  • methyl alcohol, ethyl alcohol, isopropyl alcohol and water are preferable.
  • Additives such as isocyanate compounds, silane coupling agents, dispersants, stabilizers, viscosity regulators and colorants may be added to the coating liquid as necessary, as long as the gas barrier properties are not impaired.
  • a silane compound (silane coupling agent) represented by the formula (R 1 Si (OR 2 ) 3) n may be added to the coating liquid.
  • the organic functional group (R 1 ) is preferably a non-aqueous functional group such as vinyl, epoxy, methacryloxy, ureido and isocyanate.
  • silane coupling agent examples include 1,3,5-tris (3-trialkoxysilylalkyl) isocyanurate, 3-glycidoxypropyltrimethoxysilane, and 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane. Can be mentioned.
  • the gas barrier coating layer 25 is formed through a step of applying a coating liquid on the surface of the vapor deposition layer 23.
  • a coating method the cast method, dipping method, roll coating method, gravure coating method, screen printing method, reverse coating method, spray coating method, kit coating method, die coating method, metering bar coating method, and chamber doctor are used together. Conventionally known methods such as a coating method and a curtain coating method can be used.
  • the gas barrier coating layer 25 is formed by heating and drying the coating film formed by applying the coating liquid.
  • the adhesive layer 15 adheres the laminated body 10 and the gas barrier functional layer 20.
  • the adhesive constituting the adhesive layer 15 include a polyurethane resin obtained by reacting a main agent such as a polyester polyol, a polyether polyol, an acrylic polyol, and a carbonate polyol with a bifunctional or higher functional isocyanate compound.
  • a main agent such as a polyester polyol, a polyether polyol, an acrylic polyol, and a carbonate polyol with a bifunctional or higher functional isocyanate compound.
  • a main agent such as a polyester polyol, a polyether polyol, an acrylic polyol, and a carbonate polyol with a bifunctional or higher functional isocyanate compound.
  • the various polyols one type may be used alone or two or more types may be used in combination.
  • the adhesive layer 15 may be obtained by blending the above-mentioned polyurethane resin with a carbodiimide compound, an oxazoline compound, an epoxy compound, a phosphorus compound, a silane coupling agent, or the like for the purpose of promoting adhesion.
  • the thickness of the adhesive layer 15 is, for example, 1 to 10 ⁇ m and may be 3 to 7 ⁇ m from the viewpoint of obtaining desired adhesive strength, followability, processability, and the like.
  • the laminated body 10 may be laminated on the gas barrier functional layer 20 by heat treatment.
  • the gas barrier laminate 40 shown in FIG. 3 has a laminate structure including a laminate 10 (base material), an adhesion layer 22, a vapor deposition layer 23 having a gas barrier property, and a gas barrier coating layer 25.
  • FIG. 3 shows a case where the second layer 2 and the adhesion layer 22 face each other, the first layer 1 and the adhesion layer 22 are in close contact with each other on the surface of the laminated body 10.
  • the layer 22, the thin-film deposition layer 23, and the gas barrier coating layer 25 may be formed in that order.
  • FIG. 2 a gas barrier laminate having a vapor-deposited layer 23 between the base material 21 and the gas barrier coating layer 25 is illustrated, but a packaging material that does not require a high degree of gas barrier property is not required.
  • the gas barrier laminate is applied to the above, the vapor deposition layer 23 and the adhesion layer 22 may not be provided as shown in FIG. 4A.
  • FIG. 3 shows a gas barrier laminate having a vapor-deposited layer 23 between the laminate 10 and the gas barrier coating layer 25, but the gas barrier laminate is applied to a packaging material that does not require a high degree of gas barrier property.
  • the vapor deposition layer 23 and the adhesion layer 22 may not be provided as shown in FIG. 4 (b).
  • the recycling method according to the present embodiment uses the laminated body 10 or a laminated body containing the same (for example, gas barrier laminated bodies 30, 40) as a recycled resin. That is, this recycling method includes the following steps. (A) Step of producing crushed product of laminate 10 or a laminate containing the same (b) Step of producing melt-kneaded product of crushed product (c) Recycled resin composition (for example, pellet form) from melt-kneaded product Step of Producing (d) Step of Mixing At least One Virgin Resin of Polyethylene Resin and Polypropylene Resin with a Recycled Resin Composition to Obtain a Resin Composition
  • the content of the recycled resin composition in the resin composition is preferably 70% by mass or less, preferably 40% by mass or less, based on the mass of the resin composition. Is more preferable. From the viewpoint of effective utilization of the recycled resin composition, the content of the recycled resin composition in the resin composition is preferably 1% by mass or more, and more preferably 10% by mass or more.
  • this laminate is designated as a monomaterial (all polyolefin). Can be reused.
  • Experiment 1 (Examples 1 to 12 and Comparative Examples 1 to 6) Purpose: To confirm how much the strength physical properties of the mixed resin of the recycled resin and the virgin resin are maintained compared to the strength physical properties of the virgin PE resin by compatibilizing the polyethylene resin contained in the recycled resin with the polyethylene resin. To do.
  • PE resin pellets Suntech F1810 (Asahi Kasei, film grade)
  • PP resin pellets Polypropylene resin pellets
  • Novatec FB3B manufactured by Japan Polypropylene, film grade
  • -Polyethylene-polypropylene block copolymer PE-PP block copolymer
  • -Virgin polyethylene vangin PE
  • Suntech M7620 Alignment M7620
  • -Virgin polypropylene (virgin PP): Novatec MA3 (manufactured by Japan Polypropylene, injection molding grade)
  • PE / PP Laminate A PE / PP laminate as a material for recycled resin was formed by coextrusion. Coextrusion was carried out by a small extruder, and PE resin pellets and PP resin pellets were supplied to the small extruder, respectively.
  • Tables 1 and 2 based on 100 parts by mass of the mass of the PE / PP laminate
  • PE-PP block copolymers in some cases, "PE-PP block copolymers (A)" in the drawings.
  • test piece The strength and physical properties of the test piece were evaluated by measuring tensile stress and tensile nominal strain at break. The results are shown in Tables 1 and 2.
  • Tensile stress and tensile breaking nominal strain were measured based on the method described in JIS K7161. An autograph tester AGS-X (manufactured by Shimadzu Corporation) was used as an apparatus, and the tensile test speed was 50 mm / min.
  • Test pieces made of virgin resin virgin resin (virgin PE or virgin PP) were separately prepared, and the tensile stress and tensile breaking nominal strain of these test pieces were measured, respectively.
  • Tensile stress and tensile breaking nominal strain were evaluated based on the following criteria. A: 80% or more of the measured value of virgin resin B: 60% or more and less than 80% of the measured value of virgin resin C: less than 60% of the measured value of virgin resin
  • Experiment 2 (Examples 13 to 26 and Comparative Examples 7-14) Purpose: By compatibilizing the polyethylene resin contained in the recycled resin for packaging materials, which requires gas barrier properties, the strength of the mixed resin of the recycled resin and the virgin resin is improved compared to the strength of the virgin resin. Check how long it will be retained.
  • PE resin pellets Suntech F1810 (Asahi Kasei, film grade)
  • OPP film Pipe wrench film P2161 (manufactured by Toyobo, thickness 25 ⁇ m)
  • PE-PP block copolymer Pipe wrench film P2161 (manufactured by Toyobo, thickness 25 ⁇ m)
  • PE-PP block copolymer Pipe wrench film P2161 (manufactured by Toyobo, thickness 25 ⁇ m)
  • PE-PP block copolymer Pipe wrench film P2161 (manufactured by Toyobo, thickness 25 ⁇ m)
  • PE-PP block copolymer Pipe wrench film P2161 (manufactured by Toyobo, thickness 25 ⁇ m)
  • PE-PP block copolymer Pipe wrench film P2161 (manufactured by Toyobo, thickness 25 ⁇ m)
  • PE-PP block copolymer Pipe wrench film P2161 (manufactured by Toyob
  • the test piece was evaluated through the following steps (see FIG. 6).
  • (1) Preparation of Gas Barrier Laminated Form For Examples, a PE-PP block copolymer was blended with PE resin pellets and extruded with a small extruder to obtain a PE single-layer film having a thickness of 25 ⁇ m. As for the comparative example, a PE-PP block copolymer was not blended with the PE resin pellets, and a PE single-layer film having a thickness of 25 ⁇ m was obtained by extrusion using a small extruder. On the other hand, the adhesion layer was cured on the corona-treated surface side of the OPP film (base material) by a gravure coat roll method at a coating amount of 0.1 g / m 2.
  • AlOx vapor deposition layer thickness 10 nm
  • a gas barrier coating layer was formed on the surface of the AlOx thin-film deposition layer at a coating amount of 0.3 g / m 2.
  • the above-mentioned single-layer film was attached on the surface of the gas barrier coating layer by a dry laminating method using a two-component adhesive.
  • OPP (25 ⁇ m) / adhesion layer / AlOx vapor deposition layer (thickness 10 nm) / gas barrier coating layer / adhesive layer (5 ⁇ m) / PE-PP block copolymer-containing PE single layer film (25 ⁇ m). ) was obtained.
  • a gas barrier laminate having a composition of OPP (25 ⁇ m) / adhesion layer / AlOx vapor deposition layer (thickness 10 nm) / gas barrier coating layer / adhesive layer (5 ⁇ m) / PE single layer film (25 ⁇ m) was obtained. ..
  • the amount of the PE-PP block copolymer shown in Tables 3 and 4 is based on 100 parts by mass of the total mass of the PE / PP gas barrier laminate.
  • Example 14 and 21 and Comparative Examples 7 and 11 In order to evaluate the influence of the layers for imparting gas barrier properties (adhesive layer / AlOx vapor deposition layer / gas barrier coating layer) on the recyclability, a laminate having no of these layers was prepared. That is, for Examples, an OPP (25 ⁇ m) / adhesive layer (5 ⁇ m) / PE-PP block copolymer-containing PE single-layer film was prepared. For the comparative example, OPP (25 ⁇ m) / adhesive layer (5 ⁇ m) / PE single layer film was prepared.
  • the oxygen permeability of the gas barrier laminates of Example 19 and Comparative Example 10 was about 3 cc / m 2 , day, and atm. Any water vapor permeability of the gas barrier laminates of Examples 19 and Comparative Example 10 was about 0.6g / m 2 ⁇ day. From these results, it was confirmed that the PE-PP block copolymer in the gas barrier laminate does not affect the gas barrier property.
  • Laminates are provided. Further, the present disclosure provides a recycled resin composition obtained from this laminate, an article containing the same, and a method for recycling the laminate.

Abstract

A laminate according to the present invention has a laminated structure provided with a first layer (1) comprising a polyethylene resin (1a) and a second layer (2) comprising a polypropylene resin, the first layer and/or second layer containing a polyethylene-polypropylene block copolymer (1b) that is compatible with the polyethylene resin or the polypropylene resin. A recycling method according to the present invention includes: a step for producing a crushed product of the laminate; a step for producing a molten mixture of the crushed product; a step for producing a recycled resin composition from the molten mixture; and a step for mixing the recycled resin composition with virgin polyethylene resin and/or virgin polypropylene resin to obtain a resin composition.

Description

積層体及びこのリサイクル方法、並びに再生樹脂組成物及びこれを含む物品Laminates and their recycling methods, as well as recycled resin compositions and articles containing them.
 本開示は、積層体及びこのリサイクル方法、並びに再生樹脂組成物及びこれを含む物品に関する。 The present disclosure relates to a laminate, a recycling method thereof, a recycled resin composition, and an article containing the same.
 包装材として、積層構造を有するフィルムが使用されている。特許文献1,2は、基材層と、アンカーコート剤層と、層間剥離層と、シール層とをこの順に積層して備える包装材を開示している。 A film having a laminated structure is used as a packaging material. Patent Documents 1 and 2 disclose a packaging material in which a base material layer, an anchor coating agent layer, a delamination layer, and a seal layer are laminated in this order.
特開2019-59529号公報JP-A-2019-59529 特開2018-51924号公報Japanese Unexamined Patent Publication No. 2018-51924
 近年、プラスチックごみが社会的問題となっている。この問題に対応するため、よりリサイクルしやすい単一素材からなるモノマテリアル軟包材の開発が進められている。しかし、完全な単一素材に軟包材の機能を付与することは技術的課題が大きいため、ポリエチレン/ポリプロピレン(PE/PP)などのポリオレフィン系樹脂を主体としたオールポリオレフィンも十分に包材としてアクセプタブルな状況になっている。 In recent years, plastic waste has become a social problem. To address this issue, monomaterial soft packaging materials made of a single material that are easier to recycle are being developed. However, since it is a big technical problem to give the function of a flexible packaging material to a completely single material, all polyolefins mainly composed of polyolefin resins such as polyethylene / polypropylene (PE / PP) can be sufficiently used as packaging materials. The situation is acceptable.
 しかし、ポリエチレン(PE)とポリプロピレン(PP)は非相溶であるため、これらが混在した状態でリサイクルした再生材料を、ポリエチレン又はポリプロピレンのバージン樹脂と混ぜて包材にしたとしても強度物性の担保が困難である。したがって、再生プラスチックは、低い強度物性であっても使用可能な限られた用途にしか利用されていないのが現状である。 However, since polyethylene (PE) and polypropylene (PP) are incompatible with each other, even if the recycled material recycled in a mixed state is mixed with polyethylene or polypropylene virgin resin to form a packaging material, the strength and physical characteristics are guaranteed. Is difficult. Therefore, the current situation is that recycled plastics are used only for limited applications that can be used even if they have low strength physical properties.
 本開示は、リサイクル適性に優れ且つ再生材料としてバージン樹脂と併用されてもバージン樹脂が単独で使用された物品と比較して十分な強度物性が維持されている物品を作製するのに有用な積層体を提供する。また、本開示は、この積層体から得られる再生樹脂組成物及びこれを含む物品、並びに積層体のリサイクル方法を提供する。 The present disclosure is useful for producing an article having excellent recyclability and maintaining sufficient strength and physical properties as compared with an article in which the virgin resin is used alone even when used in combination with the virgin resin as a recycled material. Provide the body. The present disclosure also provides a recycled resin composition obtained from this laminate, an article containing the same, and a method for recycling the laminate.
 本開示の一側面に係る積層体は、ポリエチレン樹脂からなる第一の層と、ポリプロピレン樹脂からなる第二の層とを備える積層構造を有し、第一の層及び第二の層の少なくとも一方が、ポリエチレン樹脂又はポリプロピレン樹脂と相溶するポリエチレン-ポリプロピレンブロック共重合体(以下、場合により「PE-PPブロック共重合体」という。)を含む。この積層体に予め含まれているPE-PPブロック共重合体が相溶化剤として機能を果たす。これにより、この積層体を再生樹脂として使用すると、ポリエチレン樹脂(第一の層)とポリプロピレン樹脂(第二の層)が十分に相溶し、再生後も強度物性を担保することができる。 The laminate according to one aspect of the present disclosure has a laminated structure including a first layer made of polyethylene resin and a second layer made of polypropylene resin, and at least one of the first layer and the second layer. However, it contains a polyethylene-polypropylene block copolymer (hereinafter, sometimes referred to as “PE-PP block copolymer”) that is compatible with the polyethylene resin or polypropylene resin. The PE-PP block copolymer previously contained in this laminate functions as a compatibilizer. As a result, when this laminate is used as the recycled resin, the polyethylene resin (first layer) and the polypropylene resin (second layer) are sufficiently compatible with each other, and the strength physical properties can be ensured even after the regeneration.
 第一の層と第二の層の合計質量を100質量部とすると、上記積層体におけるPE-PPブロック共重合体の含有量は1~40質量部であることが好ましい。PE-PPブロック共重合体の含有量が1質量部以上であることで、PEとPPの分散効果が十分に発現して十分な強度物性を担保することができる。他方、PE-PPブロック共重合体の含有量が40質量部以下であることで、PE及びPPが持つ本来の特性が保たれる。 Assuming that the total mass of the first layer and the second layer is 100 parts by mass, the content of the PE-PP block copolymer in the above-mentioned laminate is preferably 1 to 40 parts by mass. When the content of the PE-PP block copolymer is 1 part by mass or more, the dispersion effect of PE and PP can be sufficiently exhibited and sufficient physical characteristics can be ensured. On the other hand, when the content of the PE-PP block copolymer is 40 parts by mass or less, the original characteristics of PE and PP are maintained.
 上記積層体はガスバリア性が付与されたものであってもよい。すなわち、上記積層体は、ガスバリア性を有する蒸着層と、ガスバリア性被覆層とを更に備え、ガスバリア性被覆層が水溶性高分子と、金属アルコキシド又はその加水分解物とを含むものであってもよい。上記積層体がガスバリア性を有することで、これを包材として使用すると、水分や酸素による内容物の劣化を防ぐことができる。この場合、上記積層体と蒸着層との間に密着層が設けられていてもよい。密着層を設けることで、上記積層体の表面と蒸着層との密着性が向上するとともに、蒸着層が形成される表面が平滑化させることで優れたガスバリア性を有する蒸着層を形成することが可能となる。蒸着層は、例えば、Al及びSiの少なくとも一方の元素を含む。 The laminate may have gas barrier properties. That is, the laminate further includes a vapor-deposited layer having a gas barrier property and a gas barrier coating layer, and even if the gas barrier coating layer contains a water-soluble polymer and a metal alkoxide or a hydrolyzate thereof. Good. Since the laminate has a gas barrier property, when it is used as a packaging material, deterioration of the contents due to moisture and oxygen can be prevented. In this case, an adhesion layer may be provided between the laminated body and the thin-film deposition layer. By providing the adhesion layer, the adhesion between the surface of the laminated body and the vapor deposition layer can be improved, and the surface on which the vapor deposition layer is formed can be smoothed to form a vapor deposition layer having excellent gas barrier properties. It will be possible. The vapor deposition layer contains, for example, at least one element of Al and Si.
 本開示の一側面は、上記積層体を溶融混練して得られる再生樹脂組成物に関する。本開示の一側面は、この再生樹脂組成物を含む物品に関する。この物品は、バージン樹脂が単独で使用された物品と比較して十分な強度物性が維持されている。物品の具体例として、包装材、電気・電子部品、ハウジングなどが挙げられる。 One aspect of the present disclosure relates to a recycled resin composition obtained by melt-kneading the above laminate. One aspect of the present disclosure relates to an article containing this recycled resin composition. This article maintains sufficient strength and physical characteristics as compared with an article in which virgin resin is used alone. Specific examples of articles include packaging materials, electrical / electronic parts, housings, and the like.
 本開示の一側面はリサイクル方法に関する。このリサイクル方法は、上記積層体の破砕物を作製する工程と、破砕物の溶融混練物を作製する工程と、溶融混練物から再生樹脂組成物(例えば、ペレット状)を作製する工程と、ポリエチレン樹脂及びポリプロピレン樹脂の少なくとも一方のバージン樹脂と再生樹脂組成物とを混合して樹脂組成物を得る工程とを含む。このリサイクル方法によれば、バージン樹脂が単独で使用された物品と比較して十分な強度物性が維持されている物品を製造できる。再生樹脂組成物を含む物品の強度物性の観点から、上記樹脂組成物における再生樹脂組成物の含有量は、当該樹脂組成物の質量基準で70質量部以下であることが好ましい。 One aspect of this disclosure is about recycling methods. This recycling method includes a step of producing a crushed product of the above-mentioned laminate, a step of producing a melt-kneaded product of the crushed product, a step of producing a recycled resin composition (for example, pellet form) from the melt-kneaded product, and polyethylene. It includes a step of mixing at least one virgin resin of a resin and a polypropylene resin and a recycled resin composition to obtain a resin composition. According to this recycling method, it is possible to produce an article in which sufficient strength and physical characteristics are maintained as compared with an article in which the virgin resin is used alone. From the viewpoint of the strength and physical properties of the article containing the recycled resin composition, the content of the recycled resin composition in the resin composition is preferably 70 parts by mass or less based on the mass of the resin composition.
 本開示によれば、リサイクル適性に優れ且つ再生材料としてバージン樹脂と併用されてもバージン樹脂が単独で使用された物品と比較して十分な強度物性が維持されている物品を作製するのに有用な積層体が提供される。また、本開示によれば、この積層体から得られる再生樹脂組成物及びこれを含む物品、並びに積層体のリサイクル方法が提供される。 According to the present disclosure, it is useful for producing an article having excellent recyclability and maintaining sufficient strength and physical properties as compared with an article in which the virgin resin is used alone even when used in combination with a virgin resin as a recycled material. Laminates are provided. Further, the present disclosure provides a recycled resin composition obtained from this laminate, an article containing the same, and a method for recycling the laminate.
図1は本開示に係る積層体の一実施形態を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an embodiment of the laminated body according to the present disclosure. 図2は本開示に係る積層体の他の実施形態を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing another embodiment of the laminated body according to the present disclosure. 図3は本開示に係る積層体の他の実施形態を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing another embodiment of the laminated body according to the present disclosure. 図4(a)及び図4(b)は本開示に係る積層体の他の実施形態を模式的に示す断面図である。4 (a) and 4 (b) are cross-sectional views schematically showing another embodiment of the laminated body according to the present disclosure. 図5は実験1のプロセスを示すチャートである。FIG. 5 is a chart showing the process of Experiment 1. 図6は実験2のプロセスを示すチャートである。FIG. 6 is a chart showing the process of Experiment 2.
 以下、図面を参照しながら本開示の実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されるものではない。図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。図面の寸法比率は図示の比率に限られるものではない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The present invention is not limited to the following embodiments. In the drawings, the same or corresponding parts are designated by the same reference numerals, and duplicate description will be omitted. The dimensional ratios in the drawings are not limited to the ratios shown.
<積層体>
 図1は本実施形態に係る積層体を模式的に示す断面図である。図1に示す積層体10は、第一の層1と、第二の層2とによって構成される二層構造を有する。第一の層1はポリエチレン樹脂1a(PE樹脂)とこれに分散しているPE-PPブロック共重合体1bとを含む。第二の層2はポリプロピレン樹脂(PP樹脂)からなる。第一の層1に含まれているPE-PPブロック共重合体1bは、積層体10がリサイクルされる際に相溶化剤として機能する。積層体10を再生樹脂として使用すると、ポリエチレン樹脂とポリプロピレン樹脂が十分に相溶し、再生後も強度物性を担保することができる。なお、ここでは、PE-PPブロック共重合体が第一の層1に配合されている場合を例示したが、PE-PPブロック共重合体は第二の層2に配合されていてもよいし、第一の層1及び第二の層2の両方に配合されていてもよい。
<Laminated body>
FIG. 1 is a cross-sectional view schematically showing a laminated body according to the present embodiment. The laminated body 10 shown in FIG. 1 has a two-layer structure composed of a first layer 1 and a second layer 2. The first layer 1 contains a polyethylene resin 1a (PE resin) and a PE-PP block copolymer 1b dispersed therein. The second layer 2 is made of polypropylene resin (PP resin). The PE-PP block copolymer 1b contained in the first layer 1 functions as a compatibilizer when the laminate 10 is recycled. When the laminate 10 is used as the recycled resin, the polyethylene resin and the polypropylene resin are sufficiently compatible with each other, and the strength and physical characteristics can be ensured even after the regeneration. Although the case where the PE-PP block copolymer is blended in the first layer 1 is illustrated here, the PE-PP block copolymer may be blended in the second layer 2. , May be blended in both the first layer 1 and the second layer 2.
 第一の層1及び第二の層2の厚さは積層体10の用途に応じて適宜設定すればよい。積層体10が軟包材の用途に適用される場合、第一の層1及び第二の層2の厚さは、例えば、0.1~300μmであることが好ましく、1~200μmであることがより好ましく、5~150μmであることが更に好ましく、10~100μmであることが特に好ましい。 The thicknesses of the first layer 1 and the second layer 2 may be appropriately set according to the use of the laminated body 10. When the laminate 10 is applied to the application of a flexible packaging material, the thickness of the first layer 1 and the second layer 2 is preferably, for example, 0.1 to 300 μm, and is preferably 1 to 200 μm. Is more preferable, 5 to 150 μm is further preferable, and 10 to 100 μm is particularly preferable.
 第一の層1と第二の層2の合計質量を100質量部とすると、積層体10におけるPE-PPブロック共重合体の含有量は1~40質量部であることが好ましい。PE-PPブロック共重合体の含有量が1質量部以上であることで、PEとPPの分散効果が十分に発現して十分な強度物性を担保することができる。PE-PPブロック共重合体の含有量の下限値は、3質量部であってもよいし、8質量部であってもよい。他方、PE-PPブロック共重合体の含有量が40質量部以下であることで、PE及びPPが持つ本来の特性が保たれる。PE-PPブロック共重合体の含有量の上限値は、38質量部であってもよいし、35質量部であってもよい。 Assuming that the total mass of the first layer 1 and the second layer 2 is 100 parts by mass, the content of the PE-PP block copolymer in the laminate 10 is preferably 1 to 40 parts by mass. When the content of the PE-PP block copolymer is 1 part by mass or more, the dispersion effect of PE and PP can be sufficiently exhibited and sufficient physical characteristics can be ensured. The lower limit of the content of the PE-PP block copolymer may be 3 parts by mass or 8 parts by mass. On the other hand, when the content of the PE-PP block copolymer is 40 parts by mass or less, the original characteristics of PE and PP are maintained. The upper limit of the content of the PE-PP block copolymer may be 38 parts by mass or 35 parts by mass.
 PE-PPブロック共重合体としては、例えば、ポリエチレン又はエチレン・α-オレフィン共重合体から構成されるポリエチレンユニットと、ポリプロピレン又はプロピレン・α-オレフィン共重合体から構成されたポリプロピレンユニットとから構成されるブロック共重合体を用いることが可能である。このようなブロック共重合体は、ジブロック共重合体、トリブロック共重合体、マルチブロック共重合体のいずれの構造でも構わない。PE-PPブロック共重合体のポリエチレンユニットが第一の層1を構成するポリエチレン樹脂と相溶し、PE-PPブロック共重合体のポリプロピレンユニットが第二の層2を構成するポリプロピレン樹脂と相溶する。 The PE-PP block copolymer is composed of, for example, a polyethylene unit composed of polyethylene or an ethylene / α-olefin copolymer and a polypropylene unit composed of polypropylene or a propylene / α-olefin copolymer. It is possible to use a block copolymer. Such a block copolymer may have any structure of a diblock copolymer, a triblock copolymer, and a multi-block copolymer. The polyethylene unit of the PE-PP block copolymer is compatible with the polyethylene resin constituting the first layer 1, and the polypropylene unit of the PE-PP block copolymer is compatible with the polypropylene resin constituting the second layer 2. To do.
<ガスバリア性積層体>
 図2は積層体10を含む積層体であって、ガスバリア性を有する積層体の一例を模式的に示す断面図である。図2に示すガスバリア積層体30は、積層体10と、ガスバリア機能層20と、これらを接着している接着層15とによって構成されている。ガスバリア機能層20は、基材21と、密着層22と、蒸着層23と、ガスバリア性被覆層25とを備える積層構造を有する。ガスバリア積層体30において、積層体10はシーラント層としての役割を果たす。なお、図2には、第一の層1とガスバリア性被覆層25が接着層15を介して対面している場合を図示したが、第二の層2とガスバリア性被覆層25が接着層15を介して対面するように、積層体10とガスバリア機能層20を貼り合わせてもよい。以下、ガスバリア機能層20の各層及び接着層15について説明する。
<Gas barrier laminate>
FIG. 2 is a cross-sectional view schematically showing an example of a laminated body including the laminated body 10 having a gas barrier property. The gas barrier laminate 30 shown in FIG. 2 is composed of a laminate 10, a gas barrier functional layer 20, and an adhesive layer 15 for adhering them. The gas barrier functional layer 20 has a laminated structure including a base material 21, an adhesion layer 22, a vapor deposition layer 23, and a gas barrier coating layer 25. In the gas barrier laminate 30, the laminate 10 serves as a sealant layer. Although FIG. 2 shows a case where the first layer 1 and the gas barrier coating layer 25 face each other via the adhesive layer 15, the second layer 2 and the gas barrier coating layer 25 are the adhesive layer 15. The laminated body 10 and the gas barrier functional layer 20 may be bonded so as to face each other. Hereinafter, each layer of the gas barrier functional layer 20 and the adhesive layer 15 will be described.
(基材)
 基材21としては、特に限定されるものではなく、ガスバリア積層体30の用途に応じて適宜選択すればよい。基材21の具体例として、ポリオレフィン系フィルム(PE、PP等)、ポリエステル系フィルム(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリアミド系フィルム(ナイロン-6、ナイロン-66等)、ポリスチレン系フィルム、ポリ塩化ビニル系フィルム、ポリイミド系フィルム、ポリカーボネート系フィルム、ポリエーテルスルホン系フィルム、アクリル系フィルム、セルロース系フィルム(トリアセチルセルロース又はジアセチルセルロース等)が挙げられる。医療用品、薬品、食品等の包装には、例えば、ポリエチレンテレフタレート又はポリアミドが好適に用いられる。モノマテリアルの観点から、基材21として、ポリオレフィン系フィルムを使用することが好ましい。これらの樹脂フィルムの厚さは、例えば、6~200μm程度の範囲であればよい。樹脂フィルムは、石油由来のものに限定されず、生物由来の樹脂材料(例えば、PLA、PBS、バイオPE又はバイオPETバイオ)を含むものであってもよい。基材21は、帯電防止剤、紫外線吸収剤、可塑剤、滑剤、着色剤等の添加剤が配合されたものであってもよい。
(Base material)
The base material 21 is not particularly limited, and may be appropriately selected depending on the use of the gas barrier laminate 30. Specific examples of the base material 21 include polyolefin film (PE, PP, etc.), polyester film (polyethylene terephthalate, polyethylene naphthalate, etc.), polyamide film (nylon-6, nylon-66, etc.), polystyrene film, poly. Examples thereof include vinyl chloride film, polyimide film, polycarbonate film, polyether sulfone film, acrylic film, and cellulose film (triacetyl cellulose, diacetyl cellulose, etc.). For packaging of medical supplies, chemicals, foods and the like, for example, polyethylene terephthalate or polyamide is preferably used. From the viewpoint of monomaterial, it is preferable to use a polyolefin-based film as the base material 21. The thickness of these resin films may be, for example, in the range of about 6 to 200 μm. The resin film is not limited to those derived from petroleum, and may contain a resin material derived from a living organism (for example, PLA, PBS, bio-PE or bio-PET bio). The base material 21 may contain additives such as an antistatic agent, an ultraviolet absorber, a plasticizer, a lubricant, and a colorant.
 ガスバリア積層体30が高い耐水性を求められない包装材に適用される場合、基材21は必ずしも樹脂フィルムでなくてもよく、例えば、紙であってもよい。紙の具体例として、上質紙、特殊上質紙、コート紙、アート紙、キャストコート紙、模造紙及びクラフト紙が挙げられる。これらの紙の厚さは、例えば、100~800μmの範囲であればよい。なお、基材21は、積層面にコロナ処理、プラズマ処理、フレーム処理などの各種前処理が施されたものであってもよく、積層面にコート層(例えば、易接着層)が設けられたものであってもよい。 When the gas barrier laminate 30 is applied to a packaging material that does not require high water resistance, the base material 21 does not necessarily have to be a resin film, and may be, for example, paper. Specific examples of the paper include high-quality paper, special high-quality paper, coated paper, art paper, cast-coated paper, imitation paper and kraft paper. The thickness of these papers may be, for example, in the range of 100 to 800 μm. The base material 21 may have various pretreatments such as corona treatment, plasma treatment, and frame treatment on the laminated surface, and a coat layer (for example, an easily adhesive layer) is provided on the laminated surface. It may be a thing.
(密着層)
 密着層22は、基材21の表面上に設けられ、基材21と蒸着層23との間の密着性能向上を目的としたものである。これに加え、密着層22は、蒸着層23が形成される面を平滑にすることで蒸着層23を欠陥なく均一に製膜することを目的としたものである。基材21が紙である場合、密着層22は目止めの役割を果たす。なお、基材21の積層面に上述の各種前処理を施す等によって、蒸着層23に対して充分な密着性が得られる場合には必ずしも密着層22は設けなくてもよい。
(Adhesion layer)
The adhesion layer 22 is provided on the surface of the base material 21 for the purpose of improving the adhesion performance between the base material 21 and the vapor deposition layer 23. In addition to this, the adhesion layer 22 is intended to uniformly form the vapor deposition layer 23 without defects by smoothing the surface on which the vapor deposition layer 23 is formed. When the base material 21 is paper, the adhesion layer 22 serves as a seal. The adhesion layer 22 does not necessarily have to be provided when sufficient adhesion to the vapor deposition layer 23 can be obtained by applying the above-mentioned various pretreatments to the laminated surface of the base material 21.
 密着層22を構成する材料としては非水性樹脂が好ましく、その具体例として、シランカップリング剤、有機チタネート、ポリアクリル、ポリエステル、ポリウレタン、ポリカーボネート、ポリウレア、ポリアミド、ポリオレフィン系エマルジョン、ポリイミド、メラミン及びフェノールが挙げられる。密着層22に耐熱水性を付与することを考慮すると、密着層22はウレタン結合及びウレア結合を一つ以上有する有機高分子が含まれることがより好ましい。 A non-aqueous resin is preferable as the material constituting the adhesion layer 22, and specific examples thereof include a silane coupling agent, an organic titanate, a polyacrylic, a polyester, a polyurethane, a polycarbonate, a polyurea, a polyamide, a polyolefin-based emulsion, a polyimide, a melamine, and a phenol. Can be mentioned. Considering that the adhesive layer 22 is imparted with heat-resistant water, it is more preferable that the adhesive layer 22 contains an organic polymer having one or more urethane bonds and urea bonds.
 上記ウレタン結合及びウレア結合は予め重合段階で導入したポリマーを使用しても、アクリル及びメタクリル系ポリオールなどのポリオールとイソシアネート基を持つイソシアネート化合物、あるいは、アミノ基を持つアミン樹脂とエポキシ基及びグリシジル基を持つエポキシ化合物などを反応させてウレタン結合を形成させたものや、イソシアネート化合物と水又は酢酸エチル等の溶剤、又はアミノ基を持つアミン樹脂との反応によりウレア結合をさせたものを使用してもよい。これらのうち、密着層22を構成する非水性樹脂としてはアクリルポリオールとポリエステルポリオール及びイソシアネート化合物、シランカップリング剤等との複合物がより好ましい。 Even if a polymer introduced in the polymerization step is used for the urethane bond and urea bond, an isocyanate compound having an isocyanate group and a polyol such as acrylic or methacrylic polyol, or an amine resin having an amino group and an epoxy group and a glycidyl group A urethane bond is formed by reacting an epoxy compound with, or a urea bond is formed by reacting an isocyanate compound with a solvent such as water or ethyl acetate, or an amine resin having an amino group. May be good. Of these, as the non-aqueous resin constituting the adhesion layer 22, a composite of an acrylic polyol, a polyester polyol, an isocyanate compound, a silane coupling agent, or the like is more preferable.
 アクリルポリオールとは、アクリル酸誘導体モノマーを重合させて得られる高分子化合物、あるいは、アクリル酸誘導体モノマーとその他のモノマーとを共重合させて得られる高分子化合物のうち、末端にヒドロキシル基を持つものである。アクリルポリオールは、後に加えるイソシアネート化合物のイソシアネート基と反応する。ポリエステルポリオールとは、酸原料と、アルコール原料とから周知の製造方法で得られたポリエステル系樹脂のうち、末端に二個以上のヒドロキシル基を持つものである。ポリエステルポリオールは、後に加えるイソシアネート化合物のイソシアネート基と反応する。酸原料として、テレフタル酸、イソフタル酸、フタル酸、メチルフタル酸、トリメリット酸、ピロメリット酸、アジピン酸、セバシン酸、コハク酸、マレイン酸、フマル酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、ヘキサヒドロフタル酸及びこれらの反応性誘導体等が挙げられる。アルコール原料として、エチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、ビスヒドロキシエチルテレフタレート、トリメチロールメタン、トリメチロールプロパン、グリセリン、ペンタエリスリトール等が挙げられる。 Acrylic polyol is a polymer compound obtained by polymerizing an acrylic acid derivative monomer, or a polymer compound obtained by copolymerizing an acrylic acid derivative monomer and another monomer, which has a hydroxyl group at the terminal. Is. The acrylic polyol reacts with the isocyanate group of the isocyanate compound added later. The polyester polyol is a polyester resin obtained from an acid raw material and an alcohol raw material by a well-known production method, and has two or more hydroxyl groups at the ends. The polyester polyol reacts with the isocyanate group of the isocyanate compound added later. As acid raw materials, terephthalic acid, isophthalic acid, phthalic acid, methylphthalic acid, trimellitic acid, pyromellitic acid, adipic acid, sebacic acid, succinic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, hexahydro Examples thereof include phthalic acid and reactive derivatives thereof. As alcohol raw materials, ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-hexanediol, diethylene glycol, dipropylene glycol, 1,4-cyclohexanedimethanol, neopentyl glycol, bishydroxyethyl terephthalate, trimethylolmethane , Trimethylolpropane, glycerin, pentaerythritol and the like.
 イソシアネート化合物は、アクリルポリオール及びポリエステルポリオールと反応してできるウレタン結合により、基材や無機酸化物との密着性を高めるために添加されるものである。イソシアネート化合物は、主に架橋剤もしくは硬化剤として作用する。これを達成するためにイソシアネート化合物としては、芳香族系のトリレンジイソシアネート(TDI)やジフェニルメタンジイソシアネート(MDI)、脂肪族系のキシレンジイソシアネート(XDI)やヘキサレンジイソシアネート(HMDI)などのモノマー類と、これらの重合体、誘導体が用いられ、これらが単独か又は混合物等として用いられる。 The isocyanate compound is added in order to improve the adhesion to the base material and the inorganic oxide by the urethane bond formed by reacting with the acrylic polyol and the polyester polyol. The isocyanate compound mainly acts as a cross-linking agent or a curing agent. In order to achieve this, the isocyanate compounds include aromatic-based toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), aliphatic-based xylene diisocyanate (XDI), hexaranged isocyanate (HMDI) and other monomers. These polymers and derivatives are used, and these are used alone or as a mixture or the like.
 シランカップリング剤としては、任意の有機官能基を含むシランカップリング剤を用いることができ、例えばエチルトリメトキシシラン、ビニルトリメトキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルトリメトキシシラン、グリシドオキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン等のシランカップリング剤あるいはその加水分解物の一種又は二種以上を用いることができる。 As the silane coupling agent, a silane coupling agent containing any organic functional group can be used, for example, ethyltrimethoxysilane, vinyltrimethoxysilane, γ-chloropropylmethyldimethoxysilane, γ-chloropropyltrimethoxysilane. , Glycydooxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, or other silane coupling agents or hydrolyzates thereof, or two or more thereof can be used.
 密着層22は基材21の表面上にコーティング液を塗布する工程を経て形成される。塗布方法としては、通常用いられるキャスト法、ディッピング法、ロールコート法、グラビアコート法、スクリーン印刷法、リバースコート法、スプレーコート法、キットコート法、ダイコート法、メタリングバーコート法、チャンバードクター併用コート法、カーテンコート法等の従来公知の方法を用いることが可能である。コーティング液の塗布によって形成された塗膜を加熱乾燥させることで密着層22が形成される。密着層22の厚さは、例えば、0.01μm~2μm程度である。 The adhesion layer 22 is formed through a step of applying a coating liquid on the surface of the base material 21. As the coating method, the cast method, dipping method, roll coating method, gravure coating method, screen printing method, reverse coating method, spray coating method, kit coating method, die coating method, metering bar coating method, and chamber doctor are used together. Conventionally known methods such as a coating method and a curtain coating method can be used. The adhesion layer 22 is formed by heating and drying the coating film formed by applying the coating liquid. The thickness of the adhesion layer 22 is, for example, about 0.01 μm to 2 μm.
(蒸着層)
 蒸着層23は、酸素ガスバリア性の高い材料として酸化アルミニウム(AlOx)、酸化ケイ素素(SiOx)、フッ化マグネシウム(MgF)、酸化マグネシウム(MgO)又はインジウム-スズ酸化物(ITO)などを用いることができる。材料コスト、バリア性能及び透明性の点から、蒸着層23を構成する材料は酸化アルミニウム又は酸化ケイ素が好ましい。蒸着層23はアルミニウムを蒸着して形成されたものであってもよい。
(Embedded layer)
The vapor deposition layer 23 uses aluminum oxide (AlOx), silicon oxide (SiOx), magnesium fluoride (MgF 2 ), magnesium oxide (MgO), indium-tin oxide (ITO), or the like as a material having a high oxygen gas barrier property. be able to. From the viewpoint of material cost, barrier performance and transparency, the material constituting the vapor deposition layer 23 is preferably aluminum oxide or silicon oxide. The vapor deposition layer 23 may be formed by vapor deposition of aluminum.
 蒸着層23の厚さは使用用途によって適宜設定すればよいが、好ましくは10~300nmであり、より好ましくは20~200nmである。蒸着層23の厚さを10nm以上とすることで蒸着層23の連続性を十分なものとしやすく、他方、300nm以下とすることでカールやクラックの発生を十分に抑制でき、十分なバリア性能及び可撓性を達成しやすい。 The thickness of the thin-film deposition layer 23 may be appropriately set depending on the intended use, but is preferably 10 to 300 nm, and more preferably 20 to 200 nm. By setting the thickness of the thin-film deposition layer 23 to 10 nm or more, it is easy to make the continuity of the thin-film deposition layer 23 sufficient, while by setting it to 300 nm or less, the occurrence of curls and cracks can be sufficiently suppressed, and sufficient barrier performance and sufficient barrier performance can be achieved. Easy to achieve flexibility.
 蒸着層23は、真空成膜手段によって成膜できる。真空成膜手段には、真空蒸着法、スパッタリング法、化学的気相成長法(CVD法)などの公知の方法があるが、成膜速度が速く生産性が高いことから真空蒸着法が好ましい。また真空蒸着法の中でも、特に電子ビーム加熱による成膜手段は、成膜速度を照射面積や電子ビーム電流などで制御し易いことや蒸着材料への昇温降温が短時間で行えることから有効である。 The vapor deposition layer 23 can be deposited by a vacuum film forming means. As the vacuum deposition means, there are known methods such as a vacuum deposition method, a sputtering method, and a chemical vapor deposition method (CVD method), but the vacuum deposition method is preferable because the film deposition rate is high and the productivity is high. In addition, among the vacuum vapor deposition methods, the film formation means by electron beam heating is particularly effective because the film formation rate can be easily controlled by the irradiation area and the electron beam current, and the temperature of the vapor deposition material can be raised and lowered in a short time. is there.
(ガスバリア性被覆層)
 ガスバリア性被覆層25は、蒸着層23を保護するとともに、水蒸気バリア性の向上に寄与し、これにより蒸着層23との相乗効果による高いガスバリア性を発現させるためのものである。ガスバリア性被覆層25は、蒸着層23の表面上に、以下の成分を含む塗膜を形成する工程を経て形成される。
・ヒドロキシ基を有する水溶性高分子
・金属アルコキシド及びその加水分解物の少なくとも一方
(Gas barrier coating layer)
The gas barrier coating layer 25 protects the vapor-deposited layer 23 and contributes to the improvement of the water vapor barrier property, thereby exhibiting a high gas barrier property due to a synergistic effect with the vapor-deposited layer 23. The gas barrier coating layer 25 is formed through a step of forming a coating film containing the following components on the surface of the vapor deposition layer 23.
-At least one of a water-soluble polymer / metal alkoxide having a hydroxy group and its hydrolyzate
 水溶性高分子としては、ポリビニルアルコール、ポリビニルピロリドン、デンプン、メチルセルロース、カルボキシメチルセルロース、アルギン酸ナトリウム等を挙げることができる。これらのなかでもポリビニルアルコール(以下、PVAと略す)は、ガスバリア性被覆層25のガスバリア性を優れたものとできるので好ましい。ここでいうPVAは、一般にポリ酢酸ビニルを鹸化して得られるものであり、例えば、酢酸基が数十%残存している、いわゆる部分鹸化PVAから、酢酸基が数%しか残存していない完全PVA等を用いることができる。水溶性高分子は、金属アルコキシド及び/その加水分解物とともに、加水分解及び脱水縮合(例えば、ゾルゲル法)によって有機-無機複合体を構成する。 Examples of the water-soluble polymer include polyvinyl alcohol, polyvinylpyrrolidone, starch, methyl cellulose, carboxymethyl cellulose, sodium alginate and the like. Among these, polyvinyl alcohol (hereinafter abbreviated as PVA) is preferable because it can improve the gas barrier property of the gas barrier property coating layer 25. The PVA referred to here is generally obtained by saponifying polyvinyl acetate. For example, from the so-called partially saponified PVA in which several tens of percent of acetic acid groups remain, complete with only a few percent of acetic acid groups remaining. PVA or the like can be used. The water-soluble polymer, together with the metal alkoxide and / its hydrolyzate, forms an organic-inorganic composite by hydrolysis and dehydration condensation (eg, sol-gel method).
 金属アルコキシドは下記の一般式で表される化合物である。
  M(OR)
(MはSi、Ti、Al、Zr等の金属原子を示し、Rは-CH、-C等のアルキル基を示し、nはMの価数に対応した整数を示す。)
 具体的には、テトラエトキシシラン〔Si(OC〕、トリイソプロポキシアルミニウム〔Al(O-iso-C〕などが挙げられる。テトラエトキシシラン、トリイソプロポキシアルミニウムは、加水分解後、水系の溶媒中において比較的安定であるので好ましい。金属アルコキシドの加水分解物及び重合物として、例えば、以下の化合物が挙げられる。
・テトラエトキシシランの加水分解物や重合物:ケイ酸(Si(OH))など
・トリプロポキシアルミニウムの加水分解物や重合物:水酸化アルミニウム(Al(OH))など
The metal alkoxide is a compound represented by the following general formula.
M (OR) n
(M represents a metal atom such as Si, Ti, Al, Zr, R represents an alkyl group such as -CH 3 , -C 2 H 5 , and n represents an integer corresponding to the valence of M.)
Specific examples thereof include tetraethoxysilane [Si (OC 2 H 5 ) 4 ] and triisopropoxyaluminum [Al (O-iso-C 3 H 7 ) 3 ]. Tetraethoxysilane and triisopropoxyaluminum are preferable because they are relatively stable in an aqueous solvent after hydrolysis. Examples of the hydrolyzate and polymer of the metal alkoxide include the following compounds.
・ Hydrolysates and polymers of tetraethoxysilane: silicic acid (Si (OH) 4 ), etc. ・ Hydrolysates and polymers of tripropoxyaluminum: aluminum hydroxide (Al (OH) 3 ), etc.
 ガスバリア性被覆層25は、シランカップリング剤を更に含んでもよい。シランカップリング剤としては、下記の一般式で表せる化合物が挙げられる。
  RSi(OR
(Rは有機官能基を示し、RはCH,C等のアルキル基を示す。)
 具体的には、エチルトリメトキシシラン、ビニルトリメトキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルトリメトキシシラン、グリシドオキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン等のシランカップリング剤等が挙げられる。更に、ガスバリア性被覆層25には、そのガスバリア性を損なわない範囲で、イソシアネート化合物、あるいは、分散剤、安定化剤、粘度調整剤、着色剤などの公知の添加剤を必要に応じて加えることも可能である。
The gas barrier coating layer 25 may further contain a silane coupling agent. Examples of the silane coupling agent include compounds represented by the following general formulas.
R 1 Si (OR 2 ) n
(R 1 indicates an organic functional group, and R 2 indicates an alkyl group such as CH 3 , C 2 H 5 or the like.)
Specifically, ethyltrimethoxysilane, vinyltrimethoxysilane, γ-chloropropylmethyldimethoxysilane, γ-chloropropyltrimethoxysilane, glycidoxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ- Examples thereof include silane coupling agents such as methacryloxypropylmethyldimethoxysilane. Further, an isocyanate compound or a known additive such as a dispersant, a stabilizer, a viscosity regulator, or a colorant is added to the gas barrier coating layer 25 as necessary, as long as the gas barrier property is not impaired. Is also possible.
 ガスバリア性被覆層25の厚さ(膜厚)は50~1000nmの範囲内とすることが好ましく、100~500nmの範囲内とすることがより好ましい。膜厚が50nm以上であると、より十分なガスバリア性を得ることができる傾向があり、1000nm以下であると、薄膜により、十分なフレキシビリティを保持できる傾向がある。 The thickness (film thickness) of the gas barrier coating layer 25 is preferably in the range of 50 to 1000 nm, and more preferably in the range of 100 to 500 nm. When the film thickness is 50 nm or more, a more sufficient gas barrier property tends to be obtained, and when the film thickness is 1000 nm or less, the thin film tends to maintain sufficient flexibility.
 塗膜の形成に使用する溶媒としては、例えば、水、メチルアルコール、エチルアルコール、イソプロピルアルコール、n-プロピルアルコール、n-ブチルアルコール、n-ペンチルアルコール、ジメチルスルフォキシド、ジメチルフォルムアミド、ジメチルアセトアミド、トルエン、ヘキサン、ヘプタン、シクロヘキサン、アセトン、メチルエチルケトン、ジエチルエーテル、ジオキサン、テトラヒドロフラン、酢酸エチル、酢酸ブチルが挙げられる。これらの溶媒は一種を単独で用いてもよく、二種以上を併用してもよい。これらの中でも、塗工性の観点から、メチルアルコール、エチルアルコール、イソプロピルアルコール、トルエン、酢酸エチル、メチルエチルケトン、水が好ましい。また製造性の観点から、メチルアルコール、エチルアルコール、イソプロピルアルコール、水が好ましい。 Examples of the solvent used for forming the coating film include water, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-propyl alcohol, n-butyl alcohol, n-pentyl alcohol, dimethylsulfoxide, dimethylformamide, and dimethylacetamide. , Toluene, hexane, heptane, cyclohexane, acetone, methyl ethyl ketone, diethyl ether, dioxane, tetrahydrofuran, ethyl acetate, butyl acetate. One of these solvents may be used alone, or two or more of these solvents may be used in combination. Among these, methyl alcohol, ethyl alcohol, isopropyl alcohol, toluene, ethyl acetate, methyl ethyl ketone and water are preferable from the viewpoint of coatability. From the viewpoint of manufacturability, methyl alcohol, ethyl alcohol, isopropyl alcohol and water are preferable.
 上記塗液には、ガスバリア性を損なわない範囲で、イソシアネート化合物、シランカップリング剤、分散剤、安定化剤、粘度調整剤及び着色剤等の添加剤を必要に応じて加えてもよい。例えば、耐熱水性向上の観点から、式(RSi(OR)nで示されるシラン化合物(シランカップリング剤)を塗液に添加してもよい。有機官能基(R)は、ビニル、エポキシ、メタクリロキシ、ウレイド及びイソシアネート等の非水性官能基であることが好ましい。シランカップリング剤の具体例として、1,3,5-トリス(3-トリアルコキシシリルアルキル)イソシアヌレート、3-グリシドキシプロピルトリメトキシシラン、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシランが挙げられる。 Additives such as isocyanate compounds, silane coupling agents, dispersants, stabilizers, viscosity regulators and colorants may be added to the coating liquid as necessary, as long as the gas barrier properties are not impaired. For example, from the viewpoint of improving heat resistance and water resistance, a silane compound (silane coupling agent) represented by the formula (R 1 Si (OR 2 ) 3) n may be added to the coating liquid. The organic functional group (R 1 ) is preferably a non-aqueous functional group such as vinyl, epoxy, methacryloxy, ureido and isocyanate. Specific examples of the silane coupling agent include 1,3,5-tris (3-trialkoxysilylalkyl) isocyanurate, 3-glycidoxypropyltrimethoxysilane, and 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane. Can be mentioned.
 ガスバリア性被覆層25は蒸着層23の表面上に塗液を塗布する工程を経て形成される。塗布方法としては、通常用いられるキャスト法、ディッピング法、ロールコート法、グラビアコート法、スクリーン印刷法、リバースコート法、スプレーコート法、キットコート法、ダイコート法、メタリングバーコート法、チャンバードクター併用コート法、カーテンコート法等の従来公知の方法を用いることが可能である。塗液の塗布によって形成された塗膜を加熱乾燥させることでガスバリア性被覆層25が形成される。 The gas barrier coating layer 25 is formed through a step of applying a coating liquid on the surface of the vapor deposition layer 23. As the coating method, the cast method, dipping method, roll coating method, gravure coating method, screen printing method, reverse coating method, spray coating method, kit coating method, die coating method, metering bar coating method, and chamber doctor are used together. Conventionally known methods such as a coating method and a curtain coating method can be used. The gas barrier coating layer 25 is formed by heating and drying the coating film formed by applying the coating liquid.
(接着層)
 接着層15は、積層体10とガスバリア機能層20とを接着している。接着層15を構成する接着剤としては、例えば、ポリエステルポリオール、ポリエーテルポリオール、アクリルポリオール、カーボネートポリオールなどの主剤に対し、二官能以上のイソシアネート化合物を作用させたポリウレタン樹脂等が挙げられる。各種ポリオールは、一種を単独で又は二種以上を組み合わせて用いてもよい。接着層15は、接着促進を目的として、上述のポリウレタン樹脂に、カルボジイミド化合物、オキサゾリン化合物、エポキシ化合物、リン化合物、シランカップリング剤などが配合されたものであってもよい。
(Adhesive layer)
The adhesive layer 15 adheres the laminated body 10 and the gas barrier functional layer 20. Examples of the adhesive constituting the adhesive layer 15 include a polyurethane resin obtained by reacting a main agent such as a polyester polyol, a polyether polyol, an acrylic polyol, and a carbonate polyol with a bifunctional or higher functional isocyanate compound. As the various polyols, one type may be used alone or two or more types may be used in combination. The adhesive layer 15 may be obtained by blending the above-mentioned polyurethane resin with a carbodiimide compound, an oxazoline compound, an epoxy compound, a phosphorus compound, a silane coupling agent, or the like for the purpose of promoting adhesion.
 接着層15の厚さは、所望の接着強度、追随性、及び加工性等を得る観点から、例えば、1~10μmであり、3~7μmであってもよい。なお、熱処理によってガスバリア機能層20に積層体10をラミネートしてもよい。 The thickness of the adhesive layer 15 is, for example, 1 to 10 μm and may be 3 to 7 μm from the viewpoint of obtaining desired adhesive strength, followability, processability, and the like. The laminated body 10 may be laminated on the gas barrier functional layer 20 by heat treatment.
 以上、本開示の実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。例えば、上記実施形態においては、積層体10をシーラント層として利用する場合を例示したが、積層体10を基材として利用してもよい。図3に示すガスバリア積層体40は、積層体10(基材)と、密着層22と、ガスバリア性を有する蒸着層23と、ガスバリア性被覆層25とを備える積層構造を有する。なお、図3には、第二の層2と密着層22が対面している場合を図示したが、第一の層1と密着層22が対面するように、積層体10の表面上に密着層22、蒸着層23及びガスバリア性被覆層25を順次形成してもよい。 Although the embodiments of the present disclosure have been described in detail above, the present invention is not limited to the above embodiments. For example, in the above embodiment, the case where the laminated body 10 is used as a sealant layer has been illustrated, but the laminated body 10 may be used as a base material. The gas barrier laminate 40 shown in FIG. 3 has a laminate structure including a laminate 10 (base material), an adhesion layer 22, a vapor deposition layer 23 having a gas barrier property, and a gas barrier coating layer 25. Although FIG. 3 shows a case where the second layer 2 and the adhesion layer 22 face each other, the first layer 1 and the adhesion layer 22 are in close contact with each other on the surface of the laminated body 10. The layer 22, the thin-film deposition layer 23, and the gas barrier coating layer 25 may be formed in that order.
 上記実施形態においては、図2に示すように、基材21とガスバリア性被覆層25との間に、蒸着層23を有するガスバリア積層体を例示したが、高度なガスバリア性が求められない包装材にガスバリア積層体を適用する場合、図4(a)に示すように蒸着層23及び密着層22は設けなくてもよい。また、図3には、積層体10とガスバリア性被覆層25との間に、蒸着層23を有するガスバリア積層体を図示したが、高度なガスバリア性が求められない包装材にガスバリア積層体を適用する場合、図4(b)に示すように蒸着層23及び密着層22は設けなくてもよい。 In the above embodiment, as shown in FIG. 2, a gas barrier laminate having a vapor-deposited layer 23 between the base material 21 and the gas barrier coating layer 25 is illustrated, but a packaging material that does not require a high degree of gas barrier property is not required. When the gas barrier laminate is applied to the above, the vapor deposition layer 23 and the adhesion layer 22 may not be provided as shown in FIG. 4A. Further, FIG. 3 shows a gas barrier laminate having a vapor-deposited layer 23 between the laminate 10 and the gas barrier coating layer 25, but the gas barrier laminate is applied to a packaging material that does not require a high degree of gas barrier property. In this case, the vapor deposition layer 23 and the adhesion layer 22 may not be provided as shown in FIG. 4 (b).
<リサイクル方法>
 本実施形態に係るリサイクル方法は、積層体10又はこれを含む積層体(例えば、ガスバリア積層体30,40)を再生樹脂として利用するものである。すなわち、このリサイクル方法は以下の工程を含む。
(a)積層体10又はこれを含む積層体の破砕物を作製する工程
(b)破砕物の溶融混練物を作製する工程
(c)溶融混練物から再生樹脂組成物(例えば、ペレット状)を作製する工程
(d)ポリエチレン樹脂及びポリプロピレン樹脂の少なくとも一方のバージン樹脂と再生樹脂組成物とを混合して樹脂組成物を得る工程
<Recycling method>
The recycling method according to the present embodiment uses the laminated body 10 or a laminated body containing the same (for example, gas barrier laminated bodies 30, 40) as a recycled resin. That is, this recycling method includes the following steps.
(A) Step of producing crushed product of laminate 10 or a laminate containing the same (b) Step of producing melt-kneaded product of crushed product (c) Recycled resin composition (for example, pellet form) from melt-kneaded product Step of Producing (d) Step of Mixing At least One Virgin Resin of Polyethylene Resin and Polypropylene Resin with a Recycled Resin Composition to Obtain a Resin Composition
 上記リサイクル方法によれば、バージン樹脂が単独で使用された物品と比較して十分な強度物性が維持されている物品を製造することができる。再生樹脂組成物を含む物品の強度物性の観点から、上記樹脂組成物における再生樹脂組成物の含有量は、当該樹脂組成物の質量基準で70質量%以下であることが好ましく、40質量%以下であることがより好ましい。再生樹脂組成物の有効利用の観点から、上記樹脂組成物における再生樹脂組成物の含有量は、1質量%以上であることが好ましく、10質量%以上であることがより好ましい。なお、再利用対象の積層体に含まれるポリオレフィン以外の材料の質量割合が、例えば、10質量%以下(より好ましくは5質量%以下)である場合、この積層体はモノマテリアル(オールポリオレフィン)として再利用することができる。 According to the above recycling method, it is possible to produce an article in which sufficient strength and physical characteristics are maintained as compared with an article in which virgin resin is used alone. From the viewpoint of the strength and physical properties of the article containing the recycled resin composition, the content of the recycled resin composition in the resin composition is preferably 70% by mass or less, preferably 40% by mass or less, based on the mass of the resin composition. Is more preferable. From the viewpoint of effective utilization of the recycled resin composition, the content of the recycled resin composition in the resin composition is preferably 1% by mass or more, and more preferably 10% by mass or more. When the mass ratio of the material other than polyolefin contained in the laminate to be reused is, for example, 10% by mass or less (more preferably 5% by mass or less), this laminate is designated as a monomaterial (all polyolefin). Can be reused.
 以下、実施例及び比較例に基づいて本開示をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present disclosure will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.
実験1(実施例1~12及び比較例1~6)
目的:再生樹脂に含まれるポリエチレン樹脂とポリエチレン樹脂を相溶化させることにより、バージンPE樹脂の強度物性と比較して、再生樹脂とバージン樹脂の混合樹脂の強度物性がどの程度保持されるかを確認する。
Experiment 1 (Examples 1 to 12 and Comparative Examples 1 to 6)
Purpose: To confirm how much the strength physical properties of the mixed resin of the recycled resin and the virgin resin are maintained compared to the strength physical properties of the virgin PE resin by compatibilizing the polyethylene resin contained in the recycled resin with the polyethylene resin. To do.
 以下の材料を準備した。
・ポリエチレン樹脂ペレット(PE樹脂ペレット):サンテックF1810(旭化成製、フィルムグレード)
・ポリプロピレン樹脂ペレット(PP樹脂ペレット):ノバテックFB3B(日本ポリプロ製、フィルムグレード)
・ポリエチレン-ポリプロピレンブロック共重合体(PE-PPブロック共重合体)
・バージンポリエチレン(バージンPE):サンテックM7620(旭化成、射出成形グレード、低密度ポリエチレン)
・バージンポリプロピレン(バージンPP):ノバテックMA3(日本ポリプロ製、射出成形グレード)
The following materials were prepared.
-Polyethylene resin pellets (PE resin pellets): Suntech F1810 (Asahi Kasei, film grade)
-Polypropylene resin pellets (PP resin pellets): Novatec FB3B (manufactured by Japan Polypropylene, film grade)
-Polyethylene-polypropylene block copolymer (PE-PP block copolymer)
-Virgin polyethylene (virgin PE): Suntech M7620 (Asahi Kasei, injection molding grade, low density polyethylene)
-Virgin polypropylene (virgin PP): Novatec MA3 (manufactured by Japan Polypropylene, injection molding grade)
 以下の工程を経て試験片の評価を行った(図5参照)。
(1)ポリエチレン樹脂層とポリプロピレン樹脂層の積層体(以下「PE/PP積層体」という。)の作製
 再生樹脂の材料となるPE/PP積層体を共押出によって製膜した。共押出は小型押出機によって実施し、小型押出機にPE樹脂ペレットとPP樹脂ペレットをそれぞれ供給した。実施例については、表1,2に示す量(PE/PP積層体の質量100質量部基準)のPE-PPブロック共重合体(図面には場合により、「PE-PPブロック共重合体(A)」又は「(A)」と表記する。)をポリエチレン樹脂層のみにブレンドした。ポリエチレン樹脂層及びポリプロピレン樹脂層の厚さはそれぞれ20μmとした。
(2)PE/PP積層体から再生樹脂の作製
 PE/PP積層体を破砕後、二軸押出機を用いて溶融混練し、ペレット状に押し出した。これにより、再生樹脂を得た。
(3)試験片の作製
 再生樹脂と、バージン樹脂(バージンPE又はバージンPP)とを表1,2に示す割合でブレンドし、射出成形することによって試験片を得た。
(4)試験片の評価
 試験片の強度物性は、引張応力及び引張破断呼びひずみの測定によって評価した。表1,2に結果を示す。引張応力及び引張破断呼びひずみはJIS K7161に記載の方法に基づいて測定した。装置として、オートグラフ試験機AGS-X(島津製作所製)を使用し、引張試験速度は50mm/分とした。バージン樹脂(バージンPE又はバージンPP)からなる試験片を別途準備し、これらの試験片の引張応力及び引張破断呼びひずみをそれぞれ測定した。引張応力及び引張破断呼びひずみは以下の基準に基づいて評価した。
 A:バージン樹脂の測定値の80%以上
 B:バージン樹脂の測定値の60%以上80%未満
 C:バージン樹脂の測定値の60%未満
The test piece was evaluated through the following steps (see FIG. 5).
(1) Preparation of Laminate of Polyethylene Resin Layer and Polypropylene Resin Layer (hereinafter referred to as "PE / PP Laminate") A PE / PP laminate as a material for recycled resin was formed by coextrusion. Coextrusion was carried out by a small extruder, and PE resin pellets and PP resin pellets were supplied to the small extruder, respectively. For examples, the amounts shown in Tables 1 and 2 (based on 100 parts by mass of the mass of the PE / PP laminate) of PE-PP block copolymers (in some cases, "PE-PP block copolymers (A)" in the drawings. ) ”Or“ (A) ”) was blended only in the polyethylene resin layer. The thickness of the polyethylene resin layer and the polypropylene resin layer was 20 μm, respectively.
(2) Preparation of Recycled Resin from PE / PP Laminate The PE / PP laminate was crushed, melt-kneaded using a twin-screw extruder, and extruded into pellets. As a result, a recycled resin was obtained.
(3) Preparation of test piece A test piece was obtained by blending a recycled resin and a virgin resin (virgin PE or virgin PP) at the ratios shown in Tables 1 and 2 and injection molding.
(4) Evaluation of test piece The strength and physical properties of the test piece were evaluated by measuring tensile stress and tensile nominal strain at break. The results are shown in Tables 1 and 2. Tensile stress and tensile breaking nominal strain were measured based on the method described in JIS K7161. An autograph tester AGS-X (manufactured by Shimadzu Corporation) was used as an apparatus, and the tensile test speed was 50 mm / min. Test pieces made of virgin resin (virgin PE or virgin PP) were separately prepared, and the tensile stress and tensile breaking nominal strain of these test pieces were measured, respectively. Tensile stress and tensile breaking nominal strain were evaluated based on the following criteria.
A: 80% or more of the measured value of virgin resin B: 60% or more and less than 80% of the measured value of virgin resin C: less than 60% of the measured value of virgin resin
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実験2(実施例13~26及び比較例7~14)
目的:ガスバリア性が求められる包材用の再生樹脂に含まれるポリエチレン樹脂とポリエチレン樹脂を相溶化させることにより、バージン樹脂の強度物性と比較して、再生樹脂とバージン樹脂の混合樹脂の強度物性がどの程度保持されるかを確認する。
Experiment 2 (Examples 13 to 26 and Comparative Examples 7-14)
Purpose: By compatibilizing the polyethylene resin contained in the recycled resin for packaging materials, which requires gas barrier properties, the strength of the mixed resin of the recycled resin and the virgin resin is improved compared to the strength of the virgin resin. Check how long it will be retained.
 以下の材料を準備した。
・ポリエチレン樹脂ペレット(PE樹脂ペレット):サンテックF1810(旭化成製、フィルムグレード)
・延伸ポリプロピレンフィルム(OPPフィルム):パイレンフィルムP2161(東洋紡製、厚さ25μm)
・ポリエチレン-ポリプロピレンブロック共重合体(PE-PPブロック共重合体)
・バージンポリエチレン(バージンPE):サンテックM7620(旭化成、射出成形グレード、低密度ポリエチレン)
・バージンポリプロピレン(バージンPP):ノバテックMA3(日本ポリプロ製、射出成形グレード)
The following materials were prepared.
-Polyethylene resin pellets (PE resin pellets): Suntech F1810 (Asahi Kasei, film grade)
-Stretched polypropylene film (OPP film): Pipe wrench film P2161 (manufactured by Toyobo, thickness 25 μm)
-Polyethylene-polypropylene block copolymer (PE-PP block copolymer)
-Virgin polyethylene (virgin PE): Suntech M7620 (Asahi Kasei, injection molding grade, low density polyethylene)
-Virgin polypropylene (virgin PP): Novatec MA3 (manufactured by Japan Polypropylene, injection molding grade)
 以下の工程を経て試験片の評価を行った(図6参照)。
(1)ガスバリア積層体の作製
 実施例については、PE樹脂ペレットにPE-PPブロック共重合体をブレンドし、小型押出機による押出によって厚さ25μmのPE単層フィルムを得た。比較例については、PE樹脂ペレットにPE-PPブロック共重合体をブレンドせず、小型押出機による押出によって厚さ25μmのPE単層フィルムを得た。他方、OPPフィルム(基材)のコロナ処理面側に、グラビアコートロール法にて、密着層を0.1g/mの塗布量で硬化させた。次いで、電子ビーム式真空蒸着法により、酸素を導入しながらアルミニウムを蒸発させ、AlOx蒸着層(厚さ10nm)を密着層の表面上に形成した。次いで、AlOx蒸着層の表面上にガスバリア性被覆層を0.3g/mの塗布量で形成した。ガスバリア性被覆層の表面上に上記単層フィルムを二液型の接着剤を用いてドライラミネート法によって貼った。これにより、実施例については、OPP(25μm)/密着層/AlOx蒸着層(厚さ10nm)/ガスバリア性被覆層/接着層(5μm)/PE-PPブロック共重合体含有PE単層フィルム(25μm)の構成を有するガスバリア積層体を得た。比較例については、OPP(25μm)/密着層/AlOx蒸着層(厚さ10nm)/ガスバリア性被覆層/接着層(5μm)/PE単層フィルム(25μm)の構成を有するガスバリア積層体を得た。なお、表3,4に示すPE-PPブロック共重合体の量は、PE/PPガスバリア積層体の合計質量100質量部を基準としたものである。
The test piece was evaluated through the following steps (see FIG. 6).
(1) Preparation of Gas Barrier Laminated Form For Examples, a PE-PP block copolymer was blended with PE resin pellets and extruded with a small extruder to obtain a PE single-layer film having a thickness of 25 μm. As for the comparative example, a PE-PP block copolymer was not blended with the PE resin pellets, and a PE single-layer film having a thickness of 25 μm was obtained by extrusion using a small extruder. On the other hand, the adhesion layer was cured on the corona-treated surface side of the OPP film (base material) by a gravure coat roll method at a coating amount of 0.1 g / m 2. Next, aluminum was evaporated while introducing oxygen by an electron beam type vacuum vapor deposition method to form an AlOx vapor deposition layer (thickness 10 nm) on the surface of the adhesion layer. Next, a gas barrier coating layer was formed on the surface of the AlOx thin-film deposition layer at a coating amount of 0.3 g / m 2. The above-mentioned single-layer film was attached on the surface of the gas barrier coating layer by a dry laminating method using a two-component adhesive. As a result, in the examples, OPP (25 μm) / adhesion layer / AlOx vapor deposition layer (thickness 10 nm) / gas barrier coating layer / adhesive layer (5 μm) / PE-PP block copolymer-containing PE single layer film (25 μm). ) Was obtained. As a comparative example, a gas barrier laminate having a composition of OPP (25 μm) / adhesion layer / AlOx vapor deposition layer (thickness 10 nm) / gas barrier coating layer / adhesive layer (5 μm) / PE single layer film (25 μm) was obtained. .. The amount of the PE-PP block copolymer shown in Tables 3 and 4 is based on 100 parts by mass of the total mass of the PE / PP gas barrier laminate.
(実施例14,21及び比較例7,11)
 ガスバリア性を付与するための層(密着層/AlOx蒸着層/ガスバリア性被覆層)がリサイクル適性に与える影響を評価するため、これらの層を有しない積層体を作製した。すなわち、実施例については、OPP(25μm)/接着層(5μm)/PE-PPブロック共重合体含有PE単層フィルムを作製した。比較例については、OPP(25μm)/接着層(5μm)/PE単層フィルムを作製した。
(Examples 14 and 21 and Comparative Examples 7 and 11)
In order to evaluate the influence of the layers for imparting gas barrier properties (adhesive layer / AlOx vapor deposition layer / gas barrier coating layer) on the recyclability, a laminate having no of these layers was prepared. That is, for Examples, an OPP (25 μm) / adhesive layer (5 μm) / PE-PP block copolymer-containing PE single-layer film was prepared. For the comparative example, OPP (25 μm) / adhesive layer (5 μm) / PE single layer film was prepared.
(2)PE/PP積層体から再生樹脂の作製
 (1)で作製した積層体を破砕後、二軸押出機を用いて溶融混練し、ペレット状に押し出した。これにより、再生樹脂を得た。
(3)試験片の作製
 再生樹脂と、バージン樹脂(バージンPE又はバージンPP)とを表3,4に示す割合でブレンドし、射出成形することによって試験片を得た。(4)試験片の評価は実験1と同様に実施した。
(2) Preparation of Recycled Resin from PE / PP Laminate The laminate prepared in (1) was crushed, melt-kneaded using a twin-screw extruder, and extruded into pellets. As a result, a recycled resin was obtained.
(3) Preparation of test piece A test piece was obtained by blending a recycled resin and a virgin resin (virgin PE or virgin PP) at the ratios shown in Tables 3 and 4 and injection molding. (4) The evaluation of the test piece was carried out in the same manner as in Experiment 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
実験3(ガスバリア性の評価)
 実施例19及び比較例10に係るガスバリア積層体の酸素透過度及び水蒸気透過度を測定した。
<酸素透過度の測定>
  測定法:JIS K7126、B法(等圧法)
  装置:Modern Control社製 OXTRAN 2/20
  温度:30℃
  相対湿度:70%
<水蒸気透過度の測定>
  測定法:JIS K7126、B法(等圧法)
  装置:Modern Control社製 PERMATRAN 3/33
  温度:40℃
  相対湿度:90%
Experiment 3 (evaluation of gas barrier property)
The oxygen permeability and the water vapor transmission rate of the gas barrier laminate according to Example 19 and Comparative Example 10 were measured.
<Measurement of oxygen permeability>
Measurement method: JIS K7126, B method (isopressure method)
Equipment: OXTRAN 2/20 manufactured by Modern Control
Temperature: 30 ° C
Relative humidity: 70%
<Measurement of water vapor transmission rate>
Measurement method: JIS K7126, B method (isopressure method)
Equipment: PERMATRAN 3/33 manufactured by Modern Control
Temperature: 40 ° C
Relative humidity: 90%
 実施例19及び比較例10のガスバリア積層体の酸素透過度はいずれも約3cc/m・day・atmであった。実施例19及び比較例10のガスバリア積層体の水蒸気透過度はいずれも約0.6g/m・dayであった。これらの結果から、ガスバリア積層体におけるPE-PPブロック共重合体はガスバリア性に影響しないことが確認された。 The oxygen permeability of the gas barrier laminates of Example 19 and Comparative Example 10 was about 3 cc / m 2 , day, and atm. Any water vapor permeability of the gas barrier laminates of Examples 19 and Comparative Example 10 was about 0.6g / m 2 · day. From these results, it was confirmed that the PE-PP block copolymer in the gas barrier laminate does not affect the gas barrier property.
 本開示によれば、リサイクル適性に優れ且つ再生材料としてバージン樹脂と併用されてもバージン樹脂が単独で使用された物品と比較して十分な強度物性が維持されている物品を作製するのに有用な積層体が提供される。また、本開示によれば、この積層体から得られる再生樹脂組成物及びこれを含む物品、並びに積層体のリサイクル方法が提供される。 According to the present disclosure, it is useful for producing an article having excellent recyclability and maintaining sufficient strength and physical properties as compared with an article in which the virgin resin is used alone even when used in combination with a virgin resin as a recycled material. Laminates are provided. Further, the present disclosure provides a recycled resin composition obtained from this laminate, an article containing the same, and a method for recycling the laminate.
1…第一の層、2…第二の層、1a…ポリエチレン樹脂、1b…PE-PPブロック共重合体、10…積層体、15…接着層、20…ガスバリア機能層、21…基材、22…密着層、23…蒸着層、25…ガスバリア性被覆層、30,40…ガスバリア積層体 1 ... 1st layer, 2 ... 2nd layer, 1a ... polyethylene resin, 1b ... PE-PP block copolymer, 10 ... laminated body, 15 ... adhesive layer, 20 ... gas barrier functional layer, 21 ... base material, 22 ... Adhesive layer, 23 ... Vapor deposition layer, 25 ... Gas barrier coating layer, 30, 40 ... Gas barrier laminate

Claims (9)

  1.  ポリエチレン樹脂からなる第一の層と、
     ポリプロピレン樹脂からなる第二の層と、
    を備える積層構造を有する積層体において、
     前記第一の層及び前記第二の層の少なくとも一方が、前記ポリエチレン樹脂又は前記ポリプロピレン樹脂と相溶するポリエチレン-ポリプロピレンブロック共重合体を含む、積層体。
    The first layer of polyethylene resin and
    A second layer of polypropylene resin and
    In a laminated body having a laminated structure including
    A laminate in which at least one of the first layer and the second layer contains the polyethylene resin or a polyethylene-polypropylene block copolymer compatible with the polypropylene resin.
  2.  前記第一の層と前記第二の層の合計質量を100質量部とすると、前記ポリエチレン-ポリプロピレンブロック共重合体の含有量が1~40質量部である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the content of the polyethylene-polypropylene block copolymer is 1 to 40 parts by mass, where the total mass of the first layer and the second layer is 100 parts by mass.
  3.  ガスバリア性を有する蒸着層と、
     ガスバリア性被覆層と、
    を更に備え、
     前記ガスバリア性被覆層が水溶性高分子と、金属アルコキシド又はその加水分解物とを含む、請求項1又は2に記載の積層体。
    A thin-film deposition layer with gas barrier properties and
    Gas barrier coating layer and
    Further prepare
    The laminate according to claim 1 or 2, wherein the gas barrier coating layer contains a water-soluble polymer and a metal alkoxide or a hydrolyzate thereof.
  4.  前記積層体と前記蒸着層の間に密着層を更に備える、請求項3に記載の積層体。 The laminate according to claim 3, further comprising an adhesion layer between the laminate and the vapor-deposited layer.
  5.  前記蒸着層は、Al及びSiの少なくとも一方の元素を含む、請求項3又は4に記載の積層体。 The laminate according to claim 3 or 4, wherein the vapor-deposited layer contains at least one element of Al and Si.
  6.  請求項1~5のいずれか一項に記載の積層体を溶融混練して得られる再生樹脂組成物。 A recycled resin composition obtained by melt-kneading the laminate according to any one of claims 1 to 5.
  7.  請求項6に記載の再生樹脂組成物を含む物品。 An article containing the recycled resin composition according to claim 6.
  8.  請求項1~5のいずれか一項に記載の積層体の破砕物を作製する工程と、
     前記破砕物の溶融混練物を作製する工程と、
     前記溶融混練物から再生樹脂組成物を作製する工程と、
     ポリエチレン樹脂及びポリプロピレン樹脂の少なくとも一方のバージン樹脂と、前記再生樹脂組成物とを混合して樹脂組成物を得る工程と、
    を含む、積層体のリサイクル方法。
    A step of producing a crushed product of the laminate according to any one of claims 1 to 5.
    The step of producing the melt-kneaded product of the crushed product and
    A step of preparing a recycled resin composition from the melt-kneaded product, and
    A step of mixing at least one virgin resin of polyethylene resin and polypropylene resin with the recycled resin composition to obtain a resin composition.
    Recycling methods for laminates, including.
  9.  前記樹脂組成物における前記再生樹脂組成物の含有量は、前記樹脂組成物の質量基準で70質量%以下である、請求項8に記載の積層体のリサイクル方法。 The method for recycling a laminate according to claim 8, wherein the content of the recycled resin composition in the resin composition is 70% by mass or less based on the mass of the resin composition.
PCT/JP2020/046379 2019-12-16 2020-12-11 Laminate and method for recycling same, and recycled resin composition and article containing same WO2021125100A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-226634 2019-12-16
JP2019226634A JP2023007518A (en) 2019-12-16 2019-12-16 Laminate and recycling method thereof, and regenerated resin composition and articles including the same

Publications (1)

Publication Number Publication Date
WO2021125100A1 true WO2021125100A1 (en) 2021-06-24

Family

ID=76478655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046379 WO2021125100A1 (en) 2019-12-16 2020-12-11 Laminate and method for recycling same, and recycled resin composition and article containing same

Country Status (2)

Country Link
JP (1) JP2023007518A (en)
WO (1) WO2021125100A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074683A1 (en) * 2021-10-28 2023-05-04 凸版印刷株式会社 Gas-barrier film and packaging material
WO2023153327A1 (en) * 2022-02-14 2023-08-17 東レ株式会社 Polypropylene film, laminate, packaging material, packaged body, and method for manufacturing same
WO2024014451A1 (en) * 2022-07-12 2024-01-18 Toppanホールディングス株式会社 Gas barrier film and barrier laminate

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294748A (en) * 1987-11-12 1989-11-28 Mitsui Petrochem Ind Ltd Production of resin composition
JPH0740517A (en) * 1993-05-24 1995-02-10 Mitsubishi Chem Corp Multilayered hollow molded object
JPH09227734A (en) * 1996-02-26 1997-09-02 Sumika Color Kk Colored master batch composition and compound for propylene-alpha-olefin block copolymer resin molded product
JP2000177043A (en) * 1998-12-14 2000-06-27 Mitsubishi Polyester Film Copp Biaxially oriented laminated film
JP2002524302A (en) * 1998-09-02 2002-08-06 コンヴィニエンス・フード・システムズ・べスローテン・フェンノートシャップ Packaging material having polyolefin foam layer
JP2003253111A (en) * 2002-03-06 2003-09-10 Teijin Chem Ltd Resin composition, laminate-molded article and recycling method
JP2004169005A (en) * 2002-11-05 2004-06-17 Toray Ind Inc Method for recycling laminated film and recycled product
JP2006008160A (en) * 2004-06-24 2006-01-12 Nissan Motor Co Ltd Multilayer container
JP2007508972A (en) * 2003-10-27 2007-04-12 シーエフエス・ケンプテン・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Packaging material with foamed polyolefin layer
JP2009132028A (en) * 2007-11-30 2009-06-18 Kyoraku Co Ltd Plastic molding with skin, manufacturing method therefor, and recovery method therefor
JP2009184294A (en) * 2008-02-08 2009-08-20 Mitsui Chemicals Inc Mat-like stretched laminate film
JP2013006313A (en) * 2011-06-23 2013-01-10 Teijin Dupont Films Japan Ltd Oriented laminate polyester film and method of manufacturing the same
JP2013129756A (en) * 2011-12-21 2013-07-04 Sekisui Techno Seikei Kk Method for producing modified polypropylene-based resin composition, method for producing polypropylene-based resin molded article, and polypropylene-based resin molded article obtained by the same
JP2016221864A (en) * 2015-06-01 2016-12-28 凸版印刷株式会社 Gas barrier laminate
JP2018127637A (en) * 2012-10-05 2018-08-16 東洋紡株式会社 Self-adhesive surface protective film

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294748A (en) * 1987-11-12 1989-11-28 Mitsui Petrochem Ind Ltd Production of resin composition
JPH0740517A (en) * 1993-05-24 1995-02-10 Mitsubishi Chem Corp Multilayered hollow molded object
JPH09227734A (en) * 1996-02-26 1997-09-02 Sumika Color Kk Colored master batch composition and compound for propylene-alpha-olefin block copolymer resin molded product
JP2002524302A (en) * 1998-09-02 2002-08-06 コンヴィニエンス・フード・システムズ・べスローテン・フェンノートシャップ Packaging material having polyolefin foam layer
JP2000177043A (en) * 1998-12-14 2000-06-27 Mitsubishi Polyester Film Copp Biaxially oriented laminated film
JP2003253111A (en) * 2002-03-06 2003-09-10 Teijin Chem Ltd Resin composition, laminate-molded article and recycling method
JP2004169005A (en) * 2002-11-05 2004-06-17 Toray Ind Inc Method for recycling laminated film and recycled product
JP2007508972A (en) * 2003-10-27 2007-04-12 シーエフエス・ケンプテン・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Packaging material with foamed polyolefin layer
JP2006008160A (en) * 2004-06-24 2006-01-12 Nissan Motor Co Ltd Multilayer container
JP2009132028A (en) * 2007-11-30 2009-06-18 Kyoraku Co Ltd Plastic molding with skin, manufacturing method therefor, and recovery method therefor
JP2009184294A (en) * 2008-02-08 2009-08-20 Mitsui Chemicals Inc Mat-like stretched laminate film
JP2013006313A (en) * 2011-06-23 2013-01-10 Teijin Dupont Films Japan Ltd Oriented laminate polyester film and method of manufacturing the same
JP2013129756A (en) * 2011-12-21 2013-07-04 Sekisui Techno Seikei Kk Method for producing modified polypropylene-based resin composition, method for producing polypropylene-based resin molded article, and polypropylene-based resin molded article obtained by the same
JP2018127637A (en) * 2012-10-05 2018-08-16 東洋紡株式会社 Self-adhesive surface protective film
JP2016221864A (en) * 2015-06-01 2016-12-28 凸版印刷株式会社 Gas barrier laminate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074683A1 (en) * 2021-10-28 2023-05-04 凸版印刷株式会社 Gas-barrier film and packaging material
WO2023153327A1 (en) * 2022-02-14 2023-08-17 東レ株式会社 Polypropylene film, laminate, packaging material, packaged body, and method for manufacturing same
JP7355268B1 (en) 2022-02-14 2023-10-03 東レ株式会社 Polypropylene film, laminate, packaging material, packaging, and manufacturing method thereof
WO2024014451A1 (en) * 2022-07-12 2024-01-18 Toppanホールディングス株式会社 Gas barrier film and barrier laminate

Also Published As

Publication number Publication date
JP2023007518A (en) 2023-01-19

Similar Documents

Publication Publication Date Title
WO2021125100A1 (en) Laminate and method for recycling same, and recycled resin composition and article containing same
JP6670472B2 (en) Moistureproof film for building materials
JP2000233478A (en) Laminated film
JP2021094750A (en) Gas barrier laminate, and packaging material and paper container including the same
JP2010000743A (en) Gas barrier laminate
JP5351597B2 (en) Vacuum forming sheet
JP2021094751A (en) Gas barrier laminate, and packaging material and package body including the same
TWI729931B (en) Laminated body for fuel cell
CN111989598B (en) Light diffusion barrier film
JP2007126181A (en) Packaging material having ultraviolet ray cuttability
JP5892761B2 (en) Gas barrier laminate
JP3367391B2 (en) Evaporated film transparent laminate
JP2005349582A (en) Transparent gas barrier laminated film and lid material using the same
JP2019155687A (en) Decorative sheet and decorative member
JP2023072916A (en) Gas barrier laminate and recycling method thereof and recycled resin composition and article containing the same
JP2023070874A (en) Gas barrier laminate and recycling method thereof and recycled resin composition and article containing the same
JP2018167504A (en) Decorative sheet and metal decorative member and metal decorative plate using the same
KR101917162B1 (en) High-performance waterproofing film for waterproofing sheet, waterproofing sheet using the same and the manufacturing method thereof
JP2020040221A (en) Laminate
WO2023248610A1 (en) Gas-barrier film, layered product, and packaging material
JP5326847B2 (en) Transparent film having plasma resistance and transparent gas barrier film using the same
US20020048681A1 (en) Laminate of liquid crystalline polymer
JP2000246845A (en) Acrylic resin laminate, production thereof and laminated structure
KR102167086B1 (en) Internal films of container main body made of synthetic resin and manufacturing method thereof
JP2007069456A (en) Gas-barrier film laminate having heating treatment resistance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP