WO2021125072A1 - Valve timing control device for internal combustion engine - Google Patents

Valve timing control device for internal combustion engine Download PDF

Info

Publication number
WO2021125072A1
WO2021125072A1 PCT/JP2020/046203 JP2020046203W WO2021125072A1 WO 2021125072 A1 WO2021125072 A1 WO 2021125072A1 JP 2020046203 W JP2020046203 W JP 2020046203W WO 2021125072 A1 WO2021125072 A1 WO 2021125072A1
Authority
WO
WIPO (PCT)
Prior art keywords
lock pin
control device
valve timing
timing control
internal combustion
Prior art date
Application number
PCT/JP2020/046203
Other languages
French (fr)
Japanese (ja)
Inventor
達也 河原
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to JP2021565542A priority Critical patent/JPWO2021125072A1/ja
Priority to CN202080088595.4A priority patent/CN114846224A/en
Publication of WO2021125072A1 publication Critical patent/WO2021125072A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive

Definitions

  • the present invention relates to a valve timing control device for a hydraulic internal combustion engine.
  • Patent Document 1 As a conventional valve timing control device for an internal combustion engine, for example, there is a vane type device described in Patent Document 1 below.
  • a lock pin accommodating hole is formed through a wide vane of a vane rotor rotatably arranged inside the housing along the rotation axis direction.
  • the lock pin is slidably accommodated in the lock pin accommodating hole.
  • a lock hole into which the tip end portion of the lock pin can be inserted is provided on the inner side surface of the wall portion on the rear end side of the housing.
  • a communication groove is formed for communicating the opening on the rear end side of the lock pin accommodating hole and the through hole in the center of the front plate. ing.
  • This communication groove is designed to discharge back pressure due to the movement of the lock pin and hydraulic oil and air leaked from between the outer peripheral surface of the lock pin and the inner peripheral surface of the lock pin accommodating hole.
  • the communication groove described in Patent Document 1 extends radially inward from the opening edge of the rear end of the lock pin accommodating hole, and the tip portion communicates with the through hole of the front plate in the axial direction in a crank shape. It has become like. Therefore, in this communication groove, the entire passage length becomes long, the flow resistance of the hydraulic oil or the like becomes large, and the discharge property of the hydraulic oil may decrease and stay in the passage. As a result, the moving speed of the lock pin in the retracting direction may decrease, and the valve timing control accuracy may deteriorate.
  • the present invention has been devised in view of the above-mentioned conventional technical problems, and by improving the discharge of air and hydraulic oil from the lock pin accommodating hole and suppressing a decrease in the moving speed of the lock pin, the valve timing
  • the purpose is to improve the control accuracy.
  • the housing has an open portion that is open to the outside at a position axially opposite to the lock recess.
  • the lock pin accommodating hole has an opening at the end on the other end side in the axial direction of the lock pin to release back pressure.
  • the innermost portion of the opening in the radial direction about the rotation axis of the vane rotor overlaps the opening in the rotation axis direction of the vane rotor.
  • FIG. 5 is a cross-sectional view taken along the line AA of FIG. 1 showing a state in which the vane rotor provided in the present embodiment is rotated to a position of the most advanced angle phase.
  • FIG. 5 is a cross-sectional view taken along the line AA of FIG. 1 showing a state in which the vane rotor is held at a rotational position in an intermediate phase.
  • FIG. 4 is a cross-sectional view taken along the line BB of FIG.
  • FIG. 7 (A) is a view taken along the arrow C in FIG. 6, and (B) is an enlarged view of part D in FIG. 7 (A). It is an enlarged view which shows the E part of FIG. 6 schematically. It is sectional drawing which shows the lock mechanism when the vane rotor is in the relative rotation position of the most advanced angle. It is sectional drawing which shows the lock mechanism when the vane rotor is further rotated to the retard side. It is sectional drawing which shows the lock mechanism when the vane rotor is further rotated to the retard side. It is sectional drawing which shows the lock mechanism when the vane rotor further rotates to the retard side and becomes an intermediate lock position. It is an enlarged view of the part D of FIG. 7A which shows the 2nd Embodiment of this invention. It is an enlarged view of the part D of FIG. 7A which shows the 3rd Embodiment of this invention.
  • FIG. 1 is an overall configuration diagram showing a first embodiment of the valve timing control device according to the present invention
  • FIG. 2 is an exploded perspective view of each component of the valve timing control device according to the present embodiment
  • FIG. 3 is provided in the present embodiment.
  • FIG. 4 is a state of AA of FIG.
  • FIG. 5 is a sectional view taken along line AA of FIG. 1 showing a state in which the vane rotor is rotated to the position of the most retarded phase.
  • the valve timing control device includes a sprocket 1 which is a drive rotating body which is rotationally driven by a crankshaft of an engine via a timing chain, and a camshaft 2 on the exhaust valve side which is provided so as to be rotatable relative to the sprocket 1. , A phase changing mechanism 3 arranged between the sprocket 1 and the camshaft 2 to convert the relative rotation phases of the two 1 and 2, and a first hydraulic circuit 4 for operating the phase changing mechanism 3. I have.
  • the sprocket 1 has an annular sprocket body 5 and a gear portion 6 that is integrally provided at one end of the outer circumference of the sprocket body 5 and around which a timing chain is wound.
  • the sprocket body 5 is integrally formed of a hard steel material and is configured as a rear plate that closes the rear end opening of the housing, which will be described later. Further, the sprocket body 5 is formed with a support hole 5a rotatably supported on the outer periphery of the vane rotor 9, which will be described later, at the center position. Further, a plurality of (four in this embodiment) female screw holes 5b are formed at predetermined positions in the circumferential direction of the outer peripheral portion of the sprocket body 5, and the camshaft 2 on the exhaust valve side is attached to a cylinder head (not shown).
  • cam shaft 2 is formed with a female screw hole 2b into which the cam bolt 8 is screwed in the direction of the internal axial center of the one end portion 2a in the direction of the rotation axis.
  • the phase changing mechanism 3 is fixed by a housing 7 integrally bolted to the sprocket 1 and a cam bolt 8 screwed into the female screw hole 2b of the camshaft 2, and the housing 7 is fixed. It is partitioned by a vane rotor 9 which is a driven rotating body housed so as to be relatively rotatable inside, and a plurality of (four in this embodiment) shoes 10a to 10d and a vane rotor 9 which are provided on the inner peripheral surface of the housing body 7a described later. It is provided with a plurality of (four in the present embodiment) retard angle hydraulic chambers 11a to 11d and advance angle hydraulic chambers 12a to 12d, which are operating chambers.
  • the housing 7 is a housing body 7a formed in a cylindrical shape by a sintered metal material obtained by compressing and sintering metal powder, and a front plate which is a plate member that closes the front end opening of the housing body 7a in the rotation axis direction. It has 13 and the sprocket body 5 as a rear plate that closes the rear end opening of the housing body 7a.
  • the housing body 7a is integrally provided with the four shoes 10a to 10d protruding inward at substantially equal intervals in the circumferential direction of the inner peripheral surface.
  • Each of the shoes 10a to 10d is formed in a substantially trapezoidal shape when viewed from the front, and a bolt insertion hole 10e is formed inside each of the shoes 10a to 10d in the direction of the rotation axis of the housing 7.
  • the two adjacent first and second shoes 10a and 10b are formed to have a circumferential width larger than that of the other third and fourth shoes 10c and 10d.
  • the first shoe 10a is integrally provided with a first convex wall 10f on the left side surface in FIG. 3 with which one first vane 16a abuts from the clockwise rotation direction.
  • the second shoe 10b is integrally provided with a second convex wall 10g on the right side surface in FIG. 3 with which the third vane 16c abuts from the counterclockwise rotation direction.
  • a concave groove 7c for positioning is provided on the outer peripheral surface of the first shoe 10a of the housing body 7a.
  • a positioning pin 5c provided on the sprocket body 5 is inserted into the groove 7c from the direction of the rotation axis to position the housing body 7a and the sprocket body 5.
  • the front plate 13 is formed, for example, by press-molding an iron-based metal plate into a disk shape, and a through hole 13a is formed at a central position which is an inner peripheral portion. Further, the front plate 13 is formed with a plurality of (four in the present embodiment) bolt insertion holes 13b penetrating the outer peripheral portions at equidistant positions in the circumferential direction. An annular counterbore portion 13c is formed at the front end opening edge of each of the bolt insertion holes 13b.
  • first and second open grooves 13A and 13B which are open portions (recesses) are provided.
  • the first and second open grooves 13A and 13B are arranged so as to face each other at positions of substantially 180 ° in the circumferential direction of the through holes 13a, and each is formed in an arc concave shape long in the circumferential direction. That is, the open grooves 13A and 13B are notched in an arcuate groove shape from the inner peripheral surface of the through hole 13a toward the outer side in the radial direction of the front plate 13.
  • each bolt 14 is inserted into each bolt insertion hole 13b and each bolt insertion hole 10e, and is screwed into each female screw hole 5b to integrally connect the three parties 5, 7a, and 13 from the rotation axis direction. It is designed to do.
  • the vane rotor 9 is integrally formed of a sintered metal material obtained by compressing and sintering metal powder, and the rotor 15 is fixed to one end 2a of the camshaft 2 by a cam bolt 8 and the outer peripheral surface of the rotor 15. It has a plurality of (four in this embodiment) first to fourth vanes 16a to 16d, which are radially outwardly projected at approximately 90 ° equidistant positions in the circumferential direction. ..
  • the rotor 15 is formed in a substantially cylindrical shape long in the rotation axis direction, and a cylindrical protruding portion 15a having a small step diameter is integrally provided at the front end portion on the front plate 13 side. Further, the rotor 15 is integrally provided with a cylindrical support portion 15b having a small step diameter extending in the two directions of the camshaft at the rear end portion on the sprocket 1 side.
  • the rotor 15 is provided with a relatively large-diameter fitting hole 15c into which the cam bolt 8 and the passage component 37 described later are fitted from the front end side in the internal axial direction.
  • a cam bolt insertion hole 15e through which the shaft portion 8b of the cam bolt 8 is inserted is formed through the bottom wall portion 15d on the support portion 15b side of the fitting hole 15c.
  • the outer peripheral surface of the protruding portion 15a is inserted into the inner peripheral surface of the through hole 13a of the front plate 13 in a non-contact state, and a tapered surface 15f whose diameter is expanded outward is formed on the inner peripheral surface of the tip.
  • the outer peripheral portion on the front plate 13 side in the rotation axis direction is bearing-fitted into the support hole 5a of the sprocket body 5, and the entire sprocket 1 is rotatably supported.
  • a spiral spring 40 that urges the vane rotor 9 to rotate relative to the position shown in FIG. 3, that is, the advance angle side, is arranged on the outer periphery of the tip portion of the support portion 15b on the camshaft 2 side.
  • the inner end portion 40a in the winding direction is bent inward, and the spiral spring 40 is hooked from the circumferential direction to the retaining groove 15g formed in the support portion 15b.
  • the spiral spring 40 has an outer end portion in the winding direction bent outward and is hooked on a stop pin 41 attached to the outer surface of the sprocket body 5.
  • the spiral spring 40 is supported by a support pin 42 whose intermediate portion is fixed to the outer surface side of the sprocket body 5.
  • a fitting groove 15h in which the tip end portion of one end portion 2a of the camshaft 2 fits from the direction of the rotation axis is provided.
  • the rotor 15 has two first and second large diameter portions 15A at positions of the first vane 16a and the third vane 16c in the circumferential direction, that is, at a position of about 180 ° in the radial direction.
  • 15B is provided integrally.
  • the large diameter portions 15A and 15B are arranged point-symmetrically with respect to the rotation axis X of the rotor 15 and are formed in a substantially symmetrical shape.
  • the large diameter portions 15A and 15B are between the first and fourth shoes 10a and 10d and the second shoe and the third shoe 10b and 10c having opposite lengths in the circumferential direction including the first vane 16a described later. It is set to about 1/2 of the circumferential length.
  • the width length W of each of the large diameter portions 15A and 15B in each radial direction is set to be approximately 1 ⁇ 2 of the length of each of the hydraulic chambers 11a to 12d in the radial direction.
  • Each of the vanes 16a to 16b is arranged between the shoes 10a to 10d, and the first and first vanes 16a and 16b are placed on each side of the first vane 16a and the third vane 16c symmetrical to the first vane 16a.
  • Two large diameter portions 15A and 15B are integrally provided.
  • the second vane 16b and the fourth vane 16d project radially outward from the outer peripheral surface of the rotor 15 and are formed to have the same outer diameter as the first and third vanes 16a and 16c.
  • Sealing members 17a and 17b for sealing between the inner surface of the housing body 7a and the outer peripheral surface of the base of the rotor 15 are provided on the tip surfaces of the vanes 16a to 16d and the shoes 10a to 10d, respectively.
  • the retard hydraulic chambers 11a to 11d and the advance hydraulic chambers 12a to 12d each have four first communication holes 11e and second communication holes 12e formed substantially radially inside the rotor 15 corresponding to these.
  • the first hydraulic circuit 4 is communicated with each other via the first hydraulic circuit 4.
  • the first hydraulic circuit 4 basically selectively supplies or discharges hydraulic oil (flood control) to the retard and advance hydraulic chambers 11 and 12, and as shown in FIG. 1, each retard.
  • a retarded oil passage 18 that supplies and discharges oil pressure to the hydraulic chambers 11a to 11d via the first communication hole 11e, and supplies oil pressure to the advance hydraulic chambers 12a to 12d through the second communication hole 12e.
  • the advance angle oil passage 19 to be discharged, the oil pump 20 which is a fluid pressure supply source for selectively supplying the hydraulic oil to the respective oil passages 18 and 19, and the retard angle oil passage 18 depending on the engine operating state. It is provided with a first electromagnetic switching valve 21 for switching the flow path of the square oil passage 19.
  • the oil pump 20 is a general one such as a trochoid pump that is rotationally driven by a crankshaft of an engine.
  • each of the retard oil passage 18 and the advance oil passage 19 is connected to the passage hole of the first electromagnetic switching valve 21.
  • the other end side communicates with the retard angle hydraulic chambers 11a to 11d and the advance angle hydraulic chambers 12a to 12d via the passage component 37 and the like. That is, the other end side of each of the oil passages 18 and 19 is a passage portion 18a formed parallel to the axial direction in the passage constituent portion 37 inserted and held in the fitting hole 15c of the rotor 15 of the vane rotor 9.
  • the retard hydraulic chambers 11a to 11d and the advance hydraulic chambers 12a to 12d are communicated with each other through the 19a and the first and second communication holes 11e and 12e, respectively.
  • first hydraulic circuit 4 is partially linked to the second hydraulic circuit 32 that supplies the hydraulic pressure for unlocking the lock mechanism, which will be described later.
  • the passage component 37 is configured as a non-rotating part with the outer end fixed to a chain cover (not shown). Further, in the passage constituent portion 37, in addition to the passage portions 18a and 19a in the internal axial direction, an unlock passage portion 32a of the second hydraulic circuit 32 for unlocking the lock mechanism described later is formed.
  • the first electromagnetic switching valve 21 is a proportional valve having 4 ports and 3 positions, and a spool valve provided in the valve body is moved in the axial direction by a control unit (ECU) (not shown). It is designed to move.
  • the spool valve communicates with the discharge passage 20a of the oil pump 20 and one of the oil passages 18 and 19 according to its moving position, and at the same time communicates with the other oil passages 18 and 19 and the drain passage 22. It has become.
  • the spool valve is held at an intermediate moving position in the axial direction to block all communication between the oil passages 18 and 19 and the discharge passages 20a and the drain passages 22, and the hydraulic chambers 11 and 12 respectively.
  • the hydraulic oil is sealed inside.
  • the suction passage 20b and the drain passage 22 of the oil pump 20 communicate with each other in the oil pan 23. Further, on the downstream side of the discharge passage 20a of the oil pump 20, a main oil gallery M / G that supplies lubricating oil to a sliding portion of an internal combustion engine or the like communicates with the downstream side. A filtration filter 50 is provided between the discharge passage 20a and the M / G. Further, the oil pump 20 is provided with a flow rate control valve 51 that discharges excess hydraulic oil discharged from the discharge passage 20a to the oil pan 23 to control the flow rate to an appropriate level.
  • the ECU is a cam angle sensor in which the computer detects the crank angle sensor (engine rotation speed detection), air flow meter, engine water temperature sensor, engine temperature sensor, throttle valve opening sensor, and current rotation phase of the camshaft 2, which are not shown in the figure.
  • the operation of the engine is controlled based on the information signals from various sensors such as.
  • the ECU outputs a control pulse current to each coil of the first electromagnetic switching valve 21 and the second electromagnetic switching valve 36 described later to control the moving position of each spool valve, thereby switching and controlling each passage. It is designed to do.
  • the vane rotor 9 is placed at an intermediate rotation position between the rotation position on the most advanced angle side (position in FIG. 3) and the rotation position on the most retarded angle side (position in FIG. 5) with respect to the housing 7.
  • a locking mechanism for holding at (the position shown in FIG. 4) is provided.
  • FIG. 6 is a cross-sectional view taken along the line BB of FIG. 4
  • FIG. 7 (A) is a view taken along the line C of FIG. 6
  • FIG. 7 (B) is an enlarged view of part D of FIG. 7 (A)
  • FIG. 8 is FIG. An enlarged view schematically showing the part E
  • FIG. 9 is a cross-sectional view showing a locking mechanism when the vane rotor is in the relative rotation position of the most advanced angle
  • FIG. 10 shows a locking mechanism when the vane rotor is further rotated to the retard side.
  • FIG. 11 is a cross-sectional view showing a cross-sectional view showing a locking mechanism when the vane rotor is further rotated to the retard side
  • FIG. 12 is a cross-sectional view showing a locking mechanism when the vane rotor is further rotated to the retard side to reach an intermediate lock position. It is a figure.
  • the lock mechanism is composed of two mechanisms, and is two first lock recesses provided at predetermined positions in the circumferential direction of the inner side surface 5d of the sprocket body 5.
  • the first and second lock pins 28 are two lock members that are slidably provided in the first and second lock pin accommodating holes 26 and 27 and can be inserted and removed (inserted and removed) into the lock holes 24 and 25, respectively.
  • a second hydraulic circuit 32 that releases the inserted state by moving the lock pins 28 and 29 backward with respect to the lock holes 24 and 25 against the spring forces of the springs 30 and 31 (see FIG. 1). It is mainly composed of and.
  • the first lock hole 24 is formed in the shape of an arcuate oblong hole extending in the circumferential direction of the sprocket body 5, and is located at a relative rotation position substantially intermediate between the most retarded angle side and the most advanced angle side of the vane rotor 9 on the inner side surface 5d. It is formed. Further, the first lock hole 24 is formed in a three-step step shape in which the bottom surface thereof is gradually lowered from the advance angle side to the retard angle side with the inner side surface 5d as the uppermost step, and this becomes a guide mechanism (ratchet mechanism). It has become.
  • the sprocket body 5 is formed in a stepped shape in which the inner side surface 5d is set as the uppermost step, and the first bottom surface 24a on the advance angle side and the second bottom surface 24b on the retard angle side are gradually lowered.
  • the first stepped surface 24c on the first bottom surface 24a side is a wall surface that rises vertically.
  • the second stepped surface 24d on the second bottom surface 24b side is also a wall surface that rises vertically.
  • the first lock pin 28 fitted into the bottom surfaces 24a and 24b has the first and second stepped surfaces 24c, when the tip end portion 28a sequentially descends the bottom surfaces 24a to 24b toward the retard side in a stepwise manner.
  • 24d regulates movement in the opposite direction, that is, movement in the advance direction. Therefore, each of the bottom surfaces 24a and 24b functions as a one-way clutch (ratchet). Further, when the side edge of the tip portion 28a of the first lock pin 28 abuts on the third step surface 24e facing the second step surface 24d in the circumferential direction, further movement in the advance direction is restricted. It has become so.
  • the second lock hole 25 is arranged at a position approximately 180 ° in the circumferential direction with the first lock hole 24 on the inner side surface 5d of the sprocket body 5, and is located on the most retarded side of the vane rotor 9. It is formed at a relative rotation position approximately in the middle of the most advanced angle side. Further, the second lock hole 25 is formed in a circular shape in which the inner diameter of the bottom surface 25a, that is, the inner diameter of the inner peripheral surface 25b is slightly larger than the outer diameter of the tip portion 29a of the second lock pin 29. The depth of the second lock hole 25 from the inner surface 5d to the bottom surface 25a is set to be substantially the same as the depth of the first lock hole 24 from the inner surface 5d to the second bottom surface 24b.
  • the relationship between the relative formation positions of the first and second lock holes 24 and 25 is as shown in FIGS. 9 to 12. That is, as shown in FIGS. 9 to 11, the tip 28a of the first lock pin 28 is stepped from the inner side surface 5d of the sprocket body 5 to the first bottom surface 24a and the second bottom surface 24b of the first lock hole 24.
  • the second lock pin 29 is in a state where the tip surface of the tip portion 29a is still in contact with the inner side surface 5d of the sprocket body 5 in the state of being in contact with and slid. After that, as shown in FIG.
  • the inner peripheral edge of the tip portion 28a of the first lock pin 28 comes into contact with the third stepped surface 24e from the circumferential direction.
  • the tip portion 29a of the second lock pin 29 comes into contact with the inner end edge of the inner peripheral surface 25b of the second lock hole 25.
  • the vane rotor 9 is held at an intermediate position between the most advanced angle and the most retarded angle by restricting the relative rotation in the advance angle direction and the retard angle direction by the first lock pin 28 and the second lock pin 29.
  • the vane rotor 9 rotates relative to the predetermined advance angle side position to the retard angle side position, the first lock pin 28 is inserted and contacted from the inner side surface 5d to the first bottom surface 24a and the second bottom surface 24b in a stepwise manner. Subsequently, the second lock pin 29 is inserted into contact with the bottom surface 25a of the second lock hole 25.
  • the vane rotor 9 rotates relative to the retard angle direction while being restricted from rotating in the retard angle direction by a two-step ratchet action as a whole, and finally between the most retarded angle phase and the most advanced angle phase. It is held in the intermediate phase position.
  • the first and second lock pin accommodating holes 26 and 27 have one end 26a and 27a on the sprocket body 5 side and the other end 26b and 27b on the front plate 13 side, respectively.
  • the inner diameter of the sliding portion up to the vicinity is formed uniformly and uniformly.
  • first and second lock pin accommodating holes 26 and 27 are provided with openings 26c and 27c on the other end portions 26b and 27b, respectively.
  • the openings 26c and 27c are formed in a conical groove shape (mortar shape) whose diameter is expanded in the front plate 13 direction, and almost the entire front plate is formed at any relative rotation position of the vane rotor 9. It is in a state of being blocked by the inner surface of 13.
  • the innermost portions 26d and 27d in the radial direction overlap the first and second open grooves 13A and 13B from the rotation axis direction of the vane rotor 9. That is, the inner portions 26d and 27d communicate with the corresponding first and second open grooves 13A and 13B from the direction of the rotation axis.
  • the lock pin accommodating holes 26 and 27 are opened to the outside through the openings 26c and 27c and the opening grooves 13A and 13B. Further, these open grooves 13A and 13B and the respective openings 26c and 27c function as breathing holes. Therefore, the lock pins 28 and 29 can be smoothly slid in the lock pin accommodating holes 26 and 27.
  • the inner portions 26d and 27d are always in communication with the open grooves 13A and 13B at any of the relative rotation positions of the vane rotor 9.
  • first and second lock pins 28 and 29 are formed so that the outer diameters of the tip portions 28a and 29a are one size smaller than those of the rear end portion side.
  • First and second pressure receiving chambers 33a and 33b are formed between the outer circumferences of the tip portions 28a and 29a and the lock pin accommodating holes 26 and 27, respectively.
  • Each tip portion 28a, 29a is formed in a flat surface shape in which each tip surface can be brought into close contact with each bottom surface 24a, 24b of the first lock hole 24.
  • spring accommodating grooves 28e and 29e accommodating the first and second springs 30 and 31 are formed along the axial direction in the rear end portions excluding the tip portions 28a and 29a. Has been done.
  • the second hydraulic circuit 32 is a first and second release oil that communicates the first and second pressure receiving chambers 33a and 33b with the unlock passage portion 32a inside the rotor 15. Holes 34a and 34b are provided. The first and second release oil holes 34a and 34b communicate with the unlock passage portion 32a via an oil chamber 35 formed between the tip surface of the passage component 37 and the fitting hole 15c of the rotor 15. doing.
  • the lock release passage portion 32a is supplied with oil through the supply passage 35a branched from the discharge passage 20a of the oil pump 20, and the hydraulic oil is discharged through the discharge passage 35b branched from the drain passage 22. It has become. Further, between the unlocking passage portion 32a and the supply and discharge passages 35a and 35b, there is a second control valve that selectively switches between the unlocking passage portion 32a and the respective passages 35a and 35b according to the state of the engine. 2 An electromagnetic switching valve 36 is provided.
  • the first and second lock pins 28 and 29 are subjected to the first and second lock pins 28 and 29 against the spring forces of the springs 30 and 31, respectively, by the hydraulic pressure supplied to the inside. It is designed to be retracted from the lock holes 24 and 25 to release the respective inserted states.
  • the passage component 37 has a cylindrical tip portion inserted through the fitting hole 15c, and a plurality of annular rings formed at the front-rear position in the axial direction of the outer peripheral surface (four in the present embodiment). )
  • Four annular sealing members 39 that seal between the respective opening ends of the passage portions 18a and 19a and the unlocking passage portion 32a are fitted and fixed to the fitting groove.
  • the second electromagnetic switching valve 36 is a proportional valve having 4 ports and 3 positions, and is unlocked by a spool valve due to the control current (on-off) output from the ECU and the spring force of the internal valve spring. And the supply and discharge passages 35a and 35b are appropriately and selectively communicated with each other, and the unlock passage portion 32a and the drain passage 22 are communicated with each other.
  • the second electromagnetic switching valve 36 is also energized, the discharge passage 22a and the supply passage 35a are communicated with each other, and the discharge passage 35b is closed. Therefore, the release hydraulic pressure is supplied from the supply passage 35a to the pressure receiving chambers 33a and 33b via the unlock passage portion 32a and the release oil holes 34a and 34b. As a result, the pressure of the pressure receiving chambers 33a and 3b becomes high, the lock pins 28 and 29 move backward, and the tip portions 28a and 29a come out of the lock holes 24 and 25. As a result, the vane rotor 9 can freely rotate left and right.
  • the vane rotor 9 rotates relative to the housing 7 on the advance angle side (right rotation direction in the figure) as the internal pressure of each advance angle hydraulic chamber 12a to 12d increases, and the first vane 16a comes into contact with the first shoe 10a. Therefore, the vane rotor 9 is held on the most advanced angle side, and exhibits engine performance according to the operating state, for example, performance such as improvement of fuel efficiency.
  • the first electromagnetic switching valve 21 When the engine operating state changes, the first electromagnetic switching valve 21 is energized from the ECU, the discharge passage 20a and the retard oil passage 18 are communicated with each other, and the drain passage 22 and the advance angle oil passage 19 are communicated with each other. Therefore, while the hydraulic pressure is supplied to the retard hydraulic chambers 11a to 11d, the oil is discharged from the advance hydraulic chambers 12a to 12d. As a result, the internal pressure of the retard hydraulic chambers 11a to 11d rises to a high pressure, while the hydraulic oil in the advance hydraulic chambers 12a to 12d is discharged to a low pressure.
  • the second electromagnetic switching valve 36 is continuously energized, the discharge passage 22a, the supply passage 35a, and the unlock passage portion 32a are communicated with each other, and the communication between the unlock passage portion 32a and the discharge passage 35b is stopped. Be maintained.
  • the vane rotor 9 rotates relative to the housing 7 toward the retard side (counterclockwise rotation direction in the figure) as the internal pressure of each of the retard hydraulic chambers 11a to 11d increases.
  • the vane 16c comes into contact with the second shoe 10b. Therefore, the vane rotor 9 is held on the most retarded angle side, and exhibits functions such as improvement of engine performance, for example, output, according to the operating state.
  • the driving of the oil pump 20 is stopped and the energization from the ECU to the first electromagnetic switching valve 21 is stopped.
  • the spool valve moves in one direction in the axial direction by the spring force of the valve spring to communicate the drain passage 22 and the retard oil passage 18, and also communicate the discharge passage 20a and the advance oil passage 19. stop.
  • the vane rotor 9 rotates slightly to the retard side due to the alternating torque acting on the camshaft 2, especially the negative torque.
  • the tip end portion 28a of the first lock pin 28 abuts and fits from the inner side surface 5d of the sprocket body 5 to the first bottom surface 24a of the first lock hole 24.
  • the tip end portion 28a of the first lock pin 28 comes into contact with the first step surface 24c of the first bottom surface 24a and advances in the advance angle direction. Rotation to is regulated.
  • the tip portion 29a of the second lock pin 29 slides slightly on the inner side surface 5d toward the retard angle side.
  • the vane rotor 9 slightly rotates relative to the retard side according to the negative torque acting on the camshaft 2.
  • the first lock pin 28 moves from the first bottom surface 24a to the second bottom surface 24b so that the tip end portion 28a sequentially descends the stairs and comes into contact with the first lock pin 28.
  • the outer peripheral edge of the tip portion 28a of the first lock pin 28 is in contact with the second stepped surface 24d. Therefore, even if a positive torque acts to cause the vane rotor 9 to return to the advance angle side, its rotation is restricted by the first lock pin 28 (ratchet function).
  • the vane rotor 9 further rotates to the retard side as shown in FIG. Then, the tip portion 28a of the first lock pin 28 slides on the second bottom surface 24b in the advance angle direction, and the outer peripheral edge abuts on the third stepped surface 24e.
  • the tip portion 29a of the second lock pin 29 enters the second lock hole 25 while sliding the inner side surface 5d and abuts on the bottom surface 25a, and the outer peripheral edge of the tip portion 29a is the inner peripheral surface 25b.
  • the vane rotor 9 is held at an intermediate relative rotation phase position between the most retarded angle and the most advanced angle by the two locking mechanisms.
  • the closing timing of each exhaust valve is controlled to the retard side before the bottom dead center of the piston. Therefore, when the ignition switch is turned on when the engine is restarted, the compression ratio of the engine is increased, combustion is improved, and startability in cold weather is improved.
  • the startability can be improved by reducing the torque load at the time of starting the cold machine, and the vibration can be reduced and the exhaust emission performance can be improved.
  • the locking mechanism improves the holding property of the vane rotor 9 at the intermediate phase position, and the stepped ratchet mechanism of the first locking hole 24 always guides and moves the first lock pin 28 only in the retard direction. The certainty and stability of such a guiding action can be ensured.
  • a part of the enlarged diameter openings 26c and 27c formed in the other ends 26b and 27b of the first and second lock pin accommodating holes 26 and 27 penetrates the front plate 13. It communicates linearly with the first and second open grooves 13A and 13B provided in the hole 13a from the axial direction. Therefore, the hydraulic oil (lubricating oil), air, etc. that have flowed into the lock pin accommodating holes 26 and 27 can be quickly discharged to the atmosphere from the openings 26c and 27c through the opening grooves 13A and 13B. .. As a result, smooth sliding of the lock pins 28 and 29 can be obtained.
  • the passage length from the rear end of the lock pin accommodating hole to the outside is not long as in the conventional technique described above, but is sufficiently short, so that the flow resistance of the lubricating oil or air is reduced. Can be reduced, so that these can be quickly discharged to the outside.
  • the formation positions of the lock pin accommodating holes 26 and 27 can be made as close as possible to the center direction of the rotation axis of the vane rotor 9, that is, the inside of the vane rotor 9 (large diameter portions 15A and 15B) in the radial direction. Therefore, the openings 26c and 27c and the fixed open grooves 13A and 13B can be communicated with each other from the axial direction.
  • the first and second lock holes 24 and 25 are directly formed on the inner side surface 5d of the sprocket body 5 without using a thick hole component such as a sleeve in the radial direction. Therefore, the positions of the lock holes 24 and 25 can be moved toward the rotation center side of the sprocket body 5. As a result, the formation positions of the lock pin accommodating holes 26 and 27 can also be moved inward in the radial direction of the large diameter portions 15A and 15B.
  • the openings 26c and 27c can be linearly communicated with the opening grooves 13A and 13B of the through holes 13a having a fixed inner diameter of the front plate 13 from the axial direction. Therefore, it is possible to sufficiently shorten the passage length between the other ends 26b, 27b of the lock pin accommodating holes 26, 27 and the outside. As a result, the lubricating oil and air in the lock pin accommodating holes 26 and 27 can be efficiently discharged.
  • each of the lock pin accommodating holes 26 and 27 does not need to be excessively moved inward in the radial direction of the vane rotor 9.
  • a large passage area between the open grooves 13A and 13B can be obtained.
  • the lubricating oil and air in the lock pin accommodating holes 26 and 27 can be efficiently discharged.
  • the inner peripheral surfaces of the openings 26c and 27c have an enlarged conical shape, lubrication occurs when the lock pins 28 and 29 move backward in the lock pin accommodating holes 26 and 27. Since the escape space for oil, air, etc. becomes large, the lubricating oil and the like at the openings 26c and 27c are less likely to stay.
  • the inner peripheral surfaces of the openings 26c and 27c are formed in an enlarged conical shape, that is, in an outwardly inclined shape, lubricating oil or the like is easily discharged to the outside along the inclined surface.
  • each of the openings 26c and 27c has an enlarged diameter conical shape, good die punching property can be obtained when the vane rotor 9 is formed by sintering molding, so that the manufacturing work becomes easy. This cutting operation is also facilitated when the openings 26c and 27c are formed by cutting.
  • FIG. 13 shows a second embodiment of the present invention, in which the basic structure of the entire apparatus is the same as that of the first embodiment, but the shapes of the openings 26c and 27c of the lock pin accommodating holes 26 and 27 are changed. Is.
  • the openings 26c and 27c at the other ends 26b and 27b of the lock pin accommodating holes 26 and 27 are formed in a disk shape instead of a conical shape.
  • the inner diameters R of the openings 26c and 27c are formed to be relatively large, and are formed to be larger than the inner diameters of the lock pin accommodating holes 26 and 27.
  • the innermost portion in the radial direction overlaps the opening grooves 13A and 13B in the rotation axis direction of the vane rotor 9.
  • a part of the outer peripheral portion of each of the openings 26c and 27c including the innermost portion communicates with the outside through the through hole 13a and the opening grooves 13A and 13B from the axial direction.
  • FIG. 14 shows a third embodiment, and the basic structure of the entire apparatus is the same as that of the first embodiment, but the shapes of the openings 26c and 27c of the lock pin accommodating holes 26 and 27 are the same as those of the second embodiment. Is changed.
  • the openings 26c and 27c are not specially formed as in the first and second embodiments, but are formed as a part of the other ends 26b and 27b of the lock pin accommodating holes 26 and 27. There is. That is, the openings 26c and 27c are continuously integrated with the other ends 27b and 27b of the lock pin accommodating holes 26 and 27 formed straight along the axial direction, and therefore, the lock pin accommodating holes 26, It is formed to have the same inner diameter as the uniform inner diameter of 27.
  • each of the openings 26c and 27c the innermost portion in the radial direction overlaps the opening grooves 13A and 13B in the rotation axis direction of the vane rotor 9. Further, a part of the outer peripheral portion of each of the openings 26c and 27c including the innermost portion communicates with the outside through the through hole 13a and the opening grooves 13A and 13B from the axial direction.
  • this embodiment also has the same effects as those of the first and second embodiments, but in particular, the openings 26c and 27c are different from the first and second embodiments in that the lock pin accommodating holes 26, Since it has the same inner diameter as 27, it does not need to be specially formed, so that the manufacturing operation is easy.
  • the basic technical idea of the present invention is that the formation positions of the lock pin accommodating holes 26 and 27 can be located at the inner positions in the radial direction about the center of the rotation axis of the vane rotor 9 (large diameter portions 15A and 15B).
  • the other end portions 26b and 27b of the lock pin accommodating holes 26 and 27 are directly communicated with the outside (atmosphere) from the axial direction.
  • the openings 26c and 27c are formed in an enlarged conical shape or a disk shape, basically, the straight lock pin accommodating holes 26 and 27 of the third embodiment are formed. It is possible to achieve the object of the present invention by itself.
  • first and second opening grooves 13A and 13B were formed on the inner peripheral surface of the through hole 13a, and these are also the lock pin accommodating holes 26 and 27 (openings 26c and 27c). It was formed to improve communication with. That is, it is also possible to abolish the first opening grooves 13A and 13B and use the through hole 13a itself as an opening portion.
  • the shapes of the openings 26c and 27c are expanded conical shapes or disc shapes, but the shape is not limited to these shapes, and other irregular shapes such as many It may be a polygonal triangle or a quadrangle.
  • a part of the openings 26c and 27c only need to communicate with the through hole 13a of the front plate 13 from the axial direction, for example, a part of the openings 26c and 27c on the through hole 13a side. It is also possible to simply form an inclined groove.
  • lock mechanism that is, a lock pin accommodating hole, a lock pin, and a lock hole can be applied to one of each. is there.
  • valve timing control device is applied to the exhaust valve side, but it is also possible to apply the valve timing control device not only to the exhaust valve side but also to the intake valve side or both.
  • valve timing control device for the internal combustion engine based on the embodiment described above, for example, the one described below can be considered.
  • a rotational force from the crankshaft is transmitted, and a housing having a plurality of working chambers inside and a plurality of vanes for partitioning the plurality of working chambers are provided and fixed to the camshaft.
  • the housing has an open portion that is open to the outside at a position opposite to the lock recess in the axial direction.
  • the lock pin accommodating hole has an opening at the end on the other end side in the axial direction of the lock pin to release back pressure.
  • the innermost portion of the opening in the radial direction about the rotation axis of the vane rotor overlaps the opening in the rotation axis direction of the vane rotor.
  • the opening for releasing the back pressure overlaps the opening portion from the axial direction of the lock accommodating hole, and the overlapping portions communicate with each other along the axial direction.
  • Lubricating oil and air in the accommodation hole are discharged to the atmosphere from the opening through the opening. At this time, the discharge property of air and the like passing through the opening is improved.
  • the position where the lock pin accommodating hole is formed can be as close as possible to the center direction of the rotation axis of the vane rotor, that is, the inside in the radial direction of the vane rotor, the opening and the opening portion are communicated from the axial direction. be able to.
  • the lock pin accommodating hole has the opening and a sliding portion having the same inner diameter as the opening and to which the lock pin slides, and the opening has the inner diameter of the opening. It is formed by an annular groove portion larger than the sliding portion, and a part of the annular groove portion overlaps the open portion and the vane rotor in the rotation axis direction.
  • the annular groove portion increases the passage area communicating with the open portion even if the vane rotor is not excessively moved inward in the radial direction, so that lubricating oil, air, etc. can be sufficiently discharged.
  • the annular groove portion is formed in a conical shape, and the radius of one end on the open portion side is larger than the radius of the other end on the sliding portion side in the rotation axis direction of the vane rotor.
  • the annular groove portion is formed in a conical shape (mortar shape) having a wide open portion side, it can be molded together when the vane rotor is formed by, for example, sintering molding, so that the manufacturing operation can be performed. It will be easier. Also, cutting is easy.
  • the vane rotor is formed by sintering molding, and the inner peripheral surface of the groove is formed into an unprocessed conical surface.
  • the annular groove portion is formed in a conical shape (mortar shape) having a wide open portion side, the die-cutting property at the time of sintering molding of the vane rotor is improved, so that the molding process is easy. Become.
  • the housing has a tubular shape and has a housing body having at least one opening in the axial direction and a plate member closing one opening of the housing body, and the opening portion is the plate. It is provided on the inner peripheral edge of a through hole formed through the inner peripheral portion of the member.
  • the open portion is a recess recessed outward in the radial direction on the inner peripheral edge of the through hole of the plate member.
  • the concave portion when the plate member is formed by, for example, press molding, the concave portion can also be formed together, so that the forming operation of the concave portion becomes easy.
  • the vane rotor includes a rotor fixed to the camshaft, a large-diameter portion provided so as to extend radially outward from the outer circumference of the rotor, and a large-diameter portion extending radially outward from the large-diameter portion.
  • the lock pin accommodating hole is provided in the large diameter portion, and the large diameter portion is provided in the entire range in which the vane rotor rotates relative to the housing. It overlaps the open part in the axial direction.
  • the open portion is covered with a large diameter portion, so that the sealing performance of the side clearance is improved and the hydraulic oil in the working chamber leaks from the open portion to the outside. It becomes difficult.
  • the lock pin accommodating hole is provided at a position deviated inward in the radial direction from the center of the radial width centered on the rotation axis of the vane rotor in the large diameter portion.
  • the lock pin can be arranged radially inward as compared with the conventional case by providing the lock pin accommodating hole at a position deviated toward the rotation center side of the vane rotor in the large diameter portion.
  • the seal width between the working chamber and the lock pin accommodating hole is increased, and leakage of hydraulic oil from the working chamber can be suppressed.
  • the lock recess is formed directly on the inner surface of the housing.
  • the lock recess is formed directly on the housing without using a sleeve or the like, it is not necessary to consider the wall thickness width in the radial direction of the sleeve or the like. Therefore, the position where the lock recess is formed, in other words, the position where the lock pin accommodating hole is formed, can be set closer to the rotation axis of the vane rotor having a large diameter in the radial direction. On the other hand, they can be easily overlapped.
  • the annular groove portion has an irregular cross-sectional shape in the direction perpendicular to the axis.
  • the annular groove portion is formed in a stepped disk shape having a diameter larger than the inner diameter of the sliding portion of the lock pin accommodating hole.
  • FIG. 1 Another preferred embodiment is a valve timing control device for an internal combustion engine, which is a housing in which rotational force from a crankshaft is transmitted and has a plurality of working chambers inside, and a plurality of vanes that separately partition the plurality of working chambers.
  • a part of the opening of the lock pin accommodating hole on the other end side in the axial direction of the lock pin overlaps the opening portion in the axial direction over the entire range of relative rotation between the housing and the vane rotor.
  • first electromagnetic switching valve, 22 drain passage, 24 ... 1st lock hole, 24a / 24b ... 1st, 2nd bottom surface, 25 ... 2nd lock hole, 26 ... 1st lock pin accommodating hole, 26b ... rear end, 26c ... 1st opening (opening), 27 ... Second lock pin accommodating hole, 27b ... Rear end, 27c ... Second opening (opening), 28 ... First lock pin, 28a ... Tip, 29 ... Second lock pin, 29a ... Tip, 32 ... second hydraulic circuit, 36 ... second electromagnetic switching valve, 37 ... passage component

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

A valve timing control device is provided with: a lock pin accommodation hole 26 provided on a large-diameter part 15A of a vane rotor 9; lock pins 28 and 29 arranged inside the lock pin accommodation hole; and a lock hole 24 provided on an inner surface of a front plate 13. An arc recessed open groove 13A is provided on an inner peripheral edge of a penetration hole 13a provided at the center of the front plate. A part of a diameter-expanded conical opening part 26c provided on the side of the other end 26b of the lock pin accommodation hole overlaps the open groove in a rotational axis direction of the vane rotor. Thus, the open groove and the lock pin accommodation hole are in communication with each other in an axial direction. By these configurations, discharging of air or operating oil from the lock pin accommodation hole is increased to prevent a reduction in movement speed of the lock pin. As a result, valve timing control accuracy can be improved.

Description

内燃機関のバルブタイミング制御装置Internal combustion engine valve timing controller
 本発明は、油圧式の内燃機関のバルブタイミング制御装置に関する。 The present invention relates to a valve timing control device for a hydraulic internal combustion engine.
 従来の内燃機関のバルブタイミング制御装置としては、例えば以下の特許文献1に記載されたベーンタイプのものがある。 As a conventional valve timing control device for an internal combustion engine, for example, there is a vane type device described in Patent Document 1 below.
 このバルブタイミング制御装置は、ハウジングの内部に相対回転可能に配置されたベーンロータの幅広なベーンに、ロックピン収容孔が回転軸方向に沿って貫通形成されている。このロックピン収容孔内には、ロックピンが摺動可能に収容されている。一方、前記ハウジングの後端側の壁部内側面には、前記ロックピンの先端部が挿入可能なロック穴が設けられている。前記幅広ベーンのハウジングの前端側に設けられたフロントプレート側の端面には、ロックピン収容孔の後端側の開口部と前記フロントプレートの中央に有する貫通孔とを連通する連通溝が形成されている。この連通溝は、ロックピンの移動に伴う背圧や、ロックピンの外周面とロックピン収容孔の内周面との間からリークした作動油や空気を排出するようになっている。 In this valve timing control device, a lock pin accommodating hole is formed through a wide vane of a vane rotor rotatably arranged inside the housing along the rotation axis direction. The lock pin is slidably accommodated in the lock pin accommodating hole. On the other hand, a lock hole into which the tip end portion of the lock pin can be inserted is provided on the inner side surface of the wall portion on the rear end side of the housing. On the end surface on the front plate side provided on the front end side of the housing of the wide vane, a communication groove is formed for communicating the opening on the rear end side of the lock pin accommodating hole and the through hole in the center of the front plate. ing. This communication groove is designed to discharge back pressure due to the movement of the lock pin and hydraulic oil and air leaked from between the outer peripheral surface of the lock pin and the inner peripheral surface of the lock pin accommodating hole.
WO2018/101155号公報WO2018 / 101155
 しかしながら、特許文献1に記載された前記連通溝は、ロックピン収容孔の後端部の開口縁から径方向内側に延びて、先端部がフロントプレートの貫通孔に軸方向から連通するクランク状のようになっている。したがって、この連通溝は、全体の通路長が長くなって作動油などの流動抵抗が大きくなり、該作動油の排出性が低下して通路内に滞留してしまうおそれがある。この結果、ロックピンの後退方向の移動速度が低下して、バルブタイミングの制御精度が悪化するおそれがある。 However, the communication groove described in Patent Document 1 extends radially inward from the opening edge of the rear end of the lock pin accommodating hole, and the tip portion communicates with the through hole of the front plate in the axial direction in a crank shape. It has become like. Therefore, in this communication groove, the entire passage length becomes long, the flow resistance of the hydraulic oil or the like becomes large, and the discharge property of the hydraulic oil may decrease and stay in the passage. As a result, the moving speed of the lock pin in the retracting direction may decrease, and the valve timing control accuracy may deteriorate.
 本発明は、前記従来の技術的課題に鑑みて案出されたもので、ロックピン収容孔から空気や作動油の排出性を高めてロックピンの移動速度の低下を抑制することにより、バルブタイミング制御精度の向上を図ることを目的としている。 The present invention has been devised in view of the above-mentioned conventional technical problems, and by improving the discharge of air and hydraulic oil from the lock pin accommodating hole and suppressing a decrease in the moving speed of the lock pin, the valve timing The purpose is to improve the control accuracy.
 この発明の一つの態様としては、とりわけ、ハウジングは、ロック凹部と軸方向で反対側の位置に外部に開放している開放部を有し、
 ロックピン収容孔は、ロックピンの軸方向の他端部側の端部に背圧を逃がす開口部を有し、
 前記開口部のうち、ベーンロータの回転軸を中心とした半径方向の最も内側の部位が、前記開放部に対して前記ベーンロータの回転軸方向で重なっていることを特徴としている。
In one aspect of the invention, among other things, the housing has an open portion that is open to the outside at a position axially opposite to the lock recess.
The lock pin accommodating hole has an opening at the end on the other end side in the axial direction of the lock pin to release back pressure.
The innermost portion of the opening in the radial direction about the rotation axis of the vane rotor overlaps the opening in the rotation axis direction of the vane rotor.
 本発明によれば、ロックピン収容孔から空気や作動油の排出性を高めてロックピンの移動速度の低下を抑制することができる。 According to the present invention, it is possible to improve the discharge of air and hydraulic oil from the lock pin accommodating hole and suppress a decrease in the moving speed of the lock pin.
本発明に係るバルブタイミング制御装置の第1実施形態を示す全体構成図である。It is an overall block diagram which shows 1st Embodiment of the valve timing control device which concerns on this invention. 本実施形態におけるバルブタイミング制御装置の各構成部材の分解斜視図である。It is an exploded perspective view of each component of the valve timing control device in this embodiment. 本実施形態に供されるベーンロータが最進角位相の位置に回転した状態を示す図1のA-A線断面図である。FIG. 5 is a cross-sectional view taken along the line AA of FIG. 1 showing a state in which the vane rotor provided in the present embodiment is rotated to a position of the most advanced angle phase. 同ベーンロータが中間位相の回転位置に保持された状態を示す図1のA-A線断面図である。FIG. 5 is a cross-sectional view taken along the line AA of FIG. 1 showing a state in which the vane rotor is held at a rotational position in an intermediate phase. 同ベーンロータが最遅角位相の位置に回転した状態を示す図1のA-A線断面図である。It is a cross-sectional view taken along the line AA of FIG. 図4のB-B線断面図である。FIG. 4 is a cross-sectional view taken along the line BB of FIG. (A)は図6のC矢視図、(B)は図7(A)のD部拡大図である。(A) is a view taken along the arrow C in FIG. 6, and (B) is an enlarged view of part D in FIG. 7 (A). 図6のE部を模式的に示す拡大図である。It is an enlarged view which shows the E part of FIG. 6 schematically. ベーンロータが最進角の相対回転位置にある場合のロック機構を示す断面図である。It is sectional drawing which shows the lock mechanism when the vane rotor is in the relative rotation position of the most advanced angle. ベーンロータがさらに遅角側に回転した場合のロック機構を示す断面図である。It is sectional drawing which shows the lock mechanism when the vane rotor is further rotated to the retard side. ベーンロータがさらに遅角側に回転した場合のロック機構を示す断面図である。It is sectional drawing which shows the lock mechanism when the vane rotor is further rotated to the retard side. ベーンロータがさらに遅角側に回転して中間ロック位置になった場合のロック機構を示す断面図である。It is sectional drawing which shows the lock mechanism when the vane rotor further rotates to the retard side and becomes an intermediate lock position. 本発明の第2実施形態を示す図7(A)のD部拡大図である。It is an enlarged view of the part D of FIG. 7A which shows the 2nd Embodiment of this invention. 本発明の第3実施形態を示す図7(A)のD部拡大図である。It is an enlarged view of the part D of FIG. 7A which shows the 3rd Embodiment of this invention.
 以下、本発明に係る内燃機関のバルブタイミング制御装置を、例えば排気弁側に適用した各実施形態を図面に基づいて説明する。
〔第1実施形態〕
 図1は本発明に係るバルブタイミング制御装置の第1実施形態を示す全体構成図、図2は本実施形態におけるバルブタイミング制御装置の各構成部材の分解斜視図、図3は本実施形態に供されるベーンロータが最進角位相の位置に回転した状態を示す図1のA-A線断面図、図4は同ベーンロータが中間位相の回転位置に保持された状態を示す図1のA-A線断面図、図5は同ベーンロータが最遅角位相の位置に回転した状態を示す図1のA-A線断面図である。
Hereinafter, embodiments in which the valve timing control device for an internal combustion engine according to the present invention is applied to, for example, the exhaust valve side will be described with reference to the drawings.
[First Embodiment]
FIG. 1 is an overall configuration diagram showing a first embodiment of the valve timing control device according to the present invention, FIG. 2 is an exploded perspective view of each component of the valve timing control device according to the present embodiment, and FIG. 3 is provided in the present embodiment. A cross-sectional view taken along the line AA of FIG. 1 showing a state in which the vane rotor is rotated to the position of the most advanced phase, and FIG. 4 is a state of AA of FIG. FIG. 5 is a sectional view taken along line AA of FIG. 1 showing a state in which the vane rotor is rotated to the position of the most retarded phase.
 バルブタイミング制御装置は、機関のクランクシャフトによりタイミングチェーンを介して回転駆動される駆動回転体であるスプロケット1と、該スプロケット1に対して相対回転可能に設けられた排気弁側のカムシャフト2と、スプロケット1とカムシャフト2との間に配置されて、該両者1,2の相対回動位相を変換する位相変更機構3と、該位相変更機構3を作動させる第1油圧回路4と、を備えている。 The valve timing control device includes a sprocket 1 which is a drive rotating body which is rotationally driven by a crankshaft of an engine via a timing chain, and a camshaft 2 on the exhaust valve side which is provided so as to be rotatable relative to the sprocket 1. , A phase changing mechanism 3 arranged between the sprocket 1 and the camshaft 2 to convert the relative rotation phases of the two 1 and 2, and a first hydraulic circuit 4 for operating the phase changing mechanism 3. I have.
 スプロケット1は、円環状のスプロケット本体5と、該スプロケット本体5の外周一端部に一体に設けられて、タイミングチェーンが巻回される歯車部6を有している。 The sprocket 1 has an annular sprocket body 5 and a gear portion 6 that is integrally provided at one end of the outer circumference of the sprocket body 5 and around which a timing chain is wound.
 スプロケット本体5は、硬度の高い鋼材によって一体形成されて、後述するハウジングの後端開口を閉塞するリアプレートとして構成されている。またスプロケット本体5は、中央位置に後述するベーンロータ9の外周に回転自在に支持される支持孔5aが貫通形成されている。また、スプロケット本体5の外周部の円周方向所定位置には、複数(本実施形態では4つ)の雌ねじ孔5bが形成されている
 排気弁側のカムシャフト2は、図外のシリンダヘッドにカム軸受を介して回転自在に支持され、外周面には機関弁である排気弁を開作動させる複数の駆動カムが軸方向の位置に一体に固定されている。また、カムシャフト2は、回転軸方向の一端部2aの内部軸心方向に、カムボルト8が螺着する雌ねじ孔2bが形成されている。
The sprocket body 5 is integrally formed of a hard steel material and is configured as a rear plate that closes the rear end opening of the housing, which will be described later. Further, the sprocket body 5 is formed with a support hole 5a rotatably supported on the outer periphery of the vane rotor 9, which will be described later, at the center position. Further, a plurality of (four in this embodiment) female screw holes 5b are formed at predetermined positions in the circumferential direction of the outer peripheral portion of the sprocket body 5, and the camshaft 2 on the exhaust valve side is attached to a cylinder head (not shown). It is rotatably supported via a cam bearing, and a plurality of drive cams that open and operate an exhaust valve, which is an engine valve, are integrally fixed at axial positions on the outer peripheral surface. Further, the cam shaft 2 is formed with a female screw hole 2b into which the cam bolt 8 is screwed in the direction of the internal axial center of the one end portion 2a in the direction of the rotation axis.
 位相変更機構3は、図1~図3に示すように、スプロケット1に一体的にボルト結合されたハウジング7と、カムシャフト2の雌ねじ孔2bに螺着するカムボルト8によって固定されて、ハウジング7内に相対回転可能に収容された従動回転体であるベーンロータ9と、後述するハウジング本体7aの内周面に有する複数(本実施形態では4つ)のシュー10a~10dとベーンロータ9とによって仕切られた作動室である複数(本実施形態ではそれぞれ4つ)の遅角油圧室11a~11d及び進角油圧室12a~12dと、を備えている。 As shown in FIGS. 1 to 3, the phase changing mechanism 3 is fixed by a housing 7 integrally bolted to the sprocket 1 and a cam bolt 8 screwed into the female screw hole 2b of the camshaft 2, and the housing 7 is fixed. It is partitioned by a vane rotor 9 which is a driven rotating body housed so as to be relatively rotatable inside, and a plurality of (four in this embodiment) shoes 10a to 10d and a vane rotor 9 which are provided on the inner peripheral surface of the housing body 7a described later. It is provided with a plurality of (four in the present embodiment) retard angle hydraulic chambers 11a to 11d and advance angle hydraulic chambers 12a to 12d, which are operating chambers.
 ハウジング7は、金属粉末を圧縮して焼結された焼結金属材によって円筒状に形成されたハウジング本体7aと、このハウジング本体7aの回転軸方向の前端開口を閉塞するプレート部材であるフロントプレート13と、ハウジング本体7aの後端開口を閉塞するリアプレートとしての前記スプロケット本体5と、を有している。 The housing 7 is a housing body 7a formed in a cylindrical shape by a sintered metal material obtained by compressing and sintering metal powder, and a front plate which is a plate member that closes the front end opening of the housing body 7a in the rotation axis direction. It has 13 and the sprocket body 5 as a rear plate that closes the rear end opening of the housing body 7a.
 ハウジング本体7aは、内周面の円周方向のほぼ等間隔位置に内方へ突出した前記4つのシュー10a~10dが一体に設けられている。この各シュー10a~10dは、正面視ほぼ台形状に形成され、それぞれの内部にハウジング7の回転軸方向にボルト挿通孔10eが貫通形成されている。また、隣接する2つの第1、第2シュー10a、10bは、周方向幅が他の第3、第4シュー10c、10dよりも大きく形成されている。第1シュー10aは、図3中左側面に一つの第1ベーン16aが右回転方向から当接する第1凸壁10fが一体に設けられている。第2シュー10bは、図3中右側側面に第3ベーン16cが左回転方向から当接する第2凸壁10gが一体に設けられている。 The housing body 7a is integrally provided with the four shoes 10a to 10d protruding inward at substantially equal intervals in the circumferential direction of the inner peripheral surface. Each of the shoes 10a to 10d is formed in a substantially trapezoidal shape when viewed from the front, and a bolt insertion hole 10e is formed inside each of the shoes 10a to 10d in the direction of the rotation axis of the housing 7. Further, the two adjacent first and second shoes 10a and 10b are formed to have a circumferential width larger than that of the other third and fourth shoes 10c and 10d. The first shoe 10a is integrally provided with a first convex wall 10f on the left side surface in FIG. 3 with which one first vane 16a abuts from the clockwise rotation direction. The second shoe 10b is integrally provided with a second convex wall 10g on the right side surface in FIG. 3 with which the third vane 16c abuts from the counterclockwise rotation direction.
 また、ハウジング本体7aの第1シュー10aの外周面には、位置決め用の凹溝7cが設けられている。この凹溝7cには、スプロケット本体5に設けられた位置決め用のピン5cが回転軸方向から挿入してハウジング本体7aとスプロケット本体5を位置決めするようになっている。 Further, a concave groove 7c for positioning is provided on the outer peripheral surface of the first shoe 10a of the housing body 7a. A positioning pin 5c provided on the sprocket body 5 is inserted into the groove 7c from the direction of the rotation axis to position the housing body 7a and the sprocket body 5.
 フロントプレート13は、例えば鉄系金属板をプレス成形によって円盤状に形成され、内周部である中央位置に貫通孔13aが形成されている。また、フロントプレート13は、外周部の周方向等間隔位置に複数(本実施形態では4つ)のボルト挿入孔13bが貫通形成されている。この各ボルト挿入孔13bの前端開口縁には、円環状のザグリ部13cがそれぞれ形成されている。 The front plate 13 is formed, for example, by press-molding an iron-based metal plate into a disk shape, and a through hole 13a is formed at a central position which is an inner peripheral portion. Further, the front plate 13 is formed with a plurality of (four in the present embodiment) bolt insertion holes 13b penetrating the outer peripheral portions at equidistant positions in the circumferential direction. An annular counterbore portion 13c is formed at the front end opening edge of each of the bolt insertion holes 13b.
 また、貫通孔13aの内周面には、開放部(凹部)である2つの第1、第2開放溝13A、13Bが設けられている。この第1、第2開放溝13A、13Bは、互いに貫通孔13aの円周方向のほぼ180°位置に対向配置され、それぞれが円周方向に長い円弧凹状に形成されている。すなわち、この各開放溝13A、13Bは、貫通孔13aの内周面からフロントプレート13の径方向の外方に向かって円弧凹溝状に切欠形成されている。 Further, on the inner peripheral surface of the through hole 13a, two first and second open grooves 13A and 13B which are open portions (recesses) are provided. The first and second open grooves 13A and 13B are arranged so as to face each other at positions of substantially 180 ° in the circumferential direction of the through holes 13a, and each is formed in an arc concave shape long in the circumferential direction. That is, the open grooves 13A and 13B are notched in an arcuate groove shape from the inner peripheral surface of the through hole 13a toward the outer side in the radial direction of the front plate 13.
 ハウジング本体7aとフロントプレート13及びスプロケット本体5は、複数(本実施形態では4本)のボルト14によって共締めにより固定されている。つまり、各ボルト14は、各ボルト挿入孔13bと各ボルト挿通孔10eに挿入し、かつ各雌ねじ孔5bに螺着して、前記三者5、7a、13を回転軸方向から一体的に結合するようになっている。 The housing body 7a, the front plate 13, and the sprocket body 5 are fixed together by a plurality of (four in this embodiment) bolts 14. That is, each bolt 14 is inserted into each bolt insertion hole 13b and each bolt insertion hole 10e, and is screwed into each female screw hole 5b to integrally connect the three parties 5, 7a, and 13 from the rotation axis direction. It is designed to do.
 ベーンロータ9は、金属粉を圧縮して焼結成形した焼結金属材によって一体に形成されており、カムシャフト2の一端部2aにカムボルト8によって固定されたロータ15と、該ロータ15の外周面から円周方向のほぼ90°の等間隔位置に径方向外方へ放射状に突設された複数(本実施形態では4つ)の第1~第4ベーン16a~16dと、を有している。 The vane rotor 9 is integrally formed of a sintered metal material obtained by compressing and sintering metal powder, and the rotor 15 is fixed to one end 2a of the camshaft 2 by a cam bolt 8 and the outer peripheral surface of the rotor 15. It has a plurality of (four in this embodiment) first to fourth vanes 16a to 16d, which are radially outwardly projected at approximately 90 ° equidistant positions in the circumferential direction. ..
 ロータ15は、回転軸方向に長いほぼ円筒状に形成され、フロントプレート13側の前端部に段差小径な円筒状の突出部15aが一体に設けられている。また、ロータ15は、スプロケット1側の後端部にカムシャフト2方向へ延びた段差小径な円筒状の支持部15bが一体に設けられている。 The rotor 15 is formed in a substantially cylindrical shape long in the rotation axis direction, and a cylindrical protruding portion 15a having a small step diameter is integrally provided at the front end portion on the front plate 13 side. Further, the rotor 15 is integrally provided with a cylindrical support portion 15b having a small step diameter extending in the two directions of the camshaft at the rear end portion on the sprocket 1 side.
 また、ロータ15は、前端側から内部軸方向に、カムボルト8と後述する通路構成部37が嵌入される比較的大径な嵌合穴15cが設けられている。この嵌合穴15cの支持部15b側の底壁部15dには、カムボルト8の軸部8bが挿通されるカムボルト挿通孔15eが貫通形成されている。 Further, the rotor 15 is provided with a relatively large-diameter fitting hole 15c into which the cam bolt 8 and the passage component 37 described later are fitted from the front end side in the internal axial direction. A cam bolt insertion hole 15e through which the shaft portion 8b of the cam bolt 8 is inserted is formed through the bottom wall portion 15d on the support portion 15b side of the fitting hole 15c.
 突出部15aは、外周面がフロントプレート13の貫通孔13aの内周面に非接触状態に挿入されていると共に、先端内周面に外側へ拡径したテーパ面15fが形成されている。 The outer peripheral surface of the protruding portion 15a is inserted into the inner peripheral surface of the through hole 13a of the front plate 13 in a non-contact state, and a tapered surface 15f whose diameter is expanded outward is formed on the inner peripheral surface of the tip.
 支持部15bは、回転軸方向のフロントプレート13側の外周部位がスプロケット本体5の支持孔5aに軸受嵌合して、スプロケット1全体を回転可能に軸受けしている。 In the support portion 15b, the outer peripheral portion on the front plate 13 side in the rotation axis direction is bearing-fitted into the support hole 5a of the sprocket body 5, and the entire sprocket 1 is rotatably supported.
 また、支持部15bのカムシャフト2側の先端部の外周には、ベーンロータ9を図3に示す位置、つまり進角側へ相対回転させるように付勢する渦巻きばね40が配置されている。この渦巻きばね40は、巻き方向の内端部40aが内方に折り曲げられて、支持部15bに切欠形成された止め溝15gに円周方向から掛かり止めされている。また、渦巻きばね40は、巻き方向の外端部が外方に折り曲げられて、スプロケット本体5の外側面に取り付けされた止めピン41に掛かり止めされている。なお、渦巻きばね40は、途中の部位がスプロケット本体5の外側面側に固定された支持ピン42によって支持されている。 Further, a spiral spring 40 that urges the vane rotor 9 to rotate relative to the position shown in FIG. 3, that is, the advance angle side, is arranged on the outer periphery of the tip portion of the support portion 15b on the camshaft 2 side. In the spiral spring 40, the inner end portion 40a in the winding direction is bent inward, and the spiral spring 40 is hooked from the circumferential direction to the retaining groove 15g formed in the support portion 15b. Further, the spiral spring 40 has an outer end portion in the winding direction bent outward and is hooked on a stop pin 41 attached to the outer surface of the sprocket body 5. The spiral spring 40 is supported by a support pin 42 whose intermediate portion is fixed to the outer surface side of the sprocket body 5.
 また、底壁部15dの内底面と反対側の位置には、カムシャフト2の一端部2aの先端部が回転軸方向から嵌合する嵌合溝15hが設けられている。 Further, at a position opposite to the inner bottom surface of the bottom wall portion 15d, a fitting groove 15h in which the tip end portion of one end portion 2a of the camshaft 2 fits from the direction of the rotation axis is provided.
 ロータ15は、図3に示すように、第1ベーン16aと第3ベーン16cの円周方向の側部、つまり径方向の約180°の位置に2つの第1、第2大径部15A、15Bが一体に設けられている。この各大径部15A、15Bは、ロータ15の回転軸Xを中心とした点対称に配置されて、ほぼ対称形状に形成されている。また各大径部15A,15Bは、後述する第1ベーン16aを含めた円周方向の長さが対向する第1、第4シュー10a、10dと第2シュー、第3シュー10b、10c間の周方向長さの約1/2程度に設定されている。また、各大径部15A、15Bの各径方向の幅長さWは、各油圧室11a~12dの径方向の幅方向長さのほぼ1/2程度に設定されている。 As shown in FIG. 3, the rotor 15 has two first and second large diameter portions 15A at positions of the first vane 16a and the third vane 16c in the circumferential direction, that is, at a position of about 180 ° in the radial direction. 15B is provided integrally. The large diameter portions 15A and 15B are arranged point-symmetrically with respect to the rotation axis X of the rotor 15 and are formed in a substantially symmetrical shape. Further, the large diameter portions 15A and 15B are between the first and fourth shoes 10a and 10d and the second shoe and the third shoe 10b and 10c having opposite lengths in the circumferential direction including the first vane 16a described later. It is set to about 1/2 of the circumferential length. Further, the width length W of each of the large diameter portions 15A and 15B in each radial direction is set to be approximately ½ of the length of each of the hydraulic chambers 11a to 12d in the radial direction.
 各ベーン16a~16bは、それぞれが各シュー10a~10dの間に配置されて、第1ベーン16aと該第1ベーン16aと対称位置にある第3ベーン16cの各側部に、第1、第2大径部15A、15Bが一体に設けられている。第2ベーン16bと第4ベーン16dは、ロータ15の外周面から径方向外側へ突出し、第1、第3ベーン16a、16cと同じ外径に形成されている。 Each of the vanes 16a to 16b is arranged between the shoes 10a to 10d, and the first and first vanes 16a and 16b are placed on each side of the first vane 16a and the third vane 16c symmetrical to the first vane 16a. Two large diameter portions 15A and 15B are integrally provided. The second vane 16b and the fourth vane 16d project radially outward from the outer peripheral surface of the rotor 15 and are formed to have the same outer diameter as the first and third vanes 16a and 16c.
 各ベーン16a~16dと各シュー10a~10dのそれぞれの先端面には、ハウジング本体7aの内面とロータ15の基部外周面との間をシールするシール部材17a、17bがそれぞれ設けられている。 Sealing members 17a and 17b for sealing between the inner surface of the housing body 7a and the outer peripheral surface of the base of the rotor 15 are provided on the tip surfaces of the vanes 16a to 16d and the shoes 10a to 10d, respectively.
 また、ベーンロータ9が、進角側へ相対回転すると、図3に示すように、第1ベーン16aの一側面が対向する第1シュー10aの第1凸壁10fの対向側面に当接して最大進角側の回転位置が規制される。また、ベーンロータ9が、遅角側へ相対回転すると、図5に示すように、第3ベーン16cの一側面が対向する第2シュー10bの第2凸壁10gの対向側面に当接して最大遅角側の回転位置が規制されるようになっている。 Further, when the vane rotor 9 rotates relative to the advance angle side, as shown in FIG. 3, one side surface of the first vane 16a abuts on the opposite side surface of the first convex wall 10f of the first shoe 10a and advances to the maximum. The rotation position on the corner side is regulated. Further, when the vane rotor 9 rotates relative to the retard side, as shown in FIG. 5, one side surface of the third vane 16c abuts on the opposite side surface of the second convex wall 10g of the second shoe 10b, which is the maximum delay. The rotation position on the corner side is regulated.
 このとき、他のベーン16b、16dは、対向するシュー10b、10cに当接せずに離間状態にある。したがって、ベーンロータ9とシュー10a、10bとの当接精度が向上し、また、各遅角油圧室11a~11dや進角油圧室12a~12dへの作動油の供給速度が速くなってベーンロータ9の正逆回転応答性が高くなる。 At this time, the other vanes 16b and 16d are separated from each other without abuting on the opposing shoes 10b and 10c. Therefore, the contact accuracy between the vane rotor 9 and the shoes 10a and 10b is improved, and the hydraulic oil supply speed to the retard hydraulic chambers 11a to 11d and the advance hydraulic chambers 12a to 12d is increased, so that the vane rotor 9 The forward / reverse rotation response is high.
 各遅角油圧室11a~11dと各進角油圧室12a~12dは、これらに対応してロータ15の内部にほぼ放射状に形成されたそれぞれ4つの第1連通孔11eと第2連通孔12eを介して第1油圧回路4にそれぞれ連通されている。 The retard hydraulic chambers 11a to 11d and the advance hydraulic chambers 12a to 12d each have four first communication holes 11e and second communication holes 12e formed substantially radially inside the rotor 15 corresponding to these. The first hydraulic circuit 4 is communicated with each other via the first hydraulic circuit 4.
 第1油圧回路4は、基本的に各遅角、進角油圧室11,12に対して作動油(油圧)を選択的に供給あるいは排出するもので、図1に示すように、各遅角油圧室11a~11dに対して第1連通孔11eを介して油圧を給排する遅角油通路18と、各進角油圧室12a~12dに対して第2連通孔12eを介して油圧を給排する進角油通路19と、該各油通路18,19に作動油を選択的に供給する流体圧供給源であるオイルポンプ20と、機関運転状態に応じて前記遅角油通路18と進角油通路19の流路を切り換える第1電磁切換弁21とを備えている。オイルポンプ20は、機関のクランクシャフトによって回転駆動するトロコイドポンプなどの一般的なものである。 The first hydraulic circuit 4 basically selectively supplies or discharges hydraulic oil (flood control) to the retard and advance hydraulic chambers 11 and 12, and as shown in FIG. 1, each retard. A retarded oil passage 18 that supplies and discharges oil pressure to the hydraulic chambers 11a to 11d via the first communication hole 11e, and supplies oil pressure to the advance hydraulic chambers 12a to 12d through the second communication hole 12e. The advance angle oil passage 19 to be discharged, the oil pump 20 which is a fluid pressure supply source for selectively supplying the hydraulic oil to the respective oil passages 18 and 19, and the retard angle oil passage 18 depending on the engine operating state. It is provided with a first electromagnetic switching valve 21 for switching the flow path of the square oil passage 19. The oil pump 20 is a general one such as a trochoid pump that is rotationally driven by a crankshaft of an engine.
 遅角油通路18と進角油通路19は、それぞれの一端部が第1電磁切換弁21の通路孔に接続されている。一方、他端側が通路構成部37などを介して各遅角油圧室11a~11dと各進角油圧室12a~12dにそれぞれ連通している。つまり、各油通路18,19の他端側は、ベーンロータ9のロータ15の嵌合穴15c内に挿通保持された通路構成部37内に軸方向に沿って平行に形成された通路部18a、19aと第1,第2連通孔11e、12eとを介して各遅角油圧室11a~11dと各進角油圧室12a~12dにそれぞれ連通している。 One end of each of the retard oil passage 18 and the advance oil passage 19 is connected to the passage hole of the first electromagnetic switching valve 21. On the other hand, the other end side communicates with the retard angle hydraulic chambers 11a to 11d and the advance angle hydraulic chambers 12a to 12d via the passage component 37 and the like. That is, the other end side of each of the oil passages 18 and 19 is a passage portion 18a formed parallel to the axial direction in the passage constituent portion 37 inserted and held in the fitting hole 15c of the rotor 15 of the vane rotor 9. The retard hydraulic chambers 11a to 11d and the advance hydraulic chambers 12a to 12d are communicated with each other through the 19a and the first and second communication holes 11e and 12e, respectively.
 また、第1油圧回路4は、一部が後述するロック機構のロックを解除する油圧を供給する第2油圧回路32に連係している。 Further, the first hydraulic circuit 4 is partially linked to the second hydraulic circuit 32 that supplies the hydraulic pressure for unlocking the lock mechanism, which will be described later.
 通路構成部37は、外側の端部が図外のチェーンカバーに固定されて非回転部として構成されている。また、通路構成部37は、内部軸方向に各通路部18a、19aの他に、後述するロック機構のロックを解除する第2油圧回路32のロック解除通路部32aが形成されている。 The passage component 37 is configured as a non-rotating part with the outer end fixed to a chain cover (not shown). Further, in the passage constituent portion 37, in addition to the passage portions 18a and 19a in the internal axial direction, an unlock passage portion 32a of the second hydraulic circuit 32 for unlocking the lock mechanism described later is formed.
 第1電磁切換弁21は、図1に示すように、4ポート3位置の比例型弁であって、図外のコントロールユニット(ECU)によって、バルブボディ内に設けられたスプール弁が軸方向へ移動するようになっている。このスプール弁は、その移動位置に応じてオイルポンプ20の吐出通路20aといずれかの油通路18,19と連通させると同時に、この他方の油通路18,19とドレン通路22とを連通させるようになっている。また、スプール弁は、機関停止時などには、軸方向の中間移動位置に保持されて油通路18,19と吐出通路20a、ドレン通路22との連通を全て遮断し、各油圧室11,12内に作動油を封止するようになっている。 As shown in FIG. 1, the first electromagnetic switching valve 21 is a proportional valve having 4 ports and 3 positions, and a spool valve provided in the valve body is moved in the axial direction by a control unit (ECU) (not shown). It is designed to move. The spool valve communicates with the discharge passage 20a of the oil pump 20 and one of the oil passages 18 and 19 according to its moving position, and at the same time communicates with the other oil passages 18 and 19 and the drain passage 22. It has become. Further, when the engine is stopped, the spool valve is held at an intermediate moving position in the axial direction to block all communication between the oil passages 18 and 19 and the discharge passages 20a and the drain passages 22, and the hydraulic chambers 11 and 12 respectively. The hydraulic oil is sealed inside.
 オイルポンプ20の吸入通路20bとドレン通路22は、オイルパン23内に連通している。また、オイルポンプ20の吐出通路20aの下流側には、内燃機関の摺動部などに潤滑油を供給するメインオイルギャラリーM/Gが連通している。吐出通路20aとM/Gとの間には、濾過フィルタ50が設けられている。さらに、オイルポンプ20は、吐出通路20aから吐出された過剰な作動油をオイルパン23に排出して適正な流量に制御する流量制御弁51が設けられている。 The suction passage 20b and the drain passage 22 of the oil pump 20 communicate with each other in the oil pan 23. Further, on the downstream side of the discharge passage 20a of the oil pump 20, a main oil gallery M / G that supplies lubricating oil to a sliding portion of an internal combustion engine or the like communicates with the downstream side. A filtration filter 50 is provided between the discharge passage 20a and the M / G. Further, the oil pump 20 is provided with a flow rate control valve 51 that discharges excess hydraulic oil discharged from the discharge passage 20a to the oil pan 23 to control the flow rate to an appropriate level.
 ECUは、コンピュータが図外のクランク角センサ(機関回転数検出)やエアーフローメータ、機関水温センサ、機関温度センサ、スロットルバルブ開度センサおよびカムシャフト2の現在の回転位相を検出するカム角センサなどの各種センサ類からの情報信号に基づいて機関の運転を制御している。また、ECUは、第1電磁切換弁21や後述する第2電磁切換弁36の各コイルに制御パルス電流を出力してそれぞれのスプール弁の移動位置を制御することにより、前記各通路を切換制御するようになっている。 The ECU is a cam angle sensor in which the computer detects the crank angle sensor (engine rotation speed detection), air flow meter, engine water temperature sensor, engine temperature sensor, throttle valve opening sensor, and current rotation phase of the camshaft 2, which are not shown in the figure. The operation of the engine is controlled based on the information signals from various sensors such as. Further, the ECU outputs a control pulse current to each coil of the first electromagnetic switching valve 21 and the second electromagnetic switching valve 36 described later to control the moving position of each spool valve, thereby switching and controlling each passage. It is designed to do.
 そして、この実施形態では、ハウジング7に対してベーンロータ9を、最進角側の回転位置(図3の位置)と最遅角側の回転位置(図5の位置)との間の中間回転位置(図4の位置)に保持するロック機構が設けられている。 Then, in this embodiment, the vane rotor 9 is placed at an intermediate rotation position between the rotation position on the most advanced angle side (position in FIG. 3) and the rotation position on the most retarded angle side (position in FIG. 5) with respect to the housing 7. A locking mechanism for holding at (the position shown in FIG. 4) is provided.
 図6は図4のB-B線断面図、図7(A)は図6のC矢視図、図7(B)は図7(A)のD部拡大図、図8は図6のE部を模式的に示す拡大図、図9はベーンロータが最進角の相対回転位置にある場合のロック機構を示す断面図、図10はベーンロータがさらに遅角側に回転した場合のロック機構を示す断面図、図11はベーンロータがさらに遅角側に回転した場合のロック機構を示す断面図、図12はベーンロータがさらに遅角側に回転して中間ロック位置なった場合のロック機構を示す断面図である。 6 is a cross-sectional view taken along the line BB of FIG. 4, FIG. 7 (A) is a view taken along the line C of FIG. 6, FIG. 7 (B) is an enlarged view of part D of FIG. 7 (A), and FIG. 8 is FIG. An enlarged view schematically showing the part E, FIG. 9 is a cross-sectional view showing a locking mechanism when the vane rotor is in the relative rotation position of the most advanced angle, and FIG. 10 shows a locking mechanism when the vane rotor is further rotated to the retard side. FIG. 11 is a cross-sectional view showing a cross-sectional view showing a locking mechanism when the vane rotor is further rotated to the retard side, and FIG. 12 is a cross-sectional view showing a locking mechanism when the vane rotor is further rotated to the retard side to reach an intermediate lock position. It is a figure.
 ロック機構は、図6及び図9~図12に示すように、2つの機構からなり、スプロケット本体5の内側面5dの円周方向の所定位置に設けられたロック凹部である2つの第1、第2ロック穴24,25と、ベーンロータ9の2つの大径部15A,15Bのそれぞれの内部に回転軸方向に沿って貫通形成された第1、第2ロックピン収容孔26,27と、この第1、第2ロックピン収容孔26,27に摺動可能に設けられて、各ロック穴24,25にそれぞれ抜き差し(挿抜))可能な2つのロック部材である第1、第2ロックピン28,29と、各ロックピン収容孔26,27の軸方向の後端部に設けられて、各ロックピン28,29を各ロック穴24,25方向へ付勢する第1、第2スプリング30、31と、各ロックピン28,29を各スプリング30、31のばね力に抗して各ロック穴24,25に対して後退移動させて挿入状態を解除する第2油圧回路32(図1参照)と、から主として構成されている。 As shown in FIGS. 6 and 9 to 12, the lock mechanism is composed of two mechanisms, and is two first lock recesses provided at predetermined positions in the circumferential direction of the inner side surface 5d of the sprocket body 5. The second lock holes 24 and 25, and the first and second lock pin accommodating holes 26 and 27 formed through the insides of the two large diameter portions 15A and 15B of the vane rotor 9 along the rotation axis direction, and the first and second lock pin accommodating holes 26 and 27. The first and second lock pins 28 are two lock members that are slidably provided in the first and second lock pin accommodating holes 26 and 27 and can be inserted and removed (inserted and removed) into the lock holes 24 and 25, respectively. , 29 and the first and second springs 30, which are provided at the rear ends of the lock pin accommodating holes 26, 27 in the axial direction and urge the lock pins 28, 29 in the lock hole 24, 25 directions. A second hydraulic circuit 32 that releases the inserted state by moving the lock pins 28 and 29 backward with respect to the lock holes 24 and 25 against the spring forces of the springs 30 and 31 (see FIG. 1). It is mainly composed of and.
 第1ロック穴24は、スプロケット本体5の円周方向に延びた円弧長穴状に形成されて、内側面5dにおいてベーンロータ9の最遅角側と最進角側のほぼ中間の相対回転位置に形成されている。また、第1ロック穴24は、その底面が内側面5dを最上段として進角側から遅角側に亘って順次低くなる3段の階段状に形成されて、これが案内機構(ラチェット機構)になっている。 The first lock hole 24 is formed in the shape of an arcuate oblong hole extending in the circumferential direction of the sprocket body 5, and is located at a relative rotation position substantially intermediate between the most retarded angle side and the most advanced angle side of the vane rotor 9 on the inner side surface 5d. It is formed. Further, the first lock hole 24 is formed in a three-step step shape in which the bottom surface thereof is gradually lowered from the advance angle side to the retard angle side with the inner side surface 5d as the uppermost step, and this becomes a guide mechanism (ratchet mechanism). It has become.
 すなわち、スプロケット本体5の内側面5dを最上段として進角側の第1底面24a、遅角側の第2底面24bと順次低くなる階段状に形成されている。第1底面24a側の第1段差面24cは、垂直に立ち上がった壁面になっている。また第2底面24b側の第2段差面24dも垂直に立ち上がった壁面になっている。 That is, the sprocket body 5 is formed in a stepped shape in which the inner side surface 5d is set as the uppermost step, and the first bottom surface 24a on the advance angle side and the second bottom surface 24b on the retard angle side are gradually lowered. The first stepped surface 24c on the first bottom surface 24a side is a wall surface that rises vertically. Further, the second stepped surface 24d on the second bottom surface 24b side is also a wall surface that rises vertically.
 したがって、前記各底面24a、24bに嵌挿した第1ロックピン28は、先端部28aが各底面24a~24bを遅角側へ順次段階状に下降移動すると、第1、第2段差面24c、24dによって反対方向への移動、つまり、進角方向への移動が規制される。よって、各底面24a、24bが一方向クラッチ(ラチェット)として機能するようになっている。また、第1ロックピン28は、先端部28aの側縁が第2段差面24dから周方向で対向した第3段差面24eに当接した時点で進角方向へのそれ以上の移動が規制されるようになっている。 Therefore, the first lock pin 28 fitted into the bottom surfaces 24a and 24b has the first and second stepped surfaces 24c, when the tip end portion 28a sequentially descends the bottom surfaces 24a to 24b toward the retard side in a stepwise manner. 24d regulates movement in the opposite direction, that is, movement in the advance direction. Therefore, each of the bottom surfaces 24a and 24b functions as a one-way clutch (ratchet). Further, when the side edge of the tip portion 28a of the first lock pin 28 abuts on the third step surface 24e facing the second step surface 24d in the circumferential direction, further movement in the advance direction is restricted. It has become so.
 第2ロック穴25は、図2にも示すように、スプロケット本体5の内側面5dの第1ロック穴24と円周方向の約180°位置に配置されており、ベーンロータ9の最遅角側と最進角側のほぼ中間の相対回転位置に形成されている。また、この第2ロック穴25は、底面25aの内径、つまり、内周面25bの内径が第2ロックピン29の先端部29aの外径よりもやや大きな円形状に形成されている。なお、第2ロック穴25は、内側面5dから底面25aまでの深さが第1ロック穴24における内側面5dから第2底面24bまでの深さとほぼ同じに設定されている。 As shown in FIG. 2, the second lock hole 25 is arranged at a position approximately 180 ° in the circumferential direction with the first lock hole 24 on the inner side surface 5d of the sprocket body 5, and is located on the most retarded side of the vane rotor 9. It is formed at a relative rotation position approximately in the middle of the most advanced angle side. Further, the second lock hole 25 is formed in a circular shape in which the inner diameter of the bottom surface 25a, that is, the inner diameter of the inner peripheral surface 25b is slightly larger than the outer diameter of the tip portion 29a of the second lock pin 29. The depth of the second lock hole 25 from the inner surface 5d to the bottom surface 25a is set to be substantially the same as the depth of the first lock hole 24 from the inner surface 5d to the second bottom surface 24b.
 第1、第2ロック穴24,25の相対的な形成位置の関係は、図9~図12に示すようになっている。すなわち、第1ロックピン28の先端部28aが、図9~図11に示すように、スプロケット本体5の内側面5dから第1ロック穴24の第1底面24aと第2底面24bに順次階段状に当接摺動した状態では、第2ロックピン29は、先端部29aの先端面が未だスプロケット本体5の内側面5dに当接した状態にある。その後、図12に示すように、第1ロックピン28の先端部28aが、第2底面24b上を僅かに遅角側へ移動して第3段差面24eに当接した時点で、第2ロックピン29の先端部29aが第2ロック穴25に入り込んで底面25aに当接する。 The relationship between the relative formation positions of the first and second lock holes 24 and 25 is as shown in FIGS. 9 to 12. That is, as shown in FIGS. 9 to 11, the tip 28a of the first lock pin 28 is stepped from the inner side surface 5d of the sprocket body 5 to the first bottom surface 24a and the second bottom surface 24b of the first lock hole 24. The second lock pin 29 is in a state where the tip surface of the tip portion 29a is still in contact with the inner side surface 5d of the sprocket body 5 in the state of being in contact with and slid. After that, as shown in FIG. 12, when the tip portion 28a of the first lock pin 28 moves slightly to the retard side on the second bottom surface 24b and comes into contact with the third stepped surface 24e, the second lock The tip 29a of the pin 29 enters the second lock hole 25 and comes into contact with the bottom surface 25a.
 この時点で、第1ロックピン28は、先端部28aの内周縁が第3段差面24eに周方向から当接する。一方、第2ロックピン29は、先端部29aが第2ロック穴25の内周面25bの内端縁に当接する。これによって、ベーンロータ9は、第1ロックピン28と第2ロックピン29によって進角方向と遅角方向への相対回転が規制されて、最進角と最遅角の間の中間位置に保持される。 At this point, the inner peripheral edge of the tip portion 28a of the first lock pin 28 comes into contact with the third stepped surface 24e from the circumferential direction. On the other hand, the tip portion 29a of the second lock pin 29 comes into contact with the inner end edge of the inner peripheral surface 25b of the second lock hole 25. As a result, the vane rotor 9 is held at an intermediate position between the most advanced angle and the most retarded angle by restricting the relative rotation in the advance angle direction and the retard angle direction by the first lock pin 28 and the second lock pin 29. To.
 要するに、ベーンロータ9が所定の進角側位置から遅角側位置まで相対回転するにしたがって第1ロックピン28が内側面5dから第1底面24a、第2底面24bに順次段階状に挿入当接し、続いて第2ロックピン29が第2ロック穴25の底面25aに挿入当接する。これによって、ベーンロータ9は、全体として2段階のラチェット作用によって遅角方向への回転を規制されながら遅角方向へ相対回転して、最終的に最遅角位相と最進角位相との間の中間位相位置に保持されるようになっている。 In short, as the vane rotor 9 rotates relative to the predetermined advance angle side position to the retard angle side position, the first lock pin 28 is inserted and contacted from the inner side surface 5d to the first bottom surface 24a and the second bottom surface 24b in a stepwise manner. Subsequently, the second lock pin 29 is inserted into contact with the bottom surface 25a of the second lock hole 25. As a result, the vane rotor 9 rotates relative to the retard angle direction while being restricted from rotating in the retard angle direction by a two-step ratchet action as a whole, and finally between the most retarded angle phase and the most advanced angle phase. It is held in the intermediate phase position.
 第1、第2ロックピン収容孔26、27は、図6及び図8~図12に示すように、それぞれスプロケット本体5側の一端部26a、27aからフロントプレート13側の他端部26b、27b付近までの摺動部の内径が均一かつ同一に形成されている。 As shown in FIGS. 6 and 8 to 12, the first and second lock pin accommodating holes 26 and 27 have one end 26a and 27a on the sprocket body 5 side and the other end 26b and 27b on the front plate 13 side, respectively. The inner diameter of the sliding portion up to the vicinity is formed uniformly and uniformly.
 また、第1、第2ロックピン収容孔26,27は、各他端部26b、27b側に開口部26c、27cがそれぞれ設けられている。この各開口部26c、27cは、図8に示すように、フロントプレート13方向へ拡径した円錐溝状(すり鉢状)に形成され、ベーンロータ9のいずれの相対回転位置において、ほぼ全体がフロントプレート13の内側面に閉塞された状態になっている。しかし、この各開口部26c、27cは、それぞれの径方向の最も内側の部位26d、27dは、前記第1、第2開放溝13A、13Bにベーンロータ9の回転軸方向から重なっている。つまり、内側の部位26d、27dが、対応する第1、第2開放溝13A,13Bに回転軸方向から連通している。 Further, the first and second lock pin accommodating holes 26 and 27 are provided with openings 26c and 27c on the other end portions 26b and 27b, respectively. As shown in FIG. 8, the openings 26c and 27c are formed in a conical groove shape (mortar shape) whose diameter is expanded in the front plate 13 direction, and almost the entire front plate is formed at any relative rotation position of the vane rotor 9. It is in a state of being blocked by the inner surface of 13. However, in each of the openings 26c and 27c, the innermost portions 26d and 27d in the radial direction overlap the first and second open grooves 13A and 13B from the rotation axis direction of the vane rotor 9. That is, the inner portions 26d and 27d communicate with the corresponding first and second open grooves 13A and 13B from the direction of the rotation axis.
 したがって、各ロックピン収容孔26,27は、各開口部26c、27c及び各開放溝13A、13Bを介して外部に開放されている。 また、これら各開放溝13A、13Bと各開口部26c、27cは、呼吸孔として機能する。このため、各ロックピン28,29は、各ロックピン収容孔26,27内において円滑な摺動が可能になる。なお、前記内側の部位26d、27dは、ベーンロータ9のいずれの相対回転位置においても各開放溝13A,13Bと常時連通した状態が維持されている。 Therefore, the lock pin accommodating holes 26 and 27 are opened to the outside through the openings 26c and 27c and the opening grooves 13A and 13B. Further, these open grooves 13A and 13B and the respective openings 26c and 27c function as breathing holes. Therefore, the lock pins 28 and 29 can be smoothly slid in the lock pin accommodating holes 26 and 27. The inner portions 26d and 27d are always in communication with the open grooves 13A and 13B at any of the relative rotation positions of the vane rotor 9.
 第1、第2ロックピン28、29は、図9にも示すように、各先端部28a、29aが後端部側よりも外径が一回り小さく形成されている。この各先端部28a、29aの各外周と各ロックピン収容孔26,27との間には、第1、第2受圧室33a、33bがそれぞれ形成されている。 As shown in FIG. 9, the first and second lock pins 28 and 29 are formed so that the outer diameters of the tip portions 28a and 29a are one size smaller than those of the rear end portion side. First and second pressure receiving chambers 33a and 33b are formed between the outer circumferences of the tip portions 28a and 29a and the lock pin accommodating holes 26 and 27, respectively.
 各先端部28a、29aは、各先端面が第1ロック穴24の各底面24a、24bに密着状態に当接可能な平坦面状に形成されている。 Each tip portion 28a, 29a is formed in a flat surface shape in which each tip surface can be brought into close contact with each bottom surface 24a, 24b of the first lock hole 24.
 第1、第2ロックピン28、29は、各先端部28a、29aを除く後端部内に第1、第2スプリング30、31を収容するスプリング収容溝28e、29eが軸心方向に沿って形成されている。 In the first and second lock pins 28 and 29, spring accommodating grooves 28e and 29e accommodating the first and second springs 30 and 31 are formed along the axial direction in the rear end portions excluding the tip portions 28a and 29a. Has been done.
 第2油圧回路32は、図1及び図6に示すように、ロータ15の内部に第1、第2受圧室33a、33bとロック解除通路部32aとを連通する第1、第2解除用油孔34a、34bが設けられている。この第1、第2解除用油孔34a、34bは、通路構成部37の先端面とロータ15の嵌合穴15cとの間に形成された油室35を介してロック解除通路部32aに連通している。 As shown in FIGS. 1 and 6, the second hydraulic circuit 32 is a first and second release oil that communicates the first and second pressure receiving chambers 33a and 33b with the unlock passage portion 32a inside the rotor 15. Holes 34a and 34b are provided. The first and second release oil holes 34a and 34b communicate with the unlock passage portion 32a via an oil chamber 35 formed between the tip surface of the passage component 37 and the fitting hole 15c of the rotor 15. doing.
 ロック解除通路部32aは、オイルポンプ20の吐出通路20aから分岐した供給通路35aを介して油圧が供給され、また、ドレン通路22から分岐した排出通路35bを介して作動油が排出されるようになっている。また、ロック解除通路部32aと供給、排出通路35a、35bとの間には、機関の状態に応じてロック解除通路部32aと各通路35a、35bを選択的に切り換える第2制御弁である第2電磁切換弁36が設けられている。 The lock release passage portion 32a is supplied with oil through the supply passage 35a branched from the discharge passage 20a of the oil pump 20, and the hydraulic oil is discharged through the discharge passage 35b branched from the drain passage 22. It has become. Further, between the unlocking passage portion 32a and the supply and discharge passages 35a and 35b, there is a second control valve that selectively switches between the unlocking passage portion 32a and the respective passages 35a and 35b according to the state of the engine. 2 An electromagnetic switching valve 36 is provided.
 第1受圧室33aと第2受圧室33bは、内部にそれぞれ供給された油圧によって、第1、第2ロックピン28,29を各スプリング30、31のばね力に抗して第1、第2ロック穴24,25から後退させてそれぞれの挿入状態を解除するようになっている。 In the first pressure receiving chamber 33a and the second pressure receiving chamber 33b, the first and second lock pins 28 and 29 are subjected to the first and second lock pins 28 and 29 against the spring forces of the springs 30 and 31, respectively, by the hydraulic pressure supplied to the inside. It is designed to be retracted from the lock holes 24 and 25 to release the respective inserted states.
 通路構成部37は、円柱状に形成された先端部が嵌合穴15cに挿通配置されていると共に、外周面の軸方向の前後位置に形成された円環状の複数(本実施形態では4つの)嵌着溝に各通路部18a、19aとロック解除通路部32aのそれぞれの開口端の間をシールする4つの環状シール部材39がそれぞれ嵌着固定されている。 The passage component 37 has a cylindrical tip portion inserted through the fitting hole 15c, and a plurality of annular rings formed at the front-rear position in the axial direction of the outer peripheral surface (four in the present embodiment). ) Four annular sealing members 39 that seal between the respective opening ends of the passage portions 18a and 19a and the unlocking passage portion 32a are fitted and fixed to the fitting groove.
 第2電磁切換弁36は、4ポート3位置の比例型弁であって、ECUから出力された制御電流(オン-オフ)や内部のバルブスプリングのばね力によってスプール弁により、ロック解除通路部32aと供給、排出通路35a、35bとを適宜選択的に連通させると共に、ロック解除通路部32aとドレン通路22を連通させるようになっている。 The second electromagnetic switching valve 36 is a proportional valve having 4 ports and 3 positions, and is unlocked by a spool valve due to the control current (on-off) output from the ECU and the spring force of the internal valve spring. And the supply and discharge passages 35a and 35b are appropriately and selectively communicated with each other, and the unlock passage portion 32a and the drain passage 22 are communicated with each other.
 以下、本実施形態の作用を図面に基づいて説明する。
〔短時間停止後の作動制御〕
 まず、車両の通常走行後にイグニッションスイッチをオフ操作して機関を停止した場合には、オイルポンプ20の駆動も停止される。このため、いずれかの油圧室11,12への作動油の供給が停止される。 このとき、ECUから第1電磁切換弁21に通電されて、スプール弁を中立位置に保持制御して、各通路18,19に対する吐出通路20aとドレン通路22との連通を遮断する。これによって、各油圧室11,12内に作動油を封止することから、ベーンロータ9のばたつきを抑制できる。
Hereinafter, the operation of the present embodiment will be described with reference to the drawings.
[Operation control after a short stop]
First, when the ignition switch is turned off to stop the engine after the vehicle normally travels, the drive of the oil pump 20 is also stopped. Therefore, the supply of hydraulic oil to any of the hydraulic chambers 11 and 12 is stopped. At this time, the first electromagnetic switching valve 21 is energized from the ECU, the spool valve is held and controlled in the neutral position, and the communication between the discharge passage 20a and the drain passage 22 with respect to the passages 18 and 19 is cut off. As a result, the hydraulic oil is sealed in each of the hydraulic chambers 11 and 12, so that the fluttering of the vane rotor 9 can be suppressed.
 その後、暖機状態が維持された短時間経過後に、機関を再始動した場合には、この時点では、ベーンロータ9が、図3に示す最進角側の回転位相位置に保持されて、排気弁はその閉時期がピストン下死点よりも最大進角側になっているので、有効圧縮比が低下する。これによって、ポンピングロスが少なくなると共に、振動が抑制されて良好な始動性が得られる。
〔通常制御〕
 機関が始動されて通常運転に移行した場合には、ECUから第1電磁切換弁21に通電されて、例えばオイルポンプ20の吐出通路20aと進角油通路19が連通され、ドレン通路22と遅角油通路18が連通される。したがって、各進角油圧室12a~12dに油圧が供給される一方、各遅角油圧室11a~11dから油圧が排出される。このため、各進角油圧室12a~12dの内圧が上昇して高圧になると共に、各遅角油圧室11a~11d内の作動油が排出されて低圧になる。
After that, when the engine is restarted after a short period of time while the warm-up state is maintained, at this point, the vane rotor 9 is held at the rotation phase position on the most advanced angle side shown in FIG. 3, and the exhaust valve. Since the closing time is on the maximum advance side of the bottom dead center of the piston, the effective compression ratio decreases. As a result, pumping loss is reduced, vibration is suppressed, and good startability can be obtained.
[Normal control]
When the engine is started and shifts to normal operation, the first electromagnetic switching valve 21 is energized from the ECU, for example, the discharge passage 20a of the oil pump 20 and the advance oil passage 19 are communicated with each other, and the drain passage 22 and the delay passage 22 are delayed. The square oil passage 18 is communicated. Therefore, while the oil pressure is supplied to the advance angle hydraulic chambers 12a to 12d, the oil pressure is discharged from the retard angle hydraulic chambers 11a to 11d. Therefore, the internal pressure of each of the advance hydraulic chambers 12a to 12d rises to become a high pressure, and the hydraulic oil in each of the retard hydraulic chambers 11a to 11d is discharged to become a low pressure.
 また、第2電磁切換弁36にも通電されて、吐出通路22aと供給通路35aが連通され、排出通路35bが閉じられる。このため、供給通路35aからロック解除通路部32a及び各解除用油孔34a、34bを介して各受圧室33a、33bに解除用油圧が供給される。これによって、各受圧室33a、3bの高圧になって、各ロックピン28,29は、後退移動して各先端部28a、29aが各ロック穴24,25から抜け出す。これによって、ベーンロータ9は、左右の自由な相対回転が得られる。 Further, the second electromagnetic switching valve 36 is also energized, the discharge passage 22a and the supply passage 35a are communicated with each other, and the discharge passage 35b is closed. Therefore, the release hydraulic pressure is supplied from the supply passage 35a to the pressure receiving chambers 33a and 33b via the unlock passage portion 32a and the release oil holes 34a and 34b. As a result, the pressure of the pressure receiving chambers 33a and 3b becomes high, the lock pins 28 and 29 move backward, and the tip portions 28a and 29a come out of the lock holes 24 and 25. As a result, the vane rotor 9 can freely rotate left and right.
 したがって、ベーンロータ9は、図3に示すように、各進角油圧室12a~12dの内圧の上昇に伴いハウジング7に対して進角側(図中右回転方向)に相対回転して第1ベーン16aが第1シュー10aに当接する。したがって、ベーンロータ9は、最進角側に保持されて、運転状態に応じた機関性能、例えば燃費の向上などの性能を発揮する。 Therefore, as shown in FIG. 3, the vane rotor 9 rotates relative to the housing 7 on the advance angle side (right rotation direction in the figure) as the internal pressure of each advance angle hydraulic chamber 12a to 12d increases, and the first vane 16a comes into contact with the first shoe 10a. Therefore, the vane rotor 9 is held on the most advanced angle side, and exhibits engine performance according to the operating state, for example, performance such as improvement of fuel efficiency.
 機関運転状態が変化すると、ECUから第1電磁切換弁21に通電されて、吐出通路20aと遅角油通路18が連通され、ドレン通路22と進角油通路19が連通される。したがって、各遅角油圧室11a~11dに油圧が供給される一方、各進角油圧室12a~12dから油圧が排出される。これにより、各遅角油圧室11a~11dの内圧が上昇して高圧になる一方、各進角油圧室12a~12d内の作動油が排出されて低圧になる。 When the engine operating state changes, the first electromagnetic switching valve 21 is energized from the ECU, the discharge passage 20a and the retard oil passage 18 are communicated with each other, and the drain passage 22 and the advance angle oil passage 19 are communicated with each other. Therefore, while the hydraulic pressure is supplied to the retard hydraulic chambers 11a to 11d, the oil is discharged from the advance hydraulic chambers 12a to 12d. As a result, the internal pressure of the retard hydraulic chambers 11a to 11d rises to a high pressure, while the hydraulic oil in the advance hydraulic chambers 12a to 12d is discharged to a low pressure.
 また、第2電磁切換弁36に対する通電が継続されて、吐出通路22aと供給通路35a及びロック解除通路部32aが連通され、ロック解除通路部32aと排出通路35bとの連通が止められた状態が維持される。 Further, the second electromagnetic switching valve 36 is continuously energized, the discharge passage 22a, the supply passage 35a, and the unlock passage portion 32a are communicated with each other, and the communication between the unlock passage portion 32a and the discharge passage 35b is stopped. Be maintained.
 これにより、ベーンロータ9は、図5に示すように、各遅角油圧室11a~11dの内圧の上昇に伴いハウジング7に対して遅角側(図中左回転方向)へ相対回転して第3ベーン16cが第2シュー10bに当接する。したがって、ベーンロータ9は、最遅角側に保持されて、運転状態に応じた機関性能、例えば出力の向上などの機能を発揮する。 As a result, as shown in FIG. 5, the vane rotor 9 rotates relative to the housing 7 toward the retard side (counterclockwise rotation direction in the figure) as the internal pressure of each of the retard hydraulic chambers 11a to 11d increases. The vane 16c comes into contact with the second shoe 10b. Therefore, the vane rotor 9 is held on the most retarded angle side, and exhibits functions such as improvement of engine performance, for example, output, according to the operating state.
 また、イグニッションスイッチをオフ操作して機関を停止させた場合は、オイルポンプ20の駆動が停止されると共に、ECUから第1電磁切換弁21への通電が停止される。これによって、スプール弁は、バルブスプリングのばね力によって軸方向の一方向に移動して、ドレン通路22と遅角油通路18を連通させると共に、吐出通路20aと進角油通路19との連通を止める。 Further, when the ignition switch is turned off to stop the engine, the driving of the oil pump 20 is stopped and the energization from the ECU to the first electromagnetic switching valve 21 is stopped. As a result, the spool valve moves in one direction in the axial direction by the spring force of the valve spring to communicate the drain passage 22 and the retard oil passage 18, and also communicate the discharge passage 20a and the advance oil passage 19. stop.
 同時に、第2電磁切換弁36への通電も停止されて、ロック解除通路部32aと排出通路35bとを連通させることから、各受圧室33a、33b内の作動油が排出される。これによって、各ロックピン28,29は、図9~図12に示すように、各スプリング30、31のばね力によって進出方向へ付勢される。 At the same time, the energization of the second electromagnetic switching valve 36 is also stopped, and the unlocking passage portion 32a and the discharge passage 35b are communicated with each other, so that the hydraulic oil in each of the pressure receiving chambers 33a and 33b is discharged. As a result, each of the lock pins 28 and 29 is urged in the advancing direction by the spring force of each of the springs 30 and 31, as shown in FIGS. 9 to 12.
 そして、この機関停止直後には、オイルポンプ20の吐出油圧の供給が停止されることから、いずれの各遅角油圧室11a~11d及び各進角油圧室12a~12d内のいずれにも油圧が供給されず内圧が上昇していない。 Immediately after the engine is stopped, the supply of the discharge oil of the oil pump 20 is stopped, so that the oil pressure is applied to each of the retard hydraulic chambers 11a to 11d and the advance hydraulic chambers 12a to 12d. It is not supplied and the internal pressure does not rise.
 したがって、カムシャフト2に作用する交番トルク、特に負のトルクによってベーンロータ9が僅かに遅角側に回転する。これにより、図9及び図10に示すように、第1ロックピン28の先端部28aが、スプロケット本体5の内側面5dから第1ロック穴24の第1底面24aに当接嵌合する。この時点で、ベーンロータ9に正のトルクが作用して進角側へ回転しようとすると、第1ロックピン28の先端部28aが第1底面24aの第1段差面24cに当接して進角方向への回転が規制される。このとき、第2ロックピン29は、先端部29aが内側面5d上を僅かに遅角側へ摺動する。 Therefore, the vane rotor 9 rotates slightly to the retard side due to the alternating torque acting on the camshaft 2, especially the negative torque. As a result, as shown in FIGS. 9 and 10, the tip end portion 28a of the first lock pin 28 abuts and fits from the inner side surface 5d of the sprocket body 5 to the first bottom surface 24a of the first lock hole 24. At this point, when a positive torque acts on the vane rotor 9 to rotate toward the advance angle side, the tip end portion 28a of the first lock pin 28 comes into contact with the first step surface 24c of the first bottom surface 24a and advances in the advance angle direction. Rotation to is regulated. At this time, the tip portion 29a of the second lock pin 29 slides slightly on the inner side surface 5d toward the retard angle side.
 その後、カムシャフト2に作用する負のトルクにしたがってベーンロータ9が遅角側へ僅かに相対回転する。これに伴い、第1ロックピン28は、図11に示すように、先端部28aが順次階段を下るように第1底面24aから第2底面24bに移動して当接する。この時点では、第1ロックピン28の先端部28aの外周縁が第2段差面24dに当接した状態になっている。したがって、正のトルクが作用してベーンロータ9が進角側へ戻ろうとしても、第1ロックピン28によってその回転が規制される(ラチェット機能)。 After that, the vane rotor 9 slightly rotates relative to the retard side according to the negative torque acting on the camshaft 2. Along with this, as shown in FIG. 11, the first lock pin 28 moves from the first bottom surface 24a to the second bottom surface 24b so that the tip end portion 28a sequentially descends the stairs and comes into contact with the first lock pin 28. At this point, the outer peripheral edge of the tip portion 28a of the first lock pin 28 is in contact with the second stepped surface 24d. Therefore, even if a positive torque acts to cause the vane rotor 9 to return to the advance angle side, its rotation is restricted by the first lock pin 28 (ratchet function).
 このとき、第2ロックピン29は、先端部29aがいまだ内側面5d上をさらに僅かに遅角方向へ摺動する。 At this time, the tip portion 29a of the second lock pin 29 still slides on the inner side surface 5d in a slightly retarded direction.
 その後、さらに負のトルクが作用すると、図12に示すように、ベーンロータ9がさらに遅角側に回転する。そうすると、第1ロックピン28は、先端部28aが第2底面24b上を進角方向へ摺動して外周縁が第3段差面24eに当接する。これと一緒に、第2ロックピン29は、先端部29aが内側面5dを摺動しながら第2ロック穴25に入り込んで底面25aに当接すると共に、先端部29aの外周縁が内周面25bに円周方向から当接する。これによって、第1ロックピン28と第2ロックピン29によってロータ15の一部を挟み込むような状態になる。 After that, when a further negative torque is applied, the vane rotor 9 further rotates to the retard side as shown in FIG. Then, the tip portion 28a of the first lock pin 28 slides on the second bottom surface 24b in the advance angle direction, and the outer peripheral edge abuts on the third stepped surface 24e. Along with this, the tip portion 29a of the second lock pin 29 enters the second lock hole 25 while sliding the inner side surface 5d and abuts on the bottom surface 25a, and the outer peripheral edge of the tip portion 29a is the inner peripheral surface 25b. Contact from the circumferential direction. As a result, a part of the rotor 15 is sandwiched between the first lock pin 28 and the second lock pin 29.
 したがって、ベーンロータ9は、図4に示すように前記2つのロック機構によって、最遅角と最進角の間の中間の相対回転位相位置に保持される。この結果、各排気弁は、閉弁時期がピストン下死点よりも前の遅角側に制御される。このため、機関の再始動時にイグニッションスイッチをオン操作すると、機関の圧縮比が高められて燃焼が良好になり、冷間時などの始動性が向上する。 Therefore, as shown in FIG. 4, the vane rotor 9 is held at an intermediate relative rotation phase position between the most retarded angle and the most advanced angle by the two locking mechanisms. As a result, the closing timing of each exhaust valve is controlled to the retard side before the bottom dead center of the piston. Therefore, when the ignition switch is turned on when the engine is restarted, the compression ratio of the engine is increased, combustion is improved, and startability in cold weather is improved.
 つまり、再始動時に機関圧縮比を高めるようにしたことから、冷機始動時のトルク負荷の低減化などによって始動性が向上すると共に、振動の低減化や排気エミッション性能を向上させることができる。 In other words, since the engine compression ratio is increased at the time of restart, the startability can be improved by reducing the torque load at the time of starting the cold machine, and the vibration can be reduced and the exhaust emission performance can be improved.
 また、ロック機構によってベーンロータ9を中間位相位置での保持性が向上すると共に、第1ロック穴24の階段状のラチェット機構によって第1ロックピン28は必ず遅角方向のみ案内移動されることから、かかる案内作用の確実性と安定性を担保できる。 Further, the locking mechanism improves the holding property of the vane rotor 9 at the intermediate phase position, and the stepped ratchet mechanism of the first locking hole 24 always guides and moves the first lock pin 28 only in the retard direction. The certainty and stability of such a guiding action can be ensured.
 また、本実施形態では、第1、第2ロックピン収容孔26,27の各他端部26b、27bに形成された拡径状の開口部26c、27cの一部が、フロントプレート13の貫通孔13aに有する第1、第2開放溝13A、13Bに軸方向から直線的に連通している。このため、各ロックピン収容孔26,27内に流入した作動油(潤滑油)や空気などを各開口部26c、27cから各開放溝13A,13Bを通って大気に速やかに排出することができる。この結果、各ロックピン28,29の円滑な摺動が得られる。 Further, in the present embodiment, a part of the enlarged diameter openings 26c and 27c formed in the other ends 26b and 27b of the first and second lock pin accommodating holes 26 and 27 penetrates the front plate 13. It communicates linearly with the first and second open grooves 13A and 13B provided in the hole 13a from the axial direction. Therefore, the hydraulic oil (lubricating oil), air, etc. that have flowed into the lock pin accommodating holes 26 and 27 can be quickly discharged to the atmosphere from the openings 26c and 27c through the opening grooves 13A and 13B. .. As a result, smooth sliding of the lock pins 28 and 29 can be obtained.
 換言すれば、本実施形態では、前述した従来技術のようにロックピン収容孔の後端部から外部までの通路長さが長くならずに、十分に短くなるので、潤滑油や空気の流動抵抗を低減できることから、これらを外部へ速やかに排出することができる。 In other words, in the present embodiment, the passage length from the rear end of the lock pin accommodating hole to the outside is not long as in the conventional technique described above, but is sufficiently short, so that the flow resistance of the lubricating oil or air is reduced. Can be reduced, so that these can be quickly discharged to the outside.
 また、各ロックピン収容孔26,27の形成位置を、ベーンロータ9の回転軸の中心方向、つまり、ベーンロータ9(大径部15A,15B)の径方向の内側に可及的に近づけることができることができることから、各開口部26c、27cと固定的な各開放溝13A、13Bとを軸方向から連通させることができる。 Further, the formation positions of the lock pin accommodating holes 26 and 27 can be made as close as possible to the center direction of the rotation axis of the vane rotor 9, that is, the inside of the vane rotor 9 ( large diameter portions 15A and 15B) in the radial direction. Therefore, the openings 26c and 27c and the fixed open grooves 13A and 13B can be communicated with each other from the axial direction.
 すなわち、第1、第2ロック穴24,25は、スリーブなどの径方向で肉厚な穴構成部材などを用いることなく、直接スプロケット本体5の内側面5dに形成している。このため、各ロック穴24、25は、その形成位置をスプロケット本体5の回転中心側へ寄せることができる。この結果、各ロックピン収容孔26,27の形成位置も、各大径部15A、15Bの径方向内側へ寄せることが可能になる。 That is, the first and second lock holes 24 and 25 are directly formed on the inner side surface 5d of the sprocket body 5 without using a thick hole component such as a sleeve in the radial direction. Therefore, the positions of the lock holes 24 and 25 can be moved toward the rotation center side of the sprocket body 5. As a result, the formation positions of the lock pin accommodating holes 26 and 27 can also be moved inward in the radial direction of the large diameter portions 15A and 15B.
 このため、各開口部26c、27cを、フロントプレート13の内径が固定的な貫通孔13aの各開放溝13A、13Bに軸方向から直線的に連通させることが可能になる。したがって、各ロックピン収容孔26,27の他端部26b、27bと外部との間の通路長を十分に短くすることが可能になる。これによって、各ロックピン収容孔26,27内の潤滑油や空気などを効率良く排出することができる。 Therefore, the openings 26c and 27c can be linearly communicated with the opening grooves 13A and 13B of the through holes 13a having a fixed inner diameter of the front plate 13 from the axial direction. Therefore, it is possible to sufficiently shorten the passage length between the other ends 26b, 27b of the lock pin accommodating holes 26, 27 and the outside. As a result, the lubricating oil and air in the lock pin accommodating holes 26 and 27 can be efficiently discharged.
 また、各開口部26c、27cは、外方に拡径円錐状に形成されていることから、各ロックピン収容孔26,27を過度にベーンロータ9の径方向内側へ過度に寄せなくとも、各開放溝13A,13Bとの間の通路面積を大きく取ることができる。これによって、各ロックピン収容孔26,27内の潤滑油や空気などを効率良く排出することができる。 Further, since the openings 26c and 27c are formed in a conical shape with an enlarged diameter outward, each of the lock pin accommodating holes 26 and 27 does not need to be excessively moved inward in the radial direction of the vane rotor 9. A large passage area between the open grooves 13A and 13B can be obtained. As a result, the lubricating oil and air in the lock pin accommodating holes 26 and 27 can be efficiently discharged.
 また、各開口部26c、27cの内周面が、拡径円錐形状になっていることから、各ロックピン28,29が、各ロックピン収容孔26,27内で後退移動するときに、潤滑油や空気などの逃げ空間が大きくなるので、各開口部26c、27cでの潤滑油などが滞留しにくくなる。特に、各開口部26c、27cは、内周面が拡径円錐形状、つまり外方へ傾斜状に形成されていることから、潤滑油などがこの傾斜面に沿って外部に排出されやすい。 Further, since the inner peripheral surfaces of the openings 26c and 27c have an enlarged conical shape, lubrication occurs when the lock pins 28 and 29 move backward in the lock pin accommodating holes 26 and 27. Since the escape space for oil, air, etc. becomes large, the lubricating oil and the like at the openings 26c and 27c are less likely to stay. In particular, since the inner peripheral surfaces of the openings 26c and 27c are formed in an enlarged conical shape, that is, in an outwardly inclined shape, lubricating oil or the like is easily discharged to the outside along the inclined surface.
 さらに、各開口部26c、27cが、拡径円錐形状になっていることから、ベーンロータ9を焼結成形によって形成する場合に金型の良好な抜き性が得られるので製造作業が容易になる。なお、各開口部26c、27cを切削加工によって形成する場合も、この切削作業が容易になる。 Further, since each of the openings 26c and 27c has an enlarged diameter conical shape, good die punching property can be obtained when the vane rotor 9 is formed by sintering molding, so that the manufacturing work becomes easy. This cutting operation is also facilitated when the openings 26c and 27c are formed by cutting.
 さらに、前述したように、各ロックピン収容孔26,27を、各大径部15A,15Bのベーンロータ9の回転軸を中心とした径方向幅Wの中心よりも径方向内側へ偏倚した位置に配置してある。このため、各遅角、進角油圧室11a~12dとロックピン収容孔26,27との間の径方向の距離が長くなってシール幅が大きくなる。この結果、各油圧室11a~12dから各ロックピン28,29への作動油のリークを抑制できる。
〔第2実施形態〕
 図13は本発明の第2実施形態を示し、装置全体の基本構造は第1実施形態と同じであるが、各ロックピン収容孔26,27の各開口部26c、27cの形状を変更したものである。
Further, as described above, the lock pin accommodating holes 26 and 27 are located at positions deviated inward in the radial direction from the center of the radial width W centered on the rotation axis of the vane rotor 9 of the large diameter portions 15A and 15B. It is arranged. Therefore, the radial distance between the retard and advance hydraulic chambers 11a to 12d and the lock pin accommodating holes 26 and 27 becomes long, and the seal width becomes large. As a result, leakage of hydraulic oil from the hydraulic chambers 11a to 12d to the lock pins 28 and 29 can be suppressed.
[Second Embodiment]
FIG. 13 shows a second embodiment of the present invention, in which the basic structure of the entire apparatus is the same as that of the first embodiment, but the shapes of the openings 26c and 27c of the lock pin accommodating holes 26 and 27 are changed. Is.
 すなわち、各ロックピン収容孔26,27の他端部26b、27bに有する各開口部26c、27cは、円錐形状ではなく、円盤状に形成されている。この各開口部26c、27cは、内径Rが比較的大きく形成されて、ロックピン収容孔26,27の内径よりも大きく形成されている。また、この各開口部26c、27cは、半径方向の最も内側の部位が各開放溝13A、13Bに対してベーンロータ9の回転軸方向で重なっている。また、各開口部26c、27cの前記最も内側の部位を含む外周部の一部が、貫通孔13a及び各開放溝13A、13Bを介して外部に、軸方向から連通している。 That is, the openings 26c and 27c at the other ends 26b and 27b of the lock pin accommodating holes 26 and 27 are formed in a disk shape instead of a conical shape. The inner diameters R of the openings 26c and 27c are formed to be relatively large, and are formed to be larger than the inner diameters of the lock pin accommodating holes 26 and 27. Further, in each of the openings 26c and 27c, the innermost portion in the radial direction overlaps the opening grooves 13A and 13B in the rotation axis direction of the vane rotor 9. Further, a part of the outer peripheral portion of each of the openings 26c and 27c including the innermost portion communicates with the outside through the through hole 13a and the opening grooves 13A and 13B from the axial direction.
 したがって、この実施形態も第1実施形態と同様な作用効果が得られる。
〔第3実施形態〕
 図14は第3実施形態を示し、装置全体の基本構造は第1実施形態と同じであるが、第2実施形態と同じく、各ロックピン収容孔26,27の各開口部26c、27cの形状を変更したものである。
Therefore, this embodiment also has the same effect as that of the first embodiment.
[Third Embodiment]
FIG. 14 shows a third embodiment, and the basic structure of the entire apparatus is the same as that of the first embodiment, but the shapes of the openings 26c and 27c of the lock pin accommodating holes 26 and 27 are the same as those of the second embodiment. Is changed.
 すなわち、各開口部26c、27cは、第1,第2実施形態のように特別に形成するのではなく、各ロックピン収容孔26,27の他端部26b、27bの一部として形成されている。つまり、開口部26c、27cは、軸方向に沿ってストレートに形成された各ロックピン収容孔26,27の他端部27b、27bと連続一体になっており、したがって、ロックピン収容孔26,27の均一な内径と同じ内径に形成されている。 That is, the openings 26c and 27c are not specially formed as in the first and second embodiments, but are formed as a part of the other ends 26b and 27b of the lock pin accommodating holes 26 and 27. There is. That is, the openings 26c and 27c are continuously integrated with the other ends 27b and 27b of the lock pin accommodating holes 26 and 27 formed straight along the axial direction, and therefore, the lock pin accommodating holes 26, It is formed to have the same inner diameter as the uniform inner diameter of 27.
 また、この各開口部26c、27cは、半径方向の最も内側の部位が各開放溝13A、13Bに対してベーンロータ9の回転軸方向で重なっている。また、各開口部26c、27cの前記最も内側の部位を含む外周部の一部が、貫通孔13a及び各開放溝13A、13Bを介して外部に、軸方向から連通している。 Further, in each of the openings 26c and 27c, the innermost portion in the radial direction overlaps the opening grooves 13A and 13B in the rotation axis direction of the vane rotor 9. Further, a part of the outer peripheral portion of each of the openings 26c and 27c including the innermost portion communicates with the outside through the through hole 13a and the opening grooves 13A and 13B from the axial direction.
 したがって、この実施形態も第1、第2実施形態と同様な作用効果が得られるが、特に、各開口部26c、27cは、第1,第2実施形態とは異なり、ロックピン収容孔26,27と同じ内径であることから、特別に形成する必要がないことから、製造作業が容易である。 Therefore, this embodiment also has the same effects as those of the first and second embodiments, but in particular, the openings 26c and 27c are different from the first and second embodiments in that the lock pin accommodating holes 26, Since it has the same inner diameter as 27, it does not need to be specially formed, so that the manufacturing operation is easy.
 本発明の基本的な技術思想は、各ロックピン収容孔26,27の形成位置を、ベーンロータ9(大径部15A、15B)の回転軸の中心とした半径方向の内側の位置に可及的に寄らせたことによって、各ロックピン収容孔26,27の他端部26b、27b側を軸方向から直接的に外部(大気)に連通させた点にある。 The basic technical idea of the present invention is that the formation positions of the lock pin accommodating holes 26 and 27 can be located at the inner positions in the radial direction about the center of the rotation axis of the vane rotor 9 ( large diameter portions 15A and 15B). The other end portions 26b and 27b of the lock pin accommodating holes 26 and 27 are directly communicated with the outside (atmosphere) from the axial direction.
 したがって、第1、第2実施形態において、各開口部26c、27cが拡径円錐状あるいは円盤状に形成されてはいるが、基本的に第3実施形態のストレートなロックピン収容孔26,27のみでも本発明の目的を達成することが可能である。 Therefore, in the first and second embodiments, although the openings 26c and 27c are formed in an enlarged conical shape or a disk shape, basically, the straight lock pin accommodating holes 26 and 27 of the third embodiment are formed. It is possible to achieve the object of the present invention by itself.
 また、フロントプレート13の開放部として、貫通孔13aの内周面に第1、第2開放溝13A,13Bを形成したが、これも各ロックピン収容孔26,27(開口部26c、27c)との連通性を高めるために形成したものである。つまり、第1開放溝13A、13Bを廃止して貫通孔13a自体を開放部とすることも可能である。 Further, as the opening portion of the front plate 13, first and second opening grooves 13A and 13B were formed on the inner peripheral surface of the through hole 13a, and these are also the lock pin accommodating holes 26 and 27 ( openings 26c and 27c). It was formed to improve communication with. That is, it is also possible to abolish the first opening grooves 13A and 13B and use the through hole 13a itself as an opening portion.
 さらに、第1、第2実施形態では、各開口部26c、27cの形状を拡径円錐状あるいは円盤状としたが、これらの形状に限定されるものではなく、他の異形状、例えば、多角形の三角形状や四角形状でもよい。 Further, in the first and second embodiments, the shapes of the openings 26c and 27c are expanded conical shapes or disc shapes, but the shape is not limited to these shapes, and other irregular shapes such as many It may be a polygonal triangle or a quadrangle.
 さらには、開口部26c、27cは、その一部がフロントプレート13の貫通孔13aに対して軸方向から連通すれば良いのであるから、例えば、開口部26c、27cの貫通孔13a側の一部を単に傾斜溝状に形成することも可能である。 Further, since a part of the openings 26c and 27c only need to communicate with the through hole 13a of the front plate 13 from the axial direction, for example, a part of the openings 26c and 27c on the through hole 13a side. It is also possible to simply form an inclined groove.
 また、前記各実施形態では、ロック機構を2つ設けたものを示しているが、1つのロック機構、つまりロックピン収容孔やロックピン及びロック穴をそれぞれ一つのものに適用することも可能である。 Further, in each of the above-described embodiments, two lock mechanisms are provided, but one lock mechanism, that is, a lock pin accommodating hole, a lock pin, and a lock hole can be applied to one of each. is there.
 また、各実施形態では、バルブタイミング制御装置を排気弁側に適用したものに適用したが、排気弁側ばかりか吸気弁側あるいは両方に適用することも可能である。 Further, in each embodiment, the valve timing control device is applied to the exhaust valve side, but it is also possible to apply the valve timing control device not only to the exhaust valve side but also to the intake valve side or both.
 以上説明した実施形態に基づく内燃機関のバルブタイミング制御装置としては、例えば、以下に述べる態様のものが考えられる。 As the valve timing control device for the internal combustion engine based on the embodiment described above, for example, the one described below can be considered.
 すなわち、本発明における好ましい態様としては、クランクシャフトからの回転力が伝達され、内部に複数の作動室を有するハウジングと、前記複数の作動室をそれぞれ仕切る複数のベーンを有し、カムシャフトに固定されるベーンロータと、前記ベーンロータに設けられたロックピン収容孔と、前記ロックピン収容孔の内部に摺動可能に配置されたロックピンと、前記ハウジングに設けられ、前記ロックピンの軸方向の一端部が挿入可能なロック凹部と、
 を備え、
 前記ハウジングは、前記ロック凹部と軸方向で反対側の位置に外部に開放している開放部を有し、
 前記ロックピン収容孔は、前記ロックピンの軸方向の他端部側の端部に背圧を逃がす開口部を有し、
 前記開口部のうち、前記ベーンロータの回転軸を中心とした半径方向の最も内側の部位が、前記開放部に対して前記ベーンロータの回転軸方向で重なっている。
That is, as a preferred embodiment in the present invention, a rotational force from the crankshaft is transmitted, and a housing having a plurality of working chambers inside and a plurality of vanes for partitioning the plurality of working chambers are provided and fixed to the camshaft. A vane rotor, a lock pin accommodating hole provided in the vane rotor, a lock pin slidably arranged inside the lock pin accommodating hole, and one end portion of the lock pin provided in the housing in the axial direction. With a lock recess that can be inserted
With
The housing has an open portion that is open to the outside at a position opposite to the lock recess in the axial direction.
The lock pin accommodating hole has an opening at the end on the other end side in the axial direction of the lock pin to release back pressure.
The innermost portion of the opening in the radial direction about the rotation axis of the vane rotor overlaps the opening in the rotation axis direction of the vane rotor.
 この発明の態様によれば、背圧を逃がす開口部が、ロック収容孔の軸方向から前記開放部に重なっており、この重なり合った部位が軸方向に沿って連通していることから、ロックピン収容孔内の潤滑油や空気が開口部から開放部を通って大気に排出される。このとき、前記開口部を通る空気などの排出性が向上する。 According to the aspect of the present invention, the opening for releasing the back pressure overlaps the opening portion from the axial direction of the lock accommodating hole, and the overlapping portions communicate with each other along the axial direction. Lubricating oil and air in the accommodation hole are discharged to the atmosphere from the opening through the opening. At this time, the discharge property of air and the like passing through the opening is improved.
 また、ロックピン収容孔の形成位置を、ベーンロータの回転軸の中心方向、つまり、ベーンロータの径方向の内側へ可及的に近づけることができることから、開口部と開放部とを軸方向から連通させることができる。 Further, since the position where the lock pin accommodating hole is formed can be as close as possible to the center direction of the rotation axis of the vane rotor, that is, the inside in the radial direction of the vane rotor, the opening and the opening portion are communicated from the axial direction. be able to.
 さらに好ましくは、前記ロックピン収容孔は、前記開口部と、前記開口部と同じ内径を有し、前記ロックピンが摺動する摺動部と、を有し、前記開口部は、内径が前記摺動部よりも大きな環状溝部によって形成され、前記環状溝部の一部が、前記開放部と前記ベーンロータの回転軸方向において重なっている。 More preferably, the lock pin accommodating hole has the opening and a sliding portion having the same inner diameter as the opening and to which the lock pin slides, and the opening has the inner diameter of the opening. It is formed by an annular groove portion larger than the sliding portion, and a part of the annular groove portion overlaps the open portion and the vane rotor in the rotation axis direction.
 この発明の態様によれば、環状溝部によってベーンロータの径方向内側へ過度に寄せなくとも開放部との連通する通路面積が大きくなるので、潤滑油や空気などを十分に排出できる。 According to the aspect of the present invention, the annular groove portion increases the passage area communicating with the open portion even if the vane rotor is not excessively moved inward in the radial direction, so that lubricating oil, air, etc. can be sufficiently discharged.
 また、ロックピンが、ロックピン収容孔内でロック凹部から抜け出して後退移動するときに、潤滑油や空気などの逃げ空間が大きくなるので、開口部での潤滑油などが滞留し難くなる。 Also, when the lock pin escapes from the lock recess in the lock pin accommodating hole and moves backward, the escape space for lubricating oil, air, etc. becomes large, so that the lubricating oil, etc. at the opening is less likely to stay.
 さらに好ましくは、前記環状溝部は、円錐状に形成されて、前記ベーンロータの回転軸方向において前記開放部側の一端の半径が前記摺動部側の他端の半径よりも大きく形成されている。 More preferably, the annular groove portion is formed in a conical shape, and the radius of one end on the open portion side is larger than the radius of the other end on the sliding portion side in the rotation axis direction of the vane rotor.
 この発明の態様によれば、環状溝部が、開放部側が広い円錐状(すり鉢状)に形成されていることから、ベーンロータを例えば焼結成形によって形成する場合に一緒に成形できるので、製造作業が容易になる。また、切削加工も容易である。 According to the aspect of the present invention, since the annular groove portion is formed in a conical shape (mortar shape) having a wide open portion side, it can be molded together when the vane rotor is formed by, for example, sintering molding, so that the manufacturing operation can be performed. It will be easier. Also, cutting is easy.
 さらに好ましくは、前記ベーンロータは、焼結成形によって形成され、前記溝部の内周面は、加工されていない円錐面に形成されている。 この発明の態様によれば、環状溝部が、開放部側が広い円錐状(すり鉢状)に形成されていることから、ベーンロータの焼結成形時の型抜き性が良好になるので成形加工が容易になる。 More preferably, the vane rotor is formed by sintering molding, and the inner peripheral surface of the groove is formed into an unprocessed conical surface. According to the aspect of the present invention, since the annular groove portion is formed in a conical shape (mortar shape) having a wide open portion side, the die-cutting property at the time of sintering molding of the vane rotor is improved, so that the molding process is easy. Become.
 さらに好ましくは、前記ハウジングは、筒状であって、少なくとも軸方向の一方が開口したハウジング本体と、前記ハウジング本体の一方の開口を塞ぐプレート部材と、を有し、前記開放部は、前記プレート部材の内周部に貫通形成された貫通孔の内周縁に有している。 More preferably, the housing has a tubular shape and has a housing body having at least one opening in the axial direction and a plate member closing one opening of the housing body, and the opening portion is the plate. It is provided on the inner peripheral edge of a through hole formed through the inner peripheral portion of the member.
 さらに好ましくは、前記開放部は、前記プレート部材の貫通孔の内周縁に径方向外方へ凹む凹部である。 More preferably, the open portion is a recess recessed outward in the radial direction on the inner peripheral edge of the through hole of the plate member.
 この発明の態様によれば、プレート部材を、例えばプレス成形によって形成する場合には、前記凹部も一緒に成形できるので凹部の成形作業が容易になる。 According to the aspect of the present invention, when the plate member is formed by, for example, press molding, the concave portion can also be formed together, so that the forming operation of the concave portion becomes easy.
 さらに好ましくは、前記ベーンロータは、前記カムシャフトに固定されるロータと、前記ロータの外周から径方向外側に延びるように設けられた大径部と、前記大径部から径方向の外方へ延びるように設けられた前記ベーンと、を有し、前記ロックピン収容孔は、前記大径部に設けられ、前記大径部は、前記ベーンロータが前記ハウジングに対して相対回転する範囲の全域において前記開放部と軸方向で重なっている。 More preferably, the vane rotor includes a rotor fixed to the camshaft, a large-diameter portion provided so as to extend radially outward from the outer circumference of the rotor, and a large-diameter portion extending radially outward from the large-diameter portion. The lock pin accommodating hole is provided in the large diameter portion, and the large diameter portion is provided in the entire range in which the vane rotor rotates relative to the housing. It overlaps the open part in the axial direction.
 この発明の態様によれば、ベーンロータが相対回転しても開放部が大径部で覆われているので、サイドクリアランスのシール性能が高くなって作動室内の作動油が開放部から外部へリークし難くなる。 According to the aspect of the present invention, even if the vane rotor rotates relative to each other, the open portion is covered with a large diameter portion, so that the sealing performance of the side clearance is improved and the hydraulic oil in the working chamber leaks from the open portion to the outside. It becomes difficult.
 さらに好ましくは、前記ロックピン収容孔は、前記大径部の前記ベーンロータの回転軸を中心とした径方向幅の中心よりも径方向内側へ偏倚した位置に設けた。 More preferably, the lock pin accommodating hole is provided at a position deviated inward in the radial direction from the center of the radial width centered on the rotation axis of the vane rotor in the large diameter portion.
 この発明の態様によれば、ロックピン収容孔を、大径部においてベーンロータの回転中心側へ偏倚した位置に設けたことによって、ロックピンを従来よりも径方向内側に配置できる。これによって、作動室とロックピン収容孔との間のシール幅が大きくなって、作動室からの作動油のリークを抑制することができる。 According to the aspect of the present invention, the lock pin can be arranged radially inward as compared with the conventional case by providing the lock pin accommodating hole at a position deviated toward the rotation center side of the vane rotor in the large diameter portion. As a result, the seal width between the working chamber and the lock pin accommodating hole is increased, and leakage of hydraulic oil from the working chamber can be suppressed.
 さらに好ましくは、前記ロック凹部は、前記ハウジングの内面に直接形成されている。 More preferably, the lock recess is formed directly on the inner surface of the housing.
 この発明の態様によれば、ロック凹部を、スリーブなどを用いずにハウジングに直接形成したので、スリーブなどの径方向の肉厚幅を考慮する必要がなくなる。このため、ロック凹部の形成位置、言い換えればロックピン収容孔の形成位置を、大径部の径方向幅のベーンロータの回転軸心寄りにすることができることから、開口部の一部を開放部に対して容易に重ね合わせることができる。 According to the aspect of the present invention, since the lock recess is formed directly on the housing without using a sleeve or the like, it is not necessary to consider the wall thickness width in the radial direction of the sleeve or the like. Therefore, the position where the lock recess is formed, in other words, the position where the lock pin accommodating hole is formed, can be set closer to the rotation axis of the vane rotor having a large diameter in the radial direction. On the other hand, they can be easily overlapped.
 さらに好ましくは、前記環状溝部は、軸直角方向の断面形状が異形状に形成されている。 More preferably, the annular groove portion has an irregular cross-sectional shape in the direction perpendicular to the axis.
 さらに好ましくは、前記環状溝部は、前記ロックピン収容孔の前記摺動部の内径よりも大径な段付き円盤状に形成されている。 More preferably, the annular groove portion is formed in a stepped disk shape having a diameter larger than the inner diameter of the sliding portion of the lock pin accommodating hole.
 別の好ましい態様としては、内燃機関のバルブタイミング制御装置であって、クランクシャフトからの回転力が伝達され、内部に複数の作動室を有するハウジングと、前記複数の作動室をそれぞれ仕切る複数のベーンを有し、カムシャフトに固定されるベーンロータと、前記ベーンロータに設けられたロックピン収容孔と、前記ロックピン収容孔の内部に摺動可能に配置されたロックピンと、前記ハウジングに設けられ、前記ロックピンの軸方向の一端部が挿入可能なロック凹部と、前記ハウジングに設けられ、前記ハウジングの回転軸方向に貫通して前記ハウジングの内部と外部を連通する開放部と、を備え、
 前記ロックピン収容孔は、前記ロックピンの軸方向の他端部側に有する開口部の一部が前記ハウジングと前記ベーンロータの相対回転の範囲の全域において前記開放部と軸方向で重なっている。
Another preferred embodiment is a valve timing control device for an internal combustion engine, which is a housing in which rotational force from a crankshaft is transmitted and has a plurality of working chambers inside, and a plurality of vanes that separately partition the plurality of working chambers. A vane rotor fixed to a camshaft, a lock pin accommodating hole provided in the vane rotor, a lock pin slidably arranged inside the lock pin accommodating hole, and a lock pin provided in the housing and described above. A lock recess into which one end of the lock pin in the axial direction can be inserted, and an open portion provided in the housing and penetrating in the rotation axis direction of the housing to communicate the inside and the outside of the housing.
A part of the opening of the lock pin accommodating hole on the other end side in the axial direction of the lock pin overlaps the opening portion in the axial direction over the entire range of relative rotation between the housing and the vane rotor.
 1…スプロケット、2…カムシャフト、3…位相変更機構、4…第1油圧回路、5…スプロケット本体、7…ハウジング、9…ベーンロータ、第1~第4シュー…10a~10d、11a~11d…遅角油圧室、12a~12d…進角油圧室、13…フロントプレート(ハウジング)、13a…貫通孔、13A・13B…第1、第2開放溝(開放部)、15…ロータ、15A・15B…大径部、16a~16d…ベーン、18…遅角油通路、19…進角油通路、20…オイルポンプ、20a…吐出通路、21…第1電磁切換弁、22…ドレン通路、24…第1ロック穴、24a・24b…第1、第2底面、25…第2ロック穴、26…第1ロックピン収容孔、26b…後端部、26c…第1開口部(開口部)、27…第2ロックピン収容孔、27b…後端部、27c…第2開口部(開口部)、28…第1ロックピン、28a…先端部、29…第2ロックピン、29a…先端部、32…第2油圧回路、36…第2電磁切換弁、37…通路構成部 1 ... Sprocket, 2 ... Camshaft, 3 ... Phase change mechanism, 4 ... First hydraulic circuit, 5 ... Sprocket body, 7 ... Housing, 9 ... Vane rotor, 1st to 4th shoes ... 10a to 10d, 11a to 11d ... Diagonal hydraulic chamber, 12a-12d ... Advance hydraulic chamber, 13 ... Front plate (housing), 13a ... Through hole, 13A / 13B ... 1st and 2nd opening grooves (opening part), 15 ... Rotor, 15A / 15B Large diameter part, 16a to 16d ... vane, 18 ... retard oil passage, 19 ... advance oil passage, 20 ... oil pump, 20a ... discharge passage, 21 ... first electromagnetic switching valve, 22 ... drain passage, 24 ... 1st lock hole, 24a / 24b ... 1st, 2nd bottom surface, 25 ... 2nd lock hole, 26 ... 1st lock pin accommodating hole, 26b ... rear end, 26c ... 1st opening (opening), 27 ... Second lock pin accommodating hole, 27b ... Rear end, 27c ... Second opening (opening), 28 ... First lock pin, 28a ... Tip, 29 ... Second lock pin, 29a ... Tip, 32 ... second hydraulic circuit, 36 ... second electromagnetic switching valve, 37 ... passage component

Claims (12)

  1.  クランクシャフトからの回転力が伝達され、内部に複数の作動室を有するハウジングと、
     前記複数の作動室をそれぞれ仕切る複数のベーンを有し、カムシャフトに固定されるベーンロータと、
     前記ベーンロータに設けられたロックピン収容孔と、
     前記ロックピン収容孔の内部に摺動可能に配置されたロックピンと、
     前記ハウジングに設けられ、前記ロックピンの軸方向の一端部が挿入可能なロック凹部と、
     を備え、
     前記ハウジングは、前記ロック凹部と軸方向で反対側の位置に外部に開放している開放部を有し、
     前記ロックピン収容孔は、前記ロックピンの軸方向の他端部側の端部に背圧を逃がす開口部を有し、
     前記開口部のうち、前記ベーンロータの回転軸を中心とした半径方向の最も内側の部位が、前記開放部に対して前記ベーンロータの回転軸方向で重なっていることを特徴とする内燃機関のバルブタイミング制御装置。
    A housing that transmits the rotational force from the crankshaft and has multiple operating chambers inside,
    A vane rotor having a plurality of vanes for partitioning the plurality of operating chambers and fixed to a camshaft, and a vane rotor.
    The lock pin accommodating hole provided in the vane rotor and
    A lock pin slidably arranged inside the lock pin accommodating hole,
    A lock recess provided in the housing into which one end of the lock pin in the axial direction can be inserted.
    With
    The housing has an open portion that is open to the outside at a position opposite to the lock recess in the axial direction.
    The lock pin accommodating hole has an opening at the end on the other end side in the axial direction of the lock pin to release back pressure.
    The valve timing of the internal combustion engine is characterized in that the innermost portion of the opening in the radial direction about the rotation axis of the vane rotor overlaps the opening in the rotation axis direction of the vane rotor. Control device.
  2.  請求項1に記載の内燃機関のバルブタイミング制御装置において、
     前記ロックピン収容孔は、前記開口部と、前記開口部と同じ内径を有し、前記ロックピンが摺動する摺動部と、を有し、
     前記開口部は、内径が前記摺動部よりも大きな環状溝部によって形成され、
     前記環状溝部の一部が、前記開放部と前記ベーンロータの回転軸方向において重なっていることを特徴とする内燃機関のバルブタイミング制御装置。
    In the valve timing control device for an internal combustion engine according to claim 1.
    The lock pin accommodating hole has the opening and a sliding portion having the same inner diameter as the opening and to which the lock pin slides.
    The opening is formed by an annular groove having an inner diameter larger than that of the sliding portion.
    A valve timing control device for an internal combustion engine, wherein a part of the annular groove portion overlaps the open portion in the rotation axis direction of the vane rotor.
  3.  請求項2に記載の内燃機関のバルブタイミング制御装置において、
     前記環状溝部は、円錐状に形成されて、前記ベーンロータの回転軸方向において前記開放部側の一端の半径が前記摺動部側の他端の半径よりも大きく形成されていることを特徴とする内燃機関のバルブタイミング制御装置。
    In the valve timing control device for an internal combustion engine according to claim 2.
    The annular groove portion is formed in a conical shape, and the radius of one end on the open portion side is larger than the radius of the other end on the sliding portion side in the rotation axis direction of the vane rotor. Valve timing control device for internal combustion engines.
  4.  請求項3に記載の内燃機関のバルブタイミング制御装置において、
     前記ベーンロータは、焼結成形によって形成され、
     前記環状溝部の内周面は、加工されていない円錐面に形成されていることを特徴とする内燃機関のバルブタイミング制御装置。
    In the valve timing control device for an internal combustion engine according to claim 3.
    The vane rotor is formed by sintering molding.
    A valve timing control device for an internal combustion engine, wherein the inner peripheral surface of the annular groove portion is formed on an unprocessed conical surface.
  5.  請求項1に記載の内燃機関のバルブタイミング制御装置において、
     前記ハウジングは、筒状であって、少なくとも軸方向の一方が開口したハウジング本体と、前記ハウジング本体の一方の開口を塞ぐプレート部材と、を有し、
     前記開放部は、前記プレート部材の内周部に貫通形成された貫通孔の内周縁に有していることを特徴とする内燃機関のバルブタイミング制御装置。
    In the valve timing control device for an internal combustion engine according to claim 1.
    The housing has a tubular shape and has a housing body having at least one opening in the axial direction and a plate member that closes one opening of the housing body.
    A valve timing control device for an internal combustion engine, wherein the open portion is provided on the inner peripheral edge of a through hole formed through the inner peripheral portion of the plate member.
  6.  請求項5に記載の内燃機関のバルブタイミング制御装置において、
     前記開放部は、前記プレート部材の貫通孔の内周縁に径方向外方へ凹む凹部であることを特徴とする内燃機関のバルブタイミング制御装置。
    In the valve timing control device for an internal combustion engine according to claim 5.
    A valve timing control device for an internal combustion engine, wherein the open portion is a recess recessed outward in the radial direction on the inner peripheral edge of a through hole of the plate member.
  7.  請求項1に記載の内燃機関のバルブタイミング制御装置において、
     前記ベーンロータは、前記カムシャフトに固定されるロータと、前記ロータの外周から径方向外側に延びるように設けられた大径部と、前記大径部から径方向の外方へ延びるように設けられた前記ベーンと、を有し、
     前記ロックピン収容孔は、前記大径部に設けられ、
     前記大径部は、前記ベーンロータが前記ハウジングに対して相対回転する範囲の全域において前記開放部と軸方向で重なっていることを特徴とする内燃機関のバルブタイミング制御装置。
    In the valve timing control device for an internal combustion engine according to claim 1.
    The vane rotor is provided with a rotor fixed to the camshaft, a large-diameter portion provided so as to extend radially outward from the outer circumference of the rotor, and a large-diameter portion extending radially outward from the large-diameter portion. With the vane,
    The lock pin accommodating hole is provided in the large diameter portion and is provided.
    The large-diameter portion is a valve timing control device for an internal combustion engine, characterized in that the vane rotor overlaps the open portion in the axial direction over the entire range in which the vane rotor rotates relative to the housing.
  8.  請求項7に記載の内燃機関のバルブタイミング制御装置において、
     前記ロックピン収容孔は、前記大径部の前記ベーンロータの回転軸を中心とした径方向幅の中心よりも径方向内側へ偏倚した位置に設けたことを特徴とする内燃機関のバルブタイミング制御装置。
    In the valve timing control device for an internal combustion engine according to claim 7.
    The valve timing control device for an internal combustion engine is characterized in that the lock pin accommodating hole is provided at a position deviated inward in the radial direction from the center of the radial width centered on the rotation axis of the vane rotor in the large diameter portion. ..
  9.  請求項8に記載の内燃機関のバルブタイミング制御装置において、
     前記ロック凹部は、前記ハウジングの内面に直接形成されていることを特徴とする内燃機関のバルブタイミング制御装置。
    In the valve timing control device for an internal combustion engine according to claim 8.
    A valve timing control device for an internal combustion engine, wherein the lock recess is directly formed on the inner surface of the housing.
  10.  請求項2に記載の内燃機関のバルブタイミング制御装置において、
     前記環状溝部は、軸直角方向の断面形状が異形状に形成されていることを特徴とする内燃機関のバルブタイミング制御装置。
    In the valve timing control device for an internal combustion engine according to claim 2.
    The annular groove portion is a valve timing control device for an internal combustion engine, characterized in that the cross-sectional shape in the direction perpendicular to the axis is formed to have an irregular shape.
  11.  請求項2に記載の内燃機関のバルブタイミング制御装置において、
     前記環状溝部は、前記ロックピン収容孔の前記摺動部の内径よりも大径な段付き円盤状に形成されていることを特徴とする内燃機関のバルブタイミング制御装置。
    In the valve timing control device for an internal combustion engine according to claim 2.
    A valve timing control device for an internal combustion engine, wherein the annular groove portion is formed in a stepped disk shape having a diameter larger than the inner diameter of the sliding portion of the lock pin accommodating hole.
  12.  内燃機関のバルブタイミング制御装置であって、
     クランクシャフトからの回転力が伝達され、内部に複数の作動室を有するハウジングと、
     前記複数の作動室をそれぞれ仕切る複数のベーンを有し、カムシャフトに固定されるベーンロータと、
     前記ベーンロータに設けられたロックピン収容孔と、
     前記ロックピン収容孔の内部に摺動可能に配置されたロックピンと、
     前記ハウジングに設けられ、前記ロックピンの軸方向の一端部が挿入可能なロック凹部と、
     前記ハウジングに設けられ、前記ハウジングの回転軸方向に貫通して前記ハウジングの内部と外部を連通する開放部と、
     を備え、
     前記ロックピン収容孔は、前記ロックピンの軸方向の他端部側に有する開口部の一部が前記ハウジングと前記ベーンロータの相対回転の範囲の全域において前記開放部と軸方向で重なることを特徴とする内燃機関のバルブタイミング制御装置。
    It is a valve timing control device for internal combustion engines.
    A housing that transmits the rotational force from the crankshaft and has multiple operating chambers inside,
    A vane rotor having a plurality of vanes that partition each of the plurality of operating chambers and being fixed to a camshaft,
    The lock pin accommodating hole provided in the vane rotor and
    A lock pin slidably arranged inside the lock pin accommodating hole,
    A lock recess provided in the housing into which one end of the lock pin in the axial direction can be inserted.
    An opening portion provided in the housing, penetrating in the rotation axis direction of the housing and communicating the inside and the outside of the housing,
    With
    The lock pin accommodating hole is characterized in that a part of an opening provided on the other end side of the lock pin in the axial direction overlaps the opening portion in the axial direction over the entire range of relative rotation between the housing and the vane rotor. Valve timing control device for internal combustion engines.
PCT/JP2020/046203 2019-12-19 2020-12-11 Valve timing control device for internal combustion engine WO2021125072A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021565542A JPWO2021125072A1 (en) 2019-12-19 2020-12-11
CN202080088595.4A CN114846224A (en) 2019-12-19 2020-12-11 Valve timing control device for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-229060 2019-12-19
JP2019229060 2019-12-19

Publications (1)

Publication Number Publication Date
WO2021125072A1 true WO2021125072A1 (en) 2021-06-24

Family

ID=76478782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046203 WO2021125072A1 (en) 2019-12-19 2020-12-11 Valve timing control device for internal combustion engine

Country Status (3)

Country Link
JP (1) JPWO2021125072A1 (en)
CN (1) CN114846224A (en)
WO (1) WO2021125072A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09250310A (en) * 1996-03-14 1997-09-22 Toyota Motor Corp Valve timing changing device for internal combustion engine
JP2017008731A (en) * 2015-06-17 2017-01-12 株式会社デンソー Valve timing adjusting device
WO2018101155A1 (en) * 2016-11-30 2018-06-07 日立オートモティブシステムズ株式会社 Valve timing control device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09250310A (en) * 1996-03-14 1997-09-22 Toyota Motor Corp Valve timing changing device for internal combustion engine
JP2017008731A (en) * 2015-06-17 2017-01-12 株式会社デンソー Valve timing adjusting device
WO2018101155A1 (en) * 2016-11-30 2018-06-07 日立オートモティブシステムズ株式会社 Valve timing control device for internal combustion engine

Also Published As

Publication number Publication date
JPWO2021125072A1 (en) 2021-06-24
CN114846224A (en) 2022-08-02

Similar Documents

Publication Publication Date Title
US7827947B2 (en) Variable displacement pump, valve timing control device using the variable displacement pump, and valve timing control system using the variable displacement pump, for use in internal combustion engines
US9133734B2 (en) Valve timing control apparatus for internal combustion engine
US8789505B2 (en) Valve timing control apparatus of internal combustion engine
US9021999B2 (en) Valve timing control apparatus of internal combustion engine
JP5763432B2 (en) Valve timing control device for internal combustion engine
CN113614337B (en) Working oil control valve and valve timing adjustment device
EP3179143A1 (en) Hydraulic control valve and valve-timing control device for internal-combustion engine using hydraulic control valve
JP2012097594A (en) Valve timing control device of internal combustion engine
US9322304B2 (en) Variable valve actuation apparatus of internal combustion engine
JP5928158B2 (en) Valve timing control device
US9506378B2 (en) Variable valve timing control apparatus of internal combustion engine
WO2021125072A1 (en) Valve timing control device for internal combustion engine
US9157342B2 (en) Valve timing control apparatus for internal combustion engine
WO2021125073A1 (en) Internal combustion engine valve timing control device
JP2015105608A (en) Valve opening/closing timing control device
US6935291B2 (en) Variable valve timing controller
JP6775032B2 (en) Hydraulic control valve and valve timing control device for internal combustion engine
WO2018101155A1 (en) Valve timing control device for internal combustion engine
JP2020186662A (en) Valve timing control device for internal combustion engine
JP7065197B2 (en) Internal combustion engine valve timing controller
JP5369199B2 (en) Variable displacement pump, valve timing control system using the pump, and valve timing control device for internal combustion engine
JP7068495B2 (en) Solenoid valve and valve timing controller for internal combustion engine
US20210172347A1 (en) Valve opening and closing timing control device
JP6131665B2 (en) Valve timing control device
WO2018230173A1 (en) Valve timing control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902580

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565542

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902580

Country of ref document: EP

Kind code of ref document: A1