WO2021123561A1 - Heat exchanger for thermal treatment of an electrical and/or electronic component - Google Patents

Heat exchanger for thermal treatment of an electrical and/or electronic component Download PDF

Info

Publication number
WO2021123561A1
WO2021123561A1 PCT/FR2020/052321 FR2020052321W WO2021123561A1 WO 2021123561 A1 WO2021123561 A1 WO 2021123561A1 FR 2020052321 W FR2020052321 W FR 2020052321W WO 2021123561 A1 WO2021123561 A1 WO 2021123561A1
Authority
WO
WIPO (PCT)
Prior art keywords
microfibers
heat exchanger
elastically deformable
electrical
deformable material
Prior art date
Application number
PCT/FR2020/052321
Other languages
French (fr)
Inventor
Yolanda Bravo Rodriguez
Cédric DE VAULX
Patrick LEBLAY
Kamel Azzouz
Julien Tissot
Jérémy BLANDIN
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Publication of WO2021123561A1 publication Critical patent/WO2021123561A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20254Cold plates transferring heat from heat source to coolant
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20763Liquid cooling without phase change
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0029Heat sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/02Flexible elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/14Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded
    • F28F2255/146Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded overmolded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the field of the present invention is that of the heat treatment of electrical and / or electronic components liable to heat up during their operation. More particularly, the present invention relates to heat exchangers intended for the heat treatment of electrical and / or electronic components in various fields of application such as computer servers or automotive vehicle batteries, these heat exchangers being intended for both cooling such components, for example when they are in operation, than preheating these components, that is to say that they can also serve to heat these components to facilitate their starting.
  • these batteries tend to heat up during use and electric and hybrid vehicles are thus equipped with heat exchangers configured to operate heat exchanges with these batteries in order to discharge their calories.
  • these heat exchangers can be formed from rigid metal plates which delimit conduits for circulating a heat transfer fluid suitable for collecting calories from the batteries.
  • thermal regulation devices such as the heat exchangers mentioned above are insufficient today to overcome this major drawback. These thermal regulation devices are also little, or not, effective when it comes to heat treatment of miniaturized electrical components such as those that can be found in computer servers for example.
  • the present invention falls within this context by proposing a heat exchanger that is more efficient than the heat exchangers currently used, in particular in that it is able to match, at least partially, the irregularities which may be present at the surface of the batteries, thus increasing the heat exchange surface and therefore improving the cooling of these batteries.
  • the heat exchanger according to the invention has a smaller weight and space requirement compared to the heat exchangers currently used.
  • the heat exchanger comprises a network of microfibers configured to be traversed by a heat transfer fluid and at least one layer of an elastically deformable material, the network of microfibers being at least partially surrounded by the layer of elastically material. deformable.
  • the heat exchanger according to the invention is arranged in contact with at least one electrical and / or electronic component and it is configured to operate a heat exchange between the heat transfer fluid which circulates in the microfibers and this electrical component and / or. or electronic.
  • heat transfer fluid is understood to mean a fluid capable of capturing, transporting and transferring calories to its environment. immediate.
  • the microfibers forming the network of microfibers take the form of hollow tubes.
  • these microfibers can be made from a polymer material.
  • the use of such a material gives these microfibers sufficient mechanical strength and chemical resistance to withstand the stresses to which they are subjected.
  • such a material makes it possible to obtain flexible microfibers, that is to say that these microfibers can be deformed, folded, without their integrity being impacted.
  • each of these microfibers participating in forming the network of microfibers has a section, a main dimension of which is between 0.5 mm and 1.5 mm.
  • the term “main dimension” is understood to mean the longest dimension of the section of the microfiber concerned.
  • the microfiber when the microfiber has a circular section, its diameter is referred to as the “main dimension”. Likewise, when the microfiber has a substantially rectangular section, the term “main dimension” is understood to mean a diagonal of this section. In addition, whatever material forming each of these microfibers has a thickness of between 50 ⁇ m and 200 ⁇ m.
  • the layer of elastically deformable material of the heat exchanger according to the invention makes it possible to match the shapes, sometimes irregular, that the at least one electrical and / or electronic component may have, then allowing maximum contact between the exchanger. heat and this electrical and / or electronic component. It is understood that the contact surface between the heat exchanger and the electrical and / or electronic component also forms a heat exchange surface between these two elements, so that the greater this contact surface, the greater the exchange. heat is efficient, that is to say the greater the number of calories exchanged between these components.
  • the heat exchanger further comprises at least one inlet manifold configured to distribute the heat transfer fluid in the microfibers of the microfiber network and at least one outlet manifold configured to collect the heat transfer fluid. heat transfer fluid once the heat exchange between this heat transfer fluid and the electrical and / or electronic component has been operated.
  • the microfibers of the microfiber network are in fluid communication with the inlet manifold box and also with the outlet manifold box.
  • the network of microfibers is completely surrounded by the layer of elastically deformable material.
  • the network of microfibers can be embedded in the layer of elastically deformable material.
  • the microfibers are first gathered into one or more bundles, then the layer of elastically deformable material is cast around these bundles of microfibers.
  • This layer of elastically deformable material can for example be overmolded or injected into the network of microfibers.
  • the heat exchanger according to the invention comprises at least a first sub-layer of elastically deformable material and at least a second sub-layer of elastically deformable material, the network of microfibers being interposed between the first sub-layer of material. elastically deformable and the second sub-layer of elastically deformable material.
  • the layer of elastically deformable material comprises at least one thermally conductive portion.
  • this thermally conductive portion may be a portion made of a mixture of the elastically deformable material and of a charged polymer.
  • the thermally conductive portion of the elastically deformable material is positioned so as to form the part of the heat exchanger arranged in contact with the at least one electrical and / or electronic component.
  • This thermally conductive portion makes it possible to improve the thermal conductivity of the elastically deformable material, and therefore to improve the thermal performance of the heat exchanger according to the invention.
  • this charged polymer can be a ceramic, a metallic material, carbon fibers or any other known material having the characteristics. properties described in this document with reference to this thermally conductive material.
  • the layer of elastically deformable material can comprise at least one thermally insulating portion.
  • the thermally insulating portion of this layer of elastically deformable material is turned away from the electrical and / or electronic component intended to be heat treated by the heat exchanger according to the invention.
  • this thermally insulating portion makes it possible, on the one hand, to limit heat losses, that is to say it makes it possible to limit the number of calories which are transmitted to the environment of the heat exchanger. other than the electrical and / or electronic component and, on the other hand, to prevent the calories present in this environment of the heat exchanger from being transmitted to the electrical and / or electronic component, which would complicate the heat treatment of this component.
  • the network of microfibers can comprise at least a first bundle of microfibers and at least a second bundle of microfibers, the first bundle of microfibers and the second bundle of microfibers being distinct.
  • each bundle of microfibers is supplied independently of the other, the heat exchanger according to the invention then comprising at least a first inlet manifold and a first outlet manifold dedicated to distribution. and the collection of the heat transfer fluid in the microfibers forming the first bundle and at least a second inlet manifold and a second outlet manifold dedicated to the distribution and collection of the heat transfer fluid in the microfibers forming the second bundle.
  • such an arrangement of the microfibers allows finer management of the heat exchange which takes place between the heat transfer fluid which circulates in the microfibers and at least one electrical and / or electronic component, for example by providing for making circulating two different types of heat transfer fluid in the first and second bundles of microfiber or by providing to circulate the heat transfer fluid at different temperatures depending on the microfiber bundle concerned.
  • the microfibers can be grouped together in a single bundle then fed by a single collector box.
  • such an arrangement of the microfibers improves the mechanical strength of the heat exchanger.
  • the layer of elastically deformable material can comprise at least one heating element.
  • a heating element is then included in the layer of elastically deformable material, so that it is in indirect contact with the microfibers which form the network of microfibers of the heat exchanger, thus allowing a transfer of calories between this heating element and the heat transfer fluid which circulates in the microfibers of the microfiber network.
  • the heat exchanger comprises at least two bundles of microfibers
  • the heating element it is possible for example to provide for the heating element to be arranged near the first bundle of microfibers so that this first bundle of microfibers forms a first hot circuit, i.e. capable of transferring heat to the electrical and / or electronic component and the second bundle of microfibers then forming a cold circuit, i.e. a circuit configured to capture heat from this electrical and / or electronic component.
  • the first bundle of microfibers could thus for example be used to transfer heat to the electrical and / or electronic component, for example during a preheating phase which may precede the operation of such an electrical component and / or electronic
  • the second bundle of microfibers could, for example, be used for cooling this electrical and / or electronic component, that is to say for capturing the calories from this electrical and / or electronic component , for example when it is in use.
  • the invention also relates to a device for thermal regulation of an electrical and / or electronic component liable to heat up, the device for thermal regulation comprising at least one housing adapted to house at least one electrical and / or electronic component capable of heating up, the thermal regulation device comprising at least one heat exchanger as mentioned above, this at least one heat exchanger being received in the housing.
  • the present invention further relates to an electrical and / or electronic device, comprising at least one electrical and / or electronic component capable of heating up and at least one thermal regulation device as mentioned above, the at least one electrical and / or electronic component being received in the housing of the thermal regulation device.
  • the heat exchanger is arranged between a bottom wall of the housing and at least one electrical and / or electronic component.
  • the layer of elastically deformable material may comprise a thermally insulating portion and a thermally conductive portion.
  • the thermally insulating portion can be arranged between the network of microfibers and the bottom wall of the housing and the thermally conductive portion can for its part be arranged between the network of microfibers and at least one electrical and / or electronic component.
  • the electrical and / or electronic device comprises a plurality of electrical and / or electronic components which are arranged in parallel with each other, perpendicular to a transverse stacking direction, the electrical device and / or or electronic comprising a single heat exchanger which winds between the successive electrical and / or electronic components.
  • the electrical and / or electronic device comprises a plurality of electrical and / or electronic components, again, arranged in parallel one after the other, perpendicular to a transverse stacking direction
  • the electrical device and / or electronics comprises a plurality of heat exchangers arranged in parallel one after the other, perpendicular to the direction of transverse stacking, these heat exchangers being separated from each other by at least one electrical and / or electronic component .
  • each heat exchanger with the exception, where appropriate, of the heat exchangers arranged at the transverse ends of the stack of electrical and / or electronic components, is interposed between two electrical and / or electrical components. or successive electronic.
  • the invention finally relates to an electric or hybrid motor vehicle, comprising at least one electric motor and at least one electric and / or electronic device according to the invention, the electric and / or electronic device being configured to supply the at least one electrically. electric motor.
  • the electrical and / or electronic device is an electrical energy storage device and the at least one electrical and / or electronic component is a control member. electrical energy storage.
  • FIG. 1 is a schematic representation, in cross section, of an electrical and / or electronic device according to a first embodiment of the present invention
  • FIG. 2 is a schematic representation, in cross section, of the electrical and / or electronic device according to a second example of realization of the present invention
  • FIG. 3 is a schematic representation, in cross section, of the electrical and / or electronic device according to a third embodiment of the present invention.
  • FIG. 4 is a schematic representation, seen from above, of a heat exchanger intended for the electrical and / or electronic device according to one aspect of the invention in which a network of microfibers is made visible by transparency;
  • FIG. 5 is a schematic representation, in cross section, of the electrical and / or electronic device according to a variant of the first embodiment of the present invention which includes a heat exchanger according to the embodiment illustrated in Figure 4;
  • FIG. 6 is a schematic representation, in perspective, of the electrical and / or electronic device according to a first configuration of the present invention, the electrical and / or electronic device being shown without a housing;
  • FIG. 7 is a schematic representation, in perspective, of the electrical and / or electronic device according to a second configuration of the present invention, the electrical and / or electronic device being shown without a housing;
  • FIG. 8 is a schematic representation, in perspective, of the electrical and / or electronic device according to a third configuration of the present invention, the electrical and / or electronic device being shown without a housing.
  • the characteristics, variants and the different embodiments of the invention can be associated with each other, in various combinations, as long as they are not incompatible or exclusive to each other. It is in particular possible to imagine variants of the invention comprising only a selection of characteristics described below in isolation from the other characteristics described, if this selection of characteristics is sufficient for to confer a technical advantage or to differentiate the invention from the state of the prior art.
  • the following description relates to a heat exchanger according to the invention used for the heat treatment of an electrical storage device intended for a vehicle, but it is understood that this is only a particular example of application of the present invention which does not limit it. It is thus possible to provide for using the heat exchanger according to the invention for the heat treatment of any known electrical and / or electronic component.
  • the heat exchanger according to the invention is for example also suitable for the heat treatment of electrical components of computer servers.
  • the terms “electrical and / or electronic device” and “electrical energy storage device” are used without distinction in this document, as are the terms “electrical and / or electronic component” and “energy storage device”. electric energy ".
  • the denominations longitudinal, vertical, transverse, left, right, top, bottom refer to the orientation illustrated by the trihedrons L, V, T.
  • a longitudinal axis L represents a longitudinal direction
  • a transverse axis T represents a transverse direction
  • a vertical axis V represents a vertical direction of the considered object.
  • the terms “electrical energy storage” and “storage” will be used without distinction, and a so-called “transverse” section will correspond to a section made along a transverse and vertical plane, that is to say a plane in which are inscribed the transverse axis T and the vertical axis V of the trihedron.
  • Figures 1 to 3 show, schematically and in cross section, an electrical energy storage device 100 according to, respectively, a first, a second and a third exemplary embodiments of the present invention.
  • FIG. 5 illustrates for its part a variant of the first exemplary embodiment illustrated in FIG. 1.
  • the storage device 100 electrical energy comprises at least one housing no, in which are housed at least one storage member 120 of electrical energy, and for example three storage members 120 in Figures 1 to 3, and at least one heat exchanger 130 .
  • the at least one heat exchanger 130 comprises a plurality of microfibers 131 in which a heat transfer fluid is able to circulate and a layer of an elastically deformable material 132. More precisely, these microfibers 131 are arranged in a network of microfibers 131 and the layer of elastically deformable material 132 surrounds, at least partially, this network of microfibers 131. As shown, the storage members 120 are arranged in contact with the heat exchanger 130. This heat exchanger 130 is configured to operate a heat exchange between the storage members 120 and the heat transfer fluid which circulates in the microfiber network 131.
  • the microfibers 131 forming the network of microfibers 131 take the form of hollow tubes.
  • these microfibers 131 can be made of a polymer material.
  • the use of such a material gives these microfibers 131 mechanical strength and sufficient chemical resistance to withstand the stresses to which they are subjected.
  • such a material makes it possible to obtain flexible microfibers, that is to say that these microfibers can be deformed, folded, without their integrity being impacted.
  • each of these microfibers 131 has a section, a main dimension of which is between 0.5 mm and 1.5 mm.
  • the term “main dimension” is understood to mean the longest dimension of the section of the microfiber 131 concerned.
  • the microfiber when the microfiber has a circular section, its diameter is referred to as the “main dimension”. Likewise, when the microfiber has a substantially rectangular section, the term “main dimension” is understood to mean a diagonal of this section.
  • the material, whatever it is, forming each of these microfibers has a thickness of between 50 ⁇ m and 200 ⁇ m. It is thus understood that the figures which illustrate these microfibers are not made to scale and that the microfibers represented in these figures are enlarged in order to be made visible.
  • the layer of elastically deformable material 132 can for example be a layer of silicone. It is understood that this is only an example of implementation of the invention which does not limit this invention. In other words, any elastically deformable material can be considered to participate in forming the heat exchanger 130 according to the invention.
  • housing no and the heat exchanger 130 received in this housing no thus form a thermal regulation device 2o storage members received in this housing no.
  • the network of microfibers 131 is embedded in the layer of elastically deformable material 132.
  • the microfibers 131 are, firstly, assembled together. network, then the layer of elastically deformable material 132 is cast on this network of microfibers 131, so as to completely surround the network of microfibers, from an inlet manifold to an outlet manifold, not visible in FIG. .
  • the heat exchanger can in particular be obtained by overmolding the layer of elastically deformable material on the network of microfibers previously installed in a suitable mold.
  • the heat exchanger 130 thus formed can then be disposed in the housing no of the storage device roo of electrical energy.
  • this heat exchanger 130 is arranged between a bottom wall m of the housing no and the storage devices 2o of electrical energy.
  • the layer of elastically deformable material 132 is in contact both with the housing no, and more particularly with the bottom wall m of this housing no, and with the storage members r20.
  • the elasticity of the heat exchanger 130 linked to its design in microfibers 131 and in elastically deformable material 132 allows it to adapt perfectly to the shapes, sometimes irregular, of the storage cells 2o of electrical energy and of the box no, so that a contact surface between this heat exchanger 130 and 120 storage units of electrical energy is maximum.
  • the layer of elastically deformable material 132 comprises at least a first sublayer 133 and at least a second sublayer 134 between which is interposed the network of microfibers 131.
  • the first sublayer 133 is more particularly interposed between the storage members 120 and the microfiber network 131 and the second sublayer 134 is itself interposed between the microfiber network 131 and the bottom wall 111 of the housing 110.
  • the first sublayer 133 and the second sublayer 134 of elastically deformable material 132 can be injected independently of one another and then respectively pressed and glued to the microfiber network 131.
  • the first sublayer 133 and / or second sublayer 134 of elastically deformable material 132 may each comprise an adhesive strip - not shown here. It will be understood that these adhesive tapes are then adapted to be glued to the network of microfibers. It is understood that this is only a non-limiting example of the present invention and that any other means of maintaining the first sublayer 133 and the second sublayer 134 around the network of microfibers 131 is conceivable without departing from the context of the present invention.
  • the layer of elastically deformable material 132 may further comprise at least one thermally conductive portion and / or a thermally insulating portion.
  • the thermally conductive portion of the layer of elastically deformable material 132 may be arranged in contact with the storage members 120 of electrical energy while the thermally insulating portion of the layer of elastically deformable material 132 may, for its part, be arranged between the bottom wall 111 of the housing 110 and the microfiber network 131.
  • the thermally conductive portion advantageously makes it possible to improve the heat exchange which takes place between the storage members 120 of electrical energy and the heat transfer fluid which circulates in the microfibers 131 forming the network of microfibers 131.
  • the thermally insulating portion makes it possible for its part to limit the heat losses that can otherwise be observed, that is to say it makes it possible to prevent heat loss. Calories coming from the housing 110 are not captured by the heat transfer fluid, and thus prevent the efficiency of the heat exchange between this heat transfer fluid and the electrical energy storage members 120 from being reduced.
  • the thermally insulating portion also makes it possible to prevent heat present in the environment of the housing 110 from entering the housing 110 and being captured by the electrical energy storage members 120, which would complicate the processing. thermal of these storage members 120.
  • the thermally conductive portion and the thermally insulating portion of the layer of elastically deformable material 132 make it possible, on the one hand, to improve the heat exchange which takes place. between the heat transfer fluid which circulates in the microfibers and the storage members 120 and, on the other hand, to limit the heat exchanges which could otherwise take place between the storage members 120 and the environment outside the housing, thus allowing controlled heat exchange.
  • the thermally conductive portion may comprise the elastically deformable material with which is mixed a thermally conductive material such as ceramic, a metallic material, or a carbon fiber material. It is understood that these are only exemplary embodiments and that any other thermally conductive material can be used without departing from the context of the present invention.
  • the layer of elastically deformable material 132 may have variable thermal insulation properties as the storage members 120 to be treated are moved away. For example, provision could be made for a concentration of thermally insulating material to decrease vertically, that is to say along a straight line parallel to the vertical axis V of the illustrated trihedron, from a first face 150 of the layer.
  • the first sublayer 1 33 of the layer of elastically deformable material 1 3 2 may have a composition different from the second sublayer 1 34 of this layer. of elastically deformable material 1 3 2 .
  • the first sublayer 1 33 may for example comprise the elastically deformable material 1 3 2 to which the thermally conductive material will have been added while the second sublayer 1 34 may for its part include the elastically deformable material 1 3 2 to which the thermally insulating material will have been added.
  • the network of microfibers 1 3 1 is only partially surrounded by the layer of elastically deformable material 1 3 2 .
  • each storage member 120 is in contact with the heat exchanger 1 3 0 , but in this case being directly in contact with the network of microfibers 1 3 1 .
  • the layer of elastically deformable material 1 3 2 is interposed between this network of microfibers 1 3 1 and the bottom wall 111 of the housing 110 .
  • the layer of material elastically deformable 132 may include a thermally insulating portion as described above.
  • a layer of elastically deformable material 132 makes it possible to absorb the surface roughness of the storage device 100, that is to say any irregularities which may be present on the surface of the housing 110. or storage members 120 themselves, so that a contact surface, whether this contact is direct as is for example the case for the third embodiment, or indirect as is for example the case for the first and second exemplary embodiments, ie maximum. It is in fact understood that by maximizing this contact surface, a heat exchange surface between the heat transfer fluid which circulates in the microfibers and the storage members 120 is also maximum, thus optimizing the heat exchange which takes place. between this heat transfer fluid and these storage members 120.
  • this layer of elastically deformable material 132 in combination with the network of microfibers 131, in the design of the heat exchanger 130 makes it possible to improve the heat treatment capacities of this heat exchanger 130 compared to the heat exchangers currently in use.
  • FIG. 4 illustrates, seen from above, a heat exchanger 130 according to an exemplary embodiment of the invention, in which the layer of elastically deformable material 132 is shown in transparency in order to make visible the network of microfibers 131 of such a heat exchanger 130.
  • the microfiber network 131 comprises at least one inlet manifold 140 configured to distribute the heat transfer fluid in the microfibers 131 of the microfiber network 131 and at least one outlet manifold 141 configured for collect the heat transfer fluid once the heat exchange has taken place.
  • the heat exchanger 130 may comprise a network of microfibers formed by one or more bundles of microfibers, supplied, respectively, by one or more collector box (s).
  • the microfiber network can thus for example comprise a single bundle of microfibers supplied by a single collector box, a plurality of bundles of microfibers supplied by a single collector box or even a plurality of bundles of microfibers supplied by as many collector boxes.
  • the term “supplied by a single manifold” is understood to mean the fact that the heat exchanger concerned comprises a single inlet manifold and a single outlet manifold.
  • the term “supplied by as many manifolds as there are microfiber bundles” is understood to mean the fact that the heat exchanger concerned comprises a plurality of inlet manifolds, each dedicated to the distribution of the heat transfer fluid in the heat exchanger.
  • the grouping of the network of microfibers into a single bundle improves its mechanical strength while the distribution of this network of microfibers into several bundles allows more precise management of the heat exchange which takes place between the heat transfer fluid which circulates in these microfibers and electrical energy storage devices.
  • the use of at least two bundles of microfibers to form the network makes it possible to obtain at least two circuits in which circulate at least two different fluids which have different heat transfer properties.
  • FIG. 4 illustrates a configuration of the heat exchanger 130 according to the invention, according to which the network of microfibers 131 comprises a first bundle 135 of microfibers and a second bundle 136 of microfibers, the microfibers 131 forming the first bundle 135 being distinct microfibers 131 forming the second bundle 136.
  • the solid lines represent the first bundle 135 of microfibers 131 and the dotted lines represent the second bundle 136 of microfibers 131.
  • the microfibers 131 forming the first bundle 135 extend between a first inlet manifold 142 and a first outlet manifold 143 and the microfibers 131 forming the second bundle 136 extend between a second inlet manifold 144 and a second outlet manifold 145.
  • the network of microfibers 131 of the heat exchanger 130 as illustrated in FIG. 4 comprises a first circuit formed by the first bundle 135 of microfibers and a second circuit formed by the second bundle 136 of microfibers, the heat transfer fluid circulating in the first circuit being able to be distinct from the heat transfer fluid which circulates in the second circuit.
  • such a distribution of the microfibers 131 makes it possible to improve the management of the heat exchange which takes place between this heat transfer fluid and the electrical energy storage members.
  • FIG. 5 illustrates an implementation, according to the first exemplary embodiment illustrated in FIG. 1, of the heat exchanger 130 illustrated and described with reference to FIG. 4.
  • the network of microfibers 131 according to this particular exemplary embodiment comprises the first bundle 135 of microfibers 131 - shown in solid lines - and the second bundle 136 of microfibers 131 - shown in broken lines -, these two bundles 135, 136 being distinct and supplied independently of one another. the other.
  • the layer of elastically deformable material 132 can comprise at least one heating element 137.
  • This heating element 137 which can for example take the form of a heating strip, is advantageously arranged near one of the two bundles of microfibers.
  • this heating element 137 can be arranged near the first bundle 135 of microfibers 131, that is to say closer to this first bundle 135 of microfibers 131 than to the second bundle 136 of microfibers 131.
  • the first bundle 135 of microfibers 131 forms a first hot circuit
  • the second bundle 136 of microfibers 131 forms a second cold circuit, that is to say that the heat transfer fluid which circulates in the first circuit has an average temperature higher than the fluid coolant circulating in the second circuit.
  • microfiber bundles are shown, in Figure 5, in a staggered arrangement, this architecture is not limiting of the present invention.
  • Figures 6 to 8 for their part illustrate, schematically and in perspective views, a first, a second and a third configurations of an electrical energy storage device according to one aspect of the invention, equipped with a heat exchanger. 130 as previously mentioned.
  • the electrical energy storage device is shown without the housing, that is to say they only make visible the electrical energy storage members 120 and at least one heat exchanger 130 according to a aspect of the invention.
  • the storage members 120 are arranged in parallel with each other, perpendicular to a transverse stacking direction D, that is to say a direction parallel to the transverse axis T.
  • the storage device comprises several heat exchangers 130 according to the invention, arranged in parallel to each other along the transverse stacking direction D, and distributed between the storage members 120. More particularly, each heat exchanger 130 is interposed between two successive storage members 120, with the exception of the two exchangers heat 130 arranged at the transverse ends of the stack of storage members 120.
  • the storage device comprises five storage members 120 and six heat exchangers 130, four of these heat exchangers 130 being interposed between two successive storage members 120 and two of them being distributed at the two transverse ends of the alignment of storage members 120.
  • the two heat exchangers 130 arranged at the transverse ends are respectively dedicated to the treatment.
  • each heat exchanger 130 comprises an inlet manifold box 140 and an outlet manifold box 141, the orientation of the perspective making here only visible one of the outlet manifolds.
  • the second configuration illustrated in FIG. 7 differs from the first configuration which has just been described in that the heat exchangers 130 comprise a common inlet header box 140 and a common outlet header box 141 as well.
  • the inlet manifold box 140 illustrated in FIG. 7 is configured to distribute the heat transfer fluid in all of the heat exchangers 130
  • the outlet manifold box 141 illustrated in this figure is configured to collect the heat transfer fluid from of all of these heat exchangers 130.
  • each heat exchanger 130 comprises at least the network of microfibers 131 surrounded, at least partially, by the layer of elastically deformable material 132.
  • the heat exchangers 130 are distributed between the successive storage members 120.
  • the third configuration illustrated in FIG. 8 differs from the first and the second configuration which have just been described in that the multiplicity of heat exchangers 130 is replaced by a single heat exchanger 130 which winds between the storage members 120.
  • the heat exchanger 130 has a plurality of folds 138 which partially surround the storage members 120.
  • the heat exchanger 120 comprises a single manifold, that is, that is to say an inlet manifold box 140 and an outlet manifold box - not visible in FIG. 8.
  • Such a configuration is in particular possible thanks to the materials used for the design of this single heat exchanger 130, namely a network of microfibers surrounded, at least in part, by the layer of elastically deformable material 132.
  • the material and dimensions of the microfibers used to form The network of microfibers gives them a certain elasticity, that is to say that these microfibers can be deformed, folded, without their integrity being impacted.
  • the combination of these two materials thus makes it possible to shape the heat exchanger (s) according to different configurations, so as to adapt this exchanger (s). of heat to the component (s) that it is (are) intended to heat treat.
  • the present invention thus provides a heat exchanger which makes it possible to maximize a contact surface between the heat transfer fluid which circulates in this heat exchanger and the elements intended to be heat treated by this heat exchanger, in particular thanks to the presence of microfibers included, at least partially, in an elastically deformable material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

The invention relates to a heat exchanger (130) for thermal treatment of at least one electrical and/or electronic component (120), characterised in that the heat exchanger (130) comprises a network of microfibres (131) configured to be passed through by a heat transfer fluid and at least one layer of an elastically deformable material (132), and in that the network of microfibres (131) is at least partially surrounded by the layer of elastically deformable material (132).

Description

ECHANGEUR DE CHALEUR DESTINE AU TRAITEMENT THERMIQUE D’UN COMPOSANT ELECTRIQUE ET/OU ELECTRONIQUE HEAT EXCHANGER INTENDED FOR THE THERMAL TREATMENT OF AN ELECTRICAL AND / OR ELECTRONIC COMPONENT
Le domaine de la présente invention est celui du traitement thermique de composants électriques et/ou électroniques susceptibles de s’échauffer lors de leur fonctionnement. Plus particulièrement, la présente invention concerne des échangeurs de chaleur destinés au traitement thermique de composants électriques et/ou électroniques dans divers domaines d’application tels que les serveurs informatique ou les batteries de véhicules automobile, ces échangeurs de chaleur étant destinés à la fois au refroidissement de tels composants, par exemple lorsqu’ils sont en fonctionnement, qu’au préchauffage de ces composants, c’est-à- dire qu’ils peuvent également servir à chauffer ces composants pour faciliter leur démarrage. The field of the present invention is that of the heat treatment of electrical and / or electronic components liable to heat up during their operation. More particularly, the present invention relates to heat exchangers intended for the heat treatment of electrical and / or electronic components in various fields of application such as computer servers or automotive vehicle batteries, these heat exchangers being intended for both cooling such components, for example when they are in operation, than preheating these components, that is to say that they can also serve to heat these components to facilitate their starting.
A titre d’exemple, dans le domaine automobile, les contraintes environnementales actuelles poussent les constructeurs automobiles à développer le marché des véhicules électriques et hybrides, qui sont moins polluants que les véhicules à moteurs thermiques classiques. For example, in the automotive field, current environmental constraints are pushing car manufacturers to develop the market for electric and hybrid vehicles, which are less polluting than vehicles with conventional heat engines.
Ces véhicules électriques et hybrides sont propulsés grâce à un moteur électrique alimenté par de l’énergie électrique stockées dans des batteries agencées dans le véhicule. Afin de diminuer le temps nécessaire pour recharger ces batteries, de nouveaux appareillages ont été mis en place pour permettre une charge rapide (également appelée « Fast charge » en anglais) de ces batteries, c’est-à-dire une charge complète, ou quasi-complète, en quelques dizaines de minutes. These electric and hybrid vehicles are powered by an electric motor powered by electrical energy stored in batteries in the vehicle. In order to reduce the time necessary to recharge these batteries, new equipment has been put in place to allow rapid charging (also called "Fast charge" in English) of these batteries, that is to say a full charge, or almost complete, in a few tens of minutes.
D’une façon générale, ces batteries tendent à chauffer en cours d’utilisation et les véhicules électriques et hybrides sont ainsi équipés d’échangeurs de chaleur configurés pour opérer des échanges de chaleur avec ces batteries afin de les décharger de leurs calories. Par exemple, ces échangeurs de chaleur peuvent être formés de plaques métalliques rigides qui délimitent des conduits de circulation d’un fluide caloporteur adapté pour captées des calories issues des batteries. En phase de charge rapide des batteries, ce phénomène s’aggrave, c’est-à-dire que les batteries peuvent alors atteindre des températures excessives qui risquent de les endommager définitivement. Les appareils de régulation thermique tels que les échangeurs de chaleur cités ci-dessus sont aujourd’hui insuffisants pour pallier cet inconvénient majeur. Ces appareils de régulation thermique sont en outre peu, ou pas, efficaces lorsqu’il s’agit de traiter thermiquement des composants électriques miniaturisés tels que ceux que l’on peut trouver dans des serveurs informatiques par exemple. In general, these batteries tend to heat up during use and electric and hybrid vehicles are thus equipped with heat exchangers configured to operate heat exchanges with these batteries in order to discharge their calories. For example, these heat exchangers can be formed from rigid metal plates which delimit conduits for circulating a heat transfer fluid suitable for collecting calories from the batteries. During the rapid battery charging phase, this phenomenon worsens, that is to say that the batteries can then reach excessive temperatures which risk damaging them permanently. Thermal regulation devices such as the heat exchangers mentioned above are insufficient today to overcome this major drawback. These thermal regulation devices are also little, or not, effective when it comes to heat treatment of miniaturized electrical components such as those that can be found in computer servers for example.
De plus, les matériaux utilisés pour fabriquer ces échangeurs de chaleurs sont très lourds et les échangeurs de chaleur obtenus sont également encombrants. In addition, the materials used to manufacture these heat exchangers are very heavy and the heat exchangers obtained are also bulky.
La présente invention s’inscrit dans ce contexte en proposant un échangeur de chaleur plus efficace que les échangeurs de chaleur actuellement mis en œuvre, notamment en ce qu’il est capable d’épouser, au moins partiellement, les irrégularités qui peuvent être présentes à la surface des batteries, augmentant ainsi la surface d’échange de chaleur et donc améliorant le refroidissement de ces batteries. En outre, l’échangeur de chaleur selon l’invention présente un poids et un encombrement moindre par rapport aux échangeurs de chaleur actuellement mis en œuvre. The present invention falls within this context by proposing a heat exchanger that is more efficient than the heat exchangers currently used, in particular in that it is able to match, at least partially, the irregularities which may be present at the surface of the batteries, thus increasing the heat exchange surface and therefore improving the cooling of these batteries. In addition, the heat exchanger according to the invention has a smaller weight and space requirement compared to the heat exchangers currently used.
Un objet de la présente invention concerne ainsi un échangeur de chaleur destiné au traitement thermique d’au moins un composant électrique et/ou électronique. Selon l’invention, l’échangeur de chaleur comprend un réseau de microfibres configurées pour être parcourues par un fluide caloporteur et au moins une couche d’un matériau élastiquement déformable, le réseau de microfibres étant au moins partiellement entouré par la couche de matériau élastiquement déformable. An object of the present invention thus relates to a heat exchanger intended for the thermal treatment of at least one electrical and / or electronic component. According to the invention, the heat exchanger comprises a network of microfibers configured to be traversed by a heat transfer fluid and at least one layer of an elastically deformable material, the network of microfibers being at least partially surrounded by the layer of elastically material. deformable.
L’échangeur de chaleur selon l’invention est agencé au contact de l’au moins un composant électrique et/ou électronique et il est configuré pour opérer un échange de chaleur entre le fluide caloporteur qui circule dans les microfibres et ce composant électrique et/ou électronique. On entend par « fluide caloporteur » un fluide capable de capter, transporter et céder des calories à son environnement immédiat. The heat exchanger according to the invention is arranged in contact with at least one electrical and / or electronic component and it is configured to operate a heat exchange between the heat transfer fluid which circulates in the microfibers and this electrical component and / or. or electronic. The term “heat transfer fluid” is understood to mean a fluid capable of capturing, transporting and transferring calories to its environment. immediate.
Selon l’invention, les microfibres formant le réseau de microfibres prennent la forme de tubes creux. Par exemple, ces microfibres peuvent être réalisées en un matériau polymère. Avantageusement, l’utilisation d’un tel matériau confère à ces microfibres une résistance mécanique et une résistance chimique suffisante pour supporter les contraintes auxquelles elles sont soumises. En outre, un tel matériau permet d’obtenir des microfibres souples, c’est-à-dire que ces microfibres peuvent être déformées, pliées, sans que leur intégrité ne soit impactée. Selon une caractéristique de l’invention, chacune de ces microfibres participant à former le réseau de microfibres présente une section dont une dimension principale est comprise entre 0,5 mm et 1,5 mm. On entend par « dimension principale » une dimension la plus longue de la section de la microfibre concernée. A titre d’exemple, lorsque la microfibre présente une section circulaire, on qualifie de « dimension principale » son diamètre. De même, lorsque la microfibre présente une section sensiblement rectangulaire, on entend par « dimension principale » une diagonale de cette section. En outre, le matériau, quel qu’il soit, formant chacune de ces microfibres présente une épaisseur comprise entre 50 pm et 200 pm. According to the invention, the microfibers forming the network of microfibers take the form of hollow tubes. For example, these microfibers can be made from a polymer material. Advantageously, the use of such a material gives these microfibers sufficient mechanical strength and chemical resistance to withstand the stresses to which they are subjected. In addition, such a material makes it possible to obtain flexible microfibers, that is to say that these microfibers can be deformed, folded, without their integrity being impacted. According to one characteristic of the invention, each of these microfibers participating in forming the network of microfibers has a section, a main dimension of which is between 0.5 mm and 1.5 mm. The term “main dimension” is understood to mean the longest dimension of the section of the microfiber concerned. By way of example, when the microfiber has a circular section, its diameter is referred to as the “main dimension”. Likewise, when the microfiber has a substantially rectangular section, the term “main dimension” is understood to mean a diagonal of this section. In addition, whatever material forming each of these microfibers has a thickness of between 50 µm and 200 µm.
La couche de matériau élastiquement déformable de l’échangeur de chaleur selon l’invention permet d’épouser les formes, parfois irrégulières, que peut présenter l’au moins un composant électrique et/ou électronique, permettant alors un contact maximal entre l’échangeur de chaleur et ce composant électrique et/ou électronique. On comprend que la surface de contact entre l’échangeur de chaleur et le composant électrique et/ou électronique forme également une surface d’échange de chaleur entre ces deux éléments, de sorte que plus cette surface de contact est importante, plus l’échange de chaleur est efficace, c’est-à-dire plus le nombre de calories échangées entre ces composants est important. The layer of elastically deformable material of the heat exchanger according to the invention makes it possible to match the shapes, sometimes irregular, that the at least one electrical and / or electronic component may have, then allowing maximum contact between the exchanger. heat and this electrical and / or electronic component. It is understood that the contact surface between the heat exchanger and the electrical and / or electronic component also forms a heat exchange surface between these two elements, so that the greater this contact surface, the greater the exchange. heat is efficient, that is to say the greater the number of calories exchanged between these components.
L’échangeur de chaleur comprend en outre au moins une boîte collectrice d’entrée configurée pour répartir le fluide caloporteur dans les microfibres du réseau de microfibres et au moins une boîte collectrice de sortie configurée pour collecter le fluide caloporteur une fois l’échange de chaleur entre ce fluide caloporteur et le composant électrique et/ou électronique opéré. Autrement dit, on comprend que les microfibres du réseau de microfibres sont en communication fluidique avec la boîte collectrice d’entrée et également avec la boîte collectrice de sortie. The heat exchanger further comprises at least one inlet manifold configured to distribute the heat transfer fluid in the microfibers of the microfiber network and at least one outlet manifold configured to collect the heat transfer fluid. heat transfer fluid once the heat exchange between this heat transfer fluid and the electrical and / or electronic component has been operated. In other words, it is understood that the microfibers of the microfiber network are in fluid communication with the inlet manifold box and also with the outlet manifold box.
Selon un exemple de réalisation de la présente invention, le réseau de microfibres est totalement entouré par la couche de matériau élastiquement déformable. According to an exemplary embodiment of the present invention, the network of microfibers is completely surrounded by the layer of elastically deformable material.
Par exemple, le réseau de microfibres peut être noyé dans la couche de matériau élastiquement déformable. Selon cet exemple, les microfibres sont, dans un premier temps rassemblées en un ou plusieurs faisceaux, puis la couche de matériau élastiquement déformable est coulée autour de ces faisceaux de microfibres. Cette couche de matériau élastiquement déformable peut par exemple être surmoulée ou injectée sur le réseau de microfibres. Alternativement, l’échangeur de chaleur selon l’invention comprend au moins une première sous- couche du matériau élastiquement déformable et au moins une deuxième sous- couche de matériau élastiquement déformable, le réseau de microfibres étant interposé entre la première sous-couche de matériau élastiquement déformable et la deuxième sous-couche de matériau élastiquement déformable. For example, the network of microfibers can be embedded in the layer of elastically deformable material. According to this example, the microfibers are first gathered into one or more bundles, then the layer of elastically deformable material is cast around these bundles of microfibers. This layer of elastically deformable material can for example be overmolded or injected into the network of microfibers. Alternatively, the heat exchanger according to the invention comprises at least a first sub-layer of elastically deformable material and at least a second sub-layer of elastically deformable material, the network of microfibers being interposed between the first sub-layer of material. elastically deformable and the second sub-layer of elastically deformable material.
Selon une caractéristique de la présente invention, la couche de matériau élastiquement déformable comprend au moins une portion thermiquement conductrice. Par exemple, cette portion thermiquement conductrice peut être une portion réalisée en un mélange du matériau élastiquement déformable et d’un polymère chargé. Avantageusement la portion thermiquement conductrice du matériau élastiquement déformable est positionnée de sorte à former la partie de l’échangeur de chaleur agencée au contact de l’au moins un composant électrique et/ou électronique. Cette portion thermiquement conductrice permet d’améliorer la conductivité thermique du matériau élastiquement déformable, et donc d’améliorer les performances thermiques de l’échangeur de chaleur selon l’invention. Par exemple ce polymère chargé peut être une céramique, un matériau métallique, des fibres de carbone ou tout autre matériau connu et présentant les propriétés décrites dans le présent document en référence à ce matériau thermiquement conducteur. According to one characteristic of the present invention, the layer of elastically deformable material comprises at least one thermally conductive portion. For example, this thermally conductive portion may be a portion made of a mixture of the elastically deformable material and of a charged polymer. Advantageously, the thermally conductive portion of the elastically deformable material is positioned so as to form the part of the heat exchanger arranged in contact with the at least one electrical and / or electronic component. This thermally conductive portion makes it possible to improve the thermal conductivity of the elastically deformable material, and therefore to improve the thermal performance of the heat exchanger according to the invention. For example, this charged polymer can be a ceramic, a metallic material, carbon fibers or any other known material having the characteristics. properties described in this document with reference to this thermally conductive material.
Optionnellement, la couche de matériau élastiquement déformable peut comprendre au moins une portion thermiquement isolante. Le cas échéant, la portion thermiquement isolante de cette couche de matériau élastiquement déformable est tournée à l’opposé du composant électrique et/ou électronique destiné à être traité thermiquement par l’échangeur de chaleur selon l’invention. Avantageusement, cette portion thermiquement isolante permet, d’une part, de limiter les déperditions de chaleur, c’est-à-dire qu’il permet de limiter le nombre de calories qui sont transmises à l’environnement de l’échangeur de chaleur autre que le composant électrique et/ou électronique et, d’autre part, d’éviter que des calories présentes dans cet environnement de l’échangeur de chaleur ne soit transmises au composant électrique et/ou électronique, ce qui complexifierait le traitement thermique de ce composant. Optionally, the layer of elastically deformable material can comprise at least one thermally insulating portion. Where appropriate, the thermally insulating portion of this layer of elastically deformable material is turned away from the electrical and / or electronic component intended to be heat treated by the heat exchanger according to the invention. Advantageously, this thermally insulating portion makes it possible, on the one hand, to limit heat losses, that is to say it makes it possible to limit the number of calories which are transmitted to the environment of the heat exchanger. other than the electrical and / or electronic component and, on the other hand, to prevent the calories present in this environment of the heat exchanger from being transmitted to the electrical and / or electronic component, which would complicate the heat treatment of this component.
Selon une caractéristique de la présente invention, le réseau de microfibres peut comprendre au moins un premier faisceau de microfibres et au moins un deuxième faisceau de microfibres, le premier faisceau de microfibres et le deuxième faisceau de microfibres étant distincts. Autrement dit, selon cette caractéristique, chaque faisceau de microfibres est alimenté indépendamment de l’autre, l’échangeur de chaleur selon l’invention comprenant alors au moins une première boîte collectrice d’entrée et une première boîte collectrice de sortie dédiées à la répartition et à la collecte du fluide caloporteur dans les microfibres formant le premier faisceau et au moins une deuxième boîte collectrice d’entrée et une deuxième boite collectrice de sortie dédiées à la répartition et à la collecte du fluide caloporteur dans les microfibres formant le deuxième faisceau. Avantageusement, un tel agencement des microfibres permet une gestion plus fine de l’échange de chaleur qui s’opère entre le fluide caloporteur qui circule dans les microfibres et l’au moins un composant électrique et/ou électronique, par exemple en prévoyant de faire circuler deux types de fluide caloporteur différents dans les premier et deuxième faisceaux de microfibre ou en prévoyant de faire circuler le fluide caloporteur à des températures différentes selon le faisceau de microfibres concerné. Alternativement, les microfibres peuvent être regroupées en un unique faisceau alors alimenté par une seule boîte collectrice. Avantageusement, un tel agencement des microfibres améliore la résistance mécanique de l’échangeur de chaleur. According to one characteristic of the present invention, the network of microfibers can comprise at least a first bundle of microfibers and at least a second bundle of microfibers, the first bundle of microfibers and the second bundle of microfibers being distinct. In other words, according to this characteristic, each bundle of microfibers is supplied independently of the other, the heat exchanger according to the invention then comprising at least a first inlet manifold and a first outlet manifold dedicated to distribution. and the collection of the heat transfer fluid in the microfibers forming the first bundle and at least a second inlet manifold and a second outlet manifold dedicated to the distribution and collection of the heat transfer fluid in the microfibers forming the second bundle. Advantageously, such an arrangement of the microfibers allows finer management of the heat exchange which takes place between the heat transfer fluid which circulates in the microfibers and at least one electrical and / or electronic component, for example by providing for making circulating two different types of heat transfer fluid in the first and second bundles of microfiber or by providing to circulate the heat transfer fluid at different temperatures depending on the microfiber bundle concerned. Alternatively, the microfibers can be grouped together in a single bundle then fed by a single collector box. Advantageously, such an arrangement of the microfibers improves the mechanical strength of the heat exchanger.
Optionnellement, la couche de matériau élastiquement déformable peut comprendre au moins un élément chauffant. Autrement dit, on comprend qu’un tel élément chauffant est alors inclus dans la couche de matériau élastiquement déformable, de sorte qu’il est au contact, indirect, des microfibres qui forment le réseau de microfibres de l’échangeur de chaleur, permettant ainsi un transfert de calories entre cet élément chauffant et le fluide caloporteur qui circule dans les microfibres du réseau de microfibres. Optionally, the layer of elastically deformable material can comprise at least one heating element. In other words, it is understood that such a heating element is then included in the layer of elastically deformable material, so that it is in indirect contact with the microfibers which form the network of microfibers of the heat exchanger, thus allowing a transfer of calories between this heating element and the heat transfer fluid which circulates in the microfibers of the microfiber network.
Selon la caractéristique évoquée ci-dessus selon laquelle l’échangeur de chaleur comprend au moins deux faisceaux de microfibres, on pourra par exemple prévoir que l’élément chauffant soit agencé à proximité du premier faisceau de microfibres de sorte que ce premier faisceau de microfibres forme un premier circuit chaud, c’est-à-dire apte à céder des calories au composant électrique et/ou électronique et le deuxième faisceau de microfibres formant alors un circuit froid, c’est-à-dire un circuit configuré pour capter des calories issues de ce composant électrique et/ou électronique. Avantageusement, le premier faisceau de microfibres pourra ainsi par exemple être utilisé pour transférer des calories au composant électrique et/ou électronique, par exemple lors d’une phase de préchauffage qui peut précéder la mise en fonctionnement d’un tel composant électrique et/ou électronique, et le deuxième faisceau de microfibres pourra quant à lui, par exemple, être utilisé pour le refroidissement de ce composant électrique et/ou électronique, c’est-à-dire pour capter les calories issues de ce composant électrique et/ou électronique, par exemple lorsque celui-ci est en cours d’utilisation. According to the characteristic mentioned above according to which the heat exchanger comprises at least two bundles of microfibers, it is possible for example to provide for the heating element to be arranged near the first bundle of microfibers so that this first bundle of microfibers forms a first hot circuit, i.e. capable of transferring heat to the electrical and / or electronic component and the second bundle of microfibers then forming a cold circuit, i.e. a circuit configured to capture heat from this electrical and / or electronic component. Advantageously, the first bundle of microfibers could thus for example be used to transfer heat to the electrical and / or electronic component, for example during a preheating phase which may precede the operation of such an electrical component and / or electronic, and the second bundle of microfibers could, for example, be used for cooling this electrical and / or electronic component, that is to say for capturing the calories from this electrical and / or electronic component , for example when it is in use.
L’invention concerne également un dispositif de régulation thermique d’un composant électrique et/ou électronique susceptible de s’échauffer, le dispositif de régulation thermique comprenant au moins un boîtier adapté pour loger au moins un composant électrique et/ou électronique susceptible de s’échauffer, le dispositif de régulation thermique comprenant au moins un échangeur de chaleur tel qu’évoqué précédemment, cet au moins un échangeur de chaleur étant reçu dans le boîtier. The invention also relates to a device for thermal regulation of an electrical and / or electronic component liable to heat up, the device for thermal regulation comprising at least one housing adapted to house at least one electrical and / or electronic component capable of heating up, the thermal regulation device comprising at least one heat exchanger as mentioned above, this at least one heat exchanger being received in the housing.
La présente invention concerne en outre un dispositif électrique et/ou électronique, comprenant au moins un composant électrique et/ou électronique susceptible de s’échauffer et au moins un dispositif de régulation thermique tel qu’évoqué ci-dessus, l’au moins un composant électrique et/ou électronique étant reçu dans le boîtier du dispositif de régulation thermique. The present invention further relates to an electrical and / or electronic device, comprising at least one electrical and / or electronic component capable of heating up and at least one thermal regulation device as mentioned above, the at least one electrical and / or electronic component being received in the housing of the thermal regulation device.
Selon une configuration de la présente invention, l’échangeur de chaleur est agencé entre une paroi de fond du boîtier et l’au moins un composant électrique et/ou électronique. Selon les différentes caractéristiques évoquées ci-dessus, on pourra par exemple prévoir que la couche de matériau élastiquement déformable comprenne une portion thermiquement isolante et une portion thermiquement conductrice. Avantageusement, la portion thermiquement isolante peut être agencée entre le réseau de microfibres et la paroi de fond du boîtier et la portion thermiquement conductrice peut quant à elle être agencée entre le réseau de microfibres et l’au moins un composant électrique et/ou électronique. According to a configuration of the present invention, the heat exchanger is arranged between a bottom wall of the housing and at least one electrical and / or electronic component. According to the various characteristics mentioned above, provision may for example be made for the layer of elastically deformable material to comprise a thermally insulating portion and a thermally conductive portion. Advantageously, the thermally insulating portion can be arranged between the network of microfibers and the bottom wall of the housing and the thermally conductive portion can for its part be arranged between the network of microfibers and at least one electrical and / or electronic component.
Selon une autre configuration de la présente invention, le dispositif électrique et/ou électronique comporte une pluralité de composants électriques et/ou électroniques qui sont agencés en parallèle les uns des autres, perpendiculairement à une direction d’empilement transversale, le dispositif électrique et/ou électronique comprenant un unique échangeur de chaleur qui serpente entre les composants électriques et/ou électroniques successifs. On comprend qu’une telle configuration est rendue possible, notamment grâce aux capacités de déformation que présentent, à la fois, les microfibres qui forment le réseau de microfibres de l’échangeur de chaleur et le matériau élastiquement déformable qui entoure, au moins partiellement, ce réseau de microfibres. Selon encore une autre configuration, dans laquelle le dispositif électrique et/ou électronique comprend une pluralité de composants électriques et/ou électroniques, là encore, agencés en parallèle les uns après les autres, perpendiculairement à une direction d’empilement transversale, le dispositif électrique et/ou électronique comprend une pluralité d’échangeurs de chaleur agencés en parallèle les uns après les autres, perpendiculairement à la direction d’empilement transversale, ces échangeurs de chaleur étant séparés les uns des autres par au moins un composant électrique et/ou électronique. Autrement dit, selon cette autre configuration, chaque échangeur de chaleur, à l’exception, le cas échéant, des échangeurs de chaleur agencés aux extrémités transversales de l’empilement des composants électriques et/ou électroniques, est interposé entre deux composants électriques et/ou électroniques successifs. According to another configuration of the present invention, the electrical and / or electronic device comprises a plurality of electrical and / or electronic components which are arranged in parallel with each other, perpendicular to a transverse stacking direction, the electrical device and / or or electronic comprising a single heat exchanger which winds between the successive electrical and / or electronic components. It will be understood that such a configuration is made possible, in particular thanks to the deformation capacities exhibited both by the microfibers which form the network of microfibers of the heat exchanger and by the elastically deformable material which surrounds, at least partially, this microfiber network. According to yet another configuration, in which the electrical and / or electronic device comprises a plurality of electrical and / or electronic components, again, arranged in parallel one after the other, perpendicular to a transverse stacking direction, the electrical device and / or electronics comprises a plurality of heat exchangers arranged in parallel one after the other, perpendicular to the direction of transverse stacking, these heat exchangers being separated from each other by at least one electrical and / or electronic component . In other words, according to this other configuration, each heat exchanger, with the exception, where appropriate, of the heat exchangers arranged at the transverse ends of the stack of electrical and / or electronic components, is interposed between two electrical and / or electrical components. or successive electronic.
L’invention concerne enfin un véhicule automobile électrique ou hybride, comprenant au moins un moteur électrique et au moins un dispositif électrique et/ou électronique selon l’invention, le dispositif électrique et/ou électronique étant configuré pour alimenter électriquement l’au moins un moteur électrique. Autrement dit, on comprend que selon cet exemple d’application particulier de la présente invention, le dispositif électrique et/ou électronique est un dispositif de stockage d’énergie électrique et l’au moins un composant électrique et/ou électronique est un organe de stockage d’énergie électrique. The invention finally relates to an electric or hybrid motor vehicle, comprising at least one electric motor and at least one electric and / or electronic device according to the invention, the electric and / or electronic device being configured to supply the at least one electrically. electric motor. In other words, it is understood that according to this particular example of application of the present invention, the electrical and / or electronic device is an electrical energy storage device and the at least one electrical and / or electronic component is a control member. electrical energy storage.
D’autres détails, caractéristiques et avantages ressortiront plus clairement à la lecture de la description détaillée donnée ci-après en relation avec les différents modes de fonctionnement illustrés, à titre indicatif, sur les figures suivantes parmi lesquelles : Other details, characteristics and advantages will emerge more clearly on reading the detailed description given below in relation to the various operating modes illustrated, for information only, in the following figures, including:
[Fig. 1] est une représentation schématique, selon une coupe transversale, d’un dispositif de électrique et/ou électronique selon un premier exemple de réalisation de la présente invention ; [Fig. 1 ] is a schematic representation, in cross section, of an electrical and / or electronic device according to a first embodiment of the present invention;
[Fig. 2] est une représentation schématique, selon une coupe transversale, du dispositif de électrique et/ou électronique selon un deuxième exemple de réalisation de la présente invention ; [Fig. 2 ] is a schematic representation, in cross section, of the electrical and / or electronic device according to a second example of realization of the present invention;
[Fig. 3] est une représentation schématique, selon une coupe transversale, du dispositif de électrique et/ou électronique selon un troisième exemple de réalisation de la présente invention ; [Fig. 3] is a schematic representation, in cross section, of the electrical and / or electronic device according to a third embodiment of the present invention;
[Fig. 4] est une représentation schématique, vu de dessus, d’un échangeur de chaleur destiné au dispositif électrique et/ou électronique selon un aspect de l’invention dans lequel un réseau de microfibres est rendu visible par transparence ; [Fig. 4] is a schematic representation, seen from above, of a heat exchanger intended for the electrical and / or electronic device according to one aspect of the invention in which a network of microfibers is made visible by transparency;
[Fig. 5] est une représentation schématique, selon une coupe transversale, du dispositif de électrique et/ou électronique selon une variante du premier exemple de réalisation de la présente invention qui inclut un échangeur de chaleur selon l’exemple de réalisation illustré sur la figure 4 ; [Fig. 5] is a schematic representation, in cross section, of the electrical and / or electronic device according to a variant of the first embodiment of the present invention which includes a heat exchanger according to the embodiment illustrated in Figure 4;
[Fig. 6] est une représentation schématique, en perspective, du dispositif électrique et/ou électronique selon une première configuration de la présente invention, le dispositif électrique et/ ou électronique étant représenté dépourvu de boîtier ;[Fig. 6] is a schematic representation, in perspective, of the electrical and / or electronic device according to a first configuration of the present invention, the electrical and / or electronic device being shown without a housing;
[Fig. 7] est une représentation schématique, en perspective, du dispositif électrique et/ou électronique selon une deuxième configuration de la présente invention, le dispositif de électrique et/ou électronique étant représenté dépourvu de boîtier ; [Fig. 7] is a schematic representation, in perspective, of the electrical and / or electronic device according to a second configuration of the present invention, the electrical and / or electronic device being shown without a housing;
[Fig. 8] est une représentation schématique, en perspective, du dispositif électrique et/ou électronique selon une troisième configuration de la présente invention, le dispositif de électrique et/ou électronique étant représenté dépourvu de boîtier.[Fig. 8] is a schematic representation, in perspective, of the electrical and / or electronic device according to a third configuration of the present invention, the electrical and / or electronic device being shown without a housing.
Les caractéristiques, variantes et les différentes formes de réalisation de l’invention peuvent être associées les unes avec les autres, selon diverses combinaisons, dans la mesure où elles ne sont pas incompatibles ou exclusives les unes aux autres. On pourra notamment imaginer des variantes de l’invention ne comprenant qu’une sélection de caractéristiques décrites par la suite de manière isolée des autres caractéristiques décrites, si cette sélection de caractéristiques est suffisante pour conférer un avantage technique ou pour différencier l’invention par rapport à l’état de la technique antérieur. The characteristics, variants and the different embodiments of the invention can be associated with each other, in various combinations, as long as they are not incompatible or exclusive to each other. It is in particular possible to imagine variants of the invention comprising only a selection of characteristics described below in isolation from the other characteristics described, if this selection of characteristics is sufficient for to confer a technical advantage or to differentiate the invention from the state of the prior art.
La description qui suit se rapporte à un échangeur de chaleur selon l’invention utilisé pour le traitement thermique d’un dispositif de stockage électrique destiné à un véhicule mais il est entendu qu’il ne s’agit que d’un exemple particulier d’application de la présente invention qui ne limite pas celle-ci. On pourra ainsi prévoir d’utiliser l’échangeur de chaleur selon l’invention pour le traitement thermique de n’importe quel composant électrique et/ou électronique connu. En particulier, l’échangeur de chaleur selon l’invention est par exemple également adapté au traitement thermique de composants électriques de serveurs informatique. Ainsi, les termes « dispositif électrique et/ou électronique » et « dispositif de stockage d’énergie électrique » sont utilisés sans distinction dans le présent document, tout comme les termes « composant électrique et/ ou électronique » et « organe de stockage d’énergie électrique ». The following description relates to a heat exchanger according to the invention used for the heat treatment of an electrical storage device intended for a vehicle, but it is understood that this is only a particular example of application of the present invention which does not limit it. It is thus possible to provide for using the heat exchanger according to the invention for the heat treatment of any known electrical and / or electronic component. In particular, the heat exchanger according to the invention is for example also suitable for the heat treatment of electrical components of computer servers. Thus, the terms “electrical and / or electronic device” and “electrical energy storage device” are used without distinction in this document, as are the terms “electrical and / or electronic component” and “energy storage device”. electric energy ".
Sur les figures, les dénominations longitudinale, verticale, transversale, gauche, droite, dessus, dessous, se réfèrent à l'orientation illustré par les trièdres L, V, T. Dans ce repère, un axe longitudinal L représente une direction longitudinale, un axe transversal T représente une direction transversale, et un axe vertical V représente une direction verticale de l’objet considéré. Dans la description qui suit les termes « stockage d’énergie électrique » et « stockage » seront utilisés sans distinction, et une coupe dite « transversale » correspondra à une coupe réalisée selon un plan transversal et vertical, c’est-à-dire un plan dans lequel s’inscrivent l’axe transversal T et l’axe vertical V du trièdre. In the figures, the denominations longitudinal, vertical, transverse, left, right, top, bottom, refer to the orientation illustrated by the trihedrons L, V, T. In this reference, a longitudinal axis L represents a longitudinal direction, a transverse axis T represents a transverse direction, and a vertical axis V represents a vertical direction of the considered object. In the following description, the terms “electrical energy storage” and “storage” will be used without distinction, and a so-called “transverse” section will correspond to a section made along a transverse and vertical plane, that is to say a plane in which are inscribed the transverse axis T and the vertical axis V of the trihedron.
Les figures 1 à 3 représentent, schématiquement et selon une coupe transversale, un dispositif de stockage 100 d’énergie électrique selon, respectivement, un premier, un deuxième et un troisième exemples de réalisation de la présente invention. La figure 5 illustre quant à elle une variante du premier exemple de réalisation illustré sur la figure 1. Figures 1 to 3 show, schematically and in cross section, an electrical energy storage device 100 according to, respectively, a first, a second and a third exemplary embodiments of the present invention. FIG. 5 illustrates for its part a variant of the first exemplary embodiment illustrated in FIG. 1.
Selon l’un quelconque de ces exemples de réalisation, le dispositif de stockage 100 d’énergie électrique comprend au moins un boîtier no, dans lequel sont logés au moins un organe de stockage 120 d’énergie électrique, et par exemple trois organes de stockage 120 sur les figures 1 à 3, et au moins un échangeur de chaleur 130. According to any one of these exemplary embodiments, the storage device 100 electrical energy comprises at least one housing no, in which are housed at least one storage member 120 of electrical energy, and for example three storage members 120 in Figures 1 to 3, and at least one heat exchanger 130 .
L’au moins un échangeur de chaleur 130 comprend une pluralité de microfibres 131 dans lesquelles un fluide caloporteur est apte à circuler et une couche d’un matériau élastiquement déformable 132. Plus précisément, ces microfibres 131 sont agencées en un réseau de microfibres 131 et la couche de matériau élastiquement déformable 132 entoure, au moins partiellement, ce réseau de microfibres 131. Tel que représenté, les organes de stockage 120 sont agencés au contact de l’échangeur de chaleur 130. Cet échangeur de chaleur 130 est configuré pour opérer un échange de chaleur entre les organes de stockage 120 et le fluide caloporteur qui circule dans le réseau de microfibres 131. The at least one heat exchanger 130 comprises a plurality of microfibers 131 in which a heat transfer fluid is able to circulate and a layer of an elastically deformable material 132. More precisely, these microfibers 131 are arranged in a network of microfibers 131 and the layer of elastically deformable material 132 surrounds, at least partially, this network of microfibers 131. As shown, the storage members 120 are arranged in contact with the heat exchanger 130. This heat exchanger 130 is configured to operate a heat exchange between the storage members 120 and the heat transfer fluid which circulates in the microfiber network 131.
Selon l’invention, les microfibres 131 formant le réseau de microfibres 131 prennent la forme de tubes creux. Par exemple, ces microfibres 131 peuvent être réalisées en un matériau polymère. Avantageusement, l’utilisation d’un tel matériau confère à ces microfibres 131 une résistance mécanique et une résistance chimique suffisante pour supporter les contraintes auxquelles elles sont soumises. En outre, un tel matériau permet d’obtenir des microfibres souples, c’est-à-dire que ces microfibres peuvent être déformées, pliées, sans que leur intégrité ne soit impactée. Par exemple, chacune de ces microfibres 131 présente une section dont une dimension principale est comprise entre 0,5 mm et 1,5 mm. On entend par « dimension principale » une dimension la plus longue de la section de la microfibre 131 concernée. A titre d’exemple, lorsque la microfibre présente une section circulaire, on qualifie de « dimension principale » son diamètre. De même, lorsque la microfibre présente une section sensiblement rectangulaire, on entend par « dimension principale » une diagonale de cette section. En outre, le matériau, quel qu’il soit, formant chacune de ces microfibres présente une épaisseur comprise entre 50 pm et 200 pm. Il est ainsi entendu que les figures qui illustrent ces microfibres ne sont pas réalisées à l’échelle et que les microfibres représentées sur ces figures sont agrandies afin d’être rendues visibles. La couche de matériau élastiquement déformable 132 peut quant à elle par exemple être une couche de silicone. Il est entendu qu’il ne s’agit que d’un exemple de mise en œuvre de l’invention qui ne limite pas cette invention. Autrement dit, tout matériau élastiquement déformable peut être envisagé pour participer à former l’échangeur de chaleur 130 selon l’invention. According to the invention, the microfibers 131 forming the network of microfibers 131 take the form of hollow tubes. For example, these microfibers 131 can be made of a polymer material. Advantageously, the use of such a material gives these microfibers 131 mechanical strength and sufficient chemical resistance to withstand the stresses to which they are subjected. In addition, such a material makes it possible to obtain flexible microfibers, that is to say that these microfibers can be deformed, folded, without their integrity being impacted. For example, each of these microfibers 131 has a section, a main dimension of which is between 0.5 mm and 1.5 mm. The term “main dimension” is understood to mean the longest dimension of the section of the microfiber 131 concerned. By way of example, when the microfiber has a circular section, its diameter is referred to as the “main dimension”. Likewise, when the microfiber has a substantially rectangular section, the term “main dimension” is understood to mean a diagonal of this section. In addition, the material, whatever it is, forming each of these microfibers has a thickness of between 50 μm and 200 μm. It is thus understood that the figures which illustrate these microfibers are not made to scale and that the microfibers represented in these figures are enlarged in order to be made visible. The layer of elastically deformable material 132 can for example be a layer of silicone. It is understood that this is only an example of implementation of the invention which does not limit this invention. In other words, any elastically deformable material can be considered to participate in forming the heat exchanger 130 according to the invention.
On comprend donc que le boîtier no et l’échangeur de chaleur 130 reçu dans ce boîtier no forment ainsi un dispositif de régulation thermique des organes de stockage 2o reçus dans ce boîtier no. It is therefore understood that the housing no and the heat exchanger 130 received in this housing no thus form a thermal regulation device 2o storage members received in this housing no.
Selon le premier exemple de réalisation illustré sur la figure r, le réseau de microfibres 131 est noyé dans la couche de matériau élastiquement déformable 132. Autrement dit, selon ce premier exemple de réalisation, les microfibres 131 sont, dans un premier temps, assemblées en réseau, puis la couche de matériau élastiquement déformable 132 est coulée sur ce réseau de microfibres 131, de manière à entourer intégralement le réseau de microfibres, d’une boîte collectrice d’entrée à une boîte collectrice de sortie, non visibles sur la figure r. L’échangeur de chaleur peut notamment être obtenu par surmoulage de la couche de matériau élastiquement déformable sur le réseau de microfibres préalablement installé dans un moule approprié. According to the first exemplary embodiment illustrated in FIG. R, the network of microfibers 131 is embedded in the layer of elastically deformable material 132. In other words, according to this first exemplary embodiment, the microfibers 131 are, firstly, assembled together. network, then the layer of elastically deformable material 132 is cast on this network of microfibers 131, so as to completely surround the network of microfibers, from an inlet manifold to an outlet manifold, not visible in FIG. . The heat exchanger can in particular be obtained by overmolding the layer of elastically deformable material on the network of microfibers previously installed in a suitable mold.
L’échangeur de chaleur 130 ainsi formé peut ensuite être disposé dans le boîtier no du dispositif de stockage roo d’énergie électrique. Selon l’exemple illustré, cet échangeur de chaleur 130 est agencé entre une paroi de fond m du boîtier no et les organes de stockage 2o d’énergie électrique. Autrement dit, on comprend que la couche de matériau élastiquement déformable 132 est au contact à la fois du boîtier no, et plus particulièrement de la paroi de fond m de ce boîtier no, et des organes de stockage r2o. The heat exchanger 130 thus formed can then be disposed in the housing no of the storage device roo of electrical energy. According to the example illustrated, this heat exchanger 130 is arranged between a bottom wall m of the housing no and the storage devices 2o of electrical energy. In other words, it will be understood that the layer of elastically deformable material 132 is in contact both with the housing no, and more particularly with the bottom wall m of this housing no, and with the storage members r20.
L’élasticité de l’échangeur de chaleur 130 liée à sa conception en microfibres 131 et en matériau élastiquement déformable 132 lui permet de s’adapter parfaitement aux formes, parfois irrégulières, des cellules de stockage 2o d’énergie électrique et du boîtier no, de sorte qu’une surface de contact entre cet échangeur de chaleur 130 et les organes de stockage 120 d’énergie électrique est maximale. The elasticity of the heat exchanger 130 linked to its design in microfibers 131 and in elastically deformable material 132 allows it to adapt perfectly to the shapes, sometimes irregular, of the storage cells 2o of electrical energy and of the box no, so that a contact surface between this heat exchanger 130 and 120 storage units of electrical energy is maximum.
Selon un deuxième exemple de réalisation illustré par la figure 2, la couche de matériau élastiquement déformable 132 comprend au moins une première sous- couche 133 et au moins une deuxième sous-couche 134 entre lesquelles est interposé le réseau de microfibres 131. Selon l’exemple illustré, la première sous- couche 133 est plus particulièrement interposée entre les organes de stockage 120 et le réseau de microfibres 131 et la deuxième sous-couche 134 est quant à elle interposée entre le réseau de microfibres 131 et la paroi de fond 111 du boîtier 110.According to a second exemplary embodiment illustrated in FIG. 2, the layer of elastically deformable material 132 comprises at least a first sublayer 133 and at least a second sublayer 134 between which is interposed the network of microfibers 131. illustrated example, the first sublayer 133 is more particularly interposed between the storage members 120 and the microfiber network 131 and the second sublayer 134 is itself interposed between the microfiber network 131 and the bottom wall 111 of the housing 110.
Par exemple, la première sous-couche 133 et la deuxième sous-couche 134 de matériau élastiquement déformable 132 peuvent être injectées indépendamment l’une de l’autre puis respectivement pressées et collées sur le réseau de microfibres 131. A cet effet, la première sous-couche 133 et/ou la deuxième sous-couche 134 de matériau élastiquement déformable 132 peuvent comprendre, chacune, une bande adhésive - non représentée ici. On comprend que ces bandes adhésives sont alors adaptées pour être collées sur le réseau de microfibres. Il est entendu qu’il ne s’agit que d’un exemple non limitant de la présente invention et que tout autre moyen de maintien de la première sous-couche 133 et de la deuxième sous-couche 134 autour du réseau de microfibres 131 est envisageable sans sortir du contexte de la présente invention. For example, the first sublayer 133 and the second sublayer 134 of elastically deformable material 132 can be injected independently of one another and then respectively pressed and glued to the microfiber network 131. For this purpose, the first sublayer 133 and / or second sublayer 134 of elastically deformable material 132 may each comprise an adhesive strip - not shown here. It will be understood that these adhesive tapes are then adapted to be glued to the network of microfibers. It is understood that this is only a non-limiting example of the present invention and that any other means of maintaining the first sublayer 133 and the second sublayer 134 around the network of microfibers 131 is conceivable without departing from the context of the present invention.
Selon l’un quelconque des premier ou deuxième exemples de réalisation de la présente invention, la couche de matériau élastiquement déformable 132 peut en outre comprendre au moins une portion thermiquement conductrice et/ou une portion thermiquement isolante. Par exemple, la portion thermiquement conductrice de la couche de matériau élastiquement déformable 132 peut être agencée au contact des organes de stockage 120 d’énergie électrique tandis que la portion thermiquement isolante de la couche de matériau élastiquement déformable 132 peut, quant à elle, être agencée entre la paroi de fond 111 du boîtier 110 et le réseau de microfibres 131. En l’espèce, la portion thermiquement conductrice permet avantageusement d’améliorer l’échange de chaleur qui s’opère entre les organes de stockage 120 d’énergie électrique et le fluide caloporteur qui circule dans les microfibres 131 formant le réseau de microfibres 131. La portion thermiquement isolante permet quant à elle de limiter les déperditions de chaleur que l’on peut autrement observer, c’est-à-dire qu’il permet d’éviter que des calories issues du boîtier 110 ne soient captées par le fluide caloporteur, et ainsi d’éviter que l’efficacité de l’échange de chaleur entre ce fluide caloporteur et les organes de stockage 120 d’énergie électrique ne soit réduite. Avantageusement, la portion thermiquement isolante permet en outre d’éviter que des calories présentes dans l’environnement du boîtier 110 n’entrent dans le boîtier 110 et ne soient captées par les organes de stockage 120 d’énergie électrique, ce qui complexifierait le traitement thermique de ces organes de stockage 120. Autrement dit, on comprend que la portion thermiquement conductrice et la portion thermiquement isolante de la couche de matériau élastiquement déformable 132 permettent, d’une part, d’améliorer l’échange de chaleur qui s’opère entre le fluide caloporteur qui circule dans les microfibres et les organes de stockage 120 et, d’autre part, de limiter les échanges de chaleur qui pourraient autrement s’opérer entre les organes de stockage 120 et l’environnement extérieur au boîtier, permettant ainsi un échange de chaleur contrôlé. According to any one of the first or second exemplary embodiments of the present invention, the layer of elastically deformable material 132 may further comprise at least one thermally conductive portion and / or a thermally insulating portion. For example, the thermally conductive portion of the layer of elastically deformable material 132 may be arranged in contact with the storage members 120 of electrical energy while the thermally insulating portion of the layer of elastically deformable material 132 may, for its part, be arranged between the bottom wall 111 of the housing 110 and the microfiber network 131. In this case, the thermally conductive portion advantageously makes it possible to improve the heat exchange which takes place between the storage members 120 of electrical energy and the heat transfer fluid which circulates in the microfibers 131 forming the network of microfibers 131. The thermally insulating portion makes it possible for its part to limit the heat losses that can otherwise be observed, that is to say it makes it possible to prevent heat loss. Calories coming from the housing 110 are not captured by the heat transfer fluid, and thus prevent the efficiency of the heat exchange between this heat transfer fluid and the electrical energy storage members 120 from being reduced. Advantageously, the thermally insulating portion also makes it possible to prevent heat present in the environment of the housing 110 from entering the housing 110 and being captured by the electrical energy storage members 120, which would complicate the processing. thermal of these storage members 120. In other words, it is understood that the thermally conductive portion and the thermally insulating portion of the layer of elastically deformable material 132 make it possible, on the one hand, to improve the heat exchange which takes place. between the heat transfer fluid which circulates in the microfibers and the storage members 120 and, on the other hand, to limit the heat exchanges which could otherwise take place between the storage members 120 and the environment outside the housing, thus allowing controlled heat exchange.
Par exemple, la portion thermiquement conductrice peut comprendre le matériau élastiquement déformable auquel est mélangé un matériau thermiquement conducteur tel que de la céramique, un matériau métallique, ou un matériau en fibres de carbone. Il est entendu qu’il ne s’agit que d’exemples de réalisation et que tout autre matériau thermiquement conducteur peut être utilisé sans sortir du contexte de la présente invention. For example, the thermally conductive portion may comprise the elastically deformable material with which is mixed a thermally conductive material such as ceramic, a metallic material, or a carbon fiber material. It is understood that these are only exemplary embodiments and that any other thermally conductive material can be used without departing from the context of the present invention.
Dans le cas du premier exemple de réalisation illustré sur la figure 1, la couche de matériau élastiquement déformable 132 peut présenter des propriétés d’isolation thermique variables au fur et à mesure de l’éloignement des organes de stockage 120 à traiter. Par exemple, on pourra prévoir qu’une concentration de matériau thermiquement isolant soit décroissante verticalement, c’est-à-dire le long d’une droite parallèle à l’axe vertical V du trièdre illustré, depuis une première face 150 de la couche de matériau élastiquement déformable 132 tournée vers la paroi de fond ni du boîtier no, en direction d’une deuxième face 151 de la couche de matériau élastiquement déformable 132 tournée vers les organes de stockage 120 et/ou qu’une concentration de matériau thermiquement conducteur soit quant à elle croissante verticalement depuis la première face 150 de la couche de matériau élastiquement déformable 132 vers la deuxième face 151 de cette couche de matériau élastiquement déformable 132. In the case of the first exemplary embodiment illustrated in FIG. 1, the layer of elastically deformable material 132 may have variable thermal insulation properties as the storage members 120 to be treated are moved away. For example, provision could be made for a concentration of thermally insulating material to decrease vertically, that is to say along a straight line parallel to the vertical axis V of the illustrated trihedron, from a first face 150 of the layer. of elastically deformable material 132 facing the bottom wall ni of the housing no, in the direction of a second face 1 5 1 of the layer of elastically deformable material 1 3 2 facing the storage members 120 and / or that a concentration of thermally conductive material is itself increasing vertically from the first face 1 5 0 of the layer of elastically deformable material 1 3 2 towards the second face 1 5 1 of this layer of elastically deformable material 1 3 2 .
Dans le cas du deuxième exemple de réalisation illustré sur la figure 2, on pourra prévoir que la première sous-couche 133 de la couche de matériau élastiquement déformable 132 présente une composition différente de la deuxième sous-couche 134 de cette couche de matériau élastiquement déformable 132. Ainsi, la première sous-couche 133 pourra par exemple comprendre le matériau élastiquement déformable 132 auquel aura été ajouté le matériau thermiquement conducteur tandis que la deuxième sous-couche 134 pourra quant à elle comprendre le matériau élastiquement déformable 132 auquel aura été ajouté le matériau thermiquement isolant. In the case of the second exemplary embodiment illustrated in FIG. 2 , provision may be made for the first sublayer 1 33 of the layer of elastically deformable material 1 3 2 to have a composition different from the second sublayer 1 34 of this layer. of elastically deformable material 1 3 2 . Thus, the first sublayer 1 33 may for example comprise the elastically deformable material 1 3 2 to which the thermally conductive material will have been added while the second sublayer 1 34 may for its part include the elastically deformable material 1 3 2 to which the thermally insulating material will have been added.
Il est entendu que toute combinaison des caractéristiques qui viennent d’être décrites est envisageable sans sortir du contexte de la présente invention. On pourra par exemple prévoir que la couche de matériau élastiquement déformable qui entoure, au moins partiellement, le réseau de microfibres comprenne le matériau déformable et/ou une portion thermiquement conductrice et/ou une portion thermiquement isolante sans sortir du contexte de la présente invention.It is understood that any combination of the characteristics which have just been described can be envisaged without departing from the context of the present invention. Provision may for example be made for the layer of elastically deformable material which surrounds, at least partially, the network of microfibers to comprise the deformable material and / or a thermally conductive portion and / or a thermally insulating portion without departing from the context of the present invention.
Selon un troisième exemple de réalisation de la présente invention illustré sur la figure 3, le réseau de microfibres 131 n’est que partiellement entouré de la couche de matériau élastiquement déformable 132. Comme précédemment, chaque organe de stockage 120 est au contact de l’échangeur thermique 130, mais en étant dans ce cas directement au contact du réseau de microfibres 131. Tel qu’illustré, la couche de matériau élastiquement déformable 132 est interposée entre ce réseau de microfibres 131 et la paroi de fond 111 du boîtier 110. According to a third exemplary embodiment of the present invention illustrated in FIG. 3, the network of microfibers 1 3 1 is only partially surrounded by the layer of elastically deformable material 1 3 2 . As before, each storage member 120 is in contact with the heat exchanger 1 3 0 , but in this case being directly in contact with the network of microfibers 1 3 1 . As illustrated, the layer of elastically deformable material 1 3 2 is interposed between this network of microfibers 1 3 1 and the bottom wall 111 of the housing 110 .
Optionnellement, selon ce troisième exemple de réalisation, la couche de matériau élastiquement déformable 132 peut comprendre une portion thermiquement isolante telle que décrite ci-dessus. Optionally, according to this third embodiment, the layer of material elastically deformable 132 may include a thermally insulating portion as described above.
Tel que précédemment évoqué, l’utilisation d’une couche de matériau élastiquement déformable 132 permet d’absorber les rugosités de surface du dispositif de stockage 100, c’est-à-dire les éventuelles irrégularités qui peuvent être présentes en surface du boîtier 110 ou des organes de stockage 120 eux-mêmes, de sorte qu’une surface de contact, que ce contact soit direct comme c’est par exemple le cas pour le troisième exemple de réalisation, ou indirect comme c’est par exemple le cas pour les premier et deuxième exemples de réalisation, soit maximale. On comprend en effet qu’en maximisant cette surface de contact, une surface d’échange de chaleur entre le fluide caloporteur qui circule dans les microfibres et les organes de stockage 120 est également maximale, optimisant ainsi l’échange de chaleur qui s’opère entre ce fluide caloporteur et ces organes de stockage 120. Autrement dit, l’utilisation de cette couche de matériau élastiquement déformable 132, en combinaison avec le réseau de microfibres 131, dans la conception de l’échangeur de chaleur 130 permet d’améliorer les capacités de traitement thermique de cet échangeur de chaleur 130 par rapport aux échangeurs de chaleur actuellement utilisés. As previously mentioned, the use of a layer of elastically deformable material 132 makes it possible to absorb the surface roughness of the storage device 100, that is to say any irregularities which may be present on the surface of the housing 110. or storage members 120 themselves, so that a contact surface, whether this contact is direct as is for example the case for the third embodiment, or indirect as is for example the case for the first and second exemplary embodiments, ie maximum. It is in fact understood that by maximizing this contact surface, a heat exchange surface between the heat transfer fluid which circulates in the microfibers and the storage members 120 is also maximum, thus optimizing the heat exchange which takes place. between this heat transfer fluid and these storage members 120. In other words, the use of this layer of elastically deformable material 132, in combination with the network of microfibers 131, in the design of the heat exchanger 130 makes it possible to improve the heat treatment capacities of this heat exchanger 130 compared to the heat exchangers currently in use.
La figure 4 illustre, vu de dessus, un échangeur de chaleur 130 selon un exemple de réalisation de l’invention, dans lequel la couche de matériau élastiquement déformable 132 est représenté en transparence afin de rendre visible le réseau de microfibres 131 d’un tel échangeur de chaleur 130. Dans sa généralité, le réseau de microfibres 131 comprend au moins une boîte collectrice d’entrée 140 configurée pour répartir le fluide caloporteur dans les microfibres 131 du réseau de microfibres 131 et au moins une boîte collectrice de sortie 141 configurée pour collecter le fluide caloporteur une fois l’échange de chaleur opéré. Selon différents modes de réalisation de la présente invention, l’échangeur de chaleur 130 peut comprendre un réseau de microfibres formés par un ou plusieurs faisceaux de microfibres, alimentés, respectivement, par une ou plusieurs boîte(s) collectrice (s). Le réseau de microfibres peut ainsi par exemple comprendre un unique faisceau de microfibres alimenté par une unique boîte collectrice, une pluralité de faisceaux de microfibres alimentés par une unique boîte collectrice ou encore une pluralité de faisceaux de microfibres alimentés par autant de boîtes collectrices. On entend par « alimenté par une unique boîte collectrice », le fait que l’échangeur de chaleur concerné comprend une unique boîte collectrice d’entrée et une unique boîte collectrice de sortie. De façon analogue, on entend par « alimenté par autant de boîtes collectrices que de faisceaux de microfibres », le fait que l’échangeur de chaleur concerné comprend une pluralité de boîtes collectrices d’entrée, chacune dédiée à la répartition du fluide caloporteur dans l’un des faisceaux de microfibres et une pluralité de boîte collectrices de sorties, chacune dédiée à la collecte du fluide caloporteur issu de l’un des faisceaux de microfibres. Avantageusement, le regroupement du réseau de microfibres en un unique faisceau améliore sa résistance mécanique tandis que la répartition de ce réseau de microfibres en plusieurs faisceaux permet une gestion plus précise de l’échange de chaleur qui s’opère entre le fluide caloporteur qui circule dans ces microfibres et les organes de stockage d’énergie électrique. Par exemple, l’utilisation d’au moins deux faisceaux de microfibres pour former le réseau permet d’obtenir au moins deux circuits dans lesquels circulent au moins deux fluides différents qui présentent des propriétés de transfert de chaleur différentes. FIG. 4 illustrates, seen from above, a heat exchanger 130 according to an exemplary embodiment of the invention, in which the layer of elastically deformable material 132 is shown in transparency in order to make visible the network of microfibers 131 of such a heat exchanger 130. In general, the microfiber network 131 comprises at least one inlet manifold 140 configured to distribute the heat transfer fluid in the microfibers 131 of the microfiber network 131 and at least one outlet manifold 141 configured for collect the heat transfer fluid once the heat exchange has taken place. According to different embodiments of the present invention, the heat exchanger 130 may comprise a network of microfibers formed by one or more bundles of microfibers, supplied, respectively, by one or more collector box (s). The microfiber network can thus for example comprise a single bundle of microfibers supplied by a single collector box, a plurality of bundles of microfibers supplied by a single collector box or even a plurality of bundles of microfibers supplied by as many collector boxes. The term “supplied by a single manifold” is understood to mean the fact that the heat exchanger concerned comprises a single inlet manifold and a single outlet manifold. Similarly, the term “supplied by as many manifolds as there are microfiber bundles” is understood to mean the fact that the heat exchanger concerned comprises a plurality of inlet manifolds, each dedicated to the distribution of the heat transfer fluid in the heat exchanger. one of the microfiber bundles and a plurality of outlet manifolds, each dedicated to collecting the heat transfer fluid from one of the microfiber bundles. Advantageously, the grouping of the network of microfibers into a single bundle improves its mechanical strength while the distribution of this network of microfibers into several bundles allows more precise management of the heat exchange which takes place between the heat transfer fluid which circulates in these microfibers and electrical energy storage devices. For example, the use of at least two bundles of microfibers to form the network makes it possible to obtain at least two circuits in which circulate at least two different fluids which have different heat transfer properties.
La figure 4 illustre une configuration de l’échangeur de chaleur 130 selon l’invention, selon laquelle le réseau de microfibres 131 comprend un premier faisceau 135 de microfibres et un deuxième faisceau 136 de microfibres, les microfibres 131 formant le premier faisceau 135 étant distinctes des microfibres 131 formant le deuxième faisceau 136. Selon la représentation de la figure 4, les traits pleins représentent le premier faisceau 135 de microfibres 131 et les traits pointillés représentent le deuxième faisceau 136 de microfibres 131. Tel que représenté, les microfibres 131 formant le premier faisceau 135 s’étendent entre une première boîte collectrice d’entrée 142 et une première boîte collectrice de sortie 143 et les microfibres 131 formant le deuxième faisceau 136 s’étendent quant à elles entre une deuxième boîte collectrice d’entrée 144 et une deuxième boîte collectrice de sortie 145. Autrement dit, le réseau de microfibres 131 de l’échangeur de chaleur 130 tel qu’illustré sur la figure 4 comprend un premier circuit formé par le premier faisceau 135 de microfibres et un deuxième circuit formé par le deuxième faisceau 136 de microfibres, le fluide caloporteur circulant dans le premier circuit pouvant être distinct du fluide caloporteur qui circule dans le deuxième circuit. Tel que plus amplement décrit ci-dessous, une telle répartition des microfibres 131 permet d’améliorer la gestion de l’échange de chaleur qui s’opère entre ce fluide caloporteur et les organes de stockage d’énergie électrique. FIG. 4 illustrates a configuration of the heat exchanger 130 according to the invention, according to which the network of microfibers 131 comprises a first bundle 135 of microfibers and a second bundle 136 of microfibers, the microfibers 131 forming the first bundle 135 being distinct microfibers 131 forming the second bundle 136. According to the representation of FIG. 4, the solid lines represent the first bundle 135 of microfibers 131 and the dotted lines represent the second bundle 136 of microfibers 131. As shown, the microfibers 131 forming the first bundle 135 extend between a first inlet manifold 142 and a first outlet manifold 143 and the microfibers 131 forming the second bundle 136 extend between a second inlet manifold 144 and a second outlet manifold 145. In other words, the network of microfibers 131 of the heat exchanger 130 as illustrated in FIG. 4 comprises a first circuit formed by the first bundle 135 of microfibers and a second circuit formed by the second bundle 136 of microfibers, the heat transfer fluid circulating in the first circuit being able to be distinct from the heat transfer fluid which circulates in the second circuit. As more fully described below, such a distribution of the microfibers 131 makes it possible to improve the management of the heat exchange which takes place between this heat transfer fluid and the electrical energy storage members.
La figure 5 illustre une mise en application, selon le premier exemple de réalisation illustré sur la figure 1, de l’échangeur de chaleur 130 illustré et décrit en référence à la figure 4. Tel qu’évoqué ci-dessus, le réseau de microfibres 131 selon cet exemple de réalisation particulier comprend le premier faisceau 135 de microfibres 131 - représenté en traits pleins - et le deuxième faisceau 136 de microfibres 131 - représenté en traits discontinus -, ces deux faisceaux 135, 136 étant distincts et alimentés indépendamment l’un de l’autre. Tel que schématiquement représenté, selon cette mise en application de l’échangeur de chaleur illustré sur la figure 4, la couche de matériau élastiquement déformable 132 peut comprendre au moins un élément chauffant 137. Cet élément chauffant 137, qui peut par exemple prendre la forme d’une bande chauffante, est avantageusement agencé à proximité de l’un des deux faisceaux de microfibres. Par exemple, cet élément chauffant 137 peut être agencé à proximité du premier faisceau 135 de microfibres 131, c’est-à-dire plus près de ce premier faisceau 135 de microfibres 131 que du deuxième faisceau 136 de microfibres 131. De la sorte, le premier faisceau 135 de microfibres 131 forme un premier circuit chaud et le deuxième faisceau 136 de microfibres 131 forme un deuxième circuit froid, c’est-à-dire que le fluide caloporteur qui circule dans le premier circuit présente une température moyenne supérieure au fluide caloporteur qui circule dans le deuxième circuit. Ces différences de température entre les deux circuits permettent avantageusement un traitement thermique des organes de stockage de l’énergie électrique plus précis qu’une gestion à un unique circuit. Par exemple, on pourra prévoir de faire chauffer le fluide qui circule dans le premier faisceau 135 de microfibres 131 afin que ce fluide caloporteur puisse transmettre les calories ainsi captées aux organes de stockage 120 et faciliter leur démarrage tandis que le fluide caloporteur qui circule dans le deuxième faisceau 136 de microfibres 131 est maintenu froid, par exemple grâce à un circuit de refroidissement dont ce deuxième faisceau 136 fait partie, de sorte à ce qu’il soit capable de capter des calories issues de ces organes de stockage 120, par exemple en cours de fonctionnement, ou pendant une phase de charge de ces organes de stockage 120, c’est-à-dire une phase au cours de laquelle ils emmagasinent de l’énergie. FIG. 5 illustrates an implementation, according to the first exemplary embodiment illustrated in FIG. 1, of the heat exchanger 130 illustrated and described with reference to FIG. 4. As mentioned above, the network of microfibers 131 according to this particular exemplary embodiment comprises the first bundle 135 of microfibers 131 - shown in solid lines - and the second bundle 136 of microfibers 131 - shown in broken lines -, these two bundles 135, 136 being distinct and supplied independently of one another. the other. As schematically represented, according to this implementation of the heat exchanger illustrated in FIG. 4, the layer of elastically deformable material 132 can comprise at least one heating element 137. This heating element 137, which can for example take the form of a heating strip, is advantageously arranged near one of the two bundles of microfibers. For example, this heating element 137 can be arranged near the first bundle 135 of microfibers 131, that is to say closer to this first bundle 135 of microfibers 131 than to the second bundle 136 of microfibers 131. In this way, the first bundle 135 of microfibers 131 forms a first hot circuit and the second bundle 136 of microfibers 131 forms a second cold circuit, that is to say that the heat transfer fluid which circulates in the first circuit has an average temperature higher than the fluid coolant circulating in the second circuit. These temperature differences between the two circuits advantageously allow a more precise heat treatment of the electrical energy storage members than a single circuit management. For example, provision may be made to heat the fluid which circulates in the first bundle 135 of microfibers 131 so that this heat transfer fluid can transmitting the calories thus captured to the storage members 120 and facilitating their start-up while the heat transfer fluid which circulates in the second bundle 136 of microfibers 131 is kept cold, for example by means of a cooling circuit of which this second bundle 136 forms part, of so that it is capable of capturing calories from these storage devices 120, for example during operation, or during a charging phase of these storage devices 120, that is to say a phase at during which they store energy.
Il est entendu qu’il ne s’agit que d’un exemple d’application et que l’élément chauffant pourrait être intégré à l’un quelconque des exemples de réalisation illustrés et décrits dans le présent document sans sortir du contexte de la présente invention, tout comme l’échangeur de chaleur à plusieurs faisceaux illustrés sur la figure 4. It is understood that this is only an example of application and that the heating element could be integrated into any one of the exemplary embodiments illustrated and described in this document without departing from the context of this present document. invention, just like the multi-bundle heat exchanger shown in Figure 4.
Il est entendu que bien que les faisceaux de microfibres soient représentés, sur la figure 5, dans un agencement en quinconce, cette architecture n’est pas limitative de la présente invention. It is understood that although the microfiber bundles are shown, in Figure 5, in a staggered arrangement, this architecture is not limiting of the present invention.
Les figures 6 à 8 illustrent quant à elles, schématiquement et vues en perspective, une première, une deuxième et une troisième configurations d’un dispositif de stockage d’énergie électrique selon un aspect de l’invention, équipé d’un échangeur de chaleur 130 tel que précédemment évoqué. Sur ces figures, le dispositif de stockage d’énergie électrique est représenté sans le boîtier, c’est-à-dire qu’elles rendent uniquement visible les organes de stockage 120 d’énergie électrique et au moins un échangeur de chaleur 130 selon un aspect de l’invention. Selon l’une quelconque de ces configurations, les organes de stockage 120 sont agencés en parallèle les uns des autres, perpendiculairement à une direction d’empilement transversale D, c’est-à-dire une direction parallèle à l’axe transversal T. Figures 6 to 8 for their part illustrate, schematically and in perspective views, a first, a second and a third configurations of an electrical energy storage device according to one aspect of the invention, equipped with a heat exchanger. 130 as previously mentioned. In these figures, the electrical energy storage device is shown without the housing, that is to say they only make visible the electrical energy storage members 120 and at least one heat exchanger 130 according to a aspect of the invention. According to any of these configurations, the storage members 120 are arranged in parallel with each other, perpendicular to a transverse stacking direction D, that is to say a direction parallel to the transverse axis T.
Selon la première configuration illustrée sur la figure 6, le dispositif de stockage comprend plusieurs échangeurs de chaleur 130 selon l’invention, agencés en parallèle les uns des autres le long de la direction d’empilement transversale D, et répartis entre les organes de stockage 120. Plus particulièrement, chaque échangeur de chaleur 130 est interposé entre deux organes de stockage 120 successifs, à l’exception des deux échangeurs de chaleur 130 agencés aux extrémités transversales de l’empilement des organes de stockage 120. Selon l’exemple illustré sur cette figure 6, le dispositif de stockage comprend cinq organes de stockage 120 et six échangeurs de chaleur 130, quatre de ces échangeurs de chaleur 130 étant interposés entre deux organes de stockage 120 successifs et deux d’entre eux étant répartis aux deux extrémités transversales de l’alignement d’organes de stockage 120. Ainsi, les deux échangeurs de chaleur 130 agencés aux extrémités transversales sont respectivement dédiés au traitement thermique de l’un des organes de stockage 120 tandis que les quatre autres échangeurs de chaleur 130 sont respectivement dédiés au traitement thermique de deux organes de stockage 120 successifs. Tel que précédemment évoqué, chaque échangeur de chaleur 130 comprend une boîte collectrice d’entrée 140 et une boîte collectrice de sortie 141, l’orientation de la perspective rendant ici uniquement visible une des boîtes collectrices de sortie. According to the first configuration illustrated in FIG. 6, the storage device comprises several heat exchangers 130 according to the invention, arranged in parallel to each other along the transverse stacking direction D, and distributed between the storage members 120. More particularly, each heat exchanger 130 is interposed between two successive storage members 120, with the exception of the two exchangers heat 130 arranged at the transverse ends of the stack of storage members 120. According to the example illustrated in this FIG. 6, the storage device comprises five storage members 120 and six heat exchangers 130, four of these heat exchangers 130 being interposed between two successive storage members 120 and two of them being distributed at the two transverse ends of the alignment of storage members 120. Thus, the two heat exchangers 130 arranged at the transverse ends are respectively dedicated to the treatment. thermal of one of the storage members 120 while the other four heat exchangers 130 are respectively dedicated to the treatment ther mique of two successive storage units 120. As previously mentioned, each heat exchanger 130 comprises an inlet manifold box 140 and an outlet manifold box 141, the orientation of the perspective making here only visible one of the outlet manifolds.
La deuxième configuration illustrée sur la figure 7 diffère de la première configuration qui vient d’être décrite en ce que les échangeurs de chaleur 130 comprennent une boîte collectrice d’entrée 140 commune et une boîte collectrice de sortie 141 commune également. Autrement dit, la boîte collectrice d’entrée 140 illustrée sur la figure 7 est configurée pour répartir le fluide caloporteur dans l’ensemble des échangeurs de chaleur 130 et la boîte collectrice de sortie 141 illustrée sur cette figure est configurée pour collecter le fluide caloporteur issu de l’ensemble de ces échangeurs de chaleur 130. Ainsi, selon l’exemple illustré, chaque échangeur de chaleur 130 comprend au moins le réseau de microfibres 131 entouré, au moins partiellement, de la couche de matériau élastiquement déformable 132. De façon similaire à ce qui vient d’être décrit en référence à la figure 6, les échangeurs de chaleur 130 sont répartis entre les organes de stockage 120 successifs. La troisième configuration illustrée sur la figure 8 diffère de la première et de la deuxième configuration qui viennent d’être décrites en que la multiplicité d’échangeurs de chaleur 130 est remplacée par un unique échangeur de chaleur 130 qui serpente entre les organes de stockage 120. Ainsi, tel que représenté, l’échangeur de chaleur 130 présente une pluralité de plis 138 qui entourent, partiellement, les organes de stockage 120. Selon cette troisième configuration, l’échangeur de chaleur 120 comprend une unique boîte collectrice, c’est-à-dire une boîte collectrice d’entrée 140 et une boîte collectrice de sortie - non visible sur la figure 8. Une telle configuration est notamment permise grâce aux matériaux utilisés pour la conception de cet unique échangeur de chaleur 130, à savoir un réseau de microfibres entouré, au moins en partie, de la couche de matériau élastiquement déformable 132. Tel que précédemment évoqué, le matériau et les dimensions des microfibres utilisées pour former le réseau de microfibres leur confèrent une certaine élasticité, c’est-à-dire que ces microfibres peuvent être déformées, pliées, sans que leur intégrité ne soit impactée. Il en va de même pour la couche de matériau élastiquement déformable 132. La combinaison de ces deux matériaux permet ainsi de conformer le(s) échangeur(s) de chaleur selon différentes configurations, de sorte à adapter ce(s) échangeur(s) de chaleur au(x) composant(s) qu’il est(sont) destiné à traiter thermiquement. The second configuration illustrated in FIG. 7 differs from the first configuration which has just been described in that the heat exchangers 130 comprise a common inlet header box 140 and a common outlet header box 141 as well. In other words, the inlet manifold box 140 illustrated in FIG. 7 is configured to distribute the heat transfer fluid in all of the heat exchangers 130 and the outlet manifold box 141 illustrated in this figure is configured to collect the heat transfer fluid from of all of these heat exchangers 130. Thus, according to the example illustrated, each heat exchanger 130 comprises at least the network of microfibers 131 surrounded, at least partially, by the layer of elastically deformable material 132. In a similar manner to what has just been described with reference to FIG. 6, the heat exchangers 130 are distributed between the successive storage members 120. The third configuration illustrated in FIG. 8 differs from the first and the second configuration which have just been described in that the multiplicity of heat exchangers 130 is replaced by a single heat exchanger 130 which winds between the storage members 120. Thus, as shown, the heat exchanger 130 has a plurality of folds 138 which partially surround the storage members 120. According to this third configuration, the heat exchanger 120 comprises a single manifold, that is, that is to say an inlet manifold box 140 and an outlet manifold box - not visible in FIG. 8. Such a configuration is in particular possible thanks to the materials used for the design of this single heat exchanger 130, namely a network of microfibers surrounded, at least in part, by the layer of elastically deformable material 132. As previously mentioned, the material and dimensions of the microfibers used to form The network of microfibers gives them a certain elasticity, that is to say that these microfibers can be deformed, folded, without their integrity being impacted. The same applies to the layer of elastically deformable material 132. The combination of these two materials thus makes it possible to shape the heat exchanger (s) according to different configurations, so as to adapt this exchanger (s). of heat to the component (s) that it is (are) intended to heat treat.
On comprend de ce qui précède que la présente invention propose ainsi un échangeur de chaleur qui permet de maximiser une surface de contact entre le fluide caloporteur qui circule dans cet échangeur de chaleur et les éléments destinés à être traités thermiquement par cet échangeur de chaleur, notamment grâce à la présence de microfibres incluses, au moins partiellement, dans un matériau élastiquement déformable. It will be understood from the foregoing that the present invention thus provides a heat exchanger which makes it possible to maximize a contact surface between the heat transfer fluid which circulates in this heat exchanger and the elements intended to be heat treated by this heat exchanger, in particular thanks to the presence of microfibers included, at least partially, in an elastically deformable material.
La présente invention ne saurait toutefois se limiter aux moyens et configurations décrits et illustrés ici, et elle s’étend également à tout moyen et configuration équivalent ainsi qu’à toute combinaison techniquement opérante de tels moyens. Ces moyens et configurations pourront être modifiés sans nuire à l’invention dans la mesure où ils remplissent les fonctionnalités décrites dans le présent document. The present invention should not however be limited to the means and configurations described and illustrated here, and it also extends to any equivalent means and configuration as well as to any technically operative combination of such means. These means and configurations can be modified without harming the invention insofar as they fulfill the functionalities described in this document.

Claims

REVENDICATIONS
1. Echangeur de chaleur (130) destiné au traitement thermique d’au moins un composant (120) électrique et/ou électronique, caractérisé en ce que l’échangeur de chaleur (130) comprend un réseau de microfibres (131) configurées pour être parcourues par un fluide caloporteur et au moins une couche d’un matériau élastiquement déformable (132), et en ce que le réseau de microfibres (131) est au moins partiellement entouré de la couche de matériau élastiquement déformable (i321. Heat exchanger (130) for the thermal treatment of at least one component (120) electrical and / or electronic, characterized in that the heat exchanger (130) comprises a network of microfibers (131) configured to be traversed by a heat transfer fluid and at least one layer of an elastically deformable material (132), and in that the network of microfibers (131) is at least partially surrounded by the layer of elastically deformable material ( i 3 2 )
2. Echangeur de chaleur (130) selon la revendication précédente, dans lequel le réseau de microfibres (131) est totalement entouré par la couche de matériau élastiquement déformable (132). 2. Heat exchanger (130) according to the preceding claim, wherein the network of microfibers (131) is completely surrounded by the layer of elastically deformable material (132).
3. Echangeur de chaleur (130) selon la revendication précédente, dans lequel le réseau de microfibres (131) est noyé dans la couche de matériau élastiquement déformable (132). 3. Heat exchanger (130) according to the preceding claim, wherein the network of microfibers (131) is embedded in the layer of elastically deformable material (132).
4. Echangeur de chaleur (130) selon la revendication 2, comprenant au moins une première sous-couche (133) du matériau élastiquement déformable (132) et au moins une deuxième sous-couche (134) de matériau élastiquement déformable (132), et dans lequel le réseau de microfibres (131) est interposé entre la première sous-couche (133) de matériau élastiquement déformable (132) et la deuxième sous- couche (134) de matériau élastiquement déformable (132) . 4. Heat exchanger (130) according to claim 2, comprising at least a first sub-layer (133) of elastically deformable material (132) and at least a second sub-layer (134) of elastically deformable material (132), and in which the network of microfibers (131) is interposed between the first sub-layer (133) of elastically deformable material (132) and the second sub-layer (134) of elastically deformable material (132).
5. Echangeur de chaleur (130) selon l’une quelconque des revendications précédentes, dans lequel la couche de matériau élastiquement déformable (132) comprend au moins une portion thermiquement conductrice. 5. Heat exchanger (130) according to any one of the preceding claims, wherein the layer of elastically deformable material (132) comprises at least one thermally conductive portion.
6. Echangeur de chaleur (130) selon l’une quelconque des revendications précédentes, dans lequel la couche de matériau élastiquement déformable (132) comprend au moins une portion thermiquement isolante. 6. Heat exchanger (130) according to any one of the preceding claims, wherein the layer of elastically deformable material (132) comprises at least one thermally insulating portion.
7· Echangeur de chaleur (130) selon l’une quelconque des revendications précédentes, dans lequel le réseau de microfibres (131) comprend au moins un premier faisceau (135) de microfibres (131) et au moins un deuxième faisceau (136) de microfibres (131), le premier faisceau (135) de microfibres (131) et le deuxième faisceau (136) de microfibres (131) étant distincts. 7 · heat exchanger (130) according to any one of claims previous ones, wherein the array of microfibers (131) comprises at least a first bundle (135) of microfibers (131) and at least a second bundle (136) of microfibers (131), the first bundle (135) of microfibers (131) ) and the second bundle (136) of microfibers (131) being distinct.
8. Echangeur de chaleur (130) selon l’une quelconque des revendications précédentes, dans lequel la couche de matériau élastiquement déformable (132) comprend au moins un élément chauffant (137). 8. A heat exchanger (130) according to any preceding claim, wherein the layer of elastically deformable material (132) comprises at least one heating element (137).
9. Dispositif de régulation thermique d’un composant électrique et/ou électronique susceptible de s’échauffer, comprenant au moins un boîtier (110) adapté pour loger au moins un composant (120) électrique et/ou électronique susceptible de s’échauffer, le dispositif de régulation thermique comprenant au moins un échangeur de chaleur (130) selon l’une quelconque des revendications précédentes, cet au moins un échangeur de chaleur (130) étant reçu dans le boîtier (110). io. Dispositif (100) électrique et/ou électronique, comprenant au moins un composant (120) électrique et/ou électronique susceptible de s’échauffer et au moins un dispositif de régulation thermique selon la revendication précédente, l’au moins un composant (120) électrique et/ou électronique étant reçu dans le boîtier (110) du dispositif de régulation thermique. 9. Device for thermal regulation of an electrical and / or electronic component liable to heat up, comprising at least one housing (110) adapted to house at least one electrical and / or electronic component (120) liable to heat up, the thermal regulation device comprising at least one heat exchanger (130) according to any one of the preceding claims, this at least one heat exchanger (130) being received in the housing (110). io. Electrical and / or electronic device (100), comprising at least one electrical and / or electronic component (120) capable of heating and at least one thermal regulation device according to the preceding claim, the at least one component (120) electrical and / or electronic being received in the housing (110) of the thermal regulation device.
PCT/FR2020/052321 2019-12-20 2020-12-07 Heat exchanger for thermal treatment of an electrical and/or electronic component WO2021123561A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1915064 2019-12-20
FR1915064A FR3105383A1 (en) 2019-12-20 2019-12-20 HEAT EXCHANGER INTENDED FOR THE THERMAL TREATMENT OF AN ELECTRICAL AND / OR ELECTRONIC COMPONENT

Publications (1)

Publication Number Publication Date
WO2021123561A1 true WO2021123561A1 (en) 2021-06-24

Family

ID=69743572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/052321 WO2021123561A1 (en) 2019-12-20 2020-12-07 Heat exchanger for thermal treatment of an electrical and/or electronic component

Country Status (2)

Country Link
FR (1) FR3105383A1 (en)
WO (1) WO2021123561A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011110726A1 (en) * 2010-03-08 2011-09-15 Chemitec Consulting Oy Heat exchange element, a heat exchanger comprising the elements, and an equipment for the manufacture of the elements
US20120168128A1 (en) * 2011-01-05 2012-07-05 Kambiz Vafai Cooling augmentation using microchannels with rotatable separating plates
DE102011001915A1 (en) * 2011-04-08 2012-10-11 Torsten Enders Heat exchange element e.g. woven band, for use in e.g. surface of floor, has tubes connected to support, where element is designed as planar structure, and supplying line connected with ends of tubes and serving as delivery pipe
US20160231071A1 (en) * 2015-02-05 2016-08-11 GM Global Technology Operations LLC Mechanically conformable micro-heat exchangers and methods for use in thermal management of target components
WO2017149217A1 (en) * 2016-03-01 2017-09-08 Valeo Systemes Thermiques Heat exchanger with a flexible wall for the heat management of an electric battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011110726A1 (en) * 2010-03-08 2011-09-15 Chemitec Consulting Oy Heat exchange element, a heat exchanger comprising the elements, and an equipment for the manufacture of the elements
US20120168128A1 (en) * 2011-01-05 2012-07-05 Kambiz Vafai Cooling augmentation using microchannels with rotatable separating plates
DE102011001915A1 (en) * 2011-04-08 2012-10-11 Torsten Enders Heat exchange element e.g. woven band, for use in e.g. surface of floor, has tubes connected to support, where element is designed as planar structure, and supplying line connected with ends of tubes and serving as delivery pipe
US20160231071A1 (en) * 2015-02-05 2016-08-11 GM Global Technology Operations LLC Mechanically conformable micro-heat exchangers and methods for use in thermal management of target components
WO2017149217A1 (en) * 2016-03-01 2017-09-08 Valeo Systemes Thermiques Heat exchanger with a flexible wall for the heat management of an electric battery

Also Published As

Publication number Publication date
FR3105383A1 (en) 2021-06-25

Similar Documents

Publication Publication Date Title
EP2145360B1 (en) Module for an electric energy storage assembly
FR3007895A1 (en) ELECTROCHEMICAL CELL STRIP FOR REALIZING A BATTERY MODULE FOR AN ELECTRIC OR HYBRID VEHICLE, AND METHOD OF MAKING SUCH A MODULE
WO2018206894A1 (en) Heat regulation device for cylindrical electrical energy storage cells
EP3925018A1 (en) Battery unit and motor vehicle provided with at least one such unit
WO2021123561A1 (en) Heat exchanger for thermal treatment of an electrical and/or electronic component
FR3063137A1 (en) THERMAL EXCHANGER AND DEVICE FOR THERMALLY REGULATING AT LEAST ONE ELECTRICAL ENERGY STORAGE MEMBER
EP3278393A1 (en) Battery module, in particular for a motor vehicle, and corresponding heat exchanger for a battery module
WO2021123559A1 (en) Heat-exchange device for electrical and/or electronic components
FR3105708A1 (en) Box intended to receive an electrical component
EP3753065B1 (en) System for cooling motor vehicle battery cells
EP4260669A1 (en) System for thermal treatment of an electrical and/or electronic component
FR3105711A1 (en) THERMAL REGULATION DEVICE OF AN ELECTRICAL AND / OR ELECTRONIC COMPONENT
FR3107613A1 (en) VEHICLE BATTERY MODULE
FR3131709A1 (en) Thermal regulation device
FR3077427A1 (en) THERMAL CONTROL DEVICE FORMING A COVER OF A BATTERY PACK.
WO2022214572A1 (en) Heat management device for an electrical and/or electronic component
FR3108824A1 (en) Electrical and / or electronic device
FR3073609A1 (en) CHANNEL FOR THERMAL EXCHANGER OF A MOTOR VEHICLE
EP4259477A1 (en) Cooling element for an electric charging cable for an electrical energy storage device and corresponding installation method
FR3056757A1 (en) CURRENT COLLECTOR PLATE FOR FUEL CELL GENERATOR
FR3105712A1 (en) Heat exchange device for electrical and / or electronic components
FR3034568A1 (en) BATTERY MODULE, IN PARTICULAR FOR MOTOR VEHICLE, AND THERMAL EXCHANGER FOR CORRESPONDING BATTERY MODULE
EP4193417A1 (en) Device for cooling two electrochemical cells, corresponding electrochemical assembly and method
WO2024068421A1 (en) Device for spacing battery cells of a vehicle battery pack
EP4320674A1 (en) Cooling system for an electronic system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20841994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20841994

Country of ref document: EP

Kind code of ref document: A1