WO2021123543A1 - Element de decouplage pour un support de moteur comprenant un fluide non newtonien - Google Patents

Element de decouplage pour un support de moteur comprenant un fluide non newtonien Download PDF

Info

Publication number
WO2021123543A1
WO2021123543A1 PCT/FR2020/052289 FR2020052289W WO2021123543A1 WO 2021123543 A1 WO2021123543 A1 WO 2021123543A1 FR 2020052289 W FR2020052289 W FR 2020052289W WO 2021123543 A1 WO2021123543 A1 WO 2021123543A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
housing
newtonian fluid
rings
stud
Prior art date
Application number
PCT/FR2020/052289
Other languages
English (en)
Inventor
Geoffroy CAPOULUN
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Publication of WO2021123543A1 publication Critical patent/WO2021123543A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/601Mounting; Assembling; Disassembling specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/624Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/626Mounting or removal of fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/04Fluids

Definitions

  • the present invention relates to an engine support, in particular an electric motor support, in particular for a ventilation device for a motor vehicle heating, ventilation and / or air conditioning installation.
  • a motor-driven fan unit ensures the creation of an air flow intended to supply the vehicle interior.
  • the temperature of the air flow can be regulated to achieve the effect of heating, ventilation and / or air conditioning.
  • the motor-fan unit allows the flow of air to enter and circulate in the ventilation, heating and / or air conditioning system to the outlets, where the air enters the passenger compartment.
  • the motor-fan unit in known manner comprises an electric motor, for example a brushed motor, on which a wheel is mounted to set the air in motion.
  • the motor-fan unit also includes a motor support which includes an inner ring configured to accommodate the electric motor and an outer ring suitable for being attached to a housing of the heating, ventilation and / or air conditioning installation.
  • the vibrations caused by the engine can propagate from the inner ring to the outer ring of the motor support. These vibrations can be felt in the vehicle, causing inconvenience to the occupants of the vehicle.
  • a decoupling means is arranged between the inner ring and the outer ring.
  • a decoupling means is a ring made of flexible material or a viscoelastic mechanical subsystem.
  • the decoupling means thus have flexibility making it possible to limit the propagation of vibrations from the inner ring to the outer ring of the motor support.
  • the stiffness of the decoupling means it is desirable for the stiffness of the decoupling means to be as low as possible.
  • the housing of the heating, ventilation and / or air conditioning installation to which the motor support is connected, is also subjected to stresses, caused for example by the movements of the vehicle. These stresses are transmitted to the electric motor mounted on the motor support, through the housing of the heating, ventilation and / or air conditioning installation. These stresses can lead to deterioration of components of the motor-fan assembly, in particular of the wheel, in the event that the amplitude of the displacement of the motor causes the wheel to come into contact with a part of the housing of the heating, ventilation installation. and / or air conditioning, and / or of the decoupling system in the case where the displacements induce stresses greater than the elastic limit of the decoupling system.
  • the decoupling means be relatively rigid.
  • a motor support comprising an outer ring and a member for receiving an electric motor.
  • the receiving member is connected to the outer ring by decoupling means.
  • the decoupling means comprises an adaptive device capable of modifying at least one mechanical characteristic of the decoupling means, in particular a stiffness or a dimension of the decoupling means.
  • this adaptive, active device is complex. Its installation can also be tricky.
  • the aim of the present invention is to provide an engine support, in particular for a heating, ventilation and / or air conditioning installation for a motor vehicle, which does not have at least some of the drawbacks mentioned above.
  • an engine support in particular for a motor-fan unit of a heating, ventilation and / or air conditioning installation of a vehicle, comprising:
  • decoupling element interposed between the first ring and the second ring, the decoupling element being produced in whole or in part from rheo-thickening non-Newtonian fluid.
  • the non-Newtonian fluid allows an adaptation of the rigidity of the decoupling element, depending on the stress which applies to this decoupling element.
  • this adaptation is passive, in that it does not require any actuator.
  • the motor support may include one or more of the following characteristics, taken alone or in combination:
  • the non-Newtonian fluid has its own shape in the absence of stress
  • the non-Newtonian fluid is made of a material of the D3o ® brand
  • the decoupling element is entirely of rheo-thickening non-Newtonian fluid
  • the decoupling element comprises at least one stud, arranged between the first ring and the second ring, the stud preferably defining a cavity receiving rheo-thickening non-Newtonian fluid, the at least one stud being, more preferably, taken in sandwich, in the direction of the axis of the two coaxial rings between a part of the first ring and a part of the second ring;
  • the pad is made of an elastomeric material, for example of SEBS, or of a rheo-thickening non-Newtonian fluid having a specific shape in the absence of stress;
  • the stud has a cylindrical shape, in particular of rectangular or round section, preferably such that a rigidity of the stud in a tangential (or orthoradial) direction is less than a rigidity of the stud in an axial or radial direction;
  • the stud has a height, measured in the direction of the common axis of the two coaxial rings, between 11 and 15 millimeters and / or a width, measured in the radial direction with respect to the common axis of the two coaxial rings, between 8 mm and 12 mm, and / or a length, measured in an orthoradial direction with respect to the common axis of the two coaxial rings, between 11 and 15 mm;
  • the first ring has a radial projection
  • the second ring has a housing, the radial projection being received in the housing, the stud being received at least partially in the housing, in a sandwich, in the direction of the common axis of the two rings coaxial, between the radial projection and a wall of the housing, normal to the common axis of the two coaxial rings;
  • the first ring comprises at least a second radial projection
  • the second ring has at least a second housing, the second radial projection being received in the second housing, a second stud being received at least partially in the second housing, in sandwich, in the direction of the common axis of the two coaxial rings, between the second radial projection and a second wall of the second housing, normal to the common axis of the two coaxial rings, the first and second radial projections and the first and second walls being shaped so that in the event of movement of a ring relative to the other ring, only one of said stud and the second stud is compressed;
  • the stud and / or the second stud where appropriate, defines a cavity receiving rheo-thickening non-Newtonian fluid, the second ring and / or the first ring comprising an opening opening into the housing, making it possible to fill the cavity with fluid rheo-thickening non-Newtonian;
  • the cavity in the stud is cylindrical in shape, possibly with an undercut facilitating moldability, a ratio between the height of the cavity, measured in the direction of the common axis of the two coaxial rings, and the largest dimension of the section transverse of the cavity, measured in a plane normal to the direction of the common axis of the two coaxial rings, preferably being between 1, 1 and 1, 5;
  • the non-Newtonian fluid in the cavity is liquid, in the absence of stress
  • the non-Newtonian fluid in the cavity is chosen from: an aqueous solution of polyvinyl alcohol and borax (or "slime"), a fluid of the D3o ® brand, a aqueous solution of corn starch;
  • the opening comprises a frustoconical portion, of increasing section from the cavity towards a free surface of the second ring and / or the first ring;
  • the opening comprises a cylindrical portion from the free surface of the second ring and / or the first ring towards the cavity;
  • the stud forms a rim covering the walls of the opening of the second ring and / or the first ring;
  • the motor support comprises a plug closing the cavity and / or the opening, where appropriate, preferably in a sealed manner to the rheo-thickening non-Newtonian fluid.
  • the decoupling element comprises a plurality of pads, preferably six pads, the pads being, more preferably evenly distributed angularly around the common axis of the two rings;
  • the pads are interconnected, the pads being in particular integrally formed, to form a decoupling element in the form of a decoupling ring;
  • the two coaxial rings are concentric, a first ring or inner ring being disposed radially inside a second ring or outer ring
  • a motor-fan unit for vehicle ventilation installation, vehicle heating, ventilation and / or air conditioning, comprising an electric motor, a fan wheel, driven in rotation by the motor electric, and a motor support as described above, the motor being fixed to one of the rings of the motor support.
  • the motor-fan unit may include one or more of the following characteristics, taken alone or in combination:
  • the stud has a rigidity in a tangential (or orthoradial) direction such as the resonance frequency of the mass-spring system composed of the internal ring, as mass, and of the decoupling element, in particular of the decoupling ring , where appropriate, as a spring, at room temperature, is less than the frequency of the lowest fundamental harmonic of the system consisting of the motor and the motor support, at the minimum speed of rotation of the engine.
  • the frequency of the fundamental harmonic is the frequency of the harmonic of order equal to the minimum between the number of magnetic poles of the rotor and the number of magnetic poles of the stator;
  • the rigidity of the pad in an axial direction, respectively radial is such that the inner ring moves less than 0.5 mm in all directions, when the engine is mounted on the engine support and that is varied, in all directions, the force exerted by the weight of the engine on the engine mount;
  • the decoupling element has an inertia, in the direction of gravity, greater than the combined mass of the support and the motor
  • FIG. 1 schematically shows an example of a fan device for a motor vehicle heating, ventilation and / or air conditioning installation.
  • FIG. 2 schematically shows in perspective a first example of a motor support device which can be implemented in the fan device of FIG. 1.
  • FIG. 3 shows schematically and partially in section the engine support device of Figure 2, according to a first radial sectional plane.
  • FIG. 4 shows schematically and partially in section a variant of the engine support device of FIG. 2, according to a second radial section plane.
  • FIG. 5 shows schematically and partially in section a second example of a motor support device that can be implemented in the fan device of FIG. 1, according to a first radial sectional plane.
  • FIG. 6 shows schematically and partially in section the engine support device of FIG. 5, along a second radial section plane.
  • FIG. 7 shows schematically in section, part of a variant of the second example of an engine support device, according to an orthoradial section plane.
  • FIG. 1 illustrates a fan device 10 for a heating, ventilation and / or air conditioning installation for a motor vehicle.
  • a heating, ventilation and / or air conditioning installation for a motor vehicle comprises such a fan device 10, in a duct making it possible to guide an air flow created by the fan device 10 towards the passenger compartment of the vehicle.
  • Such a heating, ventilation and / or air conditioning installation may further comprise a device for heating the air flow, for example an electrical resistance or a heat exchanger, and / or a device for cooling the air flow, in particular a heat exchanger, placed between the fan device 10 and the outlet (s) of the heating installation, towards the passenger compartment.
  • the fan device 10 essentially comprises a fan wheel 12 and an electric motor 14 for driving the fan wheel 12 in rotation about its axis A.
  • the fan device 10 also comprises a motor support 16 making it possible to assemble the electric motor 14 on a housing 18.
  • the electric motor 14 is connected to the housing 18 by means of the motor support 16.
  • the housing 18 can form part of the duct of the installation. heating, fan and / or air conditioning of the motor vehicle.
  • the motor support 16 comprises a first ring 20 or inner ring, a second ring 22 or outer ring, and a decoupling element 24, interposed between the inner ring 20 and the outer ring 22
  • the inner ring 20 is here intended to be fixed to the electric motor 14.
  • the outer ring 22 is here intended to be fixed to the housing 18.
  • the decoupling element 24 here has the form of a decoupling ring.
  • the inner 20, outer 22 and decoupling 24 rings are here coaxial, with an axis common to the axis of rotation A of the fan wheel 12.
  • the inner 20, outer 22 and decoupling 24 rings are here concentric.
  • the decoupling ring 24 is for example made of an elastomeric material, such as polystyrene-b-poly (ethylene-butylene) -b-polystyrene (or SEBS).
  • SEBS polystyrene-b-poly (ethylene-butylene) -b-polystyrene
  • the decoupling ring 24 is shaped so that the weight of the motor, mounted on the motor support 16 does not cause a displacement of one of the inner and outer rings 20, 22, relative to the other, greater than 0 , 5 mm, regardless of the direction in which the weight of the motor 14 exerts a force on the motor support 16.
  • the decoupling ring 24 forms four first pads 28i, identical, received in four housings 26 of the outer ring 22.
  • the first pads 28i are regularly angularly distributed around the common axis A of the rings 20, 22 , 24.
  • the first pads 28i are here integral with the decoupling ring 24. In this case, the first pads 28i make it possible to reinforce the decoupling ring 24, in particular in the direction of the axis A common to the rings 20, 22, 24. This reduces the risk of cracks appearing in the decoupling ring 24.
  • the inner ring 20 has radial projections 27, extending radially in the direction of the outer ring 22. Each radial projection 27 is received in an associated housing 26, formed by the outer ring 22.
  • the housing 26 is of substantially parallelepipedal shape.
  • the housing 26 is thus defined by two walls 26i, 262 normal to the axis A common to the rings 20, 22, and two side walls which extend essentially in a radial direction and in an axial direction, parallel to the direction of the 'common axis A of the rings 20, 22, 24.
  • Two tabs 29 protrude from the side walls of the housing 26.
  • the tabs 29 thus extend towards the interior of the housing 26.
  • the tabs 29 form a stop against the axial displacement of the radial projection 27 extending in the housing 26, in the event of displacement of one ring 20, 22, 24 relative to the other, in the direction of the common axis A of the rings 20, 22, 24.
  • a first pad 28i is received in the housing 26.
  • the first pad 28i is sandwiched between the radial projection 27 and a wall 26i, here upper, of the housing 26, normal to the common axis A of the rings 20, 22, 24.
  • the wall 26i of the housing 26 is here normal to the direction of the common axis A of the rings 20, 22, 24.
  • the first stud 28i extends at least in part between the radial projection 27 and the wall 26i of the housing 26, formed by the outer ring 22.
  • the first stud 28i is adapted to be stressed in compression, in the direction of the common axis A of the rings 20, 22.
  • the first stud 28i is adapted to a stress in compression, in the event of approach of the rings inner and outer ring 20, 22 in the direction of the common axis A of the rings 20, 22.
  • such an approximation of the inner and outer rings 20, 22 corresponds to an upward movement of the inner ring 20 in FIG. 3 and / or a downward movement of the outer ring 22 in Figure 3.
  • the first pad 28i is for example made of a polymer material, for example SEBS.
  • the first pad 28i is cylindrical, preferably with a round or rectangular section.
  • the first stud 28i has a height H, measured in the direction of the common axis A of the rings 20, 22, 24, which may be greater than or equal to 11 mm and / or less than or equal to 15 mm.
  • the first pad 28i has a width B, measured in a radial direction relative to the common axis A of the rings 20, 22, 24, which may be greater than or equal to 8 mm and / or less than or equal to 15 mm.
  • the first stud 28i has a length L, measured in an orthoradial direction with respect to the common axis A of the rings 20, 22, 24 which may be greater than or equal to 11 mm and / or less than or equal to 15 mm.
  • a cylindrical cavity 36 is formed in the first pad 28i.
  • the cavity 36 is for example of circular or rectangular cross section.
  • the cavity 36 extends in a direction parallel to the direction of the common axis A of the rings 20, 22, 24.
  • the cavity 36 extends over a depth P, measured in a direction parallel to the common axis A of the rings 20, 22, 24, which may be greater than or equal to 50% and / or less or equal to 95%, of the height H of the first pad 28i.
  • the depth P of each cavity 36 can also be substantially equal to the height H of the first pad 28i.
  • the cavity 36 also has a diameter D, which may be greater than or equal to 1.1 mm and / or less than or equal to 1.5 mm.
  • the cavity 36 is advantageously filled with rheo-thickening non-Newtonian fluid.
  • rheo-thickening non-Newtonian fluid or dilating non-Newtonian fluid is meant here a fluid whose viscosity increases when the shear rate which is applied to it increases, with a flow curve, giving the viscosity as a function the stress velocity gradient, which curves upward, as the stress velocity gradient increases.
  • the non-Newtonian fluid filling the cavity 36 retains a low viscosity.
  • the first pad 28i retains considerable flexibility, allowing it to filter the vibration harmonics.
  • Such a low stress corresponds for example to the stresses on the decoupling ring 24, due to the vibrations caused by the motor 14.
  • the rheo-thickening non-Newtonian fluid may for example have a viscosity close to that of a Newtonian liquid, in the absence of stress or in the event of low contrary.
  • Newtonian liquid is meant a fluid which has no form of its own, in particular when it is not stressed.
  • the rheo-thickening non-Newtonian fluid can have a behavior close to that of a solid, in case of high stress. By “to have a behavior of solid”, one understands to have a clean form.
  • aqueous solution of polyvinyl alcohol and borax or "slime"
  • a fluid of the brand D3o ® or an aqueous solution of corn starch are examples of rheo-thickening non-Newtonian fluid, having a viscosity if low, low stress, that they behave as a liquid that does not have its own shape. These examples are thus particularly suitable for filling the cavity 36.
  • Figure 3 appears particularly interesting.
  • the rheo-thickening non-Newtonian fluid is particularly susceptible to variations in viscosity, in the event of variations in compressive stresses.
  • the inertia of the fluid contained therein is higher in the direction of the common axis A. It is therefore advantageous to apply the rheo-thickening non-Newtonian fluid according to the direction of the common axis A of the two rings 20, 22, between the radial projection 27 and the wall 26i of the housing 26.
  • the first pad 28i is preferably in contact with at least one of the radial projection 27 and the wall 26i of the associated housing 26.
  • the first stud 28i extends entirely between the radial projection 27 and the wall 26i of the housing 26.
  • the first and second end faces 42, 44 of the first stud 28i, normal to the direction of the common axis A of the rings 20, 22, are fully covered by the radial projection 27 and the outer ring 22, respectively.
  • the first stud 28i is in contact with each of the radial projection 27 and the wall 26i of the housing 26.
  • the first stud 28i can in particular be fixed on its first and second end faces 42, 44 , to the radial projection 27 and to the wall 26i of the housing 26, respectively, in particular by overmolding, clipping or gluing.
  • Figure 4 schematically illustrates a sectional view of a variant of the motor support 16 of Figures 2 and 3.
  • Figure 4 illustrates a configuration symmetrical to the configuration of Figure 3, in that a second stud 282 is sandwiched there between a radial projection 27 and a wall 262, here lower, of the housing 26, normal to the axis A of the rings 20, 22, 24.
  • the second stud 282 extends at least in part between the radial projection 27 and the lower wall 262 of the housing 26, preferably in contact with at least one of the radial projection 27 and the lower wall 262 of the housing 26.
  • the second pad 282 is adapted to be stressed in compression, in the direction of the common axis A of the rings 20, 22.
  • the second pad 282 is adapted to be stressed in compression, in case of movement of the inner ring 20 downwards in Figure 4 and / or in case of movement of the outer ring 22 upwards in Figure 4.
  • first and second pads 28i, 282 there may be provided between the two coaxial rings 20, 22, a plurality of first and second pads 28i, 282 as described above.
  • the radial projections 27 and the housings 26 associated with the first and second pads 28i, 282 are shaped so that in the event of movement of one ring 20, 22 relative to the other 22, 20, only the first pads 28 where only the second pads 282 are compressed.
  • the decoupling element can in particular comprise four or six pads 28i, 282, or even more.
  • the pads 28i, 282 are advantageously regularly distributed around the common axis A of the rings 20, 22.
  • the plurality of pads 28i, 282 comprises as many first pads 28i as second pads 282, which are arranged alternately around the common axis A of the two rings 20, 22, a first pad 28i having two second pads 282 as closest neighbors and vice versa.
  • Figures 5 and 6 schematically illustrate a variant of Figures 3 and 4, respectively.
  • the pads 28i, 282 are sandwiched, each time between, on the one hand, a first radial projection 38, formed by the inner ring 20 and extending radially towards the outer ring 22, and, on the other hand, a second radial projection 40, formed by the outer ring 22 and extending radially towards the inner ring 20.
  • the first radial projection 38 is disposed above the first pad 28i
  • the second radial projection 40 is disposed below the first pad 28i.
  • the first radial projection 38 is arranged below the first pad 28i
  • the second radial projection 40 is arranged above the first pad 28i.
  • the decoupling element comprises a plurality of pads 28i, 282, regularly distributed angularly around the common axis A of the rings 20, 22, 24.
  • the plurality of pads 28i, 282 preferably comprises as many first pads 28i as second pads 282, the first and second pads 28i, 282 being arranged alternately around the common axis A of the rings 20, 22, 24.
  • Figure 7 illustrates a variant of the decoupling element 24 illustrated by Figures 5 and 6.
  • the opening 46 through the first radial projection 38 or the second radial projection 40 comprises a flared portion 48, preferably frustoconical.
  • the portion 48 of the opening 46 is of increasing section from the first transverse surface 42 of the stud 28, towards the free surface of the radial projection 38, 40.
  • the smallest section of the opening 46 is identical to the section. of the cavity 36.
  • the smaller section of the opening 46 is further placed opposite the cavity 36.
  • the portion 48 thus facilitates the filling of the cavity 36 with rheo-thickening non-Newtonian fluid.
  • the stud 28 In order to guide the rheo-thickening non-Newtonian fluid towards the cavity 36, the stud 28 here forms a rim 52.
  • the rim 52 matches the shape of the wall of the opening 46.
  • a second portion 50 of the opening 46 is cylindrical.
  • the second portion 50 is of substantially larger diameter than the diameter of the outlet of the frustoconical portion 48.
  • the second portion 50 can thus receive a seal.
  • a plug 54 is here received in the opening 46 to close the cavity 36 and the opening 46.
  • the plug 54 can be fixed on the radial projection 38 , 40 by any suitable securing means, accessible to those skilled in the art.
  • the stopper 54 is fixed to the projection 38, 40 by riveting or snap-fastening, two rods 56, passing through an edge of the stopper 54, being deformed after the installation of the stopper 54. The stopper 54 in place can compress the seal against the protrusion 38, 40.
  • the decoupling means 24 can take other forms than that of a decoupling ring.
  • the pads 28i, 282 can in particular be separated.
  • the rheo-thickening non-Newtonian fluid can also have its own shape, in particular in the absence of stress. D3o ® brand materials, for example, are such rheo-thickening non-Newtonian fluids having a specific shape, especially in the absence of stress. It may then be possible to make the decoupling pads 28i, 282 between the inner and outer rings 20, 22, or even the decoupling ring 24, entirely in such a material, or to replace the elastomeric material used in the examples described. previously by such a material.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Motor Or Generator Frames (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

Un support de moteur (16), notamment pour groupe moto-ventilateur (10) d'une installation de chauffage, ventilation et/ou climatisation d'un véhicule, comprend deux bagues coaxiales (20; 22) dont une première bague (20) est apte à recevoir un ou plusieurs éléments d'un moteur électrique (14) et une deuxième bague (22) est apte à être fixée sur un boitier (18) destiné à former un élément de structure, et un élément de découplage (24) interposé entre la première bague (20) et la deuxième bague (22). L'élément de découplage (24) est réalisé en tout ou partie en fluide non-newtonien rhéoépaississant.

Description

ELEMENT DE DECOUPLAGE POUR UN SUPPORT DE MOTEUR COMPRENANT UN FLUIDE NON NEWTONIEN
Domaine technique
[0001] La présente invention concerne un support de moteur, en particulier un support de moteur électrique, notamment pour dispositif de ventilation d’installation de chauffage, de ventilation et/ou de climatisation de véhicule automobile.
Technique antérieure
[0002] Dans une installation de chauffage, ventilation et/ou climatisation pour véhicule automobile, un groupe moto-ventilateur assure la création d’un flux d’air destiné à alimenter l’habitacle du véhicule. La température du flux d’air peut être régulée afin d’obtenir l’effet de chauffage, de ventilation et/ou de climatisation.
[0003] Le groupe moto-ventilateur permet de faire entrer et circuler le flux d'air dans le dispositif de ventilation, de chauffage et/ou de climatisation jusqu’à des bouches de sortie, où l’air pénètre dans l’habitacle.
[0004] Le groupe moto-ventilateur comporte de façon connue un moteur électrique, par exemple à balais, sur lequel est montée une roue pour mettre l’air en mouvement. Le groupe moto-ventilateur comporte également un support-moteur qui comprend une bague intérieure configurée pour accueillir le moteur électrique et une bague extérieure apte à être fixée sur un boîtier de l’installation de chauffage, ventilation et/ou climatisation.
[0005] Les vibrations causées par le moteur peuvent se propager depuis la bague intérieure vers la bague extérieure du support de moteur. Ces vibrations peuvent être ressenties dans le véhicule, ce qui engendre un désagrément pour les occupants du véhicule.
[0006] C’est pourquoi un moyen de découplage est disposé entre la bague intérieure et la bague extérieure. De manière classique, un moyen de découplage est une bague en matériau souple ou un sous-système mécanique viscoélastique. Le moyen de découplage possède ainsi une souplesse permettant de limiter la propagation des vibrations depuis la bague intérieure vers la bague extérieure du support de moteur. Pour l’efficacité du découplage, il est souhaitable que la raideur du moyen de découplage soit la plus faible possible.
[0007] De plus, le boîtier de l’installation de chauffage, ventilation et/ou climatisation, auquel est relié le support-moteur, subit également des contraintes, causées par exemple par les mouvements du véhicule. Ces contraintes sont transmises au moteur électrique monté sur le support de moteur, au travers du boîtier de l’installation de chauffage, ventilation et/ou climatisation. Ces contraintes peuvent entraîner une détérioration de composants du groupe moto-ventilateur, notamment de la roue, dans le cas où l’amplitude du déplacement du moteur fait que la roue vient en contact avec une partie du boîtier de l’installation de chauffage, ventilation et/ou climatisation, et/ou du système de découplage dans le cas où les déplacements induisent des contraintes supérieures à la limite élastique du système de découplage.
[0008] Pour limiter les risques de détérioration du groupe moto-ventilateur sous l’effet de ces contraintes, il est ainsi préférable que le moyen de découplage soit relativement rigide.
[0009] On comprend dès lors que les deux objectifs mentionnés ci-dessus ne peuvent pas être atteints aisément avec un élément de découplage en matériau élastomère.
[0010] Par ailleurs, il est connu de la demande FR-A-2 974 464, un support-moteur comprenant une bague extérieure et un organe de réception d’un moteur électrique. L’organe de réception est relié à la bague extérieure par un moyen de découplage. Le moyen de découplage comprend un dispositif adaptatif apte à modifier au moins une caractéristique mécanique du moyen de découplage, notamment une raideur ou une dimension du moyen de découplage. Cependant, ce dispositif adaptatif, actif, est complexe. Son installation peut en outre être délicate.
[0011] Le but de la présente invention est de proposer un support de moteur, notamment pour une installation de chauffage, ventilation et/ou climatisation de véhicule automobile, ne présentant pas au moins certains des inconvénients mentionnés ci-dessus.
Résumé [0012] La présente description propose un support de moteur, notamment pour groupe moto-ventilateur d’une installation de chauffage, ventilation et/ou climatisation d’un véhicule, comprenant :
- deux bagues coaxiales dont une première bague est apte à recevoir un ou plusieurs éléments d’un moteur électrique et une deuxième bague est apte à être fixée sur un boîtier destiné à former un élément de structure, et
- un élément de découplage interposé entre la première bague et la deuxième bague, l’élément de découplage étant réalisé en tout ou partie en fluide non- newtonien rhéoépaississant.
[0013] Ainsi, le fluide non-newtonien permet une adaptation de la rigidité de l’élément de découplage, en fonction de la sollicitation qui s’applique à cet élément de découplage. Avantageusement, cette adaptation est passive, en ce qu’elle ne nécessite aucun actionneur.
[0014] Selon des modes de réalisations particuliers, le support de moteur peut comporter une ou plusieurs des caractéristiques suivantes, prises seules ou en combinaison :
- le fluide non-newtonien possède une forme propre en l’absence de sollicitation ;
- le fluide non-newtonien est en un matériau de la marque D3o ® ;
- l’élément de découplage est entièrement en fluide non-newtonien rhéoépaississant ;
- l’élément de découplage comprend au moins un plot, disposé entre la première bague et la deuxième bague, le plot définissant de préférence une cavité recevant du fluide non-newtonien rhéoépaississant, le au moins un plot étant, de préférence encore, pris en sandwich, dans la direction de l’axe des deux bagues coaxiales entre une partie de la première bague et une partie de la deuxième bague ;
- le plot est en matériau élastomère, par exemple en SEBS, ou en fluide non- newtonien rhéoépaississant présentant une forme propre en l’absence de sollicitation ;
- le plot a une forme cylindrique, notamment de section rectangulaire ou ronde, de préférence telle qu’une rigidité du plot dans une direction tangentielle (ou orthoradiale) est inférieure à une rigidité du plot dans une direction axiale ou radiale ; - le plot a une hauteur, mesurée selon la direction de l’axe commun des deux bagues coaxiales, comprise entre 11 et 15 millimètres et/ou une largeur, mesurée dans la direction radiale par rapport à l’axe commun des deux bagues coaxiales, comprise entre 8 mm et 12 mm, et/ou une longueur, mesurée dans une direction orthoradiale par rapport à l’axe commun des deux bagues coaxiales, comprise entre 11 et 15 mm ;
- la première bague présente une saillie radiale, la deuxième bague présente un logement, la saillie radiale étant reçue dans le logement, le plot étant reçu au moins partiellement dans le logement, en sandwich, dans la direction de l’axe commun des deux bagues coaxiales, entre la saillie radiale et une paroi du logement, normale à l’axe commun des deux bagues coaxiales ;
- la première bague comprend au moins une deuxième saillie radiale, la deuxième bague présente au moins un deuxième logement, la deuxième saillie radiale étant reçue dans le deuxième logement, un deuxième plot étant reçu au moins partiellement dans le deuxième logement, en sandwich, dans la direction de l’axe commun des deux bagues coaxiales, entre la deuxième saillie radiale et une deuxième paroi du deuxième logement, normale à l’axe commun des deux bagues coaxiales, les première et deuxième saillies radiales et les première et deuxième parois étant conformées pour qu’en cas de mouvement d’une bague par rapport à l’autre bague, l’un seulement parmi ledit plot et le deuxième plot soit comprimé ;
- le plot et/ou le deuxième plot, le cas échéant, définit une cavité recevant du fluide non-newtonien rhéoépaississant, la deuxième bague et/ou la première bague comprenant une ouverture débouchant dans le logement, permettant de remplir la cavité avec du fluide non-newtonien rhéoépaississant ;
- la cavité dans le plot est de forme cylindrique, éventuellement avec une dépouille facilitant la moulabilité, un rapport entre la hauteur de la cavité, mesurée selon la direction de l’axe commun des deux bagues coaxiales, et la plus grande dimension de la section transversale de la cavité, mesurée dans un plan normal à la direction de l’axe commun des deux bagues coaxiales, étant de préférence compris entre 1 ,1 et 1 ,5 ;
- le fluide non-newtonien dans la cavité est liquide, en l’absence de sollicitation ;
- le fluide non-newtonien dans la cavité est choisi parmi : une solution aqueuse d’alcool polyvinylique et de borax (ou « slime »), un fluide de la marque D3o ®, une solution aqueuse d’amidon de maïs ;
- l’ouverture comprend une portion tronconique, de section grandissante depuis la cavité vers une surface libre de la deuxième bague et/ou la première bague;
- l’ouverture comprend une portion cylindrique depuis la surface libre de la deuxième bague et/ou la première bague vers la cavité ;
- le plot forme un rebord recouvrant les parois de l’ouverture de la deuxième bague et/ou la première bague ;
- le support de moteur comprend un bouchon fermant la cavité et/ou l’ouverture, le cas échéant, de préférence de manière étanche au fluide non-newtonien rhéoépaississant.
- l’élément de découplage comprend une pluralité de plots, de préférence six plots, les plots étant, de préférence encore régulièrement répartis angulairement autour de l’axe commun des deux bagues ;
- les plots sont reliés entre eux, les plots étant notamment venus de matière, pour former un élément de découplage sous forme de bague de découplage ;
- les deux bagues coaxiales sont concentriques, une première bague ou bague intérieure étant disposée radialement à l’intérieure d’une deuxième bague ou bague extérieure
[0015] Selon un autre aspect, il est proposé un groupe moto-ventilateur pour installation de ventilation de véhicule, de chauffage, ventilation et/ou climatisation de véhicule, comportant un moteur électrique, une roue de ventilateur, entraînée en rotation par le moteur électrique, et un support de moteur tel que décrit précédemment, le moteur étant fixé sur l’une des bagues du support de moteur.
[0016] Selon des modes de réalisations particuliers, le groupe moto-ventilateur peut comporter une ou plusieurs des caractéristiques suivantes, prises seules ou en combinaison :
- le plot a une rigidité dans une direction tangentielle (ou orthoradiale) telle que la fréquence de résonnance du système masse-ressort composé de la bague interne, en tant que masse, et de l’élément de découplage, notamment de la bague de découplage, le cas échéant, en tant que ressort, à température ambiante, est inférieure à la fréquence de l’harmonique fondamental le plus petit du système composé du moteur et du support de moteur, à la vitesse de rotation minimale du moteur. On considère que la fréquence de l’harmonique fondamental est la fréquence de l’harmonique d’ordre égal au minimum entre le nombre de pôles magnétiques du rotor et le nombre de pôles magnétiques du stator ;
- la rigidité du plot selon une direction axiale, respectivement radiale, est telle que la bague interne se déplace de moins de 0,5 mm dans toutes les directions, lorsque le moteur est monté sur le support moteur et qu’on fait varier, dans toutes les directions, l’effort exercé par le poids du moteur sur le support de moteur ; et
- l’élément de découplage présente une inertie, dans la direction de la gravité, supérieure à la masse combinée du support et du moteur
Brève description des dessins
[0017] D’autres caractéristiques, détails et avantages apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés, sur lesquels :
[0018] [Fig. 1] représente schématiquement un exemple de dispositif de ventilateur pour installation de chauffage, de ventilation et/ou de climatisation de véhicule automobile.
[0019] [Fig. 2] représente schématiquement en perspective un premier exemple de dispositif de support de moteur pouvant être mis en oeuvre dans le dispositif de ventilateur de la figure 1 .
[0020] [Fig. 3] représente schématiquement et partiellement en coupe le dispositif de support de moteur de la figure 2, selon un premier plan de coupe radial.
[0021] [Fig. 4] représente schématiquement et partiellement en coupe une variante du dispositif de support de moteur de la figure 2, selon un deuxième plan de coupe radial.
[0022] [Fig. 5] représente schématiquement et partiellement en coupe un deuxième exemple de dispositif de support de moteur pouvant être mis en oeuvre dans le dispositif de ventilateur de la figure 1 , selon un premier plan de coupe radial.
[0023] [Fig. 6] représente schématiquement et partiellement en coupe le dispositif de support de moteur de la figure 5, selon un deuxième plan de coupe radial. [0024] [Fig. 7] représente schématiquement en coupe, une partie d’une variante du deuxième exemple de dispositif de support de moteur, selon un plan de coupe orthoradial.
Description des modes de réalisation
[0025] La figure 1 illustre un dispositif de ventilateur 10 pour une installation de chauffage, de ventilation et/ou de climatisation pour véhicule automobile. Classiquement, une telle installation de chauffage, de ventilation et/ou de climatisation pour véhicule automobile comprend un tel dispositif de ventilateur 10, dans un conduit permettant de guider un flux d’air créé par le dispositif de ventilateur 10 vers l’habitacle du véhicule. Une telle installation de chauffage, de ventilation et/ou de climatisation peut en outre comprendre un dispositif pour chauffer le flux d’air, par exemple une résistance électrique ou un échangeur thermique, et/ou un dispositif pour refroidir le flux d’air, notamment un échangeur thermique, disposé/s entre le dispositif de ventilateur 10 et la ou les sorties de l’installation de chauffage, vers l’habitacle.
[0026] Comme illustré à la figure 1 , le dispositif de ventilateur 10 comporte essentiellement une roue de ventilateur 12 et un moteur électrique 14 pour entraîner la roue de ventilateur 12 en rotation autour de son axe A. Le dispositif de ventilateur 10 comporte également un support de moteur 16 permettant d’assembler le moteur électrique 14 sur un boîtier 18. Ainsi, le moteur électrique 14 est relié au boîtier 18 par le biais du support de moteur 16. Le boîtier 18 peut former une partie du conduit de l’installation de chauffage, de ventilateur et/ou de climatisation du véhicule automobile.
[0027] Par la suite, le support de moteur 16 est décrit plus en détail.
[0028] Comme visible sur la figure 2, le support de moteur 16 comporte une première bague 20 ou bague intérieure, une deuxième bague 22 ou bague extérieure, et un élément de découplage 24, interposé entre la bague intérieure 20 et la bague extérieure 22. La bague intérieure 20 est ici destinée à être fixée au moteur électrique 14. La bague extérieure 22 est ici destinée à être fixée au boîtier 18. L’élément de découplage 24 a ici la forme d’une bague de découplage. Les bagues intérieure 20, extérieure 22 et de découplage 24 sont ici coaxiales, d’axe commun l’axe de rotation A de la roue de ventilateur 12. Les bagues intérieure 20, extérieure 22 et de découplage 24 sont ici concentriques.
[0029] La bague de découplage 24 est par exemple en matériau élastomère, comme du polystyrène-b-poly(éthylène-butylène)-b-polystyrène (ou SEBS). La bague de découplage 24 est conformée pour que le poids du moteur, monté sur le support de moteur 16 ne provoque pas un déplacement de l’une parmi les bagues intérieure et extérieure 20, 22, par rapport à l’autre, supérieur à 0,5 mm, quelle que soit la direction dans laquelle le poids du moteur 14 exerce un effort sur le support de moteur 16.
[0030] Par ailleurs, la bague de découplage 24 forme quatre premiers plots 28i, identiques, reçus dans quatre logements 26 de la bague extérieure 22. Les premiers plots 28i sont régulièrement répartis angulairement autour de l’axe A commun des bagues 20, 22, 24. Les premiers plots 28i sont ici venus de matière avec la bague de découplage 24. Dans ce cas, les premiers plots 28i permettent de renforcer la bague de découplage 24, notamment selon la direction de l’axe A commun des bagues 20, 22, 24. On réduit ainsi les risques d’apparition de fissures dans la bague de découplage 24.
[0031] Par ailleurs, la bague intérieure 20 présente des saillies radiales 27, s’étendant radialement en direction de la bague extérieure 22. Chaque saillie radiale 27 est reçue dans un logement 26 associé, formé par la bague extérieure 22.
[0032] Dans la suite, on décrit l’exemple du logement 26 visible sur les figures 2 et 3, la bague extérieure 22 illustrée à la figure 2 présentant quatre logements 26 identiques.
[0033] Le logement 26 est de forme sensiblement parallélépipédique. Le logement 26 est ainsi défini par deux parois 26i, 262 normales à l’axe A commun des bagues 20, 22, et deux parois latérales qui s’étendent essentiellement selon une direction radiale et selon une direction axiale, parallèle à la direction de l’axe A commun des bagues 20, 22, 24. Deux languettes 29 font saillie des parois latérales du logement 26. Les languettes 29 s’étendent ainsi vers l’intérieur du logement 26. Les languettes 29 forment une butée au déplacement axial de la saillie radiale 27 s’étendant dans le logement 26, en cas de déplacement d’une bague 20, 22, 24 par rapport à l’autre, dans la direction de l’axe A commun des bagues 20, 22, 24.
[0034] Tel que cela est visible sur les figures 2 et 3, un premier plot 28i est reçu dans le logement 26. Le premier plot 28i est en sandwich entre la saillie radiale 27 et une paroi 26i, ici supérieure, du logement 26, normale à l’axe A commun des bagues 20, 22, 24. La paroi 26i du logement 26 est ici normale à la direction de l’axe A commun des bagues 20, 22, 24. En d’autres termes, dans la direction de l’axe A commun des bagues 20, 22, 24, le premier plot 28i s’étend au moins en partie entre la saillie radiale 27 et la paroi 26i du logement 26, formé par la bague extérieure 22.
[0035] Le premier plot 28i est adapté à être sollicité en compression, selon la direction de l’axe A commun des bagues 20, 22. Notamment, le premier plot 28i est adapté à une sollicitation en compression, en cas de rapprochement des bagues intérieure et extérieure 20, 22 dans la direction de l’axe commun A des bagues 20, 22. Ici, un tel rapprochement des bagues intérieure et extérieure 20, 22 correspond à un mouvement de la bague intérieure 20 vers le haut sur la figure 3 et/ou à un mouvement de la bague extérieure 22 vers le bas sur la figure 3.
[0036] Le premier plot 28i est par exemple réalisé en matériau polymère, par exemple du SEBS.
[0037] Le premier plot 28i est cylindrique, de préférence à section ronde ou rectangulaire. Le premier plot 28i a une hauteur H, mesurée selon la direction de l’axe A commun des bagues 20, 22, 24, qui peut être supérieure ou égale à 11 mm et/ou inférieure ou égale à 15 mm. Le premier plot 28i a une largeur B, mesurée selon une direction radiale par rapport à l’axe commun A des bagues 20, 22, 24, qui peut être supérieure ou égale 8 mm et/ou inférieure ou égale à 15 mm. Le premier plot 28i a une longueur L, mesurée dans une direction orthoradiale par rapport à l’axe A commun des bagues 20, 22, 24 qui peut être supérieure ou égale à 11 mm et/ou inférieure ou égale à 15 mm.
[0038] Une cavité 36, cylindrique, est ménagée dans le premier plot 28i. La cavité 36 est par exemple de section transversale circulaire ou rectangulaire. Ici, la cavité 36 s’étend selon une direction parallèle à la direction de l’axe A commun des bagues 20, 22, 24. La cavité 36 s’étend sur une profondeur P, mesurée selon une direction parallèle à l’axe A commun des bagues 20, 22, 24, qui peut être supérieure ou égale à 50 % et/ou inférieure ou égale à 95%, de la hauteur H du premier plot 28i. La profondeur P de chaque cavité 36 peut encore être sensiblement égale à la hauteur H du premier plot 28i. La cavité 36 a également un diamètre D, qui peut être supérieur ou égal à 1 ,1 mm et/ou inférieur ou égal à1 ,5 mm.
[0039] La cavité 36 est avantageusement remplie avec du fluide non-newtonien rhéoépaississant.
[0040] Par fluide non-newtonien rhéoépaississant (ou fluide non-newtonien dilatant), on entend ici un fluide dont la viscosité augmente lorsque le taux de cisaillement qui lui est appliqué augmente, avec une courbe d’écoulement, donnant la viscosité en fonction du gradient de vitesse de la contrainte, qui s’incurve vers le haut, lorsque le gradient de vitesse de la contrainte augmente.
[0041] Ainsi, sous faible contrainte - c'est-à-dire sous contrainte à faible gradient de vitesse - le fluide non-newtonien remplissant la cavité 36 conserve une viscosité faible. Dans ce cas, le premier plot 28i conserve une souplesse importante, lui permettant de filtrer les harmoniques de vibration. Une telle contrainte faible correspond par exemple aux contraintes sur la bague de découplage 24, du fait des vibrations causées par le moteur 14.
[0042] Par contre, sous une contrainte plus élevée - c'est-à-dire une contrainte correspondant à un haut gradient de vitesse - le fluide non-newtonien dans la cavité 36 a une viscosité plus élevée. Ceci permet de protéger la bague de découplage 24 et la roue 12 d’une éventuelle détérioration, notamment dans le cas d’une contrainte ponctuelle, par exemple sous l’effet d’un choc subi par le véhicule, par exemple lors d’un passage sur une bosse ou un nid-de-poule.
[0043] Le fluide non-newtonien rhéoépaississant peut par exemple présenter une viscosité proche de celle d’un liquide newtonien, en l’absence de contrainte ou en cas de contraire faible. Par liquide newtonien, on entend un fluide qui n’a pas de forme propre, en particulier lorsqu’il n’est pas sollicité. Au contraire, le fluide non- newtonien rhéoépaississant peut avoir un comportement proche de celui d’un solide, en cas de contrainte élevée. Par « avoir un comportement de solide », on entend avoir une forme propre.
[0044] Une solution aqueuse d’alcool polyvinylique et de borax (ou « slime »), un fluide de la marque D3o ® ou une solution aqueuse d’amidon de maïs sont des exemples de fluide non-newtonien rhéoépaississant, présentant une viscosité si faible, à faible contrainte, qu’ils ont un comportement de liquide ne présentant pas de forme propre. Ces exemples sont ainsi particulièrement adaptés au remplissage de la cavité 36.
[0045] La configuration de la figure 3 apparait particulièrement intéressante. En effet, le fluide non-newtonien rhéoépaississant est particulièrement susceptible de variations de viscosité, en cas de variations de contraintes en compression. De plus, du fait de la forme cylindrique de la cavité 36, l’inertie du fluide qui y est contenu est plus élevée dans la direction de l’axe commun A. Il est donc avantageux de solliciter le fluide non-newtonien rhéoépaississant selon la direction de l’axe commun A des deux bagues 20, 22, entre la saillie radiale 27 et la paroi 26i du logement 26.
[0046] Le premier plot 28i est de préférence en contact avec au moins l’une parmi la saillie radiale 27 et la paroi 26i du logement 26 associé. De manière préférée, le premier plot 28i s’étend intégralement entre la saillie radiale 27 et la paroi 26i du logement 26. En d’autres termes, les première et deuxième faces d’extrémités 42, 44 du premier plot 28i, normales à la direction de l’axe A commun des bagues 20, 22, sont intégralement recouvertes par la saillie radiale 27 et la bague extérieure 22, respectivement.
[0047] De préférence encore, le premier plot 28i est en contact avec chacune de la saillie radiale 27 et de la paroi 26i du logement 26. Le premier plot 28i peut notamment être fixé sur ses première et deuxième faces d’extrémités 42, 44, à la saillie radiale 27 et à la paroi 26i du logement 26, respectivement, notamment par surmoulage, clipsage ou collage.
[0048] En outre, comme visible sur la figure 2, la saillie radiale 27 peut former un renfoncement adapté à recevoir le premier plot 28i. Le premier plot 28i peut ainsi être calé et les déplacements relatifs du premier plot 28i par rapport à la saillie radiale 27, notamment selon une direction orthoradiale, sont limités voire empêchés. [0049] La figure 4 illustre schématiquement une vue en coupe d’une variante du support de moteur 16 des figures 2 et 3.
[0050] La figure 4 illustre une configuration symétrique à la configuration de la figure 3, en ce sens qu’un deuxième plot 282 y est pris en sandwich entre une saillie radiale 27 et une paroi 262, ici inférieure, du logement 26, normale à l’axe A des bagues 20, 22, 24. Ainsi, dans la direction de l’axe A commun des bagues 20, 22, 24, le deuxième plot 282 s’étend au moins en partie entre la saillie radiale 27 et la paroi 262 inférieure du logement 26, de préférence en contact avec au moins l’une parmi la saillie radiale 27 et la paroi 262 inférieure du logement 26.
[0051] Comme le premier plot 28i, le deuxième plot 282 est adapté à être sollicité en compression, selon la direction de l’axe A commun des bagues 20, 22. Ici, cependant, le deuxième plot 282 est adapté à être sollicité en compression, en cas de mouvement de la bague intérieure 20 vers le bas sur la figure 4 et/ou en cas de mouvement de la bague extérieure 22 vers le haut sur la figure 4.
[0052] Avantageusement, il peut être prévu entre les deux bagues coaxiales 20, 22, une pluralité de premiers et deuxième plots 28i, 282 tels que décrits ci-avant. Dans ce cas, les saillies radiales 27 et les logements 26 associés aux premiers et deuxièmes plots 28i, 282 sont conformés pour qu’en cas de mouvement d’une bague 20, 22 par rapport à l’autre 22, 20, seuls les premiers plots 28 ou seuls les deuxièmes plots 282 soient comprimés.
[0053] L’élément de découplage peut notamment comprendre quatre ou six plots 28i , 282, voire plus. Les plots 28i , 282 sont avantageusement régulièrement répartis, autour de l’axe A commun des bagues 20, 22. De manière encore plus avantageuse, la pluralité de plots 28i, 282 comprend autant de premiers plots 28i que de deuxièmes plots 282, qui sont disposés en alternance autour de l’axe A commun des deux bagues 20, 22, un premier plot 28i ayant deux deuxièmes plots 282 comme plus proches voisins et inversement.
[0054] Les figures 5 et 6 illustrent schématiquement une variante des figures 3 et 4, respectivement.
[0055] Sur ces figures, les plots 28i, 282 sont pris en sandwich, chaque fois entre, d’une part, une première saillie radiale 38, formée par la bague intérieure 20 et s’étendant radialement en direction de la bague extérieure 22, et, d’autre part, une deuxième saillie radiale 40, formée par la bague extérieure 22 et s’étendant radialement vers la bague intérieure 20. Cependant, sur la figure 5, la première saillie radiale 38 est disposée au-dessus du premier plot 28i , tandis que la deuxième saillie radiale 40 est disposée au-dessous du premier plot 28i. Au contraire, sur la figure 6, la première saillie radiale 38 est disposée au-dessous du premier plot 28i, tandis que la deuxième saillie radiale 40 est disposée au-dessus du premier plot 28i. Ainsi, quel que soit le mouvement relatif de la bague intérieure 20 par rapport à la bague extérieure 22, seul l’un parmi le premier plot 28i et le deuxième plot 282 est sollicité en compression.
[0056] Là encore, avantageusement, l’élément de découplage comporte une pluralité de plots 28i, 282, régulièrement répartis angulairement autour de l’axe A commun des bagues 20, 22, 24. La pluralité de plots 28i, 282 comporte de préférence autant de premiers plots 28i que de deuxièmes plots 282, les premiers et deuxièmes plots 28i, 282 étant disposés en alternance autour de l’axe A commun des bagues 20, 22, 24.
[0057] La figure 7 illustre une variante de l’élément de découplage 24 illustré par les figures 5 et 6. Ici, l’ouverture 46 à travers la première saillie radiale 38 ou la deuxième saillie radiale 40, comporte une portion 48 évasée, de préférence tronconique. La portion 48 de l’ouverture 46 est de section croissante depuis la première surface transversale 42 du plot 28, vers la surface libre de la saillie radiale 38, 40. Ici, la plus petite section de l’ouverture 46 est identique à la section de la cavité 36. La plus petite section de l’ouverture 46 est en outre disposée en vis-à-vis de la cavité 36. La portion 48 facilite ainsi le remplissage de la cavité 36 avec du fluide non-newtonien rhéoépaississant.
[0058] Afin de guider le fluide non-newtonien rhéoépaississant vers la cavité 36, le plot 28 forme ici un rebord 52. Le rebord 52 épouse la forme de la paroi de l’ouverture 46.
[0059] Selon l’exemple illustré à la figure 7, une seconde portion 50 de l’ouverture 46 est de forme cylindrique. La seconde portion 50 est de diamètre sensiblement plus grand que le diamètre du débouché de la portion 48 tronconique. La seconde portion 50 peut ainsi recevoir un joint d’étanchéité. [0060] Suite au remplissage de la cavité 36 en fluide non-newtonien rhéoépaississant, un bouchon 54 est ici reçu dans l’ouverture 46 pour obturer la cavité 36 et l’ouverture 46. Le bouchon 54 peut être fixé sur la saillie radiale 38, 40 par tout moyen de solidarisation adapté, accessible à l’homme de l’art. Dans l’exemple illustré, le bouchon 54 est fixé à la saillie 38, 40 par rivetage ou bouterollage, deux tiges 56, traversant un bord du bouchon 54, étant déformées après la mise en place du bouchon 54. Le bouchon 54 mis en place peut comprimer le joint d’étanchéité contre la saillie 38, 40.
[0061] L’invention ne se limite pas aux seuls exemples présentés ci-dessus mais est au contraire susceptibles de nombreuses variantes accessibles à l’homme de l’art.
[0062] Notamment, le moyen de découplage 24 peut prendre d’autres formes que celle d’une bague de découplage. Les plots 28i, 282 peuvent notamment être séparés. [0063] Le fluide non-newtonien rhéoépaississant peut en outre avoir une forme propre, notamment en l’absence de contrainte. Des matériaux de la marque D3o ®, par exemple, sont de tels fluides non-newtoniens rhéoépaississant présentant une forme propre, notamment en l’absence de contrainte. Il peut alors être possible de réaliser les plots 28i, 282 de découplage entre les bagues intérieure et extérieure 20, 22, voire la bague de découplage 24, intégralement dans un tel matériau, ou de remplacer le matériau élastomère mis en œuvre dans les exemples décrits précédemment par un tel matériau.

Claims

Revendications
[Revendication 1] Support de moteur (16), notamment pour groupe moto- ventilateur (10) d’une installation de chauffage, ventilation et/ou climatisation d’un véhicule, comprenant :
- deux bagues coaxiales (20 ; 22) dont une première bague (20) est apte à recevoir un ou plusieurs éléments d’un moteur électrique (14) et une deuxième bague (22) est apte à être fixée sur un boitier (18) destiné à former un élément de structure, et
- un élément de découplage (24) interposé entre la première bague (20) et la deuxième bague (22), l’élément de découplage (24) étant réalisé en tout ou partie en fluide non-newtonien rhéoépaississant.
[Revendication 2] Support de moteur selon la revendication 1 , dans lequel le fluide non-newtonien rhéoépaississant possède une forme propre en l’absence de sollicitation.
[Revendication 3] Support de moteur selon la revendication 1 ou 2, dans lequel l’élément de découplage (24) comprend au moins un plot (28i ; 282), disposé entre la première bague (20) et la deuxième bague (22), le plot (28i ; 282), définissant de préférence une cavité (36) recevant du fluide non-newtonien rhéoépaississant, le au moins un plot (28i ; 282) étant, de préférence encore, pris en sandwich, dans la direction de l’axe (A) des deux bagues coaxiales (20 ; 22) entre une partie (27 ; 38) de la première bague (20) et une partie (26i ; 262 ; 40) de la deuxième bague (22).
[Revendication 4] Support de moteur selon la revendication 3, dans lequel le plot (28i ; 282) est en matériau élastomère, par exemple en SEBS, ou en fluide non- newtonien rhéoépaississant présentant une forme propre en l’absence de sollicitation.
[Revendication 5] Support de moteur selon la revendication 3 ou 4, dans lequel la première bague (20) présente une saillie radiale (27), la deuxième bague (22) présente un logement (26), la saillie radiale (27) étant reçue dans le logement (26), le plot (28i) étant reçu au moins partiellement dans le logement (26), en sandwich, dans la direction de l’axe (A) commun des deux bagues coaxiales (20, 22), entre la saillie radiale (27) et une paroi (26i) du logement (26), normale à l’axe (A) commun des deux bagues coaxiales (20, 22).
[Revendication 6] Support de moteur selon la revendication 5, dans lequel la première bague (20) comprend au moins une deuxième saillie radiale (27), la deuxième bague (22) présente au moins un deuxième logement (26), la deuxième saillie (27) radiale étant reçue dans le deuxième logement (26), un deuxième plot (282) étant reçu au moins partiellement dans le deuxième logement (26), en sandwich, dans la direction de l’axe (A) commun des deux bagues coaxiales (20, 22), entre la deuxième saillie radiale (27) et une deuxième paroi (262) du deuxième logement (26), normale à l’axe (A) commun des deux bagues coaxiales (20, 22), les première et deuxième saillies radiales (27) et les première et deuxième parois (26i ; 262) étant conformées pour qu’en cas de mouvement d’une bague (20, 22) par rapport à l’autre bague (20, 22), l’un seulement parmi ledit plot (28i) et le deuxième plot (282) soit comprimé.
[Revendication 7] Support de moteur selon la revendication 5 ou 6, dans lequel le plot (28i) et/ou le deuxième plot (282), le cas échéant, définit une cavité (36) recevant du fluide non-newtonien rhéoépaississant, la deuxième bague (22) et/ou la première bague (20) comprenant une ouverture (46) débouchant dans le logement (26), permettant de remplir la cavité (36) avec du fluide non-newtonien rhéoépaississant.
[Revendication 8] Support de moteur selon la revendication 7, comprenant en outre un bouchon (54) fermant la cavité (36) et/ou l’ouverture (46), le cas échéant, de préférence de manière étanche au fluide non-newtonien rhéoépaississant.
[Revendication 9] Support de moteur selon l’une quelconque des revendications précédentes, dans lequel les deux bagues coaxiales (20, 22) sont concentriques, une première bague ou bague intérieure (20) étant disposée radialement à l’intérieure d’une deuxième bague ou bague extérieure (22).
[Revendication 10] Groupe moto-ventilateur (10) pour installation de chauffage, ventilation et/ou climatisation de véhicule, comportant un moteur électrique (14), une roue de ventilateur (12), entraînée en rotation par le moteur électrique (14), et un support de moteur (16) selon l’une quelconque des revendications précédentes, le moteur (14) étant fixé sur l’une des bagues (20, 22) du support de moteur (16).
PCT/FR2020/052289 2019-12-18 2020-12-07 Element de decouplage pour un support de moteur comprenant un fluide non newtonien WO2021123543A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1914779A FR3105101B1 (fr) 2019-12-18 2019-12-18 Element de decouplage pour un support de moteur comprenant un fluide non newtonien
FRFR1914779 2019-12-18

Publications (1)

Publication Number Publication Date
WO2021123543A1 true WO2021123543A1 (fr) 2021-06-24

Family

ID=69700201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/052289 WO2021123543A1 (fr) 2019-12-18 2020-12-07 Element de decouplage pour un support de moteur comprenant un fluide non newtonien

Country Status (2)

Country Link
FR (1) FR3105101B1 (fr)
WO (1) WO2021123543A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023110699A1 (fr) * 2021-12-16 2023-06-22 Valeo Systemes Thermiques Support moteur d'un dispositif de ventilation pour une installation de ventilation et/ou de chauffage et/ou de climatisation d'un véhicule

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4576366A (en) * 1982-09-28 1986-03-18 Compagnie des Produits Industriels de l'Quest (C.P.I.O.) Antivibration elastic support
FR2626337A1 (fr) * 1988-01-25 1989-07-28 Valeo Amortisseur de torsion a amortissement visqueux et double volant amortisseur comportant un tel amortisseur
US20100025142A1 (en) * 2008-07-29 2010-02-04 Randy Staib Gear damper
FR2974464A1 (fr) 2011-04-19 2012-10-26 Valeo Systemes Thermiques Support-moteur a moyens de decouplage adaptatifs
FR2979682A1 (fr) * 2011-09-06 2013-03-08 Valeo Systemes Thermiques Procede d'assemblage d'un groupe moto-ventilateur et dispositif de controle d'assemblage correspondant
DE102016212552A1 (de) * 2016-07-11 2018-01-11 Continental Automotive Gmbh Elektro-Verdichter mit schwingungsgedämpfter, kompakter Lagerung
CN209654871U (zh) * 2018-12-29 2019-11-19 上海齐耀***工程有限公司 用于柴油机的机脚

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4576366A (en) * 1982-09-28 1986-03-18 Compagnie des Produits Industriels de l'Quest (C.P.I.O.) Antivibration elastic support
FR2626337A1 (fr) * 1988-01-25 1989-07-28 Valeo Amortisseur de torsion a amortissement visqueux et double volant amortisseur comportant un tel amortisseur
US20100025142A1 (en) * 2008-07-29 2010-02-04 Randy Staib Gear damper
FR2974464A1 (fr) 2011-04-19 2012-10-26 Valeo Systemes Thermiques Support-moteur a moyens de decouplage adaptatifs
FR2979682A1 (fr) * 2011-09-06 2013-03-08 Valeo Systemes Thermiques Procede d'assemblage d'un groupe moto-ventilateur et dispositif de controle d'assemblage correspondant
DE102016212552A1 (de) * 2016-07-11 2018-01-11 Continental Automotive Gmbh Elektro-Verdichter mit schwingungsgedämpfter, kompakter Lagerung
CN209654871U (zh) * 2018-12-29 2019-11-19 上海齐耀***工程有限公司 用于柴油机的机脚

Also Published As

Publication number Publication date
FR3105101A1 (fr) 2021-06-25
FR3105101B1 (fr) 2021-11-26

Similar Documents

Publication Publication Date Title
EP2081280B1 (fr) Dispositif de support de moteur pour système de ventilation, chauffage et/ou climatisation
EP2077402B1 (fr) Amortisseur de vibrations notamment pour structure aerospatiale
FR2579698A1 (fr) Palier intermediaire elastique pour l'arbre de transmission de vehicules automobiles.
WO2013034862A1 (fr) Amortissement des vibrations d'un pignon par patch viscoelastique
FR2914717A1 (fr) Palier hydraulique a amortissement biaxial
FR3053422A1 (fr) Groupe motoreducteur pour actionneur electrique de frein a disque, frein et procede d'industrialisation et d'assemblage
FR2806452A1 (fr) Amortisseur de vibrations notamment pour rotor d'helicoptere
WO2021123543A1 (fr) Element de decouplage pour un support de moteur comprenant un fluide non newtonien
EP0953783B1 (fr) Butée de débrayage à amortissement de vibration
FR2961971A1 (fr) Support moteur a dispositif de limitation de mouvements
FR2948740A1 (fr) Dispositif de liaison antivibratoire pour vehicule et vehicule comportant un tel dispositif.
FR2985220A1 (fr) Butee de suspension.
EP1568913B1 (fr) Amortisseur de vibrations pour freins à disques
FR3057931B1 (fr) Dispositif de transmission de couple a couvercle, pour un vehicule automobile
FR3029583A1 (fr) Dispositif d’amortissement a pendule pour dispositif de transmission de couple de vehicule automobile
EP2979346B1 (fr) Pièce de découplage entre un moteur et son support, et assemblage d'un moteur sur son support intégrant une telle pièce de découplage
FR2924480A1 (fr) Element amortisseur de vibrations a profil ameliore et dispositif equipe d'un tel element amortisseur
FR3053287A1 (fr) Ensemble de montage d'un dispositif de pulsion d'air
EP4051909B1 (fr) Support de moteur et dispositif de chauffage, de ventilation et/ou de climatisation pour véhicule automobile
WO2021249863A1 (fr) Support de moteur de ventilateur avec amortisseur et butée
FR2797010A1 (fr) Amortisseur de torsion pour embrayage, en particulier pour vehicule automobile
WO2023110940A1 (fr) Groupe moto-ventilateur pour installation de chauffage, ventilation et/ou climatisation d'un véhicule automobile équipé d'un moyen de contact posé entre une coupelle et un moyeu
EP1136354B1 (fr) Amortisseur de vibrations notamment pour rotor d'hélicoptère
FR3127908A1 (fr) Roue de véhicule automobile munie d'un piège à vibrations
FR3111024A1 (fr) Rotor de moteur, notamment pour moteur de ventilateur d’installation de chauffage, ventilation et/ou climatisation de véhicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20841979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20841979

Country of ref document: EP

Kind code of ref document: A1