WO2021122106A1 - Metal sheet having a deterministic surface structure and method for producing a formed and coated sheet-metal component - Google Patents

Metal sheet having a deterministic surface structure and method for producing a formed and coated sheet-metal component Download PDF

Info

Publication number
WO2021122106A1
WO2021122106A1 PCT/EP2020/084888 EP2020084888W WO2021122106A1 WO 2021122106 A1 WO2021122106 A1 WO 2021122106A1 EP 2020084888 W EP2020084888 W EP 2020084888W WO 2021122106 A1 WO2021122106 A1 WO 2021122106A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
sheet
metal
surface structure
valley
Prior art date
Application number
PCT/EP2020/084888
Other languages
German (de)
French (fr)
Inventor
Fabian JUNGE
Tobias LEWE
Burak William Cetinkaya
Original Assignee
Thyssenkrupp Steel Europe Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssenkrupp Steel Europe Ag filed Critical Thyssenkrupp Steel Europe Ag
Priority to CN202080087503.0A priority Critical patent/CN114829029A/en
Priority to US17/779,700 priority patent/US20230002910A1/en
Priority to EP20823757.8A priority patent/EP4076777B1/en
Publication of WO2021122106A1 publication Critical patent/WO2021122106A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/227Surface roughening or texturing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D13/00Corrugating sheet metal, rods or profiles; Bending sheet metal, rods or profiles into wave form
    • B21D13/10Corrugating sheet metal, rods or profiles; Bending sheet metal, rods or profiles into wave form into a peculiar profiling shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H8/00Rolling metal of indefinite length in repetitive shapes specially designed for the manufacture of particular objects, e.g. checkered sheets
    • B21H8/005Embossing sheets or rolls
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/14Roughness
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • the invention relates to a metal sheet with a deterministic surface structure, the surface structure being embossed into the metal sheet, the surface structure having at least one mountain region and at least one valley region, the mountain region and the valley region being connected by a flank region.
  • the invention also relates to a method for producing a formed and painted sheet metal component.
  • Zinc phosphate layers are used to refine the surface of coated (galvanized, hot-dip aluminized) and uncoated metal sheets in order to significantly improve surface-relevant properties. Above all, this includes increasing corrosion resistance and improving formability and paint adhesion.
  • Zinc phosphate layers are inorganic crystalline metal phosphate layers that are deposited from an aqueous phase. These are not closed layers, but an accumulation of individual zinc phosphate crystals, the position, size, distribution, composition and chemical and mechanical properties of which depend on a number of production factors. Above all, this includes the composition of the phosphating solution, the preparation of the substrate and the process parameters during the phosphating.
  • the phosphating process is a multi-stage process which, in addition to multi-stage rinsing steps, is primarily composed of a pretreatment step, an activation step and at least one phosphating step.
  • the applied zinc phosphate crystals result in a significant increase in the surface area, which leads to improved forming properties (improved oil retention capacity and more homogeneous oil distribution).
  • the crystals also serve as an ideal primer for paints.
  • multi-stage process cleaning, activating, phosphating and rinsing; monitoring
  • energetic the individual process baths are a few to many cubic meters in size and must be kept in constant motion and sometimes up to 60 ° C) be tempered
  • chemicals including disposal costs, maintenance
  • trication phosphating to increase temperature and alkali resistance as well as to refine the grain and adjust the color
  • the automotive industry is keen to make the zinc phosphating process more environmentally friendly and process reliable alternative to replace. Examples of this are nickel-free phosphating or silane-based systems.
  • the object of the invention is therefore to specify a sheet metal and a method for producing a formed and painted sheet metal component with which a reduced or no zinc phosphating effort is possible compared to the prior art, the surface having essentially comparable properties to a conventionally zinc phosphated surface having.
  • a defined surface structure on a dressed sheet metal is essential for further processes, especially in the processing industry for the manufacture of sheet metal components in the automotive industry.
  • process media used such as oil and / or lubricants
  • the sheet metal is subjected to a rolling process (skin pass), in which, among other things. a roughness is set on the metal sheet using textured skin pass rollers.
  • strip waves can also be eliminated and / or compensated for by skin-pass if the sheet metal has been subjected to a thermal treatment (annealing, etc.) in particular beforehand.
  • the skin pass also causes a decrease in thickness and / or elongation between the incoming and outgoing sheet metal / strip (skin pass degree), so that among other things. the mechanical properties of the sheet metal can also be adjusted in a targeted manner.
  • metal sheets can be produced with a deterministic surface structure which not only combines the aforementioned advantages, but can also at least partially or completely replace conventional zinc phosphating by using a Artificial enlargement of the surface is created in such a way that the mountain area and / or the valley area has a substructure which is designed in such a way that the substructure has a surface that is at least 3% larger than a planar projection area of the mountain area and / or the valley area or has an Sdr value of at least 3%.
  • the surface enlargement is no longer produced by zinc phosphating or by zinc phosphate crystals, but rather by a larger surface that can be set in a targeted manner.
  • the specifically adjusted surface enlargement not only serves as an optimal primer for a lacquer coating, but can also promote the adhesive suitability by providing a larger interface, in that the adhesive can be offered a corresponding reaction surface.
  • the substructure in particular has a surface that is at least 7%, preferably at least 10%, preferably at least 15%, preferably at least 20% larger surface compared to the planar projection surface of the mountain area and / or valley area, in particular determined by atomic force microscopy (AFM), which, for example, enables a resolution with an area of up to 90 x 90 pm 2.
  • AFM atomic force microscopy
  • a resolution in the order of magnitude for example, of a valley area or part of a valley area or a mountain area or part of a mountain area, which can also have an area smaller than 90 ⁇ 90 ⁇ m 2 , for example.
  • a planar projection surface of the mountain region or valley region is to be understood as a flat surface which is visible and / or determinable in plan view, parallel to the sheet metal plane.
  • the larger surface area created by the substructure in the mountain area or valley area corresponds to the actual, determinable three-dimensional (upper) area.
  • the Sdr value relates to a developed limit value ratio or is also a measure for the surface enlargement, which indicates the percentage of the additional area of a definition area that can be traced back to a texture (substructure) compared to the absolutely flat definition area, wherein the definition area (resolution) can be directed to a part of the valley area or to a valley area and / or to a part of the mountain area or to a mountain area.
  • the substructure in particular has an Sdr value of at least 7%, preferably of at least 10%, preferably of at least 15%, preferably of at least 20%.
  • a plane surface would have an Sdr value of 0.
  • the Sdr value can also be determined, for example, by or by means of atomic force microscopy (AFM).
  • deterministic surface structure are to be understood recurring structures (at least one valley area or valley area and at least one mountain area), which one have a defined shape and / or configuration, see EP 2 892 663 Bl.
  • this also includes surfaces with a (quasi-) stochastic appearance, which, however, are applied by means of a deterministic texturing process and are thus composed of deterministic form elements.
  • a continuous mountain area with several recurring valley areas, which are each connected to the mountain area by flank areas is designed as a surface structure.
  • Metal sheet is to be understood in general as a flat metal product which can be provided in sheet form or in the form of a plate or in the form of a strip.
  • the substructure is formed like a crystal in the mountain area and / or in the valley area.
  • the crystal-like design can be elongated and / or spherical and / or oval as an elevation and / or depression in the mountain area and / or valley area, with a length, width or diameter of the crystal-like design between 0.5 and 20 ⁇ m, in particular between 0 , 9 and 15 gm, preferably between 1.2 and 10 pm, is set.
  • the metal sheet is coated with a metallic coating.
  • the metal sheet can be coated with a zinc-based coating which is applied by hot-dip coating.
  • the metal sheet is a steel sheet.
  • the coating can preferably contain additional elements such as aluminum with a content of up to 5% by weight and / or magnesium with a content of up to 5% by weight in the coating.
  • Steel sheets with a zinc-based coating have very good cathodic corrosion protection, which has been used in automotive engineering for years. If improved corrosion protection is provided, the coating additionally has magnesium with a content of at least 0.3% by weight, in particular of at least 0.6% by weight, preferably of at least 0.9% by weight.
  • aluminum can be present with a content of at least 0.3% by weight, in particular to improve bonding of the coating to the steel sheet and in particular a diffusion of iron from the steel sheet into the coating during a heat treatment of the coated To prevent steel sheet essentially, so that the positive corrosion properties are retained.
  • the thickness of the coating can be between 1 and 15 ⁇ m, in particular between 2 and 12 ⁇ m, preferably between 3 and 10 ⁇ m. Below the minimum limit, no adequate cathodic corrosion protection can be guaranteed and above the maximum limit, joining problems can occur when joining the steel sheet according to the invention or a component made from it to another component; in particular, if the maximum limit specified is exceeded, no stable process during thermal joining or thermal joining can occur. Welding can be ensured.
  • hot-melt exchange coating the steel sheets are first coated with an appropriate coating and then passed to the skin pass. The skin pass takes place after the hot-dip coating of the steel sheet.
  • the metal sheet can be coated with a metallic coating, in particular a zinc-based coating, which is applied by electrolytic coating.
  • a thickness of the coating can be between 1 and 10 gm, in particular between 1.5 and 8 gm, preferably between 2 and 5 gm.
  • the steel sheet can first be skin-passed and then electrolytically coated. Depending on the thickness of the coating, the roughness in the flank area can essentially be retained even after the electrolytic coating. Alternatively, an electrolytic coating with subsequent skin-passing is also conceivable.
  • no coating for example no metallic coating
  • the metal sheet is / is coated with a non-metallic coating, for example in a coil coating system, the metal sheet being coated with a non-metallic coating before or after the coating.
  • the metal sheet is coated with a phosphate coating or a silane-based coating, the thickness of the phosphate coating or silane-based coating in particular being less than 500 nm.
  • the metal sheet can be coated with a phosphate coating be coated or with a silane-based coating.
  • the thickness of the phosphate coating or silane-based coating can be set to less than 500 nm, in particular less than 200 nm, preferably less than 100 nm, preferably less than 50 nm, particularly preferably less than 25 nm.
  • Conventional zinc phosphating forms a coating with a thickness of at least 500 nm on the surface of a metal sheet, which is insulating, electrically non-conductive and can thus interfere with the process in a welding process, in particular in a resistance welding process.
  • a reduction of an insulating, Electrically non-conductive phosphate coating or a silane-based coating with a thickness below 500 nm does not represent a process-disruptive factor.
  • the invention relates to a method for producing a formed and painted sheet metal component, the method comprising the following steps:
  • a metal sheet with a deterministic surface structure having been embossed into the metal sheet by means of a skin pass roller, the surface structure having at least one mountain area and at least one valley area, the mountain area and the valley area being connected by a flank area,
  • the skin-pass roller with which the surface structure was embossed into the sheet metal, produced a substructure during the embossing in the mountain area and / or in the valley area, such that a substructure with a surface area that is at least 3% larger than a planar projection area of the Mountain area and / or valley area or with an Sdr value of at least 3%.
  • a corresponding sheet metal is provided, which is cut before, during and / or after the deformation.
  • the forming takes place with conventional tools.
  • the formed sheet metal component is painted in a conventional manner.
  • At least one valley area can be designed as an open structure. Mountain areas on the skin-pass roller thus define local and recurring bumps on the surface of the skin-pass roller.
  • the mountain areas of the skin pass roller are embossed into the surface of the metal sheet and form a surface structure with an essentially closed structure (closed volume).
  • the mountain areas of the skin pass roller thus produce pocket-like structures on the surface of the sheet metal.
  • the closed volume the so-called empty volume, can accommodate a process medium, for example forming oil, which is applied for later processing, in particular by means of a forming process.
  • a (negative) substructure is formed in the at least one valley area and / or in the mountain area or mountain area of the skin pass roller, which by acting on the surface of the Metal sheet produces a (positive) substructure with a surface area that is at least 3% larger than a planar projection surface of the mountain area and / or valley area or with an Sdr value of at least 3%.
  • the generation of a deterministic surface topography with at least one mountain area or mountain area and at least one valley area including (negative) substructure on the surface of the skin-pass roller can be carried out in a targeted manner by means of a laser texturing process, see EP 2 892 663 Bl.
  • the geometric configuration (size and depth) of the deterministic surface topography in the form of at least one mountain area or mountain area and at least one valley area including (negative) substructure can be set individually by using a pulsed laser as a result of material removal on the surface of the skin-pass roller.
  • targeted control of the energy and the pulse duration of a laser beam acting on the surface of the skin-pass roller can have a positive influence on the design of the structure (s).
  • the interaction time between the laser beam and the skin-pass roller surface increases with a longer or longer pulse duration, and more material can be removed from the surface of the skin-pass roller.
  • a pulse leaves an essentially circular, in particular concave, crater on the skin-pass roller surface, which after skin-pass treatment depicts the surface of the steel sheet.
  • a reduction in the pulse duration has an influence on the formation of a crater; in particular, the diameter of the crater can be reduced.
  • By reducing the pulse duration in particular when using short or ultra-short pulse lasers, it is possible to set the geometric structure on the surface of a skin-pass roller in such a way that a sheet steel surface can be functionally textured. This is achieved, for example, if the pulse duration of the laser with which the surface of the skin pass roller is textured is reduced and the geometric structure on the roller can thus be generated with a higher resolution.
  • no zinc phosphating has been carried out before the metal sheet is formed.
  • the laborious step of conventional zinc phosphating to generate a larger surface area using zinc phosphate crystals can essentially be omitted.
  • the metal sheet has been coated with a phosphate coating or a silane-based coating before the metal sheet is provided, the thickness of the coating being in particular less than 500 nm.
  • the phosphating includes in particular a deposit / separation of surfactants, a conversion chemistry or a pickling, for example with phosphoric acid.
  • the metal sheet has been treated with an acidic solution before or after the introduction of the surface structure.
  • an “acidic” solution which has a pH value of less than 3, in particular less than 2, preferably less than 1, is preferably used to clean the surface and / or to remove oxide deposits (oxide layer) on the surface of the metal sheet.
  • the sheet metal component is an outer skin part of a vehicle.
  • Outer skin parts in particular are subject to strict requirements for suitability for forming and the appearance of paint.
  • Corresponding outer skin parts can be produced inexpensively by the invention.
  • the sheet metal component is a structural part of a vehicle.
  • Figure 1 a schematic partial sectional view of an embodiment from the prior art
  • FIG. 2 a schematic partial sectional view of an embodiment according to FIG.
  • FIG. 4 a schematic sequence of an embodiment according to a method according to the invention.
  • FIG. 1 shows a schematic partial sectional view of an embodiment from the prior art.
  • the design can be, for example, the design according to EP 2 892 663 Bl correspond.
  • Shown is a metal sheet (1) with a deterministic surface structure (2), the surface structure (2) being embossed into the metal sheet (1), the surface structure (2) having at least one mountain area (1.1) and at least one valley area (1.2) , the mountain area (1.1) and the valley area (1.2) being connected by a flank area (1.3).
  • the metal sheet (1) is preferably a steel sheet.
  • FIG. 2 shows a schematic partial sectional view of an embodiment according to the invention.
  • the mountain area (1.1) and / or the valley area (1.2) has a substructure (1.11, 1.21) which is designed such that the substructure (1.11, 1.21) has a surface area that is at least 3% larger in comparison to a planar projection surface (P) of the mountain area (1.1) and / or the valley area (1.2) or has an Sdr value of at least 3%.
  • the substructure (1.11, 1.21) can be crystal-like in the mountain area (1.1) and / or in the valley area (1.2), the crystal-like formation being elongated and / or spherical as an elevation and / or depression, shown as a depression in this embodiment, in the mountain area (1.1) and / or valley region (1.2), it being possible in particular to set a length, width or diameter of the crystal-like configuration between 0.5 and 20 ⁇ m.
  • FIG. 3 shows a schematic partial sectional view of a further embodiment according to the invention.
  • the metal sheet (1) is coated with a metallic coating (3), preferably with a zinc-based coating.
  • the metal sheet (1) is coated with a phosphate coating (4), it being possible for the thickness of the phosphate coating (4) to be less than 500 nm.
  • a metal sheet (1) according to the invention in particular in accordance with the embodiment in FIG. 3, is provided to provide a reshaped and painted sheet metal component, not shown, (A).
  • the provided sheet metal (1) is reshaped into a reshaped sheet metal component (B).
  • the formed sheet metal component is painted, (C).
  • FIG. 4 schematically shows a corresponding sequence of the method according to the invention.
  • the formed and painted sheet metal component, not shown, can be used as an outer skin part or a structural part in the vehicle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Coating With Molten Metal (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The invention relates to a metal sheet (1) having a deterministic surface structure (2), the surface structure (2) being stamped into the metal sheet (1), the surface structure (2) having at least one peak region (1.1) and at least one trough region (1.2), the peak region (1.1) and the trough region (1.2) being connected by a flank region (1.3), the peak region (1.1) and/or the trough region (1.2) having a substructure (1.11, 1.21), which is designed such that the substructure (1.11, 1.21) has a surface that is at least 3% larger than a flat projection surface (P) of the peak region (1.1) and/or of the trough region (1.2) or has an Sdr value of at least 3%. The invention further relates to a method for producing a formed and coated sheet-metal component.

Description

Metallblech mit einer deterministischen Oberflächenstruktur und Verfahren zur Herstellung eines umgeformten und lackierten Blechbauteils Sheet metal with a deterministic surface structure and process for the production of a formed and painted sheet metal component
Die Erfindung betrifft ein Metallblech mit einer deterministischen Oberflächenstruktur, wobei die Oberflächenstruktur in das Metallblech eingeprägt ist, wobei die Oberflächenstruktur mindestens einen Bergbereich und mindestens einen Talbereich aufweist, wobei der Bergbereich und der Talbereich durch einen Flankenbereich verbunden sind. Des Weiteren betrifft die Erfindung ein Verfahren zum Herstellen eines umgeformten und lackierten Blechbauteils. The invention relates to a metal sheet with a deterministic surface structure, the surface structure being embossed into the metal sheet, the surface structure having at least one mountain region and at least one valley region, the mountain region and the valley region being connected by a flank region. The invention also relates to a method for producing a formed and painted sheet metal component.
Zinkphosphatschichten werden zur Oberflächenveredelung von beschichten (verzinkten, feueraluminierten) und unbeschichteten Metallblechen eingesetzt, um oberflächenrelevante Eigenschaften deutlich zu verbessern. Hierzu gehören vor allem die Erhöhung der Korrosionsresistenz sowie die Verbesserung der Umformbarkeit und Lackhaftung. Zinkphosphatschichten sind anorganische kristalline Metallphosphatschichten, die aus einer wässrigen Phase abgeschieden werden. Dabei handelt es sich nicht um geschlossene Schichten, sondern um eine Anhäufung einzelner Zinkphosphatkristalle, deren Lage, Größe, Verteilung, Zusammensetzung sowie chemische und mechanische Eigenschaften von einer ganzen Reihe von Herstellungsfaktoren abhängen. Hierzu gehören vor allem die Zusammensetzung der Phosphatierungslösung, die Substratvorbereitung und die Prozessparameter während der Phosphatierung. Der Phosphatierungsprozess ist ein mehrstufiges Verfahren, welches sich neben mehrstufigen Spülschritten vor allem aus einem Vorbehandlungsschritt, einem Aktivierungsschritt und mindestens einem Phosphatierungsschritt zusammensetzt. Zinc phosphate layers are used to refine the surface of coated (galvanized, hot-dip aluminized) and uncoated metal sheets in order to significantly improve surface-relevant properties. Above all, this includes increasing corrosion resistance and improving formability and paint adhesion. Zinc phosphate layers are inorganic crystalline metal phosphate layers that are deposited from an aqueous phase. These are not closed layers, but an accumulation of individual zinc phosphate crystals, the position, size, distribution, composition and chemical and mechanical properties of which depend on a number of production factors. Above all, this includes the composition of the phosphating solution, the preparation of the substrate and the process parameters during the phosphating. The phosphating process is a multi-stage process which, in addition to multi-stage rinsing steps, is primarily composed of a pretreatment step, an activation step and at least one phosphating step.
Durch die aufgebrachten Zinkphosphatkristalle geht eine deutliche Oberflächenvergrößerung einher, welche zu verbesserten Umformeigenschaften (verbessertes Ölhaltevermögen und homogenere Ölverteilung) führt. Des Weiteren dienen die Kristalle als optimaler Haftgrund für Lacke. The applied zinc phosphate crystals result in a significant increase in the surface area, which leads to improved forming properties (improved oil retention capacity and more homogeneous oil distribution). The crystals also serve as an ideal primer for paints.
Die Zinkphosphatierung von Metalloberflächen ist mit einem hohen anlagentechnischen (mehrstufiges Verfahren = u. a. Reinigen, Aktivieren, Phosphatieren und Spülen; Überwachung) und energetischen (die einzelnen Prozessbäder sind einige bis viele Kubikmeter groß und müssen ständig in Bewegung gehalten und teilweise auf bis zu 60°C temperiert werden) Aufwand verbunden. Bei einer standardmäßigen Zinkphosphatierung kommen ein sehr großer Chemikalienverbrauch (inkl. Entsorgungskosten, Wartung) sowie u. a. der Einsatz der Schwermetalle Mangan und vor allem Nickel (Trikationenphosphatierung zur Erhöhung der Temperatur- und Alkaliresistenz sowie zur Kornverfeinerung und zum Einstellen des Farbtons) hinzu. Dementsprechend ist die Automobilbranche sehr daran interessiert, den Zinkphosphatierungsprozess durch eine umweltfreundlichere und prozesssichere Alternative zu ersetzen. Beispiele hierfür sind nickelfreie Phosphatierungen oder silanbasierte Systeme. The zinc phosphating of metal surfaces has a high technical system (multi-stage process = cleaning, activating, phosphating and rinsing; monitoring) and energetic (the individual process baths are a few to many cubic meters in size and must be kept in constant motion and sometimes up to 60 ° C) be tempered) associated with effort. With standard zinc phosphating, there is also a very high consumption of chemicals (including disposal costs, maintenance) as well as the use of the heavy metals manganese and above all nickel (trication phosphating to increase temperature and alkali resistance as well as to refine the grain and adjust the color). Accordingly, the automotive industry is keen to make the zinc phosphating process more environmentally friendly and process reliable alternative to replace. Examples of this are nickel-free phosphating or silane-based systems.
Bei der Erzeugung von Zinkphosphatschichten muss eine sensible Prozessführung bei der Aktivierung und Phosphatierung sichergestellt sein, um z.B. eine Verschleppung oder alternde Prozessbäder, welche sich negativ auf den Phosphatierungsprozess auswirken können und zu Phosphatierungsstörungen, insbesondere zu nicht geschlossenen, flächendeckenden Zinkphosphatschichten und/oder zu verschlechterter Lackhaftung führen, zu vermeiden. Des Weiteren kann die Aktivierung sensibel auf nicht optimal gereinigte Oberflächen reagieren, so dass Phosphatierungsflecken mit großen und kleinen Kristallen zu optischen Unterschieden im Phosphatierungsbild (dunkel/hell) führen und nicht phosphatierte Stellen entstehen. Nachteilig kann sich auch eine Dehydrierung bei hohen Temperaturen auswirken, z.B. beim Einbrennen eines Lacks und damit zu einer Verschlechterung der Lackhaftung führen. When generating zinc phosphate layers, sensitive process management must be ensured during activation and phosphating, for example to prevent carry-over or aging process baths, which can have a negative effect on the phosphating process and to phosphating disorders, in particular to non-closed, surface-covering zinc phosphate layers and / or to impaired paint adhesion lead to avoid. Furthermore, the activation can react sensitively to surfaces that have not been optimally cleaned, so that phosphating spots with large and small crystals lead to optical differences in the phosphating image (dark / light) and non-phosphated areas arise. Dehydration at high temperatures can also have a disadvantage, e.g. when baking a paint, and thus lead to a deterioration in paint adhesion.
Die Aufgabe der Erfindung ist daher, ein Metallblech sowie ein Verfahren zum Herstellen eines umgeformten und lackierten Blechbauteils anzugeben, mit welchem ein reduzierter bzw. kein Zinkphosphatierungsaufwand im Vergleich zum Stand der Technik möglich ist, wobei die Oberfläche im Wesentlichen vergleichbare Eigenschaften zu einer konventionell zinkphosphatierten Oberfläche aufweist. The object of the invention is therefore to specify a sheet metal and a method for producing a formed and painted sheet metal component with which a reduced or no zinc phosphating effort is possible compared to the prior art, the surface having essentially comparable properties to a conventionally zinc phosphated surface having.
Die Bereitstellung einer definierten Oberflächenstruktur auf einem dressierten Metallblech ist wesentlich für weitere Prozesse insbesondere in der weiterverarbeitenden Industrie zum Herstellen von Blechbauteilen in der Automobilbranche. Im Zuge der Bauteilherstellung, insbesondere in Umformprozessen ist es vorteilhaft, wenn verwendete Prozessmedien, wie zum Beispiel Öl und/oder Schmierstoffe, homogen und in notwendiger Auflage an umformprozessrelevanten Stellen vorhanden sind. Um eine möglichst vorteilhafte Oberflächenrauheit auf Metallblechen für eine spätere Verarbeitung einstellen zu können, wird das Metallblech einem Walzvorgang (Dressieren) unterzogen, in welchem u. a. eine Rauheit unter Verwendung von texturierten Dressierwalzen am Metallblech eingestellt wird. Über das Dressieren können beispielsweise auch Bandwellen beseitigt und/oder kompensiert werden, wenn das Metallblech insbesondere vorher einer thermischen Behandlung (Glühen etc.) unterzogen worden ist. Das Dressieren bewirkt auch eine Dickenabnahme und/oder Längung zwischen einlaufendem und auslaufendem Blech/Band (Dressiergrad), so dass darüber u. a. auch die mechanischen Eigenschaften des Metallblechs gezielt eingestellt werden können. The provision of a defined surface structure on a dressed sheet metal is essential for further processes, especially in the processing industry for the manufacture of sheet metal components in the automotive industry. In the course of component production, in particular in forming processes, it is advantageous if the process media used, such as oil and / or lubricants, are available in a homogeneous manner and in the required amount at points relevant to the forming process. In order to be able to set a surface roughness that is as advantageous as possible on sheet metal for later processing, the sheet metal is subjected to a rolling process (skin pass), in which, among other things. a roughness is set on the metal sheet using textured skin pass rollers. For example, strip waves can also be eliminated and / or compensated for by skin-pass if the sheet metal has been subjected to a thermal treatment (annealing, etc.) in particular beforehand. The skin pass also causes a decrease in thickness and / or elongation between the incoming and outgoing sheet metal / strip (skin pass degree), so that among other things. the mechanical properties of the sheet metal can also be adjusted in a targeted manner.
Die Erfinder haben festgestellt, dass Metallbleche mit einer deterministischen Oberflächenstruktur hergestellt werden können, welche nicht nur die vorgenannten Vorteile vereint, sondern auch eine konventionelle Zinkphosphatierung zumindest teilweise oder vollständig ersetzen können, indem eine künstliche Vergrößerung der Oberfläche geschaffen wird, derart, dass der Bergbereich und/oder der Talbereich eine Substruktur aufweist, welche derart ausgebildet ist, dass die Substruktur eine um mindestens 3% größere Oberfläche im Vergleich zu einer planen Projektionsfläche des Bergbereichs und/oder des Talbereichs oder einen Sdr-Wert von mindestens 3% aufweist. Die Oberflächenvergrößerung wird erfindungsgemäß nicht mehr durch eine Zinkphosphatierung respektive durch Zinkphosphatkristalle erzeugt, sondern durch eine gezielt einstellbare größere Oberfläche. Die gezielt eingestellte Oberflächenvergrößerung dient nicht nur als optimaler Haftgrund für einen Lacküberzug, sondern kann dadurch auch die Klebeeignung durch eine größere bereitgestellte Grenzfläche begünstigen, indem dem Klebstoff eine entsprechende Reaktionsfläche angeboten werden kann. The inventors have found that metal sheets can be produced with a deterministic surface structure which not only combines the aforementioned advantages, but can also at least partially or completely replace conventional zinc phosphating by using a Artificial enlargement of the surface is created in such a way that the mountain area and / or the valley area has a substructure which is designed in such a way that the substructure has a surface that is at least 3% larger than a planar projection area of the mountain area and / or the valley area or has an Sdr value of at least 3%. According to the invention, the surface enlargement is no longer produced by zinc phosphating or by zinc phosphate crystals, but rather by a larger surface that can be set in a targeted manner. The specifically adjusted surface enlargement not only serves as an optimal primer for a lacquer coating, but can also promote the adhesive suitability by providing a larger interface, in that the adhesive can be offered a corresponding reaction surface.
Die Substruktur weist insbesondere eine um mindestens 7%, vorzugsweise eine um mindestens 10%, vorzugsweise eine um mindestens 15%, bevorzugt eine um mindestens 20% größere Oberfläche im Vergleich zur planen Projektionsfläche des Bergbereichs und/oder des Talbereichs auf, insbesondere bestimmt durch Rasterkraftmikroskopie (AFM), welche beispielsweise eine Auflösung mit einer Fläche von bis zu 90 x 90 pm2 ermöglicht. Je nach zu vermessender Oberflächenstruktur kann eine Auflösung in der Größenordnung beispielsweise eines Talbereichs respektive eines Teils eines Talbereichs oder eines Bergbereichs respektive eines Teils eines Bergbereichs gewählt werden, welche beispielsweise auch eine Fläche kleiner als 90 x 90 pm2 aufweisen kann. The substructure in particular has a surface that is at least 7%, preferably at least 10%, preferably at least 15%, preferably at least 20% larger surface compared to the planar projection surface of the mountain area and / or valley area, in particular determined by atomic force microscopy (AFM), which, for example, enables a resolution with an area of up to 90 x 90 pm 2. Depending on the surface structure to be measured, a resolution in the order of magnitude, for example, of a valley area or part of a valley area or a mountain area or part of a mountain area, which can also have an area smaller than 90 × 90 μm 2 , for example.
Unter planen Projektionsfläche des Bergbereichs bzw. des Talbereichs ist eine ebene Fläche zu verstehen, welche in Draufsicht, parallel zur Metallblechebene, sichtbar und/oder bestimmbar ist. Die durch die Substruktur erzeugte größere Oberfläche im Bergbereich bzw. Talbereich entspricht der tatsächlichen, bestimmbaren dreidimensionalen (Ober)Fläche. A planar projection surface of the mountain region or valley region is to be understood as a flat surface which is visible and / or determinable in plan view, parallel to the sheet metal plane. The larger surface area created by the substructure in the mountain area or valley area corresponds to the actual, determinable three-dimensional (upper) area.
Der Sdr-Wert bezieht sich auf ein entwickeltes Grenzwertverhältnis bzw. ist auch ein Maß für die Oberflächenvergrößerung, welche(s) den Prozentsatz der zusätzlichen Fläche eines Definitionsbereichs, die auf eine Textur (Substruktur) zurückzuführen ist, im Vergleich zum absolut ebenen Definitionsbereich angibt, wobei der Definitionsbereich (Auflösung) auf einen Teil des Talbereichs oder auf einen Talbereich und/oder auf einen Teil des Bergbereichs oder auf einen Bergbereich gerichtet werden kann. Die Substruktur weist insbesondere einen Sdr-Wert von mindestens 7%, vorzugsweise von mindestens 10%, vorzugsweise von mindestens 15%, bevorzugt von mindestens 20% auf. Eine plane Oberfläche hätte einen Sdr-Wert von 0. Der Sdr-Wert ist beispielsweise auch durch bzw. mittels einer Rasterkraftmikroskopie (AFM) ermittelbar. The Sdr value relates to a developed limit value ratio or is also a measure for the surface enlargement, which indicates the percentage of the additional area of a definition area that can be traced back to a texture (substructure) compared to the absolutely flat definition area, wherein the definition area (resolution) can be directed to a part of the valley area or to a valley area and / or to a part of the mountain area or to a mountain area. The substructure in particular has an Sdr value of at least 7%, preferably of at least 10%, preferably of at least 15%, preferably of at least 20%. A plane surface would have an Sdr value of 0. The Sdr value can also be determined, for example, by or by means of atomic force microscopy (AFM).
Unter deterministischer Oberflächenstruktur sind wiederkehrende Strukturen (mindestens ein Talbereich respektive Talbereiche und mindestens ein Bergbereich) zu verstehen, welche eine definierte Form und/oder Ausgestaltung aufweisen, vgl. EP 2 892 663 Bl. Insbesondere gehören hierzu zudem Oberflächen mit einer (quasi-)stochastischen Anmutung, die jedoch mittels eines deterministischen Texturierungsverfahrens aufgebracht werden und sich somit aus deterministischen Formelementen zusammensetzen. Insbesondere ist ein durchgehender Bergbereich mit mehreren, wiederkehrenden Talbereichen, welche jeweils durch Flankenbereiche mit dem Bergbereich verbunden sind, als Oberflächenstruktur ausgeführt. Under deterministic surface structure are to be understood recurring structures (at least one valley area or valley area and at least one mountain area), which one have a defined shape and / or configuration, see EP 2 892 663 Bl. In particular, this also includes surfaces with a (quasi-) stochastic appearance, which, however, are applied by means of a deterministic texturing process and are thus composed of deterministic form elements. In particular, a continuous mountain area with several recurring valley areas, which are each connected to the mountain area by flank areas, is designed as a surface structure.
Unter Metallblech ist allgemein ein Metallflachprodukt zu verstehen, welches in Blechform bzw. in Platinenform oder in Bandform bereitgestellt werden kann. Metal sheet is to be understood in general as a flat metal product which can be provided in sheet form or in the form of a plate or in the form of a strip.
Weitere vorteilhafte Ausgestaltungen und Weiterbildungen gehen aus der nachfolgenden Beschreibung hervor. Ein oder mehrere Merkmale aus den Ansprüchen, der Beschreibung wie auch der Zeichnung können mit einem oder mehreren anderen Merkmalen daraus zu weiteren Ausgestaltungen der Erfindung verknüpft werden. Es können auch ein oder mehrere Merkmale aus den unabhängigen Ansprüchen durch ein oder mehrere andere Merkmale verknüpft werden. Further advantageous configurations and developments emerge from the following description. One or more features from the claims, the description and also the drawing can be combined with one or more other features from them to form further embodiments of the invention. One or more features from the independent claims can also be linked by one or more other features.
Gemäß einer Ausgestaltung des erfindungsgemäßen Metallblechs ist die Substruktur kristallartig im Bergbereich und/oder im Talbereich ausgebildet. Die kristallartige Ausbildung kann länglich und/oder kugelig und/oder oval als Erhebung und/oder Vertiefung im Bergbereich und/oder Talbereich ausgeführt sein, wobei insbesondere eine Länge, Breite oder Durchmesser der kristallartigen Ausbildung zwischen 0,5 und 20 pm, insbesondere zwischen 0,9 und 15 gm, vorzugsweise zwischen 1,2 und 10 pm, eingestellt ist. According to one embodiment of the metal sheet according to the invention, the substructure is formed like a crystal in the mountain area and / or in the valley area. The crystal-like design can be elongated and / or spherical and / or oval as an elevation and / or depression in the mountain area and / or valley area, with a length, width or diameter of the crystal-like design between 0.5 and 20 μm, in particular between 0 , 9 and 15 gm, preferably between 1.2 and 10 pm, is set.
Gemäß einer Ausgestaltung des erfindungsgemäßen Metallblechs ist das Metallblech mit einem metallischen Überzug beschichtet. Das Metallblech kann mit einem zinkbasierten Überzug beschichtet sein, welcher durch Schmelztauchbeschichten aufgebracht ist. Insbesondere ist das Metallblech ein Stahlblech. Vorzugsweise kann der Überzug neben Zink und unvermeidbaren Verunreinigungen zusätzliche Elemente wie Aluminium mit einem Gehalt von bis zu 5 Gew.-% und/oder Magnesium mit einem Gehalt von bis zu 5 Gew.-% in dem Überzug enthalten. Stahlbleche mit zinkbasiertem Überzug weisen einen sehr guten kathodischen Korrosionsschutz auf, welche seit Jahren im Automobilbau eingesetzt werden. Ist ein verbesserter Korrosionsschutz vorgesehen, weist der Überzug zusätzlich Magnesium mit einem Gehalt von mindestens 0,3 Gew.-%, insbesondere von mindestens 0,6 Gew.-%, vorzugsweise von mindestens 0,9 Gew.-% auf. Aluminium kann alternativ oder zusätzlich zu Magnesium mit einem Gehalt von mindestens 0,3 Gew.-% vorhanden sein, um insbesondere eine Anbindung des Überzugs an das Stahlblech zu verbessern und insbesondere eine Diffusion von Eisen aus dem Stahlblech in den Überzug bei einer Wärmebehandlung des beschichteten Stahlblechs im Wesentlichen zu verhindern, damit die positiven Korrosionseigenschaften weiterhin erhalten bleiben. Dabei kann eine Dicke des Überzugs zwischen 1 und 15 gm, insbesondere zwischen 2 und 12 gm, vorzugsweise zwischen 3 und 10 gm betragen. Unterhalb der Mindestgrenze kann kein ausreichender kathodischer Korrosionsschutz gewährleistet werden und oberhalb der Höchstgrenze können Fügeprobleme beim Verbinden des erfindungsgemäßen Stahlblechs respektive eines daraus gefertigten Bauteils mit einem anderen Bauteil auftreten, insbesondere kann bei Überschreiten der Dicke des Überzugs angegebene Höchstgrenze kein stabiler Prozess beim thermischen Fügen bzw. Schweißen sichergestellt werden. Beim Schmelztauschbeschichten werden zunächst die Stahlbleche mit einem entsprechenden Überzug beschichtet und anschließend dem Dressieren zugeführt. Das Dressieren erfolgt nach dem Schmelztauchbeschichten des Stahlblechs. According to one embodiment of the metal sheet according to the invention, the metal sheet is coated with a metallic coating. The metal sheet can be coated with a zinc-based coating which is applied by hot-dip coating. In particular, the metal sheet is a steel sheet. In addition to zinc and unavoidable impurities, the coating can preferably contain additional elements such as aluminum with a content of up to 5% by weight and / or magnesium with a content of up to 5% by weight in the coating. Steel sheets with a zinc-based coating have very good cathodic corrosion protection, which has been used in automotive engineering for years. If improved corrosion protection is provided, the coating additionally has magnesium with a content of at least 0.3% by weight, in particular of at least 0.6% by weight, preferably of at least 0.9% by weight. As an alternative or in addition to magnesium, aluminum can be present with a content of at least 0.3% by weight, in particular to improve bonding of the coating to the steel sheet and in particular a diffusion of iron from the steel sheet into the coating during a heat treatment of the coated To prevent steel sheet essentially, so that the positive corrosion properties are retained. The thickness of the coating can be between 1 and 15 μm, in particular between 2 and 12 μm, preferably between 3 and 10 μm. Below the minimum limit, no adequate cathodic corrosion protection can be guaranteed and above the maximum limit, joining problems can occur when joining the steel sheet according to the invention or a component made from it to another component; in particular, if the maximum limit specified is exceeded, no stable process during thermal joining or thermal joining can occur. Welding can be ensured. In hot-melt exchange coating, the steel sheets are first coated with an appropriate coating and then passed to the skin pass. The skin pass takes place after the hot-dip coating of the steel sheet.
Alternativ kann das Metallblech mit einem metallischen Überzug, insbesondere einem zinkbasierten Überzug beschichtet sein, welcher durch elektrolytisches Beschichten aufgebracht ist. Dabei kann eine Dicke des Überzugs zwischen 1 und 10 gm, insbesondere zwischen 1,5 und 8 gm, vorzugsweise zwischen 2 und 5 gm betragen. Im Vergleich zum Schmelztauchbeschichten kann das Stahlblech zunächst dressiert und anschließend elektrolytisch beschichtet werden. Je nach Dicke des Überzugs kann die Rauheit im Flankenbereich im Wesentlichen auch nach dem elektrolytischen Beschichten beibehalten werden. Alternativ ist auch zunächst ein elektrolytisches Beschichten mit anschließendem Dressieren denkbar. Alternatively, the metal sheet can be coated with a metallic coating, in particular a zinc-based coating, which is applied by electrolytic coating. A thickness of the coating can be between 1 and 10 gm, in particular between 1.5 and 8 gm, preferably between 2 and 5 gm. In comparison to hot-dip coating, the steel sheet can first be skin-passed and then electrolytically coated. Depending on the thickness of the coating, the roughness in the flank area can essentially be retained even after the electrolytic coating. Alternatively, an electrolytic coating with subsequent skin-passing is also conceivable.
Denkbar ist auch, dass kein Überzug, beispielsweise kein metallischer Überzug vorgesehen ist. Denkbar ist es auch, dass das Metallblech mit einem nichtmetallischen Überzug beispielsweise in einer Bandbeschichtungsanlage beschichtet wird/ist, wobei das Metallblech vor oder nach der Beschichtung mit einem nichtmetallischen Überzug dressiert wird. It is also conceivable that no coating, for example no metallic coating, is provided. It is also conceivable that the metal sheet is / is coated with a non-metallic coating, for example in a coil coating system, the metal sheet being coated with a non-metallic coating before or after the coating.
Gemäß einer Ausgestaltung des erfindungsgemäßen Metallblechs ist das Metallblech mit einem Phosphatüberzug oder silanbasierten Überzug beschichtet, wobei insbesondere die Dicke des Phosphatüberzugs oder silanbasierten Überzugs kleiner 500 nm ist. Um dennoch die Vorteile eines (Phosphat-)Überzugs, insbesondere hinsichtlich der Benetzungsverhaltens und/oder als Haftgrund für Lacküberzüge und/oder Klebsysteme beizubehalten und bestehende Prozessrouten, die auf phosphatierte Metallbleche ausgelegt worden sind, weiterhin bedienen zu können, kann das Metallblech mit einem Phosphatüberzug beschichtet sein oder mit einem silanbasierten Überzug. Die Dicke des Phosphatüberzugs oder silanbasierten Überzugs kann auf kleiner 500 nm, insbesondere kleiner 200 nm, vorzugsweise kleiner 100 nm, bevorzugt kleiner 50 nm, besonders bevorzugt kleiner 25 nm eingestellt werden. Eine konventionelle Zinkphosphatierung bildet auf der Oberfläche eines Metallblechs einen Überzug mit einer Dicke von mindestens 500 nm aus, welcher isolierend, elektrisch nichtleitend ist und sich somit bei einem Schweißprozess, insbesondere bei einem Widerstandsschweißprozess prozessstörend auswirken kann. Eine Reduktion eines isolierenden, elektrisch nichtleitenden Phosphatüberzugs respektive silanbasierten Überzugs auf eine Dicke unterhalb 500 nm stellt keinen prozessstörenden Faktor dar. According to one embodiment of the metal sheet according to the invention, the metal sheet is coated with a phosphate coating or a silane-based coating, the thickness of the phosphate coating or silane-based coating in particular being less than 500 nm. In order to retain the advantages of a (phosphate) coating, in particular with regard to the wetting behavior and / or as a primer for paint coatings and / or adhesive systems, and to be able to continue to use existing process routes that have been designed for phosphated metal sheets, the metal sheet can be coated with a phosphate coating be coated or with a silane-based coating. The thickness of the phosphate coating or silane-based coating can be set to less than 500 nm, in particular less than 200 nm, preferably less than 100 nm, preferably less than 50 nm, particularly preferably less than 25 nm. Conventional zinc phosphating forms a coating with a thickness of at least 500 nm on the surface of a metal sheet, which is insulating, electrically non-conductive and can thus interfere with the process in a welding process, in particular in a resistance welding process. A reduction of an insulating, Electrically non-conductive phosphate coating or a silane-based coating with a thickness below 500 nm does not represent a process-disruptive factor.
Gemäß einem zweiten Aspekt betrifft die Erfindung ein Verfahren zum Herstellen eines umgeformten und lackierten Blechbauteils, wobei das Verfahren folgende Schritte umfasst: According to a second aspect, the invention relates to a method for producing a formed and painted sheet metal component, the method comprising the following steps:
- Bereitstellen eines Metallblechs mit einer deterministischen Oberflächenstruktur, wobei die Oberflächenstruktur in das Metallblech mittels einer Dressierwalze eingeprägt worden ist, wobei die Oberflächenstruktur mindestens einen Bergbereich und mindestens einen Talbereich aufweist, wobei der Bergbereich und der Talbereich durch einen Flankenbereich verbunden sind, - Provision of a metal sheet with a deterministic surface structure, the surface structure having been embossed into the metal sheet by means of a skin pass roller, the surface structure having at least one mountain area and at least one valley area, the mountain area and the valley area being connected by a flank area,
- Umformen des Metallblechs zu einem Blechbauteil, - Forming the sheet metal into a sheet metal component,
- Lackieren des umgeformten Blechbauteils. - Painting the formed sheet metal component.
Erfindungsgemäß hat die Dressierwalze, mit welcher die Oberflächenstruktur in das Metallblech eingeprägt worden ist, während des Einprägens im Bergbereich und/oder im Talbereich eine Substruktur erzeugt, derart, dass eine Substruktur mit einer um mindestens 3% größeren Oberfläche im Vergleich zu einer planen Projektionsfläche des Bergbereichs und/oder des Talbereichs oder mit einem Sdr-Wert von mindestens 3% erzeugt worden ist. According to the invention, the skin-pass roller, with which the surface structure was embossed into the sheet metal, produced a substructure during the embossing in the mountain area and / or in the valley area, such that a substructure with a surface area that is at least 3% larger than a planar projection area of the Mountain area and / or valley area or with an Sdr value of at least 3%.
Abhängig von dem zu erstellenden Blechbauteil wird insbesondere ein entsprechendes Metallblech bereitgestellt, welches vor, während und/oder nach der Umformung geschnitten wird. Das Umformen erfolgt je nach Ausführung mit konventionellen Werkzeugen. Depending on the sheet metal component to be produced, in particular a corresponding sheet metal is provided, which is cut before, during and / or after the deformation. Depending on the design, the forming takes place with conventional tools.
Das Lackieren des umgeformten Blechbauteils erfolgt auf konventionelle Art und Weise. The formed sheet metal component is painted in a conventional manner.
Um Wiederholungen zu vermeiden, wird jeweils auf die Ausführungen zu dem erfindungsgemäßen Metallblech verwiesen. In order to avoid repetition, reference is made in each case to the statements relating to the metal sheet according to the invention.
Auf einer Dressierwalze kann mindestens ein Talbereich als eine offene Struktur ausgebildet sein. Bergbereiche auf der Dressierwalze definieren somit lokale und immer wiederkehrende Erhebungen auf der Oberfläche der Dressierwalze. Durch entsprechende Einwirkung der Dressierwalze auf eine Oberfläche eines Metallblechs prägen sich die Bergbereiche der Dressierwalze in die Oberfläche des Metallblechs ein und bilden eine Oberflächenstruktur mit einer im Wesentlichen geschlossenen Struktur (geschlossenes Volumen) aus. Die Bergbereiche der Dressierwalze erzeugen somit taschenähnliche Strukturen auf der Oberfläche des Metallblechs aus. Das geschlossene Volumen, das sogenannte Leervolumen, kann ein für die spätere Verarbeitung insbesondere mittels Umformverfahren appliziertes Prozessmedium, beispielsweise Umformöl, aufnehmen. Zudem ist in dem zumindest einen Talbereich und/oder in dem Bergbereich respektive Bergbereichen der Dressierwalze eine (negative) Substruktur ausgebildet, welche durch Einwirken auf die Oberfläche des Metallblechs eine (positive) Substruktur mit einem um mindestens 3% größeren Oberfläche im Vergleich zu einer planen Projektionsfläche des Bergbereichs und/oder des Talbereichs oder mit einem Sdr-Wert von mindestens 3% erzeugt. On a skin pass roller, at least one valley area can be designed as an open structure. Mountain areas on the skin-pass roller thus define local and recurring bumps on the surface of the skin-pass roller. By corresponding action of the skin pass roller on a surface of a metal sheet, the mountain areas of the skin pass roller are embossed into the surface of the metal sheet and form a surface structure with an essentially closed structure (closed volume). The mountain areas of the skin pass roller thus produce pocket-like structures on the surface of the sheet metal. The closed volume, the so-called empty volume, can accommodate a process medium, for example forming oil, which is applied for later processing, in particular by means of a forming process. In addition, a (negative) substructure is formed in the at least one valley area and / or in the mountain area or mountain area of the skin pass roller, which by acting on the surface of the Metal sheet produces a (positive) substructure with a surface area that is at least 3% larger than a planar projection surface of the mountain area and / or valley area or with an Sdr value of at least 3%.
Die Erzeugung einer deterministischen Oberflächentopographie mit mindestens einem Bergbereich respektive Bergbereichen und mindestens einem Talbereich inklusive (negativer) Substruktur auf der Oberfläche der Dressierwalze, kann gezielt mittels eines Laser-Texturierverfahrens erfolgen, vgl. EP 2 892 663 Bl. The generation of a deterministic surface topography with at least one mountain area or mountain area and at least one valley area including (negative) substructure on the surface of the skin-pass roller can be carried out in a targeted manner by means of a laser texturing process, see EP 2 892 663 Bl.
Die geometrische Ausgestaltung (Größe und Tiefe) der deterministischen Oberflächentopographie in Form von mindestens einem Bergbereich respektive Bergbereichen und mindestens einem Talbereich inklusive (negativer) Substruktur kann individuell durch die Verwendung eines Pulslasers infolge eines Materialabtrags auf der Oberfläche der Dressierwalze eingestellt werden. Insbesondere kann durch gezielte Ansteuerung der Energie und der Pulsdauer eines auf die Oberfläche der Dressierwalze einwirkenden Laserstrahls positiv Einfluss auf die Gestaltung der Struktur(en) genommen werden. Mit hoher bzw. höherer Pulsdauer steigt die Wechselwirkungszeit von Laserstrahl und Dressierwalzenoberfläche und es kann mehr Material auf der Oberfläche der Dressierwalze abgetragen werden. Ein Puls hinterlässt auf der Dressierwalzenoberfläche einen im Wesentlichen kreisrunden, insbesondere konkaven Krater, der nach dem Dressieren die Oberfläche des Stahlblechs abbildet. Eine Reduktion der Pulsdauer hat Einfluss auf die Ausbildung eines Kraters, insbesondere kann der Durchmesser des Kraters verringert werden. Durch die Reduktion der Pulsdauer, insbesondere bei der Verwendung von Kurz- bzw. Ultrakurzpulslasern, ist es möglich, die geometrische Struktur auf der Oberfläche einer Dressierwalze derart gezielt einzustellen, um damit eine Stahlblechoberfläche funktionsgerecht texturieren zu können. Dies wird beispielsweise erreicht, wenn die Pulsdauer des Lasers, mit dem die Oberfläche der Dressierwalze texturiert wird, verringert wird und so die geometrische Struktur auf der Walze mit höherer Auflösung erzeugt werden kann. The geometric configuration (size and depth) of the deterministic surface topography in the form of at least one mountain area or mountain area and at least one valley area including (negative) substructure can be set individually by using a pulsed laser as a result of material removal on the surface of the skin-pass roller. In particular, targeted control of the energy and the pulse duration of a laser beam acting on the surface of the skin-pass roller can have a positive influence on the design of the structure (s). The interaction time between the laser beam and the skin-pass roller surface increases with a longer or longer pulse duration, and more material can be removed from the surface of the skin-pass roller. A pulse leaves an essentially circular, in particular concave, crater on the skin-pass roller surface, which after skin-pass treatment depicts the surface of the steel sheet. A reduction in the pulse duration has an influence on the formation of a crater; in particular, the diameter of the crater can be reduced. By reducing the pulse duration, in particular when using short or ultra-short pulse lasers, it is possible to set the geometric structure on the surface of a skin-pass roller in such a way that a sheet steel surface can be functionally textured. This is achieved, for example, if the pulse duration of the laser with which the surface of the skin pass roller is textured is reduced and the geometric structure on the roller can thus be generated with a higher resolution.
Gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens ist vor dem Umformen des Metallblechs keine Zinkphosphatierung durchgeführt worden. Durch die Erfindung kann der aufwendige Schritt einer konventionellen Zinkphosphatierung zur Erzeugung einer größeren Oberfläche durch Zinkphosphatkristalle im Wesentlichen wegfallen. According to one embodiment of the method according to the invention, no zinc phosphating has been carried out before the metal sheet is formed. With the invention, the laborious step of conventional zinc phosphating to generate a larger surface area using zinc phosphate crystals can essentially be omitted.
Gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens ist vor dem Bereitstellen des Metallblechs das Metallblech mit einem Phosphatüberzug oder silanbasierten Überzug beschichtet worden, wobei insbesondere die Dicke des Überzugs kleiner 500 nm ist. Dadurch können die Vorteile einer Phosphatschicht beibehalten werden und insbesondere durch Reduktion der Überzugsdicke ein vorzugsweise Widerstandsschweißen prozesssicher umgesetzt werden. Die Phosphatierung umfasst insbesondere ein Ablagern/Abscheiden von Tensiden, einer Konversionschemie oder einem Beizen beispielsweise mit Phosphorsäure. According to one embodiment of the method according to the invention, the metal sheet has been coated with a phosphate coating or a silane-based coating before the metal sheet is provided, the thickness of the coating being in particular less than 500 nm. As a result, the advantages of a phosphate layer can be retained and, in particular, by reducing the coating thickness, resistance welding, preferably resistance welding, can be implemented reliably. The phosphating includes in particular a deposit / separation of surfactants, a conversion chemistry or a pickling, for example with phosphoric acid.
Gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens ist das Metallblech vor oder nach dem Einbringen der Oberflächenstruktur mit einer sauren Lösung behandelt worden. Der Einsatz einer „sauren“ Lösung, welche einen pH-Wert kleiner 3, insbesondere kleiner 2, vorzugsweise kleiner 1 einnimmt, wird bevorzugt zur Reinigung der Oberfläche und/oder zur Entfernung von Oxidanhaftungen (Oxidschicht) auf der Oberfläche des Metallblechs verwendet. According to one embodiment of the method according to the invention, the metal sheet has been treated with an acidic solution before or after the introduction of the surface structure. The use of an “acidic” solution, which has a pH value of less than 3, in particular less than 2, preferably less than 1, is preferably used to clean the surface and / or to remove oxide deposits (oxide layer) on the surface of the metal sheet.
Gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens ist das Blechbauteil ein Außenhautteil eines Fahrzeugs. Insbesondere Außenhautteile unterliegen strengen Anforderung an die Umformeignung und Lackanmutung. Durch die Erfindung sind entsprechende Außenhautteile kostengünstig herstellbar. According to one embodiment of the method according to the invention, the sheet metal component is an outer skin part of a vehicle. Outer skin parts in particular are subject to strict requirements for suitability for forming and the appearance of paint. Corresponding outer skin parts can be produced inexpensively by the invention.
Gemäß einer alternativen Ausgestaltung des erfindungsgemäßen Verfahrens ist das Blechbauteil ein Strukturteil eines Fahrzeugs. According to an alternative embodiment of the method according to the invention, the sheet metal component is a structural part of a vehicle.
Im Folgenden werden konkrete Ausgestaltungen der Erfindung mit Bezugnahme auf die Zeichnung im Detail näher erläutert. Die Zeichnung und begleitende Beschreibung der resultierenden Merkmale sind nicht beschränkend auf die jeweiligen Ausgestaltungen zu lesen, dienen jedoch der Illustration beispielhafter Ausgestaltung. Weiterhin können die jeweiligen Merkmale untereinander wie auch mit Merkmalen der obigen Beschreibung genutzt werden für mögliche weitere Entwicklungen und Verbesserungen der Erfindung, speziell bei zusätzlichen Ausgestaltungen, welche nicht dargestellt sind. Gleiche Teile sind stets mit den gleichen Bezugszeichen versehen. In the following, specific embodiments of the invention are explained in more detail with reference to the drawing. The drawing and accompanying description of the resulting features are not to be read in a restrictive manner to the respective configurations, but serve to illustrate exemplary configurations. Furthermore, the respective features can be used with one another as well as with features of the above description for possible further developments and improvements of the invention, especially in the case of additional configurations which are not shown. The same parts are always provided with the same reference numerals.
Die Zeichnung zeigt in The drawing shows in
Figur 1) eine schematische Teilschnittansicht einer Ausführungsform aus dem Stand der Technik, Figure 1) a schematic partial sectional view of an embodiment from the prior art,
Figur 2) eine schematische Teilschnittansicht einer Ausführungsform gemäß derFIG. 2) a schematic partial sectional view of an embodiment according to FIG
Erfindung, Invention,
Figur 3) eine schematische Teilschnittansicht einer weiteren Ausführungsform gemäß der Erfindung und Figure 3) a schematic partial sectional view of a further embodiment according to the invention and
Figur 4) eine schematische Abfolge einer Ausführungsform gemäß einem erfindungsgemäßen Verfahren. FIG. 4) a schematic sequence of an embodiment according to a method according to the invention.
In Figur 1 ist eine schematische Teilschnittansicht einer Ausführungsform aus dem Stand der Technik gezeigt. Die Ausführung kann beispielsweise der Ausführung gemäß der EP 2 892 663 Bl entsprechen. Dargestellt ist ein Metallblech (1) mit einer deterministischen Oberflächenstruktur (2), wobei die Oberflächenstruktur (2) in das Metallblech (1) eingeprägt ist, wobei die Oberflächenstruktur (2) mindestens einen Bergbereich (1.1) und mindestens einen Talbereich (1.2) aufweist, wobei der Bergbereich (1.1) und der Talbereich (1.2) durch einen Flankenbereich (1.3) verbunden sind. Das Metallblech (1) ist bevorzugt ein Stahlblech. FIG. 1 shows a schematic partial sectional view of an embodiment from the prior art. The design can be, for example, the design according to EP 2 892 663 Bl correspond. Shown is a metal sheet (1) with a deterministic surface structure (2), the surface structure (2) being embossed into the metal sheet (1), the surface structure (2) having at least one mountain area (1.1) and at least one valley area (1.2) , the mountain area (1.1) and the valley area (1.2) being connected by a flank area (1.3). The metal sheet (1) is preferably a steel sheet.
In Figur 2 ist eine schematische Teilschnittansicht einer Ausführungsform gemäß der Erfindung gezeigt. Im Unterschied zu Figur 1 weist der Bergbereich (1.1) und/oder der Talbereich (1.2) eine Substruktur (1.11, 1.21) auf, welche derart ausgebildet ist, dass die Substruktur (1.11, 1.21) eine um mindestens 3% größere Oberfläche im Vergleich zu einer planen Projektionsfläche (P) des Bergbereichs (1.1) und/oder des Talbereichs (1.2) oder einen Sdr-Wert von mindestens 3% aufweist. Die Substruktur (1.11, 1.21) kann kristallartig im Bergbereich (1.1) und/oder im Talbereich (1.2) ausgebildet sein, wobei die kristallartige Ausbildung länglich und/oder kugelig als Erhebung und/oder Vertiefung, in dieser Ausführung als Vertiefung gezeigt, im Bergbereich (1.1) und/oder Talbereich (1.2) ausgeführt sein, wobei insbesondere eine Länge, Breite oder Durchmesser der kristallartigen Ausbildung zwischen 0,5 und 20 pm eingestellt sein kann. FIG. 2 shows a schematic partial sectional view of an embodiment according to the invention. In contrast to Figure 1, the mountain area (1.1) and / or the valley area (1.2) has a substructure (1.11, 1.21) which is designed such that the substructure (1.11, 1.21) has a surface area that is at least 3% larger in comparison to a planar projection surface (P) of the mountain area (1.1) and / or the valley area (1.2) or has an Sdr value of at least 3%. The substructure (1.11, 1.21) can be crystal-like in the mountain area (1.1) and / or in the valley area (1.2), the crystal-like formation being elongated and / or spherical as an elevation and / or depression, shown as a depression in this embodiment, in the mountain area (1.1) and / or valley region (1.2), it being possible in particular to set a length, width or diameter of the crystal-like configuration between 0.5 and 20 μm.
In Figur 3 ist eine schematische Teilschnittansicht einer weiteren Ausführungsform gemäß der Erfindung gezeigt. Im Vergleich zu Figur 2 ist das Metallblech (1) mit einem metallischen Überzug (3) beschichtet, verzugsweise mit einem zinkbasierten Überzug. Alternativ oder vorzugsweise zusätzlich ist das Metallblech (1) mit einem Phosphatüberzug (4) beschichtet, wobei die Dicke des Phosphatüberzugs (4) kleiner 500 nm sein kann. FIG. 3 shows a schematic partial sectional view of a further embodiment according to the invention. In comparison to FIG. 2, the metal sheet (1) is coated with a metallic coating (3), preferably with a zinc-based coating. Alternatively or preferably in addition, the metal sheet (1) is coated with a phosphate coating (4), it being possible for the thickness of the phosphate coating (4) to be less than 500 nm.
Ein erfindungsgemäßes Metallblech (1), insbesondere gemäß der Ausführung in Figur 3, wird zum Flerstellen eines nicht dargestellten, umgeformten und lackierten Blechbauteils bereitgestellt, (A). In einem nächsten Schritt erfolgt eine Umformung des bereitgestellten Metallblechs (1) zu einem umgeformten Blechbauteil, (B). Nach dem Umformen erfolgt ein Lackieren des umgeformten Blechbauteils, (C). Figur 4 zeigt schematisch eine entsprechende Abfolge des erfindungsgemäßen Verfahrens. Das nicht dargestellte umgeformte und lackierte Blechbauteil kann als Außenhautteil oder Strukturteil im Fahrzeug verwendet werden. A metal sheet (1) according to the invention, in particular in accordance with the embodiment in FIG. 3, is provided to provide a reshaped and painted sheet metal component, not shown, (A). In a next step, the provided sheet metal (1) is reshaped into a reshaped sheet metal component (B). After forming, the formed sheet metal component is painted, (C). FIG. 4 schematically shows a corresponding sequence of the method according to the invention. The formed and painted sheet metal component, not shown, can be used as an outer skin part or a structural part in the vehicle.
Die einzelnen Merkmale sind, soweit technisch möglich, alle miteinander kombinierbar. As far as technically possible, the individual features can all be combined with one another.

Claims

Patentansprüche Claims
1. Metallblech (1) mit einer deterministischen Oberflächenstruktur (2), wobei die Oberflächenstruktur (2) in das Metallblech (1) eingeprägt ist, wobei die Oberflächenstruktur (2) mindestens einen Bergbereich (1.1) und mindestens einen Talbereich (1.2) aufweist, wobei der Bergbereich (1.1) und der Talbereich (1.2) durch einen Flankenbereich (1.3) verbunden sind, dadurch gekennzeichnet, dass der Bergbereich (1.1) und/oder der Talbereich (1.2) eine Substruktur (1.11, 1.21) aufweist, welche derart ausgebildet ist, dass die Substruktur (1.11, 1.21) eine um mindestens 3% größere Oberfläche im Vergleich zu einer planen Projektionsfläche (P) des Bergbereichs (1.1) und/oder des Talbereichs (1.2) oder einen Sdr-Wert von mindestens 3% aufweist. 1. sheet metal (1) with a deterministic surface structure (2), the surface structure (2) being embossed in the sheet metal (1), the surface structure (2) having at least one mountain area (1.1) and at least one valley area (1.2), wherein the mountain area (1.1) and the valley area (1.2) are connected by a flank area (1.3), characterized in that the mountain area (1.1) and / or the valley area (1.2) has a substructure (1.11, 1.21) which is designed in this way is that the substructure (1.11, 1.21) has a surface that is at least 3% larger than a planar projection area (P) of the mountain area (1.1) and / or the valley area (1.2) or an Sdr value of at least 3%.
2. Metallblech nach Anspruch 1, wobei die Substruktur (1.11, 1.21) eine um mindestens 7% größere Oberfläche im Vergleich zur planen Projektionsfläche (P) des Bergbereichs (1.1) und/oder des Talbereichs (1.2) oder einen Sdr-Wert von mindestens 7% aufweist. 2. Sheet metal according to claim 1, wherein the substructure (1.11, 1.21) has a surface that is at least 7% larger than the planar projection area (P) of the mountain area (1.1) and / or the valley area (1.2) or an Sdr value of at least 7%.
3. Metallblech nach einem der vorhergehenden Ansprüche, wobei die Substruktur (1.11, 1.21) kristallartig im Bergbereich (1.1) und/oder im Talbereich (1.2) ausgebildet ist. 3. Sheet metal according to one of the preceding claims, wherein the substructure (1.11, 1.21) is formed like a crystal in the mountain region (1.1) and / or in the valley region (1.2).
4. Metallblech nach einem der vorhergehenden Ansprüche, wobei das Metallblech (1) mit einem metallischen Überzug (3) beschichtet ist. 4. Metal sheet according to one of the preceding claims, wherein the metal sheet (1) is coated with a metallic coating (3).
5. Metallblech nach einem der vorhergehenden Ansprüche, wobei das Metallblech (1) mit einem Phosphatüberzug (4) oder silanbasierten Überzug beschichtet ist, wobei insbesondere die Dicke des Überzugs (4) kleiner 500 nm ist. 5. Metal sheet according to one of the preceding claims, wherein the metal sheet (1) is coated with a phosphate coating (4) or a silane-based coating, in particular the thickness of the coating (4) being less than 500 nm.
6. Verfahren zum Herstellen eines umgeformten und lackierten Blechbauteils, wobei das Verfahren folgende Schritte umfasst: 6. A method for producing a formed and painted sheet metal component, the method comprising the following steps:
- Bereitstellen eines Metallblechs (1) mit einer deterministischen Oberflächenstruktur (2), wobei die Oberflächenstruktur (2) in das Metallblech (1) mittels einer Dressierwalze eingeprägt worden ist, wobei die Oberflächenstruktur (2) mindestens einen Bergbereich (1.1) und mindestens einen Talbereich (1.2) aufweist, wobei der Bergbereich (1.1) und der Talbereich (1.2) durch einen Flankenbereich (1.3) verbunden sind, - Provision of a metal sheet (1) with a deterministic surface structure (2), the surface structure (2) having been embossed into the metal sheet (1) by means of a skin-pass roller, the surface structure (2) having at least one mountain area (1.1) and at least one valley area (1.2), the Mountain area (1.1) and valley area (1.2) are connected by a flank area (1.3),
- Umformen des Metallblechs (1) zu einem Blechbauteil, - Forming the sheet metal (1) into a sheet metal component,
- Lackieren des umgeformten Blechbauteils, dadurch gekennzeichnet, dass die Dressierwalze, mit welcher die Oberflächenstruktur (2) in das Metallblech (1) eingeprägt worden ist, während des Einprägens im Bergbereich (1.1) und/oder im Talbereich (1.2) eine Substruktur (1.11, 1.21) erzeugt hat, derart, dass eine Substruktur (1.11, 1.21) mit einer um mindestens 3% größeren Oberfläche im Vergleich zu einer planen Projektionsfläche (P) des Bergbereichs (1.1) und/oder des Talbereichs (1.2) oder mit einem Sdr-Wert von mindestens 3% erzeugt worden ist. - Painting of the formed sheet metal component, characterized in that the skin pass roller with which the surface structure (2) has been embossed into the metal sheet (1), during the embossing in the mountain area (1.1) and / or in the valley area (1.2) a substructure (1.11 , 1.21) in such a way that a substructure (1.11, 1.21) with a surface area that is at least 3% larger than a planar projection area (P) of the mountain area (1.1) and / or the valley area (1.2) or with a Sdr Value of at least 3% has been generated.
7. Verfahren nach einem Anspruch 6, wobei vor dem Umformen des Metallblechs (1) keine Zinkphosphatierung durchgeführt worden ist. 7. The method according to claim 6, wherein no zinc phosphating has been carried out before reshaping the metal sheet (1).
8. Verfahren nach Anspruch 6 oder 7, wobei vor dem Bereitstellen des Metallblechs (1) das Metallblech (1) mit einem Phosphatüberzug (4) oder silanbasierten Überzug beschichtet worden ist, wobei insbesondere die Dicke des Überzugs (4) kleiner 500 nm ist. 8. The method according to claim 6 or 7, wherein prior to providing the metal sheet (1) the metal sheet (1) has been coated with a phosphate coating (4) or silane-based coating, in particular the thickness of the coating (4) is less than 500 nm.
9. Verfahren nach einem der Ansprüche 6 bis 8, wobei das Metallblech (1) vor oder nach dem Einbringen der Oberflächenstruktur (2) mit einer sauren Lösung behandelt worden ist. 9. The method according to any one of claims 6 to 8, wherein the metal sheet (1) has been treated with an acidic solution before or after the introduction of the surface structure (2).
10. Verfahren nach einem der Ansprüche 6 bis 9, wobei das Blechbauteil ein Außenhautteil eines Fahrzeugs ist. 10. The method according to any one of claims 6 to 9, wherein the sheet metal component is an outer skin part of a vehicle.
11. Verfahren nach einem der Ansprüche 6 bis 9, wobei das Blechbauteil ein Strukturteil eines Fahrzeugs ist. 11. The method according to any one of claims 6 to 9, wherein the sheet metal component is a structural part of a vehicle.
PCT/EP2020/084888 2019-12-16 2020-12-07 Metal sheet having a deterministic surface structure and method for producing a formed and coated sheet-metal component WO2021122106A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080087503.0A CN114829029A (en) 2019-12-16 2020-12-07 Metal sheet with a defined surface structure and method for producing a shaped and painted sheet metal component
US17/779,700 US20230002910A1 (en) 2019-12-16 2020-12-07 Metal sheet having a deterministic surface structure and method for producing a formed and coated sheet-metal component
EP20823757.8A EP4076777B1 (en) 2019-12-16 2020-12-07 Metal sheet having a deterministic surface structure and method for producing a formed and coated sheet-metal component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019219651.9A DE102019219651A1 (en) 2019-12-16 2019-12-16 Sheet metal with a deterministic surface structure and process for the production of a formed and painted sheet metal component
DE102019219651.9 2019-12-16

Publications (1)

Publication Number Publication Date
WO2021122106A1 true WO2021122106A1 (en) 2021-06-24

Family

ID=73793190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/084888 WO2021122106A1 (en) 2019-12-16 2020-12-07 Metal sheet having a deterministic surface structure and method for producing a formed and coated sheet-metal component

Country Status (5)

Country Link
US (1) US20230002910A1 (en)
EP (1) EP4076777B1 (en)
CN (1) CN114829029A (en)
DE (1) DE102019219651A1 (en)
WO (1) WO2021122106A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021119589A1 (en) 2021-07-28 2023-02-02 Thyssenkrupp Steel Europe Ag Sheet metal with a deterministic surface structure
DE102022102111A1 (en) 2022-01-31 2023-08-03 Thyssenkrupp Steel Europe Ag Uncoated cold-rolled steel sheet for hot forming, method of manufacturing a hot-formed sheet steel component and hot-formed sheet steel component
DE102022123741A1 (en) * 2022-09-16 2024-03-21 Thyssenkrupp Steel Europe Ag FAL-coated steel sheet for hot forming

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133905A (en) * 1983-12-23 1985-07-17 Sumitomo Metal Ind Ltd Cold-rolled steel sheet excellent in coating appearance and its manufacture
DE69423784T2 (en) * 1993-09-17 2000-11-02 Sidmar Nv METHOD AND DEVICE FOR THE PRODUCTION OF COLD-ROLLED METAL SHEETS OR STRIPS, AND METAL SHEETS OR STRIPS RECOVERED FROM THEM
EP2892663B1 (en) 2012-09-07 2016-11-09 Daetwyler Graphics AG Flat product made of metal material, in particular a steel material, use of such a flat product, and roll and method for producing such flat products
WO2018149967A1 (en) * 2017-02-17 2018-08-23 Voestalpine Stahl Gmbh Method for producing steel sheets, steel sheet and use thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4841611A (en) * 1986-07-14 1989-06-27 Kawasaki Steel Corporation Work roll with dulled surface having geometrically patterned uneven dulled sections for temper rolling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133905A (en) * 1983-12-23 1985-07-17 Sumitomo Metal Ind Ltd Cold-rolled steel sheet excellent in coating appearance and its manufacture
DE69423784T2 (en) * 1993-09-17 2000-11-02 Sidmar Nv METHOD AND DEVICE FOR THE PRODUCTION OF COLD-ROLLED METAL SHEETS OR STRIPS, AND METAL SHEETS OR STRIPS RECOVERED FROM THEM
EP2892663B1 (en) 2012-09-07 2016-11-09 Daetwyler Graphics AG Flat product made of metal material, in particular a steel material, use of such a flat product, and roll and method for producing such flat products
WO2018149967A1 (en) * 2017-02-17 2018-08-23 Voestalpine Stahl Gmbh Method for producing steel sheets, steel sheet and use thereof

Also Published As

Publication number Publication date
EP4076777A1 (en) 2022-10-26
DE102019219651A1 (en) 2021-06-17
EP4076777B1 (en) 2023-11-15
US20230002910A1 (en) 2023-01-05
CN114829029A (en) 2022-07-29

Similar Documents

Publication Publication Date Title
EP4076777B1 (en) Metal sheet having a deterministic surface structure and method for producing a formed and coated sheet-metal component
EP3489386A1 (en) Coated steel substrate and method for producing a hardened component from a coated steel substrate
EP4031301A1 (en) Sheet steel having a deterministic surface structure
KR950014360A (en) Zinc-based metal-plated composite steel article and method for manufacturing the article
DE102008004728A1 (en) Phosphated steel sheet and method for producing such a sheet
EP0922123B1 (en) Process and aqueous solution for phosphatising metallic surfaces
DE102007057185A1 (en) Zirconium phosphating of metallic components, in particular iron
DE60019204T2 (en) A bath and method of making a article plated with boron carbide in a nickel-phosphorus matrix
DE102020107653A1 (en) Process for producing a phosphating layer and a flat steel product provided with a phosphating layer
DE102020207561A1 (en) Passed and coated sheet steel and process for its manufacture
WO2023088783A1 (en) Method for producing a hot-dip-coated steel sheet and hot-dip-coated steel sheet
EP4110970B1 (en) Method for producing hardened steel components with a conditioned zinc alloy corrosion protection layer
DE60033950T2 (en) PHOSPHATIVE LAYER COMPRISING GALVANIZED STEEL PLATE WITH EXCELLENT FORMABILITY AND METHOD FOR THE PRODUCTION THEREOF
EP2342371A2 (en) Electrochemical coating method
DE102006035974A1 (en) Process for phosphating a metal layer
EP1350865A2 (en) Tinned and phosphatised sheet and method for producing such a sheet
EP1433879B1 (en) Process for metal surface coating with an alkali phosphate solution, aqueous concentrate and use of such coated metal surfaces
EP4110972A1 (en) Method for producing hardened steel components with a conditioned zinc alloy anti-corrosive layer
WO2001059180A1 (en) Method for coating metal surfaces, aqueous concentrate used therefor and use of coated metal parts
EP3882374A1 (en) Method for producing areas with different optical properties on galvanized steel strips and galvanized steel strips with areas with different optical properties
WO2023174611A1 (en) Passivating layer for metal-containing substrates
WO2023057300A1 (en) Method for temper rolling a steel sheet, temper-rolled steel sheet and component manufactured therefrom
DE102021119589A1 (en) Sheet metal with a deterministic surface structure
EP3856947A1 (en) Method for improving the phosphatability of metal surfaces which are provided with a temporary pre- or post-treatment
DE102021121343A1 (en) Steel flat product with improved zinc coating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20823757

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020823757

Country of ref document: EP

Effective date: 20220718