WO2021120821A1 - 一种电力电缆线路工程三维数字化协同设计方法 - Google Patents

一种电力电缆线路工程三维数字化协同设计方法 Download PDF

Info

Publication number
WO2021120821A1
WO2021120821A1 PCT/CN2020/122106 CN2020122106W WO2021120821A1 WO 2021120821 A1 WO2021120821 A1 WO 2021120821A1 CN 2020122106 W CN2020122106 W CN 2020122106W WO 2021120821 A1 WO2021120821 A1 WO 2021120821A1
Authority
WO
WIPO (PCT)
Prior art keywords
design
majors
major
dimensional
data
Prior art date
Application number
PCT/CN2020/122106
Other languages
English (en)
French (fr)
Inventor
张博雄
王晓冬
赵贞欣
冯舜凯
Original Assignee
中国电建集团河北省电力勘测设计研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电建集团河北省电力勘测设计研究院有限公司 filed Critical 中国电建集团河北省电力勘测设计研究院有限公司
Publication of WO2021120821A1 publication Critical patent/WO2021120821A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • G06Q10/103Workflow collaboration or project management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/21Design, administration or maintenance of databases
    • G06F16/211Schema design and management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/25Integrating or interfacing systems involving database management systems
    • G06F16/252Integrating or interfacing systems involving database management systems between a Database Management System and a front-end application
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects

Definitions

  • the invention relates to a three-dimensional digital collaborative design method for power cable line engineering, and belongs to the technical field of power cable line engineering.
  • the implementation of the current power cable line project involves planning and design in the early stage, construction and operation and maintenance in the later stage, involving multiple professions and multiple departments. Especially in the preliminary design work, multiple disciplines need to cooperate with each other to complete the design task together. Due to the poor basic information interaction between the various disciplines in the traditional design, the lack of synergy and inheritance, the design quality and efficiency are not high, such as in The construction of the smart city Xiong'an New District is particularly prominent.
  • Three-dimensional collaborative digital design technology is a multi-specialty, multi-stage, multi-participant process.
  • the main difference from traditional design technology is that it realizes the integration and unification of engineering models and information models based on data, and realizes it by means of collaborative design.
  • Three-dimensional digital design covers the stages of project planning, route selection, feasibility study, bidding, preliminary design, construction drawing design, as-built drawing preparation, etc. It can complete the informatization of geographic information data, route selection optimization, statistical query of design results, and Functions such as economic index estimation and digital handover have greatly improved the level of consulting and design services.
  • Three-dimensional digital design is based on a database and a three-dimensional model. Through the data-driven model, three-dimensional layout is directly carried out, and two-dimensional drawings and data are extracted from the three-dimensional.
  • Three-dimensional digital design has the advantages of accuracy, intuitiveness, and efficiency, which improves the design unit's ability to extend value-added services for engineering construction.
  • Digital collaboration should include two aspects: information collaboration and design system:
  • Mainly refers to the collaboration of project management information, including basic information, process structure, attribute settings, drawing storage, version management, circulation verification, progress management, etc.
  • the purpose is to implement a comprehensive dynamic management based on the design process, from the entry of the project to the intermediate process to the completion of the archive.
  • the purpose is to provide engineering design members with functions such as resource sharing, information sharing, and mutual assistance to improve work quality and efficiency.
  • functions such as resource sharing, information sharing, and mutual assistance to improve work quality and efficiency.
  • Such as soft and hard collision inspection, virtual model data transfer, etc. are all within this scope.
  • the purpose of the present invention is to provide a three-dimensional digital collaborative design method for power cable line engineering to realize information collaboration and design collaboration in the design work of power cable line engineering, based on the concept of "a design platform, a model, and a data structure".
  • engineering as the link based on the 3D information model, integrating various data resources, building a 3D visualization corridor for power cable engineering, and constructing services for the feasibility study, preliminary design, construction drawing design, and completion drawing design stages of power grid engineering
  • the digital collaborative design platform based on the 3D design platform, realizes real-time design collaboration and real-time sharing of information, and finally forms an engineering design mode in which all professionals simultaneously carry out mutually beneficial collaboration, improve design efficiency and quality, and at the same time design results serve the owner, Construction units, operation and maintenance units, promote the continuous innovation of engineering construction technology, and improve the quality of engineering construction and the overall benefits of the project.
  • a three-dimensional digital collaborative design method for power cable line engineering including the following work content,
  • the design is based on the work flow of 3D digital collaborative design, and standardizes the work flow of different majors and different design stages in the design work;
  • the further improvement of the technical scheme of the present invention is that the different stages of the design work in step 1) include the feasibility study stage, the preliminary design stage, the construction drawing design stage, and the as-built drawing compilation stage; different professions are divided into geographic information system design, route design, Circuit electrical design, circuit structure design, plumbing professional design, power distribution professional design, fire professional design, technical and economic professional design.
  • the multi-discipline integrated digital collaborative design platform in step 2) adopts a unified geographic information system and three-dimensional information model modeling technology to realize real-time sharing of different professional model positions and real-time coordination of three-dimensional model information .
  • the further improvement of the technical scheme of the present invention lies in: the establishment of a distributed database in step 3), including the distributed establishment of a basic public database, a collaborative design database, and an engineering business database;
  • the first part is the basic public database, using SQLSever database storage, mainly used for storage, scheduling and query of basic geographic information data and basic model data;
  • the second part is the collaborative design database, using MySQL database, mainly used to manage the process of collaborative design Data and achievement data;
  • the third part is the engineering business database, which is developed based on NoSQL theory and can be quickly deployed locally, which meets the business needs of the field design work of power cable line engineering.
  • the further improvement of the technical scheme of the present invention lies in that: the unified design platform for different professions in step 4) opens up different professional design software data from the bottom, realizing real-time sharing of different professional information, real-time collaboration of models, relying on the three-dimensional model, and driving the model through data , Directly perform three-dimensional layout, and extract two-dimensional drawings and data from the three-dimensional model in real time.
  • the further improvement of the technical scheme of the present invention lies in that: the different professional authority of design in step 5) is under the same platform in the design process, and different design majors have the authority to design their own professional tasks; unified standardization is the process document of each professional in the design work And the finished document adopts a unified digital standard format.
  • the survey major provides survey reports to the electrical and structural majors based on the survey and capital collection, and establishes the basic BIM model of the power structure, and the accuracy can meet the initial design requirements;
  • the electrical major shall design the route of the station entrance, and connect the structure section and the buried depth according to the funding of the transformation/power generation;
  • the electrical professional confirms the path length, confirms the number of cable loops and the cross-sectional dimensions of the structure according to the long-term planning of the system, and raises funds to the structural, plumbing, and power distribution majors;
  • the electrical major initially confirms the location of the cable manhole, determines the amount of initial materials, the amount of channel clearing works, and raises funds to the technical, economic and structural majors;
  • the plumbing major shall arrange the location of ventilation shafts and confirm the number of ventilation shafts and the size of the fans according to the funding of the line electrical and power distribution majors; the plumbing major shall confirm the construction drainage plan according to the electrical and structural majors;
  • the power distribution major provides reliable power points for the auxiliary facilities according to the line electrical and system funding low-voltage power points; the power distribution major configures the internal lighting, fans, and integrated monitoring equipment of the structure according to the line electrical and plumbing majors to provide low-voltage lighting for low-voltage lighting Electricity;
  • the structure major draws a list of the cross-section types of structures according to the funding situation of the survey majors and the electrical majors, and establishes a general three-dimensional model of the structure cross-sections;
  • the survey major enters the on-site measurement data into the system, generates a three-dimensional model of the channel, and submits a survey report;
  • the electrical major uses the three-dimensional model of the structure to design the cable laying
  • the electrical major will contribute funds to the structural, plumbing, and power distribution majors for the final version of the path map, ground attachments, the amount of drilling and wall removal, the location and number of wells, and the cross-sectional dimensions;
  • the plumbing major shall carry out the design of fire protection, ventilation and drainage in the structure according to the funding of the electrical major, and increase the number of ventilation shafts and drainage wells to the structural major;
  • the three-dimensional digital collaborative design method of power cable line engineering of the present invention is the foundation of a new generation of digital, virtual, and intelligent design platforms. It is an emerging design method based on plane and two-dimensional design to make the design goals more three-dimensional and vivid. It can provide the 3D design standardization system of corresponding design specifications and management specifications for the third design technology revolution after the manual drawing board and CAD drawing. It is to support the 3D design, handover, and planning, construction, operation, and operation of power cable line projects. A series of reusable specifications, guidelines or characteristic documents formulated and followed throughout life cycle activities such as maintenance are the basic guarantee for the three-dimensional design of power cable line engineering.
  • the three-dimensional digital collaborative design method of power cable line engineering of the present invention takes the establishment of a complete digital design standard system, a series of technical standards and a quality assurance supervision system as a reference, completely separates the traditional design work mode, and reshapes the three-dimensional digital collaborative design process. Clarify the design process and work authority of different professions based on the same work platform at different design stages to ensure a smooth design process and improve design efficiency and quality.
  • the three-dimensional digital collaborative design method of power cable line engineering of the present invention creates a common design platform for the design and cooperation of various disciplines. Different disciplines work in parallel in a uniformly set digital, virtual, and intelligent space. At the same time, The unified geographic information system and 3D information model modeling technology are adopted to realize real-time sharing of multi-discipline model positions and real-time coordination of 3D model information, and improve the efficiency and quality of data exchange between different disciplines.
  • the three-dimensional digital collaborative design method of power cable line engineering of the present invention realizes the distributed storage management of public data, collaborative design data, and engineering business data by establishing a distributed database. Based on different professions and specific permissions, different databases are interoperable and called in real time to improve database operation efficiency .
  • a unified design platform for different disciplines connects different professional design software data from the bottom, realizing real-time sharing of different professional information, real-time collaboration of models, relying on a three-dimensional model, and driving the model through data.
  • the three-dimensional digital collaborative design method of power cable line engineering of the present invention clarifies the design authority of different professions, and at the same time standardizes the process files and finished products of each profession in the design work to adopt a unified digital standard format, and realizes one-time data entry and multiple multiplexing , Facilitate the organization and centralized storage of data and materials, and ensure the accuracy and consistency of relevant drawings and materials.
  • the three-dimensional digital collaborative design method of power cable line engineering of the present invention based on the three-dimensional digital collaborative design platform, can use the information model as the carrier, the GIS as the support, and the database as the basis of the design results, while serving the owner, construction unit, operation and maintenance Units, etc., provide basic data support for the realization of project life cycle management goals.
  • Fig. 1 is a flow chart of the three-dimensional digital collaborative design method for power cable line engineering of the present invention.
  • Fig. 2 is a schematic diagram of cooperation among various disciplines in the preliminary design stage of the present invention.
  • Fig. 3 is a schematic diagram of cooperation among various professions in the construction drawing design stage of the present invention.
  • Fig. 4 is a schematic diagram of cooperation among various professions in the compilation stage of the as-built drawing of the present invention.
  • Fig. 5 is a schematic diagram of distributed database management of the present invention.
  • the invention discloses a three-dimensional digital collaborative design method for power cable line engineering.
  • the method is used for three-dimensional digital collaborative design of power cable line engineering. This method is based on the same collaborative design platform to realize the three-dimensional digital collaborative design of different disciplines in power cable line engineering.
  • Figure 1 is a flow chart of the method, which includes the following:
  • FIG. 2 is a schematic diagram of cooperation among various disciplines in the preliminary design stage of the present invention.
  • the survey major provides survey reports to the electrical and structural majors based on the survey and capital collection, and establishes the basic BIM model of the power structure, and the accuracy can meet the initial design requirements.
  • the electrical professional conducts station entrance route design based on substation (power generation) fund raising, and docking of structure cross-sections and buried depths.
  • the electrical professional conducts wire and communication optical cable selection, grounding design, and establishes a three-dimensional general model of the cross-sectional layout of the wire and communication optical cable structure.
  • the electrical professional confirms the path length, confirms the number of cable loops and the cross-sectional dimensions of the structure according to the long-term planning of the system, and provides funding to the structural, plumbing, and power distribution majors.
  • the electrical major initially confirms the location of the cable manhole, determines the amount of initial materials, the amount of channel clearing works, and raises funds to the technical, economic and structural majors.
  • the plumbing department arranges the location of ventilation shafts and confirms the number of ventilation shafts and the size of the fans according to the funding of the line electrical and power distribution majors.
  • the plumbing major confirms the drainage plan of the structure according to the electrical and structural major.
  • the power distribution major provides reliable power points for the power consumption of ancillary facilities according to line electrical and system funding low-voltage power points.
  • the power distribution major allocates low-voltage lighting power for internal lighting, fans, and comprehensive monitoring equipment in the structure according to the funding of the line electrical and plumbing majors.
  • the structure major draws a list of the cross-section types of structures according to the funding situation of the survey majors and the electrical majors, and establishes a general three-dimensional model of the structure cross-sections.
  • FIG. 3 is a schematic diagram of cooperation among various disciplines in the construction drawing design stage of the present invention.
  • the survey major enters the on-site measurement data into the system, generates a three-dimensional model of the channel, and submits a survey report.
  • the electrical major confirms the exit location and buried depth of the cable structures in the station according to the funding of the substation civil engineering major and the survey major.
  • the electrical major uses the three-dimensional model of the structure to design the cable laying.
  • the electrical major will contribute funds to the structural, plumbing, and power distribution majors in the final version of the path map, ground attachments (amount of drilling and wall removal), the location and number of wells, and cross-sectional dimensions.
  • the plumbing major shall carry out the fire protection, ventilation and drainage design in the structure according to the funding of the electrical major, and increase the number of ventilation shafts and drainage wells to the structural major.
  • the power distribution major designs the interior lighting and integrated monitoring of the structure based on the electrical funding.
  • the structural specialty shall conduct transverse and vertical cross-sectional design based on the funding of electrical, geophysical prospecting, geology, plumbing, etc., and establish three-dimensional cable structures and ancillary structures models.
  • FIG. 4 is a schematic diagram of cooperation among various disciplines in the compilation stage of the as-built drawing of the present invention.
  • the multi-discipline integrated work platform is a multi-discipline working in parallel in a unified virtual intelligent space to carry out collaborative design, using unified geographic information system and three-dimensional information model modeling technology to achieve different Real-time sharing of professional model positions and real-time collaboration of 3D model information.
  • the design results of the majors are transparent to each other, real-time display, implementation sharing, and implementation collaboration according to different levels. Improve the efficiency and quality of data exchange between different majors.
  • the first part is a basic public database, which uses SQLSever database storage, which is mainly used for storage, scheduling and query of basic geographic information data and basic model data;
  • the second part is a collaborative design database.
  • the MySQL database is mainly used to manage the process data and result data of collaborative design;
  • the third part is the engineering business database, which is developed based on NoSQL theory and can be quickly deployed locally, which meets the business needs of the field design work of power cable line engineering.
  • FIG. 5 is a schematic diagram of the distributed database of the present invention.
  • Data circulation and professional penetration in the digital design platform mainly depend on the establishment of a unified database data management system.
  • the data loss problem caused by the design business circulation process can be effectively avoided.
  • Platform database data does not provide external access interfaces, and all data interactions need to be forwarded through the corresponding server.
  • the engineering data and basic geographic information data are forwarded by an FTP file server, and the data is encrypted by the server and downloaded directly to the local client for use.
  • the data of the business database is accessed and operated in the form of interfaces using Web services.
  • the data generated by the project design participants are uploaded to the server through the system bus and finally stored in the database.
  • any other professional collaborative workers need to access relevant data, they first need to be authenticated by the server authority, and then use the interface provided by the server to obtain the corresponding data from the database.
  • the entire data interaction process is synchronized to generate an operation log during the server forwarding process and recorded in the business database to complete the entire monitoring of the collaborative design process.
  • the design authority of different professions is clarified, and at the same time, the process documents and finished documents of each profession in the design work are standardized to adopt a unified digital standard format, which realizes one-time data entry and multiple reuse, which facilitates the organization of data materials And centralized storage ensures the accuracy and consistency of relevant drawings and documents.
  • the three-dimensional collaborative design results of the present invention serve the entire life cycle.
  • the unified digitization of funding data and result data has more obvious advantages in the transfer of final results.
  • the owner With the development of smart grid + ubiquitous power Internet of Things, the owner’s detailed procedures and traceability requirements for design-related materials are proposed. It will be more urgent.
  • the three-dimensional information model runs through the entire life cycle of project construction to meet the needs of collaborative work, improve the quality and efficiency of finished products, effectively make up for the lack of two-dimensional space design, serve all stages of project construction, and improve the overall efficiency of project construction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Data Mining & Analysis (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Engineering & Computer Science (AREA)
  • Marketing (AREA)
  • Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种电力电缆线路工程三维数字化协同设计方法,属于电力电缆线路工程技术领域。具体如下,1、设计基于三维数字化协同设计的工作流程,规范设计工作中不同专业不同设计阶段工作流程;2、基于统一的地理信息***和统一的三维信息模型建模技术,构建多专业一体化的数字化协同设计平台;3、利用云计算和大数据技术,建立公共数据库、协同设计数据库、工程业务数据库,进行实时数据储存与共享;4、以三维数字化信息模型为基础,打通不同专业软件之间数据实时流通路径;5、明确不同设计专业权限,明确不同专业设计成果数据的格式统一标准化,实现多专业协同设计;6、三维设计成果同时服务于业主单位、施工单位、运维单位。

Description

一种电力电缆线路工程三维数字化协同设计方法 技术领域
本发明涉及一种电力电缆线路工程三维数字化协同设计方法,属于电力电缆线路工程技术领域。
背景技术
随着电网的不断发展,特别是特高压网架的形成,国网公司提出“三型两网、世界一流”战略目标。“三型两网”战略的本质是基于互联网思维,发挥电网的枢纽作用,推动坚强智能电网与泛在电力物联网协同并进,构成能源互联网平台,带动产业链上下游和全社会共享发展成果,全面体现了开放、合作、共赢的新思维、新理念。基础设施、城市的数字化和智能化,必将以电力电缆线路工程的三维数字化为基础,且对电网三维数据需求日益迫切。
现行电力电缆线路工程的实施涉及到前期规划、设计,后期的施工、运维,涉及到多个专业、多个部门。特别是前期设计工作中需要多专业间相互配合,共同完成设计任务,由于传统设计中各专业间基础信息交互不畅,协同性、继承性不足,导致设计质量和效率不高,如此状况比如在智慧城市雄安新区的建设中显得尤为突出。
鉴于以上突出问题,很有必要提出一种全新高效的电力电缆线路工程的协同设计方法,在提高电力电缆线路设计工作中不同专业之间基础信息交互效率前提下,亦可满足基础信息在设计环境中的开放、共享、传承要求,提高整体工程设计效率及质量。同时包含设计属性的三维设计成果以信息化模型形式同时服务于业主单位、施工单位、运维单位,实现“一发三收”的目标,满足项目全寿命周期设计管理,有力推动三维信息模型在电网全寿命周期管理中开展应用。
三维协同数字化设计技术是一个多专业、多阶段、多参与方的过程,与传 统设计技术的主要区别在于,以数据为基础实现了工程模型及信息模型的融合统一,以协同设计为手段实现了信息资源的开放、共享、传承。
三维数字化设计覆盖工程规划选线、可行性研究、招投标、初步设计、施工图设计、竣工图编制等阶段,可完成各阶段内的地理信息资料信息化、路径选择优化、设计成果统计查询、经济指标估算、数字化移交等功能,较大提高咨询设计服务水平。三维数字化设计是以数据库为核心,以三维模型为依托,通过数据驱动模型,直接进行三维布置,从三维提取二维图纸和数据。三维数字化设计具有精准、直观、高效的优点,提高了设计单位为工程建设延伸增值服务能力。
数字化的协同应包含信息协同及设计***两个方面:
信息协同:
主要指工程管理信息协同,包括基本信息、流程结构、属性设置、图纸存贮、版本管理、流转校审、进度管理等。目的是以设计流程为基础,从项目的进入到中间过程再到完成归档,施行全面的动态管理。
设计协同:
指工程设计过程中的协同,主要包括公共资源、互提资料、警醒机制、***信息、信息交流和项目漫游等。目的是提供工程设计成员资源共享、信息共享、互帮互助等功能,提高工作质量及工作效率。如软硬碰撞检查、虚拟模型资料交接等都属于此范围内。
发明内容
本发明的目的是提供一种电力电缆线路工程三维数字化协同设计方法,实现电力电缆线路工程设计工作中的信息协同和设计协同,基于“一个设计平台、一个模型、一个数据结构”理念,以数据为核心,以工程为纽带,以三维信息模型为基础,整合各类数据资源,构建电力电缆工程三维可视化走廊,建设服务于电网工程的可研、初设、施工图设计、竣工图设计各阶段的数字化协同设 计平台,基于三维设计平台,实现设计实时协作,信息实时共享,最终形成全专业同步开展互利协作的一种工程设计模式,提高设计效率和质量,同时设计成果同时服务于业主单位、施工单位、运维单位,推进工程建设技术的不断创新,提高工程建设质量及工程整体效益。
为了实现上述目的,本发明采用的技术方案是:
一种电力电缆线路工程三维数字化协同设计方法,包括以下工作内容,
1)、设计基于三维数字化协同设计的工作流程,规范设计工作中不同专业不同设计阶段工作流程;
2)、基于统一的地理信息***和统一的三维信息模型建模技术,构建多专业一体化的数字化协同设计平台;
3)、利用云计算和大数据技术,建立公共数据库、协同设计数据库、工程业务数据库,进行实时数据储存与共享;
4)、以三维数字化信息模型为基础,打通不同专业软件之间数据实时流通路径;
5)、明确不同设计专业权限,明确不同专业设计成果数据的格式统一标准化,实现多专业协同设计;
6)、三维设计成果以信息化模型形式同时服务于业主单位、施工单位、运维单位。
本发明技术方案的进一步改进在于:步骤1)中的设计工作不同阶段包括可行性研究阶段,初步设计阶段,施工图设计阶段,竣工图编制阶段;不同专业分为地理信息***设计、路径设计、线路电气设计、线路结构设计、水暖专业设计、配电专业设计、消防专业设计、技经专业设计。
本发明技术方案的进一步改进在于:步骤2)中的多专业一体化数字化协同设计平台,采用统一的地理信息***及三维信息模型建模技术,实现不同专业模型位置实时共享、三维模型信息实时协同。
本发明技术方案的进一步改进在于:步骤3)中的建立分布式数据库,包括基础公共数据库、协同设计数据库、工程业务数据库分布建立;
第一部分是基础公共数据库,采用SQLSever数据库存储,主要用于基础地理信息数据、基础模型数据的存储、调度和查询;第二部分是协同设计数据库,采用MySQL数据库,主要用于管理协同设计的过程数据和成果数据;第三部分是工程业务数据库,基于NoSQL理论开发,可快速进行本地部署,符合电力电缆线路工程外业设计工作的业务需求。
本发明技术方案的进一步改进在于:步骤4)中的不同专业统一设计平台将不同专业设计软件数据从底层打通,实现不同专业信息实时共享,模型实时协同,以三维模型为依托,通过数据驱动模型,直接进行三维布置,从三维模型实时提取二维图纸和数据。
本发明技术方案的进一步改进在于:步骤5)中的设计不同专业权限是在设计过程中在同一平台下,不同设计专业具备设计本专业任务的权限;统一标准化是设计工作中各专业的过程文件和成品文件均采用统一的数字化标准格式。
本发明技术方案的进一步改进在于:初步设计阶段工作流程如下,
(1)了解电网规划,本线路工程起讫点,工程概况等基本信息;
(2)根据可研情况,进行室内方案初选,并进行专业评审;
(3)进行现场踏勘,收资并办理相关协议,根据现场情况对路径方案进行调整;
(4)勘测专业根据踏勘及收资情况,向电气及结构专业提供勘测报告,并建立电力构筑物基本BIM模型,精度满足初设要求即可;
(5)电气专业根据变/发电提资进行站口路径设计,构筑物断面及埋深对接;
(6)电气专业根据通信、***、勘测专业提资情况,进行导线、通信光缆 选型,接地设计,并建立导线、通信光缆构筑物断面布置的三维通用模型;
(7)电气专业确认路径长度,根据***远期规划确认构筑物断面内电缆回路数及断面尺寸,并提资给结构、水暖、配电专业;
(8)电气专业初步确认电缆工井位置,确定初设材料量,通道清理工程量,并提资给技经、结构专业;
(9)水暖专业根据线路电气、配电专业提资布置通风井位置及确认通风井数量及风机大小;水暖专业根据电气及结构专业确认构筑物排水方案;
(10)配电专业根据线路电气、***提资低压电源点为附属设施用电提供可靠电源点;配电专业根据线路电气、水暖专业提资配置构筑物内部照明、风机、综合监控设备低压照明用电;
(11)结构专业根据勘测专业、电气专业提资情况,绘制构筑物断面型式一览图,并建立构筑物断面通用三维模型;
(12)结构专业计算初设材料量,并提资给技经专业;
(13)技经专业根据电气、结构、水暖、配电专业提资生成初设概算书。
本发明技术方案的进一步改进在于:施工图设计阶段工作流程如下,
(1)在三维选线***中调取电网GIS数据、基础地理信息数据选定路径方案;
(2)勘测人员进行现场测量、钻探的工作;
(3)勘测专业将现场测量数据录入***,生成通道三维模型,提交勘测报告;
(4)电气专业根据变电土建专业、测量专业提资确认站内电缆构筑物出站位置及埋深;
(5)电气专业利用构筑物三维模型进行电缆敷设设计;
(6)电气专业进行接地设计;
(7)电气专业将终版路径图、地面附着物、钻越及开挖拆墙量、工井位置 及数量、断面尺寸等提资给结构、水暖、配电专业;
(8)水暖专业根据电气专业提资进行构筑物内防火、通风、排水设计,并将通风井、排水井位置数量提资给结构专业;
(9)配电专业根据电气提资对构筑物内照明、综合监控进行设计;
(10)结构专业根据电气、物探、地质、水暖等专业提资进行横纵断面设计,建立三维电缆构筑物及附属构筑物模型;
(11)各专业生成材料量提资给技经专业;
(12)技经专业生成施工图预算;
(13)各专业根据出图规定,出版本专业施工图纸及相关报告。
本发明技术方案的进一步改进在于:竣工图编制阶段工作流程如下,
(1)从数据库调取地理信息数据、电网专题数据和施工图阶段工程数据;
(2)各专业根据设计变更情况调整施工图纸和线路三维模型;
(3)各专业出版竣工总说明及图纸,将工程数据、图纸等保存至成品数据库;
(4)完成数字化移交服务全寿命周期。
由于采用了上述技术方案,本发明取得的技术效果有:
本发明的电力电缆线路工程三维数字化协同设计方法,是新一代数字化、虚拟化、智能化设计平台的基础。它是建立在平面和二维设计的基础上,让设计目标更立体化、更形象化的一种新兴设计方法。可为设计在经历手工画板、CAD制图后的第三次设计技术革命提供相应设计规范、管理规范的三维设计标准化体系,是为支撑电力电缆线路工程三维设计、移交,以及规划、建设、运行、检修等全寿命周期活动,所制定和遵守的一系列可重复使用的规范、导则或特性文件,是电力电缆线路工程三维设计的基础保障。
本发明的电力电缆线路工程三维数字化协同设计方法,以建立完善的数字化设计标准体系、系列技术标准及质量保证监督体系为参考,完全分离传统设 计工作模式,重塑三维数字化协同设计流程。明确不同专业在不同设计阶段基于同一工作平台的设计流程,工作权限,保证流畅设计过程,提高设计效率与质量。
本发明的电力电缆线路工程三维数字化协同设计方法,为各专业间设计和配合创造了一个共同的设计平台,不同专业在一个统一设定的数字化、虚拟化、智能化空间内并行工作,同时,采用统一的地理信息***及三维信息模型建模技术,实现多专业模型位置实时共享、三维模型信息实时协同,提高不同专业之间数据互通效率及质量。
本发明的电力电缆线路工程三维数字化协同设计方法,通过建立分布式数据库,实现公共数据、协同设计数据、工程业务数据分布储存管理,基于不同专业特定权限,不同数据库实时互通调用,提高数据库运转效率。
本发明的电力电缆线路工程三维数字化协同设计方法,不同专业统一设计平台将不同专业设计软件数据从底层打通,实现不同专业信息实时共享,模型实时协同,以三维模型为依托,通过数据驱动模型,直接进行三维布置,从三维模型实时提取二维图纸和数据,实现“所见即所得”,保证设计质量。
本发明的电力电缆线路工程三维数字化协同设计方法,对不同专业设计权限进行明确,同时规范设计工作中各专业的过程文件和成品文件采用统一的数字化标准格式,实现数据的一次录入多次复用,方便数据资料的组织和集中存放,保证了相关图纸资料的准确性、一致性。
本发明的电力电缆线路工程三维数字化协同设计方法,基于三维数字化协同设计平台可将设计成果以信息化模型为载体,以GIS为支撑,数据库为基础,同时服务于业主单位、施工单位、运维单位等,为工程全寿命周期管理目标的实现提供基础数据支撑。
附图说明
图1是本发明的电力电缆线路工程三维数字化协同设计方法的流程图。
图2是本发明的初步设计阶段各专业间配合示意图。
图3是本发明的施工图设计阶段各专业间配合示意图。
图4是本发明的竣工图编制阶段各专业间配合示意图。
图5是本发明的分布式数据库管理示意图。
具体实施方式
下面结合附图及具体实施例对本发明做进一步详细说明:
本发明公开了一种电力电缆线路工程的三维数字化协同设计方法,该方法用于电力电缆线路工程三维数字化协同设计。该方法基于同一的协同设计平台,实现电力电缆线路工程不同专业的三维数字化协同设计。
图1为该方法的流程图,该方法包括以下内容:
1)、建立有效的三维设计组织体系,编制三维设计管理制度及三维设计质量保障体系,规范设计工作质量。
“质量规范,制度先行”,在本发明技术方案中,结合电力电缆线路工程三维数字化协同设计特点,制定和遵守的一系列可重复使用的规范、导则或特性文件,以此支撑电力电缆线路工程三维设计、移交,以及规划、基建、运行、检修等全寿命周期活动。
结合三维数字化协同设计特性,制定区别于传统设计的规程、规范及质量保证体系,保证三维数字化协同设计过程有据可依,三维数字化协同设计成果有据可查。
2)、打破传统二维设计工作模式,重塑基于三维数字化协同设计的设计流程,规范设计工作中不同专业不同设计阶段工作流程。
以建立完善的数字化设计标准体系及系列技术标准及质量保证监督体系为参考,打破传统设计工作模式,重塑三维数字化协同设计流程。明确不同专业在不同设计阶段基于同一工作平台的设计流程及工作权限,保证流畅设计过程,提高设计效率与质量。
具体的,图2是本发明的初步设计阶段各专业间配合示意图。
设计流程说明:
(1)了解电网规划,本线路工程起讫点,工程概况等基本信息。
(2)根据可研情况,进行室内方案初选,并进行专业评审。
(3)进行现场踏勘,收资并办理相关协议,根据现场情况对路径方案进行调整。
(4)勘测专业根据踏勘及收资情况,向电气及结构专业提供勘测报告,并建立电力构筑物基本BIM模型,精度满足初设要求即可。
(5)电气专业根据变电(发电)提资进行站口路径设计,构筑物断面及埋深对接。
(6)电气专业根据通信、***、勘测专业提资情况,进行导线、通信光缆选型,接地设计,并建立导线、通信光缆构筑物断面布置的三维通用模型。
(7)电气专业确认路径长度,根据***远期规划确认构筑物断面内电缆回路数及断面尺寸,并提资给结构、水暖、配电专业。
(8)电气专业初步确认电缆工井位置,确定初设材料量,通道清理工程量,并提资给技经、结构专业。
(9)水暖专业根据线路电气、配电专业提资布置通风井位置及确认通风井数量及风机大小。水暖专业根据电气及结构专业确认构筑物排水方案。
(10)配电专业根据线路电气、***提资低压电源点为附属设施用电提供可靠电源点。配电专业根据线路电气、水暖专业提资配置构筑物内部照明、风机、综合监控设备低压照明用电。
(11)结构专业根据勘测专业、电气专业提资情况,绘制构筑物断面型式一览图,并建立构筑物断面通用三维模型。
(12)结构专业计算初设材料量,并提资给技经专业。
(13)技经专业根据电气、结构、水暖、配电专业提资生成初设概算书。
进一步地,图3是本发明的施工图设计阶段各专业间配合示意图。
设计流程说明:
(1)在三维选线***中调取电网GIS数据、基础地理信息数据选定路径方案等。
(2)勘测人员进行现场测量、钻探等工作。
(3)勘测专业将现场测量数据录入***,生成通道三维模型,提交勘测报告。
(4)电气专业根据变电土建专业、测量专业提资确认站内电缆构筑物出站位置及埋深。
(5)电气专业利用构筑物三维模型进行电缆敷设设计。
(6)电气专业进行接地设计。
(7)电气专业将终版路径图、地面附着物(钻越及开挖拆墙量)、工井位置及数量、断面尺寸等提资给结构、水暖、配电专业。
(8)水暖专业根据电气专业提资进行构筑物内防火、通风、排水设计,并将通风井、排水井位置数量提资给结构专业。
(9)配电专业根据电气提资对构筑物内照明、综合监控进行设计。
(10)结构专业根据电气、物探、地质、水暖等专业提资进行横纵断面设计,建立三维电缆构筑物及附属构筑物模型。
(11)各专业生成材料量提资给技经专业。
(12)技经专业生成施工图预算。
(13)各专业根据出图规定,出版本专业施工图纸及相关报告。
进一步地,图4是本发明的竣工图编制阶段各专业间配合示意图。
竣工图阶段流程说明:
(1)从数据库调取地理信息数据、电网专题数据和施工图阶段工程数据。
(2)各专业根据设计变更情况调整施工图纸和线路三维模型。
(3)各专业出版竣工总说明及图纸,将工程数据、图纸等保存至成品数据库。
(4)完成数字化移交服务全寿命周期。
3)、基于统一的地理信息***和统一的建模技术,构建多专业一体化的工作平台
在本发明技术方案中,多专业一体化的工作平台是多专业并行工作在一个统一设定的虚拟智能化空间内开展协同设计,采用统一的地理信息***及三维信息模型建模技术,实现不同专业模型位置实时共享、三维模型信息实时协同。专业间设计成果按照不同的级别互相透明、实时展现、实施共享、实施协同。提高不同专业之间数据互通效率及质量。
4)、利用云计算和大数据技术,建立基础公共数据库、协同设计数据库、工程业务数据库,进行实时数据储存与共享。基于不同专业特定权限,不同数据库实时互通调用,提高工作效率。
在本发明技术方案中,建立分布式数据库,第一部分是基础公共数据库,采用SQLSever数据库存储,主要用于基础地理信息数据、基础模型数据的存储、调度和查询;第二部分是协同设计数据库,采用MySQL数据库,主要用于管理协同设计的过程数据和成果数据等;第三部分是工程业务数据库,基于NoSQL理论开发,可快速进行本地部署,符合电力电缆线路工程外业设计工作的业务需求。
具体的,图5是本发明的分布式数据库示意图。
数字化设计平台中的数据流转和专业贯通主要依赖于建立统一的数据库数据管理体系。通过将原本离散的设计数据和业务数据存储在搭建与服务器的数据库中可以有效的避免在设计业务流转过程中导致的数据丢失问题。使用Web Service实现客户端与服务器数据库之间的数据交换。
平台数据库数据均不提供对外访问接口,所有数据交互需要通过对应的服 务器进行转发。其中工程数据和基础地理信息数据采用FTP文件服务器进行转发,数据经服务器加密后直接下载到本地客户机进行使用。业务数据库的数据使用Web服务以接口形式进行访问和操作。
项目设计参与人员的所产生的数据都通过***总线上传到服务器并最终存储在数据库中。任何其他专业协同工作人员需要访问相关数据时首先需要经过服务器权限认证,然后利用服务器提供的接口从数据库中获取相应的数据。整个数据交互过程在经过服务器转发的过程中同步产生操作日志并记录在业务数据库中完成对协同设计过程的全程监控。
5)、以三维数字化模型为基础,基于不同专业统一的协同设计平台,将不同专业软件数据从底层打通,实现不同专业统一平台协同设计及数据高效流通。
在本发明技术方案中,不同专业从数据从底层打通,在虚拟化、智能化、统一化的环境下利用已有的数据库进行本专业的详细设计,实现不同专业信息实时共享、模型实时协同,无论各专业部门地处何处,只要能够联入设计平台,就可以及时高效地在相互关联的工具软件内开展工作。以三维模型为依托,通过数据驱动模型,直接进行三维布置,从三维模型实时提取二维图纸和数据,实现“所见即所得”,保证设计质量。
6)、明确不同设计专业权限,明确不同专业设计成果数据的格式统一标准化,实现多专业协同设计。
在本发明技术方案中,对不同专业设计权限进行明确,同时规范设计工作中各专业的过程文件和成品文件采用统一的数字化标准格式,实现数据的一次录入多次复用,方便数据资料的组织和集中存放,保证了相关图纸资料的准确性、一致性。
7)、三维数字化协同设计成果,通过数字化移交同时服务于工程业主单位、施工单位、运维单位服务工程建设全寿命周期。服务工程建设全寿命周期管理,提升工程建设整体效益。
进一步的,本发明的三维协同设计成果服务于全寿命周期。提资数据和结果数据的统一数字化在最终成果的移交上有更加明显的优势,随着智能化电网+泛在电力物联网建设目标的提出业主方对设计相关资料的详细程序和可追溯性要求会更加迫切,同时三维信息化模型贯穿于工程建设全寿命周期,满足协同化工作需求,提高成品质量与效率,有效弥补二维空间设计不足,服务工程建设全阶段,提高工程建设整体效益。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (9)

  1. 一种电力电缆线路工程三维数字化协同设计方法,其特征在于:包括以下工作内容,
    1)、设计基于三维数字化协同设计的工作流程,规范设计工作中不同专业不同设计阶段工作流程;
    2)、基于统一的地理信息***和统一的三维信息模型建模技术,构建多专业一体化的数字化协同设计平台;
    3)、利用云计算和大数据技术,建立公共数据库、协同设计数据库、工程业务数据库,进行实时数据储存与共享;
    4)、以三维数字化信息模型为基础,打通不同专业软件之间数据实时流通路径;
    5)、明确不同设计专业权限,明确不同专业设计成果数据的格式统一标准化,实现多专业协同设计;
    6)、三维设计成果以信息化模型形式同时服务于业主单位、施工单位、运维单位。
  2. 根据权利要求1所述的一种电力电缆线路工程三维数字化协同设计方法,其特征在于:步骤1)中的设计工作不同阶段包括可行性研究阶段,初步设计阶段,施工图设计阶段,竣工图编制阶段;不同专业分为地理信息***设计、路径设计、线路电气设计、线路结构设计、水暖专业设计、配电专业设计、消防专业设计、技经专业设计。
  3. 根据权利要求1所述的一种电力电缆线路工程三维数字化协同设计方法,其特征在于:步骤2)中的多专业一体化数字化协同设计平台,采用统一的地理信息***及三维信息模型建模技术,实现不同专业模型位置实时共享、三维模型信息实时协同。
  4. 根据权利要求1所述的一种电力电缆线路工程三维数字化协同设计方法,其特征在于:步骤3)中的建立分布式数据库,包括基础公共数据库、协 同设计数据库、工程业务数据库分布建立;
    第一部分是基础公共数据库,采用SQLSever数据库存储,主要用于基础地理信息数据、基础模型数据的存储、调度和查询;第二部分是协同设计数据库,采用MySQL数据库,主要用于管理协同设计的过程数据和成果数据;第三部分是工程业务数据库,基于NoSQL理论开发,可快速进行本地部署,符合电力电缆线路工程外业设计工作的业务需求。
  5. 根据权利要求1所述的一种电力电缆线路工程三维数字化协同设计方法,其特征在于:步骤4)中的不同专业统一设计平台将不同专业设计软件数据从底层打通,实现不同专业信息实时共享,模型实时协同,以三维模型为依托,通过数据驱动模型,直接进行三维布置,从三维模型实时提取二维图纸和数据。
  6. 根据权利要求1所述的一种电力电缆线路工程三维数字化协同设计方法,其特征在于:步骤5)中的设计不同专业权限是在设计过程中在同一平台下,不同设计专业具备设计本专业任务的权限;统一标准化是设计工作中各专业的过程文件和成品文件均采用统一的数字化标准格式。
  7. 根据权利要求2所述的一种电力电缆线路工程三维数字化协同设计方法,其特征在于:初步设计阶段工作流程如下,
    (1)了解基本信息包括电网规划,本线路工程起讫点;
    (2)根据可研情况,进行室内方案初选,并进行专业评审;
    (3)进行现场踏勘,收资并办理相关协议,根据现场情况对路径方案进行调整;
    (4)勘测专业根据踏勘及收资情况,向电气及结构专业提供勘测报告,并建立电力构筑物基本BIM模型,精度满足初设要求即可;
    (5)电气专业根据变/发电提资进行站口路径设计,构筑物断面及埋深对接;
    (6)电气专业根据通信、***、勘测专业提资情况,进行导线、通信光缆选型,接地设计,并建立导线、通信光缆构筑物断面布置的三维通用模型;
    (7)电气专业确认路径长度,根据***远期规划确认构筑物断面内电缆回路数及断面尺寸,并提资给结构、水暖、配电专业;
    (8)电气专业初步确认电缆工井位置,确定初设材料量,通道清理工程量,并提资给技经、结构专业;
    (9)水暖专业根据线路电气、配电专业提资布置通风井位置及确认通风井数量及风机大小;水暖专业根据电气及结构专业确认构筑物排水方案;
    (10)配电专业根据线路电气、***提资低压电源点为附属设施用电提供可靠电源点;配电专业根据线路电气、水暖专业提资配置构筑物内部照明、风机、综合监控设备低压照明用电;
    (11)结构专业根据勘测专业、电气专业提资情况,绘制构筑物断面型式一览图,并建立构筑物断面通用三维模型;
    (12)结构专业计算初设材料量,并提资给技经专业;
    (13)技经专业根据电气、结构、水暖、配电专业提资生成初设概算书。
  8. 根据权利要求2所述的一种电力电缆线路工程三维数字化协同设计方法,其特征在于:施工图设计阶段工作流程如下,
    (1)在三维选线***中调取电网GIS数据、基础地理信息数据选定路径方案;
    (2)勘测人员进行现场测量、钻探的工作;
    (3)勘测专业将现场测量数据录入***,生成通道三维模型,提交勘测报告;
    (4)电气专业根据变电土建专业、测量专业提资确认站内电缆构筑物出站位置及埋深;
    (5)电气专业利用构筑物三维模型进行电缆敷设设计;
    (6)电气专业进行接地设计;
    (7)电气专业将终版路径图、地面附着物、钻越及开挖拆墙量、工井位置及数量、断面尺寸,以上提资给结构、水暖、配电专业;
    (8)水暖专业根据电气专业提资进行构筑物内防火、通风、排水设计,并将通风井、排水井位置数量提资给结构专业;
    (9)配电专业根据电气提资对构筑物内照明、综合监控进行设计;
    (10)结构专业根据电气、物探、地质、水暖的专业提资进行横纵断面设计,建立三维电缆构筑物及附属构筑物模型;
    (11)各专业生成材料量提资给技经专业;
    (12)技经专业生成施工图预算;
    (13)各专业根据出图规定,出版本专业施工图纸及相关报告。
  9. 根据权利要求2所述的一种电力电缆线路工程三维数字化协同设计方法,其特征在于:竣工图编制阶段工作流程如下,
    (1)从数据库调取地理信息数据、电网专题数据和施工图阶段工程数据;
    (2)各专业根据设计变更情况调整施工图纸和线路三维模型;
    (3)各专业出版竣工总说明及图纸,将工程数据、图纸保存至成品数据库;
    (4)完成数字化移交服务全寿命周期。
PCT/CN2020/122106 2019-12-19 2020-10-20 一种电力电缆线路工程三维数字化协同设计方法 WO2021120821A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911319682.1A CN111210189A (zh) 2019-12-19 2019-12-19 一种电力电缆线路工程三维数字化协同设计方法
CN201911319682.1 2019-12-19

Publications (1)

Publication Number Publication Date
WO2021120821A1 true WO2021120821A1 (zh) 2021-06-24

Family

ID=70789222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122106 WO2021120821A1 (zh) 2019-12-19 2020-10-20 一种电力电缆线路工程三维数字化协同设计方法

Country Status (2)

Country Link
CN (1) CN111210189A (zh)
WO (1) WO2021120821A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111210189A (zh) * 2019-12-19 2020-05-29 中国电建集团河北省电力勘测设计研究院有限公司 一种电力电缆线路工程三维数字化协同设计方法
CN111798117B (zh) * 2020-06-29 2024-02-02 国家电网有限公司 对变电站三维设计通用模型发布进行管理的***和方法
CN112036759A (zh) * 2020-09-04 2020-12-04 国网山西省电力公司经济技术研究院 一种电网工程物资清单编报方法及***
CN112650160A (zh) * 2020-11-30 2021-04-13 青岛鸿瑞电力工程咨询有限公司 基于电厂数字全生命周期的设计施工一体化平台设计方法
CN112528373B (zh) * 2020-12-09 2023-04-11 四川蓉信开工程设计有限公司 基于bim的水处理工程专业间交互和协同设计方法
CN112528374A (zh) * 2020-12-09 2021-03-19 四川蓉信开工程设计有限公司 水处理工程设计***
CN112613849A (zh) * 2020-12-30 2021-04-06 南昌路兴交通工程监理咨询有限公司 一种基于bim的工程监理信息管理方法
CN113536001A (zh) * 2021-07-28 2021-10-22 广东电网有限责任公司 确定目标显示信息的方法以及装置
CN113655507A (zh) * 2021-08-03 2021-11-16 中铁第一勘察设计院集团有限公司 基于bim实景与卫星定位技术的光缆断点精确定位方法
CN113868738B (zh) * 2021-09-16 2024-06-28 中国电建集团河北省电力勘测设计研究院有限公司 一种变电站倾斜悬吊式管母线的三维设计方法
CN114118977A (zh) * 2021-12-06 2022-03-01 中科智领(青岛)数字科技有限公司 基于Revit的同步中心模型校审信息的数据处理方法
CN114186984B (zh) * 2022-02-17 2022-05-06 中国建筑西南设计研究院有限公司 一种建筑设计企业二三维一体化协同设计***
CN114722467A (zh) * 2022-03-31 2022-07-08 中国电建集团河北省电力勘测设计研究院有限公司 一种基于三维数字化设计的输电线路基坑验槽方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104008218A (zh) * 2013-02-27 2014-08-27 河南省电力勘测设计院 电力工程三维一体化设计平台
CN104835079A (zh) * 2015-04-28 2015-08-12 国网上海市电力公司 一种基于bim和gis的变电站模型构建方法
US20180253085A1 (en) * 2017-03-06 2018-09-06 Korea Institute Of Ocean Science & Technology Integrated solution for simulation-based production of ships and offshore plants
CN108647931A (zh) * 2018-04-08 2018-10-12 中国电建集团河北省电力勘测设计研究院有限公司 一种特高压输电线路的数字化协同设计方法
CN108764812A (zh) * 2018-04-08 2018-11-06 中国电建集团河北省电力勘测设计研究院有限公司 一种特高压输电线路的数字化设计方法
CN108846644A (zh) * 2018-06-22 2018-11-20 中船第九设计研究院工程有限公司 一种一体化集成仿真技术、协同工作、知识管理和项目管理的管控***
CN111210189A (zh) * 2019-12-19 2020-05-29 中国电建集团河北省电力勘测设计研究院有限公司 一种电力电缆线路工程三维数字化协同设计方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103646154A (zh) * 2013-12-25 2014-03-19 上海交通大学 三维数字化总装工艺协同设计***
CN105005676A (zh) * 2015-08-13 2015-10-28 国网上海市电力公司 一种基于电缆工程信息模型的三维设计方法
CN105488850B (zh) * 2015-11-27 2018-07-27 中国电建集团成都勘测设计研究院有限公司 一种基于信息互通的专业间三维设计协同方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104008218A (zh) * 2013-02-27 2014-08-27 河南省电力勘测设计院 电力工程三维一体化设计平台
CN104835079A (zh) * 2015-04-28 2015-08-12 国网上海市电力公司 一种基于bim和gis的变电站模型构建方法
US20180253085A1 (en) * 2017-03-06 2018-09-06 Korea Institute Of Ocean Science & Technology Integrated solution for simulation-based production of ships and offshore plants
CN108647931A (zh) * 2018-04-08 2018-10-12 中国电建集团河北省电力勘测设计研究院有限公司 一种特高压输电线路的数字化协同设计方法
CN108764812A (zh) * 2018-04-08 2018-11-06 中国电建集团河北省电力勘测设计研究院有限公司 一种特高压输电线路的数字化设计方法
CN108846644A (zh) * 2018-06-22 2018-11-20 中船第九设计研究院工程有限公司 一种一体化集成仿真技术、协同工作、知识管理和项目管理的管控***
CN111210189A (zh) * 2019-12-19 2020-05-29 中国电建集团河北省电力勘测设计研究院有限公司 一种电力电缆线路工程三维数字化协同设计方法

Also Published As

Publication number Publication date
CN111210189A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
WO2021120821A1 (zh) 一种电力电缆线路工程三维数字化协同设计方法
Migilinskas et al. The benefits, obstacles and problems of practical BIM implementation
Ding et al. Using nD technology to develop an integrated construction management system for city rail transit construction
CN111369158A (zh) 一种基于bim的信息化质量管理方法和***
CN109388902A (zh) 一种应用bim技术的场地布置施工方法
CN104143127A (zh) 一种基于cim的配电网三图联动处理方法
CN108647931A (zh) 一种特高压输电线路的数字化协同设计方法
CN117391282A (zh) 一种基于bim+gis技术下的智慧城市规划管理方法
CN202870564U (zh) 一种数字矿山安全生产局域网***
Hui New opportunities of using building information modelling (BIM) for green buildings
Yang et al. Research on the application of BIM-based green construction management in the whole life cycle of hydraulic engineering
CN115018458A (zh) 一种基于bim技术的面向变电站工程施工计划优化方法
Li et al. Application of BIM technology in green building engineering construction
Ma et al. Study on the application of BIM technology in construction projects under IPD mode
Huang et al. Research on 4D Visual BIM Technology in Dynamic Decora-tion Building Site Construction
Li et al. Application of building information modeling in the project management life cycle
Guo et al. Research on digital management system of transport infrastructure in the era of big data
Wu et al. Research on fine management of construction project based on BIM5D technology
Peng et al. Application of Building Information Modeling (BIM) technology in the quality management of prefabricated buildings
Yuan et al. City information modeling and the sustainable city: now and beyond
Liu et al. Identify information exchanges by mapping and analyzing the integrated heating, ventilating, and air conditioning (HVAC) design process
CN113408821B (zh) 一种配电网规划、工询管理方法
Li et al. Design and application of prefabricated substation based on BIM technology
AU2021105175A4 (en) Auxiliary planning auditing method for underground pipelines based on three-dimensional GIS technology
Chen et al. Review of Research and Application of BIM-GIS Integration in the Civil Engineering Industry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903081

Country of ref document: EP

Kind code of ref document: A1