WO2021120768A1 - 一种腔光机械振动陀螺 - Google Patents

一种腔光机械振动陀螺 Download PDF

Info

Publication number
WO2021120768A1
WO2021120768A1 PCT/CN2020/117667 CN2020117667W WO2021120768A1 WO 2021120768 A1 WO2021120768 A1 WO 2021120768A1 CN 2020117667 W CN2020117667 W CN 2020117667W WO 2021120768 A1 WO2021120768 A1 WO 2021120768A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring cavity
driving
cavity
sensitive
mechanical
Prior art date
Application number
PCT/CN2020/117667
Other languages
English (en)
French (fr)
Inventor
刘宇
路永乐
杨慧慧
邸克
邹新海
方针
卜继军
杨勇
付乐乐
Original Assignee
重庆邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆邮电大学 filed Critical 重庆邮电大学
Priority to US17/272,944 priority Critical patent/US11415417B2/en
Publication of WO2021120768A1 publication Critical patent/WO2021120768A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/567Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode
    • G01C19/5677Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators
    • G01C19/5684Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/66Ring laser gyrometers
    • G01C19/661Ring laser gyrometers details
    • G01C19/665Ring laser gyrometers details control of the cavity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology

Definitions

  • the invention belongs to the field of resonant optical gyroscope technology and micro-opto-electromechanical technology, and particularly protects a new type of cavity opto-mechanical vibrating gyroscope, including structural design and driving detection methods.
  • Gyroscope (referred to as gyroscope) is an inertial device that detects the angular rate of rotation of an object.
  • Micro-gyro is a combination of gyroscope technology and micro-electro-mechanical systems (MEMS) technology to measure angle or angular rate Inertial sensor.
  • MEMS micro-electro-mechanical systems
  • gyroscopes can be divided into mechanical rotor gyroscopes, optical gyroscopes and vibratory gyroscopes.
  • mechanical rotor gyroscopes and optical gyroscopes can meet the requirements in terms of accuracy, for aerospace, missile guidance and other application fields, their anti-overload ability is very weak, and the structure is complex and the volume is relatively small. Large and high cost.
  • the fundamental reason for the generally low sensitivity of traditional vibratory gyroscopes is limited by the influence of principle electrical and magnetic noise. This kind of noise is large, so that the gyroscope must work at the mechanical resonance frequency to obtain better signal output quality.
  • This traditional device must have an ideal resonant frequency point, and to obtain the ideal resonant frequency point, very accurate adjustment of the structural parameters is required during the packaging process, which is often limited by the processing accuracy.
  • the mechanical quality factor of the sensor needs to be designed to be very large, which increases the difficulty of structural design for mechanical drive and detection frequency matching.
  • increasing the quality factor will reduce the measurement bandwidth and correspondingly reduce the dynamic measurement range of the sensor.
  • MOEMS Micro-optical-electro-mechanical Systems
  • Lei Longhai Document: Lei Longhai. Study on stress modulation of optical microring resonator[D]. North University of China, 2015.
  • Lei Longhai Document: Lei Longhai. Study on stress modulation of optical microring resonator[D]. North University of China, 2015.
  • the present invention proposes the use of cavity optomechanical technology to realize the driving and detection sensing all-optical method of the vibrating gyroscope, and studies a method with high sensitivity, high precision, high stability, etc.
  • the performance of the miniaturized cavity opto-mechanical vibrating gyroscope is as follows:
  • a cavity opto-mechanical vibrating gyroscope which is characterized by comprising: driving micro-nano fiber (1), driving ring cavity (2), connecting structure (3), sensitive ring cavity (4), supporting structure (5), base ( 6) and detecting the micro-nano fiber (7), the base (6) is provided with a supporting structure (5), the supporting structure (5) is used to connect and support the driving ring cavity (2), the driving ring cavity (2) ) And the sensitive ring cavity (4) are three-dimensional double-ring resonant cavity structures connected by a connecting structure (3), and the distance can be adjusted by the connecting structure (3), and the driving micro-nano fiber (1) is used to couple and drive the ring cavity ( 2)
  • the detection micro-nano fiber (7) is used for coupling the sensitive ring cavity (4), the driving ring cavity (2) is a gyro driving vibration structure, and the sensitive ring cavity (4) is a gyro sensitive angular rate vibration structure.
  • the driving light (pump laser) is coupled into the driving ring cavity (2) through the driving micro-nano fiber (1), and the light source output is adjusted.
  • the optical signal that meets the resonance condition generates the whispering gallery mode (WGM) in the driving ring cavity (2).
  • WGM whispering gallery mode
  • the vibration of the driving ring cavity (2) is transmitted to the sensitive ring cavity (4) through the connection structure (3), the angular velocity WZ to be detected is input in the Z axis direction perpendicular to the sensitive ring cavity (4), and the sensitive ring cavity ( 4)
  • a brother-like force is generated in the X direction, and mechanical vibration is generated in the X direction under the force, and the light of the sensitive ring cavity (4) is coupled into the detection micro-nano fiber (7) for light detection.
  • the supporting structure (5) is designed to be a triangular shape in consideration of mechanical stability.
  • the driving ring cavity (2) and the sensitive ring cavity (4) are realized by using plasma-enhanced chemical vapor deposition (PECVD) to grow SiN and SiO 2 materials in combination with micro-nano processing technology.
  • PECVD plasma-enhanced chemical vapor deposition
  • the driving light (pump laser) is coupled into the driving ring cavity (2) through the driving micro-nano fiber (1), and the light source output is adjusted, wherein the optical signal meeting the resonance condition generates WGM resonance in the driving ring cavity (2), Specifically: First, adjust the coupling distance between the micro-nano fiber (1) and the driving ring cavity (2) to achieve the best coupling; then, the pump laser is coupled into the driving ring cavity through the driving micro-nano fiber (1) evanescent field ( 2), and an optical WGM resonance is formed in the driving ring cavity (2); finally, by selecting the WGM resonance mode to excite and driving the ring cavity (2) different mechanical vibrations, the photomechanical effect in the driving ring cavity is realized to It satisfies the optical drive mode of the new opto-mechanical Coriolis vibrating gyroscope.
  • the photomechanical effect in the driving ring cavity (2) is excited, so that the driving ring cavity (2) appears mechanical resonance in the Y direction, that is, the driving mode of the vibrating gyro is realized and the mechanical resonance frequency is ⁇ dy ,
  • the connecting structure (3) is made of SiN material, as a mechanical transmission structure, used to transfer the mechanical resonance of the driving ring cavity (2) to the sensitive ring cavity (4), so that the sensitive ring cavity (4) is in the Y direction
  • the mechanical vibration of the same frequency ⁇ dy is generated on the driving ring cavity (2).
  • the detection light is coupled into the sensitive ring cavity (4) through the detection micro-nano fiber (7).
  • the input light frequency is selected to be lower than the cavity resonance frequency of the sensitive ring cavity (4),
  • the phonons of the sensitive ring cavity (4) transfer energy to the photons of the detection light, and the sensitive detection light realizes the "cooling" of the sensitive ring cavity.
  • the sensitive ring cavity (4) has the same frequency of mechanical vibration, which leads to The Stokes and anti-Stokes scattering phenomena of the detection light will modulate the detection light field in the sensitive annular cavity (4), and the modulation amount of the detection light is also reflected in the output light information.
  • the sensitive annular cavity (4) produces a Ge-like force in the X direction at this time, and the force is generated
  • the mechanical vibration in the X direction is the gyro vibration of the sensitive ring cavity (4) in the X direction, and its mechanical vibration information is proportional to the external input angular rate ⁇ ; the angular rate can be obtained by detecting the Coriolis vibration in the X direction of the sensitive ring cavity Sensing information; when the input angular rate is ⁇ , the mechanical vibration of the sensitive ring cavity (4) in the X direction will also cause the modulation of the detection light field, and the phenomenon of Stokes and anti-Stokes scattering will occur.
  • the light modulation appearing here is caused by the gyro Coriolis vibration, which is also reflected in the output light information.
  • the present invention Based on the traditional Coriolis vibrating gyroscope's sensitive angular rate structure principle, the present invention innovatively designs a light-excited resonant cavity and a discrete double-ring Coriolis vibration detection resonant cavity, which is expected to solve the problem that the output signal-to-noise ratio of the gyroscope is affected by the mechanical gain.
  • This kind of adaptive optomechanical vibration can theoretically greatly improve the long-term stability of the drive module, so that the drive light signal at different frequencies can obtain stable and high sensitivity, and it is possible to have the inertial parameter method with high precision and high bandwidth at the same time.
  • FIG. 1 is a schematic diagram of a tapered micro-nano fiber according to a preferred embodiment of the present invention.
  • L1 is the transition zone of the tapered micro-nano fiber
  • L0 is the uniform zone of the tapered fiber, which is used to couple and drive the ring cavity and the sensitive ring cavity;
  • Figure 2 is a schematic diagram of the dual-ring three-dimensional resonator structure of the core structure of the driving and detection of the gyro.
  • a new type of cavity opto-mechanical vibrating gyroscope core structure including: driving micro-nano fiber 1, driving ring cavity 2, connecting structure 3, sensitive ring cavity 4, supporting structure 5, base 6 and detecting micro-nano fiber 7, said base 6
  • a support structure 5 is provided on the support structure 5 for connecting and supporting the driving ring cavity 2.
  • the driving ring cavity 2 and the sensitive ring cavity 4 are three-dimensional double-ring resonant cavity structures connected by the connecting structure 3, and the distance is connected by the connecting structure 3. It can be adjusted.
  • the driving micro-nano fiber 1 is used for coupling and driving the ring cavity 2
  • the detecting micro-nano fiber 7 is used for coupling the sensitive ring cavity 4
  • the driving ring cavity 2 is a gyro-driving vibration structure
  • the sensitive ring cavity 4 is a gyro-sensitive angular rate. Vibration structure.
  • a double ring resonant cavity structure is constructed, and the micro-nano fiber coupling structure is integrated to complete the driving and detection of the cavity-optical mechanical gyroscope.
  • the double ring three-dimensional resonant cavity, the connecting structure connects the driving ring cavity and the sensitive ring cavity, and is used to transmit the vibration of the driving ring to the sensitive ring, the supporting structure and the base are used to support the three-dimensional structure of the double ring; the light enters through the micro-nano fiber coupling The ring cavity is driven, and the light source is tuned to generate an optical whispering gallery mode resonance in the drive ring cavity.
  • a method for driving a cavity optomechanical vibrating gyroscope including:
  • the driving light is coupled into the driving ring cavity through the micro-nano fiber to form resonance, which is different from all current optical/electrical/magnetic single driving methods. It is a kind of energy interaction between photons and phonons in the cavity under specific conditions. Perform modeling calculations on the above, and formulate precise incentive conditions based on the designed structure. A suitable optical model is used to excite the mechanical resonance mode of the designed ring cavity, obtain the expected resonance effect, and realize the drive of the opto-mechanical Coriolis vibratory gyroscope.
  • a method for detecting cavity optomechanical vibrating gyroscope including:
  • the vibrating ring excited by the driving light provides the basis for the transmission of Coriolis vibration to the sensitive ring, but different from the driving excitation, in the detection loop, the external angular rate information is transmitted through Coriolis mechanical vibration and the detection is realized, which requires analysis and Find out the modulation information in the mechanical vibration in the cavity, and combine the relationship between the input angular rate and Coriolis vibration to realize the calculation of the external input angular rate.
  • Specific embodiment 1 A new type of cavity optomechanical vibrating gyroscope resonant structure design.
  • the present invention adopts a unique double ring resonant cavity structure as the core structure of the novel cavity optomechanical Coriolis vibratory gyroscope, as shown in Fig. 2, which is an integrated structure and is prepared by using micro-nano processing technology in the experiment.
  • the structure includes: the base plays the role of supporting the main body; the supporting structure plays the role of supporting and driving the annular cavity; (c) the connecting structure plays the role of connecting and supporting the sensitive annular cavity; (d) the driving annular cavity is a gyro-driving vibration structure; (e) The sensitive ring cavity is a gyro-sensitive angular rate vibration structure; thus, the base, the supporting structure, the connecting structure, the driving ring cavity, and the sensitive ring cavity are connected to form an integrated structure, and finally fixed to the base material through the base.
  • the driving ring cavity and the sensitive ring cavity are three-dimensional spatial structures, and the distance can be adjusted through the connecting structure.
  • Specific implementation manner 2 A driving principle and detection method of a novel cavity optomechanical vibratory gyroscope.
  • micro-nano fiber is used to solve the coupling problem of light and the ring resonator structure, as shown in Figure 2, and complete the driving and detection of the cavity opto-mechanical vibrating gyroscope.
  • the photomechanical effect is the mutual coupling between phonons and photons in the cavity.
  • the wavelength of the driving light (pump laser) is selected to be "blue detuned” to realize the transfer of photon energy to phonons.
  • the stimulated amplification of mechanical vibrating phonons is similar to the process of Stokes being scattered by laser light.
  • the pump laser is coupled into the driving ring cavity through the evanescent field of the micro-nano fiber, and an optical WGM resonance is formed in the cavity; finally, through The WGM resonance mode is selected to excite and drive the different mechanical vibrations of the ring cavity, and realize the photomechanical effect in the drive ring cavity, so as to meet the optical drive mode of the new optomechanical Coriolis vibratory gyroscope.
  • Figure 2 illustrates the principle of Coriolis vibration detection in the gyroscope.
  • the micro-nano fiber is used to couple the sensitive ring cavity and form a WGM resonance in the cavity.
  • the micro-nano fiber is also used to transmit the optical mode and mechanical resonance information in the cavity. Select the wavelength of the sensitive light (pump laser) to “red detune” to realize the transfer of phonon energy to photon, realize cooling, and further reduce the interference such as Brownian thermal noise in the sensitive ring cavity.
  • a unique dual ring resonator structure is adopted, the driving light is coupled into the driving ring resonator through the micro-nano fiber, and a WGM resonance is formed.
  • the photomechanical effect in the driving ring cavity is excited by adjusting the input wavelength of the driving light to make it appear in the ring cavity.
  • the mechanical resonance in the Y direction realizes the driving mode of the vibrating gyroscope and the mechanical resonance frequency is ⁇ dy , as shown in Figure 2;
  • connection structure is also a mechanical transmission structure, which transmits the mechanical resonance of the driving ring cavity to the sensitive ring cavity, so that the sensitive ring cavity generates mechanical vibration with the same frequency ⁇ dy in the Y direction as the driving ring cavity; consider two cases :
  • the input light frequency is selected to be lower than the cavity resonant frequency of the ring cavity.
  • the phonons of the ring resonant cavity transfer energy to the photons of the detection light, thus the sensitive detection
  • the light realizes the "cooling" of the sensitive annular cavity, which reduces the thermal Brownian motion of the sensitive annular cavity itself, that is, reduces noise interference and improves detection accuracy.
  • the sensitive ring cavity has the same frequency of mechanical vibration, which causes the Stokes and anti-Stokes scattering phenomenon of the detection light, which modulates the detection light field in the ring cavity, and the amount of modulation of the detection light is the same Be reflected in the output light information;
  • the sensitive ring cavity Since the sensitive ring cavity has the same frequency vibration as the driving ring cavity in the Y direction, as shown in Figure 2, when the external angular velocity ⁇ is input along the Z direction, then the sensitive ring cavity will generate a Ge-type force in the X direction at this time, and This force produces mechanical vibration in the X direction.
  • Figure 2 shows the gyro vibration of the sensitive ring cavity in the X direction.
  • the mechanical vibration information is proportional to the external input angular rate ⁇ ; in this way, the Coriolis vibration in the X direction of the sensitive ring cavity Angular rate sensing information can be obtained by detection.
  • the mechanical vibration of the sensitive ring cavity in the X direction will also cause the modulation of the detection light field, and the phenomenon of Stokes and anti-Stokes scattering appears.
  • the light modulation that appears here is a gyro Coriolis vibration is caused, which is also reflected in the output light information.
  • the detection light of the micro-nano fiber coupled into the sensitive ring cavity is modulated by two mechanical vibrations: First, in the Y direction, the ring cavity is driven to transmit to the sensitive ring cavity. The mechanical vibration of the ring cavity modulates the detection light; second, in the X direction, Coriolis force causes the Coriolis mechanical vibration of the sensitive ring cavity to modulate the detection light; by demodulating the modulation information of the two mechanical vibrations, the detection light is obtained. The modulation amount of the Coriolis vibration to the detection light, further, using the relationship between the external input angular rate ⁇ and the Coriolis vibration, the magnitude of the angular rate ⁇ is solved.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Gyroscopes (AREA)

Abstract

一种腔光机械振动陀螺,属于谐振式光学陀螺技术和微光机电技术领域。基于环形微腔结合哥氏振动原理实现的新型腔光机械哥氏振动微陀螺,其驱动与检测将完全不同于现有的电或磁的常规方式,在传统哥氏振动陀螺敏感角速率结构原理基础上,运用腔光机械技术实现振动陀螺的驱动检测与传感全光化,在根本上抑制在电或磁驱动下引入的各项噪声性质(包括热噪声、交叉干扰、连接点噪声和正交误差等),并在微腔光机械效应下通过频率移动与光振幅的线性关系获取位移(振动)传感信息,从而在机械学和光学交叉领域完整和***地研究一种新型陀螺,使其具备高灵敏度、高带宽、高动态范围和高稳定性等性能特征。

Description

一种腔光机械振动陀螺
本申请要求于2019年12月17日提交中国国家知识产权局、申请号为201911303089.8、发明名称为“一种腔光机械振动陀螺”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于谐振式光学陀螺技术和微光机电技术领域,特别保护了一种新型腔光机械振动陀螺,包括结构设计和驱动检测方法。
背景技术
陀螺仪(简称陀螺)是用一种物体转动角速率检测的惯性器件,微陀螺是一种陀螺技术和微电子机械***(Micro-electro-mechanical Systems,MEMS)技术相结合,测量角度或角速率的惯性传感器。目前,按工作原理不同,陀螺可以分为机械转子式陀螺、光学陀螺和振动陀螺。机械转子式陀螺、光学陀螺(包括光纤陀螺和激光陀螺等)虽然在精度上能够满足要求,但对于航空航天,导弹制导等应用领域来说,其抗过载能力很弱,且结构复杂、体积较大、成本高。传统振动陀螺灵敏度普遍偏低的根本原因正是受限于原理性电、磁噪声影响,这种噪声大,使得陀螺必须在机械谐振频率点上工作才能获得较好的信号输出质量。这种传统器件必须具有理想的谐振频率点,而要获得理想的谐振频率点则需要在封装过程中对结构参数进行非常准确的调整,这一过程往往又受限于加工精度。为在复杂环境中获得好的敏感性能,传感器的机械品质因数需设计得非常大,这就加大了机械驱动和检测频率匹配的结构设计难度。另外,增大品质因数会减少测量带宽,相应也会减少传感器的动态测量范围。
随着微机械加工工艺和测控技术的不断成熟,微光机电(Micro-optical-electro-mechanical Systems,MOEMS)陀螺仪的精度不断提高,与光纤陀螺和激光陀螺相比具有体积更小、质量更轻的优点;与MEMS惯性器件相比,其灵敏度高、无运动部件,抗电磁干扰能力强,可在一些恶劣环境下使用。如何结合各类振动陀螺的优势,研究影响陀螺精度的关键因素,实现精度高和微型化的兼顾,研制出高精度、微型化振动陀螺,对促进我国的国民经济和武器装备的发展,提高自主创新能力,具有重要的战略意义。
2015年雷龙海(文献:雷龙海.光学微环谐振腔应力调制研究[D].中北大学,2015.)研究的一类利用直波导和微环光学谐振腔耦合的新型力敏MOMES传感检测结构,但是其平面式的结构设计,如果运用在陀螺上灵敏度低。2018年加州理工学院Khial P P(文献,Khial P P,et.al.,Nanophotonic optical gyroscope with reciprocalsensitivity enhancement[J],Nature Photonics,2018,12(11):671.)根据sagnac效应工作原理设计出全集成纳米光子光学陀螺,其面积仅占2mm 2,但是这仅存于理论阶段,并且所需求的高精度高成本的仪器设备对我国民用领域是一个很大的考验。
发明内容
本发明在传统哥氏振动陀螺敏感角速率结构原理基础上,提出运用腔光机械技术实现振动陀螺的驱动与检测传感全光化方法,研究一种具备高灵敏度、高精度、高稳定性等性能的微型化的腔光机械振动陀螺。本发明的技术方案如下:
一种腔光机械振动陀螺,其特征在于,包括:驱动微纳光纤(1)、驱动环形腔(2)、连接结构(3)、敏感环形腔(4)、支撑结构(5)、底座(6)及检测微纳光纤(7),所述底座(6)上设置有支撑结构(5),支撑结构(5)用于连接和支撑驱动环形腔(2),所述驱动环形腔(2)和敏感环形腔(4)为立体双环谐振腔结构通过连接结构(3)相连接,且间距通过连接结构(3)可以调节,所述驱动微纳光纤(1)用于耦合驱动环形腔(2),检测微纳光纤(7)用于耦合敏感环形腔(4),驱动环形腔(2)为陀螺驱动振动结构,敏感环形腔(4)为陀螺敏感角速率振动结构。其中驱动光(泵浦激光)通过驱动微纳光纤(1)耦合进入驱动环形腔(2),调节光源输出,其中满足谐振条件的光信号在驱动环形腔(2)中产生回音壁模式(WGM)谐振,驱动环形腔(2)的振动通过连接结构(3)传递到敏感环形腔(4),在垂直于敏感环形腔(4)的Z轴方向输入待检测角速率WZ,敏感环形腔(4)在X方向产生哥式力作用,且在该力作用下产生X方向机械振动,敏感环形腔(4)的光耦合进入检测微纳光纤(7),用于光检测。
进一步的,所述支撑结构(5)从力学稳定性考虑设计为三角型。
进一步的,所述驱动环形腔(2)和敏感环形腔(4)采用等离子体增强化学气相沉积法(PECVD)生长SiN和SiO 2材料并结合微纳加工技术来实现。
进一步的,驱动光(泵浦激光)通过驱动微纳光纤(1)耦合进入驱动环形腔(2),调节光源输出,其中满足谐振条件的光信号在驱动环形腔(2)中产生WGM谐振,具体包括:首先,调整微纳光纤(1)与驱动环形腔(2)之间耦合距离实现最佳耦合;然后,泵浦激光通过驱动微纳光纤(1)倏逝场耦合进入驱动环形腔(2)内,且在驱动环形腔(2)内形成光学WGM谐振;最后,通过选择WGM谐振模式来激发驱动环形腔(2)不同的机械振动,实现驱动环形腔内的光机械力学效应,以满足新型光机械哥氏振动陀螺光驱动方式。
进一步的,通过调节驱动光输入波长激发驱动环形腔(2)内光机械效应,使驱动环形腔(2)出现在Y方向的机械谐振,即实现了振动陀螺的驱动模式且机械谐振频率为ω dy
进一步的,所述连接结构(3)为SiN材料,作为机械传动结构,用于将驱动环形腔(2)的机械谐振传递到敏感环形腔(4),这样敏感环形腔(4)在Y方向上产生与驱动环形腔(2)上相同频率ω dy的机械振动。
进一步的,当无外界角速率输入时,检测光通过检测微纳光纤(7)耦合进入敏感环形腔(4)内部,此时选择输入光频低于敏感环形腔(4)的腔谐振频率,此时敏感环形腔(4)的声子向检测光的光子发生能量转移,由此敏感检测光实现对敏感环形腔的“冷却”,敏感环形腔(4)具有相同频率的机械振动,这样导致检测光出现斯托克斯和反斯托克斯散射现象,会对敏感环形腔(4)内的检测光场进行调制,其检测光的调制量同样被反应到输出的光信息中。
进一步的,当外界角速率输入为Ω时,当沿着Z方向上外界输入角速率Ω时,则此时敏感环形腔(4)在X方向产生哥式力作用,且在该力作用下产生X方向机械振动,即为敏感环形腔(4)在X方向陀螺振动,其机械振动信息与外界输入角速率Ω成比例关系;通过对敏感环形腔X方向的哥氏振动检测即可获得角速率传感信息;当输入的角速率为Ω时,敏感 环形腔(4)发生在X方向机械振动同样会引起对检测光场的调制,出现斯托克斯和反斯托克斯散射现象,该处出现的光调制为陀螺哥氏振动引起,同样反映到输出光信息中。
本发明的优点及有益效果如下:
本发明在传统哥氏振动陀螺敏感角速率结构原理基础上,创新地设计了光激励谐振腔和分立双环的哥氏振动检测谐振腔,有望解决陀螺仪输出信噪比受机械增益影响的难题,这种自适应光机械振动理论上可以大幅提高驱动模块的长期稳定性,使得不同频率下的驱动光信号均可获得稳定的高灵敏度,让同时具备高精度和高带宽的惯性参量方式成为可能。提出运用腔光机械技术实现振动陀螺的驱动与检测传感全光化方法,解决长期困扰哥氏振动陀螺的精度低,噪声难以抑制问题,可极大减轻基于电子电路驱动的限制,改善器件的分辨率和灵敏度,有效抑制噪声,满足高灵敏度测量要求;也合理规避了传统光学陀螺的各种参数稳定性退化问题,并充分发挥了哥氏振动原理陀螺的结构简单,易于实现的原理性优势。
附图说明
图1是本发明提供优选实施例锥形微纳光纤示意图,L1为锥形微纳光纤过渡区,L0为锥形光纤均匀区,为用于耦合驱动环形腔、敏感环形腔;
图2是陀螺的驱动与检测的核心结构双环立体谐振腔结构原理图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、详细地描述。所描述的实施例仅仅是本发明的一部分实施例。
本发明解决上述技术问题的技术方案是:
一种新型腔光机械振动陀螺核心结构,包括:驱动微纳光纤1、驱动环形腔2、连接结构3、敏感环形腔4、支撑结构5、底座6及检测微纳光纤7,所述底座6上设置有支撑结构5,支撑结构5用于连接和支撑驱动环形腔2,所述驱动环形腔2和敏感环形腔4为立体双环谐振腔结构通过连接结构3相连接,且间距通过连接结构3可以调节,所述驱动微纳光纤1用于耦合驱动环形腔2,检测微纳光纤7用于耦合敏感环形腔4,驱动环形腔2为陀螺驱动振动结构,敏感环形腔4为陀螺敏感角速率振动结构。以微尺度固态振动陀螺为核心,构筑双环形谐振腔结构,并融入微纳光纤耦合结构,完成腔光机械陀螺的驱动与检测。其中,双环形立体谐振腔,连接结构连接驱动环形腔与敏感环形腔,用于把驱动环的振动传递给敏感环、支撑结构和底座用于支撑双环的立体结构;光通过微纳光纤耦合进入驱动环形腔,调谐光源使驱动环形腔中产生光学回音壁模式谐振。
一种腔光机械振动陀螺驱动方法,包括:
驱动光通过微纳光纤耦合进入驱动环形腔内形成谐振,不同于所有现行的光/电/磁的单一驱动方式,是一种腔内光子与声子在特定条件下的能量互作用,从原理上进行建模计算,并结合所设计结构制定精准的激励条件。通过适合的光学模型来激发所设计环形腔的机械谐振模式,获取预期的谐振效应,实现光机械哥氏振动陀螺的驱动。
一种腔光机械振动陀螺检测方法,包括:
经过驱动光激励的振动环为哥氏振动向敏感环传导提供了基础,但与驱动激励不同,在检测环路中,将外界角速率信息通过哥氏机械振动传递出来并实现检测,需要分析并找出腔内机械振动中的调制信息,并结合输入角速率与哥氏振动之间的关系,才能实现外界输入角速率的解算。
具体实施方式一:一种新型腔光机械振动陀螺的谐振结构设计。
本发明采用独特的双环形谐振腔结构作为新型腔光机械哥氏振动陀螺的核心结构,如图2,其为一体化结构,实验中采用微纳加工技术制备完成。结构包括:底座起到主体支撑作用;支撑结构起到支撑驱动环形腔作用;(c)连接结构起到连接和支撑敏感环形腔作用;(d)驱动环形腔为陀螺驱动振动结构;(e)敏感环形腔为陀螺敏感角速率振动结构;由此,底座、支撑结构、连接结构、驱动环形腔以及敏感环形腔连接且形成一体化整体结构,最终通过底座被固定到基底材料上面。其中,驱动环形腔以及敏感环形腔为立体空间结构且距离通过连接结构可以调节。
具体实施方式二:一种新型腔光机械振动陀螺的驱动原理与检测方法。
进一步,采用微纳光纤解决光与环形谐振腔结构耦合问题,如图2所示,并完成腔光机械振动陀螺的驱动与检测。
光驱动:光机械效应为腔内声子-光子之间相互耦合,根据驱动环形腔谐振频率,选择驱动光(泵浦激光)波长“蓝失谐”,实现光子能量向声子转移,从实现机械振动声子的受激放大,类似于斯托克斯受激光散射过程。首先,调整微纳光纤与驱动环之间耦合距离实现最佳耦合;然后,泵浦激光通过微纳光纤倏逝场耦合进入驱动环形腔内,且在该腔内形成光学WGM谐振;最后,通过选择WGM谐振模式来激发驱动环形腔不同的机械振动,实现驱动环形腔内的光机械力学效应,以满足新型光机械哥氏振动陀螺光驱动方式。
光检测:图2说明了陀螺中哥氏振动检测原理,利用微纳光纤耦合敏感环形谐振腔且在腔内形成WGM谐振,同样利用微纳光纤传输谐振腔内的光学模式以及机械谐振信息。选择敏感光(泵浦激光)波长“红失谐”,实现声子能量向光子转移,实现制冷,进一步降低敏感环形腔内布朗热噪声等干扰。
首先,采用独特的双环形谐振腔结构,用驱动光通过微纳光纤耦合进驱动环形谐振腔内,且形成WGM谐振,通过调节驱动光输入波长激发驱动环形腔内光机械效应,使其出现在Y方向的机械谐振,即实现了振动陀螺的驱动模式且机械谐振频率为ω dy,图2所示;
进一步,连接结构也为机械传动结构,将驱动环形腔的机械谐振传递到敏感环形腔,这样敏感环形腔在Y方向上产生与驱动环形腔上相同频率ω dy的机械振动;分两种情况考虑:
情况一:无外界角速率输入
当检测光通过微纳光纤耦合进入敏感环形腔内部,此时选择输入光频低于环形腔的腔谐振频率,此时环形谐振腔的声子向检测光的光子发生能量转移,由此敏感检测光实现对敏感环形腔的“冷却”,降低了敏感环形腔自身的热布朗运动,即降低了噪声干扰,提高检测精度。此时,敏感环形腔具有相同频率的机械振动,这样导致检测光出现斯托克斯和反斯托克斯散射现象,会对环形腔内的检测光场进行调制,其检测光的调制量同样被反应到输出的光信息中;
情况二:当外界角速率输入为Ω
由于敏感环形腔在Y方向具有与驱动环形腔相同频率的振动,图2,当沿着Z方向上外界输入角速率Ω时,则此时敏感环形腔在X方向产生哥式力作用,且在该力作用下产生X方向机械振动,图2,即为敏感环形腔在X方向陀螺振动,其机械振动信息与外界输入角速率Ω成比例关系;这样通过对敏感环形腔X方向的哥氏振动检测即可获得角速率传感信息。
当输入的角速率为Ω时,敏感环形腔发生在X方向机械振动同样会引起对检测光场的调制,出现斯托克斯和反斯托克斯散射现象,该处出现的光调制为陀螺哥氏振动引起,同样反映到输出光信息中。
综合,当角速率Ω输入时,上述两种情况同时出现,此时,微纳光纤耦合进敏感环形腔的检测光被两种机械振动调制:其一,Y方向上,驱动环形腔传递到敏感环形腔的机械振动对检测光调制;其二,X方向上,哥氏力引起敏感环形腔的哥氏机械振动对检测光调制;通过解调这两种机械振动对检测的调制信息,从而获得哥氏振动对检测光的调制量,进一步,利用外界输入角速率Ω与哥氏振动之间的关系,解算出角速率Ω的大小。
以上这些实施例应理解为仅用于说明本发明而不用于限制本发明的保护范围。在阅读了本发明的记载的内容之后,技术人员可以对本发明作各种改动或修改,这些等效变化和修饰同样落入本发明权利要求所限定的范围。

Claims (8)

  1. 一种腔光机械振动陀螺,其特征在于,包括:驱动微纳光纤(1)、驱动环形腔(2)、连接结构(3)、敏感环形腔(4)、支撑结构(5)、底座(6)及检测微纳光纤(7),所述底座(6)上设置有支撑结构(5),支撑结构(5)用于连接和支撑驱动环形腔(2),所述驱动环形腔(2)和敏感环形腔(4)为立体双环谐振腔结构通过连接结构(3)相连接,且间距通过连接结构(3)可以调节,所述驱动微纳光纤(1)用于耦合驱动环形腔(2),检测微纳光纤(7)用于耦合敏感环形腔(4),驱动环形腔(2)为陀螺驱动振动结构,敏感环形腔(4)为陀螺敏感角速率振动结构。其中驱动光(泵浦激光)通过驱动微纳光纤(1)耦合进入驱动环形腔(2),调节光源输出,其中满足谐振条件的光信号在驱动环形腔(2)中产生回音壁模式(WGM)谐振,驱动环形腔(2)的振动通过连接结构(3)传递到敏感环形腔(4),在垂直于敏感环形腔(4)的Z轴方向输入待检测角速率Ω Z,敏感环形腔(4)在X方向产生哥式力作用,且在该力作用下产生X方向机械振动,敏感环形腔(4)的光耦合进入检测微纳光纤(7),用于光检测。
  2. 根据权利要求1所述的一种腔光机械振动陀螺,其特征在于,所述支撑结构(5)从力学稳定性能考虑设计为三角型。
  3. 根据权利要求1所述的一种腔光机械振动陀螺,其特征在于,所述驱动环形腔(2)和敏感环形腔(4)采用等离子体增强化学气相沉积法(PECVD)生长SiN和SiO 2材料并结合微纳加工技术来实现。
  4. 根据权利要求1所述的一种腔光机械振动陀螺,其特征在于,所述驱动光(泵浦激光)通过驱动微纳光纤(1)耦合进入驱动环形腔(2),调节光源输出,其中满足谐振条件的光信号在驱动环形腔(2)中产生WGM谐振,具体包括:首先,调整微纳光纤(1)与驱动环形腔(2)之间耦合距离实现最佳耦合;然后,泵浦激光通过驱动微纳光纤(1)倏逝场耦合进入驱动环形腔(2)内,且在驱动环形腔(2)内形成光学WGM谐振;最后,通过选择WGM谐振模式来激发驱动环形腔(2)不同的机械振动,实现驱动环形腔内的光机械力学效应,以满足新型光机械哥氏振动陀螺光驱动方式。
  5. 根据权利要求1所述的一种腔光机械振动陀螺,其特征在于,通过调节驱动光输入波长激发驱动环形腔(2)内光机械效应,使驱动环形腔(2)出现在Y方向的机械谐振,即实现了振动陀螺的驱动模式且机械谐振频率为ω dy
  6. 根据权利要求1所述的一种腔光机械振动陀螺,其特征在于,所述连接结构(3)为SiN材料,作为机械传动结构,用于将驱动环形腔(2)的机械谐振传递到敏感环形腔(4),这样敏感环形腔(4)在Y方向上产生与驱动环形腔(2)上相同频率ω dy的机械振动。
  7. 根据权利要求1所述的一种腔光机械振动陀螺,其特征在于,当无外界角速率输入时,检测光通过检测微纳光纤(7)耦合进入敏感环形腔(4)内部,此时选择输入光频低于敏感环形腔(4)的腔谐振频率,此时敏感环形腔(4)的声子向检测光的光子发生能量转移,由此敏感检测光实现对敏感环形腔的“冷却”,敏感环形腔(4)具有相同频率的机械振动,这样导致检测光出现斯托克斯和反斯托克斯散射现象,会对敏感环形腔(4)内的检测光场进行调制,其检测光的调制量同样被反应到输出的光信息中。
  8. 根据权利要求7所述的一种腔光机械振动陀螺,其特征在于,当外界角速率输入为Ω时,当沿着Z方向上外界输入角速率Ω时,则此时敏感环形腔(4)在X方向产生哥式力作 用,且在该力作用下产生X方向机械振动,即为敏感环形腔(4)在X方向陀螺振动,其机械振动信息与外界输入角速率Ω成比例关系;通过对敏感环形腔X方向的哥氏振动检测即可获得角速率传感信息;当输入的角速率为Ω时,敏感环形腔(4)发生在X方向机械振动同样会引起对检测光场的调制,出现斯托克斯和反斯托克斯散射现象,该处出现的光调制为陀螺哥氏振动引起,同样反映到输出光信息中。
PCT/CN2020/117667 2019-12-17 2020-09-25 一种腔光机械振动陀螺 WO2021120768A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/272,944 US11415417B2 (en) 2019-12-17 2020-09-25 Cavity optomechanical vibratory gyroscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911303089.8 2019-12-17
CN201911303089.8A CN110967001B (zh) 2019-12-17 2019-12-17 一种腔光机械振动陀螺

Publications (1)

Publication Number Publication Date
WO2021120768A1 true WO2021120768A1 (zh) 2021-06-24

Family

ID=70035010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117667 WO2021120768A1 (zh) 2019-12-17 2020-09-25 一种腔光机械振动陀螺

Country Status (3)

Country Link
US (1) US11415417B2 (zh)
CN (1) CN110967001B (zh)
WO (1) WO2021120768A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113483746A (zh) * 2021-07-29 2021-10-08 中国船舶重工集团公司第七0七研究所 一种陀螺多维噪声抑制方法
CN115638780A (zh) * 2022-12-23 2023-01-24 中国船舶集团有限公司第七〇七研究所 一种谐振陀螺振动位移提取方法、控制***及谐振陀螺

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110967001B (zh) * 2019-12-17 2023-09-26 重庆邮电大学 一种腔光机械振动陀螺
CN113252085B (zh) * 2021-06-30 2021-09-17 中国人民解放军国防科技大学 含非线性机械振子的光机械微腔结构、测量***及方法
CN113465515B (zh) * 2021-06-30 2022-02-08 中国人民解放军国防科技大学 全光集成且含非线性机械振子的光机械微腔结构
CN116086496B (zh) * 2023-03-31 2023-06-20 中国船舶集团有限公司第七〇七研究所 一种用于提高集成光纤陀螺灵敏度的方法及***
CN117128945B (zh) * 2023-10-20 2023-12-26 中北大学 一种基于奇异面的超灵敏角速度传感器及测量方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2237638B (en) * 1989-07-07 1994-02-16 Douglas Frank George Dwyer An improved fluid rate sensor
CN101858745A (zh) * 2010-06-21 2010-10-13 中北大学 基于环形谐振腔的全固态微光机电陀螺
CN103411596A (zh) * 2013-08-26 2013-11-27 重庆邮电大学 光子自旋角速率传感器及***
CN103884327A (zh) * 2014-04-09 2014-06-25 北京航空航天大学 一种基于光学回音壁式谐振腔模式劈裂的角速率测量方法
CN107869987A (zh) * 2017-11-07 2018-04-03 北京航空航天大学 一种基于谐振模式展宽的光学陀螺谐振腔结构
CN108955664A (zh) * 2018-07-23 2018-12-07 东南大学 一种基于光学微腔的全解耦环形微陀螺仪及其加工方法
CN110440897A (zh) * 2019-07-11 2019-11-12 南京邮电大学 回音壁微腔声学传感器及其双环谐振腔的制备方法
CN110967001A (zh) * 2019-12-17 2020-04-07 重庆邮电大学 一种腔光机械振动陀螺

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603558B2 (en) * 2001-07-25 2003-08-05 University Of Delaware Micro-ring cavity gyroscope with magnetic field lock-in minimization
US20190245318A1 (en) * 2004-10-29 2019-08-08 Ronald LaComb Concentric Cylindrical Circumferential Laser
CN101706280A (zh) * 2009-11-27 2010-05-12 北京航空航天大学 一种用于受激布里渊光纤陀螺的光路结构
US9252559B2 (en) * 2012-07-10 2016-02-02 Honeywell International Inc. Narrow bandwidth reflectors for reducing stimulated Brillouin scattering in optical cavities
CN102854331B (zh) * 2012-09-12 2014-07-09 重庆邮电大学 一种光机电振动角速率传感器
US9581448B2 (en) * 2013-04-27 2017-02-28 Magiq Technologies, Inc. Optical sensors using stimulated brillouin scattering
CN103389084B (zh) * 2013-07-19 2015-09-30 哈尔滨工程大学 基于双耦合光纤环形谐振腔相干效应的谐振式光纤陀螺
CN105067041A (zh) * 2015-08-19 2015-11-18 华东交通大学 接触网状态监测装置及其控制方法
US9733084B2 (en) * 2015-09-09 2017-08-15 Honeywell International Inc. Single pump cascaded stimulated Brillouin scattering (SBS) ring laser gyro
WO2018087789A1 (en) * 2016-11-10 2018-05-17 QOPSYS S.r.I. A photonic resonant motor
US11658453B2 (en) * 2018-01-29 2023-05-23 Ronald LaComb Concentric cylindrical circumferential laser
CN109323690B (zh) * 2018-10-31 2020-12-01 浙江大学 一种保偏全互易双向光载微波谐振***及其检测角速度的方法
US11237343B2 (en) * 2018-12-07 2022-02-01 The Board Of Trustees Of The University Of Illinois Volumetric optical integrated circuits
GB2580116B (en) * 2018-12-21 2023-07-19 Atlantic Inertial Systems Ltd Gyroscope
CN109631872B (zh) * 2018-12-26 2022-09-30 中国科学技术大学 一种基于瓶状微型谐振腔的谐振式光学陀螺
CN109990975B (zh) * 2019-04-10 2021-04-23 暨南大学 基于光学微腔机械模式的检测***、调试***及传感器
US10823571B1 (en) * 2019-07-31 2020-11-03 Honeywell International Inc. Switching SBS gyro with fixed pump separation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2237638B (en) * 1989-07-07 1994-02-16 Douglas Frank George Dwyer An improved fluid rate sensor
CN101858745A (zh) * 2010-06-21 2010-10-13 中北大学 基于环形谐振腔的全固态微光机电陀螺
CN103411596A (zh) * 2013-08-26 2013-11-27 重庆邮电大学 光子自旋角速率传感器及***
CN103884327A (zh) * 2014-04-09 2014-06-25 北京航空航天大学 一种基于光学回音壁式谐振腔模式劈裂的角速率测量方法
CN107869987A (zh) * 2017-11-07 2018-04-03 北京航空航天大学 一种基于谐振模式展宽的光学陀螺谐振腔结构
CN108955664A (zh) * 2018-07-23 2018-12-07 东南大学 一种基于光学微腔的全解耦环形微陀螺仪及其加工方法
CN110440897A (zh) * 2019-07-11 2019-11-12 南京邮电大学 回音壁微腔声学传感器及其双环谐振腔的制备方法
CN110967001A (zh) * 2019-12-17 2020-04-07 重庆邮电大学 一种腔光机械振动陀螺

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113483746A (zh) * 2021-07-29 2021-10-08 中国船舶重工集团公司第七0七研究所 一种陀螺多维噪声抑制方法
CN113483746B (zh) * 2021-07-29 2022-07-26 中国船舶重工集团公司第七0七研究所 一种陀螺多维噪声抑制方法
CN115638780A (zh) * 2022-12-23 2023-01-24 中国船舶集团有限公司第七〇七研究所 一种谐振陀螺振动位移提取方法、控制***及谐振陀螺

Also Published As

Publication number Publication date
CN110967001A (zh) 2020-04-07
US11415417B2 (en) 2022-08-16
US20220113135A1 (en) 2022-04-14
CN110967001B (zh) 2023-09-26

Similar Documents

Publication Publication Date Title
WO2021120768A1 (zh) 一种腔光机械振动陀螺
US8885170B2 (en) Gyroscope utilizing torsional springs and optical sensing
CN101067555B (zh) 力平衡式谐振微机械陀螺
CN100590383C (zh) 一种谐振式微机械陀螺
CN101858745B (zh) 基于环形谐振腔的全固态微光机电陀螺
CN107869987B (zh) 一种基于谐振模式展宽的光学陀螺谐振腔结构
WO2024045451A1 (zh) 基于模分复用的光纤陀螺及其精度提升方法
CN102032905B (zh) 一种慢光效应增强的光纤陀螺
CN115014318B (zh) 一种空芯微结构光纤陀螺
CN101261127A (zh) Mz谐振干涉原理的光纤陀螺仪
CN111089578A (zh) 一种干涉型光纤陀螺仪
CN101793520B (zh) 基于光学微腔的集成光波导陀螺
CN117268364A (zh) 一种基于铌酸锂晶体的光纤陀螺集成化光路结构
US20090091763A1 (en) Microgyroscope
CN1228609C (zh) 无源谐振型光纤陀螺拍频检测方法
CN106507910B (zh) 基于fpga的全数字处理闭环光纤陀螺
JPH07146150A (ja) 光ファイバリングレーザジャイロ
CN1328585C (zh) 空间光路的干涉式微光机电陀螺
CN1521479A (zh) 基于mz干涉原理的干涉式光纤陀螺仪
CN110260851B (zh) 一种基于双亚波长光栅腔检测的光力学微机械陀螺
Bhat et al. Optomechanical sensing of wine-glass modes of a BAW resonator
Zhang et al. High finesse silica waveguide ring resonators for resonant micro-optic gyroscopes
CN117387591B (zh) 基于二阶奇异面的片上高灵敏角速度传感器及测量方法
CN115962765A (zh) 一种新型腔光机械式微半球陀螺仪
CN117948958A (zh) 基于噪声压缩效应的高精度微陀螺仪及工作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20900970

Country of ref document: EP

Kind code of ref document: A1