WO2021120233A1 - 一种原子力显微镜的探针的刚度实时调节方法 - Google Patents

一种原子力显微镜的探针的刚度实时调节方法 Download PDF

Info

Publication number
WO2021120233A1
WO2021120233A1 PCT/CN2019/127400 CN2019127400W WO2021120233A1 WO 2021120233 A1 WO2021120233 A1 WO 2021120233A1 CN 2019127400 W CN2019127400 W CN 2019127400W WO 2021120233 A1 WO2021120233 A1 WO 2021120233A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
stiffness
cantilever beam
atomic force
force microscope
Prior art date
Application number
PCT/CN2019/127400
Other languages
English (en)
French (fr)
Inventor
陈科纶
谷森
孙钰
汝长海
朱军辉
Original Assignee
江苏集萃微纳自动化***与装备技术研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏集萃微纳自动化***与装备技术研究所有限公司 filed Critical 江苏集萃微纳自动化***与装备技术研究所有限公司
Publication of WO2021120233A1 publication Critical patent/WO2021120233A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/38Probes, their manufacture, or their related instrumentation, e.g. holders

Definitions

  • the invention relates to the technical field of atomic force microscopes, in particular to a method for real-time adjustment of the stiffness of the probes of the atomic force microscope.
  • the atomic force microscope uses a special tiny probe to scan the surface of the sample material in the left and right and front and back directions, and uses the scanner to fine-tune the ability in the vertical direction to keep the force between the probe and the material surface fixed during the scanning process.
  • the vertical fine-tuning distance of each point in the scanning process is recorded, and the three-dimensional topography of the material surface can be characterized.
  • the atomic force microscope presses the probe tip into and out of the material surface, obtains the force-displacement curve through the sensor, and calculates the curve to obtain the Young's modulus and hardness of the measured material.
  • the nanoindentation test can directly act on materials of any size and shape according to the shape and tip size of the nanoindenter. It is a direct test. It is widely used to test the mechanical properties of micro/nano-scale materials.
  • Atomic force microscope needs to select a probe with appropriate stiffness according to the working mode. For example: when the atomic force microscope selects the contact mode for imaging, the stiffness of the probe can be selected in the range of 0.1N/m-1N/m. When the AFM is imaging biological materials, the stiffness of the probe can be selected in the range of 0.01N/m-0.5N/m. When the AFM selects the non-contact mode for imaging, the stiffness of the probe can be selected from 50N/m-80N/m. When the AFM selects the force modulation mode for imaging, the stiffness of the probe can be selected from 5N/m-10N/m. When the atomic force microscope performs the nanoindentation test, the stiffness of the atomic force microscope probe is selected according to the mechanical properties of the material being tested.
  • the technical problem to be solved by the present invention is to provide a real-time adjustment method for the stiffness of the probe of an atomic force microscope, which can adjust the stiffness of the probe in real time, with a large adjustment range, a wide working range and good stability.
  • the present invention provides a real-time adjustment method for the stiffness of an atomic force microscope probe.
  • the probe includes a cantilever beam and a needle tip, and includes the following steps:
  • the stiffness of the cantilever beam-coating composite is changed by changing the temperature of the stiffness adjustment layer.
  • the stiffness adjustment layer is a metal layer, and the melting point of the metal layer is lower than the melting point of the cantilever beam.
  • the metal layer is an alloy composed of one or more of indium, bismuth, tin, and gold.
  • the stiffness adjustment layer is prepared by a coating method, an electron beam sputtering method, a chemical vapor deposition method or a focused ion beam deposition method.
  • the “change the stiffness of the cantilever beam-coating composite piece by changing the temperature of the stiffness adjustment layer” specifically includes the following steps:
  • the molten metal is cooled, and the molten metal is solidified and formed on the surface of the cantilever beam.
  • the vibration frequency of the probe is 5khz-20khz, and the vibration amplitude of the probe is 3-5 ⁇ m
  • the cooling rate of the "cooling molten metal" is less than 10°C/s.
  • the vibration of the probe is driven by a piezoelectric ceramic driver.
  • the "change the stiffness of the cantilever beam-coating composite piece by changing the temperature of the stiffness adjustment layer” includes the following steps:
  • the morphology of the crystal grains after the solidification of the molten metal is changed, and the cantilever beam-coating composite parts with different stiffness are obtained.
  • the "cooling rate of the probe" is 0.1-10°C/s.
  • the invention discloses a real-time adjustment method for the stiffness of an atomic force microscope probe.
  • the probe includes a cantilever beam and a needle tip, and includes the following steps:
  • the probe is pulled out of the non-conductive material. At this time, the surface of the probe is coated with the non-conductive material, and the heating of the probe is stopped, and the non-conductive material is solidified and formed on the probe.
  • the melting point of the non-conductive material is lower than 100°C.
  • the surface of the probe is coated with the non-conductive material, stop heating the probe, and the non-conductive material is solidified on the probe to form” further includes: scraping Except for the non-conductive material of the needle tip.
  • the non-conductive material is resin material, polyethylene, polypropylene or rubber.
  • the present invention forms a cantilever beam-coating composite piece by coating a stiffness adjustment layer on the cantilever beam, and then changes the stiffness of the cantilever beam-coating composite piece by changing the temperature of the stiffness adjustment layer, which can adjust the probe in real time Rigidity, no need to replace the probe frequently, reduce probe loss, large adjustment range, wide working range and good stability.
  • Figure 1 is a schematic diagram of the structure of the probe
  • Figure 2 is a schematic flow chart of the first embodiment
  • Fig. 3 is a schematic flow chart of the third embodiment.
  • the present invention discloses a real-time adjustment method for the stiffness of the probe of an atomic force microscope, which includes the following steps:
  • a rigidity adjustment layer is coated on the cantilever beam to form a cantilever beam-coating composite.
  • the stiffness adjustment layer is a metal layer, and the melting point of the metal layer is lower than the melting point of the cantilever beam.
  • the metal layer is an alloy composed of one or more of indium, bismuth, tin, and gold.
  • the stiffness adjustment layer is prepared by a coating method, an electron beam sputtering method, a chemical vapor deposition method, or a focused ion beam deposition method.
  • Cooling the molten metal the molten metal solidifies and forms on the surface of the cantilever beam, "cooling the molten metal", and the cooling rate is less than 10°C/s.
  • the probe can be a piezoresistive self-induction atomic force microscope probe produced by Japan HITACHI company.
  • the working principle of the probe is to sense the tiny deformation of the cantilever beam through the change of the resistance value of the piezoresistive sensor on the surface of the cantilever beam; moreover, when a voltage is applied to the probe, the cantilever beam can be heated up. Due to the actual micro-machining error, The stiffness of the AFM probe is 40 ⁇ 5N/m.
  • Au-Sn alloy powder is placed on the surface of the probe cantilever beam.
  • Au-Sn alloy powder is a mixture of Au-Sn solder and alcohol, the ratio is 1:5.
  • the target voltage is applied to the AFM probe to 5-10V. After heating for 1 minute, the temperature of the cantilever beam of the probe stabilizes at 280°C, reaching the melting point of Au-Sn alloy powder, which is much lower than the melting point of silicon cantilever material of 1410°C.
  • the Au-Sn alloy powder on the surface of the AFM probe is completely melted and is in a molten state. Drive the AFM probe in the Z direction with a vibration frequency of 10KHz and a vibration amplitude of 3 ⁇ m.
  • the molten Au-Sn alloy material spreads evenly on the surface of the probe cantilever beam. Within 10 minutes, the voltage was slowly reduced from 5-10V to 0V, and the molten Au-Sn alloy solidified into a solid state of 140 with a forming thickness of 15nm. Through software testing and software calculations, the overall stiffness of the AFM probe with the thickness of the cantilever increased by 15nm increased to 102.98N/m.
  • the probe in this embodiment is suitable for all AFM probes based on piezoresistive self-induction and self-heating.
  • the present invention can influence the forming thickness of Au-Sn alloy material by changing the vibration frequency and the vibration amplitude, and adjust the overall stiffness of the atomic force microscope probe. See Table 1 and Table 2 for details.
  • the alloy powder in this embodiment is not limited to the gold-based alloy brazing filler metal.
  • the Bi-based alloy and the In-based alloy solder have a lower melting point, which can expand the application of the present invention.
  • the melting point of 51% In/32.5% Bi/16.5% Sn is 60°C; the melting point of 57% Bi/26% In/17% Sn is 79°C.
  • the invention discloses a real-time adjustment method for the stiffness of the probe of an atomic force microscope, which comprises the following steps:
  • a rigidity adjustment layer is coated on the cantilever beam to form a cantilever beam-coating composite.
  • the stiffness adjustment layer is a metal layer, and the melting point of the metal layer is lower than the melting point of the cantilever beam.
  • the metal layer is an alloy composed of one or more of indium, bismuth, tin, and gold.
  • the stiffness adjustment layer is prepared by a coating method, an electron beam sputtering method, a chemical vapor deposition method, or a focused ion beam deposition method.
  • the probe can be a piezoresistive self-induction atomic force microscope probe produced by Japan HITACHI company.
  • the working principle of the probe is to sense the tiny deformation of the cantilever beam through the change of the resistance value of the piezoresistive sensor on the surface of the cantilever beam; moreover, when a voltage is applied to the probe, the cantilever beam can be heated up. Due to the actual micro-machining error, The stiffness of the AFM probe is 40 ⁇ 5N/m.
  • the principle of this embodiment is to place a layer of material on the surface of the cantilever beam of the atomic force microscope probe, and heat the probe to melt the surface material of the cantilever beam.
  • the probe used is a piezoresistive self-induction atomic force microscope probe produced by Japan's HITACHI company.
  • the working principle is to sense the tiny deformation of the cantilever beam through the change of the resistance value of the piezoresistive sensor on the surface of the cantilever beam.
  • the cantilever beam can be heated up. Due to the actual micro-machining error, the stiffness of the AFM probe is 40 ⁇ 5N/m.
  • the Au-Sn alloy powder is placed on the surface 220 of the cantilever beam.
  • the Au-Sn alloy powder 210 is a mixture of Au-Sn solder and alcohol, and the ratio is 1:5.
  • the target voltage is applied to the probe to 5-10V, and after heating for 1 minute, the temperature of the cantilever beam of the probe 2 stabilizes at 280°C, reaching the melting point of Au-Sn alloy powder 210, which is much lower than the melting point of the cantilever silicon material of 1410°C.
  • the Au-Sn alloy powder on the surface of the atomic force microscope probe is completely melted and is in a molten state 230.
  • the voltage is slowly reduced from 5-10V to 0V, and the molten Au-Sn alloy 230 solidifies into a solid state.
  • the average grain size of the solidified Au-Sn alloy metal is 80nm.
  • the invention can change the metal crystal grain size of Au-Sn alloy material by controlling the cooling rate of the atomic force microscope probe, affect the mechanical properties of the Au-Sn alloy material, and adjust the overall stiffness of the probe. See Table 3 for details.
  • the alloy powder in this embodiment is not limited to the gold-based alloy brazing filler metal.
  • the Bi-based alloy and the In-based alloy solder have a lower melting point, which can expand the application of the present invention.
  • the melting point of 51% In/32.5% Bi/16.5% Sn is 60°C; the melting point of 57% Bi/26% In/17% Sn is 79°C.
  • the PID method can be used to adjust and control the cooling rate.
  • the present invention discloses a real-time adjustment method for the stiffness of the probe of an atomic force microscope, which includes the following steps:
  • the non-conductive material is resin material, polyethylene, polypropylene or rubber.
  • the probe used in this embodiment is a piezoresistive self-induction atomic force microscope probe produced by Japan's HITACHI company.
  • the working principle is to sense the tiny deformation of the cantilever beam through the change of the resistance value of the piezoresistive sensor on the surface of the cantilever beam. Moreover, by applying a voltage to the probe, the cantilever beam can be heated up. Due to the actual micro-machining error, the stiffness of the AFM probe is 40 ⁇ 5N/m.
  • the specific implementation steps of this embodiment are as follows: apply the target voltage to the probe of the atomic force microscope to 1-5V, and after heating for 1 minute, the temperature reaches 80°C. Drive the AFM probe close to the resin material until it is "immersed” in the resin material. After being “immersed” in the resin material for 1 minute, drive the AFM probe again to move the AFM probe away from the resin material. At this time, the surface of the cantilever beam of the atomic force microscope probe is covered with a layer of resin material. After software testing and software calculation, the overall stiffness of the atomic force microscope probe has increased to 67.87N/m.
  • the speed at which the probe of the atomic force microscope approaches the resin material is controlled below 20 nm/s to prevent the probe from being damaged.
  • the overall stiffness of the atomic force microscope probe can be adjusted by controlling the heating temperature and the "immersion" time. Refer to Table 4 and Table 5 for details.

Abstract

一种原子力显微镜的探针的刚度实时调节方法,包括以下步骤:在悬臂梁上涂有刚度调节层,形成悬臂梁-涂层复合件;通过改变刚度调节层的温度以改变悬臂梁-涂层复合件的刚度。能够实时调节探针刚度,不需频繁更换探针,减少探针损耗,调节范围大,工作范围广,稳定性好。

Description

一种原子力显微镜的探针的刚度实时调节方法 技术领域
本发明涉及原子力显微镜技术领域,具体涉及一种原子力显微镜的探针的刚度实时调节方法。
背景技术
原子力显微镜采用特制的微小探针在样品材料表面左右和前后方向扫描,并利用扫描器在垂直方向微调能力,保持探针与材料表面的作用力在扫描过程中保持固定。记录扫描过程中每一点的垂直微调距离,材料表面三维形貌可以被表征。
同时,原子力显微镜将探针针尖压入和压出材料表面,通过传感器获取力-位移曲线,并计算曲线能够获得被测材料杨氏模量和硬度。不同于传统拉伸、压缩和弯曲试验需要将被测材料加工成标准尺寸形状,纳米压痕试验根据纳米压头形状和尖端尺寸,能够直接作用于任何尺寸和形状的材料,属于直接试验,被广泛应用于微/纳米尺度材料力学性能测试。
原子力显微镜根据工作模式需要选择合适刚度的探针。例如:当原子力显微镜选择接触模式成像,探针的刚度范围可选择在0.1N/m-1N/m。当原子力显微镜对生物材料进行成像,探针的刚度范围可选择在0.01N/m-0.5N/m。当原子力显微镜选择非接触模式成像,探针的刚度可选择在50N/m-80N/m。当原子力显微镜选择力调制模式成像,探针的刚度可选择在5N/m-10N/m。当原子力显微镜进行纳米压痕试验,原子力显微镜探针的刚度根据被检测材料对象的机械性能进行选择。
调整原子力显微镜探针刚度技术分为两类,一是手动更换不同刚度的探针。二是根据实际需求实时改变探针的刚度。
手动更换原子力显微镜探针是最直接,也是最简单的调整刚度的方法。但是手动更换原子力显微镜探针,花费时间长,需要重新寻找被检测材料感兴趣区域,容易对探针针尖造成损坏。
实时改变探针刚度能够克服手动调整刚度的不足,但是技术要求很高。Marcel Lambertus Cornelis de Laat等人在“In situ Stiffness Adjustment of AFM Probes by Two Orders of Magnitude”一文中公开提出通过减小原子力显微镜探针有效长度提高探针悬臂梁的刚度。在原子力显微镜探针平行位置固定一块电极板。电极板下端涂覆一层绝缘材料。当探针需要改变刚度的时候,在电极板和悬臂梁之间施加电压,“吸引”悬臂梁靠近并固定在电极板下端,降低悬臂梁的有效长度,增加探针刚度。这种方法没有改变探针整体的刚度,仅仅通过减小悬臂梁的有效长度增加刚度,使得探针在垂直方向的工作位移范围降低。SADEGHIAN MARNANI等的WO2014/104892Al中公开提出固定探针悬臂梁两端,并对探针施加电流,引起探针体积膨胀,增加悬臂梁内部应力,提高探针的刚度。这种方法虽然增加了悬臂梁整体刚度。但是因为悬臂梁内部存在拉应力,在纳米压痕过程中容易引起悬臂梁发生失效。
综上所述,手动更换原子力显微镜探针费时费力,且更换过程中,易对探针造成损坏;而实时改变探针刚度目前技术要求高,存在探针在垂直方向的工作位移范围低,悬臂梁易失效等技术问题,适用范围窄,结构复杂。
发明内容
本发明要解决的技术问题是提供一种原子力显微镜的探针的刚度实时调节方法,其能够实时调节探针刚度,调节范围大,工作范围广,稳定性好。
为了解决上述技术问题,本发明提供了一种原子力显微镜的探针的刚度实 时调节方法,所述探针包括悬臂梁和针尖,包括以下步骤:
在所述悬臂梁上涂有刚度调节层,形成悬臂梁-涂层复合件;
通过改变所述刚度调节层的温度以改变悬臂梁-涂层复合件的刚度。
作为优选的,所述刚度调节层为金属层,所述金属层的熔点低于所述悬臂梁的熔点。
作为优选的,所述金属层为铟、铋、锡、金中的一种或多种组成的合金。
作为优选的,所述刚度调节层通过涂覆法、电子束溅射法、化学气相沉积法或聚焦离子束沉积法制备。
作为优选的,所述“通过改变所述刚度调节层的温度以改变悬臂梁-涂层复合件的刚度”,具体包括以下步骤:
加热探针,所述悬臂梁上金属层熔化,得到熔融状态下的金属液;
振动探针以使得金属液均匀铺设在悬臂梁外壁上;
冷却金属液,所述金属液在悬臂梁表面凝固成型。
作为优选的,所述“振动探针以使得金属液均匀铺设在悬臂梁外壁上”中,所述探针的振动频率为5khz-20khz,所述探针的振动幅度为3-5μm
作为优选的,所述“冷却金属液”,冷却速度小于10℃/s。
作为优选的,所述“振动探针以使得金属液均匀铺设在悬臂梁外壁上”,探针的振动采用压电陶瓷驱动器驱动。
作为优选的,所述“通过改变所述刚度调节层的温度以改变悬臂梁-涂层复合件的刚度”,包括以下步骤:
加热探针,所述悬臂梁上金属层熔化,得到熔融状态下的金属液;
通过控制探针的冷却速度来改变金属液凝固成型后的晶粒形貌,获取不同刚度的悬臂梁-涂层复合件。
作为优选的,所述“探针的冷却速度”为0.1-10℃/s。
本发明公开了一种原子力显微镜的探针的刚度实时调节方法,所述探针包括悬臂梁和针尖,包括以下步骤:
加热探针,使得探针的温度大于非导电材料的熔点;
将加热后的探针浸没在非导电材料中并停留;
将探针从非导电材料中拔出,此时探针表面涂覆有非导电材料,停止加热探针,非导电材料在探针上凝固成型。
作为优选的,所述非导电材料的熔点低于100℃。
作为优选的,所述“将探针从非导电材料中拔出,此时探针表面涂覆有非导电材料,停止加热探针,非导电材料在探针上凝固成型”之后还包括:刮除针尖的非导电材料。
作为优选的,所述非导电材料为树脂材料、聚乙烯、聚丙烯或者橡胶。
本发明的有益效果:
本发明通过在悬臂梁上涂有刚度调节层,形成悬臂梁-涂层复合件,之后通过改变所述刚度调节层的温度以改变悬臂梁-涂层复合件的刚度,其能够实时调节探针刚度,不需频繁更换探针,减少探针损耗,调节范围大,工作范围广,稳定性好。
附图说明
图1为探针的结构示意图;
图2为实施例一的流程示意图;
图3为实施例三的流程示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例一
参照图1所示,本发明公开了一种原子力显微镜的探针的刚度实时调节方法,包括以下步骤:
S1、在悬臂梁上涂有刚度调节层,形成悬臂梁-涂层复合件。刚度调节层为金属层,金属层的熔点低于悬臂梁的熔点。
金属层为铟、铋、锡、金中的一种或多种组成的合金。
刚度调节层通过涂覆法、电子束溅射法、化学气相沉积法或聚焦离子束沉积法等方法制备。
S2、通过改变刚度调节层的温度以改变悬臂梁-涂层复合件的刚度,具体包括:
S21、加热探针,悬臂梁上金属层熔化,得到熔融状态下的金属液;
S22、振动探针以使得金属液均匀铺设在悬臂梁外壁上。探针的振动可采用压电陶瓷驱动器驱动,探针在Z轴微动。
S23、冷却金属液,金属液在悬臂梁表面凝固成型,“冷却金属液”,冷却速度小于10℃/s。
本实施例中探针可采用日本HITACHI公司生产的基于压阻自感应原子力显微镜探针。该探针的工作原理是通过悬臂梁表面的压阻传感器电阻值发生的改变感知悬臂梁的微小变形;而且,对此探针施加电压,悬臂梁能够被加热升温,由于实际微加工的误差,原子力显微镜探针的刚度在40±5N/m。
在本实施例中,将Au-Sn合金粉末放置在探针悬臂梁表面。Au-Sn合金粉末是Au-Sn钎料与酒精混合状态,比例是1:5。对原子力显微镜探针施加目标电压至5-10V,加热1分钟后,探针悬臂梁温度稳定在280℃,达到Au-Sn合金粉末的熔点,并且远远小于悬臂梁硅材料的熔点1410℃。原子力显微镜探针表面的Au-Sn合金粉末完全熔化,呈熔融状态。在Z方向以振动频率10KHz,振动幅度3μm驱动原子力显微镜探针。振动2s时间后,熔融状态Au-Sn合金材料均匀铺满探针悬臂梁表面。在10分钟时间内,将电压缓慢从5-10V降低到0V,熔融状态Au-Sn合金凝固成固态140,成型厚度为15nm。通过软件测试和软件计算,悬臂梁厚度增加15nm的原子力显微镜探针整体刚度增加至102.98N/m。
本实施例中的探针适用于所有基于压阻自感应且自加热的原子力显微镜探针。
本发明可通过改变振动频率和震动幅度能够影响Au-Sn合金材料成型厚度,调节原子力显微镜探针整体刚度,具体参见表1和表2。
表1
振动频率(kHz) 5 10 15 20
悬臂梁-涂层复合件刚度(N/m) 143.56 102.98 95.67 79.82
表2
振动幅度(μm) 3 3.5 4 5
悬臂梁-涂层复合件刚度(N/m) 102.98 87.68 68.75 60.38
从表1中可以看出,在5khz-20khz振动频率范围内,随着振动频率的增大, 悬臂梁-涂层复合件的刚度逐渐降低,但是始终大于探针刚度40±5N/m,如此,可实现AFM探针的刚度调整。
从表2中可以看出,在3-5μm振动幅度范围内,随着振动幅度增大,悬臂梁-涂层复合件的刚度逐渐减小,但始终大于探针刚度40±5N/m,如此,可实现AFM探针的刚度调整。
本实施例中合金粉末不局限于金基合金钎料。Bi基合金和In基合金钎料熔点更低,能够扩大本发明的应用。例如51%In/32.5%Bi/16.5%Sn熔点是60℃;57%Bi/26%In/17%Sn熔点是79℃。
实施例二
本发明公开了一种原子力显微镜的探针的刚度实时调节方法,包括以下步骤:
S1、在悬臂梁上涂有刚度调节层,形成悬臂梁-涂层复合件。刚度调节层为金属层,金属层的熔点低于悬臂梁的熔点。
金属层为铟、铋、锡、金中的一种或多种组成的合金。
刚度调节层通过涂覆法、电子束溅射法、化学气相沉积法或聚焦离子束沉积法等方法制备。
S2、通过改变刚度调节层的温度以改变悬臂梁-涂层复合件的刚度,具体包括:
S21、加热探针,悬臂梁上金属层熔化,得到熔融状态下的金属液;
S22、通过控制探针的冷却速度来改变金属液凝固成型后的晶粒形貌,获取不同刚度的悬臂梁-涂层复合件。
本实施例中探针可采用日本HITACHI公司生产的基于压阻自感应原子力显微镜探针。该探针的工作原理是通过悬臂梁表面的压阻传感器电阻值发生的改 变感知悬臂梁的微小变形;而且,对此探针施加电压,悬臂梁能够被加热升温,由于实际微加工的误差,原子力显微镜探针的刚度在40±5N/m。
本实施例的原理是在原子力显微镜探针悬臂梁表面放置一层材料,加热探针使悬臂梁表面材料熔化。通过控制探针的冷却时间,控制熔融金属凝固成型材料的晶粒大小,改变凝固状态材料机械性能,调节原子力显微镜的整体刚度。以下是具体实施步骤:采用的探针是日本HITACHI公司生产的基于压阻自感应原子力显微镜探针。工作原理是通过悬臂梁表面的压阻传感器电阻值发生的改变感知悬臂梁的微小变形。而且,对探针施加电压,悬臂梁能够被加热升温。由于实际微加工的误差,原子力显微镜探针的刚度在40±5N/m。将Au-Sn合金粉末放置在悬臂梁表面220。Au-Sn合金粉末210是Au-Sn钎料与酒精混合状态,比例是1:5。对探针施加目标电压至5-10V,加热1分钟后,探针2悬臂梁温度稳定在280℃,达到Au-Sn合金粉末210的熔点,并且远远小于悬臂梁硅材料的熔点1410℃。原子力显微镜探针表面Au-Sn合金粉末完全熔化,呈熔融状态230。在5分钟时间内,将电压缓慢从5-10V降低到0V,熔融状态Au-Sn合金230凝固成固态。通过扫描电镜观察,凝固状态Au-Sn合金金属晶粒尺寸平均值为80nm。通过软件测试和软件计算,此时原子力显微镜探针整体刚度增加至87.53N/m。
本发明可通过控制原子力显微镜探针冷却速度,改变Au-Sn合金材料成型金属晶粒大小,影响Au-Sn合金材料的机械性能,调节探针整体刚度,具体参见表3。
表3
冷却速度(℃/s) 0.1 1 10
悬臂梁-涂层复合件的刚度(N/m) 100.98 87.53 75.63
从表3中可以看出,在冷却速度为0.1-10范围内,随着冷却速度的变大,凝固成型金属晶粒尺寸呈变大的趋势,悬臂梁-涂层复合件的刚度逐渐变小,但 其刚度始终大于原始探针刚度40±5N/m。
本实施例中合金粉末不局限于金基合金钎料。Bi基合金和In基合金钎料熔点更低,能够扩大本发明的应用。例如51%In/32.5%Bi/16.5%Sn熔点是60℃;57%Bi/26%In/17%Sn熔点是79℃。
本实施例中可采用PID方法调节控制冷却速度。
实施例三
参照图2所示,本发明公开了一种原子力显微镜的探针的刚度实时调节方法,包括以下步骤:
S1、加热探针,使得探针的温度大于非导电材料的熔点。非导电材料的熔点低于100℃。非导电材料为树脂材料、聚乙烯、聚丙烯或者橡胶。
S2、将加热后的探针浸没在非导电材料中并停留;
S3、将探针从非导电材料中拔出,此时探针表面涂覆有非导电材料,停止加热探针,非导电材料在探针上凝固成型;
S4、刮除针尖的非导电材料。本实施例中原子力显微镜探针“包裹”非导电材料后需要将针尖在硅片表面缓慢行走一段位移,刮除针尖部位的树脂材料。如果行走一段位置,没有完全刮除,需要重复进行,直至刮除针尖部位的树脂材料。
本实施例采用的探针是日本HITACHI公司生产的基于压阻自感应原子力显微镜探针。工作原理是通过悬臂梁表面的压阻传感器电阻值发生的改变感知悬臂梁的微小变形。而且,对探针施加电压,悬臂梁能够被加热升温。由于实际微加工的误差,原子力显微镜探针的刚度在40±5N/m。
本实施例的具体实施步骤是:将原子力显微镜探针施加目标电压至1-5V,加热1分钟后,温度达到80℃。驱动原子力显微镜探针靠近树脂材料,直至“浸没”在树脂材料中。在树脂材料中“浸没”1分钟时间后,再次驱动原子力学 显微镜探针,使原子力显微镜探针远离树脂材料。此时,在原子力显微镜探针悬臂梁表面覆盖一层树脂材料。过软件测试和软件计算,此时原子力显微镜探针整体刚度增加至67.87N/m。
本实施例中原子力显微镜探针靠近树脂材料的速度控制在20nm/s以下,防止探针受到损坏。
本实施例通过控制加热温度和“浸没”时间可调节原子力显微镜探针整体刚度具体参见表4和表5。
表4
“包裹”时间(min) 0.1 1 5
悬臂梁-涂层复合件的刚度(N/m) 55.65 67.87 80.65
表5
加热温度(℃) 30 80 120
悬臂梁-涂层复合件的刚度(N/m) 89.65 67.87 38.24
从表4中可以看出,当“包裹时间”在0.1-5min范围内,随着包裹时间的增长,悬臂梁-涂层复合件的刚度变大,且其刚度始终大于原始探针刚度40±5N/m。
从表5可以看出,当加热温度在30-120范围内,随着加热温度的增大,悬臂梁-涂层复合件的刚度逐渐变小,因此,可通过调节探针的加热温度来调节悬臂梁-涂层复合件的刚度。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (14)

  1. 一种原子力显微镜的探针的刚度实时调节方法,所述探针包括悬臂梁和针尖,其特征在于,包括以下步骤:
    在所述悬臂梁上涂有刚度调节层,形成悬臂梁-涂层复合件;
    通过改变所述刚度调节层的温度以改变悬臂梁-涂层复合件的刚度。
  2. 如权利要求1所述的原子力显微镜的探针的刚度实时调节方法,其特征在于,所述刚度调节层为金属层,所述金属层的熔点低于所述悬臂梁的熔点。
  3. 如权利要求2所述的原子力显微镜的探针的刚度实时调节方法,其特征在于,所述金属层为铟、铋、锡、金中的一种或多种组成的合金。
  4. 如权利要求2所述的原子力显微镜的探针的刚度实时调节方法,其特征在于,所述刚度调节层通过涂覆法、电子束溅射法、化学气相沉积法或聚焦离子束沉积法制备。
  5. 如权利要求2所述的原子力显微镜的探针的刚度实时调节方法,其特征在于,所述“通过改变所述刚度调节层的温度以改变悬臂梁-涂层复合件的刚度”,具体包括以下步骤:
    加热探针,所述悬臂梁上金属层熔化,得到熔融状态下的金属液;
    振动探针以使得金属液均匀铺设在悬臂梁外壁上;
    冷却金属液,所述金属液在悬臂梁表面凝固成型。
  6. 如权利要求5所述的原子力显微镜的探针的刚度实时调节方法,其特征在于,所述“振动探针以使得金属液均匀铺设在悬臂梁外壁上”中,所述探针的振动频率为5khz-20khz,所述探针的振动幅度为3-5μm。
  7. 如权利要求5所述的原子力显微镜的探针的刚度实时调节方法,其特征在于,所述“冷却金属液”,冷却速度小于10℃/s。
  8. 如权利要求5所述的原子力显微镜的探针的刚度实时调节方法,其特征在于,所述“振动探针以使得金属液均匀铺设在悬臂梁外壁上”,探针的振动采用压电陶瓷驱动器驱动。
  9. 如权利要求2所述的原子力显微镜的探针的刚度实时调节方法,其特征在于,所述“通过改变所述刚度调节层的温度以改变悬臂梁-涂层复合件的刚度”,包括以下步骤:
    加热探针,所述悬臂梁上金属层熔化,得到熔融状态下的金属液;
    通过控制探针的冷却速度来改变金属液凝固成型后的晶粒形貌,获取不同刚度的悬臂梁-涂层复合件。
  10. 如权利要求9所述的原子力显微镜的探针的刚度实时调节方法,其特征在于,所述“探针的冷却速度”为0.1-10℃/s。
  11. 一种原子力显微镜的探针的刚度实时调节方法,所述探针包括悬臂梁和针尖,其特征在于,包括以下步骤:
    加热探针,使得探针的温度大于非导电材料的熔点;
    将加热后的探针浸没在非导电材料中并停留;
    将探针从非导电材料中拔出,此时探针表面涂覆有非导电材料,停止加热探针,非导电材料在探针上凝固成型。
  12. 如权利要求11所述的原子力显微镜的探针的刚度实时调节方法,其特征在于,所述非导电材料的熔点低于100℃。
  13. 如权利要求11所述的原子力显微镜的探针的刚度实时调节方法,其特 征在于,所述“将探针从非导电材料中拔出,此时探针表面涂覆有非导电材料,停止加热探针,非导电材料在探针上凝固成型”之后还包括:刮除针尖的非导电材料。
  14. 如权利要求11所述的原子力显微镜的探针的刚度实时调节方法,其特征在于,所述非导电材料为树脂材料、聚乙烯、聚丙烯或者橡胶。
PCT/CN2019/127400 2019-12-20 2019-12-23 一种原子力显微镜的探针的刚度实时调节方法 WO2021120233A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911329307.5 2019-12-20
CN201911329307.5A CN110954714B (zh) 2019-12-20 2019-12-20 一种原子力显微镜的探针的刚度实时调节方法

Publications (1)

Publication Number Publication Date
WO2021120233A1 true WO2021120233A1 (zh) 2021-06-24

Family

ID=69983168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127400 WO2021120233A1 (zh) 2019-12-20 2019-12-23 一种原子力显微镜的探针的刚度实时调节方法

Country Status (2)

Country Link
CN (1) CN110954714B (zh)
WO (1) WO2021120233A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2643316Y (zh) * 2003-09-27 2004-09-22 均豪精密工业股份有限公司 具有高强度探针的纳米机械性质测量装置
WO2007095360A2 (en) * 2006-02-14 2007-08-23 The Regents Of The University Of California Coupled mass-spring systems and imaging methods for scanning probe microscopy
CN101876667A (zh) * 2010-06-30 2010-11-03 北京大学 基于碳纳米管和平面波导结构的原子力显微镜探针
CN107328956A (zh) * 2017-06-05 2017-11-07 南京航空航天大学 一种包裹二维材料的原子力显微镜探针制备方法
CN109239405A (zh) * 2018-07-24 2019-01-18 西安交通大学 一种原子力显微镜探针的制备方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3290378B2 (ja) * 1996-06-13 2002-06-10 インターナショナル・ビジネス・マシーンズ・コーポレーション Afm/stm形状測定のためのマイクロメカニカル・センサ
US20030143327A1 (en) * 2001-12-05 2003-07-31 Rudiger Schlaf Method for producing a carbon nanotube
US6612161B1 (en) * 2002-07-23 2003-09-02 Fidelica Microsystems, Inc. Atomic force microscopy measurements of contact resistance and current-dependent stiction
GB0316577D0 (en) * 2003-07-15 2003-08-20 Univ Bristol Atomic force microscope
WO2007037994A2 (en) * 2005-09-26 2007-04-05 General Nanotechnology Llc Manufacturing of micro-objects such as miniature diamond tool tips
US20100196661A1 (en) * 2009-01-30 2010-08-05 Duerig Urs T Method for patterning nano-scale patterns of molecules on a surface of a material
JP2011008070A (ja) * 2009-06-26 2011-01-13 Ricoh Co Ltd マイクロミラー装置
JP5519572B2 (ja) * 2011-05-09 2014-06-11 株式会社日立ハイテクノロジーズ 磁気力顕微鏡用カンチレバー
CN102738380B (zh) * 2012-06-05 2015-04-15 东南大学 微纳热电偶探针的制备装置
EP2835654A1 (en) * 2013-08-09 2015-02-11 Université de Genève Insulator coated conductive probe and method of production thereof
CN110082014B (zh) * 2013-12-07 2021-08-03 布鲁克公司 具有与样品交互的探针的原子力显微镜
CN104698224A (zh) * 2013-12-09 2015-06-10 孙宝恒 高灵敏微悬臂梁探针
CN104360107B (zh) * 2014-11-12 2016-11-30 苏州大学 一种石墨烯包覆原子力显微镜探针及其制备方法、用途
CN104764905B (zh) * 2015-03-24 2018-04-20 清华大学深圳研究生院 一种原子力显微镜扫描热探针及其制备方法
KR101742211B1 (ko) * 2015-11-23 2017-05-31 주식회사 포스코 마이크로 rna의 초민감성 정량 분석 방법 및 장치
US20170184631A1 (en) * 2015-12-14 2017-06-29 Applied Nanostructures, Inc. Probe device for scanning probe microscopes and method of manufacture thereof
CN105712281B (zh) * 2016-02-18 2017-08-04 国家纳米科学中心 一种锥形纳米碳材料功能化针尖及其制备方法
EP3480583B1 (en) * 2016-06-30 2024-04-24 Kyoto University Probe manufacturing method
WO2018039246A1 (en) * 2016-08-22 2018-03-01 Bruker Nano, Inc. Infrared characterization of a sample using peak force tapping
WO2018089022A1 (en) * 2016-11-11 2018-05-17 Aaron Lewis Enhancing optical signals with probe tips optimized for chemical potential and optical characteristics
CN106501551B (zh) * 2016-12-29 2019-08-06 山东大学 一种基于光纤的原子力显微镜探头及原子力显微镜***
CN107561315B (zh) * 2017-09-14 2019-08-30 浙江大学 一种金属中微观氢分布及氢偏聚激活能的测试装置及方法
CN108051614B (zh) * 2017-12-05 2020-03-24 湘潭大学 一种基于扫描电镜原位力学测试***的光/力/电耦合测试装置及其测试方法
CN110051343B (zh) * 2019-04-08 2020-05-22 北京大学 一种以不锈钢为基材的多功能三维生物微探针及其制备方法
CN112394199A (zh) * 2019-08-16 2021-02-23 长鑫存储技术有限公司 原子力显微镜及其测量方法
CN112964910A (zh) * 2020-09-16 2021-06-15 中国科学院沈阳自动化研究所 原子力显微镜一体化双探针快速原位切换测量方法与装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2643316Y (zh) * 2003-09-27 2004-09-22 均豪精密工业股份有限公司 具有高强度探针的纳米机械性质测量装置
WO2007095360A2 (en) * 2006-02-14 2007-08-23 The Regents Of The University Of California Coupled mass-spring systems and imaging methods for scanning probe microscopy
CN101876667A (zh) * 2010-06-30 2010-11-03 北京大学 基于碳纳米管和平面波导结构的原子力显微镜探针
CN107328956A (zh) * 2017-06-05 2017-11-07 南京航空航天大学 一种包裹二维材料的原子力显微镜探针制备方法
CN109239405A (zh) * 2018-07-24 2019-01-18 西安交通大学 一种原子力显微镜探针的制备方法

Also Published As

Publication number Publication date
CN110954714A (zh) 2020-04-03
CN110954714B (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
WO2017054782A1 (zh) 一种透射电镜双倾原位纳米压痕平台
CN107389447B (zh) 一种金属增材制造的拉伸试样
TWI656347B (zh) 檢查樣品表面的掃描探針顯微鏡及方法
Kuchin et al. The smallest and the fastest shape memory alloy actuator for micro-and nanorobotics
WO2021120233A1 (zh) 一种原子力显微镜的探针的刚度实时调节方法
CN110686951B (zh) 一种适用于多相钼合金的纳米硬度测量方法
JP2012516064A (ja) 基板温度制御を含む大面積均質アレイの製作方法
JP2012515559A (ja) 制御された先端部材負荷用蒸着を含む大面積均質アレイの製作方法
Serrell et al. A uniaxial bioMEMS device for quantitative force-displacement measurements
WO2013028782A1 (en) Electrochemically-grown nanowires and uses thereof
CN106771376B (zh) 一种制备原子力显微镜针尖的方法
Gyobu et al. Two-way shape memory effect of sputter-deposited Ti-rich Ti–Ni alloy films
Shiratori et al. Automatic film formation system for ultra-thin organic/inorganic hetero-structure by mass-controlled layer-by-layer sequential adsorption method with ‘nm’scale accuracy
Serrell et al. A uniaxial bioMEMS device for imaging single cell response during quantitative force-displacement measurements
KR20110124214A (ko) 균일한 기판을 포함하는 넓은 면적의 균일한 어레이 제작
CN111115567B (zh) 一种用于mems晶圆级封装的应力补偿方法
CN109825780A (zh) 一种提高铁基非晶合金/纳米晶合金熔体粘度的方法
Yang et al. AFM characterization of nanopositioner in-plane stiffnesses
CN114636698A (zh) 一种金属纳米线材料的原位制备-测试一体化装置和方法
Dawson et al. Tribo-induced melting transition at a sliding asperity contact
Iwata et al. Microelectrophoresis deposition using a nanopipette for three-dimensional structures
Maleque et al. Abrasive wear response of TIG-melted TiC composite coating: Taguchi approach
JPH04301501A (ja) 基準スケール板とその製造方法
CN111805056A (zh) 调控变极性cmt热输入的方法
Dagdas et al. Nanomechanical characterization by double-pass force–distance mapping

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956482

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 23/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19956482

Country of ref document: EP

Kind code of ref document: A1