WO2021119929A1 - 自定义振动的方法、装置、计算机设备及存储介质 - Google Patents

自定义振动的方法、装置、计算机设备及存储介质 Download PDF

Info

Publication number
WO2021119929A1
WO2021119929A1 PCT/CN2019/125678 CN2019125678W WO2021119929A1 WO 2021119929 A1 WO2021119929 A1 WO 2021119929A1 CN 2019125678 W CN2019125678 W CN 2019125678W WO 2021119929 A1 WO2021119929 A1 WO 2021119929A1
Authority
WO
WIPO (PCT)
Prior art keywords
expression
target
signal
node
envelope
Prior art date
Application number
PCT/CN2019/125678
Other languages
English (en)
French (fr)
Inventor
樊晨晨
向征
谢兵
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to PCT/CN2019/125678 priority Critical patent/WO2021119929A1/zh
Publication of WO2021119929A1 publication Critical patent/WO2021119929A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector

Definitions

  • This application relates to the field of computers, and in particular to a method, device, computer equipment, and storage medium for custom vibration.
  • the present invention proposes a custom vibration method, device, computer equipment and storage medium that can reasonably generate electric signals to drive the motor to vibrate and is convenient for debugging.
  • a method for customizing vibration includes:
  • the target vibration waveform is obtained by simulation
  • an electric signal is generated to drive the motor to vibrate.
  • the calculation of the signal expression and the envelope expression of the target signal according to the node information includes: obtaining a sampling time interval; obtaining the node timestamp and node timestamp corresponding to each node in the node information Frequency; According to the sampling time interval, the node timestamp and the node frequency, calculate the segment signal expression corresponding to each target time period; obtain the node strength corresponding to each node in the node information; The sampling time interval, the node timestamp, and the node strength are calculated to obtain a segment envelope expression corresponding to each target time period.
  • the calculating the segment signal expression corresponding to each target time period according to the node timestamp and the node frequency includes: obtaining the segment phase expression corresponding to each target time period; According to the segment phase expression, the node timestamp, and the node frequency, the segment signal expression corresponding to each target time period is calculated.
  • the calculating the segment envelope expression corresponding to each target time period according to the node timestamp and the node strength includes: calculating according to the node timestamp and the node strength The correlation coefficient of the segment envelope expression corresponding to each target time period; according to the correlation coefficient, the segment envelope expression corresponding to each target time period is calculated.
  • the calculating the target signal expression according to the signal expression and the envelope expression includes: obtaining the point signal expression and the point envelope corresponding to each time point in the target signal Expression: According to the point signal expression and the point envelope expression corresponding to each time point, the point target expression corresponding to each time point is calculated.
  • the calculating the point target expression corresponding to each time point according to the point signal expression and the point envelope expression corresponding to each time point includes: separately calculating the The product of the point signal expression corresponding to each time point and the point envelope expression; and the point target expression corresponding to each time point is obtained according to the product.
  • the simulation to obtain the target vibration waveform according to the target expression includes: according to the signal expression, simulation to obtain the original code pulse; according to the envelope expression, simulation to obtain the target envelope Line; According to the original code pulse and the target envelope, the target vibration waveform corresponding to the target expression is obtained.
  • an embodiment of the present invention provides a self-defined vibration device, and the device includes:
  • the obtaining module is used to obtain the node information of the target signal
  • the first calculation module is configured to calculate the signal expression and envelope expression of the target signal according to the node information
  • the second calculation module is configured to calculate a target expression according to the signal expression and the envelope expression
  • the simulation module is used to simulate and obtain the target vibration waveform according to the target expression
  • the synthesis module is used to generate an electric signal to drive the motor to vibrate according to the target vibration waveform.
  • an embodiment of the present invention provides a computer device, including a memory and a processor, the memory stores a computer program, and when the computer program is executed by the processor, the processor executes the following steps:
  • the target vibration waveform is obtained by simulation
  • an electric signal is generated to drive the motor to vibrate.
  • an embodiment of the present invention provides a computer-readable storage medium storing a computer program, and when the computer program is executed by a processor, the processor executes the following steps:
  • the target vibration waveform is obtained by simulation
  • an electric signal is generated to drive the motor to vibrate.
  • the above-mentioned self-defined vibration method, device, computer equipment and storage medium obtain the node information of the target signal, and then calculate the signal expression and envelope expression of the target signal according to the node information, and then calculate the signal expression and envelope expression of the target signal according to the signal expression and
  • the envelope expression is calculated to obtain a target expression, and finally a target vibration waveform is obtained by simulation according to the target expression; an electric signal is generated according to the target vibration waveform to drive the motor to vibrate.
  • the signal expression and envelope expression of the target signal are calculated through the node information of the target signal, and then the target expression is calculated according to the signal expression and the envelope expression.
  • the target vibration waveform can be obtained. According to the target vibration waveform It can realize reasonable generation of electric signals to drive the motor to vibrate, and it is convenient to debug.
  • FIG. 1 is a flowchart of a method for customizing vibration according to an embodiment of the application
  • FIG. 2 is a flowchart of a signal expression and an envelope expression obtained by calculation according to an embodiment of the application;
  • FIG. 3 is a flowchart of a segment signal expression obtained by calculation according to an embodiment of the application.
  • Fig. 4 is a flow chart of calculating a segment envelope expression according to an embodiment of the application.
  • FIG. 5 is a flow chart of calculating a target signal expression according to an embodiment of the application.
  • Fig. 6 is a flow chart of calculating a point target expression according to an embodiment of the application.
  • FIG. 7 is a flowchart of obtaining a target vibration waveform according to an embodiment of the application
  • Fig. 8a is a schematic diagram of the original code pulse and the target envelope of an embodiment of the application.
  • FIG. 8b is a schematic diagram of a target vibration waveform according to an embodiment of the application.
  • FIG. 9 is a structural block diagram of a self-defined vibration device according to an embodiment of the application.
  • FIG. 10 is a structural block diagram of a computer device according to an embodiment of the application.
  • a method for customizing vibration is proposed, and the method for customizing vibration can be applied to a terminal.
  • This embodiment is applied to a terminal as an example.
  • the custom vibration method specifically includes the following steps:
  • Step 102 Obtain node information of the target signal.
  • the target signal refers to the signal that needs to be analyzed.
  • the target signal can be defined as a signal with a signal duration greater than 50ms;
  • the node information of the target signal refers to the information corresponding to each node in the envelope corresponding to the target signal.
  • the node information can be Including: node timestamp, node strength and node frequency.
  • the envelope corresponding to the target signal can have multiple nodes, and the node information corresponding to different nodes is also different, so the node information corresponding to each node in the target signal can be obtained.
  • the envelope corresponding to the target signal may be formed by splicing multiple segments. In one embodiment, the envelope corresponding to the target signal may be formed by splicing three segments.
  • the node information corresponding to each of the four nodes can be obtained separately, for example, the node timestamp, node strength and node frequency of the first node among the four nodes can be obtained, and the node time of the second node can be obtained Stamp, node strength and node frequency, get the node timestamp, node strength and node frequency of the third node, get the node timestamp, node strength and node frequency of the fourth node, from which the envelope corresponding to the target signal can be obtained The node information of the four nodes.
  • Step 104 Calculate the signal expression and envelope expression of the target signal according to the node information.
  • the signal expression refers to the mathematical expression of the target signal
  • the envelope expression refers to the mathematical expression of the envelope curve.
  • Signal expressions and envelope expressions can be used to describe the target signal. Different target signals correspond to different signal expressions and envelope expressions, so you can calculate according to the node information of each node in the envelope of the target signal. Obtain the signal expression and envelope expression corresponding to the target signal.
  • the signal expression may be calculated according to the node timestamp and node frequency in the node information
  • the envelope expression may be calculated according to the node timestamp and the node strength in the node information
  • the envelope expression may be calculated according to different node information. Different signal expressions and envelope expressions will be calculated.
  • Step 106 Calculate the target expression according to the signal expression and the envelope expression.
  • the target expression refers to the mathematical expression of the target vibration waveform. Since the target expression can be used to describe the target vibration waveform, and the signal expression and envelope expression can be used to describe the target signal, in order to obtain the target vibration waveform, the target expression can be calculated according to the signal expression and the envelope expression , So that the target vibration waveform can be obtained.
  • the target expression is calculated according to the signal expression and the envelope expression, which may be obtained by calculating the product of the signal expression and the envelope expression, for example, calculating the signal expression and the envelope expression corresponding to the same node
  • the product of the formula, the product obtained is the target expression. According to the target expression, the target vibration waveform can be obtained.
  • Step 108 According to the target expression, a target vibration waveform is obtained by simulation.
  • the target vibration waveform refers to the vibration signal that needs to be obtained
  • the simulation refers to the process of constructing a system model to describe the target vibration waveform. Since the target expression can be used to describe the target vibration waveform, the target expression can be simulated, so that the target vibration waveform can be described more vividly. In one embodiment, simulation can be performed according to the target expression to realize the description of the process of the target vibration waveform continuously changing over time.
  • Step 110 Generate an electrical signal to drive the motor to vibrate according to the target vibration waveform.
  • the current signal generated according to the target vibration waveform refers to the conversion of the target vibration waveform into an electrical signal by the sensor. Because the electric signal is easier to transmit and control, the target vibration waveform can be converted into an electric signal, so that the target vibration waveform can be transmitted, exchanged, stored, and extracted through the electric signal.
  • the target vibration waveform may be generated corresponding to the electrical signal, and then the motor is driven to vibrate according to the electrical signal corresponding to the target vibration waveform, so that custom vibration can be realized according to the customized target vibration waveform to meet the personalization of the user demand.
  • the signal expression and envelope expression of the target signal are calculated through the node information of the target signal, and then the target expression is calculated according to the signal expression and the envelope expression, and the target vibration waveform can be obtained according to the target expression.
  • the target vibration waveform can realize reasonable generation of electric signals to drive the motor to vibrate, and it is convenient for debugging.
  • the calculation of the signal expression and envelope expression of the target signal according to the node information includes:
  • Step 202 Obtain a sampling time interval.
  • the sampling time interval refers to the preset time interval when collecting the target signal. Since the envelope corresponding to the target signal can be spliced by multiple segments, and the time points corresponding to each segment of the envelope obtained by sampling are discrete points, a sampling time interval can be preset to reduce the calculation error .
  • the sampling interval can be used to calculate signal expressions and target expressions.
  • Step 204 Obtain the node timestamp and the node frequency corresponding to each node in the node information.
  • the node timestamp refers to the time point corresponding to each node of each envelope of the target signal
  • the node frequency refers to the number of periodic changes corresponding to each node in a unit time. Since the envelope corresponding to the target signal can be spliced by multiple segments, the nodes corresponding to each segment of the envelope are different, and the node information corresponding to different nodes is also different, so the node timestamp and node frequency corresponding to each node are also different. Different, you need to obtain the node timestamp and node frequency corresponding to each node separately.
  • Step 206 According to the sampling time interval, the node timestamp and the node frequency, a segment signal expression corresponding to each target time period is calculated.
  • the target time period refers to the time period corresponding to each envelope in the target signal
  • the segment signal expression refers to the mathematical expression of the target signal corresponding to each target time period. Since the envelope corresponding to the target signal can be spliced by multiple segments, the target signal can be divided into multiple continuous signal segments according to each envelope; and different signal segments correspond to different signal expressions, so they must be separated Calculate the segment signal expression corresponding to each target time period corresponding to each segment signal, so that the segment signal expressions corresponding to different signal segments can be obtained.
  • each target time period can be calculated according to the sampling time interval and the timestamp of each node For example, each target time period can be divided into: the first target time period is t 1 ⁇ (t 2 -T s ), and the second target time period is (t 2 -T s ) ⁇ (t 3 -t 2- T s ), and the third target time period is (t 3 -t 2 -T s ) to (t 4 -t 3 -T s ).
  • the signal expression of each segment can be calculated according to each target time period and the frequency of each node, for example, according to the node frequency and node corresponding to each node in the first target time period, the second target time period and the third target time period Timestamp, the segment signal expression corresponding to each target time period can be calculated.
  • Step 208 Obtain the node strength corresponding to each node in the node information.
  • the node strength refers to the strength of each node in the envelope corresponding to the target signal.
  • different nodes correspond to different node strengths.
  • Step 210 According to the sampling time interval, the node timestamp, and the node strength, a segment envelope expression corresponding to each target time period is calculated.
  • the segment envelope expression refers to the mathematical expression of the envelope corresponding to each target time period. Since the envelope corresponding to the target signal can be spliced by multiple segments, the target signal can be divided into multiple continuous signal segments according to each envelope; and the envelope expressions corresponding to different signal segments are different, so they must be separated. The segment envelope expression corresponding to each target time segment corresponding to each segment signal is calculated, so that the segment envelope expression corresponding to different signal segments can be obtained. In one embodiment, each target time period can be calculated according to the sampling time interval and the timestamp of each node.
  • Each segment envelope expression can be calculated according to each target time period and the strength of each node, for example, according to the node strength corresponding to each node in the first target time period, the second target time period and the third target time period And the node timestamp, the segment envelope expression corresponding to each target time period can be calculated.
  • each target time period is calculated according to the sampling time interval and node timestamp, and then each segment is calculated according to the node timestamp and node frequency
  • the signal expression, the envelope expression of each segment is calculated according to the node timestamp and the node strength; the error in calculating the two expressions can be reduced through the sampling time interval, by calculating each segment signal expression and each segment packet
  • the network expression can distinguish each signal in the target signal, thereby separately calculating the signal expression and envelope expression of each signal, making the result more accurate and reasonable, and convenient for debugging each signal separately.
  • the calculation of the segment signal expression corresponding to each target time period according to the node timestamp and the node frequency includes:
  • Step 302 Obtain a segment phase expression corresponding to each target time period.
  • the segment phase expression refers to the cosine expression of each signal corresponding to each target time period. Since each target time period corresponds to each signal in the target signal, and each signal corresponds to a different cosine expression, it is necessary to obtain the phase expression corresponding to each target time period.
  • the sampling time interval is T s
  • the envelope corresponding to the target signal is composed of three envelopes.
  • the three envelopes correspond to the three target time periods respectively.
  • the three target time periods can be divided into the first target time period, the second target time period and the third target time period.
  • the corresponding three envelopes can be obtained separately.
  • the phase expressions corresponding to the three target time periods can be obtained separately.
  • the node timestamps corresponding to the four nodes are t 0 , t 1 , t 2 and t 3 respectively . Since the three envelopes can be generated in three independent coordinate systems, they are spliced into three segments of the target signal The envelopes are independent of each other, so the starting time point of each envelope can be calculated from 0. Assuming that the node frequencies are respectively f 0 , f 1 , f 2 and f 3 , the phase expressions corresponding to the first target time period, the second target time period, and the third target time period can be used To represent, as shown in the following table:
  • the above three segment phase expressions can be obtained separately, and the segment phase expression corresponding to each target time period can be obtained.
  • Step 304 According to the segment phase expression, the node timestamp and the node frequency, calculate the segment signal expression corresponding to each target time period.
  • the segment phase expression refers to the cosine expression of each signal corresponding to each target time period
  • the signal expression corresponding to each signal can be calculated according to each phase expression; and because each target time period corresponds to The segment phase expressions are different, so the segment signal expression corresponding to each target time period can be calculated according to the segment phase expression, node timestamp and node frequency corresponding to each target time period.
  • the target time period can be divided into a first target time period, a second target time period, and a third target time period, and the node timestamps can be t 0 and t respectively.
  • the node frequencies can be respectively f 1 , f 2 , f 3 and f 4
  • the segment signal expression corresponding to each target time period can be expressed by f(t), as shown in the following table:
  • the above three segment phase expressions can be obtained separately, and the segment phase expression corresponding to each target time period can be obtained.
  • Step 304 According to the segment phase expression, the node timestamp, and the node frequency, a segment signal expression corresponding to each target time period is calculated.
  • the segment phase expression refers to the cosine expression of each signal corresponding to each target time period
  • the signal expression corresponding to each signal can be calculated according to each phase expression; and because each target time period corresponds to The segment phase expressions are different, so the segment signal expression corresponding to each target time period can be calculated according to the segment phase expression, node timestamp and node frequency corresponding to each target time period.
  • the target time period can be divided into a first target time period, a second target time period, and a third target time period, and the node timestamps can be t 0 and t respectively.
  • the node frequencies can be respectively f 1 , f 2 , f 3 and f 4
  • the segment signal expression corresponding to each target time period can be expressed by f(t), as shown in the following table:
  • each segment signal expression corresponding to each target time period calculates each segment signal expression corresponding to each target time period.
  • the calculation of the segment envelope expression corresponding to each target time period according to the node timestamp and the node strength includes:
  • Step 402 According to the node timestamp and the node strength, the correlation coefficient of the segment envelope expression corresponding to each target time period is calculated.
  • the correlation coefficient refers to the coefficient in the formula in the envelope expression, including: the first coefficient and the second coefficient.
  • Each segment envelope expression has a corresponding correlation coefficient, and different segment envelope expressions have different correlation coefficients. Therefore, the correlation coefficient of each segment envelope expression must be calculated separately, so that each segment can be obtained. Envelope expression.
  • the first coefficient and the second coefficient of each segment envelope expression can be calculated according to the node timestamp and the node strength.
  • the target time period can be divided into the first target time period, the second target time period, and the third target time period accordingly;
  • the correlation coefficient of each segment envelope expression can be calculated separately, as shown in the following table:
  • k 1 , k 2 , and k 3 are the first coefficients in the correlation coefficients
  • b 1 , b 2 , and b 3 are the second coefficients in the correlation coefficients.
  • the node timestamps they are t 0 , t 1 , t 2 and t 3 and the node strength strength 0 , strength 1 , strength 2 and strength 4 are calculated to obtain the first coefficient and the second coefficient, respectively, so that the correlation coefficient of the envelope expression can be obtained.
  • Step 404 According to the correlation coefficient, a segment envelope expression corresponding to each target time period is calculated.
  • the segment envelope expression corresponding to each target time period can be calculated according to the correlation coefficient corresponding to each retention expression.
  • the target time period can be divided into a first target time period, a second target time period, and a third target time period.
  • each p(t) is calculated separately, and the segment envelope expression corresponding to each target time period is obtained.
  • the correlation coefficient corresponding to each envelope expression By obtaining the correlation coefficient corresponding to each envelope expression, and then calculating the envelope expression for each segment according to the correlation coefficient, it is possible to calculate and analyze each segment of the target signal separately to obtain an accurate and corresponding signal of each segment.
  • the segment envelope expression By obtaining the correlation coefficient corresponding to each envelope expression, and then calculating the envelope expression for each segment according to the correlation coefficient, it is possible to calculate and analyze each segment of the target signal separately to obtain an accurate and corresponding signal of each segment.
  • the calculation to obtain the target signal expression according to the signal expression and the envelope expression includes:
  • Step 502 Obtain a point signal expression and a point envelope expression corresponding to each time point in the target signal.
  • the point signal expression refers to the mathematical expression of the target signal corresponding to each time point in the envelope corresponding to the target signal
  • the point envelope expression refers to the mathematical expression corresponding to each time point in the envelope corresponding to the target signal
  • the mathematical expression of the envelope Since the envelope corresponding to the target signal can be composed of multiple segments, in the envelope corresponding to the target signal, the signal expressions and envelope expressions corresponding to different time points can be the same or different, so each must be obtained separately. Point signal expression and point envelope expression corresponding to each time point.
  • the point signal expression and point envelope expression of t x and t y can be obtained respectively, and the point signal expression and point envelope expression corresponding to each time point in the target signal can be obtained in turn.
  • the point signal expression and point envelope expression corresponding to each time point can be used to calculate the point target expression.
  • Step 504 According to the point signal expression and the point envelope expression corresponding to each time point, the point target expression corresponding to each time point is calculated.
  • the point target expression refers to the mathematical expression of the target vibration waveform corresponding to each time point in the envelope corresponding to the target signal. Since the point target expression can be used to describe the target vibration waveform corresponding to each time point, in order to obtain the target vibration waveform corresponding to each time point, the point target expression can be calculated according to the point signal expression and the point envelope expression In this way, the target vibration waveform corresponding to each time point can be obtained.
  • the point signal expression corresponding to t x may be f 1 (t)
  • the point envelope expression corresponding to t x may be p 1 (t)
  • time The point target expression of point t x can be expressed by q 1 (t).
  • the point target expression corresponding to each time point in the target signal can be calculated.
  • calculate the product of the point signal expression and the point envelope expression at each time point to obtain the point target expression corresponding to each time point Formula, can realize the accurate description of the target vibration waveform corresponding to each time point in the target signal.
  • the calculation of the point target expression corresponding to each time point according to the point signal expression and the point envelope expression corresponding to each time point includes:
  • Step 602 Calculate the product of the point signal expression corresponding to each time point and the point envelope expression respectively.
  • Step 604 Obtain a point target expression corresponding to each time point according to the product.
  • the point target expression corresponding to each time point in the envelope corresponding to the target signal can be calculated.
  • the point target expression corresponding to each time point can be obtained, and each time point in the envelope corresponding to the target signal can be obtained.
  • the corresponding target vibration waveform is accurately described.
  • the simulation to obtain the target vibration waveform according to the target expression includes:
  • Step 702 According to the signal expression, the original code pulse is obtained by simulation.
  • the original code pulse refers to the description of the signal obtained after the signal expression is simulated. Since the signal expression is a mathematical expression of the target signal, the target expression can be simulated to obtain the original code pulse. In one embodiment, as shown in FIG. 8a, according to the signal expression, the original code pulse can be obtained by simulation. The target vibration waveform corresponding to the target expression can be obtained according to the original code pulse.
  • Step 704 According to the envelope expression, the target envelope is obtained by simulation.
  • the target envelope refers to the curve corresponding to the envelope expression obtained by simulation.
  • the definition of the target signal may be based on the demarcation of the original code pulse according to the envelope, so as to obtain the target vibration waveform.
  • the target envelope can be simulated according to the envelope expression.
  • the target vibration waveform corresponding to the target expression can be obtained according to the target envelope.
  • Step 706 Obtain a target vibration waveform corresponding to the target expression according to the original code pulse and the target envelope.
  • the target envelope can be a demarcation of the original code pulse
  • the original code pulse can be demarcated according to the target envelope, so that a customized target vibration waveform can be obtained.
  • the original code pulse is delimited according to the envelope, so that the target vibration waveform can be obtained.
  • an embodiment of the present invention proposes a self-defined vibration device, and the device includes:
  • the obtaining module 902 is used to obtain node information of the target signal
  • the first calculation module 904 is configured to calculate the signal expression and envelope expression of the target signal according to the node information
  • the second calculation module 906 is configured to calculate a target expression according to the signal expression and the envelope expression
  • the simulation module 908 is configured to simulate and obtain the target vibration waveform according to the target expression
  • the synthesis module 910 is configured to generate an electric signal to drive the motor to vibrate according to the target vibration waveform.
  • the calculation of the signal expression and the envelope expression of the target signal according to the node information includes: the obtaining module 902 is also used to obtain the sampling time interval; the obtaining module 902 is also used to obtain the node information The node timestamp and node frequency corresponding to each node in, the first calculation module 904 is further configured to calculate the segment signal corresponding to each target time period according to the sampling time interval, the node timestamp, and the node frequency Expression; the obtaining module 902 is also used to obtain the node strength corresponding to each node in the node information; the second calculation module 906 is also used to calculate the node strength according to the sampling time interval, the node timestamp and the node strength Obtain the segment envelope expression corresponding to each target time period.
  • the calculation of the segment signal expression corresponding to each target time period according to the node timestamp and the node frequency includes: the obtaining module 902 is further configured to obtain the corresponding signal expression for each target time period. Segment phase expression; the first calculation module 904 is further configured to calculate the segment signal expression corresponding to each target time period according to the segment phase expression, the node timestamp, and the node frequency.
  • the calculation of the segment envelope expression corresponding to each target time period according to the node timestamp and the node strength includes: the first calculation module 904 is further configured to calculate according to the node timestamp and the node strength.
  • the node strength is calculated to obtain the correlation coefficient of the segment envelope expression corresponding to each target time period;
  • the second calculation module 906 is further configured to calculate the correlation coefficient corresponding to each target time period according to the correlation coefficient Segment envelope expression.
  • the calculation to obtain the target signal expression according to the signal expression and the envelope expression includes: the obtaining module 902 is further configured to obtain the point signal expression corresponding to each time point in the target signal Formula and point envelope expression; the first calculation module 904 is further configured to calculate the point target expression corresponding to each time point according to the point signal expression and point envelope expression corresponding to each time point .
  • the calculating the point target expression corresponding to each time point according to the point signal expression and the point envelope expression corresponding to each time point includes: a first calculation module 904 It is also used to separately calculate the product of the point signal expression corresponding to each time point and the point envelope expression; and obtain the point target expression corresponding to each time point according to the product.
  • the simulation to obtain the target vibration waveform according to the target expression includes: the simulation module 908 is further configured to simulate and obtain the original code pulse according to the signal expression; the simulation module 908 is further configured to obtain the original code pulse according to the signal expression; According to the envelope expression, a target envelope is obtained by simulation; according to the original code pulse and the target envelope, a target vibration waveform corresponding to the target expression is obtained.
  • Fig. 10 shows an internal structure diagram of a computer device in an embodiment.
  • the computer device may be a terminal.
  • the computer device includes a processor, a memory, and a network interface connected through a system bus.
  • the memory includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium of the computer device stores an operating system, and may also store a computer program.
  • the processor can enable the processor to implement a custom vibration method.
  • a computer program may also be stored in the internal memory, and when the computer program is executed by the processor, the processor can execute a custom vibration method.
  • the network interface is used to communicate with the outside world.
  • FIG. 10 is only a block diagram of part of the structure related to the solution of the present invention, and does not constitute a limitation on the computer equipment to which the solution of the present invention is applied.
  • the specific computer equipment may Including more or fewer parts than shown in the figure, or combining some parts, or having a different arrangement of parts.
  • the method for customizing vibration provided by the present invention can be implemented in the form of a computer program, and the computer program can be run on a computer device as shown in FIG. 11.
  • the memory of the computer device can store various program templates that make up the self-defined vibration device. For example, the acquisition module 902, the first calculation module 904, the second calculation module 906, and the simulation module 908.
  • a computer device includes a memory and a processor, the memory stores a computer program, and when the computer program is executed by the processor, the processor executes the following steps: acquiring node information of a target signal; Node information calculates the signal expression and envelope expression of the target signal; according to the signal expression and the envelope expression, the target expression is calculated; according to the target expression, the target vibration waveform is obtained by simulation; The target vibration waveform generates an electric signal to drive the motor to vibrate.
  • the calculation of the signal expression and envelope expression of the target signal according to the node information includes: obtaining a sampling time interval; obtaining the node timestamp and node frequency corresponding to each node in the node information According to the sampling time interval, the node timestamp and the node frequency, calculate the segment signal expression corresponding to each target time period; obtain the node strength corresponding to each node in the node information; according to the The sampling time interval, the node timestamp, and the node strength are calculated to obtain a segment envelope expression corresponding to each target time period.
  • the calculating the segment signal expression corresponding to each target time period according to the node timestamp and the node frequency includes: obtaining the segment phase expression corresponding to each target time period; The segment phase expression, the node timestamp, and the node frequency are calculated to obtain the segment signal expression corresponding to each target time period.
  • the calculating the segment envelope expression corresponding to each target time period according to the node timestamp and the node strength includes: calculating the all the corresponding expressions according to the node timestamp and the node strength.
  • the correlation coefficient of the segment envelope expression corresponding to each target time period; according to the correlation coefficient, the segment envelope expression corresponding to each target time period is calculated.
  • the calculating the target signal expression according to the signal expression and the envelope expression includes: obtaining the point signal expression and the point envelope expression corresponding to each time point in the target signal Formula; According to the point signal expression and the point envelope expression corresponding to each time point, the point target expression corresponding to each time point is calculated.
  • the calculating the point target expression corresponding to each time point according to the point signal expression and the point envelope expression corresponding to each time point includes: calculating the point signal expression and the point envelope expression corresponding to each time point separately. The product of the point signal expression corresponding to each time point and the point envelope expression; and the point target expression corresponding to each time point is obtained according to the product.
  • the simulation to obtain the target vibration waveform according to the target expression includes: according to the target expression, simulation to obtain the original code pulse; according to the envelope expression, simulation to obtain the target envelope ; According to the original code pulse and the target envelope, the target vibration waveform corresponding to the target expression is obtained.
  • a computer-readable storage medium that stores a computer program.
  • the processor executes the following steps: obtain node information of a target signal; calculate the signal expression of the target signal according to the node information Formula and envelope expression; according to the signal expression and the envelope expression, the target expression is calculated; according to the target expression, the target vibration waveform is obtained by simulation; the electric signal drive is generated according to the target vibration waveform The motor vibrates.
  • the calculation of the signal expression and envelope expression of the target signal according to the node information includes: obtaining a sampling time interval; obtaining the node timestamp and node frequency corresponding to each node in the node information According to the sampling time interval, the node timestamp and the node frequency, calculate the segment signal expression corresponding to each target time period; obtain the node strength corresponding to each node in the node information; according to the The sampling time interval, the node timestamp, and the node strength are calculated to obtain a segment envelope expression corresponding to each target time period.
  • the calculating the segment signal expression corresponding to each target time period according to the node timestamp and the node frequency includes: obtaining the segment phase expression corresponding to each target time period; The segment phase expression, the node timestamp, and the node frequency are calculated to obtain the segment signal expression corresponding to each target time period.
  • the calculating the segment envelope expression corresponding to each target time period according to the node timestamp and the node strength includes: calculating the all the corresponding expressions according to the node timestamp and the node strength.
  • the correlation coefficient of the segment envelope expression corresponding to each target time period; according to the correlation coefficient, the segment envelope expression corresponding to each target time period is calculated.
  • the calculating the target signal expression according to the signal expression and the envelope expression includes: obtaining the point signal expression and the point envelope expression corresponding to each time point in the target signal Formula; According to the point signal expression and the point envelope expression corresponding to each time point, the point target expression corresponding to each time point is calculated.
  • the calculating the point target expression corresponding to each time point according to the point signal expression and the point envelope expression corresponding to each time point includes: calculating the point signal expression and the point envelope expression corresponding to each time point separately. The product of the point signal expression corresponding to each time point and the point envelope expression; and the point target expression corresponding to each time point is obtained according to the product.
  • the simulation to obtain the target vibration waveform according to the target expression includes: according to the target expression, simulation to obtain the original code pulse; according to the envelope expression, simulation to obtain the target envelope ; According to the original code pulse and the target envelope, the target vibration waveform corresponding to the target expression is obtained.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Channel (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本申请公开了一种自定义振动的方法,所述方法包括:获取目标信号的节点信息;根据所述节点信息计算目标信号的信号表达式和包络表达式;根据所述信号表达式和所述包络表达式,计算得到目标表达式;根据所述目标表达式,仿真得到目标振动波形;根据所述目标振动波形生成电信号驱动马达振动。通过目标信号的节点信息计算得到目标信号的信号表达式和包络表达式,再根据信号表达式和包络表达式计算得到目标表达式,根据目标表达式可以得到目标振动波形,根据目标振动波形可以实现合理地生成电信号驱动马达振动,且方便调试。此外,还提出了一种自定义振动的装置、计算机设备及存储介质。

Description

自定义振动的方法、装置、计算机设备及存储介质 技术领域
本申请涉及涉及计算机领域,尤其涉及一种自定义振动的方法、装置、计算机设备及存储介质。
背景技术
近年来,振动体验关注度逐年提升,Haptics随之逐渐走向我们的日常工作和生活,其中铃声振动是最常用的一种触觉体验的应用。通常情况下,我们习惯采用单一频率的正弦信号作为激励,然而,在触觉体验上,这种激励方式存在诸多弊端,如:由于振动效果因人而异,每个人的体感均不同,而长时间单一频率振动易造成麻木感,降低信息通知效率,无法提供丰富的触觉体验的同时,也无法合理地生成振动所需的电信号,不便于调试。
申请内容
基于此,本发明提出了一种可以合理地生成电信号驱动马达振动、且方便调试的自定义振动的方法、装置、计算机设备及存储介质。
一种自定义振动的方法,所述方法包括:
获取目标信号的节点信息;
根据所述节点信息计算目标信号的信号表达式和包络表达式;
根据所述信号表达式和所述包络表达式,计算得到目标表达式;
根据所述目标表达式,仿真得到目标振动波形;
根据所述目标振动波形生成电信号驱动马达振动。
在其中一个实施例中,所述根据所述节点信息计算目标信号的信号表达式和包络表达式,包括:获取采样时间间隔;获取所述节点信息中每个节点对应的节点时间戳和节点频率;根据所述采样时间间隔、所述节点时间戳和所述节点频率,计算得到每个目标时间段对应的段信号表达式;获取所述节点信息中每个节点对应的节点强度;根据所述采样时间间隔、所述节点时间戳和所述节点强度,计算得到每个目标时间段对应的段包络表达式。
在其中一个实施例中,所述根据所述节点时间戳和节点频率,计算得到每个目标时间段对应的段信号表达式,包括:获取所述每个目标时间段对应的段相位表达式;根据所述段相位表达式、所述节点时间戳和所述节点频率,计算得到所述每个目标时间段对应的段信号表达式。
在其中一个实施例中,所述根据所述节点时间戳和节点强度,计算得到每个目标时间段对应的段包络表达式,包括:根据所述节点时间戳和所述节点强度,计算得到所述每个目标时间段对应的段包络表达式的相关系数;根据所述相关系数,计算得到所述每个目标时间段对应的段包络表达式。
在其中一个实施例中,所述根据所述信号表达式和所述包络表达式,计算得到目标信号表达式,包括:获取目标信号中每个时间点对应的点信号表达式和点包络表达式;根据所述每个时间点对应的点信号表达式和点包络表达式,计算得到所述每个时间点对应的点目标表达式。
在其中一个实施例中,所述根据所述每个时间点对应的点信号表达式和点包络表达式,计算得到所述每个时间点对应的点目标表达式,包括:分别计算所述每个时间点对应的点信号表达式与所述点包络表达式的乘积;根据所述乘积分别得到每个时间点对应的点目标表达式。
在其中一个实施例中,所述根据所述目标表达式,仿真得到目标振动波形,包括:根据所述信号表达式,仿真得到原始编码脉冲;根据所述包络表达式,仿真得到目标包络线;根据所述原始编码脉冲和所述目标包络线,得到所述目标表达式对应的目标振动波形。
第二方面,本发明实施例提供了一种自定义振动的装置,所述装置包括:
获取模块,用于获取目标信号的节点信息;
第一计算模块,用于根据所述节点信息计算目标信号的信号表达式和包络表达式;
第二计算模块,用于根据所述信号表达式和所述包络表达式,计算得到目标表达式;
仿真模块,用于根据所述目标表达式,仿真得到目标振动波形;
合成模块,用于根据所述目标振动波形生成电信号驱动马达振动。
第三方面,本发明实施例提供一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如下步骤:
获取目标信号的节点信息;
根据所述节点信息计算目标信号的信号表达式和包络表达式;
根据所述信号表达式和所述包络表达式,计算得到目标表达式;
根据所述目标表达式,仿真得到目标振动波形;
根据所述目标振动波形生成电信号驱动马达振动。
第四方面,本发明实施例提供一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如下步骤:
获取目标信号的节点信息;
根据所述节点信息计算目标信号的信号表达式和包络表达式;
根据所述信号表达式和所述包络表达式,计算得到目标表达式;
根据所述目标表达式,仿真得到目标振动波形;
根据所述目标振动波形生成电信号驱动马达振动。
上述自定义振动的方法、装置、计算机设备及存储介质,通过获取目标信号的节点信息,然后根据所述节点信息计算目标信号的信号表达式和包络表达式,再根据所述信号表达式和所述包络表达式,计算得到目标表达式,最后根据所述目标表达式,仿真得到目标 振动波形;根据所述目标振动波形生成电信号驱动马达振动。通过目标信号的节点信息计算得到目标信号的信号表达式和包络表达式,再根据信号表达式和包络表达式计算得到目标表达式,根据目标表达式可以得到目标振动波形,根据目标振动波形可以实现合理地生成电信号驱动马达振动,且方便调试。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:
图1为本申请一实施例的自定义振动的方法的流程图;
图2为本申请一实施例的计算得到信号表达式和包络表达式的流程图;
图3为本申请一实施例的计算得到段信号表达式的流程图;
图4为本申请一实施例的计算得到段包络表达式的流程图;
图5为本申请一实施例的计算得到目标信号表达式的流程图;
图6为本申请一实施例的计算得到点目标表达式的流程图;
图7为本申请一实施例的得到目标振动波形的流程图
图8a为本申请一实施例的原始编码脉冲和目标包络线的示意图;
图8b为本申请一实施例的目标振动波形的示意图;
图9为本申请一实施例的自定义振动的装置的结构框图;
图10为本申请一实施例的计算机设备的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1所示,提出了一种自定义振动的方法,该自定义振动的方法可以应用于终端,本实施例以应用于终端举例说明。该自定义振动的方法具体包括以下步骤:
步骤102,获取目标信号的节点信息。
其中,目标信号是指需要分析的信号,可以将目标信号定义为信号持续时间大于50ms的信号;目标信号的节点信息是指目标信号对应的包络线中每个节点对应的信息,节点信息可以包括:节点时间戳、节点强度和节点频率。目标信号对应的包络线可以有多个节点,而不同节点对应的节点信息也不同,所以可以是获取目标信号中每个节点对应的节点信息。目标信号对应的包络线可以是由多段拼接而成的,在一个实施例中,目标信号对应的包络 线可以是由三段拼接而成,则对应有四个节点,四个节点分别对应不同的节点信息,可以分别获取四个节点中每个节点对应的节点信息,例如,获取四个节点中第一个节点的节点时间戳、节点强度和节点频率,获取第二个节点的节点时间戳、节点强度和节点频率,获取第三个节点的节点时间戳、节点强度和节点频率,获取第四个节点的节点时间戳、节点强度和节点频率,由此可以得到目标信号对应包络线的四个节点的节点信息。
步骤104,根据所述节点信息计算目标信号的信号表达式和包络表达式。
其中,信号表达式是指目标信号的数学表达式,包络表达式是指包络线的数学表达式。信号表达式和包络表达式可以用来描述目标信号,不同的目标信号对应的信号表达式和包络表达式不同,所以可以根据目标信号对应包络线中的每个节点的节点信息,计算得到目标信号对应的信号表达式和包络表达式。在一个实施例中,可以是根据节点信息中的节点时间戳和节点频率计算信号表达式,可以是根据节点信息中的节点时间戳和节点强度计算包络表达式,而根据不同的节点信息也会计算得到不同的信号表达式和包络表达式。
步骤106,根据所述信号表达式和所述包络表达式,计算得到目标表达式。
其中,目标表达式是指目标振动波形的数学表达式。由于目标表达式可以用来描述目标振动波形,而信号表达式和包络表达式可以用来描述目标信号,为得到目标振动波形,可以根据信号表达式和包络表达式来计算得到目标表达式,从而可以得到目标振动波形。在一个实施例中,根据信号表达式和包络表达式计算得到目标表达式,可以是计算信号表达式和包络表达式的乘积得到,例如,计算同一节点对应的信号表达式和包络表达式的乘积,所得乘积即为目标表达式。可以根据目标表达式,得到目标振动波形。
步骤108,根据所述目标表达式,仿真得到目标振动波形。
其中,目标振动波形是指需要得到的振动信号,仿真是指构建一个***模型来描述目标振动波形的过程。由于目标表达式可以用来描述目标振动波形,所以可以对目标表达式进行仿真,从而可以实现对目标振动波形进行更形象地描述。在一个实施例中,可以根据目标表达式进行仿真,实现对目标振动波形随时间连续变化的过程的描述。
步骤110,根据所述目标振动波形生成电信号驱动马达振动。
其中,根据目标振动波形生成的电流信号是指通过传感器将目标振动波形转换为电信号。因电信号较为容易传送和控制,所以可以将目标振动波形转换成电信号,从而可以通过电信号对目标振动波形实现传送、交换、存储、提取等操作。在一个实施例中,可以是将目标振动波形生成对应的电信号,然后根据目标振动波形对应的电信号驱动马达振动,从而可以根据自定义的目标振动波形实现自定义振动,满足用户的个性化需求。
上述方法,通过目标信号的节点信息计算得到目标信号的信号表达式和包络表达式,再根据信号表达式和包络表达式计算得到目标表达式,根据目标表达式可以得到目标振动波形,根据目标振动波形可以实现合理地生成电信号驱动马达振动,且方便调试。
如图2所示,在一个实施例中,所述根据所述节点信息计算目标信号的信号表达式和包络表达式,包括:
步骤202,获取采样时间间隔。
其中,采样时间间隔是指预先设置的采集目标信号时的时间间隔。由于目标信号对应 的包络线可以是由多段拼接而成,而采样得到的每段包络线对应的时间点是离散的点,所以可以预先设置一个采样时间间隔来减小计算时产生的误差。在一个实施例中,采样时间间隔可以是根据采样频率计算得到。例如,假设采样时间间隔为T s,采样频率为f s。则根据采样频率计算采样时间间隔,可以是:T s=1/f s,由此得到采样时间间隔。可以将采样时间间隔用于计算信号表达式和目标表达式。
步骤204,获取所述节点信息中每个节点对应的节点时间戳和节点频率。
其中,节点时间戳是指目标信号对应的每段包络线的每个节点对应的时间点,节点频率是指每个节点对应的、在单位时间内完成周期性变化的次数。由于目标信号对应的包络线可以是由多段拼接而成,所以每段包络线对应的节点不同,且不同节点对应的节点信息亦不同,所以每个节点对应的节点时间戳和节点频率也不同,需要分别获取每个节点对应的节点时间戳和节点频率。在一个实施例中,假设目标信号包含有三个节点,假设在三个节点中,第一个节点对应的节点时间戳为t 1=0ms,第一个节点对应的节点频率为f 1=80Hz;第二个节点对应的节点时间戳为t 2=20ms,第二个节点对应的节点频率为f 2=120Hz;第二个节点对应的节点时间戳为t 3=70ms,第二个节点对应的节点频率为f 3=150Hz;则分别获取第一个节点的t 1、f 1,第二个节点的t 2、f 2,第三个节点的t 3、f 3,由此得到每个节点对应的节点时间戳和节点频率。
步骤206,根据所述采样时间间隔、所述节点时间戳和所述节点频率,计算得到每个目标时间段对应的段信号表达式。
其中,目标时间段是指,目标信号中每段包络线所对应的时间段;段信号表达式是指每个目标时间段对应目标信号的数学表达式。由于目标信号对应的包络线可以是由多段拼接而成,所以可以根据每段包络线将目标信号划分为多段连续的信号段;而不同的信号段对应的信号表达式不同,所以要分别计算每段信号对应的每个目标时间段对应的段信号表达式,从而可以得到不同的信号段对应的段信号表达式。在一个实施例中,假设采样时间间隔为T s,假设节点时间戳为t 1、t 2、t 3和t 4,可以根据采样时间间隔和每个节点时间戳来计算得到每个目标时间段,例如,每个目标时间段可以划分为:第一目标时间段为t 1~(t 2-T s)、第二目标时间段为(t 2-T s)~(t 3-t 2-T s),第三目标时间段为(t 3-t 2-T s)~(t 4-t 3-T s)。可以根据每个目标时间段和每个节点频率计算得到每个段信号表达式,例如根据第一目标时间段、第二目标时间段和第三目标时间段中每个节点对应的节点频率和节点时间戳,可以计算得到每个目标时间段对应的段信号表达式。
步骤208,获取所述节点信息中每个节点对应的节点强度。
其中,节点强度是指目标信号对应的包络线中每个节点对应的强度。在目标信号中,不同的节点对应的节点强度也不同。例如,假设目标信号中包含有四个节点,四个节点中,每个节点对应的节点强度可以分别为strength 1、strength 2、strength 3和strength 4,假设每个节点强度分别为strength 1=0、strength 2=0.5、strength 3=0.8,strength 4=0,可以分别获取这四个节点强度,从而得到每个节点对应的节点强度。
步骤210,根据所述采样时间间隔、所述节点时间戳和所述节点强度,计算得到每个目标时间段对应的段包络表达式。
其中,段包络表达式是指每个目标时间段对应的包络线的数学表达式。由于目标信号 对应的包络线可以是由多段拼接而成,可以根据每段包络线将目标信号划分为多段连续的信号段;而不同的信号段对应的包络表达式不同,所以要分别计算每段信号对应的每个目标时间段对应的段包络表达式,从而可以得到不同的信号段对应的段包络表达式。在一个实施例中,可以根据采样时间间隔和每个节点时间戳来计算得到每个目标时间段,例如,假设采样时间间隔为T s,假设节点时间戳为t 0、t 1、t 2和t 3,每个目标时间段可以划分为:第一目标时间段为t=0:T s:(t 1-T s)、第二目标时间段为t=0:T s:(t 2-t 1-T s),第三目标时间段为t=0:T s:(t 3-t 2-T s)。可以根据每个目标时间段和每个节点强度计算得到每个段包络表达式,例如,根据第一目标时间段、第二目标时间段和第三目标时间段中每个节点对应的节点强度和节点时间戳,可以计算得到每个目标时间段对应的段包络表达式。通过获取采样时间间隔、获取节点信息中的节点时间戳、节点强度和节点频率,根据采样时间间隔和节点时间戳计算得到每个目标时间段,再根据节点时间戳和节点频率计算得到每个段信号表达式、根据节点时间戳和节点强度计算得到每个段包络表达式;通过采样时间间隔可以减小计算两个表达式时的误差,通过计算每个段信号表达式和每个段包络表达式,可以针区分目标信号中的每段信号,从而分别计算得到每段信号的信号表达式和包络表达式,使得所得结果更准确、合理,便于对每段信号进行分别调试。
如图3所示,在一个实施例中,所述根据所述节点时间戳和节点频率,计算得到每个目标时间段对应的段信号表达式,包括:
步骤302,获取所述每个目标时间段对应的段相位表达式。
其中,段相位表达式是指每个目标时间段对应的每段信号的余弦表达式。由于每个目标时间段分别与目标信号中的每段信号相对应,而每段信号都对应着不同的余弦表达式,所以要分别获取每个目标时间段对应的段相位表达式。在一个实施例中,假设采样时间间隔为T s,假设目标信号对应的包络线中有四个节点,则可以得到目标信号对应的包络线是由三段包络线拼接而成的,三段包络线分别对应三个目标时间段,三个目标时间段可以分为第一目标时间段、第二目标时间段和第三目标时间段,可以分别获取独立的三段包络线对应的三个目标时间段对应的段相位表达式。假设四个节点对应的节点时间戳分别为t 0、t 1、t 2和t 3,因三段包络线可以是在三个独立的坐标系中生成的,所以拼接成目标信号的三段包络线是互相独立的,所以每段包络线的起始时间点都可以是从0开始计算。假设节点频率分别为f 0、f 1、f 2和f 3,第一目标时间段、第二目标时间段和第三目标时间段对应的段相位表达式,可以用
Figure PCTCN2019125678-appb-000001
来表示,如下表所示:
Figure PCTCN2019125678-appb-000002
可以分别获取上述三个段相位表达式,得到每个目标时间段对应的段相位表达式。
步骤304,根据所述段相位表达式、所述节点时间戳和所述节点频率,计算得到所述 每个目标时间段对应的段信号表达式。
由于段相位表达式是指每个目标时间段对应的每段信号的余弦表达式,所以可以根据每个段相位表达式计算得到每段信号对应的信号表达式;又因为每个目标时间段对应的段相位表达式不同,所以可以分别根据每个目标时间段对应的段相位表达式、节点时间戳和节点频率,计算得到每个目标时间段对应的段信号表达式。在一个实施例中,假设目标信号包含有四个节点,则目标时间段可以分为第一目标时间段、第二目标时间段和第三目标时间段,节点时间戳可以分别为t 0、t 1、t 2和t 3,节点频率可以分别为f 1、f 2、f 3和f 4,每个目标时间段对应的段信号表达式可以用f(t)表示,如下表所示:
Figure PCTCN2019125678-appb-000003
可以分别获取上述三个段相位表达式,得到每个目标时间段对应的段相位表达式。
步骤304,根据所述段相位表达式、所述节点时间戳和所述节点频率,计算得到所述每个目标时间段对应的段信号表达式。
由于段相位表达式是指每个目标时间段对应的每段信号的余弦表达式,所以可以根据每个段相位表达式计算得到每段信号对应的信号表达式;又因为每个目标时间段对应的段相位表达式不同,所以可以分别根据每个目标时间段对应的段相位表达式、节点时间戳和节点频率,计算得到每个目标时间段对应的段信号表达式。在一个实施例中,假设目标信号包含有四个节点,则目标时间段可以分为第一目标时间段、第二目标时间段和第三目标时间段,节点时间戳可以分别为t 0、t 1、t 2和t 3,节点频率可以分别为f 1、f 2、f 3和f 4,每个目标时间段对应的段信号表达式可以用f(t)表示,如下表所示:
Figure PCTCN2019125678-appb-000004
根据上表,分别计算每个得到每个目标时间段对应的段信号表达式。通过获取每个目标时间段对应的段相位表达式,再根据段相位表达式、节点时间戳和节点频率,计算得到每个段信号表达式,可以实现对目标信号中的每段信号进行分别计算分析,得到准确的、每段信号对应的段信号表达式。
如图4所示,在一个实施例中,所述根据所述节点时间戳和节点强度,计算得到每个目标时间段对应的段包络表达式,包括:
步骤402,根据所述节点时间戳和所述节点强度,计算得到所述每个目标时间段对应 的段包络表达式的相关系数。
其中,相关系数是指包络表达式中的式中系数,包括:第一系数和第二系数。每个段包络表达式都有与其相对应的相关系数,不同的段包络表达式对应的相关系数不同,所以要分别计算每个段包络表达式的相关系数,从而可以得到每个段包络表达式。在一个实施例中,可以根据节点时间戳和节点强度,计算得到每个段包络表达式的第一系数和第二系数。例如,假设节点时间戳分别为t 0、t 1、t 2和t 3,则目标时间段可以相应地划分为第一目标时间段、第二目标时间段和第三目标时间段;节点强度可以分别为strength 0(strength 0=0)、strength 1、strength 2和strength 4(strength 4=0),可以分别计算每个段包络表达式的相关系数,如下表所示:
Figure PCTCN2019125678-appb-000005
其中,k 1、k 2、k 3分别为相关系数中的第一系数,b 1、b 2、b 3分别为相关系数中的第二系数,根据节点时间戳分别为t 0、t 1、t 2和t 3以及节点强度strength 0、strength 1、strength 2和strength 4分别计算得到上述第一系数和第二系数,从而可以得到包络表达式的相关系数。
步骤404,根据所述相关系数,计算得到所述每个目标时间段对应的段包络表达式。
由于每个目标时间段对应的段包络表达式不同,所以可以分别根据每个保留表达式对应的相关系数,计算得到每个目标时间段对应的段包络表达式。在一个实施例中,假设节点时间戳分别为t 0、t 1、t 2和t 3,则目标时间段可以划分为第一目标时间段、第二目标时间段和第三目标时间段,节点强度可以分别为strength 0(strength 0=0)、strength 1、strength 2和strength 4(strength 4=0),每个段包络表达式的相关系数分别为k 1、b 1和k 2、b 2和k 3、b 3,分别根据上述相关系数计算得到段包络表达式p(t),如下表所示:
Figure PCTCN2019125678-appb-000006
Figure PCTCN2019125678-appb-000007
根据上表,分别计算得到每个p(t),得到每个目标时间段对应的段包络表达式。通过获取每个包络表达式对应的相关系数,再根据相关系数计算得到每个段包络表达式,可以实现对目标信号中的每段信号进行分别计算分析,得到准确的、每段信号对应的段包络表达式。
如图5所示,在一个实施例中,所述根据所述信号表达式和所述包络表达式,计算得到目标信号表达式,包括:
步骤502,获取目标信号中每个时间点对应的点信号表达式和点包络表达式。
其中,点信号表达式是指目标信号对应的包络线中每个时间点对应的目标信号的数学表达式;点包络表达式是指目标信号对应的包络线中每个时间点对应的包络线的数学表达式。由于目标信号对应的包络线可以是由多段组成,所以在目标信号对应的包络线中,不同的时间点对应的信号表达式和包络表达式可以相同也可以不同,所以要分别获取每个时间点对应的点信号表达式和点包络表达式。在一个实施例中,假设目标信号的某个时间点为t x,某个时间点为t y,则t x对应的点信号表达式可以是
Figure PCTCN2019125678-appb-000008
t x对应的点包络表达式可以是p 1(t)=k 1t+b 1;t y对应的点信号表达式可以是
Figure PCTCN2019125678-appb-000009
t y对应的点包络表达式可以是p 2(t)=k 2t+b 2。可以分别获取t x和t y的点信号表达式和点包络表达式,依次获取目标信号中每个时间点对应的点信号表达式和点包络表达式。可以将每个时间点对应的点信号表达式和点包络表达式用于计算点目标表达式。
步骤504,根据所述每个时间点对应的点信号表达式和点包络表达式,计算得到所述每个时间点对应的点目标表达式。
其中,点目标表达式是指目标信号对应的包络线中每个时间点对应的目标振动波形的数学表达式。由于点目标表达式可以用来描述每个时间点对应的目标振动波形,为得到每个时间点对应的目标振动波形,可以是根据点信号表达式和点包络表达式来计算得到点目标表达式,从而可以得到每个时间点对应的目标振动波形。在一个实施例中,假设某个时间点为t x,t x对应的点信号表达式可以是f 1(t),t x对应的点包络表达式可以是p 1(t),则时间点t x的点目标表达式可以用q 1(t)表示。根据点信号表达式和点包络表达式计算得到点目标表达式,可以是计算每个时间点对应的点信号表达式与点包络表达式之间的乘积,例如:f 1(t)*p 1(t)=q 1(t),即可得到时间点对应t x的点目标表达式。以此类推,可以计算得到目标信号中每个时间点对应的点目标表达式。通过获取每个时间点对应的点信号表达式和点包络表达式,计算每个时间点的点点信号表达式和点包络表达式之间的乘积,得到每个时间点对应的点目标表达式,可以实现对目标信号中每个时间点对应的目标振动波形进行准确描述。
如图6所示,所述根据所述每个时间点对应的点信号表达式和点包络表达式,计算得到所述每个时间点对应的点目标表达式,包括:
步骤602,分别计算所述每个时间点对应的点信号表达式与所述点包络表达式的乘积。
在一个实施例中,假设某个时间点为t x,t x对应的点信号表达式可以是
Figure PCTCN2019125678-appb-000010
Figure PCTCN2019125678-appb-000011
t x对应的点包络表达式可以是p 1(t)=k 1t+b 1,计算二者的乘积,可以是:f 1(t)*p 1(t)=q 1(t);在另一个实施例中,假设某个时间点为t y,t y对应的点信号表达式可以是
Figure PCTCN2019125678-appb-000012
t y对应的点包络表达式可以是p 2(t)=k 2t+b 2,计算二者乘积可以是:f 2(t)*p 2(t)=q 2(t)。以此类推,可以得到每个时间点对应的电信号表达式和点包络表达式的乘积。
步骤604,根据所述乘积分别得到每个时间点对应的点目标表达式。
在一个实施例中,可以将计算每个时间点对应的点信号表达式与点包络表达式之间的乘积作为每个时间点对应的点目标表达式,例如,假设时间点t x的点目标表达式可以用q 1(t)表示,q 1(t)可以为t x对应的点信号表达式与t x对应的点包络表达式之间的乘积,即:q 1(t)=f 1(t)*p 1(t),即可得到时间点对应tx的点目标表达式。以此类推,可以计算得到目标信号对应的包络线中每个时间点对应的点目标表达式。通过计算每个时间点的点点信号表达式和点包络表达式之间的乘积,可以得到每个时间点对应的点目标表达式,可以实现对目标信号对应的包络线中每个时间点对应的目标振动波形进行准确描述。
如图7所示,在一个实施例中,所述根据所述目标表达式,仿真得到目标振动波形,包括:
步骤702,根据所述信号表达式,仿真得到原始编码脉冲。
其中,原始编码脉冲,是指将信号表达式仿真后得到的对信号的描述。由于信号表达式是目标信号的数学表达式,所以可以将目标表达式进行仿真,得到原始编码脉冲。在一个实施例中,如图8a所示,根据信号表达式,可以仿真得到原始编码脉冲。可以根据原始编码脉冲得到目标表达式对应的目标振动波形。
步骤704,根据所述包络表达式,仿真得到目标包络线。
其中,目标包络线是指仿真得到的、与包络表达式相对应的曲线。在一个实施例中,对目标信号进行定义,可以是根据包络线对原始编码脉冲的划界,从而得到目标振动波形。如图8a所示,可以根据包络表达式仿真得到目标包络线。可以根据目标包络线得到目标表达式对应的目标振动波形。
步骤706,根据所述原始编码脉冲和所述目标包络线,得到所述目标表达式对应的目标振动波形。
由于目标包络线可以是对原始编码脉冲的划界,所以可以根据目标包络线,对原始编码脉冲进行划界,从而可以得到自定义的目标振动波形。如图8b所示,根据包络线对原始编码脉冲进行划界,从而可以得到目标振动波形。通过对目标表达式和包络表达式的仿真,从而得到目标振动波形,可以更合理地生成振动信号,且根据仿真得到的目标包络线对原始编码脉冲进行划界,也便于对目标振动波形进行调试。
如图9所示,本发明实施例提出了一种自定义振动的装置,所述装置包括:
获取模块902,用于获取目标信号的节点信息;
第一计算模块904,用于根据所述节点信息计算目标信号的信号表达式和包络表达式;
第二计算模块906,用于根据所述信号表达式和所述包络表达式,计算得到目标表达式;
仿真模块908,用于根据所述目标表达式,仿真得到目标振动波形;
合成模块910,用于根据所述目标振动波形生成电信号驱动马达振动。
在一个实施例中,所述根据所述节点信息计算目标信号的信号表达式和包络表达式,包括:获取模块902还用于获取采样时间间隔;获取模块902还用于获取所述节点信息中每个节点对应的节点时间戳和节点频率;第一计算模块904还用于根据所述采样时间间隔、所述节点时间戳和所述节点频率,计算得到每个目标时间段对应的段信号表达式;获取模块902还用于获取所述节点信息中每个节点对应的节点强度;第二计算模块906还用于根据所述采样时间间隔、所述节点时间戳和所述节点强度,计算得到每个目标时间段对应的段包络表达式。
在一个实施例中,所述根据所述节点时间戳和节点频率,计算得到每个目标时间段对应的段信号表达式,包括:获取模块902还用于获取所述每个目标时间段对应的段相位表达式;第一计算模块904还用于根据所述段相位表达式、所述节点时间戳和所述节点频率,计算得到所述每个目标时间段对应的段信号表达式。
在一个实施例中,所述根据所述节点时间戳和节点强度,计算得到每个目标时间段对应的段包络表达式,包括:第一计算模块904还用于根据所述节点时间戳和所述节点强度,计算得到所述每个目标时间段对应的段包络表达式的相关系数;第二计算模块906还用于根据所述相关系数,计算得到所述每个目标时间段对应的段包络表达式。
在一个实施例中,所述根据所述信号表达式和所述包络表达式,计算得到目标信号表达式,包括:获取模块902还用于获取目标信号中每个时间点对应的点信号表达式和点包络表达式;第一计算模块904还用于根据所述每个时间点对应的点信号表达式和点包络表达式,计算得到所述每个时间点对应的点目标表达式。
在一个实施例中,所述根据所述每个时间点对应的点信号表达式和点包络表达式,计算得到所述每个时间点对应的点目标表达式,包括:第一计算模块904还用于分别计算所述每个时间点对应的点信号表达式与所述点包络表达式的乘积;根据所述乘积分别得到每个时间点对应的点目标表达式。
在一个实施例中,所述根据所述目标表达式,仿真得到目标振动波形,包括:仿真模块908还用于根据所述信号表达式,仿真得到原始编码脉冲;仿真模块908还用于根据所述包络表达式,仿真得到目标包络线;根据所述原始编码脉冲和所述目标包络线,得到所述目标表达式对应的目标振动波形。
图10示出了一个实施例中计算机设备的内部结构图。该计算机设备可以是终端。如图10所示,该计算机设备包括通过***总线连接的处理器、存储器和网络接口。其中,存储器包括非易失性存储介质和内存储器。该计算机设备的非易失性存储介质存储有操作***,还可存储有计算机程序,该计算机程序被处理器执行时,可使得处理器实现自定义振动的方法。该内存储器中也可储存有计算机程序,该计算机程序被处理器执行时,可使得处理器执行自定义振动的方法。网络接口用于与外界进行通信。本领域技术人员可以理解, 图10中示出的结构,仅仅是与本发明方案相关的部分结构的框图,并不构成对本发明方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,本发明提供的自定义振动的方法可以实现为一种计算机程序的形式,计算机程序可在如图11所示的计算机设备上运行。计算机设备的存储器中可存储组成该自定义振动的装置的各个程序模板。比如,获取模块902,第一计算模块904,第二计算模块906,仿真模块908。
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如下步骤:获取目标信号的节点信息;根据所述节点信息计算目标信号的信号表达式和包络表达式;根据所述信号表达式和所述包络表达式,计算得到目标表达式;根据所述目标表达式,仿真得到目标振动波形;根据所述目标振动波形生成电信号驱动马达振动。
在一个实施例中,所述根据所述节点信息计算目标信号的信号表达式和包络表达式,包括:获取采样时间间隔;获取所述节点信息中每个节点对应的节点时间戳和节点频率;根据所述采样时间间隔、所述节点时间戳和所述节点频率,计算得到每个目标时间段对应的段信号表达式;获取所述节点信息中每个节点对应的节点强度;根据所述采样时间间隔、所述节点时间戳和所述节点强度,计算得到每个目标时间段对应的段包络表达式。
在一个实施例中,所述根据所述节点时间戳和节点频率,计算得到每个目标时间段对应的段信号表达式,包括:获取所述每个目标时间段对应的段相位表达式;根据所述段相位表达式、所述节点时间戳和所述节点频率,计算得到所述每个目标时间段对应的段信号表达式。
在一个实施例中,所述根据所述节点时间戳和节点强度,计算得到每个目标时间段对应的段包络表达式,包括:根据所述节点时间戳和所述节点强度,计算得到所述每个目标时间段对应的段包络表达式的相关系数;根据所述相关系数,计算得到所述每个目标时间段对应的段包络表达式。
在一个实施例中,所述根据所述信号表达式和所述包络表达式,计算得到目标信号表达式,包括:获取目标信号中每个时间点对应的点信号表达式和点包络表达式;根据所述每个时间点对应的点信号表达式和点包络表达式,计算得到所述每个时间点对应的点目标表达式。
在一个实施例中,所述根据所述每个时间点对应的点信号表达式和点包络表达式,计算得到所述每个时间点对应的点目标表达式,包括:分别计算所述每个时间点对应的点信号表达式与所述点包络表达式的乘积;根据所述乘积分别得到每个时间点对应的点目标表达式。
在一个实施例中,所述根据所述目标表达式,仿真得到目标振动波形,包括:根据所述目标表达式,仿真得到原始编码脉冲;根据所述包络表达式,仿真得到目标包络线;根据所述原始编码脉冲和所述目标包络线,得到所述目标表达式对应的目标振动波形。
一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如下步骤:获取目标信号的节点信息;根据所述节点信息计算目标信号的信号表达式和包络表达式;根据所述信号表达式和所述包络表达式,计算得到目标表达式;根据所述目标表达式,仿真得到目标振动波形;根据所述目标振动波形生成电信号驱动马达振动。
在一个实施例中,所述根据所述节点信息计算目标信号的信号表达式和包络表达式,包括:获取采样时间间隔;获取所述节点信息中每个节点对应的节点时间戳和节点频率;根据所述采样时间间隔、所述节点时间戳和所述节点频率,计算得到每个目标时间段对应的段信号表达式;获取所述节点信息中每个节点对应的节点强度;根据所述采样时间间隔、所述节点时间戳和所述节点强度,计算得到每个目标时间段对应的段包络表达式。
在一个实施例中,所述根据所述节点时间戳和节点频率,计算得到每个目标时间段对应的段信号表达式,包括:获取所述每个目标时间段对应的段相位表达式;根据所述段相位表达式、所述节点时间戳和所述节点频率,计算得到所述每个目标时间段对应的段信号表达式。
在一个实施例中,所述根据所述节点时间戳和节点强度,计算得到每个目标时间段对应的段包络表达式,包括:根据所述节点时间戳和所述节点强度,计算得到所述每个目标时间段对应的段包络表达式的相关系数;根据所述相关系数,计算得到所述每个目标时间段对应的段包络表达式。
在一个实施例中,所述根据所述信号表达式和所述包络表达式,计算得到目标信号表达式,包括:获取目标信号中每个时间点对应的点信号表达式和点包络表达式;根据所述每个时间点对应的点信号表达式和点包络表达式,计算得到所述每个时间点对应的点目标表达式。
在一个实施例中,所述根据所述每个时间点对应的点信号表达式和点包络表达式,计算得到所述每个时间点对应的点目标表达式,包括:分别计算所述每个时间点对应的点信号表达式与所述点包络表达式的乘积;根据所述乘积分别得到每个时间点对应的点目标表达式。
在一个实施例中,所述根据所述目标表达式,仿真得到目标振动波形,包括:根据所述目标表达式,仿真得到原始编码脉冲;根据所述包络表达式,仿真得到目标包络线;根据所述原始编码脉冲和所述目标包络线,得到所述目标表达式对应的目标振动波形。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一非易失性计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,本发明所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型 SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种自定义振动的方法,其特征在于,所述方法包括:
    获取目标信号的节点信息;
    根据所述节点信息计算目标信号的信号表达式和包络表达式;
    根据所述信号表达式和所述包络表达式,计算得到目标表达式;
    根据所述目标表达式,仿真得到目标振动波形;
    根据所述目标振动波形生成电信号驱动马达振动。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述节点信息计算目标信号的信号表达式和包络表达式,包括:
    获取采样时间间隔;
    获取所述节点信息中每个节点对应的节点时间戳和节点频率;
    根据所述采样时间间隔、所述节点时间戳和所述节点频率,计算得到每个目标时间段对应的段信号表达式;
    获取所述节点信息中每个节点对应的节点强度;
    根据所述采样时间间隔、所述节点时间戳和所述节点强度,计算得到每个目标时间段对应的段包络表达式。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述节点时间戳和节点频率,计算得到每个目标时间段对应的段信号表达式,包括:
    获取所述每个目标时间段对应的段相位表达式;
    根据所述段相位表达式、所述节点时间戳和所述节点频率,计算得到所述每个目标时间段对应的段信号表达式。
  4. 根据权利要求2所述的方法,其特征在于,所述根据所述节点时间戳和节点强度,计算得到每个目标时间段对应的段包络表达式,包括:
    根据所述节点时间戳和所述节点强度,计算得到所述每个目标时间段对应的段包络表达式的相关系数;
    根据所述相关系数,计算得到所述每个目标时间段对应的段包络表达式。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述信号表达式和所述包络表达式,计算得到目标信号表达式,包括:
    获取目标信号中每个时间点对应的点信号表达式和点包络表达式;
    根据所述每个时间点对应的点信号表达式和点包络表达式,计算得到所述每个时间点对应的点目标表达式。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述每个时间点对应的点信号表达式和点包络表达式,计算得到所述每个时间点对应的点目标表达式,包括:
    分别计算所述每个时间点对应的点信号表达式与所述点包络表达式的乘积;
    根据所述乘积分别得到每个时间点对应的点目标表达式。
  7. 根据权利要求1所述的方法,其特征在于,所述根据所述目标表达式,仿真得到目标振动波形,包括:
    根据所述信号表达式,仿真得到原始编码脉冲;
    根据所述包络表达式,仿真得到目标包络线;
    根据所述原始编码脉冲和所述目标包络线,得到所述目标表达式对应的目标振动波形。
  8. 一种自定义振动的装置,其特征在于,所述装置包括:
    获取模块,用于获取目标信号的节点信息;
    第一计算模块,用于根据所述节点信息计算目标信号的信号表达式和包络表达式;
    第二计算模块,用于根据所述信号表达式和所述包络表达式,计算得到目标表达式;
    仿真模块,用于根据所述目标表达式,仿真得到目标振动波形;
    合成模块,用于根据所述目标振动波形生成电信号驱动马达振动。
  9. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如权利要求1至7中任一项所述方法的步骤。
  10. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如权利要求1至7中任一项所述方法的步骤。
PCT/CN2019/125678 2019-12-16 2019-12-16 自定义振动的方法、装置、计算机设备及存储介质 WO2021119929A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/125678 WO2021119929A1 (zh) 2019-12-16 2019-12-16 自定义振动的方法、装置、计算机设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/125678 WO2021119929A1 (zh) 2019-12-16 2019-12-16 自定义振动的方法、装置、计算机设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021119929A1 true WO2021119929A1 (zh) 2021-06-24

Family

ID=76478086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125678 WO2021119929A1 (zh) 2019-12-16 2019-12-16 自定义振动的方法、装置、计算机设备及存储介质

Country Status (1)

Country Link
WO (1) WO2021119929A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116384031A (zh) * 2021-12-24 2023-07-04 武汉市聚芯微电子有限责任公司 一种马达振动效果的仿真方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19915875A1 (de) * 1999-04-08 2000-11-23 Hkr Climatec Gmbh Verfahren und Vorrichtung zur Messung der Drehzahl eines Gleichstrom-Kommutatormotors
CN202083464U (zh) * 2011-02-17 2011-12-21 克门塔斯特仪器有限公司 用于为振动分析获取振动信号的***
CN108318122A (zh) * 2017-01-16 2018-07-24 上银科技股份有限公司 自适应振动感测方法
CN109171777A (zh) * 2018-07-19 2019-01-11 上海联影医疗科技有限公司 信号处理方法、装置、电路、存储介质及计算机设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19915875A1 (de) * 1999-04-08 2000-11-23 Hkr Climatec Gmbh Verfahren und Vorrichtung zur Messung der Drehzahl eines Gleichstrom-Kommutatormotors
CN202083464U (zh) * 2011-02-17 2011-12-21 克门塔斯特仪器有限公司 用于为振动分析获取振动信号的***
CN108318122A (zh) * 2017-01-16 2018-07-24 上银科技股份有限公司 自适应振动感测方法
CN109171777A (zh) * 2018-07-19 2019-01-11 上海联影医疗科技有限公司 信号处理方法、装置、电路、存储介质及计算机设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116384031A (zh) * 2021-12-24 2023-07-04 武汉市聚芯微电子有限责任公司 一种马达振动效果的仿真方法及装置

Similar Documents

Publication Publication Date Title
WO2021196250A1 (zh) 振动信号的生成方法、装置、设备及存储介质
US9135909B2 (en) Speech synthesis information editing apparatus
US8706493B2 (en) Controllable prosody re-estimation system and method and computer program product thereof
CN105962955B (zh) 一种儿童专注度获取方法和***
US20200410731A1 (en) Method and apparatus for controlling mouth shape changes of three-dimensional virtual portrait
CN112506341B (zh) 一种振动效果的生成方法、装置、终端设备及存储介质
WO2021000178A1 (zh) 马达激励信号生成方法、装置和计算机设备
CN110995079B (zh) 电机振动信号的生成方法、装置、终端及存储介质
CN112650388B (zh) 马达振动信号生成方法、装置、计算机设备及存储介质
CN111124114B (zh) 自定义振动的方法、装置、计算机设备及存储介质
EP4033769A1 (en) Video sound and picture matching method, related device and storage medium
Altoè et al. Transmission line cochlear models: improved accuracy and efficiency
ZA202201092B (en) Trajectory reconstruction method and apparatus, computer device and storage medium
WO2021119929A1 (zh) 自定义振动的方法、装置、计算机设备及存储介质
US20210295613A1 (en) Testing method for automated driving system, electronic device and storage medium
DE102019119284A1 (de) Drahtlose Kommunikation mit Peripheriegeräten
CN110689902A (zh) 基于神经网络的音频信号时序处理方法、装置及***及计算机可读存储介质
CN101808167B (zh) 一种流程跟踪方法以及装置和***
CN105700337A (zh) 应用于车载终端的时钟同步方法及装置
Wiesmeyr et al. Efficient algorithms for discrete Gabor transforms on a nonseparable lattice
CN113610136A (zh) 传感器数据同步方法、装置、计算机设备和存储介质
CN110491366B (zh) 音频平滑处理方法、装置、计算机设备和存储介质
CN104268372B (zh) 一种数据处理方法及装置
CN114064750A (zh) 一种数据回放方法、装置、车辆和存储介质
CN112368655A (zh) 总线通信信号转换方法、装置、介质和数控机床控制设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956234

Country of ref document: EP

Kind code of ref document: A1