WO2021117686A1 - イミド基含有化合物、イミド基含有硬化剤ならびにエポキシ樹脂硬化物およびそれを用いた電気絶縁性材料 - Google Patents

イミド基含有化合物、イミド基含有硬化剤ならびにエポキシ樹脂硬化物およびそれを用いた電気絶縁性材料 Download PDF

Info

Publication number
WO2021117686A1
WO2021117686A1 PCT/JP2020/045513 JP2020045513W WO2021117686A1 WO 2021117686 A1 WO2021117686 A1 WO 2021117686A1 JP 2020045513 W JP2020045513 W JP 2020045513W WO 2021117686 A1 WO2021117686 A1 WO 2021117686A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
group
curing agent
imide
imide group
Prior art date
Application number
PCT/JP2020/045513
Other languages
English (en)
French (fr)
Inventor
あゆみ 谷中
中井 誠
由紀 田窪
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to KR1020227009990A priority Critical patent/KR20220114525A/ko
Priority to CN202080080567.8A priority patent/CN114728903B/zh
Priority to JP2021507541A priority patent/JP6960705B1/ja
Publication of WO2021117686A1 publication Critical patent/WO2021117686A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4042Imines; Imides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts

Definitions

  • the present invention relates to an imide group-containing compound, an imide group-containing curing agent, an epoxy resin cured product, and an electrically insulating material using the same.
  • Epoxy resin cured products made of epoxy resin and its curing agent have excellent thermal, mechanical and electrical properties, and are widely used industrially mainly for electrical and electronic materials.
  • the curing agent for producing the epoxy resin cured product for example, a phenol-based curing agent, an acid anhydride-based curing agent, an amine-based curing agent and the like are used.
  • SiC semiconductors can operate under higher temperature conditions than conventional silicon (Si) semiconductors, semiconductor encapsulants used in SiC semiconductors are also required to have higher heat resistance than ever before.
  • Patent Document 1 power devices are used under high temperature and high electric field due to miniaturization and high output, but under high temperature and high electric field, electric charges are accumulated in the insulating material, the electric field inside the semiconductor is distorted, and the resistance of the semiconductor element. Reduce the voltage. Therefore, in order to improve the performance of power devices, it is necessary to develop a material that does not cause charge accumulation under high temperature and high electric field in order to improve the withstand voltage at high temperature.
  • insulators made of pottery or ceramic have been conventionally used, but since the insulators are heavy and brittle, insulators using a polymer as a part have been studied (for example, Patent Document 2). ).
  • the voltage of insulators has been increasing, and along with this, the polymer used for insulators has a lower dielectric constant than conventional products in order to prevent charge accumulation, and can withstand high voltages. Highly insulating materials are required so that they can be used.
  • an insulating electric wire coating material is used for electric wires constituting electric devices such as motors (for example, Patent Document 3).
  • the output of motors has been increased, and the influence of partial discharge due to inverter surges is increasing.
  • the wire coating material used for motors is required to have a lower dielectric constant than conventional products in order to prevent inverter surges from occurring, and a highly insulating material so that it can withstand high output. There is.
  • Japanese Unexamined Patent Publication No. 2007-305962 Japanese Unexamined Patent Publication No. 2013-234311 Japanese Unexamined Patent Publication No. 2012-224714
  • the present invention provides a cured epoxy resin product in which local accumulation of electric charges is sufficiently prevented under a high temperature and high electric field, and a curing agent (particularly an imide group-containing compound) for producing the cured epoxy resin product.
  • a curing agent particularly an imide group-containing compound
  • the present invention is also for producing an epoxy resin cured product, which is sufficiently prevented from locally accumulating electric charges under a high temperature and high electric field, and which is sufficiently excellent in heat resistance and dielectric properties, and the epoxy resin cured product. It is an object of the present invention to provide a curing agent (particularly an imide group-containing compound).
  • the local accumulation of electric charge is the uneven distribution of electric charge generated inside the electrically insulating material under a high temperature and high electric field, and can be observed by measuring the charge density distribution over time. It is an electrical phenomenon that can occur.
  • the high temperature and high electric field is, for example, an environment having a temperature of 120 ° C. or higher (particularly 130 to 150 ° C.) and an electric field of 40 to 120 kV / mm (particularly 80 to 120 kV / mm).
  • Electrical insulation and insulation include the property that local accumulation of electric charge is sufficiently prevented under such a high temperature and high electric field.
  • the dielectric constant and the dielectric loss tangent may be evaluated as being better when they are higher or lower depending on the purpose. In the present invention, the dielectric properties are evaluated as being better. In particular, the performance is such that both the permittivity and the dielectric loss tangent can be sufficiently reduced.
  • the present inventors have obtained a cured product composed of a specific imide group-containing curing agent and an epoxy resin, which has all the properties of heat resistance, dielectric properties and insulating properties. We found it to be excellent and arrived at the present invention.
  • the gist of the present invention is as follows.
  • An imide group-containing compound selected from the group of diimide dicarboxylic acid-based compounds, diimide tetracarboxylic acid-based compounds, and monoimide tricarboxylic acid-based compounds.
  • An imide group-containing curing agent selected from the imide group-containing compounds described in ⁇ 1>.
  • An epoxy resin cured product comprising the imide group-containing curing agent according to ⁇ 2> and an epoxy resin.
  • ⁇ 5> The epoxy resin cured product according to ⁇ 3> or 4, wherein the imide group-containing curing agent has a molecular weight of 200 to 1100.
  • ⁇ 6> The epoxy resin cured product according to any one of ⁇ 3> to ⁇ 5>, wherein the imide group-containing curing agent has a functional group equivalent of 50 to 500.
  • ⁇ 8> A sealing material containing the cured epoxy resin according to any one of ⁇ 3> to ⁇ 6>.
  • ⁇ 9> The encapsulant according to ⁇ 8>, which is for a power semiconductor module.
  • ⁇ 10> An insulator containing the epoxy resin cured product according to any one of ⁇ 3> to ⁇ 6>. ⁇ 11> The insulator according to ⁇ 10> for a power transmission line. ⁇ 12> An electric wire coating material containing the cured epoxy resin according to any one of ⁇ 3> to ⁇ 6>. ⁇ 13> The electric wire coating material according to ⁇ 12> for electric vehicles. ⁇ 14> A printed wiring board containing the epoxy resin cured product according to any one of ⁇ 3> to ⁇ 6>.
  • an electrically insulating epoxy resin cured product having excellent heat resistance, dielectric properties and insulating properties and suitable for use in, for example, encapsulants (particularly semiconductor encapsulants), insulators, electric wire coating materials, etc. And a curing agent (particularly an imide group-containing compound) for producing the epoxy resin cured product can be provided.
  • the electrically insulating epoxy resin cured product of the present invention has sufficiently excellent insulating properties that local accumulation of electric charges is sufficiently prevented, especially under a high temperature and high electric field.
  • FIG. 1 is a chart showing changes over time in the charge density distribution of the cured epoxy resin products of Examples A-1, B-1, B-2 and C-1.
  • FIG. 2 is a chart showing changes over time in the charge density distribution of the cured epoxy resin products of Comparative Examples 1 to 3.
  • the imide group-containing compound of the present invention is useful as a curing agent (particularly an epoxy resin curing agent).
  • the imide group-containing compound of the present invention is also referred to as an "imide group-containing curing agent".
  • the cured product of the electrically insulating epoxy resin of the present invention will be described in detail, and in the above description, the imide group-containing compound will be described in detail as an imide group-containing curing agent.
  • the electrically insulating epoxy resin cured product of the present invention is composed of an imide group-containing curing agent and an epoxy resin.
  • imide group-containing curing agent examples include imide group-containing compounds such as diimide dicarboxylic acid-based compounds, diimide tetracarboxylic acid-based compounds, and monoimide tricarboxylic acid-based compounds.
  • the imide group-containing curing agent may be one or more imide group-containing curing agents selected from these groups.
  • a preferable imide group-containing curing agent is one or more imide group-containing curing agents selected from the group consisting of diimide dicarboxylic acid compounds.
  • the molecular weight of the imide group-containing curing agent is not particularly limited, and is preferably 200 to 1100, more preferably 300 to 1000, and further preferably 300 to 300, from the viewpoint of further improving heat resistance, dielectric properties, and insulating properties. It is 700, most preferably 400 to 600.
  • the functional group equivalent of the imide group-containing curing agent is not particularly limited, and is preferably 50 to 500, more preferably 800 to 400, still more preferably 800 to 400, from the viewpoint of further improving heat resistance, dielectric properties and insulating properties. It is 100 to 400, most preferably 200 to 350.
  • the functional group equivalent is a value calculated by dividing the molecular weight by the number of functional groups (for example, carboxyl groups) that the imide group-containing curing agent has per molecule.
  • the blending amount of the imide group-containing curing agent contained in the curing agent is not particularly limited, and is preferably 50% by mass or more with respect to the total amount of the curing agent from the viewpoint of further improving heat resistance, dielectric properties and insulating properties. It is more preferably 80% by mass or more, further preferably 90% by mass or more, and most preferably 100% by mass.
  • the blending amount of the imide group-containing curing agent is 100% by mass with respect to the total amount of the curing agent, it means that the curing agent is composed of only the imide group-containing curing agent.
  • the total blending amount thereof may be within the above range.
  • a diimide dicarboxylic acid compound is a compound having two imide groups and two carboxyl groups in one molecule. Diimide dicarboxylic acid compounds do not have an amide group.
  • a tricarboxylic acid anhydride component and a diamine component as raw material compounds, it is possible to produce an amidoic acid-based compound by reacting functional groups with each other, and to produce a diimidedicarboxylic acid-based compound by advancing the imidization reaction. it can.
  • the reaction between the functional groups may be carried out in a solution or in a solid phase state, and the production method is not particularly limited.
  • a diimide dicarboxylic acid-based compound using a tricarboxylic acid anhydride component and a diamine component is a compound formed by reacting one molecule of the diamine component with two molecules of the tricarboxylic acid anhydride component to form two imide groups. ..
  • the diamine component is usually about 0.5 times the molar amount of the tricarboxylic acid anhydride component, for example 0.1 to 0.7 times. It is used in a molar amount, preferably 0.3 to 0.7 times molar amount, more preferably 0.4 to 0.6 times molar amount, still more preferably 0.45 to 0.55 times molar amount.
  • the tricarboxylic acid anhydride component that can constitute the diimide dicarboxylic acid compound is not particularly limited, and for example, the heat resistance, dielectric property and insulating property of the diimide dicarboxylic acid compound and the epoxy resin cured product obtained by using the diimide dicarboxylic acid compound are further improved. From the viewpoint of improvement, an aromatic tricarboxylic acid anhydride component containing an aromatic ring, particularly trimellitic anhydride, is preferable.
  • the tricarboxylic acid anhydride component that can constitute a diimide dicarboxylic acid compound one type may be used alone, or two or more types may be used as a mixture.
  • the diamine component that can constitute the diimide dicarboxylic acid compound is not particularly limited, and for example, the heat resistance, dielectric property, insulating property, and solubility of the diimide dicarboxylic acid compound and the epoxy resin cured product obtained by using the diimide dicarboxylic acid compound are not particularly limited. From the viewpoint of further improvement of the above, aromatic diamine components containing an aromatic ring, particularly m-xylylenediamine, p-xylylenediamine, 4,4'-diaminodiphenyl ether, and dimerdiamine are preferable.
  • the diamine component that can constitute a diimide dicarboxylic acid compound one kind may be used alone, or two or more kinds may be used as a mixture.
  • the diimide tetracarboxylic dian compound is a compound having two imide groups and four carboxyl groups in one molecule.
  • a tetracarboxylic acid dianhydride component and a monoaminodicarboxylic acid component as a raw material compound, an amidic acid-based compound is produced by reacting functional groups with each other, and a diimidetetracarboxylic acid is promoted by advancing the imidization reaction.
  • a system compound can be produced.
  • the reaction between the functional groups may be carried out in a solution or in a solid phase state, and the production method is not particularly limited.
  • a diimide tetracarboxylic acid compound using a tetracarboxylic dianhydride component and a monoaminodicarboxylic acid component two molecules of the monoaminodicarboxylic acid component react with one molecule of the tetracarboxylic dianhydride component. It is a compound in which two imide groups are formed.
  • the monoaminodicarboxylic acid component is usually about twice as much as that of the tetracarboxylic acid dianhydride component.
  • the molar amount for example, 1.5 to 10.0 times molar amount, preferably 1.8 to 2.2 times molar amount, more preferably 1.9 to 2.1 times molar amount, still more preferably 1.95 to 2 times molar amount. Used in 0.05 times the molar amount.
  • the tetracarboxylic dianhydride component that can constitute the diimide tetracarboxylic dian compound is not particularly limited, and for example, the heat resistance and dielectric properties of the diimide tetracarboxylic dian compound and the cured epoxy resin obtained by using the diimide tetracarboxylic dian compound.
  • Anhydrous components especially 3,3', 4,4'-benzophenonetetracarboxylic dianhydride, 4,4'-(hexafluoroisopropyridene) diphthalic dianhydride, 1,2,3,4-butanetetracarboxylic Acid dianhydride is preferred.
  • the tetracarboxylic dianhydride component that can constitute a diimide tetracarboxylic acid compound one type may be used alone, or two or more types may be used as a mixture.
  • the monoaminodicarboxylic acid component that can constitute the diimidetetracarboxylic acid-based compound is not particularly limited, and for example, the heat resistance, dielectric properties, and insulation of the diimidetetracarboxylic acid-based compound and the cured epoxy resin obtained by using the diimidetetracarboxylic acid-based compound are not particularly limited. From the viewpoint of further improving the property and solubility, aromatic monoaminodicarboxylic acid components containing an aromatic ring, particularly 2-aminoterephthalic acid, 2-aminoisophthalic acid, 4-aminoisophthalic acid, 5-aminoisophthalic acid, 3-Aminophthalic acid and 4-aminophthalic acid are preferable.
  • the monoaminodicarboxylic acid component that can constitute a diimidetetracarboxylic acid compound one kind may be used alone, or two or more kinds may be used as a mixture.
  • a monoimide tricarboxylic acid compound is a compound having one imide group and three carboxyl groups in one molecule.
  • a tricarboxylic acid anhydride component and a monoaminodicarboxylic acid component as a raw material compound, an amidic acid-based compound is produced by reacting functional groups with each other, and a monoimide tricarboxylic acid-based compound is produced by advancing the imidization reaction.
  • the reaction between the functional groups may be carried out in a solution or in a solid phase state, and the production method is not particularly limited.
  • a monoimide tricarboxylic acid compound using a tricarboxylic acid anhydride component and a monoaminodicarboxylic acid component
  • one molecule of the triaminodicarboxylic acid component reacts with one molecule of the tricarboxylic acid anhydride component, and one imide group is formed. It is a compound formed.
  • the monoaminodicarboxylic acid component is usually about 1 times the molar amount of the tricarboxylic acid anhydride component, for example, 0. 5 to 5.0 times the molar amount, preferably 0.8 to 1.2 times the molar amount, more preferably 0.9 to 1.1 times the molar amount, still more preferably 0.95 to 1.05 times the molar amount. used.
  • the tricarboxylic acid anhydride component that can constitute the monoimide tricarboxylic acid compound is not particularly limited, and for example, the heat resistance, dielectric property and insulating property of the monoimide tricarboxylic acid compound and the epoxy resin cured product obtained by using the monoimide tricarboxylic acid compound are not particularly limited. From the viewpoint of further improvement, an aromatic tricarboxylic acid anhydride component containing an aromatic ring, particularly trimellitic anhydride, is preferable.
  • the tricarboxylic acid anhydride component that can constitute a monoimide tricarboxylic acid compound one type may be used alone, or two or more types may be used as a mixture.
  • the monoaminodicarboxylic acid component that can constitute the monoimide tricarboxylic acid compound is not particularly limited, and for example, the heat resistance, dielectric properties and insulation of the monoimide tricarboxylic acid compound and the cured epoxy resin obtained by using the monoimide tricarboxylic acid component are not particularly limited. From the viewpoint of further improving the properties, aromatic monoaminodicarboxylic acid components containing an aromatic ring, particularly 2-aminoterephthalic acid, 2-aminoisophthalic acid, 4-aminoisophthalic acid, 5-aminoisophthalic acid, 3-aminophthalic acid Acids and 4-aminophthalic acids are preferred.
  • the monoaminodicarboxylic acid component that can constitute a monoimide tricarboxylic acid compound one kind may be used alone, or two or more kinds may be used as a mixture.
  • the imide group-containing curing agent can be produced in a solvent or in the absence of a solvent, but the production method is not particularly limited.
  • a predetermined raw material for example, tricarboxylic acid anhydride component, diamine component, tetracarboxylic acid dianhydride component, monoaminodicarboxylic acid
  • an aprotic solvent such as N-methyl2-pyrrolidone
  • the imidization method is not particularly limited, for example, a heating imidization method performed by heating to 250 ° C. to 300 ° C. in a nitrogen atmosphere, a dehydration cyclization reagent such as a mixture of a carboxylic acid anhydride and a tertiary amine. It may be a chemical imidization method performed by treating with.
  • the method utilizing the mechanochemical effect is a method for obtaining an organic compound by expressing the mechanochemical effect by utilizing the mechanical energy generated when the raw material compound used for the reaction is pulverized.
  • the mechanochemical effect is formed by crushing a raw material compound that is in a solid state under a reaction environment by applying mechanical energy (compressive force, shearing force, impact force, grinding force, etc.) to the raw material compound. It is an effect (or phenomenon) that activates the grinding interface. This causes a reaction between the functional groups.
  • Reactions between functional groups usually occur between two or more source compound molecules.
  • the reaction between functional groups may occur between two raw material compound molecules having different chemical structures, or may occur between two raw material compound molecules having the same chemical structure. Reactions between functional groups do not occur only between a limited set of two source compound molecules, but usually also occur between another set of two source compound molecules.
  • a new reaction between functional groups may occur between the compound molecule generated by the reaction between the functional groups and the raw material compound molecule.
  • the reaction between the functional groups is usually a chemical reaction, whereby a binding group (particularly a covalent bond) is formed between the two raw material compound molecules by the functional group of each raw material compound molecule, and another one is formed. Compound molecules are produced.
  • the reaction environment means an environment in which the raw material compound is placed for the reaction, that is, an environment in which mechanical energy is applied, and may be, for example, an environment inside the apparatus.
  • Being in a solid state in a reaction environment means being in a solid state in an environment where mechanical energy is applied (eg, under temperature and pressure in an apparatus).
  • the raw material compound in the solid state under the reaction environment may usually be in the solid state at normal temperature (25 ° C.) and normal pressure (101.325 kPa).
  • the raw material compound that is in the solid state under the reaction environment may be in the solid state at the start of applying mechanical energy.
  • a raw material compound that is in a solid state under a reaction environment is in a liquid state (for example, in a molten state) during the reaction (or processing) due to an increase in temperature and / or pressure accompanying the continuation of mechanical energy application. ), but from the viewpoint of improving the reaction rate, it is preferable that the solid state is continuously maintained during the reaction (or treatment).
  • the new surface state formed by surface renewal is not particularly limited as long as the crushing interface is activated by crushing, and may be in a dry state or in a wet state. May be good.
  • the new surface wet state due to surface renewal is due to the raw material compound in a liquid state different from the raw material compound in the solid state.
  • the state of the raw material mixture is not particularly limited as long as the raw material compound in the solid state is pulverized by applying mechanical energy.
  • the raw material mixture may be in a dry state due to the fact that all the raw material compounds contained in the raw material mixture are in a solid state.
  • the raw material mixture may be in a wet state due to the fact that at least one raw material compound contained in the raw material mixture is in a solid state and the remaining raw material compounds are in a liquid state.
  • the raw material mixture contains only one kind of raw material compound, the one kind of raw material compound is in a solid state.
  • both of the two kinds of raw material compounds may be in a solid state, or one raw material compound is in a solid state and the other raw material compound is a liquid. It may be in a state.
  • a functional group is a monovalent group (atomic group) that can cause reactivity in the molecular structure, and is not a carbon-carbon double bond, a carbon-carbon triple bond, or the like. It shall be used in the concept excluding saturated bond groups (for example, radically polymerizable groups).
  • a functional group is a group containing a carbon atom and a hetero atom. Heteroatoms are one or more atoms selected from the group consisting of oxygen atoms, nitrogen atoms and sulfur atoms, particularly the group consisting of oxygen atoms and nitrogen atoms.
  • the functional group may further contain a hydrogen atom.
  • the functional groups subjected to the reaction are usually two functional groups, and the structure of the raw material compound molecule having one functional group and the raw material compound molecule having the other functional group may be different from each other. , Or they may be the same.
  • the reaction forms a bond (particularly a covalent bond) between the two source compound molecules, and monomolecularization of them is achieved.
  • Small molecules such as water, carbon dioxide, and / or alcohol may or may not be by-produced by the reaction between the functional groups.
  • the reaction between the functional groups may be a reaction between any functional group (particularly a monovalent functional group) capable of chemically reacting with each other, for example, a carboxyl group and its halide (group), an acid anhydride group, an amino group. , An isocyanate group, a hydroxyl group, and the like, which is a reaction of two functional groups selected from the group.
  • the two functional groups are not particularly limited as long as a chemical reaction occurs, and may be, for example, two functional groups having different chemical structures or two functional groups having the same chemical structure.
  • reaction between functional groups examples include a condensation reaction, an addition reaction, or a composite reaction thereof.
  • the condensation reaction is a reaction in which a bond or link between the raw material compound molecules is achieved with the elimination of small molecules such as water, carbon dioxide, and alcohol between the raw material compound molecules.
  • Examples of the condensation reaction include a reaction in which an amide group is formed (amidization reaction), a reaction in which an imide group is formed (imidization reaction), a reaction in which an ester group is formed (esterification reaction), and the like.
  • the addition reaction is an addition reaction between functional groups, and is a reaction in which binding or ligation between the raw material compound molecules is achieved without involving the elimination of small molecules between the raw material compound molecules.
  • Examples of the addition reaction include a reaction in which a urea group is formed, a reaction in which a urethane group is formed, and a reaction in which a cyclic structure is ring-opened (that is, a ring-opening reaction).
  • a part of the cyclic structure is cleaved, and the cleaved site and other compounds are cleaved.
  • a reaction in which a bond or linkage with a functional group of a raw material compound is achieved.
  • the ring-opening reaction produces, for example, an amide group, a carboxyl group, an ester group, and an ether group.
  • reaction between functional groups may be, for example, one or more reactions selected from the group consisting of the following reactions: A reaction in which (A) an acid anhydride group reacts with an amino group to form (a1) an amide group and a carboxyl group, (a2) an imide group, (a3) an isoimide group, or (a4) a mixed group thereof; (B) A reaction in which an imide group is formed by a reaction between an acid anhydride group and an isocyanate group; (C) A reaction in which an amide group is produced by a reaction between a carboxyl group or a halide (group) thereof and an amino group or an isocyanate group; (D) A reaction in which an ester group is formed by a reaction between a carboxyl group or a halide (group) thereof and a hydroxyl group; (E) A reaction in which a urea group is produced by a reaction between an isocyanate group and an amino group; (F) A reaction in which a urea group is
  • the reaction between the functional groups corresponds to the above-mentioned reaction (A).
  • imidization may be carried out by the same method as the imidization method in the method of producing in a solvent.
  • the epoxy resin used in the present invention is not particularly limited as long as it is an organic compound having two or more epoxy groups in one molecule.
  • Specific examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, naphthalene type epoxy resin, bisphenyl type epoxy resin, and dicyclopentadiene type epoxy. Examples thereof include resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, isocyanurate type epoxy resins, alicyclic epoxy resins, acrylic acid modified epoxy resins, polyfunctional epoxy resins, brominated epoxy resins, and phosphorus modified epoxy resins.
  • the epoxy resin may be used alone or in combination of two or more.
  • the epoxy group may be a glycidyl group. Epoxy resins are available as commercial products.
  • the epoxy equivalent of the epoxy resin is usually 100 to 3000, preferably 150 to 300.
  • the epoxy resin cured product of the present invention may further contain additives such as a curing accelerator, a thermosetting resin, an inorganic filler, an antioxidant, and a flame retardant.
  • the curing accelerator is not particularly limited, but for example, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole.
  • Tertiary amines such as phenol, 2,4,6-tris (dimethylaminomethyl) phenol; organic phosphines such as triphenylphosphine and tributylphosphine.
  • the curing accelerator may be used alone or in combination of two or more.
  • the amount of the curing accelerator to be blended is not particularly limited, and is, for example, 0.01 to 2% by mass with respect to the total amount of the epoxy resin solution described later, further improving the heat resistance, dielectric properties and insulating properties of the epoxy resin cured product. From the viewpoint of the above, it is preferably 0.01 to 1% by mass, and more preferably 0.05 to 0.5% by mass.
  • thermosetting resin is not particularly limited, and examples thereof include cyanate resin, isocyanate resin, maleimide resin, polyimide resin, urethane resin, and phenol resin.
  • the thermosetting resin may be used alone or in combination of two or more.
  • the inorganic filler examples include silica, glass, alumina, talc, mica, barium sulfate, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, titanium oxide, silicon nitride, boron nitride and the like.
  • the inorganic filler may be used alone or in combination of two or more.
  • the inorganic filler is preferably surface-treated with a surface treatment agent such as an epoxy silane coupling agent or an amino silane coupling agent.
  • the inorganic filler may be used alone or in combination of two or more.
  • antioxidants examples include hindered phenolic antioxidants, phosphorus-based antioxidants, and thioether-based antioxidants.
  • the antioxidant may be used alone or in combination of two or more.
  • the flame retardant is not particularly limited, and a non-halogen flame retardant is preferable from the viewpoint of environmental impact.
  • the flame retardant include phosphorus-based flame retardants, nitrogen-based flame retardants, silicone-based flame retardants, and the like.
  • the flame retardant may be used alone or in combination of two or more.
  • the electrically insulating epoxy resin cured product of the present invention can be produced by heating an epoxy resin solution containing an imide group-containing curing agent and an epoxy resin, which will be described in detail later.
  • the electrically insulating epoxy resin cured product of the present invention can be produced by applying an epoxy resin solution to a base material, drying and curing the substrate by heating. After curing, the cured product may be peeled off from the substrate and used.
  • the method for applying the epoxy resin solution is not particularly limited, and examples thereof include a casting method and a dipping method.
  • a cured epoxy resin can be obtained in the form of a sheet, a film, or the like by applying the epoxy resin solution to the base material, drying and curing the base material, and then peeling the epoxy resin solution from the base material.
  • the electrically insulating epoxy resin cured product of the present invention can be produced by molding, drying and curing the epoxy resin solution while pouring it into a mold.
  • the molding method of the epoxy resin solution is not particularly limited, and examples thereof include a transfer molding method and an injection molding method.
  • the imide group-containing curing agent and the epoxy resin are reacted to complete the curing.
  • the heating temperature is usually 80 to 350 ° C, preferably 130 to 300 ° C.
  • the heating time is usually 1 minute to 20 hours, preferably 5 minutes to 10 hours.
  • the epoxy resin cured product of the present invention may have any size.
  • the thickness of the cured product may be usually 1 ⁇ m to 100 mm.
  • the epoxy resin solution is made by mixing at least an imide group-containing curing agent and an epoxy resin with an organic solvent.
  • the imide group-containing curing agent and the epoxy resin are dissolved in the organic solvent, and at least the imide group-containing curing agent, the epoxy resin and the organic solvent are uniformly mixed at the molecular level.
  • Dissolution means that the solute is uniformly mixed in the solvent at the molecular level.
  • a solution is a state in which a solute is uniformly mixed in a solvent at the molecular level. For example, at normal temperature (25 ° C.) and normal pressure (101.325 kPa), the solute is in the solvent with the naked eye. It is a mixed liquid that is dissolved to the extent that it looks transparent.
  • the epoxy resin solution may further contain the above-mentioned additives.
  • the organic solvent used in the epoxy resin solution is not particularly limited as long as the curing agent and the epoxy resin can be uniformly dissolved, and a non-halogenated solvent is preferable from the viewpoint of the influence on the environment.
  • a non-halogenated solvent include amide compounds such as N, N-dimethylformamide, N, N-dimethylacetamide, and N-methyl-2-pyrrolidone. All of these non-halogenated solvents are useful as general purpose solvents.
  • the organic solvent may be used alone or in combination of two or more.
  • the method for producing the epoxy resin solution is not particularly limited, and may be, for example, an individual dissolution method, a batch dissolution method, or the like.
  • the individual dissolution method is preferable from the viewpoint of obtaining a uniform resin solution in a short time.
  • the individual dissolution method is a method in which an imide group-containing curing agent and an epoxy resin are mixed and dissolved in an organic solvent in advance, and then they are mixed.
  • the batch dissolution method is a method in which an imide group-containing curing agent and an epoxy resin are simultaneously mixed with an organic solvent and dissolved.
  • the mixing temperature is not particularly limited and may be, for example, 80 to 180 ° C., particularly 100 to 160 ° C.
  • the heating for achieving the mixing temperature may be, for example, reflux heating of an organic solvent.
  • the amount of the imide group-containing curing agent blended is such that the functional group equivalent of the imide group-containing curing agent is the epoxy resin from the viewpoint of further improving the heat resistance, dielectric properties and insulating properties of the obtained epoxy resin cured product.
  • the amount is preferably 0.5 to 1.5 equivalents, more preferably 0.7 to 1.3 equivalents, relative to the epoxy equivalent.
  • the functional group equivalent of the imide group-containing curing agent corresponds to the equivalent calculated from the content of the hydroxy group or the carboxyl group.
  • the total amount of the imide group-containing curing agent and the epoxy resin is not particularly limited, and from the viewpoint of further improving the heat resistance, dielectric properties and insulating properties of the obtained epoxy resin cured product, the total amount of the epoxy resin solution is used. On the other hand, it is preferably 30 to 90% by mass, more preferably 40 to 80% by mass, and further preferably 50 to 70% by mass.
  • the epoxy resin solution usually has a viscosity of 10 to 70 Pa ⁇ s, particularly 30 to 70 Pa ⁇ s, preferably 40 to 60 Pa ⁇ s, and does not have a so-called gel form.
  • a gel does not have a viscosity and is generally a solid state having no fluidity.
  • the epoxy resin solutions when mixed with additional solvents, are easily compatible with each other and are uniformly mixed at the molecular level as a whole. However, even when the gel is mixed with a further solvent, the gel remains in a lump without being compatible with each other and is not uniformly mixed at the molecular level as a whole.
  • the "further solvent” is a solvent that is compatible with the solvent contained in the solution or gel, and is, for example, a solvent represented by the same structural formula as the solvent contained in the solution or gel.
  • the viscosity of the epoxy resin solution is the viscosity at 30 ° C. measured by a Brookfield digital viscometer.
  • the epoxy resin solution may have a relatively low viscosity as described above because the epoxy resin is unlikely to react unexpectedly. Therefore, a cured product can be produced with sufficient workability by using the epoxy resin solution.
  • the epoxy resin solution usually has a reaction rate of 10% or less. The reaction rate is the ratio of the number of glycidyl groups reacted in the epoxy resin solution to the total number of glycidyl groups contained in the epoxy resin.
  • the cured epoxy resin product of the present invention is useful in all applications that require at least one of heat resistance, dielectric properties and electrical insulation (preferably properties including at least electrical insulation).
  • the cured epoxy resin of the present invention can be preferably used as any electrically insulating material.
  • electrically insulating materials include, for example, encapsulants (for example, encapsulants for power semiconductor modules), insulators (particularly insulator covering materials) (for example, insulators for power transmission lines (particularly insulator covering materials for power transmission lines)).
  • Electric wire coating materials for example, electric wire coating materials for electric vehicles), insulating materials for printed wiring boards, and the like.
  • the electrically insulating epoxy resin cured product of the present invention is used as a sealing material, for example, after producing a power semiconductor module, the epoxy resin solution is filled in a mold in which the module is set, and dried and cured. Therefore, the cured epoxy resin of the present invention can be used as a sealing material for a power semiconductor module.
  • electrically insulating epoxy resin cured product as insulator coating material
  • an epoxy resin solution is used to coat the outer peripheral portion (particularly the outer peripheral surface) of the insulator core to form a layer, and then dried and dried.
  • the cured epoxy resin of the present invention can be used as an insulator coating material.
  • the core include glass fiber reinforced plastics such as glass fiber reinforced epoxy resin and glass fiber reinforced phenol resin, which are usually formed into various shapes such as a cylindrical shape or a columnar shape.
  • the thickness of the epoxy resin cured product as a coating material formed on the outer peripheral portion of the core can be changed according to the size and shape of the obtained polymer insulator (for example, the presence or absence of a bulk portion and its shape, size, and spacing).
  • the thinnest portion is preferably 1 mm or more, and more preferably 2 mm or more.
  • the thickness of the coating material is usually 1 to 100 mm, preferably 2 to 50 mm.
  • the cured epoxy resin product of the present invention When the cured epoxy resin product of the present invention is used as an insulator coating material, the cured epoxy resin product of the present invention has an insulating property (particularly, an insulating property that more sufficiently prevents dielectric breakdown due to local accumulation of charge). It is especially useful as an insulator covering material for power transmission lines.
  • the epoxy resin cured product of the present invention is obtained by applying an epoxy tree solution to the surface of a conductor and baking (that is, drying and curing). It can be used as an electric wire coating material.
  • the conductor include copper and copper alloys.
  • the coating method and the baking method can be carried out according to the same methods and conditions as the coating method and the baking method in the conventional electric wire coating forming method. The coating and baking may be repeated twice or more.
  • the epoxy resin solution may be mixed with other resins and used.
  • the thickness of the electric wire coating material is preferably 1 to 100 ⁇ m, more preferably 10 to 50 ⁇ m, from the viewpoint of protecting the conductor.
  • the cured epoxy resin of the present invention has an insulating property (particularly, an insulating property that more sufficiently prevents dielectric breakdown due to local accumulation of charges). It is particularly useful as an electric wire coating material for electric vehicles.
  • the printed wiring board usually contains an electrically insulating epoxy resin cured product, and may further contain a glass cloth.
  • the electrically insulating epoxy resin cured product of the present invention is used as an insulating material for a printed wiring board, the epoxy resin cured product of the present invention is dried and cured after impregnating or applying an epoxy resin solution to a glass cloth.
  • the thickness of the printed wiring board is not particularly limited.
  • the epoxy resin cured product of the present invention is an electric / electronic material for other uses, for example, a molding material for a bushing transformer, a molding material for a solid-state insulating switch gear, an electric penetration for a nuclear power plant, an electric / electronic material such as a build-up laminate. Can also be preferably used.
  • Method for producing imide group-containing curing agent 150 g of a sample in which an acid component and an amine component are mixed at the ratios shown in the table is pulverized by Wonder Crusher (Osaka Chemical Co., Ltd.) WC-3C at a rotation speed of about 9000 rpm for 1 minute.
  • the mechanochemical treatment was performed by repeating the mixing and crushing three times.
  • the treated sample was transferred to a glass container, and an imidization reaction was carried out in an inert oven (Yamato Scientific Co., Ltd.) DN411I in a nitrogen atmosphere at a firing temperature of 300 ° C. and a firing time of 2 hours.
  • the identification of the imide group-containing curing agent was performed based on the fact that the molecular weight is the same as the molecular weight of the target structure and that there is absorption derived from the imide group in infrared spectroscopy.
  • reaction rate (%) ⁇ 1- ( ⁇ '/ ⁇ ) ⁇ x 100 ⁇ : 90% or more and 100% or less (best); ⁇ : 80% or more and less than 90% (good); ⁇ : 70% or more and less than 80% (no problem in practical use); X: Less than 70% (there is a problem in practical use).
  • Tg Glass transition temperature
  • DSC differential scanning calorimetry device
  • a commercially available conductive PEEK (polyetheretherketone) sheet was used for the anode, and an aluminum plate was used for the cathode.
  • the epoxy resin cured product (sample) has a film shape and is sandwiched between the anode and the cathode.
  • a DC voltage corresponding to an average electric field of 20 kV / mm is applied for 10 minutes, then short-circuited for 5 minutes, and pulses are applied during and during the short-circuit.
  • a voltage (5 ns, 200 V) was applied at 1 ms intervals (1 kHz), and the obtained waveforms were added and averaged 1000 times to obtain one waveform.
  • the measurement interval is 10 seconds.
  • the DC voltage to be applied is increased so that the average applied electric field becomes 40 kV / mm, and a series of measurements similar to the above are performed.
  • the measurements were sequentially repeated under an average applied electric field corresponding to 60, 80, 100 and 120 kV / mm.
  • the charge density distribution measured over time in this way is shown in FIGS. 1 and 2.
  • FIG. 1 shows changes over time in the charge density distribution of the cured epoxy resin products of Examples A-1, B-1, B-2 and C-1 (particularly the cured epoxy resin products using bisphenol A type epoxy resin). It is a chart which shows.
  • FIG. 2 is a chart showing changes over time in the charge density distribution of the cured epoxy resin products of Comparative Examples 1 to 3 (particularly the cured epoxy resin using bisphenol A type epoxy resin). The smaller the maximum electric field (particularly the ratio of the maximum electric field / applied electric field), the better the insulating property.
  • The ratio of the maximum electric field in the sample to the applied electric field was 1.1 or less at the maximum (best); ⁇ : The ratio of the maximum electric field in the sample to the applied electric field was greater than 1.1 and 1.3 or less (good); ⁇ : The ratio of the maximum electric field in the sample to the applied electric field was greater than 1.3 and 1.5 or less (no problem in practical use); X: The ratio of the maximum electric field in the sample to the applied electric field was larger than 1.5 at the maximum (there is a problem in practical use).
  • EOCN-1020-55 o-cresol novolac type epoxy resin manufactured by Nippon Kayaku Co., Ltd. is used as the epoxy resin
  • The ratio of the maximum electric field in the sample to the applied electric field is 1.2 or less at the maximum. (Best); ⁇ : The ratio of the maximum electric field in the sample to the applied electric field was greater than 1.2 and 1.4 or less (good); ⁇ : The ratio of the maximum electric field in the sample to the applied electric field was greater than 1.4 and 1.6 or less (no problem in practical use); X: The ratio of the maximum electric field in the sample to the applied electric field was larger than 1.6 at the maximum (there is a problem in practical use).
  • Dielectric characteristics (dielectric constant, dielectric loss tangent) It was measured and evaluated by an impedance analyzer under the following conditions.
  • Synthesis example B-2 An imide group-containing curing agent was obtained in the same manner as in Synthesis Example B-1 except that the acid dianhydride composition and the monoamine composition were changed.
  • Synthesis example C-1 A monoimide tricarboxylic acid was prepared based on the above-mentioned "Method for producing an imide group-containing curing agent". The details are as follows. 515 parts by mass of granular trimellitic anhydride and 485 parts by mass of 2-aminoterephthalic acid were added to the crushing tank, and mixed pulverization was performed. Then, the mixture was transferred to a glass container and subjected to an imidization reaction at 300 ° C. for 2 hours in a nitrogen atmosphere in an inert oven to prepare an imide group-containing curing agent.
  • Epoxy resin jER828 Mitsubishi Chemical Corporation, bisphenol A type epoxy resin, epoxy equivalent 184 to 194 g / eq EOCN-1020-55: manufactured by Nippon Kayaku Co., Ltd., o-cresol novolac type epoxy resin, epoxy equivalent 195 g / eq
  • Curing agents other than imide-based curing agents-PHENOLITE TD-2131 Novolac-type phenol resin manufactured by DIC, curing agent containing no imide group;
  • the curing agent has the following structural formula.
  • HN-2200 manufactured by Hitachi Chemical Co., Ltd., alicyclic acid anhydride, imide group-free curing agent; the curing agent has the following structural formula.
  • -JERcure113 A curing agent manufactured by Mitsubishi Chemical Corporation that does not contain modified alicyclic amines and imide groups.
  • Example A-1 The curing accelerator (2) was added to 60 parts by mass of the sample obtained by mixing the imide group-containing curing agent obtained in Synthesis Example A-1 and the epoxy resin (jER828) at a ratio of 1.0 / 1.1 (equivalent ratio).
  • -Ethyl-4-methylimidazole manufactured by Tokyo Chemical Industry Co., Ltd.
  • 0.2 parts by mass and 39.8 parts by mass of dimethylformamide (DMF) are mixed at room temperature (that is, 20 ° C.), and 0.5 at 150 ° C.
  • Epoxy resin solution was obtained by reflux heating for a time.
  • the epoxy resin solution obtained in this example had a viscosity of 50 Pa ⁇ s and had sufficiently good workability.
  • the obtained epoxy resin solution was applied to an aluminum substrate to a thickness of 300 ⁇ m, and the produced coating film was dried in an inert oven at 180 ° C. for 2 hours and then at 300 ° C. for 2 hours in a nitrogen atmosphere. Desolvation and curing reactions were performed.
  • the aluminum base material was removed from the obtained sample with an aluminum base material to obtain a cured epoxy resin.
  • the average thickness of the cured epoxy resin (cured epoxy resin using the epoxy resin "jER828”) was 112 ⁇ m. In the present specification, the average thickness is the average value of the thickness at any 10 points.
  • Epoxy resin solution and epoxy resin cured product were prepared.
  • the epoxy resin solution had a viscosity of 50 Pa ⁇ s and had sufficiently good workability.
  • the average thickness of the cured epoxy resin was 103 ⁇ m.
  • Examples B-1, B-2 and C-1 and Comparative Example 1 The epoxy resin is subjected to the same operation as in Example A-1 except that the imide group-containing curing agent or the curing agent "PHENOLITE TD-2131" obtained in Synthesis Example B-1, B-2 or C-1 is used. A solution and a cured epoxy resin were prepared. The imide group-containing curing agent used in each example was obtained in a synthetic example having the same number as that of the example number.
  • the reaction rate of the glycidyl group in the epoxy resin contained in the epoxy resin solutions obtained in Examples B-1, B-2 and C-1 and Comparative Example 1 was 10% or less.
  • the viscosities of the epoxy resin solutions obtained in Examples B-1, B-2 and C-1 and Comparative Example 1 were all 30 to 70 Pa ⁇ s, and they had sufficiently good workability.
  • the average thickness of the cured epoxy resin was as follows. Average thickness of epoxy resin cured product using epoxy resin "jER828": 116 ⁇ m (Example B-1), 115 ⁇ m (Example B-2), 122 ⁇ m (Example C-1), 112 ⁇ m (Comparative Example 1). Average thickness of epoxy resin cured product using epoxy resin "EOCN-1020-55": 120 ⁇ m (Example B-1), 104 ⁇ m (Example B-2), 114 ⁇ m (Example C-1), 106 ⁇ m (Comparative Example 1).
  • Comparative Example 2 100/80/1 (weight ratio) of alicyclic acid anhydride curing agent HN-2200, epoxy resin (jER828), and curing accelerator (2,4,6-trisdimethylaminomethylphenol, manufactured by Mitsubishi Chemical Co., Ltd.) was mixed at room temperature (that is, 20 ° C.) to obtain an epoxy resin solution.
  • the epoxy resin solution obtained in this comparative example had a viscosity of 50 Pa ⁇ s and had sufficiently good workability.
  • the obtained epoxy resin solution was applied to an aluminum base material to a thickness of 300 ⁇ m, and the produced coating film was dried in an inert oven at 120 ° C. for 5 hours and then at 150 ° C. for 15 hours in a nitrogen atmosphere. A curing reaction was carried out.
  • the aluminum base material was removed from the obtained sample with an aluminum base material to obtain a cured epoxy resin.
  • the average thickness of the cured epoxy resin (cured epoxy resin using the epoxy resin "jER828”) was 133 ⁇ m.
  • Epoxy resin solution and epoxy resin cured product were prepared.
  • the epoxy resin solution had a viscosity of 40 Pa ⁇ s and had sufficiently good workability.
  • the average thickness of the cured epoxy resin was 140 ⁇ m.
  • Comparative Example 3 The modified alicyclic amine curing agent jERcure113 and the epoxy resin (jER828) were mixed at a ratio of 100/10 (weight ratio) at room temperature (that is, 20 ° C.) to obtain an epoxy resin solution.
  • the epoxy resin solution obtained in this comparative example had a viscosity of 50 Pa ⁇ s and had sufficiently good workability.
  • the obtained epoxy resin solution was applied to an aluminum base material to a thickness of 300 ⁇ m, and the produced coating film was dried in an inert oven at 80 ° C. for 1 hour and then at 150 ° C. for 3 hours in a nitrogen atmosphere. A curing reaction was carried out.
  • the aluminum base material was removed from the obtained sample with an aluminum base material to obtain a cured epoxy resin.
  • the average thickness of the cured epoxy resin (cured epoxy resin using the epoxy resin "jER828”) was 139 ⁇ m.
  • Epoxy resin solution and epoxy resin cured product were prepared.
  • the epoxy resin solution had a viscosity of 40 Pa ⁇ s and had sufficiently good workability.
  • the average thickness of the cured epoxy resin was 123 ⁇ m.
  • Tables 1 to 4 show the characteristic values of the curing agent and the characteristic values of the epoxy resin cured product in each of the examples and the comparative examples.
  • Example A-1 using the diimide dicarboxylic acid compound, all the evaluation results of heat resistance, dielectric properties and insulating properties achieved ⁇ .
  • the cured epoxy resin of Comparative Examples 1 to 3 used a curing agent containing no imide group, it was inferior in at least one of heat resistance, dielectric property and insulating property.
  • the following items are clear from the ratio of the maximum electric field / applied electric field in each of the cured epoxy resin products of Examples and Comparative Examples and the time-dependent change charts of the charge density distributions in FIGS. 1 and 2. -In the epoxy resin cured products of Examples A-1, B-1, B-2 and C-1, local accumulation of electric charges was sufficiently prevented under high temperature and high electric field; -In the epoxy resin cured products of Comparative Examples 1 to 3, local accumulation of electric charges occurred under a high temperature and high electric field.
  • the cured epoxy resin of the present invention has sufficiently excellent heat resistance, dielectric properties and insulating properties. Therefore, the cured epoxy resin of the present invention includes encapsulants for power semiconductor modules (particularly semiconductor encapsulants), mold materials for bushing transformers, mold materials for solid-state insulated switch gears, insulators for power transmission lines, and the like. It can be suitably used for electric wire coating materials for electric vehicles, electric penetrations for nuclear power plants, insulating materials for printed wiring boards, and electrical and electronic materials such as build-up laminated boards.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Organic Insulating Materials (AREA)

Abstract

本発明は、高温高電界下において電荷の局所的な蓄積が十分に防止されるとともに、耐熱性および誘電特性に十分に優れた電気絶縁性エポキシ樹脂硬化物を製造するための硬化剤(特にイミド基含有化合物)を提供する。本発明は、ジイミドジカルボン酸系化合物、ジイミドテトラカルボン酸系化合物およびモノイミドトリカルボン酸系化合物の群から選ばれるイミド基含有化合物に関する。

Description

イミド基含有化合物、イミド基含有硬化剤ならびにエポキシ樹脂硬化物およびそれを用いた電気絶縁性材料
 本発明は、イミド基含有化合物、イミド基含有硬化剤ならびにエポキシ樹脂硬化物およびそれを用いた電気絶縁性材料に関する。
 エポキシ樹脂及びその硬化剤からなるエポキシ樹脂硬化物は、熱的、力学的および電気的特性に優れており、電気電子材料を中心に工業的に広く利用されている。エポキシ樹脂硬化物を製造するための硬化剤としては、例えば、フェノール系硬化剤、酸無水物系硬化剤、アミン系硬化剤等が使用されている。
 近年、車載用パワーモジュールに代表されるパワーデバイスの分野では、更なる大電流化、小型化、高効率化が求められており、炭化ケイ素(SiC)半導体への移行が進みつつある。SiC半導体は、従来のシリコン(Si)半導体よりも高温条件下での動作が可能であることから、SiC半導体に使用される半導体封止材にもこれまで以上に高い耐熱性が要求されている(例えば、特許文献1)。また、パワーデバイスは小型化高出力化にともない、高温高電界下で使用されるが、高温高電界下では絶縁材料中で電荷が蓄積し、半導体内部の電界が変歪され、半導体素子の耐電圧を低下させる。従って、パワーデバイスの性能向上には、高温下での耐電圧を改善するべく、高温高電界下において電荷の蓄積が生じない材料の開発が必要である。
 また、送電線の分野では、従来から陶器やセラミックからなる碍子が用いられていたが、前記碍子は重くて脆いため、ポリマーを一部に用いた碍子が検討されている(例えば、特許文献2)。近年、碍子が高電圧化されつつあり、それにともない、碍子に用いるポリマーには、電荷の蓄積が生じないようにするため従来品よりもより低誘電性であって、高電圧化されても耐えられるように高絶縁性の材料が求められている。
 また、電気自動車の分野では、モータ等の電気機器を構成する電線に絶縁性の電線被覆材が用いられている(例えば、特許文献3)。近年、モータが高出力化され、インバーターサージによる部分放電の影響が大きくなりつつある。それにともない、モータに用いる電線被覆材は、インバーターサージが発生しにくくするため従来品よりもより低誘電性であって、高出力化されても耐えられるように高絶縁性の材料が求められている。
特開2007-305962号公報 特開2013-234311号公報 特開2012-224714号公報
 本発明の発明者等は、従来の材料(特に従来の硬化剤を用いて製造されたエポキシ樹脂硬化物)を電気絶縁性材料として使用すると、高温高電界下において電荷が局所的に蓄積され、絶縁破壊に至ることがあるために、十分な絶縁性が得られないことを見い出した。例えば、パワーデバイスの分野において、従来の絶縁材料は、高温高電界環境により電荷が局所的に蓄積し、絶縁破壊に至ることがあった。
 本発明は、高温高電界下において電荷の局所的な蓄積が十分に防止される、エポキシ樹脂硬化物、および当該エポキシ樹脂硬化物を製造するための硬化剤(特にイミド基含有化合物)を提供することを目的とする。
 本発明はまた、高温高電界下において電荷の局所的な蓄積が十分に防止されるとともに、耐熱性および誘電特性に十分に優れたエポキシ樹脂硬化物、および当該エポキシ樹脂硬化物を製造するための硬化剤(特にイミド基含有化合物)を提供することを目的とする。
 本明細書中、電荷の局所的な蓄積とは、高温高電界下において電気絶縁性材料の内部で生じる電荷の偏在のことであり、電荷密度分布を経時的に測定することにより観察することができる電気的現象である。高温高電界とは、例えば、120℃以上(特に130~150℃)の温度および40~120kV/mm(特に80~120kV/mm)の電界の環境のことである。電気絶縁性および絶縁性は、このような高温高電界下において電荷の局所的な蓄積が十分に防止される特性を包含する。
 誘電率および誘電正接は、一般的には、目的に応じて高い方が優れていると評価される場合、および低い方が優れていると評価される場合があるが、本発明において、誘電特性とは、特に誘電率および誘電正接の両者が十分に低減され得る性能のことである。
 本発明者らは、このような課題を解決するために鋭意検討の結果、特定のイミド基含有硬化剤とエポキシ樹脂とからなる硬化物が、耐熱性、誘電特性および絶縁性の全ての特性に優れていることを見出し、本発明に到達した。
 すなわち、本発明の要旨は以下の通りである。
<1> ジイミドジカルボン酸系化合物、ジイミドテトラカルボン酸系化合物およびモノイミドトリカルボン酸系化合物の群から選ばれるイミド基含有化合物。
<2> <1>に記載のイミド基含有化合物から選ばれる、イミド基含有硬化剤。
<3> <2>に記載のイミド基含有硬化剤と、エポキシ樹脂とからなるエポキシ樹脂硬化物。
<4> エポキシ樹脂が、1分子中、2個以上のエポキシ基を有する、<3>に記載のエポキシ樹脂硬化物。
<5> イミド基含有硬化剤が200~1100の分子量を有する、<3>または4に記載のエポキシ樹脂硬化物。
<6> イミド基含有硬化剤が50~500の官能基当量を有する、<3>~<5>のいずれかに記載のエポキシ樹脂硬化物。
<7> <3>~<6>のいずれかに記載のエポキシ樹脂硬化物を含む電気絶縁性材料。
<8> <3>~<6>のいずれかに記載のエポキシ樹脂硬化物を含む封止材。
<9> パワー半導体モジュール用である<8>に記載の封止材。
<10> <3>~<6>のいずれかに記載のエポキシ樹脂硬化物を含む碍子。
<11> 送電線用である<10>に記載の碍子。
<12> <3>~<6>のいずれかに記載のエポキシ樹脂硬化物を含む電線被覆材。
<13> 電気自動車用である<12>に記載の電線被覆材。
<14> <3>~<6>のいずれかに記載のエポキシ樹脂硬化物を含むプリント配線板。
 本発明によれば、耐熱性、誘電特性および絶縁性に優れ、例えば、封止材(特に半導体封止材)、碍子、電線被覆材等への使用に適した電気絶縁性エポキシ樹脂硬化物、および当該エポキシ樹脂硬化物を製造するための硬化剤(特にイミド基含有化合物)を提供することができる。
 本発明の電気絶縁性エポキシ樹脂硬化物は、特に高温高電界下において電荷の局所的な蓄積が十分に防止されるという、十分に優れた絶縁性を有する。
図1は、実施例A-1、B-1、B-2およびC-1のエポキシ樹脂硬化物についての電荷密度分布の経時的変化を示すチャートである。 図2は、比較例1~3のエポキシ樹脂硬化物についての電荷密度分布の経時的変化を示すチャートである。
 本発明のイミド基含有化合物は、硬化剤(特にエポキシ樹脂の硬化剤)として有用である。本発明のイミド基含有化合物は、硬化剤(特にエポキシ樹脂の硬化剤)として使用される場合、「イミド基含有硬化剤」とも称される。以下、本発明の電気絶縁性エポキシ樹脂硬化物を詳しく説明するが、当該説明において、イミド基含有化合物はイミド基含有硬化剤として詳しく説明する。
<電気絶縁性エポキシ樹脂硬化物>
 本発明の電気絶縁性エポキシ樹脂硬化物は、イミド基含有硬化剤およびエポキシ樹脂から構成される。
[イミド基含有硬化剤]
 イミド基含有硬化剤としては、例えば、ジイミドジカルボン酸系化合物、ジイミドテトラカルボン酸系化合物、およびモノイミドトリカルボン酸系化合物等のイミド基含有化合物が挙げられる。イミド基含有硬化剤はこれらの群から選択される1種以上のイミド基含有硬化剤であってもよい。耐熱性、誘電特性および絶縁性のさらなる向上の観点から、好ましいイミド基含有硬化剤はジイミドジカルボン酸系化合物からなる群から選択される1種以上のイミド基含有硬化剤である。
 イミド基含有硬化剤の分子量は特に限定されず、耐熱性、誘電特性および絶縁性のさらなる向上の観点から、好ましくは200~1100であり、より好ましくは300~1000であり、さらに好ましくは300~700であり、最も好ましくは400~600である。
 イミド基含有硬化剤の官能基当量は特に限定されず、耐熱性、誘電特性および絶縁性のさらなる向上の観点から、好ましくは50~500であり、より好ましくは800~400であり、さらに好ましくは100~400であり、最も好ましくは200~350である。官能基当量は、分子量を、イミド基含有硬化剤が1分子あたり有する官能基(例えばカルボキシル基)の数で除することにより算出される値である。
 硬化剤に含まれるイミド基含有硬化剤の配合量は特に限定されず、耐熱性、誘電特性および絶縁性のさらなる向上の観点から、硬化剤全量に対して、好ましくは50質量%以上であり、より好ましくは80質量%以上であり、さらに好ましくは90質量%以上であり、最も好ましくは100質量%である。イミド基含有硬化剤の配合量が硬化剤全量に対して100質量%であるとは、硬化剤がイミド基含有硬化剤のみからなることを意味する。2種以上のイミド基含有硬化剤を配合する場合、それらの合計配合量が上記範囲内であればよい。
(ジイミドジカルボン酸系化合物)
 ジイミドジカルボン酸系化合物は、1分子中、2つのイミド基および2つのカルボキシル基を有する化合物である。ジイミドジカルボン酸系化合物はアミド基を有さない。原料化合物として、無水トリカルボン酸成分とジアミン成分とを用い、官能基同士の反応を行うことにより、アミド酸系化合物を製造し、イミド化反応を進めることによりジイミドジカルボン酸系化合物を製造することができる。ここで官能基同士の反応は、溶液中でも良いし、固相状態で反応をおこなってもよく、製造方法は特に限定されない。
 無水トリカルボン酸成分とジアミン成分とを用いたジイミドジカルボン酸系化合物は、1分子のジアミン成分に対して、2分子の無水トリカルボン酸成分が反応し、2つのイミド基が形成されてなる化合物である。
 無水トリカルボン酸成分とジアミン成分とを用いたジイミドジカルボン酸系化合物の製造に際し、ジアミン成分は、無水トリカルボン酸成分に対して通常は約0.5倍モル量、例えば0.1~0.7倍モル量、好ましくは0.3~0.7倍モル量、より好ましくは0.4~0.6倍モル量、さらに好ましくは0.45~0.55倍モル量で使用される。
 ジイミドジカルボン酸系化合物を構成し得る無水トリカルボン酸成分としては、特に限定されず、例えば、ジイミドジカルボン酸系化合物およびこれを用いて得られるエポキシ樹脂硬化物の耐熱性、誘電特性および絶縁性のさらなる向上の観点から、芳香族環を含有する芳香族無水トリカルボン酸成分、特に無水トリメリット酸が好ましい。ジイミドジカルボン酸系化合物を構成し得る無水トリカルボン酸成分は1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
 ジイミドジカルボン酸系化合物を構成し得るジアミン成分としては、特に限定されず、例えば、ジイミドジカルボン酸系化合物およびこれを用いて得られるエポキシ樹脂硬化物の耐熱性、誘電特性、絶縁性、および溶解性のさらなる向上の観点から、芳香族環を含有する芳香族ジアミン成分、特に、m-キシリレンジアミン、p-キシリレンジアミン、4,4’-ジアミノジフェニルエーテル、ダイマージアミンが好ましい。ジイミドジカルボン酸系化合物を構成し得るジアミン成分は1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
(ジイミドテトラカルボン酸系化合物)
 ジイミドテトラカルボン酸系化合物は、1分子中、2つのイミド基および4つのカルボキシル基を有する化合物である。原料化合物として、テトラカルボン酸二無水物成分とモノアミノジカルボン酸成分とを用い、官能基同士の反応を行うことにより、アミド酸系化合物を製造し、イミド化反応を進めることによりジイミドテトラカルボン酸系化合物を製造することができる。ここで官能基同士の反応は、溶液中でも良いし、固相状態で反応をおこなってもよく、製造方法は特に限定されない。
 テトラカルボン酸二無水物成分とモノアミノジカルボン酸成分とを用いたジイミドテトラカルボン酸系化合物は、1分子のテトラカルボン酸二無水物成分に対して、2分子のモノアミノジカルボン酸成分が反応し、2つのイミド基が形成されてなる化合物である。
 テトラカルボン酸二無水物成分とモノアミノジカルボン酸成分とを用いたジイミドテトラカルボン酸系化合物の製造に際し、モノアミノジカルボン酸成分は、テトラカルボン酸二無水物成分に対して通常は、約2倍モル量、例えば1.5~10.0倍モル量、好ましくは1.8~2.2倍モル量、より好ましくは1.9~2.1倍モル量、さらに好ましくは1.95~2.05倍モル量で使用される。
 ジイミドテトラカルボン酸系化合物を構成し得るテトラカルボン酸二無水物成分としては、特に限定されず、例えば、ジイミドテトラカルボン酸系化合物およびこれを用いて得られるエポキシ樹脂硬化物の耐熱性、誘電特性、絶縁性および溶解性ならびに汎用性のさらなる向上の観点から、芳香族環を含有する芳香族テトラカルボン酸二無水物成分および/または芳香族環も脂肪族環も含有しない脂肪族テトラカルボン酸二無水物成分、特に3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、1,2,3,4-ブタンテトラカルボン酸二無水物が好ましい。ジイミドテトラカルボン酸系化合物を構成し得るテトラカルボン酸二無水物成分は1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
 ジイミドテトラカルボン酸系化合物を構成し得るモノアミノジカルボン酸成分としては、特に限定されず、例えば、ジイミドテトラカルボン酸系化合物およびこれを用いて得られるエポキシ樹脂硬化物の耐熱性、誘電特性、絶縁性および溶解性のさらなる向上の観点から、芳香族環を含有する芳香族モノアミノジカルボン酸成分、特に2-アミノテレフタル酸、2-アミノイソフタル酸、4-アミノイソフタル酸、5-アミノイソフタル酸、3-アミノフタル酸、4-アミノフタル酸が好ましい。ジイミドテトラカルボン酸系化合物を構成し得るモノアミノジカルボン酸成分は1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
(モノイミドトリカルボン酸系化合物)
 モノイミドトリカルボン酸系化合物は、1分子中、1つのイミド基および3つのカルボキシル基を有する化合物である。原料化合物として、無水トリカルボン酸成分とモノアミノジカルボン酸成分とを用い、官能基同士の反応を行うことにより、アミド酸系化合物を製造し、イミド化反応を進めることによりモノイミドトリカルボン酸系化合物を製造することができる。ここで官能基同士の反応は、溶液中でも良いし、固相状態で反応をおこなってもよく、製造方法は特に限定されない。
 無水トリカルボン酸成分とモノアミノジカルボン酸成分とを用いたモノイミドトリカルボン酸系化合物は、1分子の無水トリカルボン酸成分に対して、1分子のモノアミノジカルボン酸成分が反応し、1つのイミド基が形成されてなる化合物である。
 無水トリカルボン酸成分とモノアミノジカルボン酸成分とを用いたモノイミドトリカルボン酸系化合物の製造に際し、モノアミノジカルボン酸成分は、無水トリカルボン酸成分に対して通常は、約1倍モル量、例えば0.5~5.0倍モル量、好ましくは0.8~1.2倍モル量、より好ましくは0.9~1.1倍モル量、さらに好ましくは0.95~1.05倍モル量で使用される。
 モノイミドトリカルボン酸系化合物を構成し得る無水トリカルボン酸成分としては、特に限定されず、例えば、モノイミドトリカルボン酸系化合物およびこれを用いて得られるエポキシ樹脂硬化物の耐熱性、誘電特性および絶縁性のさらなる向上の観点から、芳香族環を含有する芳香族無水トリカルボン酸成分、特に無水トリメリット酸が好ましい。モノイミドトリカルボン酸系化合物を構成し得る無水トリカルボン酸成分は1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
 モノイミドトリカルボン酸系化合物を構成し得るモノアミノジカルボン酸成分としては、特に限定されず、例えば、モノイミドトリカルボン酸系化合物およびこれを用いて得られるエポキシ樹脂硬化物の耐熱性、誘電特性および絶縁性のさらなる向上の観点から、芳香族環を含有する芳香族モノアミノジカルボン酸成分、特に2-アミノテレフタル酸、2-アミノイソフタル酸、4-アミノイソフタル酸、5-アミノイソフタル酸、3-アミノフタル酸、4-アミノフタル酸が好ましい。モノイミドトリカルボン酸系化合物を構成し得るモノアミノジカルボン酸成分は1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
[イミド基含有硬化剤の製造方法]
 イミド基含有硬化剤は、溶媒中または無溶媒下で製造することができるが、製造方法は特に限定されない。
 溶媒中で製造する方法としては、例えば、N-メチル2-ピロリドンなどの非プロトン性溶媒に、所定の原料(例えば、無水トリカルボン酸成分、ジアミン成分、テトラカルボン酸二無水物成分、モノアミノジカルボン酸成分)を入れて80℃で攪拌した後、イミド化して得る方法がある。
 イミド化の方法としては、特に限定されず、例えば窒素雰囲気下で250℃~300℃に加熱することによって行われる加熱イミド化法、カルボン酸無水物と3級アミンの混合物などの脱水環化試薬で処理することにより行われる化学的イミド化法であってもよい。
 無溶媒下で製造する方法としては、例えば、メカノケミカル効果を利用した方法が挙げられる。メカノケミカル効果を利用した方法とは、反応に用いる原料化合物を粉砕する際に生じる機械的エネルギーを利用することによりメカノケミカル効果を発現させることで有機化合物を得る方法である。
 メカノケミカル効果とは、反応環境下において固体状態にある原料化合物に機械的エネルギー(圧縮力、せん断力、衝撃力、摩砕力等)を付与することにより、当該原料化合物を粉砕し、形成される粉砕界面を活性化させる効果(または現象)のことである。これにより、官能基同士の反応が起こる。官能基同士の反応は通常、2つ以上の原料化合物分子間で起こる。例えば、官能基同士の反応は化学構造の異なる2つの原料化合物分子間で起こってもよいし、または化学構造の同じ2つの原料化合物分子間で起こってもよい。官能基同士の反応は限定的な1組の2つの原料化合物分子間のみで起こるわけではなく、通常は他の組の2つの原料化合物分子間でも起こる。官能基同士の反応により生成した化合物分子と、原料化合物分子との間で、新たに官能基同士の反応が起こってもよい。官能基同士の反応は通常、化学反応であり、これにより、2つの原料化合物分子間で、各原料化合物分子が有する官能基により、結合基(特に共有結合)が形成されて、別の1つの化合物分子が生成する。
 反応環境とは反応のために原料化合物が置かれる環境、すなわち機械的エネルギーが付与される環境という意味であり、例えば、装置内の環境であってもよい。反応環境下において固体状態にあるとは、機械的エネルギーが付与される環境下(例えば、装置内の温度および圧力下)において固体状態にあるという意味である。反応環境下において固体状態にある原料化合物は通常、常温(25℃)および常圧(101.325kPa)下で固体状態であればよい。反応環境下において固体状態にある原料化合物は、機械的エネルギーの付与の開始時において、固体状態にあればよい。本発明は、反応環境下において固体状態にある原料化合物が、機械的エネルギーの付与の継続に伴う温度および/または圧力等の上昇により、反応中(または処理中)に液体状態(例えば、溶融状態)に変化することを妨げるものではないが、反応率の向上の観点から、反応中(または処理中)、継続的に固体状態にあることが好ましい。
 メカノケミカル効果の詳細は明らかではないが、以下の原理に従うものと考えられる。1種以上の固体状態の原料化合物に機械的エネルギーを付与して粉砕が起こると、当該機械的エネルギーの吸収により粉砕界面が活性化される。このような粉砕界面の表面活性エネルギーにより、2つの原料化合物分子間で化学反応が起こるものと考えられる。粉砕とは、原料化合物粒子への機械的エネルギーの付与により、当該粒子が当該機械的エネルギーを吸収して、当該粒子に亀裂が生じ、表面が更新されることをいう。表面が更新されるとは、新たな表面として粉砕界面が形成されることである。メカノケミカル効果において、表面の更新により形成される新たな表面の状態は、粉砕による粉砕界面の活性化が起こる限り、特に限定されず、乾燥状態にあってもよいし、または湿潤状態にあってもよい。表面の更新による新たな表面の湿潤状態は、固体状態の原料化合物とは別の液体状態にある原料化合物に起因する。
 機械的エネルギーは、反応環境下において固体状態にある1種以上の原料化合物を含む原料混合物に対して付与される。原料混合物の状態は、機械的エネルギーの付与により、固体状態の原料化合物の粉砕が起こる限り、特に限定されない。例えば、原料混合物に含まれる全ての原料化合物が固体状態にあることに起因して、原料混合物は乾燥状態にあってもよい。また例えば、原料混合物に含まれる少なくとも1種の原料化合物が固体状態であり、かつ残りの原料化合物が液体状態であることに起因して、原料混合物は湿潤状態であってもよい。具体的には、例えば、原料混合物が1種のみの原料化合物を含む場合、当該1種の原料化合物は固体状態である。また例えば、原料混合物が2種の原料化合物を含む場合、当該2種の原料化合物はともに固体状態であってもよいし、または一方の原料化合物が固体状態にあり、かつ他方の原料化合物が液体状態にあってもよい。
 メカノケミカル効果を利用した方法において、官能基は、分子構造の中で反応性の原因となり得る1価の基(原子団)のことであり、炭素間二重結合、炭素間三重結合等の不飽和結合基(例えばラジカル重合性基)を除く概念で用いるものとする。官能基は、炭素原子およびヘテロ原子を含有する基である。ヘテロ原子は、酸素原子、窒素原子および硫黄原子からなる群、特に酸素原子および窒素原子からなる群から選択される1つ以上の原子である。官能基は水素原子をさらに含有してもよい。反応に供される官能基は通常、2つの官能基であり、一方の官能基を有する原料化合物分子と、他方の官能基を有する原料化合物分子とは、構造が相互に異なっていてもよいし、または同一であってもよい。反応により、2つの原料化合物分子の結合(特に共有結合)が形成され、それらの1分子化が達成される。官能基同士の反応により、水、二酸化炭素、および/またはアルコール等の小分子が副生してもよいし、または副生しなくてもよい。
 官能基同士の反応は、化学反応し得るあらゆる官能基(特に1価の官能基)同士の反応であってもよく、例えば、カルボキシル基およびそのハロゲン化物(基)、酸無水物基、アミノ基、イソシアネート基、ならびにヒドロキシル基等からなる群から選択される2つの官能基の反応である。当該2つの官能基は、化学反応が起こる限り、特に限定されず、例えば、化学構造の異なる2つの官能基であってもよいし、または化学構造の同じ2つの官能基であってもよい。
 官能基同士の反応として、例えば、縮合反応、付加反応またはこれらの複合反応等が挙げられる。
 縮合反応とは、原料化合物分子間で、水、二酸化炭素、アルコール等の小分子の脱離を伴いながら、原料化合物分子間の結合または連結が達成される反応のことである。縮合反応として、例えば、アミド基が生成する反応(アミド化反応)、イミド基が生成する反応(イミド化反応)、またはエステル基が生成する反応(エステル化反応)等が挙げられる。
 付加反応は、官能基間での付加反応であり、原料化合物分子間で、小分子の脱離を伴うことなく、原料化合物分子間の結合または連結が達成される反応のことである。付加反応として、例えば、ウレア基が生成する反応、ウレタン基が生成する反応、および環状構造が開環する反応(すなわち、開環反応)等が挙げられる。開環反応は、環状構造を有する原料化合物(例えば、酸無水物基含有化合物、環状アミド化合物、環状エステル化合物、エポキシ化合物)において、環状構造の一部が開裂し、その開裂した部位と他の原料化合物の官能基との結合または連結が達成される反応のことである。開環反応により、例えば、アミド基、カルボキシル基、エステル基、エーテル基が生成する。特に、原料化合物としての酸無水物基含有化合物における酸無水物基の開環反応においては、当該酸無水物基が開環されて、別の原料化合物分子(アミノ基またはヒドロキシル基)との結合または連結が達成される。その結果として、例えば、アミド基またはエステル基と、カルボキシル基とが同時に生成する。
 官能基同士の反応は、より詳しくは、例えば、以下の反応からなる群から選択される1種以上の反応であってもよい:
(A)酸無水物基と、アミノ基との反応により、(a1)アミド基およびカルボキシル基、(a2)イミド基、(a3)イソイミド基または(a4)これらの混合基が生成する反応;
(B)酸無水物基と、イソシアネート基との反応によりイミド基が生成する反応;
(C)カルボキシル基またはそのハロゲン化物(基)と、アミノ基またはイソシアネート基との反応により、アミド基が生成する反応;
(D)カルボキシル基またはそのハロゲン化物(基)と、ヒドロキシル基との反応により、エステル基が生成する反応;
(E)イソシアネート基と、アミノ基との反応により、ウレア基が生成する反応;
(F)イソシアネート基と、ヒドロキシル基との反応により、ウレタン基が生成する反応;および
(G)酸無水物基と、ヒドロキシル基との反応により、エステル基およびカルボキシル基が生成する反応。
 上記したイミド基含有硬化剤をそれぞれ上記した原料化合物から製造する場合において、官能基同士の反応は上記(A)の反応に対応する。無溶媒下で製造する方法においては、メカノケミカル効果を利用した方法を実施した後、溶媒中で製造する方法におけるイミド化の方法と同様の方法により、イミド化をおこなってもよい。
[エポキシ樹脂]
 本発明で用いられるエポキシ樹脂は1分子中、2個以上のエポキシ基を有する有機化合物である限り特に限定されない。エポキシ樹脂の具体例としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、脂環式エポキシ樹脂、アクリル酸変性エポキシ樹脂、多官能エポキシ樹脂、臭素化エポキシ樹脂、リン変性エポキシ樹脂が挙げられる。エポキシ樹脂は単独でもよいし、2種類以上を併用してもよい。エポキシ基はグリシジル基であってもよい。エポキシ樹脂は市販品として入手可能である。
 エポキシ樹脂のエポキシ当量は通常、100~3000であり、好ましくは150~300である。
[添加剤]
 本発明のエポキシ樹脂硬化物は、硬化促進剤、熱硬化性樹脂、無機充填材、酸化防止剤、難燃剤等の添加剤をさらに含んでもよい。
 硬化促進剤は特に限定されないが、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール当のイミダゾール類;4-ジメチルアミノピリジン、ベンジルジメチルアミン、2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノール等の3級アミン類;トリフェニルホスフィン、トリブチルホスフィン等の有機ホスフィン類が挙げられる。硬化促進剤は単独で用いてもよいし、2種類以上を併用してもよい。
 硬化促進剤の配合量は特に限定されず、例えば、後述のエポキシ樹脂溶液全量に対して、0.01~2質量%であり、エポキシ樹脂硬化物の耐熱性、誘電特性および絶縁性のさらなる向上の観点から、好ましくは0.01~1質量%であり、より好ましくは0.05~0.5質量%である。
 熱硬化性樹脂は特に限定されず、例えば、シアネート樹脂、イソシアネート樹脂、マレイミド樹脂、ポリイミド樹脂、ウレタン樹脂、フェノール樹脂等が挙げられる。熱硬化性樹脂は単独で用いてもよいし、2種類以上を併用してもよい。
 無機充填材としては、シリカ、ガラス、アルミナ、タルク、マイカ、硫酸バリウム、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、酸化チタン、窒化珪素、窒化ホウ素等が挙げられる。無機充填材は単独で用いてもよいし、2種類以上を併用してもよい。また、無機充填材はエポキシシランカップリング剤、アミノシランカップリング剤等の表面処理剤で表面処理されたものが好ましい。無機充填材は単独で用いてもよいし、2種類以上を併用してもよい。
 酸化防止剤として、例えば、ヒンダードフェノール系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤が挙げられる。酸化防止剤は単独で用いてもよいし、2種類以上を併用してもよい。
 難燃剤は特に限定されず、環境への影響の観点から非ハロゲン系難燃剤が好ましい。難燃剤としてはリン系難燃剤、窒素系難燃剤、シリコーン系難燃剤等が挙げられる。難燃剤は単独で用いてもよいし、2種類以上を併用してもよい。
<電気絶縁性エポキシ樹脂硬化物の製造方法>
 本発明の電気絶縁性エポキシ樹脂硬化物は、イミド基含有硬化剤およびエポキシ樹脂を含む、後で詳述のエポキシ樹脂溶液を加熱することにより製造することができる。
 例えば、エポキシ樹脂溶液を基材に塗工し、加熱により乾燥および硬化させることにより、本発明の電気絶縁性エポキシ樹脂硬化物を製造することができる。硬化後、硬化物を基材から剥離して用いてもよい。エポキシ樹脂溶液の塗工方法は、特に限定されず、例えば、キャスティング法、ディッピング法等が挙げられる。エポキシ樹脂溶液を基材に塗布し、乾燥、硬化した後、基材から剥離することにより、エポキシ樹脂硬化物を、シート、フィルム等の形態で得ることができる。
 また例えば、エポキシ樹脂溶液を金型に流し込みつつ成形し、乾燥および硬化させることにより、本発明の電気絶縁性エポキシ樹脂硬化物を製造することができる。エポキシ樹脂溶液の成形方法は、特に限定されず、例えば、トランスファ成形法、インジェクション成形法等が挙げられる。
 本発明のエポキシ樹脂溶液を用いて得られた被膜、フィルムおよびその積層体、そのモールド品(すなわち成形品)を加熱することにより、イミド基含有硬化剤とエポキシ樹脂とを反応させ、硬化を完全に達成することができる。加熱温度(硬化温度)は通常、80~350℃であり、好ましくは130~300℃である。加熱時間(硬化時間)は通常、1分~20時間であり、好ましくは5分~10時間である。
 本発明のエポキシ樹脂硬化物は、あらゆる寸法を有していてもよい。本発明のエポキシ樹脂硬化物が、例えば、被膜、板、フィルム、シート等の形態を有する場合、当該硬化物の厚みは通常、1μm~100mmであってもよい。
[エポキシ樹脂溶液]
 エポキシ樹脂溶液は、少なくともイミド基含有硬化剤およびエポキシ樹脂を有機溶媒に混合してなる。好ましくは、エポキシ樹脂溶液においては、イミド基含有硬化剤およびエポキシ樹脂は有機溶媒中に溶解されており、少なくともイミド基含有硬化剤、エポキシ樹脂および有機溶媒は分子レベルで均一に混合されている。溶解とは、溶質が溶媒中、分子レベルで均一に混合されることをいう。溶液とは、溶質が溶媒中、分子レベルで均一に混合されている状態のことであり、例えば、常温(25℃)および常圧(101.325kPa)下において、溶質が溶媒に、肉眼にて透明に見える程度に溶解されている混合液体のことである。エポキシ樹脂溶液は、前記した添加剤をさらに含んでもよい。
 エポキシ樹脂溶液に用いる有機溶媒は、硬化剤およびエポキシ樹脂が均一に溶解できれば特に限定されず、環境への影響の観点から非ハロゲン化溶媒が好ましい。このような非ハロゲン化溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド化合物が挙げられる。これらの非ハロゲン化溶媒はいずれも汎用溶媒として有用である。前記有機溶媒は単独で用いてもよいし、2種以上を併用してもよい。
 エポキシ樹脂溶液の製造方法は、特に限定されず、例えば、個別溶解法、一括溶解法等であってもよい。短時間で均一な樹脂溶液を得る観点から個別溶解法が好ましい。個別溶解法は、予めイミド基含有硬化剤とエポキシ樹脂をそれぞれ有機溶媒に混合および溶解した後、それらを混合する方法である。一括溶解法とは、イミド基含有硬化剤およびエポキシ樹脂を同時に有機溶媒に混合し、溶解する方法である。個別溶解法および一括溶解法において、混合温度は特に限定されず、例えば80~180℃、特に100~160℃であってよい。上記混合温度を達成するための加熱は、例えば、有機溶媒の還流加熱であってもよい。
 エポキシ樹脂溶液において、イミド基含有硬化剤の配合量は、得られるエポキシ樹脂硬化物の耐熱性、誘電特性および絶縁性のさらなる向上の観点から、イミド基含有硬化剤の官能基当量がエポキシ樹脂のエポキシ当量に対して、好ましくは0.5~1.5当量比、より好ましくは0.7~1.3当量比となるような量であることが好ましい。イミド基含有硬化剤の官能基当量は、ヒドロキシ基またはカルボキシル基の含有量から算出される当量に相当する。
 エポキシ樹脂溶液において、イミド基含有硬化剤およびエポキシ樹脂の合計配合量は特に限定されず、得られるエポキシ樹脂硬化物の耐熱性、誘電特性および絶縁性のさらなる向上の観点から、エポキシ樹脂溶液全量に対して、好ましくは30~90質量%であり、より好ましくは40~80質量%であり、さらに好ましくは50~70質量%である。
 エポキシ樹脂溶液は通常、10~70Pa・s、特に30~70Pa・s、好ましくは40~60Pa・sの粘度を有しており、いわゆるゲル形態を有するものではない。ゲルは粘度を有するものではなく、一般的に流動性を有さない固形物の状態のことである。エポキシ樹脂溶液は、詳しくは、さらなる溶媒と混合されると、相互に容易に相溶し、全体として分子レベルで均一に混合される。しかし、ゲルは、さらなる溶媒と混合されても、相互に相溶せずに塊状で残留し、全体として分子レベルで均一には混合されない。相溶の判定の際の混合は通常、溶液またはゲルを100gと、さらなる溶媒100gとの、常温(25℃)、常圧(101.325kPa)および100rpmの撹拌条件下での混合であってもよい。このとき「さらなる溶媒」は、溶液またはゲルに含まれる溶媒と相溶する溶媒であり、例えば、溶液またはゲルに含まれる溶媒と同じ構造式で表される溶媒である。エポキシ樹脂溶液の粘度は、ブルックフィールドデジタル粘度計により測定された30℃での粘度である。
 エポキシ樹脂溶液においては、エポキシ樹脂が無意に反応し難いために、上記のように比較的低い粘度を有し得る。このため、エポキシ樹脂溶液を用いて、十分な作業性で硬化物を製造することができる。詳しくは、エポキシ樹脂溶液は通常、10%以下の反応率を有している。反応率は、エポキシ樹脂が有するグリシジル基の全数に対する、エポキシ樹脂溶液中で反応したグリシジル基の数の割合である。
<電気絶縁性エポキシ樹脂硬化物の用途>
 本発明のエポキシ樹脂硬化物は、耐熱性、誘電特性および電気絶縁性のうちの少なくとも1つの特性(好ましくは少なくとも電気絶縁性を含む特性)が要求されるあらゆる用途において有用である。詳しくは、本発明のエポキシ樹脂硬化物は、あらゆる電気絶縁性材料として好ましく使用することができる。そのような電気絶縁性材料として、例えば、封止材(例えば、パワー半導体モジュール用封止材)、碍子(特に碍子被覆材)(例えば、送電線用碍子(特に送電線用碍子被覆材))、電線被覆材(例えば、電気自動車用電線被覆材)、プリント配線板用絶縁材料等が挙げられる。
 電気絶縁性エポキシ樹脂硬化物の封止材としての使用:
 本発明の電気絶縁性エポキシ樹脂硬化物を封止材として使用する場合、例えば、パワー半導体モジュールを作製した後、モジュールがセットされた金型内にエポキシ樹脂溶液を充填し、乾燥および硬化することで、本発明のエポキシ樹脂硬化物をパワー半導体モジュール用封止材として使用することができる。
 電気絶縁性エポキシ樹脂硬化物の碍子被覆材としての使用:
 本発明の電気絶縁性エポキシ樹脂硬化物を碍子被覆材として使用する場合、例えば、エポキシ樹脂溶液を用いて、碍子のコアの外周部(特に外周表面)を被覆して層を形成し、乾燥および硬化させることにより、本発明のエポキシ樹脂硬化物を碍子被覆材として使用することができる。コアとしては、通常、円筒状又は円柱状等の様々な形状に成形された、ガラス繊維強化エポキシ樹脂、ガラス繊維強化フェノール樹脂等のガラス繊維強化プラスチックが挙げられる。コアの外周部に形成される被覆材としてのエポキシ樹脂硬化物の厚さは、得られるポリマー碍子のサイズや形状(例えば、カサ部の有無や、その形状、サイズ、間隔)に応じて変更すればよいが、耐熱性、誘電特性および絶縁性等のさらなる向上の観点から、最も厚さの薄い部分が、1mm以上であることが好ましく、2mm以上であることがより好ましい。本発明の電気絶縁性エポキシ樹脂硬化物を碍子被覆材として使用する場合において、被覆材の厚みは通常、1~100mmであり、好ましくは2~50mmである。本発明のエポキシ樹脂硬化物を碍子被覆材として使用する場合、本発明のエポキシ樹脂硬化物は、絶縁性(特に電荷の局所的蓄積による絶縁破壊をより十分に防止する絶縁性)の観点から、送電線用の碍子被覆材として特に有用である。
 電気絶縁性エポキシ樹脂硬化物の電線被覆材としての使用:
 本発明の電気絶縁性エポキシ樹脂硬化物を電線被覆材として使用する場合、エポキシ樹溶液を、導体の表面に塗布し、焼付け(すなわち乾燥および硬化)することにより、本発明のエポキシ樹脂硬化物を電線被覆材として使用することができる。導体としては、例えば、銅、銅合金が挙げられる。塗布方法および焼付け方法は、従来の電線被覆の形成方法における塗布方法および焼付け方法と同様な方法、条件により行うことができる。塗布および焼付けは、2回以上繰り返してもよい。エポキシ樹脂溶液は、他の樹脂と混合して用いてもよい。電線被覆材の厚みは、導体を保護する観点から、1~100μmとすることが好ましく、10~50μmとすることがより好ましい。本発明のエポキシ樹脂硬化物を電線被覆材として使用する場合、本発明のエポキシ樹脂硬化物は、絶縁性(特に電荷の局所的蓄積による絶縁破壊をより十分に防止する絶縁性)の観点から、電気自動車用の電線被覆材として特に有用である。
 電気絶縁性エポキシ樹脂硬化物のプリント配線板用絶縁材料としての使用:
 プリント配線板は通常、電気絶縁性エポキシ樹脂硬化物を含み、さらにガラスクロスを含んでもよい。本発明の電気絶縁性エポキシ樹脂硬化物をプリント配線板用絶縁材料として使用する場合、エポキシ樹脂溶液をガラスクロスに含浸または塗布させた後、乾燥および硬化することで、本発明のエポキシ樹脂硬化物をプリント配線板用絶縁材料として使用することができる。プリント配線基板であってもよい。プリント配線板は、その表面上および/または内部に、配線(導体)が配置されてもよいし、かつ/または電子部品が取り付られてもよい。プリント配線板の厚みは特に限定されない。
 本発明のエポキシ樹脂硬化物は、その他の用途の電気電子材料、例えば、ブッシング変圧器用のモールド材、固体絶縁スイッチギア用のモールド材、原子力発電所用電気ペネトレーション、ビルドアップ積層板等の電気電子材料としても好適に用いることができる。
 以下、実施例に基づき本発明を具体的に説明するが、本発明はこれらによって限定されるものではない。なお、評価および測定は以下の方法により行った。
A.評価および測定
[イミド基含有硬化剤の作製方法と評価方法]
(1)イミド基含有硬化剤の作製方法
 酸成分とアミン成分を表に記載の比率で混合した試料150gを、ワンダークラッシャー(大阪ケミカル株式会社)WC-3Cにより、およそ9000rpmの回転速度で1分間混合粉砕することを3回繰り返すことで、メカノケミカル処理を行った。
 処理した試料をガラス容器に移し、イナートオーブン(ヤマト科学株式会社)DN411Iにて、窒素雰囲気下で焼成温度300℃、焼成時間2時間のイミド化反応を行った。
 なお、イミド基含有硬化剤の同定は、後述のように、分子量が目的とする構造の分子量と同じであること、および赤外分光法においてイミド基に由来する吸収があることにより行った。
(2)イミド基含有硬化剤の分子量
 高速液体クロマトグラフ質量分析計(LC/MS)により、以下の条件で測定し、分子量を求めた。
 試料:イミド基含有硬化剤/DMSO溶液(200μg/mL)
 装置:ブルカー・ダルトニクス製microTOF2-kp
 カラム:Cadenza CD-C18 3μm 2mm×150mm
 移動相:(移動相A)0.1% ギ酸水溶液、(移動相B)メタノール
 グラジエント(B Conc.):0min(50%)-5,7min(60%)-14.2min(60%)-17min(100%)-21.6min(100%)-27.2min(50%)-34min(50%)
 イオン化法:ESI
 検出条件:Negativeモード
(3)反応の確認
 赤外分光法(IR)により、以下の条件で測定し、同定を行った。
 赤外分光法(IR)
 装置:Perkin Elmer製 System 2000 赤外分光装置
 方法:KBr法
 積算回数:64スキャン(分解能4cm-1
 イミド基に由来する1778cm-1付近および1714cm-1付近の吸収の有無を確認した。
 ◎:(反応が進行した)ある場合;
 ×:(反応が進行していない)ない場合。
[エポキシ樹脂硬化物の評価方法]
(1)反応性
 実施例および比較例の各々で得られたエポキシ樹脂硬化物について下記の条件により透過赤外吸収スペクトル(IR)測定を行い、グリシジル基の吸光度比を求めた。
 グリシジル基に由来する吸収は、通常、900~950cm-1の波数領域に検出される。これらの波数に検出される吸収ピークの両サイドの基底部を直線的に結んだ線をベースラインとし、ピークの頂点からベースラインに対し垂直に線を引いた時の交点からピークの頂点までの長さを吸光度とし、算出した。
 赤外分光法(IR)
 装置:Perkin Elmer製 System 2000 赤外分光装置
 方法:KBr法
 積算回数:64スキャン(分解能4cm-1
 次に、グリシジル基の反応率の算出法の詳細について述べる
 まず、実施例および比較例の各々で得られたエポキシ樹脂溶液をKBr粉末と混合することによりIR測定用試料を作製し測定を行った。得られたスペクトル中で最も高い吸光度を示すピークの強度が吸光度0.8~1.0の範囲に入ることを確認し、グリシジル基の吸光度αを求めた。次に、この試料をオーブンにて窒素気流下300℃の温度で2時間熱処理して、硬化反応を完全に進行させた。この、硬化させた試料について同じ方法によりIR測定を行い、グリシジル基に起因する波数の吸光度α´を求めた。このとき試料の反応率を硬化反応前のグリシジル基の反応率を0%として、次式より求めた。
 反応率(%)={1-(α´/α)}×100
 ◎:90%以上100%以下(最良);
 ○:80%以上90%未満(良);
 △:70%以上80%未満(実用上問題なし);
 ×:70%未満(実用上問題あり)。
(2)ガラス転移温度(Tg)(耐熱性)
 示差走査熱量測定装置(DSC)により、以下の条件で測定し、同定を行った。
 装置:Perkin Elmer製 DSC 7 
 昇温速度:20℃/min
 25℃から300℃まで昇温し、降温後、再度25℃から300℃まで昇温し、得られた昇温曲線中の転移温度に由来する不連続変化の開始温度をガラス転移温度(Tg)とした。
・エポキシ樹脂として「jER828:三菱化学社製、ビスフェノールA型エポキシ樹脂」を用いた場合
 ◎:190℃≦Tg(最良);
 ○:170℃≦Tg<190℃(良);
 △:140℃≦Tg<170℃(実用上問題なし);
 ×:Tg<140℃(実用上問題あり)。
・エポキシ樹脂として「EOCN-1020-55:日本化薬社製、o-クレゾールノボラック型エポキシ樹脂」を用いた場合
 ◎:200℃≦Tg(最良);
 ○:180℃≦Tg<200℃(良);
 △:150℃≦Tg<180℃(実用上問題なし);
 ×:Tg<150℃(実用上問題あり)。
(3)絶縁性(電荷密度分布の測定)
 実施例および比較例の各々で得られたエポキシ樹脂硬化物について高温測定用パルス静電応力(PEA)測定システムにより、以下の条件で電荷密度分布を測定し、得られるサンプル中の最大電界の評価を行った。エポキシ樹脂硬化物サンプルはシリコンオイルに浸された状態で高電圧印加ユニットに設置後、140℃になるまで加熱し、140℃に到達した後、140℃一定に制御して、30分後に直流電圧を印加した。陽極(アノード)には試料の音響特性インピーダンスを考慮して、市販の導電性PEEK(ポリエーテルエーテルケトン)のシートを用い、陰極(カソード)はアルミニウム板を用いた。エポキシ樹脂硬化物(試料)はフィルム形状を有し、陽極と陰極との間で挟持されている。直流電圧を印加するに際しては、試料の厚さを考慮して、平均電界が20kV/mmに相当する直流電圧を10分間印加し、その後5分間短絡して、その電圧印加中および短絡中にパルス電圧(5ns,200V)を1ms間隔(1kHz)で印加し、得られた波形を1000回加算平均して1波形を得た。なお、測定間隔は10秒である。上記の20kV/mmの印加中および短絡中の測定が終了した後には、平均印加電界が40kV/mmとなるよう、印加する直流電圧を増加させ、上記と同様の一連の測定を行ない、これを順次、60,80,100および120kV/mmに相当する平均印加電界下で測定を繰り返した。このように経時的に測定された電荷密度分布を図1および図2に示す。図1は、実施例A-1、B-1、B-2およびC-1のエポキシ樹脂硬化物(特にビスフェノールA型エポキシ樹脂を用いたエポキシ樹脂硬化物)についての電荷密度分布の経時的変化を示すチャートである。図2は、比較例1~3のエポキシ樹脂硬化物(特にビスフェノールA型エポキシ樹脂を用いたエポキシ樹脂硬化物)についての電荷密度分布の経時的変化を示すチャートである。最大電界(特に最大電界/印加電界の比)が小さいほど、絶縁性に優れていることを示す。
 装置:高電圧印加ユニット
 試料寸法:長さ50mm×幅50mm×厚み100μm以上150μm以下
 印加電界:20、40、60、80、100、120kV/mm
 測定温度:140℃
・エポキシ樹脂として「jER828:三菱化学社製、ビスフェノールA型エポキシ樹脂」を用いた場合
 ◎:印加電界に対するサンプル中の最大電界の比が最大で1.1以下であった(最良);
 ○:印加電界に対するサンプル中の最大電界の比が最大で1.1より大きく1.3以下であった(良);
 △:印加電界に対するサンプル中の最大電界の比が最大で1.3より大きく1.5以下であった(実用上問題なし);
 ×:印加電界に対するサンプル中の最大電界の比が最大で1.5より大きかった(実用上問題あり)。
・エポキシ樹脂として「EOCN-1020-55:日本化薬社製、o-クレゾールノボラック型エポキシ樹脂」を用いた場合
 ◎:印加電界に対するサンプル中の最大電界の比が最大で1.2以下であった(最良);
 ○:印加電界に対するサンプル中の最大電界の比が最大で1.2より大きく1.4以下であった(良);
 △:印加電界に対するサンプル中の最大電界の比が最大で1.4より大きく1.6以下であった(実用上問題なし);
 ×:印加電界に対するサンプル中の最大電界の比が最大で1.6より大きかった(実用上問題あり)。
(4)誘電特性(誘電率、誘電正接)
 インピーダンス・アナライザにより、以下の条件で測定し、評価を行った。
 インピーダンス・アナライザ
 装置:アジレント・テクノロジー株式会社製E4991A RFインピーダンス/マテリアル・アナライザ
 試料寸法:長さ20mm×幅20mm×厚み150μm
 周波数:1GHz
 測定温度:23℃
 試験環境:23℃±1℃、50%RH±5%RH
・エポキシ樹脂として「jER828:三菱化学社製、ビスフェノールA型エポキシ樹脂」を用いた場合
 ◎:誘電率≦2.6(最良);
 ○:2.6<誘電率≦3.0(良);
 △:3.0<誘電率≦3.3(実用上問題なし);
 ×:3.3<誘電率(実用上問題あり)。
 ◎:誘電正接≦0.0175(最良);
 ○:0.0175<誘電正接≦0.020(良);
 △:0.020<誘電正接≦0.030(実用上問題なし);
 ×:0.030<誘電正接(実用上問題あり)。
・エポキシ樹脂として「EOCN-1020-55:日本化薬社製、o-クレゾールノボラック型エポキシ樹脂」を用いた場合
 ◎:誘電率≦2.8(最良);
 ○:2.8<誘電率≦3.2(良);
 △:3.2<誘電率≦3.4(実用上問題なし);
 ×:3.4<誘電率(実用上問題あり)。
 ◎:誘電正接≦0.0195(最良);
 ○:0.0195<誘電正接≦0.030(良);
 △:0.030<誘電正接≦0.042(実用上問題なし);
 ×:0.042<誘電正接(実用上問題あり)。
(5)総合評価
 耐熱性、誘電特性および絶縁性の評価結果に基づいて、総合的に評価した。
 ◎:全ての評価結果が◎であった。
 ○:全ての評価結果うち、最も低い評価結果が○であった。
 △:全ての評価結果うち、最も低い評価結果が△であった。
 ×:全ての評価結果うち、最も低い評価結果が×であった。
[エポキシ樹脂溶液の評価方法]
(1)エポキシ樹脂溶液の粘度
 実施例および比較例の各々で得られたエポキシ樹脂溶液について、ブルックフィールドデジタル粘度計(東機産業TVB-15M)を用いて30℃での粘度(Pa・s)を測定した。
(2)エポキシ樹脂溶液に含まれるイミド基含有硬化剤の溶解性
 実施例および比較例の各々で得られたエポキシ樹脂溶液中の溶け残り成分(残存物)の有無を目視により観察した。
 ◎(溶解性有り):溶け残り無し;150℃での混合10分間以内に完全に溶解した。
 ○(溶解性有り):溶け残り無し;150℃での混合10分間超で完全に溶解した(溶解までに時間を要する)。
 ×(溶解性無し):溶け残り有り;得られたエポキシ樹脂溶液中に溶け残りがあった。
B.原料
(1)イミド基含有硬化剤
[ジイミドジカルボン酸の作製]
 合成例A-1
 前記した「イミド基含有硬化剤の作製方法」に基づいてジイミドジカルボン酸を作製した。詳しくは、以下の通りである。
 粉砕槽に、粒状の無水トリメリット酸521質量部と4,4’-ジアミノジフェニルエーテル479質量部を添加し、混合粉砕を行った。
 その後、前記混合物をガラス容器に移し、イナートオーブンにより、窒素雰囲気下で300℃、2時間のイミド化反応を行い、イミド基含有硬化剤を作製した。
[ジイミドテトラカルボン酸の作製]
 合成例B-1
 前記した「イミド基含有硬化剤の作製方法」に基づいてジイミドテトラカルボン酸を作製した。詳しくは、以下の通りである。
 粉砕槽に、粒状の3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物471質量部と2-アミノテレフタル酸529質量部を添加し、混合粉砕を行った。
 その後、前記混合物をガラス容器に移し、イナートオーブンにより、窒素雰囲気下で300℃、2時間のイミド化反応を行い、イミド基含有硬化剤を作製した。
 合成例B-2
 酸二無水物組成およびモノアミン組成を変更する以外は、合成例B-1と同様の操作をおこなって、イミド基含有硬化剤を得た。
[モノイミドトリカルボン酸の作製]
 合成例C-1
 前記した「イミド基含有硬化剤の作製方法」に基づいてモノイミドトリカルボン酸を作製した。詳しくは、以下の通りである。
 粉砕槽に、粒状の無水トリメリット酸515質量部と2-アミノテレフタル酸485質量部を添加し、混合粉砕を行った。
 その後、前記混合物をガラス容器に移し、イナートオーブンにより、窒素雰囲気下で300℃、2時間のイミド化反応を行い、イミド基含有硬化剤を作製した。
(2)エポキシ樹脂
・jER828:三菱化学社製、ビスフェノールA型エポキシ樹脂、エポキシ当量184~194g/eq
・EOCN-1020-55:日本化薬社製、o-クレゾールノボラック型エポキシ樹脂、エポキシ当量195g/eq
(3)イミド系硬化剤以外の硬化剤
・PHENOLITE TD-2131:DIC社製、ノボラック型フェノール樹脂、イミド基を含まない硬化剤;当該硬化剤は以下の構造式を有する。
Figure JPOXMLDOC01-appb-C000001
・HN-2200:日立化成社製、脂環式酸無水物、イミド基を含まない硬化剤;当該硬化剤は以下の構造式を有する。
Figure JPOXMLDOC01-appb-C000002
・jERcure113:三菱ケミカル社製、変性脂環式アミン、イミド基を含まない硬化剤。
 実施例A-1
 合成例A-1で得られたイミド基含有硬化剤とエポキシ樹脂(jER828)を1.0/1.1(当量比)の割合で混合した試料60質量部に対して、硬化促進剤(2-エチル-4-メチルイミダゾール、東京化成工業社製)0.2質量部と、ジメチルホルムアミド(DMF)39.8質量部とを室温(すなわち20℃)にて混合し、150℃で0.5時間の還流加熱を行い、エポキシ樹脂溶液を得た。
 本実施例で得られたエポキシ樹脂溶液は50Pa・sの粘度を有しており、十分に良好な作業性を有していた。
 得られたエポキシ樹脂溶液をアルミ基材に300μmの厚みで塗工し、作製した塗膜をイナートオーブンにて、窒素雰囲気下、180℃で2時間、続いて300℃で2時間乾燥して、脱溶媒および硬化反応を行った。得られたアルミ基材付き試料からアルミ基材を除去し、エポキシ樹脂硬化物を得た。エポキシ樹脂硬化物(エポキシ樹脂「jER828」を用いたエポキシ樹脂硬化物)の平均厚みは112μmであった。本明細書中、平均厚みは任意の10点での厚みの平均値のことである。
 なお、エポキシ樹脂として「jER828」の代わりに、「EOCN-1020-55」(日本化薬社製、o-クレゾールノボラック型エポキシ樹脂)を用いる以外、本実施例における上記した方法と同様の方法により、エポキシ樹脂溶液およびエポキシ樹脂硬化物を作製した。エポキシ樹脂溶液は50Pa・sの粘度を有しており、十分に良好な作業性を有していた。エポキシ樹脂硬化物(エポキシ樹脂「EOCN-1020-55」を用いたエポキシ樹脂硬化物)の平均厚みは103μmであった。
 実施例B-1、B-2およびC-1ならびに比較例1
 合成例B-1、B-2またはC-1で得られたイミド基含有硬化剤または硬化剤「PHENOLITE TD-2131」を用いる以外は実施例A-1と同様の操作をおこなって、エポキシ樹脂溶液およびエポキシ樹脂硬化物を作製した。なお、各実施例において使用されるイミド基含有硬化剤は、当該実施例番号と同じ番号の合成例で得られたものである。
 実施例B-1、B-2およびC-1ならびに比較例1で得られたエポキシ樹脂溶液に含まれるエポキシ樹脂におけるグリシジル基の反応率はいずれも10%以下であった。
 実施例B-1、B-2およびC-1ならびに比較例1で得られたエポキシ樹脂溶液の粘度はいずれも30~70Pa・sであり、十分に良好な作業性を有していた。
 エポキシ樹脂硬化物の平均厚みは以下の通りであった。
 エポキシ樹脂「jER828」を用いたエポキシ樹脂硬化物の平均厚み:
 116μm(実施例B-1)、115μm(実施例B-2)、122μm(実施例C-1)、112μm(比較例1)。
 エポキシ樹脂「EOCN-1020-55」を用いたエポキシ樹脂硬化物の平均厚み:
 120μm(実施例B-1)、104μm(実施例B-2)、114μm(実施例C-1)、106μm(比較例1)。
 比較例2
 脂環式酸無水物硬化剤HN-2200とエポキシ樹脂(jER828)、および硬化促進剤(2,4,6-トリスジメチルアミノメチルフェノール、三菱ケミカル社製)を100/80/1(重量比)の割合で室温(すなわち20℃)にて混合し、エポキシ樹脂溶液を得た。
 本比較例で得られたエポキシ樹脂溶液は50Pa・sの粘度を有しており、十分に良好な作業性を有していた。
 得られたエポキシ樹脂溶液をアルミ基材に300μmの厚みで塗工し、作製した塗膜をイナートオーブンにて、窒素雰囲気下、120℃で5時間、続いて150℃で15時間乾燥して、硬化反応を行った。得られたアルミ基材付き試料からアルミ基材を除去し、エポキシ樹脂硬化物を得た。エポキシ樹脂硬化物(エポキシ樹脂「jER828」を用いたエポキシ樹脂硬化物)の平均厚みは133μmであった。
 なお、エポキシ樹脂として「jER828」の代わりに、「EOCN-1020-55」(日本化薬社製、o-クレゾールノボラック型エポキシ樹脂)を用いる以外、本比較例における上記した方法と同様の方法により、エポキシ樹脂溶液およびエポキシ樹脂硬化物を作製した。エポキシ樹脂溶液は40Pa・sの粘度を有しており、十分に良好な作業性を有していた。エポキシ樹脂硬化物(エポキシ樹脂「EOCN-1020-55」を用いたエポキシ樹脂硬化物)の平均厚みは140μmであった。
 比較例3
 変性脂環式アミン硬化剤jERcure113とエポキシ樹脂(jER828)を100/10(重量比)の割合で室温(すなわち20℃)にて混合し、エポキシ樹脂溶液を得た。
 本比較例で得られたエポキシ樹脂溶液は50Pa・sの粘度を有しており、十分に良好な作業性を有していた。
 得られたエポキシ樹脂溶液をアルミ基材に300μmの厚みで塗工し、作製した塗膜をイナートオーブンにて、窒素雰囲気下、80℃で1時間、続いて150℃で3時間乾燥して、硬化反応を行った。得られたアルミ基材付き試料からアルミ基材を除去し、エポキシ樹脂硬化物を得た。エポキシ樹脂硬化物(エポキシ樹脂「jER828」を用いたエポキシ樹脂硬化物)の平均厚みは139μmであった。
 なお、エポキシ樹脂として「jER828」の代わりに、「EOCN-1020-55」(日本化薬社製、o-クレゾールノボラック型エポキシ樹脂)を用いる以外、本比較例における上記した方法と同様の方法により、エポキシ樹脂溶液およびエポキシ樹脂硬化物を作製した。エポキシ樹脂溶液は40Pa・sの粘度を有しており、十分に良好な作業性を有していた。エポキシ樹脂硬化物(エポキシ樹脂「EOCN-1020-55」を用いたエポキシ樹脂硬化物)の平均厚みは123μmであった。
 実施例および比較例の各々における硬化剤の特性値およびエポキシ樹脂硬化物の特性値を表1~表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 実施例A-1~C-1のエポキシ樹脂硬化物は、本発明の要件を満たしていたため、耐熱性、誘電特性および絶縁性の全ての物性に十分に優れていた。
 これらの実施例の中でも、ジイミドジカルボン酸系化合物を用いた実施例A-1のみにおいて、耐熱性、誘電特性および絶縁性の全ての評価結果は◎を達成している。
 比較例1~3のエポキシ樹脂硬化物は、イミド基を含有しない硬化剤を用いたため、耐熱性、誘電特性および絶縁性のうちの少なくとも1つの物性に劣っていた。
 特に絶縁性について、実施例および比較例の各々のエポキシ樹脂硬化物における最大電界/印加電界の比ならびに図1および図2の電荷密度分布の経時的変化チャートから、以下の事項が明らかである。
・実施例A-1、B-1、B-2およびC-1のエポキシ樹脂硬化物では、高温高電界下において、電荷の局所的な蓄積が十分に防止されていた;
・比較例1~3のエポキシ樹脂硬化物では、高温高電界下において、電荷の局所的な蓄積が起こった。
 電荷密度分布の経時的変化チャートからの、電荷の局所的な蓄積現象の観察について、詳しくは、以下の通りである;
 図1より、実施例A-1、B-1、B-2およびC-1のエポキシ樹脂硬化物は、陽極と陰極との間で、略一様な電荷密度分布を示していた。
 図2より、比較例1~3のエポキシ樹脂硬化物は、陽極と陰極との間(特に陰極(カソード)の近傍)で、電荷の局所的な蓄積(すなわち、電荷の偏在)が観察された。図2において、電荷の局所的な蓄積がよく現れている部分を実線(だ円形状)により包囲して示した。
 本発明のエポキシ樹脂硬化物は、十分に優れた耐熱性、誘電特性および絶縁性を有する。このため、本発明のエポキシ樹脂硬化物は、パワー半導体モジュール用の封止材(特に半導体封止材)、ブッシング変圧器用のモールド材、固体絶縁スイッチギア用のモールド材、送電線用の碍子、電気自動車用の電線被覆材、原子力発電所用電気ペネトレーション、プリント配線板用の絶縁材料、ビルドアップ積層板等の電気電子材料に好適に用いることができる。

Claims (14)

  1.  ジイミドジカルボン酸系化合物、ジイミドテトラカルボン酸系化合物およびモノイミドトリカルボン酸系化合物の群から選ばれるイミド基含有化合物。
  2.  請求項1に記載のイミド基含有化合物から選ばれる、イミド基含有硬化剤。
  3.  請求項2に記載のイミド基含有硬化剤と、エポキシ樹脂とからなるエポキシ樹脂硬化物。
  4.  エポキシ樹脂が、1分子中、2個以上のエポキシ基を有する、請求項3に記載のエポキシ樹脂硬化物。
  5.  イミド基含有硬化剤が200~1100の分子量を有する、請求項3または4に記載のエポキシ樹脂硬化物。
  6.  イミド基含有硬化剤が50~500の官能基当量を有する、請求項3~5のいずれかに記載のエポキシ樹脂硬化物。
  7.  請求項3~6のいずれかに記載のエポキシ樹脂硬化物を含む電気絶縁性材料。
  8.  請求項3~6のいずれかに記載のエポキシ樹脂硬化物を含む封止材。
  9.  パワー半導体モジュール用である請求項8に記載の封止材。
  10.  請求項3~6のいずれかに記載のエポキシ樹脂硬化物を含む碍子。
  11.  送電線用である請求項10に記載の碍子。
  12.  請求項3~6のいずれかに記載のエポキシ樹脂硬化物を含む電線被覆材。
  13.  電気自動車用である請求項12に記載の電線被覆材。
  14.  請求項3~6のいずれかに記載のエポキシ樹脂硬化物を含むプリント配線板。
PCT/JP2020/045513 2019-12-10 2020-12-07 イミド基含有化合物、イミド基含有硬化剤ならびにエポキシ樹脂硬化物およびそれを用いた電気絶縁性材料 WO2021117686A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227009990A KR20220114525A (ko) 2019-12-10 2020-12-07 이미드기 함유 화합물, 이미드기 함유 경화제, 및 에폭시 수지 경화물 및 그것을 이용한 전기절연성 재료
CN202080080567.8A CN114728903B (zh) 2019-12-10 2020-12-07 含有酰亚胺基的化合物、含有酰亚胺基的固化剂以及环氧树脂固化物和使用它的电绝缘性材料
JP2021507541A JP6960705B1 (ja) 2019-12-10 2020-12-07 電気絶縁性エポキシ樹脂硬化物およびそれを用いた電気絶縁性材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019222849 2019-12-10
JP2019-222849 2019-12-10

Publications (1)

Publication Number Publication Date
WO2021117686A1 true WO2021117686A1 (ja) 2021-06-17

Family

ID=76329374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045513 WO2021117686A1 (ja) 2019-12-10 2020-12-07 イミド基含有化合物、イミド基含有硬化剤ならびにエポキシ樹脂硬化物およびそれを用いた電気絶縁性材料

Country Status (5)

Country Link
JP (2) JP6960705B1 (ja)
KR (1) KR20220114525A (ja)
CN (1) CN114728903B (ja)
TW (1) TWI829983B (ja)
WO (1) WO2021117686A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113861384A (zh) * 2021-10-28 2021-12-31 北京中科纳通电子技术有限公司 一种新型环氧树脂及其应用
CN114213629A (zh) * 2021-11-04 2022-03-22 道生天合材料科技(上海)股份有限公司 固化剂、固化剂组合物及其制备方法
JP2023059232A (ja) * 2021-10-14 2023-04-26 財團法人工業技術研究院 オリゴマー、組成物、およびパッケージング構造

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2264013A1 (en) * 1974-03-12 1975-10-10 Inst Francais Du Petrole Polycarboxylic isoindoline-diones useful in resin prepn. - prepd. from aminoterephthalic acid and aromatic anhydrides or hemiesters
JPS55104345A (en) * 1979-02-05 1980-08-09 Mitsubishi Electric Corp Thermosetting resin composition
JPS59131673A (ja) * 1983-01-18 1984-07-28 Mitsubishi Electric Corp 電着用塗料の製造法
JPS62151458A (ja) * 1985-12-26 1987-07-06 Nippon Koudoshi Kogyo Kk 耐湿耐熱性樹脂組成物
WO2000061658A1 (fr) * 1999-04-09 2000-10-19 Kaneka Corporation Resine polyimide, composition de resine a resistance amelioree a l'humidite la comprenant, solution adhesive, colle en film adhesif en couches et leurs procedes de production
JP2005320384A (ja) * 2004-05-06 2005-11-17 Nippon Petrochemicals Co Ltd イミド系エポキシ樹脂硬化剤組成物およびエポキシ樹脂組成物
JP2010195946A (ja) * 2009-02-26 2010-09-09 Kaneka Corp 熱硬化性樹脂組成物及びその利用
CN102295740A (zh) * 2011-07-11 2011-12-28 复旦大学 聚酰胺酰亚胺固化的环氧树脂复合材料及其制备方法
JP2018058966A (ja) * 2016-10-04 2018-04-12 ユニチカ株式会社 ポリアミドイミドを含有する樹脂溶液およびその使用方法
WO2020009016A1 (ja) * 2018-07-05 2020-01-09 ユニチカ株式会社 有機化合物の製造方法
JP2020012104A (ja) * 2018-07-05 2020-01-23 ユニチカ株式会社 ポリアミドイミド樹脂の製造方法
WO2020158493A1 (ja) * 2019-01-31 2020-08-06 ユニチカ株式会社 エポキシ樹脂溶液
JP2020122127A (ja) * 2019-01-31 2020-08-13 ユニチカ株式会社 イミド基含有樹脂硬化剤
JP2020186208A (ja) * 2019-05-15 2020-11-19 ユニチカ株式会社 ジイミドジカルボン酸およびそれを用いたエポキシ樹脂硬化物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH587271A5 (ja) * 1973-12-20 1977-04-29 Ciba Geigy Ag
JPS58172819A (ja) * 1982-04-02 1983-10-11 日東電工株式会社 電気絶縁用部材
JP2007305962A (ja) 2006-05-12 2007-11-22 Honda Motor Co Ltd パワー半導体モジュール
JP2012224714A (ja) 2011-04-18 2012-11-15 Sumitomo Electric Ind Ltd 低誘電率用絶縁ワニス及びこれを用いた絶縁電線
JP5998639B2 (ja) 2012-04-09 2016-09-28 信越化学工業株式会社 高電圧電気絶縁体ポリマー碍子用シリコーンゴム組成物及びポリマー碍子
JP2015117278A (ja) * 2013-12-17 2015-06-25 株式会社ティ−アンドケイ東華 官能基化ポリイミド樹脂及びそれを含むエポキシ樹脂組成物
JP6799318B2 (ja) * 2016-11-18 2020-12-16 アイリスオーヤマ株式会社 照明装置
EP3778693A4 (en) * 2018-03-28 2021-12-22 Sekisui Chemical Co., Ltd. CURING RESIN COMPOSITION, ADHESIVE, ADHESIVE FOIL, CIRCUIT SUBSTRATE, INTERLAYER INSULATION MATERIAL AND CIRCUIT BOARD

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2264013A1 (en) * 1974-03-12 1975-10-10 Inst Francais Du Petrole Polycarboxylic isoindoline-diones useful in resin prepn. - prepd. from aminoterephthalic acid and aromatic anhydrides or hemiesters
JPS55104345A (en) * 1979-02-05 1980-08-09 Mitsubishi Electric Corp Thermosetting resin composition
JPS59131673A (ja) * 1983-01-18 1984-07-28 Mitsubishi Electric Corp 電着用塗料の製造法
JPS62151458A (ja) * 1985-12-26 1987-07-06 Nippon Koudoshi Kogyo Kk 耐湿耐熱性樹脂組成物
WO2000061658A1 (fr) * 1999-04-09 2000-10-19 Kaneka Corporation Resine polyimide, composition de resine a resistance amelioree a l'humidite la comprenant, solution adhesive, colle en film adhesif en couches et leurs procedes de production
JP2005320384A (ja) * 2004-05-06 2005-11-17 Nippon Petrochemicals Co Ltd イミド系エポキシ樹脂硬化剤組成物およびエポキシ樹脂組成物
JP2010195946A (ja) * 2009-02-26 2010-09-09 Kaneka Corp 熱硬化性樹脂組成物及びその利用
CN102295740A (zh) * 2011-07-11 2011-12-28 复旦大学 聚酰胺酰亚胺固化的环氧树脂复合材料及其制备方法
JP2018058966A (ja) * 2016-10-04 2018-04-12 ユニチカ株式会社 ポリアミドイミドを含有する樹脂溶液およびその使用方法
WO2020009016A1 (ja) * 2018-07-05 2020-01-09 ユニチカ株式会社 有機化合物の製造方法
JP2020012104A (ja) * 2018-07-05 2020-01-23 ユニチカ株式会社 ポリアミドイミド樹脂の製造方法
WO2020158493A1 (ja) * 2019-01-31 2020-08-06 ユニチカ株式会社 エポキシ樹脂溶液
JP2020122127A (ja) * 2019-01-31 2020-08-13 ユニチカ株式会社 イミド基含有樹脂硬化剤
JP2020186208A (ja) * 2019-05-15 2020-11-19 ユニチカ株式会社 ジイミドジカルボン酸およびそれを用いたエポキシ樹脂硬化物

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023059232A (ja) * 2021-10-14 2023-04-26 財團法人工業技術研究院 オリゴマー、組成物、およびパッケージング構造
JP7431292B2 (ja) 2021-10-14 2024-02-14 財團法人工業技術研究院 パッケージング構造
CN113861384A (zh) * 2021-10-28 2021-12-31 北京中科纳通电子技术有限公司 一种新型环氧树脂及其应用
CN114213629A (zh) * 2021-11-04 2022-03-22 道生天合材料科技(上海)股份有限公司 固化剂、固化剂组合物及其制备方法
WO2023077910A1 (zh) * 2021-11-04 2023-05-11 道生天合材料科技(上海)股份有限公司 固化剂、固化剂组合物及其制备方法

Also Published As

Publication number Publication date
TWI829983B (zh) 2024-01-21
JP2021193094A (ja) 2021-12-23
CN114728903B (zh) 2023-04-28
JP6960705B1 (ja) 2021-11-05
CN114728903A (zh) 2022-07-08
KR20220114525A (ko) 2022-08-17
JPWO2021117686A1 (ja) 2021-06-17
TW202128620A (zh) 2021-08-01

Similar Documents

Publication Publication Date Title
JP6960705B1 (ja) 電気絶縁性エポキシ樹脂硬化物およびそれを用いた電気絶縁性材料
CN112771110B (zh) 树脂组合物、膜、层压板及半导体装置
CN100564423C (zh) 环氧树脂组合物
EP3919541B1 (en) Epoxy resin solution
CN109923176B (zh) 树脂组合物、使用其的热固性膜、树脂固化物、层叠板、印刷电路板及半导体装置
JP7455475B2 (ja) 熱硬化性マレイミド樹脂組成物並びにこれを用いた接着剤、基板材料、プライマー、コーティング材及び半導体装置
JP2021183696A (ja) 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
JP7229527B2 (ja) ジイミドジカルボン酸およびそれを用いたエポキシ樹脂硬化物
JP7253300B1 (ja) アミド化合物およびそれを含む硬化性樹脂組成物
KR20150097439A (ko) 폴리이미드 수지의 제조 방법, 폴리이미드막의 제조 방법, 폴리아믹산 용액의 제조 방법, 폴리이미드막 및 폴리아믹산 용액
KR20110035620A (ko) 폴리이미드 필름
CN118119667A (zh) 树脂组合物及其固化物以及使用了该固化物的叠层体、静电卡盘和等离子体处理装置
US20230391955A1 (en) Polyimide precursor, polyimide, and flexible printed circuit board
JP2004315653A (ja) 樹脂組成物とその利用
JP2020200406A (ja) 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
WO2023074481A1 (ja) アミド化合物およびそれを含む硬化性樹脂組成物
JP2024032438A (ja) 長鎖脂肪族化合物およびそれを用いた硬化性樹脂組成物
TWI843797B (zh) 環氧樹脂溶液
KR101355979B1 (ko) 전기적 특성이 우수한 폴리 에폭시 수지, 이의 조성물 및 제조방법
JP2024051882A (ja) エポキシ樹脂組成物、硬化物、及び半導体装置
JPH05262855A (ja) エポキシ樹脂組成物及びその用途
EP2787024A2 (en) Thermosetting composition, hardened film and electronic component

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021507541

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898971

Country of ref document: EP

Kind code of ref document: A1