WO2021117636A1 - Drive control device for electric motor - Google Patents

Drive control device for electric motor Download PDF

Info

Publication number
WO2021117636A1
WO2021117636A1 PCT/JP2020/045290 JP2020045290W WO2021117636A1 WO 2021117636 A1 WO2021117636 A1 WO 2021117636A1 JP 2020045290 W JP2020045290 W JP 2020045290W WO 2021117636 A1 WO2021117636 A1 WO 2021117636A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground
microcomputer
circuit
power supply
drive
Prior art date
Application number
PCT/JP2020/045290
Other languages
French (fr)
Japanese (ja)
Inventor
小関 知延
登美夫 坂下
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2021117636A1 publication Critical patent/WO2021117636A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases

Definitions

  • the present invention relates to a drive control device for an electric motor that drives and controls an electric motor including a first winding set and a second winding set.
  • the motor control device of Patent Document 1 includes two ECUs (Electronic Control Units) including a microcomputer provided in combination with a drive circuit, and each ECU is connected to an individual external power supply and is connected to each external power supply. It has a constant voltage circuit that adjusts the voltage from to to a constant value and supplies it as an operating voltage to the microcomputer to which it belongs.
  • ECUs Electronic Control Units
  • each ECU is connected to an individual external power supply and is connected to each external power supply. It has a constant voltage circuit that adjusts the voltage from to to a constant value and supplies it as an operating voltage to the microcomputer to which it belongs.
  • the drive circuit and the low potential side of the external power supply are connected by a power supply ground line for each ECU, and the power supply ground line and the low potential side of the drive circuit are connected via an internal ground for each ECU.
  • the microcomputer of each ECU includes an abnormality detection unit that detects a ground abnormality based on the ground voltage of each internal ground obtained with reference to the operating voltage of the ECU to which the ECU belongs.
  • the current flowing through the drive circuit of the first system flows through the common internal ground to the second system. It may flow to the ground connector of. Since the current flowing through the drive circuit of the own system also flows through the ground connector of the second system, the energization control of the drive circuit of the first system is performed even though the ground connector of the first system has an open failure. If the above is continued normally, the ground connector of the second system may be overheated due to the continuous flow of the current exceeding the current capacity to the ground connector of the second system, which may cause a chain abnormality.
  • an open failure of the ground connector can be detected, it is possible to take countermeasures before a chain abnormality occurs.
  • the present invention has been made in view of the conventional circumstances, and an object of the present invention is to provide a drive control device for an electric motor that can detect the presence or absence of an open failure of a ground connector.
  • the control circuit of each system is connected to the internal common ground, and the ground connector of each system has a common ground and a drive circuit of its own system.
  • the ground is connected, and switch elements are arranged between the ground connector of each system and the branch point between the ground of the drive circuit and the common ground, and from the common ground to each line connecting the branch point and the common ground. It has a rectifying element that allows current to flow toward each ground connector, and has a current detecting element in each of the lines connecting the rectifying element and the branch point and the positive power supply.
  • FIG. 1 shows a schematic configuration of the electric power steering device 100.
  • the electric power steering device 100 includes a steering wheel 10, a steering angle sensor 11, a steering torque sensor 12, an electric motor 13, an EPS control unit 14, a vehicle position detection sensor 15, an automatic driving controller 16, and batteries 17a and 17b. ..
  • the steering column 19 including the steering shaft 18 includes a steering angle sensor 11, a steering torque sensor 12, an electric motor 13, and a speed reducer 20.
  • the driving force of the electric motor 13 is transmitted to the steering shaft 18 via the speed reducer 20 to rotate the steering shaft 18.
  • the steering shaft 18 is provided with a pinion gear 21 at its tip, and when the pinion gear 21 rotates, the rack shaft 22 moves horizontally to the left and right in the traveling direction to give steering angles to the steering wheels 23 and 23.
  • the EPS control unit 14 drives and controls the electric motor 13 based on the detection value of the steering torque by the steering torque sensor 12 and the information of the vehicle speed to generate the steering assist force.
  • the automatic driving controller 16 when performing automatic driving, obtains a steering angle command based on position information or the like acquired from the own vehicle position detection sensor 15. Then, the EPS control unit 14 acquires the request signal for automatic operation and the command signal for the steering angle from the automatic operation controller 16, and drives and controls the electric motor 13 so as to bring the actual steering angle closer to the steering angle command.
  • FIG. 2 is a diagram showing a circuit configuration of an EPS control unit 14 which is a drive control device for the electric motor 13. Note that FIG. 2 shows the main parts related to the power supply to the EPS control unit 14 and the drive control of the electric motor 13.
  • the electric motor 13 is a three-phase synchronous motor, and has two winding sets including a U-phase coil, a V-phase coil, and a W-phase coil, a first winding set 13a and a second winding set 13b.
  • the EPS control unit 14 includes a first drive control system (first system) that drives and controls the first winding set 13a, and a second drive control system (second system) that drives and controls the second winding set 13b. It has two drive control systems, and each drive control system has control circuits 32a and 32b including a microcomputer, inverters 31a and 31b as drive circuits, power supply connectors 33a and 33b, ground connectors 34a and 34b, and the like, respectively.
  • first system drives and controls the first winding set 13a
  • second system drives and controls the second winding set 13b.
  • control circuits 32a and 32b including a microcomputer, inverters 31a and 31b as drive circuits, power supply connectors 33a and 33b, ground connectors 34a and 34b, and the like, respectively.
  • each drive control system of the EPS control unit 14 will be described in detail.
  • the housing 30 of the EPS control unit 14 houses the first inverter 31a as the first drive circuit, the second inverter 31b as the second drive circuit, the first control circuit 32a, the second control circuit 32b, and the like.
  • the first inverter 31a and the first control circuit 32a constitute a first drive control system that drives and controls the first winding set 13a, and the second inverter 31b and the second control circuit 32b form a second winding set 13b.
  • a second drive control system for drive control is configured.
  • the first control circuit 32a includes a first microcomputer 42a, a first predriver circuit 43a, a first power supply circuit 44a, and the like
  • the second control circuit 32b includes a second microcomputer 42b, a second predriver circuit 43b, and the like. It has a second power supply circuit 44b and the like.
  • the first microcomputer 42a and the second microcomputer 42b each include a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the housing 30 includes a first power supply connector 33a, a first ground connector 34a, a second power supply connector 33b, and a second ground connector 34b for connecting the external batteries 17a and 17b to the internal electric circuit. ..
  • the first power supply connector 33a and the first ground connector 34a form a pair to supply power from the first battery 17a to the first drive control system
  • the second power supply connector 33b and the second ground connector 34b form a pair. Power is supplied from the second battery 17b to the second drive control system.
  • the first power connector 33a is connected to the positive terminal (in other words, the positive electrode) of the first battery 17a via the first power harness 35a, and the first ground connector 34a is connected to the first ground harness 36a via the first ground harness 36a. It is connected to the negative terminal (in other words, the negative electrode) of the battery 17a.
  • the second power connector 33b is connected to the positive terminal of the second battery 17b via the second power harness 35b, and the second ground connector 34b is connected to the negative terminal of the second battery 17b via the second ground harness 36b. Will be done.
  • the first power supply connector 33a is connected to the first control circuit 32a via the power supply line 37a. Further, the power supply terminal 31a1 of the first inverter 31a is connected to the power supply line 37a.
  • the switch element is opened and closed by an input signal between the power supply line 37a and the power supply terminal 31a1 of the first inverter 31a to control the on / off of the power supply from the first battery 17a to the first inverter 31a.
  • 1 Power supply relay 38a is arranged.
  • the first power supply relay 38a is a semiconductor relay that uses a semiconductor such as an N-channel MOSFET.
  • the first microcomputer 42a of the first control circuit 32a outputs a control signal to the first power relay 38a to turn on / off the first power relay 38a, in other words, from the first battery 17a to the first inverter 31a. Switch the power supply / cutoff of.
  • the parasitic diode 38a1 internal diode, body diode
  • the cathode is connected to the power supply line 37a and the anode is connected to the power supply terminal 31a1 of the first inverter 31a.
  • the parasitic diode is also called an internal diode or a body diode.
  • the common ground 49 and the ground of the first inverter 31a are connected to the first ground connector 34a via the ground line 40a.
  • the common ground 49 is an internal ground provided in the housing 30, and the ground of the first control circuit 32a and the ground of the second control circuit 32b are connected to each other.
  • the ground terminal 31a2 of the first inverter 31a is connected to the ground line 40a, and the current flowing through the first winding set 13a of the electric motor 13 between the ground line 40a and the ground terminal 31a2 of the first inverter 31a, in other words. Then, the first shunt resistor 39a for detecting the bus current of the first inverter 31a is arranged.
  • the line 40a is provided with a first rectifying control element 47a in which a rectifying element and a switch element are connected in parallel.
  • the first rectification control element 47a is composed of, for example, an N-channel MOSFET 47a2 having a parasitic diode 47a1.
  • the cathode of the parasitic diode 47a1 is connected to the first ground connector 34a, and the anode is connected to the common ground 49. That is, the parasitic diode 47a1 of the N-channel MOSFET 47a2 is a first rectifying element that allows a current to flow from the common ground 49 toward the first ground connector 34a and cuts off the current toward the common ground 49.
  • the N-channel MOSFET 47a2 as the third switch element connected in parallel to the parasitic diode 47a1 when the N-channel MOSFET 47a2 as the third switch element connected in parallel to the parasitic diode 47a1 is on, the current can flow toward the common ground 49.
  • the gate of the N-channel MOSFET 47a2 constituting the first rectification control element 47a is connected to the digital output terminal DO of the first microcomputer 42a.
  • the first microcomputer 42a switches the N-channel MOSFET 47a2 on / off according to the control signal output from the digital output terminal DO. Further, a resistor R1a as a third current detection element is provided on the ground line 40a between the first rectification control element 47a and the common ground 49, and is parallel to the series connection circuit of the resistor R1a and the first rectification control element 47a. Is provided with a capacitor C1a.
  • the positional relationship between the resistor R1a and the first rectification control element 47a can be exchanged, and the first rectification control element 47a can be arranged on the ground line 40a between the resistor R1a and the common ground 49.
  • the power supply circuit of the second drive control system has the same configuration as the first drive control system described above.
  • the second power supply connector 33b is connected to the second control circuit 32b in the housing 30 via the power supply line 37b. Further, the power supply terminal 31b1 of the second inverter 31b is connected to the power supply line 37b, and the switch element is opened and closed by an input signal between the power supply line 37b and the power supply terminal 31b1 of the second inverter 31b to open and close the second battery.
  • a second power supply relay 38b that controls on / off of power supply from the 17b to the second inverter 31b is arranged.
  • the second power supply relay 38b is a semiconductor relay that uses a semiconductor such as an N-channel MOSFET.
  • the second microcomputer 42b of the second control circuit 32b outputs a control signal to the second power relay 38b to turn on / off the second power relay 38b, in other words, from the second battery 17b to the second inverter 31b. Switch the power supply / cutoff of.
  • the cathode of the parasitic diode 38b1 of the N-channel MOSFET constituting the second power supply relay 38b is connected to the power supply line 37b, and the anode is connected to the power supply terminal 31b1 of the second inverter 31b.
  • the common ground 49 and the ground of the second inverter 31b are connected to the second ground connector 34b via the ground line 40b.
  • the ground terminal 31b2 of the second inverter 31b is connected to the ground line 40b, and the current flowing through the second winding set 13b of the electric motor 13 between the ground line 40b and the ground terminal 31b2 of the second inverter 31b, in other words.
  • a second shunt resistor 39b for detecting the bus current of the second inverter 31b is arranged. Further, a portion of the ground line 40b to which one end of the second shunt resistor 39b is connected, in other words, between the second branch point 40b1 between the ground of the second inverter 31b and the common ground 49 and the common ground 49.
  • the ground line 40b is provided with a second rectifying control element 47b formed by connecting a rectifying element and a switch element in parallel.
  • the second rectification control element 47b is composed of, for example, an N-channel MOSFET 47b2 having a parasitic diode 47b1.
  • the cathode of the parasitic diode 47b1 is connected to the second ground connector 34b, and the anode is connected to the common ground 49.
  • the parasitic diode 47b1 of the N-channel MOSFET 47b2 is a second rectifying element that allows a current to flow from the common ground 49 toward the second ground connector 34b and cuts off the current toward the common ground 49. Further, when the N-channel MOSFET 47b2 as the fourth switch element connected in parallel to the parasitic diode 47b1 is on, the current can flow toward the common ground 49.
  • the gate of the N-channel MOSFET 47b2 constituting the second rectification control element 47b is connected to the digital output terminal DO of the second microcomputer 42b.
  • the second microcomputer 42b switches the N-channel MOSFET 47b2 on / off according to the control signal output from the digital output terminal DO.
  • a resistor R1b as a fourth current detection element is provided on the ground line 40b between the second rectification control element 47b and the common ground 49, and is parallel to the series connection circuit of the resistor R1b and the second rectification control element 47b. Is provided with a capacitor C1b. The positional relationship between the resistor R1b and the second rectification control element 47b can be exchanged, and the second rectification control element 47b can be arranged on the ground line 40b between the resistor R1b and the common ground 49.
  • the first switch element 41a is arranged on the ground line 40a between the first ground connector 34a and the first branch point 40a1.
  • the first switch element 41a is composed of, for example, an N-channel MOSFET 41a2 having a parasitic diode 41a1. In the parasitic diode 41a1, the cathode is connected to the first branch point 40a1 and the anode is connected to the first ground connector 34a.
  • the second switch element 41b is arranged on the ground line 40b between the second ground connector 34b and the second branch point 40b1.
  • the second switch element 41b is composed of, for example, an N-channel MOSFET 41b2 having a parasitic diode 41b1, in which the cathode of the parasitic diode 41b1 is connected to the second branch point 40b1 and the anode is connected to the second ground connector 34b.
  • the first microcomputer 42a switches the N-channel MOSFET 41a2 on / off by the control signal output from the digital output terminal DO, and the second microcomputer 42b turns on / off the N-channel MOSFET 41b2 by the control signal output from the digital output terminal DO. Toggle off.
  • the configurations of the first control circuit 32a and the second control circuit 32b will be described.
  • the first control circuit 32a is a circuit that controls on / off of each switch element of the first inverter 31a in the first drive control system, and is a first microcomputer 42a, a first predriver circuit 43a, a first power supply circuit 44a, and the like. It includes a first current detection circuit 45a, a first diode Da, and the like.
  • the second control circuit 32b is a circuit that controls the on / off of each switch element of the second inverter 31b in the second drive control system, and is a second microcomputer 42b, a second predriver circuit 43b, a second power supply circuit 44b, and the like. It includes a second current detection circuit 45b, a second diode Db, and the like.
  • the first microcomputer 42a and the second microcomputer 42b are connected by an in-board communication line, and the first microcomputer 42a and the second microcomputer 42b are, for example, various abnormality information in the own system, information on inverter control, and the like. Is sent to another system.
  • the pre-driver circuits 43a and 43b output signals for driving the switch elements of the inverters 31a and 31b based on commands from the microcomputers 42a and 42b.
  • the first power supply circuit 44a receives power from the first battery 17a via the first power supply connector 33a and the first diode Da.
  • the first power supply circuit 44a is activated when it acquires a start signal such as by turning on the ignition switch 51a of the vehicle, and converts the input power supply voltage from the first battery 17a into the first internal power supply voltage Va.
  • the input power supply voltage from the first battery 17a is, for example, 12V
  • the first internal power supply voltage Va is, for example, 5V.
  • the first power supply circuit 44a supplies the first internal power supply voltage Va to the first microcomputer 42a, the first pre-driver circuit 43a, and the first current detection circuit 45a, respectively.
  • the second power supply circuit 44b receives power from the second battery 17b via the second power supply connector 33b and the second diode Db.
  • the second power supply circuit 44b is activated when it acquires a start signal such as by turning on the ignition switch 51b of the vehicle, and converts the input power supply voltage from the second battery 17b into the second internal power supply voltage Vb.
  • the input power supply voltage from the second battery 17b is, for example, 12V
  • the second internal power supply voltage Vb is, for example, 5V.
  • the second power supply circuit 44b supplies the second internal power supply voltage Vb to the second microcomputer 42b, the second predriver circuit 43b, and the second current detection circuit 45b, respectively.
  • the ignition switch 51a and the ignition switch 51b are switches that operate in conjunction with each other, and the first power supply circuit 44a and the second power supply circuit 44b are configured to be activated substantially at the same time.
  • the first current detection circuit 45a is a resistance voltage divider circuit composed of resistors R2a and R3a as the first current detection element and an NPN transistor Tra as the fifth switch element.
  • the collector of the NPN transistor Tra is connected to the output line of the first power supply circuit 44a as a positive power supply via the resistor R2a, and the first current detection circuit 45a sets the power supply voltage to the first internal power supply voltage Va.
  • the emitter of the NPN transistor Tra is connected to the ground line 40a between the series circuit of the resistor R1a and the first rectification control element 47a and the first branch point 40a1 via the resistor R3a.
  • the emitter of the NPN transistor Tra and the resistor R3a are connected to the analog input terminal AD of the first microcomputer 42a, and the first microcomputer 42a provides A / D information on the voltage applied to the resistor R3a. Obtained by conversion. Further, the base of the NPN transistor Tra is connected to the digital output terminal DO of the first microcomputer 42a, and the first microcomputer 42a switches the NPN transistor Tra on and off according to the control signal output from the digital output terminal DO.
  • the resistance value of the resistor R2a is 10 k ⁇
  • the resistance value of the resistor R3a is 10 k ⁇ , which is the same as that of the resistor R2a
  • the resistance value of the resistor R1a is 0.1 ⁇ . ..
  • the second current detection circuit 45b is a resistance voltage divider circuit composed of resistors R2b and R3b as the second current detection element and an NPN transistor Trb as the sixth switch element.
  • the collector of the NPN transistor Trb is connected to the output line of the second power supply circuit 44b as a positive power supply via the resistor R2b, and the second current detection circuit 45b sets the power supply voltage to the second internal power supply voltage Vb.
  • the emitter of the NPN transistor Trb is connected to the ground line 40b between the series circuit of the resistor R1b and the second rectification control element 47b and the second branch point 40b1 via the resistor R3b.
  • the emitter of the NPN transistor Trb and the resistor R3b are connected to the analog input terminal AD of the second microcomputer 42b, and the second microcomputer 42b A / D outputs the voltage information applied to the resistor R3b. Obtained by conversion. Further, the base of the NPN transistor Trb is connected to the digital output terminal DO of the second microcomputer 42b, and the second microcomputer 42b switches the NPN transistor Trb on and off according to the control signal output from the digital output terminal DO.
  • the resistance values of the resistors R1b, R2b, and R3b are, for example, 10 k ⁇ for the resistance value of the resistor R2b, 10 k ⁇ for the resistance value of the resistor R3b, and 0.1 ⁇ for the resistance value of the resistor R1b. ..
  • the first microcomputer 42a has the N-channel MOSFET 47a2 turned off, and based on the current detected by the first current detection circuit 45a, the presence or absence of an abnormality in the first ground connector 34a, in detail, , Diagnose the presence or absence of open failure.
  • the second microcomputer 42b has the N-channel MOSFET 47b2 turned off, and based on the current detected by the second current detection circuit 45b, the presence or absence of an abnormality in the second ground connector 34b, in detail, is open. Diagnose the presence or absence of failure.
  • An open failure of the ground connectors 34a and 34b means that the negative terminals of the batteries 17a and 17b and the EPS are caused by disconnection or disconnection of the ground harnesses 36a and 36b connecting the ground connectors 34a and 34b and the negative terminals of the batteries 17a and 17b. This is an abnormality in which the current is cut off from the control unit 14.
  • the first microcomputer 42a determines the presence or absence of a short-circuit failure of the first rectification control element 47a based on the current detected by the first current detection circuit 45a in a state where the N-channel MOSFET 41a2 and the N-channel MOSFET 47a2 are turned off. Diagnose.
  • the second microcomputer 42b has the N-channel MOSFET 41b2 and the N-channel MOSFET 47b2 turned off, and the presence or absence of a short-circuit failure of the second rectification control element 47b based on the current detected by the second current detection circuit 45b. To diagnose.
  • FIG. 3 is a circuit diagram showing in detail the configurations of the first inverter 31a, the second inverter 31b, and the electric motor 13 shown in FIG.
  • the electric motor 13 includes U-phase coils Ua, V-phase coils Va and W-phase coils Wa that form the first winding set 13a, and U-phase coils Ub, V-phase coils Vb and W that form the second winding set 13b. It includes a phase coil Wb.
  • the first inverter 31a is a three-phase bridge circuit including three sets of switch elements 51-56 that drive the coils Ua, Va, and Wa of the first winding set 13a via the drive lines DUa, DVa, and DW, respectively.
  • an N-channel MOSFET is used as the switch element 51-56.
  • the second inverter 31b is a three-phase bridge including three sets of switch elements 61-66 that drive the coils Ub, Vb, and Wb of the second winding set 13b via the drive lines DUb, DVb, and DWb, respectively. It is a circuit, and an N-channel MOSFET is used as the switch elements 61-66.
  • the MOSFETs 51 and 52 in the first inverter 31a are connected in series between the drain and source between the power relay 38a and one end of the first shunt resistor 39a, and one end of the drive line DUa is connected to the connection point between the MOSFET 51 and the MOSFET 52.
  • the drain and source are connected in series between the first power supply relay 38a and one end of the first shunt resistor 39a, and one end of the drive line DVa is connected to the connection point between the MOSFET 53 and the MOSFET 54.
  • the drain source is connected in series between the first power supply relay 38a and one end of the first shunt resistor 39a, and one end of the drive line DWa is connected to the connection point between the MOSFET 55 and the MOSFET 56.
  • the diodes D11-D16 connected in the forward direction between the source and drain of each MOSFET 51-56 are parasitic diodes.
  • the drain and source are connected in series between the second power relay 38b and one end of the second shunt resistor 39b, and one end of the drive line DUb is connected to the connection point between the MOSFET 61 and the MOSFET 62. Be connected.
  • the drain and source are connected in series between the second power supply relay 38b and one end of the second shunt resistor 39b, and one end of the drive line DVb is connected to the connection point between the MOSFET 63 and the MOSFET 64.
  • the drain source is connected in series between the second power supply relay 38b and one end of the second shunt resistor 39b, and one end of the drive line DWb is connected to the connection point between the MOSFET 65 and the MOSFET 66. ..
  • the diodes D21-D22 connected in the forward direction between the source and drain of each MOSFET 61-66 are parasitic diodes.
  • FIGS. 4 and 5 are flowcharts showing a control procedure for the first system carried out by the first microcomputer 42a.
  • the second microcomputer 42b also independently controls the second system, but the details are the same as the control procedure for the first system by the first microcomputer 42a shown in FIGS. 4 and 5. The explanation will be omitted.
  • step S101 When the first microcomputer 42a is reset and released by turning on the power in step S101, various initial processes are performed in step S102. When the first microcomputer 42a finishes the initial processing, the process proceeds to step S103 and performs a process for confirming the communication state with the second microcomputer 42b.
  • the first microcomputer 42a determines whether or not communication with the second microcomputer 42b can be normally performed. Then, if there is some kind of communication abnormality and information cannot be normally transmitted / received to / from the second microcomputer 42b, the first microcomputer 42a proceeds to step S105 and is the communication abnormality continuing for a predetermined time or longer? Judge whether or not.
  • the first microcomputer 42a If the duration of the communication abnormality has not reached the predetermined time, the first microcomputer 42a returns to step S103 and continues the process for confirming the communication state. On the other hand, when the duration of the communication abnormality with the second microcomputer 42b reaches a predetermined time and the communication abnormality is deterministic, the first microcomputer 42a proceeds to step S106, and the second microcomputer 42b and the second microcomputer 42b The communication error flag Fce, which indicates the presence or absence of a communication abnormality between the computers, is set to "1", which indicates an abnormality occurrence state.
  • the initial value of the communication abnormality flag Fce is "0" indicating that the communication with the second microcomputer 42b is normal. If the first microcomputer 42a determines in step S104 that the communication with the second microcomputer 42b is normal, the first microcomputer 42a proceeds to step S107.
  • step S107 the control state of the various switch elements is the initial state, and the first microcomputer 42a controls the NPN transistor Tra, the N channel MOSFET 47a2 of the first rectification control element 47a, and the power supply relay 38a to be off.
  • the N-channel MOSFET 41a2 as the first switch element 41a is controlled to be turned on.
  • step S107 the first microcomputer 42a determines whether or not the detected value of the voltage applied to the resistor R3a of the first current detection circuit 45a is in the vicinity of 0V.
  • step S110 the first microcomputer 42a sets the circuit abnormality flag Fgo to "1" indicating that an abnormality has occurred in the circuit of the first drive control system.
  • the initial value of the circuit abnormality flag Fgo is "0" indicating that the circuit of the first drive control system is normal.
  • step S107 when the first microcomputer 42a detects in step S107 that the voltage VR3 applied to the resistor R3a is in the vicinity of 0V, the first microcomputer 42a proceeds to step S108 and diagnoses an open failure of the first ground connector 34a.
  • An on command is output to the NPN transistor Tra.
  • the first microcomputer 42a suppresses the power consumption of the first power supply circuit 44a by turning on the NPN transistor Tra only when diagnosing an open failure of the first ground connector 34a.
  • the first microcomputer 42a issues a command to switch the NPN transistor Tra from off to on, and then proceeds to step S109 after waiting for the elapse of a predetermined time.
  • the predetermined time in step S109 is a time adapted based on the time required for the semiconductor switch element such as the NPN transistor Tra to be in a stable on or off state from the on / off switching command, and is a step described later. The same applies to the predetermined time in S111, step S113, and step S114.
  • step S109 the first microcomputer 42a determines whether or not the voltage VR3 applied to the resistor R3a is in the vicinity of 2.5V with the NPN transistor Tra turned on.
  • the N-channel MOSFET 47a2 is in the off-control state, the cathode of the parasitic diode 47a1 of the N-channel MOSFET 47a2 is connected to the first ground connector 34a, and the N-channel MOSFET 41a2 is on-controlled. It is in a state.
  • the resistor R3a is passed through the first rectification control element 47a, the common ground 49, the second rectification control element 47b, and the second ground connector 34b. 2
  • the path through which the current flows into the battery 17b is cut off by the first rectification control element 47a.
  • the ground of the first current detection circuit 45a is limited to the path leading to the first battery 17a via the N-channel MOSFET 41a2 in the on-controlled state and the first ground connector 34a.
  • step S110 the first microcomputer 42a sets the circuit abnormality flag Fgo to “1” based on the determination of the occurrence of an open failure of the first ground connector 34a.
  • step S109 When the first microcomputer 42a determines in step S109 that an open failure of the first ground connector 34a has occurred, a flag set separately from the circuit error flag Fgo, that is, an open failure of the first ground connector 34a It is possible to set a flag indicating the presence or absence of. Further, in step S110, the first microcomputer 42a sets the circuit abnormality flag Fgo to “1” and transmits information indicating the occurrence of the circuit abnormality to the second microcomputer 42b.
  • the first microcomputer 42a sets the circuit abnormality flag Fgo to “1” in step S110, and then proceeds to step S117.
  • step S117 the first microcomputer 42a performs a process of setting the current limit ratio of the first inverter 31a to 0% as a process of coping with a circuit abnormality including an open abnormality of the first ground connector 34a, and first.
  • the inverter 31a is not driven.
  • the initial value of the current limit ratio is 100% that does not limit the current of the first inverter 31a, and the smaller the value (%) of the current limit ratio is, the lower the drive current of the first winding set 13a is.
  • the current limit ratio is 0%, each switch element of the first inverter 31a is kept off, and no current flows through each phase of the first winding set 13a.
  • the first inverter 31a is driven in the open failure state of the first ground connector 34a, the current flowing through the first inverter 31a flows into the second ground connector 34b via the common ground 49, and the current flows through the second ground connector 34b. Will be concentrated.
  • the first inverter 31a in other words, the energization of the first winding set 13a is stopped, the current does not flow from the first drive control system to the second ground connector 34b, and the second ground is eliminated. It is possible to prevent the current flowing into the connector 34b from becoming excessive. Therefore, when the first ground connector 34a is open-failed, the first microcomputer 42a stops driving the first inverter 31a, thereby suppressing the occurrence of an abnormality in the second ground connector 34b. The drive control of the second winding set 13b by the two drive control system can be continued.
  • the first microcomputer 42a has the first ground before the start of driving the first inverter 31a, that is, before the current actually flows into the second drive control system due to the open failure of the first ground connector 34a.
  • the presence or absence of an open failure of the connector 34a can be diagnosed, and the inflow of current into the second drive control system can be suppressed in advance.
  • the first microcomputer 42a detects a circuit abnormality including an open failure of the first ground connector 34a and stops driving the first inverter 31a
  • the first microcomputer 42a gives information on the abnormality of the electric power steering device 100 as an alarm lamp. It can be made to be recognized by the driver of the vehicle by lighting or the like.
  • the first microcomputer 42a can set the current limit ratio to an arbitrary value larger than 0% and smaller than 100%. That is, in step S117, the first microcomputer 42a is the current flowing from the first drive control system to the second ground connector 34b, in other words, the current flowing through the second ground connector 34b when the first ground connector 34a is in an open failure state. Implement processing to reduce.
  • step S117 by the first microcomputer 42a is not limited to the drive stop of the first inverter 31a, and the first microcomputer 42a allows the first inverter 31a to be driven in step S117.
  • the current flowing through the inverter 31a can be set to be smaller than when the first ground connector 34a is normal.
  • the first microcomputer 42a instructs the second microcomputer 42b to limit the drive current of the second inverter 31b to a lower level than usual, provided that the communication is normal. Can be transmitted to reduce the current in both the first drive control system and the second drive control system, thereby reducing the current flowing through the second ground connector 34b.
  • step S109 When the first microcomputer 42a determines in step S109 that the voltage VR3 applied to the resistor R3a is in the vicinity of 2.5V and the first ground connector 34a is normal, the first microcomputer 42a proceeds to step S111. As described above, if the first rectification control element 47a is not short-circuited, the current will flow into the first battery 17a via the first ground connector 34a when the NPN transistor Tra is turned on.
  • the first ground connector 34a has an open failure
  • the current will flow into the common ground 49 when the NPN transistor Tra is turned on.
  • the voltage VR3 applied to the resistor R3a is close to 2.5V. That is, if the first rectifying control element 47a has a short failure, the first microcomputer 42a determines that the first ground connector 34a is normal even if the first ground connector 34a has an open failure. turn into.
  • the first microcomputer 42a diagnoses the presence or absence of a short-circuit failure of the first rectification control element 47a in step S111 and subsequent steps.
  • the first microcomputer 42a controls the N-channel MOSFET 41a2 to turn off and cuts off the inflow of current to the first ground connector 34a.
  • the first microcomputer 42a controls the N-channel MOSFET 47a2 off, if the N-channel MOSFET 47a2 has a short-circuit failure, the current flows into the common ground 49 via the N-channel MOSFET 47a2, so that the first current is detected. A current flows through the circuit 45a, and the voltage VR3 applied to the resistor R3a becomes close to 2.5V due to the resistance voltage division. That is, the first microcomputer 42a can diagnose the presence or absence of a short-circuit failure of the N-channel MOSFET 47a2 based on whether or not a current flows through the first current detection circuit 45a when the N-channel MOSFET 41a2 is controlled to be off.
  • the first microcomputer 42a controls the N-channel MOSFET 41a2 to turn off in step S111, waits for a predetermined time from the start of the off control, and proceeds to step S112. Then, in step S112, the first microcomputer 42a determines whether or not the voltage VR3 applied to the resistor R3a is in the vicinity of 2.5V.
  • the first microcomputer 42a determines that the first ground connector 34a is normal and starts normal drive control of the first inverter 31a. Can be deterred.
  • the N-channel MOSFET 41a2 is controlled to be off, if the voltage VR3 applied to the resistor R3a is near the first internal power supply voltage Va, the N-channel MOSFET 47a2 is turned off according to the control command, and the N-channel MOSFET 47a2 There is no short circuit failure.
  • the process proceeds to step S113 and subsequent steps.
  • the first microcomputer 42a outputs a command for switching the NPN transistor Tra from on to off in step S113, and then proceeds to step S114 after waiting for a predetermined time (for example, 10 ms) to elapse.
  • step S114 the first microcomputer 42a outputs a command for switching the N-channel MOSFET 47a2 of the first rectification control element 47a from off to on and a command for switching the N-channel MOSFET 41a2 from off to on, and then outputs a command for a predetermined time (for example,). , 10ms) before proceeding to step S115.
  • a predetermined time for example, 10. , 10ms
  • step S115 the first microcomputer 42a performs a failure diagnosis of the first inverter 31a.
  • the first microcomputer 42a controls to discharge the electric charge accumulated in the capacitor (not shown) connected between the power supply line of the first inverter 31a and the ground by the drive control of the N-channel type MOSFET 51-56.
  • the presence or absence of failure of the first inverter 31a, that is, the N-channel type MOSFET 51-56 is diagnosed.
  • step S116 the first microcomputer 42a determines whether or not the diagnosis in step S115 determines whether or not the first inverter 31a is normal. If there is an abnormality in the first inverter 31a, the first microcomputer 42a proceeds to step S117, sets the current limit ratio of the first inverter 31a to 0%, and prevents the first inverter 31a from being driven.
  • the first microcomputer 42a keeps the current limit ratio of the first inverter 31a at the initial value of 100% and normally drives and controls the first inverter 31a. If there is an abnormality in the first inverter 31a, the current limit ratio of the first inverter 31a is set to 0%, and the driving of the first inverter 31a is stopped. On the other hand, when the first inverter 31a is normal, the first microcomputer 42a proceeds from step S116 to step S118, and whether or not the communication abnormality flag Fce is 0, that is, with the second microcomputer 42b. Judge whether the communication is normal or not.
  • the first microcomputer 42a proceeds to step S119 and includes an open failure of the first ground connector 34a.
  • the first microcomputer 42a proceeds to step S120, and receives information from the second microcomputer 42b indicating that a circuit abnormality including an open failure of the second ground connector 34b has not occurred in the second drive control system. Determine if you have received it.
  • the first microcomputer 42a When the circuit of the second drive control system is normal, the first microcomputer 42a starts the drive control of the first inverter 31a while maintaining the current limit ratio of the first inverter 31a at the initial value of 100%. Therefore, the process proceeds to step S122.
  • the first microcomputer 42a determines in step S118 that there is an abnormality in communication with the second microcomputer 42b, the first microcomputer 42a proceeds to step S121, and in step S120, the second drive control system has a circuit abnormality. Also when it is determined that the above is occurring, the process proceeds to step S121.
  • step S121 the first microcomputer 42a sets the current limit ratio of the first inverter 31a to a value smaller than the initial value (100%) and larger than 0%, for example, 60%. If there is an abnormality in the communication with the second microcomputer 42b, the first microcomputer 42a cannot acquire the information regarding the operating state of the second drive control system from the second microcomputer 42b.
  • the information regarding the operating state of the second drive control system includes information on circuit abnormalities in the second drive control system such as an open failure of the second ground connector 34b, information on torque generated in the second drive control system, and the like. .. Therefore, if there is an abnormality in the communication with the second microcomputer 42b, the first microcomputer 42a can recognize the occurrence of such a failure even if the second ground connector 34b has an open failure. become unable.
  • the first microcomputer 42a implements a current limit that limits the current of the first inverter 31a to a lower level than usual as a fail-safe process. Then, the drive of the first inverter 31a, that is, the setting to generate the steering assist force by the first winding set 13a is performed.
  • the second microcomputer 42b sets the current limit ratio of the second inverter 31b to 0% by the same procedure as the flowcharts of FIGS. 4 and 5.
  • the first microcomputer 42a performs the process of step S121 at the time of communication abnormality, the first microcomputer 42a performs the process of setting the current limit ratio of the second inverter 31b to 0%, and the first microcomputer 42a performs the process of the first inverter 31a in step S121.
  • the first microcomputer 42a issues a command to switch the power relay 38a from off to on in step S122, and then proceeds to step S123 after waiting for a predetermined time (for example, 10 ms) to elapse.
  • step S123 the first microcomputer 42a starts energization control of the first inverter 31a, which PWM-controls the on / off of the N-channel type MOSFET 51-56 of the first inverter 31a based on a torque command or the like.
  • the first microcomputer 42a can diagnose the presence or absence of an open failure of the first ground connector 34a from the output of the first current detection circuit 45a after the drive of the first inverter 31a is started.
  • a current can flow in both directions in the first rectification control element 47a.
  • the current flowing through the first power supply circuit 44a and the like flows from the common ground 49 to the first ground connector 34a via the resistor R1a.
  • the first ground connector 34a fails to open, the current flowing through the first inverter 31a cannot flow toward the first ground connector 34a, but flows into the common ground 49 via the resistor R1a, and the common ground. It flows from 49 to the second ground connector 34b via the resistor R1b of the second system. That is, the direction in which the current flows in the resistor R1a is reversed depending on whether the first ground connector 34a is open-failed or normal, the potential difference in the resistor R1a becomes 0V in the normal state, and the first ground connector 34a When an open failure occurs, the voltage becomes a predetermined positive voltage.
  • the first microcomputer 42a determines the potential difference of the resistor R1a based on the output of the first current detection circuit 45a, and the first ground connector 34a is open-failed or normal. You can diagnose if there is.
  • the second microcomputer 42b also diagnoses the presence or absence of an open failure of the second ground connector 34b based on the direction in which the current flows in the resistor R1b after the drive of the second inverter 31b is started. be able to.
  • the microcomputers 42a and 42b can detect the presence or absence of an abnormality (specifically, an open failure) of the ground connectors 34a and 34b with high accuracy before starting the driving of the inverters 31a and 31b.
  • the microcomputers 42a and 42b can diagnose the presence or absence of such a short failure. ..
  • the electric motor 13 is normally driven without detecting the open failure of the ground connectors 34a and 34b due to a short failure of the N-channel MOSFETs 47a2 and 47b2. It can be suppressed from being controlled.
  • the rectifier control elements 47a and 47b can be configured by a parallel connection circuit of a diode and a switch element instead of being composed of a MOSFET having a parasitic diode.
  • the NPN transistors Tra and Trb as the switch elements of the current detection circuits 45a and 45b can be omitted, and the switch elements are not limited to the NPN transistors.
  • the power supply relays 38a and 38b can be omitted. Further, the power supply relays 38a and 38b are not limited to the MOSFET, and the installation direction of the drain source of the MOSFET is not limited to the direction shown in FIG.
  • the resistors R1a and R1b can be omitted, and the resistors R1a and R1b may be arranged upstream or downstream of the rectification control elements 47a and 47b. Further, the capacitors C1a and C1b connected in parallel with the rectifying control elements 47a and 47b can be omitted.
  • the power supply voltage of the current detection circuits 45a and 45b is not limited to 5V and can be set arbitrarily.
  • the drive control device for an electric motor according to the present invention is not limited to the application to an electric power steering device, and can be applied to a device using an electric motor as an actuator such as an electric brake device.
  • 13 Electric motor, 13a ... First winding set, 13b ... Second winding set, 14 ... EPS control unit (drive control device), 17a, 17b ... Battery, 31a ... First inverter (first drive circuit), 31b ... 2nd inverter (second drive circuit), 32a ... 1st control circuit, 32b ... 2nd control circuit, 33a ... 1st power supply connector, 33b ... 2nd power supply connector, 34a ... 1st ground connector, 34b ... 2 ground connector, 38a ... 1st power supply relay, 38b ... 2nd power supply relay, 40a1 ... 1st branch point, 40b1 ... 2nd branch point, 41a ... 1st switch element, 41b ...
  • 2nd switch element 41a2, 41b2 ... N-channel MOSFET, 42a ... 1st microcomputer, 42b ... 2nd microcomputer, 45a ... 1st current detection circuit, 45b ... 2nd current detection circuit, 47a, 47b ... Rectification control element, 47a1, 47b1 ... Parasitic diode (No. 1) 1, 2nd rectifying element), 47a2, 47b2 ... N channel MOSFET (3rd and 4th switch elements), 49 ... Common ground, Tra, Trb ... NPN transistor (5th and 6th switch elements), R1a, R1b ... Resistors (3rd and 4th current detection elements), R2a, R2b ... Resistors (1st and 2nd current detection elements), R3a, R3b ... Resistors (1st and 2nd current detection elements)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Steering Mechanism (AREA)

Abstract

This drive control device for an electric motor comprises a first system that drives a first winding group and a second system that drives a second winding group. A control circuit of each system is connected to an internal shared ground; the shared ground and a ground of a drive circuit of each system is connected to a ground connector of that system; a switch element is disposed between the ground connector of each system and a branching point of the ground of the drive circuit and the shared ground; on each line connecting the branching point and the shared ground, a rectification element is provided that causes current to flow from the shared ground to the ground connector; and on each line connecting an intermediate point between the rectification element and the branching point to a positive power source, a current detection element is provided.

Description

電動モータの駆動制御装置Electric motor drive control device
 本発明は、第1巻線組及び第2巻線組を備えた電動モータを駆動制御する電動モータの駆動制御装置に関する。 The present invention relates to a drive control device for an electric motor that drives and controls an electric motor including a first winding set and a second winding set.
 特許文献1のモータ制御装置は、駆動回路と組み合わせて設けられるマイクロコンピュータを含んで構成されるECU(Electronic Control Unit)を2系統備え、各ECUは、個別の外部電源に接続され、各外部電源からの電圧を一定値に調節し、属するマイクロコンピュータに動作電圧として供給する定電圧回路を有する。 The motor control device of Patent Document 1 includes two ECUs (Electronic Control Units) including a microcomputer provided in combination with a drive circuit, and each ECU is connected to an individual external power supply and is connected to each external power supply. It has a constant voltage circuit that adjusts the voltage from to to a constant value and supplies it as an operating voltage to the microcomputer to which it belongs.
 ここで、駆動回路と外部電源の低電位側は、各ECU毎に電源グランド線で接続され、また、電源グランド線と駆動回路の低電位側とは、各ECU毎に内部グランドを介して接続されている。
 そして、各ECUのマイクロコンピュータは、属するECUの動作電圧を基準として得られる各内部グランドのグランド電圧に基づいて、グランド異常を検出する異常検出部をそれぞれ備える。
Here, the drive circuit and the low potential side of the external power supply are connected by a power supply ground line for each ECU, and the power supply ground line and the low potential side of the drive circuit are connected via an internal ground for each ECU. Has been done.
Then, the microcomputer of each ECU includes an abnormality detection unit that detects a ground abnormality based on the ground voltage of each internal ground obtained with reference to the operating voltage of the ECU to which the ECU belongs.
特開2018-042403号公報JP-A-2018-042403
 ところで、制御回路の内部グランドを系統間で共通化した場合、第1系統のグランドコネクタにオープン故障が発生すると、第1系統の駆動回路に流れた電流が共通の内部グランドを介して第2系統のグランドコネクタに流れる場合がある。
 第2系統のグランドコネクタには、自系統の駆動回路を流れた電流も流れるため、第1系統のグランドコネクタにオープン故障が発生しているにも関わらず、第1系統の駆動回路の通電制御が通常に継続されると、第2系統のグランドコネクタに電流容量を超える電流が流れ続けることで第2系統のグランドコネクタが過熱し、連鎖的な異常が生じる可能性があった。
 ここで、グランドコネクタのオープン故障を検出できれば、連鎖的な異常が生じる前に対策を実施することが可能となる。
By the way, when the internal ground of the control circuit is shared between the systems, when an open failure occurs in the ground connector of the first system, the current flowing through the drive circuit of the first system flows through the common internal ground to the second system. It may flow to the ground connector of.
Since the current flowing through the drive circuit of the own system also flows through the ground connector of the second system, the energization control of the drive circuit of the first system is performed even though the ground connector of the first system has an open failure. If the above is continued normally, the ground connector of the second system may be overheated due to the continuous flow of the current exceeding the current capacity to the ground connector of the second system, which may cause a chain abnormality.
Here, if an open failure of the ground connector can be detected, it is possible to take countermeasures before a chain abnormality occurs.
 本発明は、従来の実情に鑑みてなされたものであり、その目的は、グランドコネクタのオープン故障の有無を検出できる、電動モータの駆動制御装置を提供することにある。 The present invention has been made in view of the conventional circumstances, and an object of the present invention is to provide a drive control device for an electric motor that can detect the presence or absence of an open failure of a ground connector.
 本発明に係る電動モータの駆動制御装置は、その1つの態様において、各系統の制御回路を内部の共通グランドに接続し、各系統のグランドコネクタそれぞれには、共通グランド及び自系統の駆動回路のグランドが接続され、各系統のグランドコネクタから、駆動回路のグランドと共通グランドとの分岐点までの間にスイッチ素子をそれぞれ配置し、前記分岐点と共通グランドとを結ぶラインそれぞれに、共通グランドから各グランドコネクタに向けて電流を流す整流素子を有し、整流素子と分岐点との間と、正電源とを結ぶラインそれぞれに電流検出素子を有する。 In one embodiment of the electric motor drive control device according to the present invention, the control circuit of each system is connected to the internal common ground, and the ground connector of each system has a common ground and a drive circuit of its own system. The ground is connected, and switch elements are arranged between the ground connector of each system and the branch point between the ground of the drive circuit and the common ground, and from the common ground to each line connecting the branch point and the common ground. It has a rectifying element that allows current to flow toward each ground connector, and has a current detecting element in each of the lines connecting the rectifying element and the branch point and the positive power supply.
 本発明によれば、グランドコネクタのオープン故障を検出でき、グランドコネクタの連鎖的な故障を抑止することが可能になる。 According to the present invention, it is possible to detect an open failure of the ground connector and suppress a chain failure of the ground connector.
電動パワーステアリング装置の概略構成図である。It is a schematic block diagram of an electric power steering apparatus. 電動モータの駆動制御装置の回路図である。It is a circuit diagram of the drive control device of an electric motor. 駆動制御装置における第1インバータ、第2インバータ及び電動モータの巻線組を詳細に示す回路図である。It is a circuit diagram which shows in detail the winding set of the 1st inverter, the 2nd inverter and the electric motor in a drive control device. グランドコネクタの診断処理を含む制御手順を示すフローチャートである。It is a flowchart which shows the control procedure including the diagnostic process of a ground connector. グランドコネクタの診断処理を含む制御手順を示すフローチャートである。It is a flowchart which shows the control procedure including the diagnostic process of a ground connector.
 以下、添付した図面を参照し、本発明の実施形態を詳述する。
 以下では、本発明に係る電動モータの駆動制御装置の一態様として、自動車用の電動パワーステアリング装置に適用した例を示す。
Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings.
Hereinafter, as one aspect of the drive control device for the electric motor according to the present invention, an example applied to the electric power steering device for automobiles will be shown.
 図1は、電動パワーステアリング装置100の概略構成を示す。
 電動パワーステアリング装置100は、ステアリングホイール10、舵角センサ11、操舵トルクセンサ12、電動モータ13、EPS制御ユニット14、自車位置検出センサ15、自動運転コントローラ16、及びバッテリ17a,17bなどを有する。
FIG. 1 shows a schematic configuration of the electric power steering device 100.
The electric power steering device 100 includes a steering wheel 10, a steering angle sensor 11, a steering torque sensor 12, an electric motor 13, an EPS control unit 14, a vehicle position detection sensor 15, an automatic driving controller 16, and batteries 17a and 17b. ..
 ステアリングシャフト18を内包するステアリングコラム19は、舵角センサ11、操舵トルクセンサ12、電動モータ13、及び減速機20を備える。
 電動モータ13の駆動力は、減速機20を介してステアリングシャフト18に伝達し、ステアリングシャフト18を回転させる。
The steering column 19 including the steering shaft 18 includes a steering angle sensor 11, a steering torque sensor 12, an electric motor 13, and a speed reducer 20.
The driving force of the electric motor 13 is transmitted to the steering shaft 18 via the speed reducer 20 to rotate the steering shaft 18.
 ステアリングシャフト18は先端にピニオンギア21を備え、ピニオンギア21が回転すると、ラック軸22が進行方向左右に水平移動することで、転舵輪23,23に舵角を与える。
 運転者がステアリング操作を行う場合、EPS制御ユニット14は、操舵トルクセンサ12による操舵トルクの検出値や車速の情報などに基づいて電動モータ13を駆動制御して、操舵補助力を発生させる。
The steering shaft 18 is provided with a pinion gear 21 at its tip, and when the pinion gear 21 rotates, the rack shaft 22 moves horizontally to the left and right in the traveling direction to give steering angles to the steering wheels 23 and 23.
When the driver performs the steering operation, the EPS control unit 14 drives and controls the electric motor 13 based on the detection value of the steering torque by the steering torque sensor 12 and the information of the vehicle speed to generate the steering assist force.
 一方、自動運転を行う場合、自動運転コントローラ16は、自車位置検出センサ15から取得した位置情報などに基づき舵角指令を求める。
 そして、EPS制御ユニット14は、自動運転コントローラ16から自動運転の要求信号及び舵角の指令信号を取得し、舵角指令に実際の舵角を近づけるように電動モータ13を駆動制御する。
On the other hand, when performing automatic driving, the automatic driving controller 16 obtains a steering angle command based on position information or the like acquired from the own vehicle position detection sensor 15.
Then, the EPS control unit 14 acquires the request signal for automatic operation and the command signal for the steering angle from the automatic operation controller 16, and drives and controls the electric motor 13 so as to bring the actual steering angle closer to the steering angle command.
 図2は、電動モータ13の駆動制御装置であるEPS制御ユニット14の回路構成を示す図である。なお、図2は、EPS制御ユニット14への電源供給、及び、電動モータ13の駆動制御に関係する要部を示す。
 電動モータ13は、3相同期電動機であって、U相コイル、V相コイル及びW相コイルからなる巻線組を、第1巻線組13aと第2巻線組13bの2組有する。
FIG. 2 is a diagram showing a circuit configuration of an EPS control unit 14 which is a drive control device for the electric motor 13. Note that FIG. 2 shows the main parts related to the power supply to the EPS control unit 14 and the drive control of the electric motor 13.
The electric motor 13 is a three-phase synchronous motor, and has two winding sets including a U-phase coil, a V-phase coil, and a W-phase coil, a first winding set 13a and a second winding set 13b.
 EPS制御ユニット14は、第1巻線組13aを駆動制御する第1駆動制御系(第1系統)と、第2巻線組13bを駆動制御する第2駆動制御系(第2系統)との2つの駆動制御系を有し、各駆動制御系は、マイクロコンピュータを含む制御回路32a,32b、駆動回路としてのインバータ31a,31b、電源コネクタ33a,33b、グランドコネクタ34a,34bなどをそれぞれ有する。
 以下、EPS制御ユニット14の各駆動制御系を詳述する。
The EPS control unit 14 includes a first drive control system (first system) that drives and controls the first winding set 13a, and a second drive control system (second system) that drives and controls the second winding set 13b. It has two drive control systems, and each drive control system has control circuits 32a and 32b including a microcomputer, inverters 31a and 31b as drive circuits, power supply connectors 33a and 33b, ground connectors 34a and 34b, and the like, respectively.
Hereinafter, each drive control system of the EPS control unit 14 will be described in detail.
 EPS制御ユニット14の筐体30は、第1駆動回路としての第1インバータ31a、第2駆動回路としての第2インバータ31b、第1制御回路32a、第2制御回路32bなどを収納する。
 第1インバータ31a及び第1制御回路32aは、第1巻線組13aを駆動制御する第1駆動制御系を構成し、第2インバータ31b及び第2制御回路32bは、第2巻線組13bを駆動制御する第2駆動制御系を構成する。
The housing 30 of the EPS control unit 14 houses the first inverter 31a as the first drive circuit, the second inverter 31b as the second drive circuit, the first control circuit 32a, the second control circuit 32b, and the like.
The first inverter 31a and the first control circuit 32a constitute a first drive control system that drives and controls the first winding set 13a, and the second inverter 31b and the second control circuit 32b form a second winding set 13b. A second drive control system for drive control is configured.
 第1制御回路32aは、第1マイクロコンピュータ42a、第1プリドライバ回路43a、第1電源回路44aなどを有し、第2制御回路32bは、第2マイクロコンピュータ42b、第2プリドライバ回路43b、第2電源回路44bなどを有する。
 第1マイクロコンピュータ42a及び第2マイクロコンピュータ42bは、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などをそれぞれ備える。
The first control circuit 32a includes a first microcomputer 42a, a first predriver circuit 43a, a first power supply circuit 44a, and the like, and the second control circuit 32b includes a second microcomputer 42b, a second predriver circuit 43b, and the like. It has a second power supply circuit 44b and the like.
The first microcomputer 42a and the second microcomputer 42b each include a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
 また、筐体30は、外部のバッテリ17a,17bと内部の電気回路とを接続するための第1電源コネクタ33a、第1グランドコネクタ34a、第2電源コネクタ33b、及び第2グランドコネクタ34bを備える。
 第1電源コネクタ33aと第1グランドコネクタ34aとが対をなして第1バッテリ17aから第1駆動制御系に電力を供給し、第2電源コネクタ33bと第2グランドコネクタ34bとが対をなして第2バッテリ17bから第2駆動制御系に電力を供給する。
Further, the housing 30 includes a first power supply connector 33a, a first ground connector 34a, a second power supply connector 33b, and a second ground connector 34b for connecting the external batteries 17a and 17b to the internal electric circuit. ..
The first power supply connector 33a and the first ground connector 34a form a pair to supply power from the first battery 17a to the first drive control system, and the second power supply connector 33b and the second ground connector 34b form a pair. Power is supplied from the second battery 17b to the second drive control system.
 第1電源コネクタ33aは、第1電源ハーネス35aを介して第1バッテリ17aのプラス端子(換言すれば、正極)に接続され、第1グランドコネクタ34aは、第1グランドハーネス36aを介して第1バッテリ17aのマイナス端子(換言すれば、負極)に接続される。
 第2電源コネクタ33bは、第2電源ハーネス35bを介して第2バッテリ17bのプラス端子に接続され、第2グランドコネクタ34bは、第2グランドハーネス36bを介して第2バッテリ17bのマイナス端子に接続される。
The first power connector 33a is connected to the positive terminal (in other words, the positive electrode) of the first battery 17a via the first power harness 35a, and the first ground connector 34a is connected to the first ground harness 36a via the first ground harness 36a. It is connected to the negative terminal (in other words, the negative electrode) of the battery 17a.
The second power connector 33b is connected to the positive terminal of the second battery 17b via the second power harness 35b, and the second ground connector 34b is connected to the negative terminal of the second battery 17b via the second ground harness 36b. Will be done.
 筐体30内において、第1電源コネクタ33aは、電源ライン37aを介して第1制御回路32aに接続される。
 また、電源ライン37aには、第1インバータ31aの電源端子31a1が接続される。
In the housing 30, the first power supply connector 33a is connected to the first control circuit 32a via the power supply line 37a.
Further, the power supply terminal 31a1 of the first inverter 31a is connected to the power supply line 37a.
 そして、電源ライン37aと第1インバータ31aの電源端子31a1との間に、入力信号によりスイッチ素子を開閉して、第1バッテリ17aから第1インバータ31aへの電力供給のオン/オフを制御する第1電源リレー38aを配置してある。
 第1電源リレー38aは、例えばNチャンネルMOSFETなどの半導体を用いる半導体リレーである。
Then, the switch element is opened and closed by an input signal between the power supply line 37a and the power supply terminal 31a1 of the first inverter 31a to control the on / off of the power supply from the first battery 17a to the first inverter 31a. 1 Power supply relay 38a is arranged.
The first power supply relay 38a is a semiconductor relay that uses a semiconductor such as an N-channel MOSFET.
 第1制御回路32aの第1マイクロコンピュータ42aは、第1電源リレー38aに制御信号を出力して、第1電源リレー38aのオン/オフ、換言すれば、第1バッテリ17aから第1インバータ31aへの電力の供給/遮断を切り換える。
 第1電源リレー38aを構成するNチャンネルMOSFETの寄生ダイオード38a1(内部ダイオード、ボディダイオード)は、カソードが電源ライン37aに接続され、アノードが第1インバータ31aの電源端子31a1に接続される。
 なお、寄生ダイオードは、内部ダイオードやボディダイオードとも呼ばれる。
The first microcomputer 42a of the first control circuit 32a outputs a control signal to the first power relay 38a to turn on / off the first power relay 38a, in other words, from the first battery 17a to the first inverter 31a. Switch the power supply / cutoff of.
In the parasitic diode 38a1 (internal diode, body diode) of the N-channel MOSFET constituting the first power supply relay 38a, the cathode is connected to the power supply line 37a and the anode is connected to the power supply terminal 31a1 of the first inverter 31a.
The parasitic diode is also called an internal diode or a body diode.
 また、第1グランドコネクタ34aには、グランドライン40aを介して共通グランド49及び第1インバータ31aのグランドが接続される。
 共通グランド49は、筐体30内に設けた内部グランドであって、第1制御回路32aのグランド及び第2制御回路32bのグランドが接続される。
Further, the common ground 49 and the ground of the first inverter 31a are connected to the first ground connector 34a via the ground line 40a.
The common ground 49 is an internal ground provided in the housing 30, and the ground of the first control circuit 32a and the ground of the second control circuit 32b are connected to each other.
 第1制御回路32aと第2制御回路32bとが共通グランド49に接続されることで、第1制御回路32aのグランドと第2制御回路32bのグランドとに電位差が生じることが抑制される。
 これにより、第1マイクロコンピュータ42a及び第2マイクロコンピュータ42bが、グランドの異常を誤って検出することを抑止できる。
By connecting the first control circuit 32a and the second control circuit 32b to the common ground 49, it is possible to suppress the occurrence of a potential difference between the ground of the first control circuit 32a and the ground of the second control circuit 32b.
As a result, it is possible to prevent the first microcomputer 42a and the second microcomputer 42b from erroneously detecting an abnormality in the ground.
 グランドライン40aには、第1インバータ31aのグランド端子31a2が接続され、グランドライン40aと第1インバータ31aのグランド端子31a2との間に、電動モータ13の第1巻線組13aに流れる電流、換言すれば、第1インバータ31aの母線電流を検出するための第1シャント抵抗器39aが配置されている。 The ground terminal 31a2 of the first inverter 31a is connected to the ground line 40a, and the current flowing through the first winding set 13a of the electric motor 13 between the ground line 40a and the ground terminal 31a2 of the first inverter 31a, in other words. Then, the first shunt resistor 39a for detecting the bus current of the first inverter 31a is arranged.
 また、グランドライン40aの第1シャント抵抗器39aの一端が接続される部分、換言すれば、第1インバータ31aのグランドと共通グランド49との第1分岐点40a1と、共通グランド49とを結ぶグランドライン40aには、整流素子とスイッチ素子とを並列接続してなる第1整流制御素子47aを設けてある。
 第1整流制御素子47aは、例えば、寄生ダイオード47a1を有するNチャンネルMOSFET47a2で構成される。
Further, a portion to which one end of the first shunt resistor 39a of the ground line 40a is connected, in other words, a ground connecting the first branch point 40a1 between the ground of the first inverter 31a and the common ground 49 and the common ground 49. The line 40a is provided with a first rectifying control element 47a in which a rectifying element and a switch element are connected in parallel.
The first rectification control element 47a is composed of, for example, an N-channel MOSFET 47a2 having a parasitic diode 47a1.
 ここで、寄生ダイオード47a1のカソードを第1グランドコネクタ34aに接続し、アノードを共通グランド49に接続してある。
 つまり、NチャンネルMOSFET47a2の寄生ダイオード47a1は、共通グランド49から第1グランドコネクタ34aに向けて電流を流し、共通グランド49に向かう電流を遮断する第1整流素子である。
Here, the cathode of the parasitic diode 47a1 is connected to the first ground connector 34a, and the anode is connected to the common ground 49.
That is, the parasitic diode 47a1 of the N-channel MOSFET 47a2 is a first rectifying element that allows a current to flow from the common ground 49 toward the first ground connector 34a and cuts off the current toward the common ground 49.
 また、寄生ダイオード47a1に並列接続された第3スイッチ素子としてのNチャンネルMOSFET47a2がオンの場合、電流は共通グランド49に向けて流れることができる。
 第1整流制御素子47aを構成するNチャンネルMOSFET47a2のゲートは、第1マイクロコンピュータ42aのデジタル出力端子DOに接続される。
Further, when the N-channel MOSFET 47a2 as the third switch element connected in parallel to the parasitic diode 47a1 is on, the current can flow toward the common ground 49.
The gate of the N-channel MOSFET 47a2 constituting the first rectification control element 47a is connected to the digital output terminal DO of the first microcomputer 42a.
 第1マイクロコンピュータ42aは、デジタル出力端子DOから出力する制御信号によってNチャンネルMOSFET47a2のオン/オフを切り換える。
 また、第1整流制御素子47aと共通グランド49との間のグランドライン40aに第3電流検出素子としての抵抗器R1aを設け、抵抗器R1aと第1整流制御素子47aとの直列接続回路と並列にコンデンサC1aを設けてある。
The first microcomputer 42a switches the N-channel MOSFET 47a2 on / off according to the control signal output from the digital output terminal DO.
Further, a resistor R1a as a third current detection element is provided on the ground line 40a between the first rectification control element 47a and the common ground 49, and is parallel to the series connection circuit of the resistor R1a and the first rectification control element 47a. Is provided with a capacitor C1a.
 なお、抵抗器R1aと第1整流制御素子47aとの位置関係を入れ替え、抵抗器R1aと共通グランド49との間のグランドライン40aに、第1整流制御素子47aを配置することができる。
 第2の駆動制御系の電源供給回路は、上述した第1の駆動制御系と同様の構成を有する。
The positional relationship between the resistor R1a and the first rectification control element 47a can be exchanged, and the first rectification control element 47a can be arranged on the ground line 40a between the resistor R1a and the common ground 49.
The power supply circuit of the second drive control system has the same configuration as the first drive control system described above.
 つまり、第2電源コネクタ33bは、筐体30内において、電源ライン37bを介して第2制御回路32bに接続される。
 また、電源ライン37bには、第2インバータ31bの電源端子31b1が接続され、電源ライン37bと第2インバータ31bの電源端子31b1との間に、入力信号によりスイッチ素子を開閉して、第2バッテリ17bから第2インバータ31bへの電力供給のオン/オフを制御する第2電源リレー38bを配置してある。
That is, the second power supply connector 33b is connected to the second control circuit 32b in the housing 30 via the power supply line 37b.
Further, the power supply terminal 31b1 of the second inverter 31b is connected to the power supply line 37b, and the switch element is opened and closed by an input signal between the power supply line 37b and the power supply terminal 31b1 of the second inverter 31b to open and close the second battery. A second power supply relay 38b that controls on / off of power supply from the 17b to the second inverter 31b is arranged.
 第2電源リレー38bは、例えばNチャンネルMOSFETなどの半導体を用いる半導体リレーである。
 第2制御回路32bの第2マイクロコンピュータ42bは、第2電源リレー38bに制御信号を出力して、第2電源リレー38bのオン/オフ、換言すれば、第2バッテリ17bから第2インバータ31bへの電力の供給/遮断を切り換える。
The second power supply relay 38b is a semiconductor relay that uses a semiconductor such as an N-channel MOSFET.
The second microcomputer 42b of the second control circuit 32b outputs a control signal to the second power relay 38b to turn on / off the second power relay 38b, in other words, from the second battery 17b to the second inverter 31b. Switch the power supply / cutoff of.
 なお、第2電源リレー38bを構成するNチャンネルMOSFETの寄生ダイオード38b1は、カソードが電源ライン37bに接続され、アノードが第2インバータ31bの電源端子31b1に接続される。
 第2グランドコネクタ34bには、グランドライン40bを介して共通グランド49及び第2インバータ31bのグランドが接続される。
The cathode of the parasitic diode 38b1 of the N-channel MOSFET constituting the second power supply relay 38b is connected to the power supply line 37b, and the anode is connected to the power supply terminal 31b1 of the second inverter 31b.
The common ground 49 and the ground of the second inverter 31b are connected to the second ground connector 34b via the ground line 40b.
 グランドライン40bには、第2インバータ31bのグランド端子31b2が接続され、グランドライン40bと第2インバータ31bのグランド端子31b2との間に、電動モータ13の第2巻線組13bに流れる電流、換言すれば、第2インバータ31bの母線電流を検出するための第2シャント抵抗器39bが配置されている。
 また、グランドライン40bの第2シャント抵抗器39bの一端が接続される部分、換言すれば、第2インバータ31bのグランドと共通グランド49との第2分岐点40b1と、共通グランド49との間のグランドライン40bには、整流素子とスイッチ素子とを並列接続してなる第2整流制御素子47bを設けてある。
The ground terminal 31b2 of the second inverter 31b is connected to the ground line 40b, and the current flowing through the second winding set 13b of the electric motor 13 between the ground line 40b and the ground terminal 31b2 of the second inverter 31b, in other words. Then, a second shunt resistor 39b for detecting the bus current of the second inverter 31b is arranged.
Further, a portion of the ground line 40b to which one end of the second shunt resistor 39b is connected, in other words, between the second branch point 40b1 between the ground of the second inverter 31b and the common ground 49 and the common ground 49. The ground line 40b is provided with a second rectifying control element 47b formed by connecting a rectifying element and a switch element in parallel.
 第2整流制御素子47bは、例えば、寄生ダイオード47b1を有するNチャンネルMOSFET47b2で構成される。
 ここで、寄生ダイオード47b1のカソードを第2グランドコネクタ34bに接続し、アノードを共通グランド49に接続してある。
The second rectification control element 47b is composed of, for example, an N-channel MOSFET 47b2 having a parasitic diode 47b1.
Here, the cathode of the parasitic diode 47b1 is connected to the second ground connector 34b, and the anode is connected to the common ground 49.
 つまり、NチャンネルMOSFET47b2の寄生ダイオード47b1は、共通グランド49から第2グランドコネクタ34bに向けて電流を流し、共通グランド49に向かう電流を遮断する第2整流素子である。
 また、寄生ダイオード47b1に並列接続された第4スイッチ素子としてのNチャンネルMOSFET47b2がオンの場合、電流は共通グランド49に向けて流れることができる。
That is, the parasitic diode 47b1 of the N-channel MOSFET 47b2 is a second rectifying element that allows a current to flow from the common ground 49 toward the second ground connector 34b and cuts off the current toward the common ground 49.
Further, when the N-channel MOSFET 47b2 as the fourth switch element connected in parallel to the parasitic diode 47b1 is on, the current can flow toward the common ground 49.
 第2整流制御素子47bを構成するNチャンネルMOSFET47b2のゲートは、第2マイクロコンピュータ42bのデジタル出力端子DOに接続される。
 第2マイクロコンピュータ42bは、デジタル出力端子DOから出力する制御信号によってNチャンネルMOSFET47b2のオン/オフを切り換える。
The gate of the N-channel MOSFET 47b2 constituting the second rectification control element 47b is connected to the digital output terminal DO of the second microcomputer 42b.
The second microcomputer 42b switches the N-channel MOSFET 47b2 on / off according to the control signal output from the digital output terminal DO.
 また、第2整流制御素子47bと共通グランド49との間のグランドライン40bに第4電流検出素子としての抵抗器R1bを設け、抵抗器R1bと第2整流制御素子47bとの直列接続回路と並列にコンデンサC1bを設けてある。
 なお、抵抗器R1bと第2整流制御素子47bとの位置関係を入れ替え、抵抗器R1bと共通グランド49との間のグランドライン40bに、第2整流制御素子47bを配置することができる。
Further, a resistor R1b as a fourth current detection element is provided on the ground line 40b between the second rectification control element 47b and the common ground 49, and is parallel to the series connection circuit of the resistor R1b and the second rectification control element 47b. Is provided with a capacitor C1b.
The positional relationship between the resistor R1b and the second rectification control element 47b can be exchanged, and the second rectification control element 47b can be arranged on the ground line 40b between the resistor R1b and the common ground 49.
 また、第1グランドコネクタ34aから第1分岐点40a1までの間のグランドライン40aに、第1スイッチ素子41aを配置してある。
 第1スイッチ素子41aは、例えば、寄生ダイオード41a1を有するNチャンネルMOSFET41a2で構成され、寄生ダイオード41a1は、カソードが第1分岐点40a1に接続され、アノードが第1グランドコネクタ34aに接続される。
Further, the first switch element 41a is arranged on the ground line 40a between the first ground connector 34a and the first branch point 40a1.
The first switch element 41a is composed of, for example, an N-channel MOSFET 41a2 having a parasitic diode 41a1. In the parasitic diode 41a1, the cathode is connected to the first branch point 40a1 and the anode is connected to the first ground connector 34a.
 同様に、第2グランドコネクタ34bから第2分岐点40b1までの間のグランドライン40bに、第2スイッチ素子41bを配置してある。
 第2スイッチ素子41bは、例えば、寄生ダイオード41b1を有するNチャンネルMOSFET41b2で構成され、寄生ダイオード41b1は、カソードが第2分岐点40b1に接続され、アノードが第2グランドコネクタ34bに接続される。
Similarly, the second switch element 41b is arranged on the ground line 40b between the second ground connector 34b and the second branch point 40b1.
The second switch element 41b is composed of, for example, an N-channel MOSFET 41b2 having a parasitic diode 41b1, in which the cathode of the parasitic diode 41b1 is connected to the second branch point 40b1 and the anode is connected to the second ground connector 34b.
 第1マイクロコンピュータ42aは、デジタル出力端子DOから出力する制御信号によってNチャンネルMOSFET41a2のオン/オフを切り換え、第2マイクロコンピュータ42bは、デジタル出力端子DOから出力する制御信号によってNチャンネルMOSFET41b2のオン/オフを切り換える。
 次に、第1制御回路32a及び第2制御回路32bの構成を説明する。
The first microcomputer 42a switches the N-channel MOSFET 41a2 on / off by the control signal output from the digital output terminal DO, and the second microcomputer 42b turns on / off the N-channel MOSFET 41b2 by the control signal output from the digital output terminal DO. Toggle off.
Next, the configurations of the first control circuit 32a and the second control circuit 32b will be described.
 第1制御回路32aは、第1駆動制御系において第1インバータ31aの各スイッチ素子のオン/オフを制御する回路で、第1マイクロコンピュータ42a、第1プリドライバ回路43a、第1電源回路44a、第1電流検出回路45a、及び第1ダイオードDaなどを備えている。
 第2制御回路32bは、第2駆動制御系において第2インバータ31bの各スイッチ素子のオン/オフを制御する回路で、第2マイクロコンピュータ42b、第2プリドライバ回路43b、第2電源回路44b、第2電流検出回路45b、及び第2ダイオードDbなどを備えている。
The first control circuit 32a is a circuit that controls on / off of each switch element of the first inverter 31a in the first drive control system, and is a first microcomputer 42a, a first predriver circuit 43a, a first power supply circuit 44a, and the like. It includes a first current detection circuit 45a, a first diode Da, and the like.
The second control circuit 32b is a circuit that controls the on / off of each switch element of the second inverter 31b in the second drive control system, and is a second microcomputer 42b, a second predriver circuit 43b, a second power supply circuit 44b, and the like. It includes a second current detection circuit 45b, a second diode Db, and the like.
 第1マイクロコンピュータ42aと第2マイクロコンピュータ42bとは、基板内通信ラインで結ばれ、第1マイクロコンピュータ42a及び第2マイクロコンピュータ42bは、例えば、自系統における各種の異常情報やインバータ制御の情報などを他系統に送信する。
 プリドライバ回路43a,43bは、マイクロコンピュータ42a,42bからの指令に基づき、インバータ31a,31bの各スイッチ素子を駆動する信号を出力する。
The first microcomputer 42a and the second microcomputer 42b are connected by an in-board communication line, and the first microcomputer 42a and the second microcomputer 42b are, for example, various abnormality information in the own system, information on inverter control, and the like. Is sent to another system.
The pre-driver circuits 43a and 43b output signals for driving the switch elements of the inverters 31a and 31b based on commands from the microcomputers 42a and 42b.
 第1電源回路44aは、第1電源コネクタ33a、第1ダイオードDaを介して、第1バッテリ17aからの電力供給を受ける。
 第1電源回路44aは、車両のイグニッションスイッチ51aのオン操作などによる起動信号を取得すると起動し、第1バッテリ17aからの入力電源電圧を第1内部電源電圧Vaに変換する。
The first power supply circuit 44a receives power from the first battery 17a via the first power supply connector 33a and the first diode Da.
The first power supply circuit 44a is activated when it acquires a start signal such as by turning on the ignition switch 51a of the vehicle, and converts the input power supply voltage from the first battery 17a into the first internal power supply voltage Va.
 ここで、第1バッテリ17aからの入力電源電圧は例えば12Vで、第1内部電源電圧Vaは例えば5Vである。
 そして、第1電源回路44aは、第1内部電源電圧Vaを、第1マイクロコンピュータ42a、第1プリドライバ回路43a及び第1電流検出回路45aにそれぞれ供給する。
Here, the input power supply voltage from the first battery 17a is, for example, 12V, and the first internal power supply voltage Va is, for example, 5V.
Then, the first power supply circuit 44a supplies the first internal power supply voltage Va to the first microcomputer 42a, the first pre-driver circuit 43a, and the first current detection circuit 45a, respectively.
 第2電源回路44bは、第2電源コネクタ33b、第2ダイオードDbを介して第2バッテリ17bからの電力供給を受ける。
 第2電源回路44bは、車両のイグニッションスイッチ51bのオン操作などによる起動信号を取得すると起動し、第2バッテリ17bからの入力電源電圧を第2内部電源電圧Vbに変換する。
The second power supply circuit 44b receives power from the second battery 17b via the second power supply connector 33b and the second diode Db.
The second power supply circuit 44b is activated when it acquires a start signal such as by turning on the ignition switch 51b of the vehicle, and converts the input power supply voltage from the second battery 17b into the second internal power supply voltage Vb.
 ここで、第2バッテリ17bからの入力電源電圧は例えば12Vで、第2内部電源電圧Vbは例えば5Vである。
 そして、第2電源回路44bは、第2内部電源電圧Vbを、第2マイクロコンピュータ42b、第2プリドライバ回路43b及び第2電流検出回路45bにそれぞれ供給する。
Here, the input power supply voltage from the second battery 17b is, for example, 12V, and the second internal power supply voltage Vb is, for example, 5V.
Then, the second power supply circuit 44b supplies the second internal power supply voltage Vb to the second microcomputer 42b, the second predriver circuit 43b, and the second current detection circuit 45b, respectively.
 なお、イグニッションスイッチ51aとイグニッションスイッチ51bとは連動して動作するスイッチで、第1電源回路44aと第2電源回路44bとは略同時に起動するよう構成されている。
 第1電流検出回路45aは、第1電流検出素子としての抵抗器R2a,R3aと、第5スイッチ素子としてのNPNトランジスタTraとで構成される抵抗分圧回路である。
The ignition switch 51a and the ignition switch 51b are switches that operate in conjunction with each other, and the first power supply circuit 44a and the second power supply circuit 44b are configured to be activated substantially at the same time.
The first current detection circuit 45a is a resistance voltage divider circuit composed of resistors R2a and R3a as the first current detection element and an NPN transistor Tra as the fifth switch element.
 NPNトランジスタTraのコレクタは、抵抗器R2aを介して正電源としての第1電源回路44aの出力ラインに接続され、第1電流検出回路45aは、電源電圧を第1内部電源電圧Vaとする。
 NPNトランジスタTraのエミッタは、抵抗器R1aと第1整流制御素子47aとの直列回路と、第1分岐点40a1との間のグランドライン40aに、抵抗器R3aを介して接続される。
The collector of the NPN transistor Tra is connected to the output line of the first power supply circuit 44a as a positive power supply via the resistor R2a, and the first current detection circuit 45a sets the power supply voltage to the first internal power supply voltage Va.
The emitter of the NPN transistor Tra is connected to the ground line 40a between the series circuit of the resistor R1a and the first rectification control element 47a and the first branch point 40a1 via the resistor R3a.
 また、NPNトランジスタTraのエミッタと抵抗器R3aとの間と、第1マイクロコンピュータ42aのアナログ入力端子ADとが接続され、第1マイクロコンピュータ42aは、抵抗器R3aにかかる電圧の情報をA/D変換によって取得する。
 また、NPNトランジスタTraのベースは、第1マイクロコンピュータ42aのデジタル出力端子DOに接続され、第1マイクロコンピュータ42aは、デジタル出力端子DOから出力する制御信号によってNPNトランジスタTraのオン、オフを切り換える。
Further, the emitter of the NPN transistor Tra and the resistor R3a are connected to the analog input terminal AD of the first microcomputer 42a, and the first microcomputer 42a provides A / D information on the voltage applied to the resistor R3a. Obtained by conversion.
Further, the base of the NPN transistor Tra is connected to the digital output terminal DO of the first microcomputer 42a, and the first microcomputer 42a switches the NPN transistor Tra on and off according to the control signal output from the digital output terminal DO.
 なお、抵抗器R1a,R2a,R3aの抵抗値は、例えば、抵抗器R2aの抵抗値を10kΩ、抵抗器R3aの抵抗値を抵抗器R2aと同じ10kΩ、抵抗器R1aの抵抗値を0.1Ωとする。
 同様に、第2電流検出回路45bは、第2電流検出素子としての抵抗器R2b,R3bと、第6スイッチ素子としてのNPNトランジスタTrbとで構成される抵抗分圧回路である。
Regarding the resistance values of the resistors R1a, R2a, and R3a, for example, the resistance value of the resistor R2a is 10 kΩ, the resistance value of the resistor R3a is 10 kΩ, which is the same as that of the resistor R2a, and the resistance value of the resistor R1a is 0.1 Ω. ..
Similarly, the second current detection circuit 45b is a resistance voltage divider circuit composed of resistors R2b and R3b as the second current detection element and an NPN transistor Trb as the sixth switch element.
 NPNトランジスタTrbのコレクタは、抵抗器R2bを介して正電源としての第2電源回路44bの出力ラインに接続され、第2電流検出回路45bは、電源電圧を第2内部電源電圧Vbとする。
 NPNトランジスタTrbのエミッタは、抵抗器R1bと第2整流制御素子47bとの直列回路と第2分岐点40b1との間のグランドライン40bに、抵抗器R3bを介して接続される。
The collector of the NPN transistor Trb is connected to the output line of the second power supply circuit 44b as a positive power supply via the resistor R2b, and the second current detection circuit 45b sets the power supply voltage to the second internal power supply voltage Vb.
The emitter of the NPN transistor Trb is connected to the ground line 40b between the series circuit of the resistor R1b and the second rectification control element 47b and the second branch point 40b1 via the resistor R3b.
 また、NPNトランジスタTrbのエミッタと抵抗器R3bとの間と、第2マイクロコンピュータ42bのアナログ入力端子ADとが接続され、第2マイクロコンピュータ42bは、抵抗器R3bにかかる電圧の情報をA/D変換によって取得する。
 また、NPNトランジスタTrbのベースは、第2マイクロコンピュータ42bのデジタル出力端子DOに接続され、第2マイクロコンピュータ42bは、デジタル出力端子DOから出力する制御信号によってNPNトランジスタTrbのオン、オフを切り換える。
Further, the emitter of the NPN transistor Trb and the resistor R3b are connected to the analog input terminal AD of the second microcomputer 42b, and the second microcomputer 42b A / D outputs the voltage information applied to the resistor R3b. Obtained by conversion.
Further, the base of the NPN transistor Trb is connected to the digital output terminal DO of the second microcomputer 42b, and the second microcomputer 42b switches the NPN transistor Trb on and off according to the control signal output from the digital output terminal DO.
 なお、抵抗器R1b,R2b,R3bの抵抗値は、例えば、抵抗器R2bの抵抗値を10kΩ、抵抗器R3bの抵抗値を抵抗器R2bと同じ10kΩ、抵抗器R1bの抵抗値を0.1Ωとする。
 後述するように、第1マイクロコンピュータ42aは、NチャンネルMOSFET47a2をオフ操作した状態で、第1電流検出回路45aを用いて検出した電流に基づき、第1グランドコネクタ34aの異常の有無、詳細には、オープン故障の有無を診断する。
The resistance values of the resistors R1b, R2b, and R3b are, for example, 10 kΩ for the resistance value of the resistor R2b, 10 kΩ for the resistance value of the resistor R3b, and 0.1 Ω for the resistance value of the resistor R1b. ..
As will be described later, the first microcomputer 42a has the N-channel MOSFET 47a2 turned off, and based on the current detected by the first current detection circuit 45a, the presence or absence of an abnormality in the first ground connector 34a, in detail, , Diagnose the presence or absence of open failure.
 同様に、第2マイクロコンピュータ42bは、NチャンネルMOSFET47b2をオフ操作した状態で、第2電流検出回路45bを用いて検出した電流に基づき、第2グランドコネクタ34bの異常の有無、詳細には、オープン故障の有無を診断する。
 なお、グランドコネクタ34a,34bのオープン故障とは、グランドコネクタ34a,34bとバッテリ17a,17bのマイナス端子とを結ぶグランドハーネス36a,36bの外れや断線などによって、バッテリ17a,17bのマイナス端子とEPS制御ユニット14との間で電流が遮断される異常である。
Similarly, the second microcomputer 42b has the N-channel MOSFET 47b2 turned off, and based on the current detected by the second current detection circuit 45b, the presence or absence of an abnormality in the second ground connector 34b, in detail, is open. Diagnose the presence or absence of failure.
An open failure of the ground connectors 34a and 34b means that the negative terminals of the batteries 17a and 17b and the EPS are caused by disconnection or disconnection of the ground harnesses 36a and 36b connecting the ground connectors 34a and 34b and the negative terminals of the batteries 17a and 17b. This is an abnormality in which the current is cut off from the control unit 14.
 更に、第1マイクロコンピュータ42aは、NチャンネルMOSFET41a2及びNチャンネルMOSFET47a2をオフ操作した状態で、第1電流検出回路45aを用いて検出した電流に基づき、第1整流制御素子47aのショート故障の有無を診断する。
 同様に、第2マイクロコンピュータ42bは、NチャンネルMOSFET41b2及びNチャンネルMOSFET47b2をオフ操作した状態で、第2電流検出回路45bを用いて検出した電流に基づき、第2整流制御素子47bのショート故障の有無を診断する。
Further, the first microcomputer 42a determines the presence or absence of a short-circuit failure of the first rectification control element 47a based on the current detected by the first current detection circuit 45a in a state where the N-channel MOSFET 41a2 and the N-channel MOSFET 47a2 are turned off. Diagnose.
Similarly, the second microcomputer 42b has the N-channel MOSFET 41b2 and the N-channel MOSFET 47b2 turned off, and the presence or absence of a short-circuit failure of the second rectification control element 47b based on the current detected by the second current detection circuit 45b. To diagnose.
 図3は、図2に示した、第1インバータ31a、第2インバータ31b、電動モータ13の構成を詳細に示す回路図である。
 電動モータ13は、第1巻線組13aを構成するU相コイルUa、V相コイルVa及びW相コイルWaと、第2巻線組13bを構成するU相コイルUb、V相コイルVb及びW相コイルWbとを備える。
FIG. 3 is a circuit diagram showing in detail the configurations of the first inverter 31a, the second inverter 31b, and the electric motor 13 shown in FIG.
The electric motor 13 includes U-phase coils Ua, V-phase coils Va and W-phase coils Wa that form the first winding set 13a, and U-phase coils Ub, V-phase coils Vb and W that form the second winding set 13b. It includes a phase coil Wb.
 第1インバータ31aは、第1巻線組13aのコイルUa,Va,Waを、それぞれ駆動ラインDUa,DVa,DWaを介して駆動する3組のスイッチ素子51-56を備えた3相ブリッジ回路であり、スイッチ素子51-56としてNチャンネルMOSFETを用いている。
 また、第2インバータ31bは、第2巻線組13bのコイルUb,Vb,Wbを、それぞれ駆動ラインDUb,DVb,DWbを介して駆動する3組のスイッチ素子61-66を備えた3相ブリッジ回路であり、スイッチ素子61-66としてNチャンネルMOSFETを用いている。
The first inverter 31a is a three-phase bridge circuit including three sets of switch elements 51-56 that drive the coils Ua, Va, and Wa of the first winding set 13a via the drive lines DUa, DVa, and DW, respectively. Yes, an N-channel MOSFET is used as the switch element 51-56.
Further, the second inverter 31b is a three-phase bridge including three sets of switch elements 61-66 that drive the coils Ub, Vb, and Wb of the second winding set 13b via the drive lines DUb, DVb, and DWb, respectively. It is a circuit, and an N-channel MOSFET is used as the switch elements 61-66.
 第1インバータ31aにおけるMOSFET51,52は、電源リレー38aと第1シャント抵抗器39aの一端との間にドレイン・ソース間が直列接続され、MOSFET51とMOSFET52の接続点に駆動ラインDUaの一端が接続される。
 MOSFET53,54は、第1電源リレー38aと第1シャント抵抗器39aの一端との間にドレイン・ソース間が直列接続され、MOSFET53とMOSFET54の接続点に駆動ラインDVaの一端が接続される。
The MOSFETs 51 and 52 in the first inverter 31a are connected in series between the drain and source between the power relay 38a and one end of the first shunt resistor 39a, and one end of the drive line DUa is connected to the connection point between the MOSFET 51 and the MOSFET 52. To.
In the MOSFETs 53 and 54, the drain and source are connected in series between the first power supply relay 38a and one end of the first shunt resistor 39a, and one end of the drive line DVa is connected to the connection point between the MOSFET 53 and the MOSFET 54.
 また、MOSFET55,56は、第1電源リレー38aと第1シャント抵抗器39aの一端との間にドレイン・ソース間が直列接続され、MOSFET55とMOSFET56の接続点に駆動ラインDWaの一端が接続される。
 ここで、各MOSFET51-56におけるソース・ドレイン間に順方向に接続されているダイオードD11-D16は寄生ダイオードである。
Further, in the MOSFETs 55 and 56, the drain source is connected in series between the first power supply relay 38a and one end of the first shunt resistor 39a, and one end of the drive line DWa is connected to the connection point between the MOSFET 55 and the MOSFET 56. ..
Here, the diodes D11-D16 connected in the forward direction between the source and drain of each MOSFET 51-56 are parasitic diodes.
 第2インバータ31bにおけるMOSFET61,62は、第2電源リレー38bと第2シャント抵抗器39bの一端との間にドレイン・ソース間が直列接続され、MOSFET61とMOSFET62の接続点に駆動ラインDUbの一端が接続される。
 MOSFET63,64は、第2電源リレー38bと第2シャント抵抗器39bの一端との間にドレイン・ソース間が直列接続され、MOSFET63とMOSFET64の接続点に駆動ラインDVbの一端が接続される。
In the MOSFETs 61 and 62 of the second inverter 31b, the drain and source are connected in series between the second power relay 38b and one end of the second shunt resistor 39b, and one end of the drive line DUb is connected to the connection point between the MOSFET 61 and the MOSFET 62. Be connected.
In the MOSFETs 63 and 64, the drain and source are connected in series between the second power supply relay 38b and one end of the second shunt resistor 39b, and one end of the drive line DVb is connected to the connection point between the MOSFET 63 and the MOSFET 64.
 また、MOSFET65,66は、第2電源リレー38bと第2シャント抵抗器39bの一端との間にドレイン・ソース間が直列接続され、MOSFET65とMOSFET66の接続点に駆動ラインDWbの一端が接続される。
 ここで、各MOSFET61-66のソース・ドレイン間に順方向に接続されているダイオードD21-D22は寄生ダイオードである。
Further, in the MOSFETs 65 and 66, the drain source is connected in series between the second power supply relay 38b and one end of the second shunt resistor 39b, and one end of the drive line DWb is connected to the connection point between the MOSFET 65 and the MOSFET 66. ..
Here, the diodes D21-D22 connected in the forward direction between the source and drain of each MOSFET 61-66 are parasitic diodes.
 図4及び図5は、第1マイクロコンピュータ42aが実施する第1系統についての制御手順を示すフローチャートである。
 なお、第2マイクロコンピュータ42bも、独自に第2系統についての制御を実施するが、図4及び図5に示した第1マイクロコンピュータ42aによる第1系統についての制御手順と同様であるため、詳細な説明は省略する。
4 and 5 are flowcharts showing a control procedure for the first system carried out by the first microcomputer 42a.
The second microcomputer 42b also independently controls the second system, but the details are the same as the control procedure for the first system by the first microcomputer 42a shown in FIGS. 4 and 5. The explanation will be omitted.
 第1マイクロコンピュータ42aは、ステップS101で、電源投入によってリセット解除されると、ステップS102で、各種のイニシャル処理を実施する。
 第1マイクロコンピュータ42aは、イニシャル処理を終えると、ステップS103に進み、第2マイクロコンピュータ42bとの間での通信状態を確認するための処理を行う。
When the first microcomputer 42a is reset and released by turning on the power in step S101, various initial processes are performed in step S102.
When the first microcomputer 42a finishes the initial processing, the process proceeds to step S103 and performs a process for confirming the communication state with the second microcomputer 42b.
 次のステップS104で、第1マイクロコンピュータ42aは、第2マイクロコンピュータ42bとの間での通信が正常に行える状態であるか否かを判断する。
 そして、何らかの通信異常があって、第2マイクロコンピュータ42bとの間で正常に情報の送受信が行えない場合、第1マイクロコンピュータ42aは、ステップS105に進み、通信異常が所定時間以上継続しているか否かを判断する。
In the next step S104, the first microcomputer 42a determines whether or not communication with the second microcomputer 42b can be normally performed.
Then, if there is some kind of communication abnormality and information cannot be normally transmitted / received to / from the second microcomputer 42b, the first microcomputer 42a proceeds to step S105 and is the communication abnormality continuing for a predetermined time or longer? Judge whether or not.
 通信異常の継続時間が所定時間に達していない場合、第1マイクロコンピュータ42aは、ステップS103に戻り、通信状態を確認するための処理を継続する。
 一方、第2マイクロコンピュータ42bとの間での通信異常の継続時間が所定時間に達し、通信異常が確定的である場合、第1マイクロコンピュータ42aは、ステップS106に進み、第2マイクロコンピュータ42bとの間での通信異常の有無を示す通信異常フラグFceに、異常発生状態を示す「1」をセットする。
If the duration of the communication abnormality has not reached the predetermined time, the first microcomputer 42a returns to step S103 and continues the process for confirming the communication state.
On the other hand, when the duration of the communication abnormality with the second microcomputer 42b reaches a predetermined time and the communication abnormality is deterministic, the first microcomputer 42a proceeds to step S106, and the second microcomputer 42b and the second microcomputer 42b The communication error flag Fce, which indicates the presence or absence of a communication abnormality between the computers, is set to "1", which indicates an abnormality occurrence state.
 なお、通信異常フラグFceの初期値は、第2マイクロコンピュータ42bとの間での通信が正常であることを示す「0」である。
 また、第1マイクロコンピュータ42aは、ステップS104で第2マイクロコンピュータ42bとの間での通信が正常であると判断した場合、ステップS107に進む。
The initial value of the communication abnormality flag Fce is "0" indicating that the communication with the second microcomputer 42b is normal.
If the first microcomputer 42a determines in step S104 that the communication with the second microcomputer 42b is normal, the first microcomputer 42a proceeds to step S107.
 また、第1マイクロコンピュータ42aは、ステップS106で通信異常フラグFceに「1」をセットした後もステップS107に進む。
 なお、ステップS107の時点で、各種スイッチ素子の制御状態は初期状態であり、第1マイクロコンピュータ42aは、NPNトランジスタTra、第1整流制御素子47aのNチャンネルMOSFET47a2、及び電源リレー38aをオフに制御し、また、第1スイッチ素子41aとしてのNチャンネルMOSFET41a2をオンに制御する。
Further, the first microcomputer 42a proceeds to step S107 even after the communication abnormality flag Fce is set to "1" in step S106.
At the time of step S107, the control state of the various switch elements is the initial state, and the first microcomputer 42a controls the NPN transistor Tra, the N channel MOSFET 47a2 of the first rectification control element 47a, and the power supply relay 38a to be off. In addition, the N-channel MOSFET 41a2 as the first switch element 41a is controlled to be turned on.
 そして、係るスイッチ素子の制御状態では、抵抗器R3aに電流が流れず、抵抗器R3aにかかる電圧VR3は0V近傍になる。
 そこで、第1マイクロコンピュータ42aは、ステップS107で、第1電流検出回路45aの抵抗器R3aにかかる電圧の検出値が0V近傍であるか否かを判断する。
Then, in the controlled state of the switch element, no current flows through the resistor R3a, and the voltage VR3 applied to the resistor R3a is close to 0V.
Therefore, in step S107, the first microcomputer 42a determines whether or not the detected value of the voltage applied to the resistor R3a of the first current detection circuit 45a is in the vicinity of 0V.
 ここで、第1マイクロコンピュータ42aは、抵抗器R3aにかかる電圧VR3が所定電圧(例えば、所定電圧=1V)以下であるときに、電圧VR3は0V近傍であると判断する。
 そして、第1マイクロコンピュータ42aは、ステップS107で、抵抗器R3aにかかる電圧VR3が0V近傍ではない場合、第1駆動制御系における回路異常の発生状態であると判断してステップS110に進む。
Here, the first microcomputer 42a determines that the voltage VR3 is in the vicinity of 0V when the voltage VR3 applied to the resistor R3a is equal to or less than a predetermined voltage (for example, a predetermined voltage = 1V).
Then, in step S107, when the voltage VR3 applied to the resistor R3a is not in the vicinity of 0V, the first microcomputer 42a determines that a circuit abnormality has occurred in the first drive control system, and proceeds to step S110.
 第1マイクロコンピュータ42aは、ステップS110で、回路異常フラグFgoに、第1駆動制御系の回路に異常が発生していることを示す「1」をセットする。
 なお、回路異常フラグFgoの初期値は、第1駆動制御系の回路が正常であることを示す「0」である。
In step S110, the first microcomputer 42a sets the circuit abnormality flag Fgo to "1" indicating that an abnormality has occurred in the circuit of the first drive control system.
The initial value of the circuit abnormality flag Fgo is "0" indicating that the circuit of the first drive control system is normal.
 また、第1マイクロコンピュータ42aは、ステップS107で、抵抗器R3aにかかる電圧VR3が0V近傍であることを検出すると、ステップS108に進み、第1グランドコネクタ34aのオープン故障の診断を行うために、NPNトランジスタTraにオン指令を出力する。
 第1マイクロコンピュータ42aは、第1グランドコネクタ34aのオープン故障の診断を行うときに限定してNPNトランジスタTraをオン操作することで、第1電源回路44aの電力消費を抑制する。
Further, when the first microcomputer 42a detects in step S107 that the voltage VR3 applied to the resistor R3a is in the vicinity of 0V, the first microcomputer 42a proceeds to step S108 and diagnoses an open failure of the first ground connector 34a. An on command is output to the NPN transistor Tra.
The first microcomputer 42a suppresses the power consumption of the first power supply circuit 44a by turning on the NPN transistor Tra only when diagnosing an open failure of the first ground connector 34a.
 そして、第1マイクロコンピュータ42aは、NPNトランジスタTraをオフからオンに切り換える指令を出した後、所定時間の経過を待ってステップS109に進む。
 なお、ステップS109の所定時間は、NPNトランジスタTraなどの半導体スイッチ素子が、オン/オフの切り換え指令から安定したオンまたはオフ状態になるのに要する時間に基づき適合された時間であり、後述するステップS111、ステップS113、ステップS114における所定時間も同様である。
Then, the first microcomputer 42a issues a command to switch the NPN transistor Tra from off to on, and then proceeds to step S109 after waiting for the elapse of a predetermined time.
The predetermined time in step S109 is a time adapted based on the time required for the semiconductor switch element such as the NPN transistor Tra to be in a stable on or off state from the on / off switching command, and is a step described later. The same applies to the predetermined time in S111, step S113, and step S114.
 ステップS109で、第1マイクロコンピュータ42aは、NPNトランジスタTraをオンした状態で、抵抗器R3aにかかる電圧VR3が2.5V近傍であるか否かを判断する。
 ステップS109の判断が行われるときは、NチャンネルMOSFET47a2はオフ制御状態で、かつ、NチャンネルMOSFET47a2の寄生ダイオード47a1のカソードを第1グランドコネクタ34aに接続してあり、更に、NチャンネルMOSFET41a2はオン制御状態である。
In step S109, the first microcomputer 42a determines whether or not the voltage VR3 applied to the resistor R3a is in the vicinity of 2.5V with the NPN transistor Tra turned on.
When the determination in step S109 is made, the N-channel MOSFET 47a2 is in the off-control state, the cathode of the parasitic diode 47a1 of the N-channel MOSFET 47a2 is connected to the first ground connector 34a, and the N-channel MOSFET 41a2 is on-controlled. It is in a state.
 このため、第1整流制御素子47aにショート故障が発生していなければ、抵抗器R3aから第1整流制御素子47a、共通グランド49、第2整流制御素子47b、第2グランドコネクタ34bを介して第2バッテリ17bに電流が流れ込む経路は、第1整流制御素子47aによって遮断されることになる。
 そして、第1電流検出回路45aのグランドは、オン制御状態のNチャンネルMOSFET41a2及び第1グランドコネクタ34aを経て第1バッテリ17aに至る経路に限られることになる。
Therefore, if a short-circuit failure has not occurred in the first rectification control element 47a, the resistor R3a is passed through the first rectification control element 47a, the common ground 49, the second rectification control element 47b, and the second ground connector 34b. 2 The path through which the current flows into the battery 17b is cut off by the first rectification control element 47a.
The ground of the first current detection circuit 45a is limited to the path leading to the first battery 17a via the N-channel MOSFET 41a2 in the on-controlled state and the first ground connector 34a.
 このため、第1グランドコネクタ34aがオープン故障すると、NPNトランジスタTraをオンしても第1電流検出回路45aに電流が流れず、抵抗器R3aにかかる電圧VR3が抵抗分圧に因る2.5V近傍にならずに第1内部電源電圧Va(Va=5V)近傍になる。
 そこで、第1マイクロコンピュータ42aは、NPNトランジスタTraをオンしたときに抵抗器R3aにかかる電圧VR3が第1内部電源電圧Va近傍になると、第1グランドコネクタ34aのオープン故障の発生、換言すれば、第1グランドコネクタ34aを経て第1バッテリ17aに至るグランド経路が遮断されていることを判断する。
Therefore, when the first ground connector 34a fails to open, no current flows through the first current detection circuit 45a even if the NPN transistor Tra is turned on, and the voltage VR3 applied to the resistor R3a is in the vicinity of 2.5V due to the resistance voltage division. It becomes near the first internal power supply voltage Va (Va = 5V) without becoming.
Therefore, in the first microcomputer 42a, when the voltage VR3 applied to the resistor R3a when the NPN transistor Tra is turned on becomes close to the first internal power supply voltage Va, an open failure of the first ground connector 34a occurs, in other words, It is determined that the ground path from the first ground connector 34a to the first battery 17a is blocked.
 第1マイクロコンピュータ42aは、抵抗器R3aにかかる電圧VR3が第1内部電源電圧Va(Va=5V)近傍であって、第1グランドコネクタ34aのオープン故障の発生を判断すると、ステップS109からステップS110に進む。
 第1マイクロコンピュータ42aは、ステップS110で、第1グランドコネクタ34aのオープン故障の発生判断に基づき、回路異常フラグFgoに「1」をセットする。
When the first microcomputer 42a determines that the voltage VR3 applied to the resistor R3a is in the vicinity of the first internal power supply voltage Va (Va = 5V) and the occurrence of an open failure of the first ground connector 34a is determined, steps S109 to S110 Proceed to.
In step S110, the first microcomputer 42a sets the circuit abnormality flag Fgo to “1” based on the determination of the occurrence of an open failure of the first ground connector 34a.
 なお、第1マイクロコンピュータ42aは、ステップS109で、第1グランドコネクタ34aのオープン故障の発生を判断したときに、回路異常フラグFgoとは別に設定したフラグ、つまり、第1グランドコネクタ34aのオープン故障の有無を示すフラグの設定処理を行うことができる。
 また、第1マイクロコンピュータ42aは、ステップS110で、回路異常フラグFgoに「1」をセットするとともに、回路異常の発生を示す情報を、第2マイクロコンピュータ42bに送信する。
When the first microcomputer 42a determines in step S109 that an open failure of the first ground connector 34a has occurred, a flag set separately from the circuit error flag Fgo, that is, an open failure of the first ground connector 34a It is possible to set a flag indicating the presence or absence of.
Further, in step S110, the first microcomputer 42a sets the circuit abnormality flag Fgo to “1” and transmits information indicating the occurrence of the circuit abnormality to the second microcomputer 42b.
 詳細には、第1マイクロコンピュータ42aは、ステップS110で、第2マイクロコンピュータ42bとの間で通信が正常であれば、第2マイクロコンピュータ42bに向けて、第1駆動制御系において回路異常が発生していることを示す情報、つまり、回路異常フラグFgo=1の情報を送信する。
 更に、第1マイクロコンピュータ42aは、ステップS110で、NPNトランジスタTraをオフ状態に戻す処理を実施する。
Specifically, in step S110, if the communication with the second microcomputer 42b is normal, the first microcomputer 42a causes a circuit abnormality in the first drive control system toward the second microcomputer 42b. Information indicating that the computer is operating, that is, information on the circuit abnormality flag Fgo = 1 is transmitted.
Further, the first microcomputer 42a performs a process of returning the NPN transistor Tra to the off state in step S110.
 第1マイクロコンピュータ42aは、ステップS110で回路異常フラグFgoに「1」をセットした後、ステップS117に進む。
 ステップS117で、第1マイクロコンピュータ42aは、第1グランドコネクタ34aのオープン異常を含む回路異常に対処する処理として、第1インバータ31aの電流制限割合を0%にセットする処理を実施し、第1インバータ31aを駆動しないようにする。
The first microcomputer 42a sets the circuit abnormality flag Fgo to “1” in step S110, and then proceeds to step S117.
In step S117, the first microcomputer 42a performs a process of setting the current limit ratio of the first inverter 31a to 0% as a process of coping with a circuit abnormality including an open abnormality of the first ground connector 34a, and first. The inverter 31a is not driven.
 電流制限割合の初期値は、第1インバータ31aの電流を制限しない100%であり、電流制限割合の値(%)が100%よりも小さくなるほど、第1巻線組13aの駆動電流をより低く制限することを表し、電流制限割合が0%であるときは、第1インバータ31aの各スイッチ素子をオフに保持し、第1巻線組13aの各相に電流を流さない状態である。
 第1グランドコネクタ34aのオープン故障状態で、第1インバータ31aを駆動すると、第1インバータ31aを流れた電流が、共通グランド49を介して第2グランドコネクタ34bに流れ込み、第2グランドコネクタ34bに電流が集中することになる。
The initial value of the current limit ratio is 100% that does not limit the current of the first inverter 31a, and the smaller the value (%) of the current limit ratio is, the lower the drive current of the first winding set 13a is. When the current limit ratio is 0%, each switch element of the first inverter 31a is kept off, and no current flows through each phase of the first winding set 13a.
When the first inverter 31a is driven in the open failure state of the first ground connector 34a, the current flowing through the first inverter 31a flows into the second ground connector 34b via the common ground 49, and the current flows through the second ground connector 34b. Will be concentrated.
 ここで、第1インバータ31aの駆動、換言すれば、第1巻線組13aへの通電を停止すれば、第1駆動制御系から第2グランドコネクタ34bへの電流の流れ込みがなくなり、第2グランドコネクタ34bに流れ込む電流が過大になることを抑止できる。
 したがって、第1グランドコネクタ34aがオープン故障したときに、第1マイクロコンピュータ42aが第1インバータ31aの駆動を停止することで、第2グランドコネクタ34bにも異常が生じてしまうことが抑制され、第2駆動制御系による第2巻線組13bの駆動制御の継続が可能になる。
Here, if the drive of the first inverter 31a, in other words, the energization of the first winding set 13a is stopped, the current does not flow from the first drive control system to the second ground connector 34b, and the second ground is eliminated. It is possible to prevent the current flowing into the connector 34b from becoming excessive.
Therefore, when the first ground connector 34a is open-failed, the first microcomputer 42a stops driving the first inverter 31a, thereby suppressing the occurrence of an abnormality in the second ground connector 34b. The drive control of the second winding set 13b by the two drive control system can be continued.
 また、第1マイクロコンピュータ42aは、第1インバータ31aの駆動開始前、つまり、第1グランドコネクタ34aのオープン故障によって実際に第2駆動制御系への電流の流れ込みが発生する前に、第1グランドコネクタ34aのオープン故障の有無を診断でき、第2駆動制御系への電流の流れ込みを未然に抑止することができる。
 なお、第1マイクロコンピュータ42aは、第1グランドコネクタ34aのオープン故障を含む回路異常を検出し、第1インバータ31aの駆動を停止するときに、電動パワーステアリング装置100の異常に関する情報を、警報ランプの点灯などによって車両の運転者に認識させることができる。
Further, the first microcomputer 42a has the first ground before the start of driving the first inverter 31a, that is, before the current actually flows into the second drive control system due to the open failure of the first ground connector 34a. The presence or absence of an open failure of the connector 34a can be diagnosed, and the inflow of current into the second drive control system can be suppressed in advance.
When the first microcomputer 42a detects a circuit abnormality including an open failure of the first ground connector 34a and stops driving the first inverter 31a, the first microcomputer 42a gives information on the abnormality of the electric power steering device 100 as an alarm lamp. It can be made to be recognized by the driver of the vehicle by lighting or the like.
 また、第1マイクロコンピュータ42aは、ステップS117で、電流制限割合を0%よりも大きく100%よりも小さい任意の値に設定できる。
 つまり、第1マイクロコンピュータ42aは、ステップS117で、第1駆動制御系から第2グランドコネクタ34bに流れ込む電流、換言すれば、第1グランドコネクタ34aがオープン故障状態で第2グランドコネクタ34bに流れる電流を減らす処理を実施する。
Further, in step S117, the first microcomputer 42a can set the current limit ratio to an arbitrary value larger than 0% and smaller than 100%.
That is, in step S117, the first microcomputer 42a is the current flowing from the first drive control system to the second ground connector 34b, in other words, the current flowing through the second ground connector 34b when the first ground connector 34a is in an open failure state. Implement processing to reduce.
 したがって、第1マイクロコンピュータ42aによるステップS117での処理は、第1インバータ31aの駆動停止に限定されず、第1マイクロコンピュータ42aは、ステップS117で、第1インバータ31aの駆動を許容しつつ第1インバータ31aに流れる電流を、第1グランドコネクタ34aが正常であるときよりも減らす設定を行うことができる。
 また、第1マイクロコンピュータ42aは、ステップS117で、通信が正常であることを条件に、第2マイクロコンピュータ42bに向けて第2インバータ31bの駆動電流を通常よりも低く制限することを指令する信号を送信して、第1駆動制御系と第2駆動制御系との双方で電流を減らして、第2グランドコネクタ34bに流れる電流を減らすことができる。
Therefore, the processing in step S117 by the first microcomputer 42a is not limited to the drive stop of the first inverter 31a, and the first microcomputer 42a allows the first inverter 31a to be driven in step S117. The current flowing through the inverter 31a can be set to be smaller than when the first ground connector 34a is normal.
Further, in step S117, the first microcomputer 42a instructs the second microcomputer 42b to limit the drive current of the second inverter 31b to a lower level than usual, provided that the communication is normal. Can be transmitted to reduce the current in both the first drive control system and the second drive control system, thereby reducing the current flowing through the second ground connector 34b.
 第1マイクロコンピュータ42aは、ステップS109で、抵抗器R3aにかかる電圧VR3が2.5V近傍であって第1グランドコネクタ34aは正常であると判断すると、ステップS111に進む。
 前述のように、第1整流制御素子47aにショート故障が発生していなければ、NPNトランジスタTraをオンしたときに、電流は、第1グランドコネクタ34aを経て第1バッテリ17aに流れ込むことになる。
When the first microcomputer 42a determines in step S109 that the voltage VR3 applied to the resistor R3a is in the vicinity of 2.5V and the first ground connector 34a is normal, the first microcomputer 42a proceeds to step S111.
As described above, if the first rectification control element 47a is not short-circuited, the current will flow into the first battery 17a via the first ground connector 34a when the NPN transistor Tra is turned on.
 しかし、第1グランドコネクタ34aがオープン故障していても、第1整流制御素子47aにショート故障が発生していると、NPNトランジスタTraをオンしたときに、電流が共通グランド49に流れ込むことで、抵抗器R3aにかかる電圧VR3が2.5V近傍になる。
 つまり、第1整流制御素子47aがショート故障していると、第1グランドコネクタ34aがオープン故障していても、第1マイクロコンピュータ42aは、第1グランドコネクタ34aが正常であると判断することになってしまう。
However, even if the first ground connector 34a has an open failure, if a short failure has occurred in the first rectification control element 47a, the current will flow into the common ground 49 when the NPN transistor Tra is turned on. The voltage VR3 applied to the resistor R3a is close to 2.5V.
That is, if the first rectifying control element 47a has a short failure, the first microcomputer 42a determines that the first ground connector 34a is normal even if the first ground connector 34a has an open failure. turn into.
 そこで、第1マイクロコンピュータ42aは、第1整流制御素子47aのショート故障の有無をステップS111以降で診断する。
 第1マイクロコンピュータ42aは、ステップS111で、NチャンネルMOSFET41a2をオフに制御し、第1グランドコネクタ34aへの電流の流れ込みを遮断する。
Therefore, the first microcomputer 42a diagnoses the presence or absence of a short-circuit failure of the first rectification control element 47a in step S111 and subsequent steps.
In step S111, the first microcomputer 42a controls the N-channel MOSFET 41a2 to turn off and cuts off the inflow of current to the first ground connector 34a.
 ここで、第1マイクロコンピュータ42aは、NチャンネルMOSFET47a2をオフに制御しているので、寄生ダイオード47a1を備えたNチャンネルMOSFET47a2が正常であってショート故障していなければ、共通グランド49への電流の流れ込みも遮断されることになる。
 このため、NチャンネルMOSFET47a2がショート故障していなければ、NPNトランジスタTraをオンしても第1電流検出回路45aに電流が流れず、抵抗器R3aにかかる電圧VR3は、抵抗分圧に因る2.5V近傍にならずに第1内部電源電圧Va(Va=5V)近傍になる。
Here, since the first microcomputer 42a controls the N-channel MOSFET 47a2 off, if the N-channel MOSFET 47a2 provided with the parasitic diode 47a1 is normal and there is no short-circuit failure, the current to the common ground 49 The inflow will also be blocked.
Therefore, if the N-channel MOSFET 47a2 is not short-circuited, no current flows through the first current detection circuit 45a even if the NPN transistor Tra is turned on, and the voltage VR3 applied to the resistor R3a is 2.5 due to the resistance voltage division. It is not near V but near the first internal power supply voltage Va (Va = 5V).
 一方、第1マイクロコンピュータ42aがNチャンネルMOSFET47a2をオフに制御していても、NチャンネルMOSFET47a2がショート故障していると、NチャンネルMOSFET47a2を介して共通グランド49へ電流が流れ込むために第1電流検出回路45aに電流が流れ、抵抗器R3aにかかる電圧VR3が抵抗分圧に因る2.5V近傍になる。
 つまり、第1マイクロコンピュータ42aは、NチャンネルMOSFET41a2をオフに制御したときに第1電流検出回路45aに電流が流れるか否かに基づき、NチャンネルMOSFET47a2のショート故障の有無を診断できる。
On the other hand, even if the first microcomputer 42a controls the N-channel MOSFET 47a2 off, if the N-channel MOSFET 47a2 has a short-circuit failure, the current flows into the common ground 49 via the N-channel MOSFET 47a2, so that the first current is detected. A current flows through the circuit 45a, and the voltage VR3 applied to the resistor R3a becomes close to 2.5V due to the resistance voltage division.
That is, the first microcomputer 42a can diagnose the presence or absence of a short-circuit failure of the N-channel MOSFET 47a2 based on whether or not a current flows through the first current detection circuit 45a when the N-channel MOSFET 41a2 is controlled to be off.
 第1マイクロコンピュータ42aは、ステップS111でNチャンネルMOSFET41a2をオフに制御し、オフ制御の開始から所定時間の経過を待ってステップS112に進む。
 そして、第1マイクロコンピュータ42aは、ステップS112で、抵抗器R3aにかかる電圧VR3が2.5V近傍であるか否かを判断する。
The first microcomputer 42a controls the N-channel MOSFET 41a2 to turn off in step S111, waits for a predetermined time from the start of the off control, and proceeds to step S112.
Then, in step S112, the first microcomputer 42a determines whether or not the voltage VR3 applied to the resistor R3a is in the vicinity of 2.5V.
 ここで、抵抗器R3aにかかる電圧VR3が2.5V近傍である場合、NチャンネルMOSFET47a2のショート故障が発生していて、かつ、係るNチャンネルMOSFET47a2のショート故障によって第1グランドコネクタ34aのオープン故障を検出できなかった可能性がある。
 このため、第1マイクロコンピュータ42aは、抵抗器R3aにかかる電圧VR3が2.5V近傍である場合、ステップS110に進んで、回路異常フラグFgoに「1」をセットする。
Here, when the voltage VR3 applied to the resistor R3a is in the vicinity of 2.5V, a short-circuit failure of the N-channel MOSFET 47a2 has occurred, and an open failure of the first ground connector 34a is detected due to the short-circuit failure of the N-channel MOSFET 47a2. It may not have been possible.
Therefore, when the voltage VR3 applied to the resistor R3a is in the vicinity of 2.5V, the first microcomputer 42a proceeds to step S110 and sets the circuit abnormality flag Fgo to “1”.
 したがって、第1マイクロコンピュータ42aは、NチャンネルMOSFET47a2のショート故障が発生しているときに、第1グランドコネクタ34aは正常であると判断して第1インバータ31aの通常の駆動制御を開始してしまうことを抑止できる。
 一方、NチャンネルMOSFET41a2をオフに制御したときに、抵抗器R3aにかかる電圧VR3が第1内部電源電圧Va近傍であれば、NチャンネルMOSFET47a2は、制御指令にしたがってオフになっていて、NチャンネルMOSFET47a2にショート故障が発生していない状態である。
Therefore, when the N-channel MOSFET 47a2 has a short-circuit failure, the first microcomputer 42a determines that the first ground connector 34a is normal and starts normal drive control of the first inverter 31a. Can be deterred.
On the other hand, when the N-channel MOSFET 41a2 is controlled to be off, if the voltage VR3 applied to the resistor R3a is near the first internal power supply voltage Va, the N-channel MOSFET 47a2 is turned off according to the control command, and the N-channel MOSFET 47a2 There is no short circuit failure.
 そこで、第1マイクロコンピュータ42aは、抵抗器R3aにかかる電圧VR3が第1内部電源電圧Va近傍である場合、NチャンネルMOSFET47a2にショート故障は発生しておらず、ステップS109での第1グランドコネクタ34aの正常判断は正しかったとして、ステップS113以降へ進む。
 第1マイクロコンピュータ42aは、ステップS113で、NPNトランジスタTraをオンからオフに切り換える指令を出力した後、所定時間(例えば、10ms)の経過を待ってステップS114に進む。
Therefore, in the first microcomputer 42a, when the voltage VR3 applied to the resistor R3a is in the vicinity of the first internal power supply voltage Va, a short-circuit failure does not occur in the N channel MOSFET 47a2, and the first ground connector 34a in step S109. Assuming that the normal determination of is correct, the process proceeds to step S113 and subsequent steps.
The first microcomputer 42a outputs a command for switching the NPN transistor Tra from on to off in step S113, and then proceeds to step S114 after waiting for a predetermined time (for example, 10 ms) to elapse.
 第1マイクロコンピュータ42aは、ステップS114で、第1整流制御素子47aのNチャンネルMOSFET47a2をオフからオンに切り換える指令、及び、NチャンネルMOSFET41a2をオフからオンに切り換える指令を出力した後、所定時間(例えば、10ms)の経過を待ってステップS115に進む。 In step S114, the first microcomputer 42a outputs a command for switching the N-channel MOSFET 47a2 of the first rectification control element 47a from off to on and a command for switching the N-channel MOSFET 41a2 from off to on, and then outputs a command for a predetermined time (for example,). , 10ms) before proceeding to step S115.
 第1マイクロコンピュータ42aは、ステップS115で、第1インバータ31aの故障診断を実施する。
 例えば、第1マイクロコンピュータ42aは、第1インバータ31aの電源ラインとグランドとの間に接続したコンデンサ(図示省略)に蓄積された電荷を、Nチャネル型MOSFET51-56の駆動制御によって放電させる制御を行い、このときに、第1シャント抵抗器39aによって検出される電流に基づき、第1インバータ31a、つまり、Nチャネル型MOSFET51-56の故障の有無を診断する。
In step S115, the first microcomputer 42a performs a failure diagnosis of the first inverter 31a.
For example, the first microcomputer 42a controls to discharge the electric charge accumulated in the capacitor (not shown) connected between the power supply line of the first inverter 31a and the ground by the drive control of the N-channel type MOSFET 51-56. At this time, based on the current detected by the first shunt resistor 39a, the presence or absence of failure of the first inverter 31a, that is, the N-channel type MOSFET 51-56 is diagnosed.
 第1マイクロコンピュータ42aは、次のステップS116で、ステップS115での診断で第1インバータ31aが正常であると判断したか否かを判断する。
 第1インバータ31aに異常がある場合、第1マイクロコンピュータ42aは、ステップS117に進み、第1インバータ31aの電流制限割合を0%にセットし、第1インバータ31aを駆動しないようにする。
In the next step S116, the first microcomputer 42a determines whether or not the diagnosis in step S115 determines whether or not the first inverter 31a is normal.
If there is an abnormality in the first inverter 31a, the first microcomputer 42a proceeds to step S117, sets the current limit ratio of the first inverter 31a to 0%, and prevents the first inverter 31a from being driven.
 つまり、第1マイクロコンピュータ42aは、第1インバータ31aが正常であれば、第1インバータ31aの電流制限割合を初期値である100%に保持して、第1インバータ31aを通常に駆動制御するようにし、第1インバータ31aに異常があれば、第1インバータ31aの電流制限割合を0%に設定して、第1インバータ31aの駆動を停止する。
 一方、第1インバータ31aが正常である場合、第1マイクロコンピュータ42aは、ステップS116からステップS118に進み、通信異常フラグFceが0であるか否か、つまり、第2マイクロコンピュータ42bとの間での通信が正常であるか否かを判断する。
That is, if the first inverter 31a is normal, the first microcomputer 42a keeps the current limit ratio of the first inverter 31a at the initial value of 100% and normally drives and controls the first inverter 31a. If there is an abnormality in the first inverter 31a, the current limit ratio of the first inverter 31a is set to 0%, and the driving of the first inverter 31a is stopped.
On the other hand, when the first inverter 31a is normal, the first microcomputer 42a proceeds from step S116 to step S118, and whether or not the communication abnormality flag Fce is 0, that is, with the second microcomputer 42b. Judge whether the communication is normal or not.
 そして、通信異常フラグFceが0であって第2マイクロコンピュータ42bとの間での通信が正常である場合、第1マイクロコンピュータ42aは、ステップS119に進み、第1グランドコネクタ34aのオープン故障を含む回路異常が発生していないことを示す情報、つまり、回路異常フラグFgo=0の情報を、第2マイクロコンピュータ42bに送信する。
 次いで、第1マイクロコンピュータ42aは、ステップS120に進み、第2マイクロコンピュータ42bから、第2駆動制御系において第2グランドコネクタ34bのオープン故障を含む回路異常が発生していないことを示す情報を、受け取っているか否かを判断する。
Then, when the communication abnormality flag Fce is 0 and the communication with the second microcomputer 42b is normal, the first microcomputer 42a proceeds to step S119 and includes an open failure of the first ground connector 34a. Information indicating that no circuit abnormality has occurred, that is, information of the circuit abnormality flag Fgo = 0 is transmitted to the second microcomputer 42b.
Next, the first microcomputer 42a proceeds to step S120, and receives information from the second microcomputer 42b indicating that a circuit abnormality including an open failure of the second ground connector 34b has not occurred in the second drive control system. Determine if you have received it.
 第2駆動制御系の回路が正常である場合、第1マイクロコンピュータ42aは、第1インバータ31aの電流制限割合を初期値である100%に保持したまま、第1インバータ31aの駆動制御を開始するためにステップS122に進む。
 一方、第1マイクロコンピュータ42aは、ステップS118で第2マイクロコンピュータ42bとの間での通信に異常があると判断したときにステップS121へ進み、また、ステップS120で第2駆動制御系に回路異常が発生していると判断したときにもステップS121に進む。
When the circuit of the second drive control system is normal, the first microcomputer 42a starts the drive control of the first inverter 31a while maintaining the current limit ratio of the first inverter 31a at the initial value of 100%. Therefore, the process proceeds to step S122.
On the other hand, when the first microcomputer 42a determines in step S118 that there is an abnormality in communication with the second microcomputer 42b, the first microcomputer 42a proceeds to step S121, and in step S120, the second drive control system has a circuit abnormality. Also when it is determined that the above is occurring, the process proceeds to step S121.
 第1マイクロコンピュータ42aは、ステップS121で、第1インバータ31aの電流制限割合を初期値(100%)よりも小さく0%よりも大きな値、例えば、60%に設定する。
 第2マイクロコンピュータ42bとの間での通信に異常があると、第1マイクロコンピュータ42aは、第2駆動制御系の動作状態に関する情報を第2マイクロコンピュータ42bから取得することができなくなる。
In step S121, the first microcomputer 42a sets the current limit ratio of the first inverter 31a to a value smaller than the initial value (100%) and larger than 0%, for example, 60%.
If there is an abnormality in the communication with the second microcomputer 42b, the first microcomputer 42a cannot acquire the information regarding the operating state of the second drive control system from the second microcomputer 42b.
 ここで、第2駆動制御系の動作状態に関する情報は、第2グランドコネクタ34bのオープン故障などの第2駆動制御系における回路異常の情報や、第2駆動制御系における発生トルクの情報などを含む。
 したがって、第2マイクロコンピュータ42bとの間での通信に異常があると、第1マイクロコンピュータ42aは、第2グランドコネクタ34bのオープン故障が発生していても、係る故障の発生を認識することができなくなる。
Here, the information regarding the operating state of the second drive control system includes information on circuit abnormalities in the second drive control system such as an open failure of the second ground connector 34b, information on torque generated in the second drive control system, and the like. ..
Therefore, if there is an abnormality in the communication with the second microcomputer 42b, the first microcomputer 42a can recognize the occurrence of such a failure even if the second ground connector 34b has an open failure. become unable.
 そこで、第1マイクロコンピュータ42aは、第2マイクロコンピュータ42bとの間での通信に異常があるとき、フェイルセーフ処理として、第1インバータ31aの電流を通常よりも低く制限する電流制限を実施した上で、第1インバータ31aの駆動、つまり、第1巻線組13aにより操舵アシスト力を発生させる設定を行う。
 第2グランドコネクタ34bのオープン故障が発生すると、第2マイクロコンピュータ42bは、図4及び図5のフローチャートと同様な手順によって第2インバータ31bの電流制限割合を0%に設定する。
Therefore, when there is an abnormality in the communication with the second microcomputer 42b, the first microcomputer 42a implements a current limit that limits the current of the first inverter 31a to a lower level than usual as a fail-safe process. Then, the drive of the first inverter 31a, that is, the setting to generate the steering assist force by the first winding set 13a is performed.
When an open failure of the second ground connector 34b occurs, the second microcomputer 42b sets the current limit ratio of the second inverter 31b to 0% by the same procedure as the flowcharts of FIGS. 4 and 5.
 通信異常時に第1マイクロコンピュータ42aがステップS121の処理を行なえば、第2インバータ31bの電流制限割合を0%に設定する処理に並行して、第1マイクロコンピュータ42aがステップS121で第1インバータ31aの電流制限を設定することになり、より確実に第1グランドコネクタ34aに過電流が流れることを抑止することができる。
 第1マイクロコンピュータ42aは、ステップS122で、電源リレー38aをオフからオンに切り換える指令を出した後、所定時間(例えば、10ms)の経過を待ってステップS123に進む。
If the first microcomputer 42a performs the process of step S121 at the time of communication abnormality, the first microcomputer 42a performs the process of setting the current limit ratio of the second inverter 31b to 0%, and the first microcomputer 42a performs the process of the first inverter 31a in step S121. By setting the current limit of, it is possible to more reliably prevent the overcurrent from flowing to the first ground connector 34a.
The first microcomputer 42a issues a command to switch the power relay 38a from off to on in step S122, and then proceeds to step S123 after waiting for a predetermined time (for example, 10 ms) to elapse.
 第1マイクロコンピュータ42aは、ステップS123で、第1インバータ31aのNチャネル型MOSFET51-56のオン、オフをトルク指令などに基づきPWM制御する第1インバータ31aの通電制御を開始する。
 なお、第1マイクロコンピュータ42aは、第1インバータ31aの駆動開始後に、第1電流検出回路45aの出力から第1グランドコネクタ34aのオープン故障の有無を診断することができる。
In step S123, the first microcomputer 42a starts energization control of the first inverter 31a, which PWM-controls the on / off of the N-channel type MOSFET 51-56 of the first inverter 31a based on a torque command or the like.
The first microcomputer 42a can diagnose the presence or absence of an open failure of the first ground connector 34a from the output of the first current detection circuit 45a after the drive of the first inverter 31a is started.
 第1整流制御素子47aを構成するNチャンネルMOSFET47a2のオン状態では、第1整流制御素子47aにおいて双方向に電流が流れることが可能になる。
 ここで、第1グランドコネクタ34aが正常であるときは、第1電源回路44aなどに流れた電流は、共通グランド49から抵抗器R1aを経て第1グランドコネクタ34aに流れる。
In the ON state of the N-channel MOSFET 47a2 constituting the first rectification control element 47a, a current can flow in both directions in the first rectification control element 47a.
Here, when the first ground connector 34a is normal, the current flowing through the first power supply circuit 44a and the like flows from the common ground 49 to the first ground connector 34a via the resistor R1a.
 一方、第1グランドコネクタ34aがオープン故障すると、第1インバータ31aに流れた電流は、第1グランドコネクタ34aに向けて流れることができずに、抵抗器R1aを経て共通グランド49に流れ込み、共通グランド49から第2系統の抵抗器R1bを経て第2グランドコネクタ34bに流れるようになる。
 つまり、抵抗器R1aにおいて電流が流れる向きは、第1グランドコネクタ34aがオープン故障しているか正常であるかによって逆転し、抵抗器R1aにおける電位差は、正常時には0Vになり、第1グランドコネクタ34aがオープン故障すると、所定の正の電圧になる。
On the other hand, when the first ground connector 34a fails to open, the current flowing through the first inverter 31a cannot flow toward the first ground connector 34a, but flows into the common ground 49 via the resistor R1a, and the common ground. It flows from 49 to the second ground connector 34b via the resistor R1b of the second system.
That is, the direction in which the current flows in the resistor R1a is reversed depending on whether the first ground connector 34a is open-failed or normal, the potential difference in the resistor R1a becomes 0V in the normal state, and the first ground connector 34a When an open failure occurs, the voltage becomes a predetermined positive voltage.
 したがって、第1マイクロコンピュータ42aは、第1インバータ31aの駆動開始後に、第1電流検出回路45aの出力に基づき抵抗器R1aの電位差を判断し、第1グランドコネクタ34aがオープン故障しているか正常であるかを診断することができる。
 なお、第2マイクロコンピュータ42bも、第1マイクロコンピュータ42aと同様に、第2インバータ31bの駆動開始後に、抵抗器R1bにおいて電流が流れる向きに基づき第2グランドコネクタ34bのオープン故障の有無を診断することができる。
Therefore, after the drive of the first inverter 31a is started, the first microcomputer 42a determines the potential difference of the resistor R1a based on the output of the first current detection circuit 45a, and the first ground connector 34a is open-failed or normal. You can diagnose if there is.
Similarly to the first microcomputer 42a, the second microcomputer 42b also diagnoses the presence or absence of an open failure of the second ground connector 34b based on the direction in which the current flows in the resistor R1b after the drive of the second inverter 31b is started. be able to.
 以上説明したように、本発明によれば、共通グランド49を設けたので、各系統の制御回路32a,32bの内部グランドに電位差が生じることを抑止できる。
 また、マイクロコンピュータ42a,42bは、インバータ31a,31bの駆動開始前にグランドコネクタ34a,34bの異常(詳細には、オープン故障)の有無を高い精度で検出することができる。
As described above, according to the present invention, since the common ground 49 is provided, it is possible to prevent a potential difference from occurring in the internal grounds of the control circuits 32a and 32b of each system.
Further, the microcomputers 42a and 42b can detect the presence or absence of an abnormality (specifically, an open failure) of the ground connectors 34a and 34b with high accuracy before starting the driving of the inverters 31a and 31b.
 更に、グランドコネクタ34a,34bのオープン故障を診断するための配置したNチャンネルMOSFET47a2,47b2にショート故障が発生している場合、マイクロコンピュータ42a,42bは、係るショート故障の有無を診断することができる。
 これにより、グランドコネクタ34a,34bのオープン故障が発生しているときに、NチャンネルMOSFET47a2,47b2のショート故障によってグランドコネクタ34a,34bのオープン故障の検出が行われずに、通常に電動モータ13が駆動制御されることを抑止できる。
Further, when a short failure has occurred in the N-channel MOSFETs 47a2 and 47b2 arranged for diagnosing the open failure of the ground connectors 34a and 34b, the microcomputers 42a and 42b can diagnose the presence or absence of such a short failure. ..
As a result, when an open failure of the ground connectors 34a and 34b occurs, the electric motor 13 is normally driven without detecting the open failure of the ground connectors 34a and 34b due to a short failure of the N-channel MOSFETs 47a2 and 47b2. It can be suppressed from being controlled.
 したがって、冗長化した駆動制御系統の内部グランドを共通化したシステムにおいて、外部グランドに接続するためのグランドコネクタ34a,34bの一方にオープン故障が生じても、他方に電流が集中することを未然に抑止して、正常な系統で電動モータ13の駆動制御を継続することが可能になる。 Therefore, in a system in which the internal ground of the redundant drive control system is shared, even if one of the ground connectors 34a and 34b for connecting to the external ground has an open failure, the current will be concentrated on the other. By suppressing it, it becomes possible to continue the drive control of the electric motor 13 in a normal system.
 上記実施形態で説明した各技術的思想は、矛盾が生じない限りにおいて、適宜組み合わせて使用することができる。
 また、好ましい実施形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の変形態様を採り得ることは自明である。
The technical ideas described in the above embodiments can be used in combination as appropriate as long as there is no contradiction.
In addition, although the contents of the present invention have been specifically described with reference to preferred embodiments, it is obvious that those skilled in the art can adopt various modifications based on the basic technical idea and teaching of the present invention. Is.
 例えば、整流制御素子47a,47bを、寄生ダイオードを有するMOSFETで構成する代わりに、ダイオードとスイッチ素子との並列接続回路で構成することができる。
 また、電流検出回路45a,45bのスイッチ素子としてのNPNトランジスタTra,Trbを省略することができ、また、スイッチ素子をNPNトランジスタに限定するものでもない。
For example, the rectifier control elements 47a and 47b can be configured by a parallel connection circuit of a diode and a switch element instead of being composed of a MOSFET having a parasitic diode.
Further, the NPN transistors Tra and Trb as the switch elements of the current detection circuits 45a and 45b can be omitted, and the switch elements are not limited to the NPN transistors.
 また、電源リレー38a,38bを省略することができる。
 また、電源リレー38a,38bをMOSFETに限定するものでもなく、更に、MOSFETのドレイン・ソースの設置方向を図2の方向に限定するものでもない。
Further, the power supply relays 38a and 38b can be omitted.
Further, the power supply relays 38a and 38b are not limited to the MOSFET, and the installation direction of the drain source of the MOSFET is not limited to the direction shown in FIG.
 また、抵抗器R1a,R1bを省略することができ、更に、抵抗器R1a,R1bは、整流制御素子47a,47bの上流に配置しても下流に配置してもよい。
 また、整流制御素子47a,47bと並列接続したコンデンサC1a,C1bを省略することができる。
Further, the resistors R1a and R1b can be omitted, and the resistors R1a and R1b may be arranged upstream or downstream of the rectification control elements 47a and 47b.
Further, the capacitors C1a and C1b connected in parallel with the rectifying control elements 47a and 47b can be omitted.
 また、電流検出回路45a,45bの電源電圧は5Vに限定されず、任意に設定できる。
 また、本願発明に係る電動モータの駆動制御装置は、電動パワーステアリング装置への適用に限定されず、電動ブレーキ装置などの電動モータをアクチュエータとして用いる装置への適用が可能である。
Further, the power supply voltage of the current detection circuits 45a and 45b is not limited to 5V and can be set arbitrarily.
Further, the drive control device for an electric motor according to the present invention is not limited to the application to an electric power steering device, and can be applied to a device using an electric motor as an actuator such as an electric brake device.
 13…電動モータ、13a…第1巻線組、13b…第2巻線組、14…EPS制御ユニット(駆動制御装置)、17a,17b…バッテリ、31a…第1インバータ(第1駆動回路)、31b…第2インバータ(第2駆動回路)、32a…第1制御回路、32b…第2制御回路、33a…第1電源コネクタ、33b…第2電源コネクタ、34a…第1グランドコネクタ、34b…第2グランドコネクタ、38a…第1電源リレー、38b…第2電源リレー、40a1…第1分岐点、40b1…第2分岐点、41a…第1スイッチ素子、41b…第2スイッチ素子、41a2,41b2…NチャンネルMOSFET、42a…第1マイクロコンピュータ、42b…第2マイクロコンピュータ、45a…第1電流検出回路、45b…第2電流検出回路、47a,47b…整流制御素子、47a1,47b1…寄生ダイオード(第1、第2整流素子)、47a2,47b2…NチャンネルMOSFET(第3、第4スイッチ素子)、49…共通グランド、Tra,Trb…NPNトランジスタ(第5、第6スイッチ素子)、R1a,R1b…抵抗器(第3、第4電流検出素子)、R2a,R2b…抵抗器(第1、第2電流検出素子)、R3a,R3b…抵抗器(第1、第2電流検出素子) 13 ... Electric motor, 13a ... First winding set, 13b ... Second winding set, 14 ... EPS control unit (drive control device), 17a, 17b ... Battery, 31a ... First inverter (first drive circuit), 31b ... 2nd inverter (second drive circuit), 32a ... 1st control circuit, 32b ... 2nd control circuit, 33a ... 1st power supply connector, 33b ... 2nd power supply connector, 34a ... 1st ground connector, 34b ... 2 ground connector, 38a ... 1st power supply relay, 38b ... 2nd power supply relay, 40a1 ... 1st branch point, 40b1 ... 2nd branch point, 41a ... 1st switch element, 41b ... 2nd switch element, 41a2, 41b2 ... N-channel MOSFET, 42a ... 1st microcomputer, 42b ... 2nd microcomputer, 45a ... 1st current detection circuit, 45b ... 2nd current detection circuit, 47a, 47b ... Rectification control element, 47a1, 47b1 ... Parasitic diode (No. 1) 1, 2nd rectifying element), 47a2, 47b2 ... N channel MOSFET (3rd and 4th switch elements), 49 ... Common ground, Tra, Trb ... NPN transistor (5th and 6th switch elements), R1a, R1b ... Resistors (3rd and 4th current detection elements), R2a, R2b ... Resistors (1st and 2nd current detection elements), R3a, R3b ... Resistors (1st and 2nd current detection elements)

Claims (8)

  1.  第1巻線組及び第2巻線組を備えた電動モータを駆動制御する電動モータの駆動制御装置であって、
     第1制御回路、第1駆動回路、第1電源コネクタ及び第1グランドコネクタを含み、前記第1巻線組を駆動制御する第1系統と、
     第2制御回路、第2駆動回路、第2電源コネクタ及び第2グランドコネクタを含み、前記第2巻線組を駆動制御する第2系統と、
     を有し、
     前記第1制御回路のグランド及び前記第2制御回路のグランドは、内部の共通グランドに接続され、
     前記第1グランドコネクタには、前記共通グランド及び第1駆動回路のグランドが接続され、
     前記第2グランドコネクタには、前記共通グランド及び第2駆動回路のグランドが接続され、
     前記第1グランドコネクタから、前記第1駆動回路のグランドと前記共通グランドとの第1分岐点までの間に、第1スイッチ素子を配置し、
     前記第2グランドコネクタから、前記第2駆動回路のグランドと前記共通グランドとの第2分岐点までの間に、第2スイッチ素子を配置し、
     前記第1分岐点と前記共通グランドとを結ぶラインに、前記共通グランドから前記第1グランドコネクタに向けて電流を流す第1整流素子を有し、
     前記第2分岐点と前記共通グランドとを結ぶラインに、前記共通グランドから前記第2グランドコネクタに向けて電流を流す第2整流素子を有し、
     前記第1整流素子と前記第1分岐点との間と、正電源とを結ぶラインに、第1電流検出素子を有し、
     前記第2整流素子と前記第2分岐点との間と、正電源とを結ぶラインに、第2電流検出素子を有する、
     電動モータの駆動制御装置。
    A drive control device for an electric motor that drives and controls an electric motor having a first winding set and a second winding set.
    A first system including a first control circuit, a first drive circuit, a first power supply connector, and a first ground connector to drive and control the first winding set, and
    A second system that includes a second control circuit, a second drive circuit, a second power supply connector, and a second ground connector to drive and control the second winding set, and
    Have,
    The ground of the first control circuit and the ground of the second control circuit are connected to an internal common ground.
    The common ground and the ground of the first drive circuit are connected to the first ground connector.
    The common ground and the ground of the second drive circuit are connected to the second ground connector.
    A first switch element is arranged between the first ground connector and the first branch point between the ground of the first drive circuit and the common ground.
    A second switch element is arranged between the second ground connector and the second branch point between the ground of the second drive circuit and the common ground.
    A first rectifying element for passing a current from the common ground toward the first ground connector is provided on a line connecting the first branch point and the common ground.
    A second rectifying element for passing a current from the common ground toward the second ground connector is provided on a line connecting the second branch point and the common ground.
    A first current detection element is provided on the line connecting the first rectifying element, the first branch point, and the positive power supply.
    A second current detection element is provided on the line connecting the second rectifying element, the second branch point, and the positive power supply.
    Drive control device for electric motors.
  2.  請求項1記載の電動モータの駆動制御装置であって、
     前記第1制御回路は第1マイクロコンピュータを有し、
     前記第2制御回路は第2マイクロコンピュータを有し、
     前記第1マイクロコンピュータは、
     前記第1スイッチ素子をオンしたときに前記第1電流検出素子に電流が流れないことを検出したときに、前記第1グランドコネクタのオープン故障に対処する処理を実施し、
     前記第1スイッチ素子をオフしたときに前記第1電流検出素子に電流が流れることを検出したときに、前記第1整流素子のショート故障に対処する処理を実施し、
     前記第2マイクロコンピュータは、
     前記第2スイッチ素子をオンしたときに前記第2電流検出素子に電流が流れないことを検出したときに、前記第2グランドコネクタのオープン故障に対処する処理を実施し、
     前記第2スイッチ素子をオフしたときに前記第2電流検出素子に電流が流れることを検出したときに、前記第2整流素子のショート故障に対処する処理を実施する、
     電動モータの駆動制御装置。
    The drive control device for an electric motor according to claim 1.
    The first control circuit has a first microcomputer.
    The second control circuit has a second microcomputer.
    The first microcomputer is
    When it is detected that no current flows through the first current detection element when the first switch element is turned on, a process for dealing with an open failure of the first ground connector is performed.
    When it is detected that a current flows through the first current detection element when the first switch element is turned off, a process for dealing with a short-circuit failure of the first rectifying element is performed.
    The second microcomputer is
    When it is detected that no current flows through the second current detection element when the second switch element is turned on, a process for dealing with an open failure of the second ground connector is performed.
    When it is detected that a current flows through the second current detection element when the second switch element is turned off, a process for dealing with a short-circuit failure of the second rectifying element is performed.
    Drive control device for electric motors.
  3.  請求項1記載の電動モータの駆動制御装置であって、
     前記第1駆動回路への電源ラインに第1電源リレーを有し、
     前記第2駆動回路への電源ラインに第2電源リレーを有する、
     電動モータの駆動制御装置。
    The drive control device for an electric motor according to claim 1.
    The power supply line to the first drive circuit has a first power supply relay.
    The power supply line to the second drive circuit has a second power supply relay.
    Drive control device for electric motors.
  4.  請求項2記載の電動モータの駆動制御装置であって、
     前記第1整流素子は、前記第1整流素子と並列接続される第3スイッチ素子を有し、
     前記第2整流素子は、前記第2整流素子と並列接続される第4スイッチ素子を有する、
     電動モータの駆動制御装置。
    The drive control device for an electric motor according to claim 2.
    The first rectifying element has a third switch element connected in parallel with the first rectifying element.
    The second rectifying element has a fourth switch element connected in parallel with the second rectifying element.
    Drive control device for electric motors.
  5.  請求項4記載の電動モータの駆動制御装置であって、
     前記第1マイクロコンピュータは、前記第1駆動回路への通電を開始する前は前記第3スイッチ素子をオフに操作し、前記第1駆動回路への通電を開始するときに前記第3スイッチ素子をオンに操作し、
     前記第2マイクロコンピュータは、前記第2駆動回路への通電を開始する前は前記第4スイッチ素子をオフに操作し、前記第2駆動回路への通電を開始するときに前記第4スイッチ素子をオンに操作する、
     電動モータの駆動制御装置。
    The drive control device for an electric motor according to claim 4.
    The first microcomputer operates the third switch element off before starting the energization of the first drive circuit, and operates the third switch element when the energization of the first drive circuit is started. Operate on and
    The second microcomputer operates the fourth switch element off before starting the energization of the second drive circuit, and operates the fourth switch element when the energization of the second drive circuit is started. Operate on,
    Drive control device for electric motors.
  6.  請求項4記載の電動モータの駆動制御装置であって、
     前記第1電流検出素子と直列に接続される第5スイッチ素子と、
     前記第2電流検出素子と直列に接続される第6スイッチ素子と、
     を有する、
     電動モータの駆動制御装置。
    The drive control device for an electric motor according to claim 4.
    A fifth switch element connected in series with the first current detection element,
    A sixth switch element connected in series with the second current detection element, and
    Have,
    Drive control device for electric motors.
  7.  請求項6記載の電動モータの駆動制御装置であって、
     前記第1マイクロコンピュータは、前記第1グランドコネクタのオープン故障を診断するときに前記第5スイッチ素子をオンし、前記第1整流素子のショート故障を診断するときに前記第5スイッチ素子をオンし、
     前記第2マイクロコンピュータは、前記第2グランドコネクタのオープン故障を診断するときに前記第6スイッチ素子をオンし、前記第2整流素子のショート故障を診断するときに前記第6スイッチ素子をオンする、
     電動モータの駆動制御装置。
    The drive control device for an electric motor according to claim 6.
    The first microcomputer turns on the fifth switch element when diagnosing an open failure of the first ground connector, and turns on the fifth switch element when diagnosing a short-circuit failure of the first rectifying element. ,
    The second microcomputer turns on the sixth switch element when diagnosing an open failure of the second ground connector, and turns on the sixth switch element when diagnosing a short failure of the second rectifying element. ,
    Drive control device for electric motors.
  8.  請求項4記載の電動モータの駆動制御装置であって、
     前記第3スイッチ素子と直列に接続される第3電流検出素子と、
     前記第4スイッチ素子と直列に接続される第4電流検出素子と、
     を有する、
     電動モータの駆動制御装置。
    The drive control device for an electric motor according to claim 4.
    A third current detection element connected in series with the third switch element,
    A fourth current detection element connected in series with the fourth switch element,
    Have,
    Drive control device for electric motors.
PCT/JP2020/045290 2019-12-10 2020-12-04 Drive control device for electric motor WO2021117636A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-223051 2019-12-10
JP2019223051 2019-12-10

Publications (1)

Publication Number Publication Date
WO2021117636A1 true WO2021117636A1 (en) 2021-06-17

Family

ID=76330339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045290 WO2021117636A1 (en) 2019-12-10 2020-12-04 Drive control device for electric motor

Country Status (1)

Country Link
WO (1) WO2021117636A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200406962A1 (en) * 2018-03-13 2020-12-31 Hitachi Automotive Systems, Ltd. Control device for on-board device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006353075A (en) * 2005-05-16 2006-12-28 Honda Motor Co Ltd Control circuit device
JP2018182962A (en) * 2017-04-18 2018-11-15 特殊電装株式会社 Motor control device
WO2019198407A1 (en) * 2018-04-12 2019-10-17 日立オートモティブシステムズ株式会社 Electronic control device and diagnostic method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006353075A (en) * 2005-05-16 2006-12-28 Honda Motor Co Ltd Control circuit device
JP2018182962A (en) * 2017-04-18 2018-11-15 特殊電装株式会社 Motor control device
WO2019198407A1 (en) * 2018-04-12 2019-10-17 日立オートモティブシステムズ株式会社 Electronic control device and diagnostic method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200406962A1 (en) * 2018-03-13 2020-12-31 Hitachi Automotive Systems, Ltd. Control device for on-board device
US11498614B2 (en) * 2018-03-13 2022-11-15 Hitachi Astemo, Ltd. Control device for on-board device

Similar Documents

Publication Publication Date Title
JP6999480B2 (en) Electronic control device and its diagnostic method
US10003294B2 (en) Control apparatus of rotary electric machine and electric power steering apparatus using the same
JP6182385B2 (en) Electric motor control device
CN112351933B (en) Motor vehicle steering system with redundantly arranged control units
EP2364897B1 (en) Electric power steering controller and electric power steering system
WO2017122329A1 (en) Electrical power steering device
US12005975B2 (en) Method for providing steering assistance for an electromechanical steering system of a motor vehicle comprising a redundantly designed control device
EP2905201A1 (en) Steering control device, and steering control method
JP2013079027A (en) Electric power steering device
JP4230348B2 (en) Rotation detector
US20200021233A1 (en) Motor system
JP6580502B2 (en) Control device and abnormality notification method in a plurality of arithmetic processing units
US11183963B2 (en) Abnormality detection device
WO2020179818A1 (en) Driving control device for electric motor
JP2006353075A (en) Control circuit device
WO2021117636A1 (en) Drive control device for electric motor
JP2004330883A (en) Transfer ratio variable steering device
JP2013121294A (en) Fault diagnostic device for motor for electric power steering
JP2010269726A (en) Electric power steering device
JP7360560B2 (en) electronic control unit
US20240106264A1 (en) Power supply apparatus
JP2005193834A (en) Control device of electric power steering device
JP7226687B2 (en) motor controller
JP2021054304A (en) Electric power steering control device
JP2020147191A (en) Motor control device for electric power steering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP