WO2021117564A1 - Flow-path switching valve, and power generating system and uninterruptible power system employing same - Google Patents

Flow-path switching valve, and power generating system and uninterruptible power system employing same Download PDF

Info

Publication number
WO2021117564A1
WO2021117564A1 PCT/JP2020/044764 JP2020044764W WO2021117564A1 WO 2021117564 A1 WO2021117564 A1 WO 2021117564A1 JP 2020044764 W JP2020044764 W JP 2020044764W WO 2021117564 A1 WO2021117564 A1 WO 2021117564A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
passage
fluid
path switching
gas
Prior art date
Application number
PCT/JP2020/044764
Other languages
French (fr)
Japanese (ja)
Inventor
匠 茨田
聡 北森
哲雄 濱崎
Original Assignee
三協エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三協エンジニアリング株式会社 filed Critical 三協エンジニアリング株式会社
Publication of WO2021117564A1 publication Critical patent/WO2021117564A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/076Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with sealing faces shaped as surfaces of solids of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/08Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks
    • F16K11/085Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/08Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems requiring starting of a prime-mover
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a flow path switching valve, a power generation system using the valve, and an uninterruptible power supply system.
  • the gas cylinder means a cassette gas cylinder for a cassette stove and a small fuel gas cylinder having excellent portability for camping, and a gas cylinder is, for example, about 2 kg to 50 kg like a propane gas cylinder. It means a relatively large and heavy cylinder.
  • any one type of gas is partitioned from different gas supply sources into a gas engine for power generation that can operate with different types of gas fuel, and the gas engine is separated.
  • a switching valve for supplying gas fuel to the gas fuel has been proposed (see Patent Document 1).
  • the switching valve shown in FIG. 9 is configured to start supply from the other gas supply source after completely stopping the flow of gas in the valve. If a valve with this configuration is used, the gas engine generator may stop, and if you are using a load that can cause serious damage even with a power failure of 1 to several seconds, for example, a computer that does not have a backup power supply, After normally turning off these loads, it is necessary to switch the gas supply source and turn it on again, which is extremely inconvenient.
  • the present invention has been made to solve the above-mentioned problems of the conventional example, and is a flow path switching valve that realizes switching of a gas supply source without stopping a gas engine generator, a power generation system using the valve, and a power generation system using the valve.
  • the purpose is to provide a non-disruptive system.
  • the 2-input 1-output type flow path switching valve of the present invention has a first flow path and a second flow path inside in the 2-input 1-output type flow path switching valve.
  • the flow path switching structure and the flow path switching structure can be rotated in the flow path switching direction, but they are contained in an airtight state so that fluid does not flow to other than the flow path, and the first and second fluid forces are included.
  • the first flow path of the flow path switching structure includes a main body portion having a passage and one fluid output passage, and a switching portion for rotating the flow path switching structure in the flow path switching direction.
  • the first fluid input passage and the fluid output passage are connected, and the second flow path connects the second fluid input passage and the fluid output passage, and the flow path switching structure is rotated by the switching portion.
  • the opening area caused by the overlap between the first fluid input passage and the first flow path is reduced, and at the same time, the opening area caused by the overlap between the second fluid input passage and the second flow path is increased. It is characterized in that the amount of fluid discharged from the fluid output passage is uniform per unit time when the flow path is switched.
  • the flow path switching structure is columnar and has a first flow path and a second flow path penetrating the side surface, and the fluid output passage side of the first flow path and the second flow path is one passage inside.
  • the main body portion is preferably a tubular container that rotatably contains the columnar flow path switching structure about the axis.
  • the first fluid input is made between the opening portions of the first flow path and the second flow path of the flow path switching structure and the first and second fluid input passages with respect to the rotation amount of the flow path switching structure. It is provided with a hollow portion having a rectangular cross section in which the decrease in the opening area caused by the overlap of the passage and the first flow path and the increase in the opening area caused by the overlap of the second fluid input passage and the second flow path are the same. Is preferable.
  • the first fluid input is made between the opening portions of the first flow path and the second flow path of the flow path switching structure and the first and second fluid input passages with respect to the rotation amount of the flow path switching structure.
  • a hollow portion having a rectangular cross section in which a decrease in the opening area caused by the overlap of the passage and the first flow path and an increase in the opening area caused by the overlap of the second fluid input passage and the second flow path change at a predetermined ratio. It is preferable to have it.
  • the power generation system of the present invention is any of the above-mentioned flow path switching valves, the valve in which the first flow path communicates with the first fluid input passage and the fluid output passage, and the flow path switching valve.
  • a power generation system composed of a gas can connected to a first fluid input passage, a gas cylinder connected to a second fluid input passage of the flow path switching valve, and a gas engine power generation unit
  • the gas engine is composed of a gas engine generator that generates power by gas, a drive unit that rotates the flow path switching structure of the valve, a changeover switch, and a control unit.
  • the control unit is the control unit.
  • the drive unit is controlled according to the operation of the changeover switch to rotate the valve switching unit to switch from the first flow path to the second flow path and from the gas cylinder connected to the second fluid input passage. It is characterized by executing a non-disruptive gas supply source switching process of supplying gas to the gas engine generator.
  • the power failure-free system of the present invention is any of the above-mentioned flow path switching valves, in which the first flow path communicates with the first fluid input passage and the fluid output passage, and the above-mentioned flow path. It is composed of a gas can connected to the first fluid input passage of the switching valve, a gas cylinder connected to the second fluid input passage of the flow path switching valve, and a gas engine power generation unit.
  • the gas engine power generation unit includes a gas engine generator that generates power by gas, a battery for starting the generator and no power failure, a power failure detection unit, a power supply line switching unit, and the like.
  • the control unit is a system power supply when a power failure is detected by the power failure detection unit. Instead, the power supply line switching unit is switched so that power is supplied by the battery, the gas engine generator is started using the gas from the battery and the gas can, and after the start, the power supply line switching unit is switched. Instead of the power failure battery, the power supply from the gas engine generator is started, the power supply is started, and the flow path switching structure of the valve is rotated by the drive unit in response to the operation of the changeover switch. It is characterized by executing a non-disruptive gas supply source switching process of supplying the gas from the gas cylinder connected to the second fluid input passage to the gas engine generator.
  • the flow path switching valve of the present invention can also be configured as a valve having three or more fluid input passages and one fluid output passage, in which n (where n is an integer of 3 or more) fluid input passage and 1.
  • n (where n is an integer of 3 or more) fluid input passage and 1.
  • a flow path switching structure having a columnar shape and having a first to nth flow path penetrating the side portion and a flow path switching structure can be rotated in the flow path switching direction, but a fluid other than the flow path It is contained in an airtight state so that the fluid does not flow, and a cylindrical main body portion having a first to nth fluid input passage and a fluid output passage of 1 and a flow path switching structure are passed through the flow path.
  • the flow path switching structure connect the first to nth fluid input passages and the fluid output passages, respectively, and the first to nth flow paths are connected to each other.
  • the fluid output passage side of all the flow paths is one passage inside, and the flow path switching structure has a th m (where m is any of 1 to n-1) due to rotation by the switching portion.
  • the opening area created by the overlap of the fluid input passage of (the integer) and the mth flow path is reduced, and at the same time, the opening area created by the overlap of the fluid input passage of the m + 1 and the m + 1th flow path is increased.
  • the input passages other than the m and m + 1 and the flow paths other than the m and m + 1 are closed without overlapping, and per unit time discharged from the fluid output passage when the flow path is switched. It is characterized in that the amount of the fluid is uniform.
  • the amount of gas output from the fluid output passage can be made uniform.
  • the gas engine generator is operated by the gas supply from the gas can at the initial stage, and then the gas from the gas cylinder without stopping the operation of the gas engine generator is performed. It is possible to switch to supply.
  • FIG. 5 is a perspective view when the switching lever of the flow path switching valve is rotated in the order of (a), (b), and (c). It is explanatory drawing which shows the state of the flow path when the switching lever of the flow path switching valve is rotated in the order of FIGS. 5A, 5B, and 5C.
  • (A), (b), (c), and (d) are each passage of the main body portion when the flow path switching valve of the 3-input 1-output type is implemented, and each flow when the flow path switching structure is rotated.
  • the flow path switching valve of the present invention is a 2-input 1-output type valve that closes one fluid input passage and at the same time opens the other fluid input passage to per unit time of the fluid discharged from the fluid output passage. Designed to be uniform in quantity. As a result, switching of the gas supply source to the gas engine generator can be realized without stopping the supply of a uniform amount of gas. By using this flow path switching valve, it is possible to configure a power generation system capable of switching the gas supply source or an uninterruptible power supply system including the power generation system without stopping the gas engine generator.
  • FIG. 1 is a configuration diagram of an uninterruptible system 1 using the fluid flow path switching valve 100 according to the embodiment of the present invention.
  • the non-disruption system 1 includes a computer 10 of a type that does not have a built-in backup power source used in homes, offices, etc., a gas engine power generation unit 200 provided between the system power source 11 from a power company and the computer 10.
  • the fluid output passage 102c of the flow path switching valve 100 is connected to the gas engine power generation unit 200. It is conceivable that a partition wall inside or outside the room is provided at a portion indicated by the dotted lines a, b, and c, but in the present invention, the partition portion is not particularly problematic.
  • FIG. 2 shows a functional block diagram of the uninterruptible system 1.
  • the gas engine power generation unit 200 includes a gas engine generator 201 that generates power using gas fuel, a battery 202 for starting a generator and no power failure, a power failure detection unit 203, a power supply line switching unit 204, and a flow path switching valve 100. It is composed of a drive unit (motor) 250 that rotates the flow path switching structure 101 (see FIG. 4), a two-state changeover switch 205 for selectively switching between two flow paths, and a control unit 206. ing.
  • the control unit 206 is a PLC (abbreviation of programmable logic controller), and has a status display 207, an MPU 208, and a status display 207 indicating whether the gas can 300 or the propane gas cylinder 301 is connected to the gas engine generator 201. It has a memory 209. In the event of a power failure, the control unit 206 switches the power supply from the system power supply 11 to the battery power supply 202, and the computer 10 is momentarily interrupted (for a short time, but due to a forced shutdown or even if it is not shut down, data is lost. Perform non-power failure processing to prevent (the same applies hereinafter).
  • PLC abbreviation of programmable logic controller
  • control unit 206 changes the gas supply source from the gas can 300 to the propane gas cylinder 301 or from the propane gas cylinder 301 to the gas can 300 without stopping the gas engine generator 201 in response to the operation of the changeover switch 205 by the user. Performs non-disruptive gas supply source switching processing. Specifically, when the changeover switch 205 is operated during gas supply from the gas can 300, the drive unit 250 rotates the flow path switching structure 101 (see FIG. 4) of the flow path switching valve 100, and the second The gas from the propane gas cylinder 301 connected to the fluid input passage is supplied to the gas engine generator 201.
  • FIG. 3 is a flowchart of the main routine of the uninterruptible processing executed by the MPU 208 of the control unit 206.
  • the power supply line switching unit 204 is set so as to supply power from the system power supply 11 to the computer 10 (step). S1).
  • the power supply line switching unit 204 is switched so that power is supplied by the battery 202 instead of the system power supply 11, and uninterruptible power is supplied to the computer 10 (Yes). Step S3).
  • the gas engine generator 201 is started using the gas from the battery 202 and the gas can 300, and after the start, the power supply line switching unit 204 is switched to replace the battery 202.
  • Power supply from the gas engine generator 201 is started (step S4).
  • the power supply by the gas engine generator 201 continues until the power supply from the system power supply 11 is restored (No in step S5).
  • the gas engine generator 201 is stopped after switching the feeder line switching unit 204 so as to restart the power supply from the grid power supply 11 (step S6). ..
  • FIG. 4A shows a perspective view of the flow path switching valve 100
  • FIG. 4B shows an exploded perspective view.
  • the motor shaft 251 of the drive unit 250 is connected to the shaft of the switching unit 103 having the lever 103a for manually switching the flow path of the flow path switching valve 100.
  • the MPU 208 of the control unit 206 enables switching control of the gas supply flow path.
  • the flow path switching valve 100 in the present embodiment is, for example, a columnar valve having a diameter of 100 mm and a height of about 50 mm.
  • the flow path switching valve 100 has a columnar shape and has a flow path switching structure 101 having first and second flow paths passing through the side surfaces thereof, and a flow path switching structure 101 in a flow path switching direction, that is, a shaft rotation direction. Although it is rotatable, it is provided along the upper central axis of the flow path switching structure 101 and the cylindrical main body portion 102 that is contained in an airtight state so that gas does not flow to other than the flow path. A switching unit 103 that rotates the path switching structure 101 in the flow path switching direction is provided.
  • FIG. 4B is not for separating the flow path switching structure 101 and the switching portion 103 at the boundary portion, but for showing the first and second flow paths in the flow path switching structure 101 in an easy-to-understand manner. , The upper part of the flow path switching structure 101 is cut and separated, and an exploded perspective view is shown.
  • the main body portion 102 has two first and second fluid input passages 102a and 102b and one fluid output passage 102c leading from the inner surface of the cylinder to the outside.
  • the flow path switching structure 101 has a first flow path 101a connecting the first fluid input passage 102a and the fluid output passage 102c, and a second flow path 101b connecting the second fluid input passage 102b and the fluid output passage 102c. I have.
  • the fluid output passage 102c side of the first flow path 101a and the second flow path 101b is an internal passage.
  • the first fluid input passage 102a side of the first flow path 101a and the second fluid input passage 102b side of the second flow path 101b are separated by a partition wall 101c shown by a dotted line in FIG. 4B.
  • a partition wall 101c shown by a dotted line in FIG. 4B.
  • the partition wall 101c is omitted or indicated by a dotted line.
  • the flow path switching structure 101 has walls 101d and 101e having columnar side surfaces as essential components for forming the first flow path 101a and the second flow path 101b.
  • the flow path switching structure 101 is rotated by the switching portion 103.
  • the wall 101d reduces the opening area caused by the overlap of the first fluid input passage 102a and the first flow path 101a, and at the same time, the wall.
  • the 101e increases the opening area generated by the overlap of the second fluid input passage 102b and the second flow path 101b, and the action of the two walls 101d and 101e causes the fluid output passage 102c when the flow path is switched.
  • the amount of gas discharged from is uniform per unit time.
  • the amount of rotation of the flow path switching structure 101 is between the opening portions of the first flow path 101a and the second flow path 101b of the flow path switching structure 101 and the first and second fluid input passages 102a and 102b.
  • the decrease in the opening area caused by the overlap of the first fluid input passage 102a and the first flow path 101a and the increase in the opening area caused by the overlap of the second fluid input passage 102b and the second flow path 101b are the same.
  • it is provided with hollow portions 102d and 102e having a rectangular cross section that are changed in a predetermined proportional relationship (the internal structure of the hollow portion 102d is shown by a dotted line in FIG. 4B).
  • the dimensions Wd and We in the height direction of the hollow portions 102d and 102e are set to the same values in this embodiment, but by changing the ratio of these values, the hollow portions 102d and 102e are closed by the rotation of the flow path switching structure 101.
  • the area of the overlapping portion to be or opened can be changed at a constant rate. It is preferable that a uniform amount of gas is supplied to the gas engine generator 201 per unit time.
  • the gas discharged from the propane gas cylinder 301 is more than the injection force of the gas discharged from the gas can 300.
  • the height dimension We of the hollow portion 102e on the second fluid input passage side is set to ⁇ 0 of the height dimension Wd of the hollow portion 102d on the first fluid input passage side.
  • the dimension we in the height direction is made at the same height as the dimension wd, and a rectangular opening of the dimension We is provided from the upper part.
  • the mask plate may be slidably inserted so that the dimension We can be adjusted to various values.
  • 5 (a), (b), and (c) are perspective views showing a state when the lever 103a provided in the switching portion 103 of the flow path switching valve 100 is manually rotated.
  • 6 (a), (b), and (c) are explanatory views showing the positional relationship between the flow path switching structure 101 and the main body portion 102 when shown in the perspective views of FIGS. 5 (a), (b), and (c), respectively. is there.
  • 5 (a) and 6 (a) show a state in which the opening formed by the overlap of the first flow path 101a and the first fluid input passage 102a is fully open and communicates with the fluid output passage 102c. There is.
  • the opening formed by the first flow path 101a overlapping the first fluid input passage 102a with half the efficiency ( ⁇ 0.5) is half-open, and the fluid output passage 102c and the like. It shows a state of communication, and at the same time, the opening formed by the second flow path 101b overlapping the second fluid input passage 102b with half efficiency ( ⁇ 0.5) is half open and communicates with the fluid output passage 102c. Indicates the state of being. In this case, as a result, the same amount ( ⁇ 1.0) of gas as in the cases shown in FIGS. 5 (a) and 6 (a) is output from the fluid output passage 102c.
  • 5 (c) and 6 (c) show a state when the rotation of the flow path switching structure 101 by the switching unit 103 is completed, and are generated by the overlap of the first flow path 101a and the first fluid input passage 102a.
  • the opening is completely closed, and the opening formed by overlapping the second flow path 101b and the second fluid input passage 102b is fully open, indicating a state of communicating with the fluid output passage 102c. That is, in the flow path switching valve 100, even if the flow path switching structure 101 is rotated to switch the flow path between the first flow path 101a and the second flow path 101b, the fluid output of the main body portion 102 The amount of gas output discharged from the passage 102c per unit time can be made uniform.
  • FIG. 7 is a flowchart showing the contents of the subroutine of the power generation process (step S4) by the gas engine among the uninterruptible power processes executed by the MPU 208 of the control unit 206 shown in FIG.
  • the gas engine generator 201 is started using the gas from the battery 202 and the gas can 300, and after the start (Yes in step S41), the feeder line switching unit 204 is switched to replace the battery 202 with the gas engine generator.
  • Power supply from 201 is started (step S42). After the power generation by the gas engine generator 201 is started, the flow path switching structure 101 of the flow path switching valve 100 is rotated by the drive unit 250 in response to the operation of the changeover switch 205 by the user (Yes in step S43).
  • step S44 Gas from the propane gas cylinder 301 connected to the second fluid input passage is supplied to the gas engine generator 201 instead of the supply from the gas can 300 connected to the first fluid input passage 102a (step). S44). After the process of step S44, or if there is no operation of the changeover switch 205 by the user (No in step S43), the subroutine is terminated and the process returns to the main routine of FIG.
  • the subroutine process of FIG. 7 is repeatedly executed until the power supply from the system power supply 11 is restored (No in step S5).
  • the gas is supplied from the propane gas cylinder 301
  • the changeover switch 205 is operated by the user in order to replace the gas cylinder (Yes in step S43)
  • the flow path switching valve 100 By switching the flow path switching valve 100, the gas supply is switched from the gas can 300 connected to the first fluid input passage 102a.
  • the user operates the changeover switch 205 again to switch the flow path switching valve 100, and switches the gas supply source from the gas can 300 to the propane gas cylinder 301.
  • the uninterruptible gas supply source switching process is realized.
  • the present invention is not limited to the configurations of the above-mentioned various embodiments, and various modifications can be made without changing the gist of the invention.
  • the switching between the gas can 300 and the propane gas cylinder 301 has been described as an example, but the application of the flow path switching valve 100 is not limited to this, and switching between gas cans or gas cylinders having various capacities can be performed. It can be carried out without stopping the gas engine generator 201 and without a sudden change in the amount of supplied gas.
  • the flow path switching valve of the present invention is not limited to the 2-input 1-output type, but can also be configured as a valve having 3 or more fluid input passages and 1 fluid output passage.
  • n (however, n) Is an integer of 3 or more)
  • a flow path switching valve having a fluid input passage and 1 fluid output passage a flow path having a columnar shape and a first to nth flow path penetrating a side portion.
  • the switching structure and the flow path switching structure can be rotated in the flow path switching direction, but they are contained in an airtight state so that fluid does not flow to other than the flow path.
  • n fluid input passage and the fluid output passage are arranged along the circumference on the side surface of the main body portion, and the first to nth flow paths of the flow path switching structure are the first to nth channels, respectively.
  • the nth fluid input passage and the fluid output passage are connected to each other, and the fluid output passage side of all the first to nth flow paths is internally formed as one passage.
  • the switching structure reduces the opening area created by the overlap of the mth (however, m is an integer of 1 to n-1) fluid input passage and the mth flow path due to the rotation by the switching portion. At the same time, the opening area created by the overlap of the m + 1 fluid input passage and the m + 1th flow path is increased, and at this time, the input passages other than the m and m + 1 and the flow paths other than the m and m + 1 are used. Is characterized in that the fluid is closed without overlapping, and the amount of fluid discharged from the fluid output passage is uniform per unit time when the flow path is switched.
  • the flow path switching valve 400 with 3 inputs and 1 output will be described.
  • the flow path switching valve 400 includes first to third fluid input passages 401, 402, 403 and one fluid output passage 404, and is in a state of being rotatable inside, and is a first to third flow.
  • a flow path switching structure 450 provided with a road is provided. As shown in FIG. 8A, the inlets of the first fluid input passage 401 and the first flow path 451 are opened, and the outlet of the first flow path 451 is connected to the fluid output passage 404, and other When the second and third fluid input passages 402 and 403 are in a completely closed state, the flow path switching structure 450 is rotated in the clockwise direction. Then, as shown in FIG.
  • FIG. 8B shows a state in which half of the gas (fluid) is flowing in from each of the first and second fluid input passages 401 and 402 when rotated by about 6 degrees.
  • the first and third fluid input passages 401 and 403 and the first and third flow paths 451 and 453 The opening portion of is completely closed, and the opening portion between the second fluid input passage 402 and the second flow path 452 is fully opened.
  • the flow path switching structure 450 is rotated clockwise, the first and second fluid input passages 401 and 402 and the first and second flow paths 451 are shown in FIG. 8 (d).
  • 452 is completely closed, and the opening formed by the overlap of the third fluid input passage 403 and the third flow path 453 is fully opened.
  • the flow path switching bubble of the present invention is not limited to 2 inputs and 1 output, and can be implemented as a multi-input 1-output type valve.
  • the flow path switching valve 100 of the present invention enables replacement of a gas supply source without stopping a device that uses gas, and is used for an uninterruptible gas engine, for example, in a restaurant. It enables the replacement of gas cylinders used for thermal power reinforcement to the outside without stopping the use of the gas stove. Further, the flow path switching valve of the present invention can be used not only when supplying gas to a gas engine generator but also when supplying liquid fuel to a generator using a gasoline engine or the like.
  • Uninterruptible system 10 Computer (load) 11
  • System power supply 100, 400 Flow path switching valve 101a, 101b, 401, 402, 403 Fluid input passage 101c, 404 Fluid output passage 101, 450 Flow path switching structure 200
  • Gas engine power generation unit 250 Drive unit 300

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Multiple-Way Valves (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Provided is a flow-path switching valve capable of switching a gas supply source without stopping the motion of a gas engine electricity generator. This valve is provided with a structural component having first and second flow passages, a main body part which includes first and second fluid input passages and one fluid output passage and which encloses the structural component in a hermetic state and in such a way as to be capable of rotating in a flow passage switching direction, and a switching unit which causes the structural component to rotate, wherein: the first flow passage joins the first fluid input passage to the fluid output passage; the second flow passage joins the second fluid input passage to the fluid output passage; and in conjunction with the rotation by the switching unit, the structural component causes an opening surface area generated by an overlap of the first fluid input passage and the first flow passage to decrease, and simultaneously causes an opening surface area generated by an overlap of the second fluid input passage and the second flow passage to increase, such that a uniform amount of fluid is discharged from the fluid output passage per unit time during flow passage switching. Employing a valve having this configuration enables the gas supply source to be switched without stopping the gas engine electricity generator.

Description

流路切替バルブと、これを用いた発電システム及び無停電システムFlow path switching valve and power generation system and uninterruptible system using it
 本発明は、流路切替バルブと、これを用いた発電システム及び無停電システムに関する。 The present invention relates to a flow path switching valve, a power generation system using the valve, and an uninterruptible power supply system.
 従来、ガス缶又はガスボンベからのガス供給を受けて、ガスエンジンを始動し、発電を行うタイプの発電機が知られている。本明細書において、ガス缶とは、カッセトコンロ用のカセットガスボンベ、キャンプ用の携帯性に優れた小型の燃料ガスボンベの事を意味し、ガスボンベとは、プロパンガスボンベのように、例えば2kg~50kg程の比較的大きく重いボンベの事を意味する。 Conventionally, a type of generator that receives gas supply from a gas can or a gas cylinder, starts a gas engine, and generates electricity is known. In the present specification, the gas cylinder means a cassette gas cylinder for a cassette stove and a small fuel gas cylinder having excellent portability for camping, and a gas cylinder is, for example, about 2 kg to 50 kg like a propane gas cylinder. It means a relatively large and heavy cylinder.
 ガス缶を用いるタイプの発電機は、コンパクトで持ち運びに便利だが、発電可能な時間が短い。一方、ガスボンベを用いるタイプの発電機は、駆動時間は長いが、持ち運びに不便である。図8(a)(b)(c)に示すように、異種のガス燃料にて稼働可能な発電用ガスエンジンに異なるガス供給源から何れか1つの種類のガスを仕切って分別し、ガスエンジンにガス燃料を供給する切替バルブが提案されている(特許文献1を参照)。 The type of generator that uses a gas can is compact and convenient to carry, but the power generation time is short. On the other hand, a generator using a gas cylinder has a long driving time, but is inconvenient to carry. As shown in FIGS. 8A, 8B, and 8C, any one type of gas is partitioned from different gas supply sources into a gas engine for power generation that can operate with different types of gas fuel, and the gas engine is separated. A switching valve for supplying gas fuel to the gas fuel has been proposed (see Patent Document 1).
特許第6587770号公報Japanese Patent No. 65877770
 ガスエンジン発電機は、始動後、一定の発電量となるように均一なガスの供給が望まれる。図9に示す切替バルブは、バルブ内のガスの流れを完全に止めた後に、他方のガス供給源からの供給を開始する構成になっている。この構成のバルブを使用すると、ガスエンジン発電機は停止する恐れがあり、1秒~数秒の停電でも深刻な損害が生じ得る負荷、例えばバックアップ電源を持たないコンピュータ等を用いている場合には、これらの負荷を正常に電源オフにした後に、ガス供給源を切り替え、再び、電源オンにする必要があり、極めて不便である。 It is desirable for the gas engine generator to supply a uniform amount of gas so that the amount of power generated is constant after the start. The switching valve shown in FIG. 9 is configured to start supply from the other gas supply source after completely stopping the flow of gas in the valve. If a valve with this configuration is used, the gas engine generator may stop, and if you are using a load that can cause serious damage even with a power failure of 1 to several seconds, for example, a computer that does not have a backup power supply, After normally turning off these loads, it is necessary to switch the gas supply source and turn it on again, which is extremely inconvenient.
 本発明は、上記従来例の問題を解決するためになされたものであり、ガスエンジン発電機を停止させずにガス供給源の切替を実現する流路切替バルブと、これを用いた発電システム及び無停電システムとを提供することを目的とする。 The present invention has been made to solve the above-mentioned problems of the conventional example, and is a flow path switching valve that realizes switching of a gas supply source without stopping a gas engine generator, a power generation system using the valve, and a power generation system using the valve. The purpose is to provide a non-disruptive system.
 上記目的を達成するために本発明の2入力1出力型の流路切替バルブは、2入力1出力型の流路切替バルブにおいて、第1流路び第2流路を内部に有している流路切替構造物と、当該流路切替構造物を流路切替方向に回動可能だが、流路以外に流体が流れないように気密な状態で内包しており、第1、第2流体力通路及び1つの流体出力通路を有している本体部分と、前記流路切替構造物を流路切替方向に回動する切替部と、を備え、前記流路切替構造物の第1流路は前記第1流体入力通路と流体出力通路とを繋ぎ、第2流路は前記第2流体入力通路と流体出力通路とを繋ぐようになっており、前記流路切替構造物は前記切替部による回動に伴って、第1流体入力通路と第1流路の重なりによって生じる開口面積を減少させると同時に、第2流体入力通路と第2流路の重なりによって生じる開口面積を増加するようになっており、流路切り替え時に、前記流体出力通路から吐出される単位時間当たりの流体が均一な量となっていることを特徴とする。 In order to achieve the above object, the 2-input 1-output type flow path switching valve of the present invention has a first flow path and a second flow path inside in the 2-input 1-output type flow path switching valve. The flow path switching structure and the flow path switching structure can be rotated in the flow path switching direction, but they are contained in an airtight state so that fluid does not flow to other than the flow path, and the first and second fluid forces are included. The first flow path of the flow path switching structure includes a main body portion having a passage and one fluid output passage, and a switching portion for rotating the flow path switching structure in the flow path switching direction. The first fluid input passage and the fluid output passage are connected, and the second flow path connects the second fluid input passage and the fluid output passage, and the flow path switching structure is rotated by the switching portion. With the movement, the opening area caused by the overlap between the first fluid input passage and the first flow path is reduced, and at the same time, the opening area caused by the overlap between the second fluid input passage and the second flow path is increased. It is characterized in that the amount of fluid discharged from the fluid output passage is uniform per unit time when the flow path is switched.
 前記流路切替構造物は円柱状で、側面を貫通する第1流路及び第2流路を有しており、第1流路及び第2流路の流体出力通路側が内部で1本の通路となっており、前記本体部分は、前記円柱状の流路切替構造物を軸中心に回動可能に内包する筒状容器である、ことが好ましい。 The flow path switching structure is columnar and has a first flow path and a second flow path penetrating the side surface, and the fluid output passage side of the first flow path and the second flow path is one passage inside. The main body portion is preferably a tubular container that rotatably contains the columnar flow path switching structure about the axis.
 前記流路切替構造物の第1流路及び第2流路の開口部分と、前記第1及び第2流体入力通路の間に、前記流路切替構造物の回動量に対し、第1流体入力通路と第1流路の重なりによって生じる開口面積の減少と、第2流体入力通路と第2流路の重なりによって生じる開口面積の増加とを、同一とする断面矩形の中空部分を備えている、ことが好ましい。 The first fluid input is made between the opening portions of the first flow path and the second flow path of the flow path switching structure and the first and second fluid input passages with respect to the rotation amount of the flow path switching structure. It is provided with a hollow portion having a rectangular cross section in which the decrease in the opening area caused by the overlap of the passage and the first flow path and the increase in the opening area caused by the overlap of the second fluid input passage and the second flow path are the same. Is preferable.
 前記流路切替構造物の第1流路及び第2流路の開口部分と、前記第1及び第2流体入力通路の間に、前記流路切替構造物の回動量に対し、第1流体入力通路と第1流路の重なりによって生じる開口面積の減少と、第2流体入力通路と第2流路の重なりによって生じる開口面積の増加とが、予め定めた比率で変化する矩形断面の中空部分を備えている、ことが好ましい。 The first fluid input is made between the opening portions of the first flow path and the second flow path of the flow path switching structure and the first and second fluid input passages with respect to the rotation amount of the flow path switching structure. A hollow portion having a rectangular cross section in which a decrease in the opening area caused by the overlap of the passage and the first flow path and an increase in the opening area caused by the overlap of the second fluid input passage and the second flow path change at a predetermined ratio. It is preferable to have it.
 本発明の発電システムは、前記何れかの流路切替バルブであって、第1流路が第1流体入力通路及び流体出力通路とを連通させている状態のバルブと、前記流路切替バルブの第1流体入力通路に繋がれているガス缶と、前記流路切替バルブの第2流体入力通路に繋がされているガスボンベと、ガスエンジン発電部と、で構成される発電システムにおいて、前記ガスエンジン発電部は、ガスによって発電を行うガスエンジン発電機と、前記バルブの流路切替構造物を回動する駆動部と、切替スイッチと、制御部とで構成されており、前記制御部は、前記切替スイッチの操作に応じて前記駆動部を制御して前記バルブの切替部を回動し、第1流路から第2流路に切り替えて、第2流体入力通路に繋がれているガスボンベからのガスを前記ガスエンジン発電機に供給する、無停電ガス供給源切替処理を実行するを実行することを特徴とする。 The power generation system of the present invention is any of the above-mentioned flow path switching valves, the valve in which the first flow path communicates with the first fluid input passage and the fluid output passage, and the flow path switching valve. In a power generation system composed of a gas can connected to a first fluid input passage, a gas cylinder connected to a second fluid input passage of the flow path switching valve, and a gas engine power generation unit, the gas engine The power generation unit is composed of a gas engine generator that generates power by gas, a drive unit that rotates the flow path switching structure of the valve, a changeover switch, and a control unit. The control unit is the control unit. The drive unit is controlled according to the operation of the changeover switch to rotate the valve switching unit to switch from the first flow path to the second flow path and from the gas cylinder connected to the second fluid input passage. It is characterized by executing a non-disruptive gas supply source switching process of supplying gas to the gas engine generator.
 また、本発明の無停電システムは、前記何れかの流路切替バルブであって、第1流路が第1流体入力通路及び流体出力通路とを連通させている状態のバルブと、前記流路切替バルブの第1流体入力通路に繋がれているガス缶と、前記流路切替バルブの第2流体入力通路に繋がされているガスボンベと、ガスエンジン発電部とで構成され、停電時に系統電源の代わりに給電を行う無停電システムにおいて、前記ガスエンジン発電部は、ガスによって発電を行うガスエンジン発電機と、発電機起動及び無停電用バッテリと、停電検知部と、給電線切替部と、前記バルブの流路切替構構造物を回動する駆動部と、切替スイッチと、制御部とで構成されており、前記制御部は、前記停電検知部によって停電が検知された場合に、系統電源の代わりに前記バッテリによる給電を行うように前記給電線切替部を切り替え、前記バッテリ及びガス缶からのガスを用いて前記ガスエンジン発電機を始動し、当該始動後に、前記給電線切替部を切り替え、前記無停電用バッテリの代わりに、ガスエンジン発電機からの給電を開始する、無停電処理と、前記切替スイッチの操作に応じて前記駆動部によって前記バルブの流路切替構造物を回動し、第2流体入力通路に繋がれているガスボンベからのガスを前記ガスエンジン発電機に供給する、無停電ガス供給源切替処理と、を実行することを特徴とする。 Further, the power failure-free system of the present invention is any of the above-mentioned flow path switching valves, in which the first flow path communicates with the first fluid input passage and the fluid output passage, and the above-mentioned flow path. It is composed of a gas can connected to the first fluid input passage of the switching valve, a gas cylinder connected to the second fluid input passage of the flow path switching valve, and a gas engine power generation unit. In a non-disruption system that supplies power instead, the gas engine power generation unit includes a gas engine generator that generates power by gas, a battery for starting the generator and no power failure, a power failure detection unit, a power supply line switching unit, and the like. It is composed of a drive unit that rotates the flow path switching structure of the valve, a changeover switch, and a control unit. The control unit is a system power supply when a power failure is detected by the power failure detection unit. Instead, the power supply line switching unit is switched so that power is supplied by the battery, the gas engine generator is started using the gas from the battery and the gas can, and after the start, the power supply line switching unit is switched. Instead of the power failure battery, the power supply from the gas engine generator is started, the power supply is started, and the flow path switching structure of the valve is rotated by the drive unit in response to the operation of the changeover switch. It is characterized by executing a non-disruptive gas supply source switching process of supplying the gas from the gas cylinder connected to the second fluid input passage to the gas engine generator.
 さらに、本発明の流路切替バルブは、3以上の流体入力通路及び1つの流体出力通路を有するバルブとしても構成可能であり、n(ただし、nは3以上の整数)流体入力通路と1の流体出力通路を有している流路切替バルブにおいて、
 円柱状で、側部を貫通する第1乃至第n番目の流路を備えている流路切替構造物と、流路切替構造物を流路切替方向に回動可能だが、流路以外に流体が流れないように気密な状態で内包しており、第1乃至第n流体入力通路と、1の流体出力通路とを有している円筒状の本体部分と、流路切替構造物を流路切替方向に回動する切替部と、で構成されており、前記本体部分の第1乃至第n流体入力通路、及び、流体出力通路は、本体部分の側面に円周に沿って配置されており、前記流路切替構造物の第1乃至第n番目の流路は、それぞれ、第1乃至第n番目の流体入力通路と流体出力通路とを繋ぐようになっており、第1乃至第n番目の全ての流路の流体出力通路側が内部で1本の通路となっており、前記流路切替構造物は前記切替部による回動によって、第m(ただし、mは1乃至n-1の何れかの整数)の流体入力通路と第m番目の流路との重なりによってできる開口面積を少なくすると同時に、第m+1の流体入力通路と第m+1番目の流路との重なりによってできる開口面積を大きくし、この際、第m及び第m+1以外の入力通路と第m及び第m+1以外の流路とは重ならずに閉塞した状態とし、流路切り替え時に、前記流体出力通路から吐出される単位時間当たりの流体が均一な量となっていることを特徴とする。
Further, the flow path switching valve of the present invention can also be configured as a valve having three or more fluid input passages and one fluid output passage, in which n (where n is an integer of 3 or more) fluid input passage and 1. In a flow path switching valve having a fluid output passage,
A flow path switching structure having a columnar shape and having a first to nth flow path penetrating the side portion and a flow path switching structure can be rotated in the flow path switching direction, but a fluid other than the flow path It is contained in an airtight state so that the fluid does not flow, and a cylindrical main body portion having a first to nth fluid input passage and a fluid output passage of 1 and a flow path switching structure are passed through the flow path. It is composed of a switching portion that rotates in the switching direction, and the first to nth fluid input passages and the fluid output passages of the main body portion are arranged along the circumference on the side surface of the main body portion. The first to nth flow paths of the flow path switching structure connect the first to nth fluid input passages and the fluid output passages, respectively, and the first to nth flow paths are connected to each other. The fluid output passage side of all the flow paths is one passage inside, and the flow path switching structure has a th m (where m is any of 1 to n-1) due to rotation by the switching portion. The opening area created by the overlap of the fluid input passage of (the integer) and the mth flow path is reduced, and at the same time, the opening area created by the overlap of the fluid input passage of the m + 1 and the m + 1th flow path is increased. At this time, the input passages other than the m and m + 1 and the flow paths other than the m and m + 1 are closed without overlapping, and per unit time discharged from the fluid output passage when the flow path is switched. It is characterized in that the amount of the fluid is uniform.
 本発明によれば、ガス供給路を切り替える際に、流体出力通路から出力されるガスの量を均一にすることができる。これにより、発電システム又は無停電システムにおいて、初期の段階で、ガス缶からのガス供給によりガスエンジン発電器を動かし、この後に、このガスエンジン発電機の動作を止めることなく、ガスボンベボンベからのガス供給に切り替えるとを可能にする。 According to the present invention, when switching the gas supply path, the amount of gas output from the fluid output passage can be made uniform. As a result, in the power generation system or the power failure system, the gas engine generator is operated by the gas supply from the gas can at the initial stage, and then the gas from the gas cylinder without stopping the operation of the gas engine generator is performed. It is possible to switch to supply.
本発明の一実施の形態に係る無停電システムの構成図を示す。The block diagram of the uninterruptible power supply system which concerns on one Embodiment of this invention is shown. 無停電システムの機能ブロック図を示す。The functional block diagram of the uninterruptible system is shown. 制御部の実行する無停電処理のメインルーチンを示すフローチャート。A flowchart showing the main routine of uninterruptible power processing executed by the control unit. 流路切替バルブの(a)は斜視図、(b)は分解斜視図。(A) is a perspective view and (b) is an exploded perspective view of the flow path switching valve. 流路切替バルブの切替レバーを(a)(b)(c)の順で回転させた場合の斜視図。FIG. 5 is a perspective view when the switching lever of the flow path switching valve is rotated in the order of (a), (b), and (c). 流路切替バルブの切替レバーを図5(a)(b)(c)の順で回転させた場合の流路の様子を示す説明図。It is explanatory drawing which shows the state of the flow path when the switching lever of the flow path switching valve is rotated in the order of FIGS. 5A, 5B, and 5C. ガスエンジンによる発電処理のサブルーチンのフローチャート。Flowchart of subroutine of power generation processing by gas engine. (a)(b)(c)(d)は、3入力1出力タイプの流路切替バルブについて実施する場合の本体部分の各通路と、流路切り替え構造物を回動させた場合の各流路との開閉関係を示す図。(A), (b), (c), and (d) are each passage of the main body portion when the flow path switching valve of the 3-input 1-output type is implemented, and each flow when the flow path switching structure is rotated. The figure which shows the opening and closing relationship with a road. 切り替え時にガスを流通を一度遮断するタイプの従来の2入力1出力流路切り替えバルブを(a)(b)(c)の順に切り替えたときの様子を示す。The state when the conventional 2-input 1-output flow path switching valve of the type that shuts off the flow once at the time of switching is switched in the order of (a), (b), and (c) is shown.
 本発明の流路切替バルブは、2入力1出力タイプのバルブで、一方の流体入力通路を閉じると同時に、他方の流体入力通路を開けて、流体出力通路から吐出される流体の単位時間当たりの量が均一となるように設計されている。これによって、ガスエンジン発電機へのガス供給源の切替を均一な量のガスの供給を止めることなく実現する。この流路切替バルブを用いると、ガスエンジン発電機を止めることなく、ガス供給源の切替が可能な発電システム又はこの発電システムを内包する無停電システムを構成できる。 The flow path switching valve of the present invention is a 2-input 1-output type valve that closes one fluid input passage and at the same time opens the other fluid input passage to per unit time of the fluid discharged from the fluid output passage. Designed to be uniform in quantity. As a result, switching of the gas supply source to the gas engine generator can be realized without stopping the supply of a uniform amount of gas. By using this flow path switching valve, it is possible to configure a power generation system capable of switching the gas supply source or an uninterruptible power supply system including the power generation system without stopping the gas engine generator.
 図1は、本発明の一実施の形態に係る流体流路切替バルブ100を用いた無停電システム1の構成図である。無停電システム1は、家庭、オフィス等で使用されるバックアップ電源を内蔵して無いタイプのコンピュータ10と、電力会社からの系統電源11とコンピュータ10との間に設けられるガスエンジン発電部200と、2入力1出力型の流路切替バルブ100と、ガスエンジン発電部200に外付けされ、流路切替バルブ100を電動で開閉させる駆動部250と、流路切替バルブ100の第1流体入力通路102aに接続されている小型のガス缶300と、第2流体入力通路102bに接続されているガスボンベ301とで構成されている。流路切替バルブ100の流体出力通路102cはガスエンジン発電部200に接続されている。点線a、b、cで示す箇所で、部屋の中、外の区切り壁が設けられる場合が考えられるが、本発明では、特に区切りの箇所は問題としない。 FIG. 1 is a configuration diagram of an uninterruptible system 1 using the fluid flow path switching valve 100 according to the embodiment of the present invention. The non-disruption system 1 includes a computer 10 of a type that does not have a built-in backup power source used in homes, offices, etc., a gas engine power generation unit 200 provided between the system power source 11 from a power company and the computer 10. A two-input, one-output type flow path switching valve 100, a drive unit 250 externally attached to the gas engine power generation unit 200 to electrically open and close the flow path switching valve 100, and a first fluid input passage 102a of the flow path switching valve 100. It is composed of a small gas can 300 connected to the second fluid input passage 102b and a gas cylinder 301 connected to the second fluid input passage 102b. The fluid output passage 102c of the flow path switching valve 100 is connected to the gas engine power generation unit 200. It is conceivable that a partition wall inside or outside the room is provided at a portion indicated by the dotted lines a, b, and c, but in the present invention, the partition portion is not particularly problematic.
 図2は、無停電システム1の機能ブロック図を示す。ガスエンジン発電部200は、ガス燃料によって発電を行うガスエンジン発電機201と、発電機起動及び無停電用バッテリ202と、停電検知部203と、給電線切替部204と、流路切替バルブ100の流路切替構造物101(図4を参照)を回動する駆動部(モーター)250と、2つの流路を択一的に切替えるための2ステート切替スイッチ205と、制御部206とで構成されている。 FIG. 2 shows a functional block diagram of the uninterruptible system 1. The gas engine power generation unit 200 includes a gas engine generator 201 that generates power using gas fuel, a battery 202 for starting a generator and no power failure, a power failure detection unit 203, a power supply line switching unit 204, and a flow path switching valve 100. It is composed of a drive unit (motor) 250 that rotates the flow path switching structure 101 (see FIG. 4), a two-state changeover switch 205 for selectively switching between two flow paths, and a control unit 206. ing.
 制御部206は、PLC(プログラマブルロジックコントローラの略)であり、ガスエンジン発電機201にガス缶300、プロパンガスボンベ301の何れが接続されているのかを表すステータス表示用のディスプレイ207と、MPU208と、メモリ209とを備えている。制御部206は、停電時、系統電源11からバッテリ電源202に給電源を切り替え、コンピュータ10の瞬断(短い時間だが、強制シャットダウンにより、又はシャットダウンせずとも、データが消失してしまうような停電の事を言う。以下同じ)を防止する無停電処理を行う。 The control unit 206 is a PLC (abbreviation of programmable logic controller), and has a status display 207, an MPU 208, and a status display 207 indicating whether the gas can 300 or the propane gas cylinder 301 is connected to the gas engine generator 201. It has a memory 209. In the event of a power failure, the control unit 206 switches the power supply from the system power supply 11 to the battery power supply 202, and the computer 10 is momentarily interrupted (for a short time, but due to a forced shutdown or even if it is not shut down, data is lost. Perform non-power failure processing to prevent (the same applies hereinafter).
 また、制御部206は、ユーザによる切替スイッチ205の操作に応じてガスエンジン発電機201を停止させること無くガス供給源を、ガス缶300からプロパンガスボンベ301へ、または、プロパンガスボンベ301からガス缶300へと切り替える無停電ガス供給源切替処理を行う。詳しくは、ガス缶300からのガス供給時に、切替スイッチ205が操作されると、駆動部250が流路切替バルブ100の流路切替構造物101(図4を参照)を回動し、第2流体入力通路に繋がれているプロパンガスボンベ301からのガスを前記ガスエンジン発電機201に供給する。 Further, the control unit 206 changes the gas supply source from the gas can 300 to the propane gas cylinder 301 or from the propane gas cylinder 301 to the gas can 300 without stopping the gas engine generator 201 in response to the operation of the changeover switch 205 by the user. Performs non-disruptive gas supply source switching processing. Specifically, when the changeover switch 205 is operated during gas supply from the gas can 300, the drive unit 250 rotates the flow path switching structure 101 (see FIG. 4) of the flow path switching valve 100, and the second The gas from the propane gas cylinder 301 connected to the fluid input passage is supplied to the gas engine generator 201.
 図3は、制御部206のMPU208の実行する無停電処理のメインルーチンのフローチャートである。停電検知部203によって停電が検知されるまでの間は(ステップS2でNo)、初期設定として、系統電源11からコンピュータ10へ給電を行うように、給電線切替部204を設定しておく(ステップS1)。停電検知部203によって停電が検知された場合(ステップS2でYes)、系統電源11の代わりにバッテリ202による給電を行うように給電線切替部204を切り替えて、コンユータ10に無停電給電を行う(ステップS3)。続いて、ガスエンジンによる発電処理を実行し、バッテリ202及びガス缶300からのガスを用いてガスエンジン発電機201を始動し、始動後に、給電線切替部204を切り替えて、バッテリ202の代わりにガスエンジン発電機201からの給電を開始する(ステップS4)。ガスエンジン発電機201による給電は、系統電源11からの給電が復旧するまでの間(ステップS5でNo)、継続する。系統電源11からの給電が復旧した場合(ステップS5でYes)、系統電源11からの給電を再開するように給電線切替部204を切り替えた後に、ガスエンジン発電機201を停止させる(ステップS6)。上記無停電処理を行うことによって、停電時にデータ消失などの重大な損失が生じ得るコンピュータ10の瞬断防止を実現する。 FIG. 3 is a flowchart of the main routine of the uninterruptible processing executed by the MPU 208 of the control unit 206. Until the power failure detection unit 203 detects a power failure (No in step S2), as an initial setting, the power supply line switching unit 204 is set so as to supply power from the system power supply 11 to the computer 10 (step). S1). When a power failure is detected by the power failure detection unit 203 (Yes in step S2), the power supply line switching unit 204 is switched so that power is supplied by the battery 202 instead of the system power supply 11, and uninterruptible power is supplied to the computer 10 (Yes). Step S3). Subsequently, the power generation process by the gas engine is executed, the gas engine generator 201 is started using the gas from the battery 202 and the gas can 300, and after the start, the power supply line switching unit 204 is switched to replace the battery 202. Power supply from the gas engine generator 201 is started (step S4). The power supply by the gas engine generator 201 continues until the power supply from the system power supply 11 is restored (No in step S5). When the power supply from the grid power supply 11 is restored (Yes in step S5), the gas engine generator 201 is stopped after switching the feeder line switching unit 204 so as to restart the power supply from the grid power supply 11 (step S6). .. By performing the uninterruptible power supply processing, it is possible to prevent the computer 10 from being momentarily interrupted, which may cause a serious loss such as data loss in the event of a power failure.
 図4(a)は流路切替バルブ100の斜視図、(b)は分解斜視図を示す。図4(a)に点線で示すように、流路切替バルブ100の流路を手動で切り替えるためのレバー103aを有する切替部103の軸には、駆動部250のモーター軸251が連結されており、制御部206のMPU208によってガス供給流路の切替制御が可能になっている。本実施形態における流路切替バルブ100は、例えば直径100mm、高さ50mm程の円柱状のものである。流路切替バルブ100は、円柱状で、その側面を通る第1及び第2流路を有している流路切替構造物101と、流路切替構造物101を流路切替方向即ち軸回転方向に回動可能だが、流路以外にガスが流れないように気密な状態で内包している円筒状の本体部分102と、流路切替構造物101の上側中心軸に沿ってに設けられ、流路切替構造物101を流路切替方向に回動する切替部103と、を備えている。なお、本明細書では、「流路以外にガスが流れないように気密な状態で内包している」と記載しているが、流体物が例えば液体燃料の場合には、「水密な状態で内包している」という意味を含む。本体部分102が流路切替構造物101を回動可能な状態で、気密又は水密な状態に内包する技術については、一般のガス栓、流路切替バルブ等と同様、シール樹脂を使ったり、シール油を介在させたりすることによって実現可能であるので、ここでは特に詳しく説明しない。 FIG. 4A shows a perspective view of the flow path switching valve 100, and FIG. 4B shows an exploded perspective view. As shown by the dotted line in FIG. 4A, the motor shaft 251 of the drive unit 250 is connected to the shaft of the switching unit 103 having the lever 103a for manually switching the flow path of the flow path switching valve 100. The MPU 208 of the control unit 206 enables switching control of the gas supply flow path. The flow path switching valve 100 in the present embodiment is, for example, a columnar valve having a diameter of 100 mm and a height of about 50 mm. The flow path switching valve 100 has a columnar shape and has a flow path switching structure 101 having first and second flow paths passing through the side surfaces thereof, and a flow path switching structure 101 in a flow path switching direction, that is, a shaft rotation direction. Although it is rotatable, it is provided along the upper central axis of the flow path switching structure 101 and the cylindrical main body portion 102 that is contained in an airtight state so that gas does not flow to other than the flow path. A switching unit 103 that rotates the path switching structure 101 in the flow path switching direction is provided. In addition, in this specification, it is described that "it is contained in an airtight state so that gas does not flow to other than the flow path", but when the fluid is, for example, a liquid fuel, it is "in a watertight state". Includes the meaning of "included". As for the technique of enclosing the flow path switching structure 101 in an airtight or watertight state in a state where the main body portion 102 can rotate, a sealing resin is used or a seal is used as in the case of a general gas plug, a flow path switching valve, etc. Since it can be realized by interposing oil, it will not be described in detail here.
 図4(b)は、流路切替構造物101と切替部103とを境界部分で分離したのではなく、流路切替構造物101内の第1及び第2流路を視覚上解りやすく示すため、流路切替構造物101の上側部分をカットし、分離した分解斜視図を示している。 FIG. 4B is not for separating the flow path switching structure 101 and the switching portion 103 at the boundary portion, but for showing the first and second flow paths in the flow path switching structure 101 in an easy-to-understand manner. , The upper part of the flow path switching structure 101 is cut and separated, and an exploded perspective view is shown.
 図4(b)に示すように、本体部分102は、筒状の内面から外方へと通じている第1、第2の2つの流体入力通路102a、102b及び1つの流体出力通路102cを有している。流路切替構造物101は、第1流体入力通路102aと流体出力通路102cとを繋ぐ第1流路101aと、第2流体入力通路102bと流体出力通路102cとを繋ぐ第2流路101bとを備えている。第1流路101a及び第2流路101bの流体出力通路102c側は、内部で1本の通路となっている。なお、第1流路101aの第1流体入力通路102a側と、第2流路101bの第2流体入力通路102b側とは、図4(b)に点線で示す仕切り壁101cによって分離されているが、この部分は、製造工程の簡略化の観点より省略しても、機能上問題は無い。以降の図面では、仕切り壁101cは省略、又は、点線で示す。 As shown in FIG. 4B, the main body portion 102 has two first and second fluid input passages 102a and 102b and one fluid output passage 102c leading from the inner surface of the cylinder to the outside. doing. The flow path switching structure 101 has a first flow path 101a connecting the first fluid input passage 102a and the fluid output passage 102c, and a second flow path 101b connecting the second fluid input passage 102b and the fluid output passage 102c. I have. The fluid output passage 102c side of the first flow path 101a and the second flow path 101b is an internal passage. The first fluid input passage 102a side of the first flow path 101a and the second fluid input passage 102b side of the second flow path 101b are separated by a partition wall 101c shown by a dotted line in FIG. 4B. However, there is no functional problem even if this part is omitted from the viewpoint of simplifying the manufacturing process. In the following drawings, the partition wall 101c is omitted or indicated by a dotted line.
 流路切替構造物101は、第1流路101a、第2流路101bを造る、円柱状の側面を有する壁101d、101eを必須構成要素として有している。流路切替構造物101は、切替部103によって回動されるが、この際、壁101dが、第1流体入力通路102aと第1流路101aの重なりによって生じる開口面積を減少させると同時に、壁101eが、第2流体入力通路102bと第2流路101bの重なりによって生じる開口面積を増加するようになっており、この2つの壁101d、101eの働きによって、流路切り替え時に、流体出力通路102cから吐出される単位時間当たりのガスが均一な量となる。 The flow path switching structure 101 has walls 101d and 101e having columnar side surfaces as essential components for forming the first flow path 101a and the second flow path 101b. The flow path switching structure 101 is rotated by the switching portion 103. At this time, the wall 101d reduces the opening area caused by the overlap of the first fluid input passage 102a and the first flow path 101a, and at the same time, the wall. The 101e increases the opening area generated by the overlap of the second fluid input passage 102b and the second flow path 101b, and the action of the two walls 101d and 101e causes the fluid output passage 102c when the flow path is switched. The amount of gas discharged from is uniform per unit time.
 なお、流路切替構造物101の第1流路101a及び第2流路101bの開口部分と、第1及び第2流体入力通路102a、102bの間には、流路切替構造物101の回動量に対し、第1流体入力通路102aと第1流路101aの重なりによって生じる開口面積の減少と、第2流体入力通路102bと第2流路101bの重なりによって生じる開口面積の増加とを、同一、又は、予め定めた比例関係で変化させる断面矩形の中空部分102d、102eを備えている(図4(b)に中空部分102dの内部構造を点線で示す)。この中空部分102d、102eを備えたことによって、断面円形のガス管接続時においても、流路切り替え時に、流体出力通路102cから吐出される単位時間当たりのガスを、より均一な量とすることができる。 The amount of rotation of the flow path switching structure 101 is between the opening portions of the first flow path 101a and the second flow path 101b of the flow path switching structure 101 and the first and second fluid input passages 102a and 102b. On the other hand, the decrease in the opening area caused by the overlap of the first fluid input passage 102a and the first flow path 101a and the increase in the opening area caused by the overlap of the second fluid input passage 102b and the second flow path 101b are the same. Alternatively, it is provided with hollow portions 102d and 102e having a rectangular cross section that are changed in a predetermined proportional relationship (the internal structure of the hollow portion 102d is shown by a dotted line in FIG. 4B). By providing the hollow portions 102d and 102e, the amount of gas discharged from the fluid output passage 102c per unit time can be made more uniform even when the gas pipe having a circular cross section is connected, when the flow path is switched. it can.
 中空部分102d、102eの高さ方向の寸法Wd、Weは、本実施例では同一値に設定されているが、この値の割合を変えることによって、流路切替構造物101の回動によって、閉じられる又は開かれる前記重なり部分の面積を一定の割合で変化できる。ガスエンジン発電機201には、単位時間当たりに均一な量のガス供給がされるのが好ましいところ、例えば、ガス缶300から吐出されるガスの噴射勢いよりも、プロパンガスボンベ301から吐出されるガスの噴射勢いが1.2倍強い場合、第2流体入力通路側の中空部分102eの高さ方向の寸法Weを、第1流体入力通路側の中空部分102dの高さ方向の寸法Wdの×0.83倍(=1.0/1.2)とすることで、流体出力通路102cから単位時間当たりに吐出されるガス量を均一にすることが可能である。なお、この高さ方向の寸法weは、この寸法に合わせて中空部分102eをつくる以外に、寸法wdと同じ高さに作っておき、かつ、上部から寸法Weの矩形の開口が設けられているマスク板をスライド挿入可能にし、寸法Weを種々の値に調節可能としても良い。 The dimensions Wd and We in the height direction of the hollow portions 102d and 102e are set to the same values in this embodiment, but by changing the ratio of these values, the hollow portions 102d and 102e are closed by the rotation of the flow path switching structure 101. The area of the overlapping portion to be or opened can be changed at a constant rate. It is preferable that a uniform amount of gas is supplied to the gas engine generator 201 per unit time. For example, the gas discharged from the propane gas cylinder 301 is more than the injection force of the gas discharged from the gas can 300. When the injection momentum of the gas is 1.2 times stronger, the height dimension We of the hollow portion 102e on the second fluid input passage side is set to × 0 of the height dimension Wd of the hollow portion 102d on the first fluid input passage side. By setting it to .83 times (= 1.0 / 1.2), it is possible to make the amount of gas discharged from the fluid output passage 102c per unit time uniform. In addition to forming the hollow portion 102e according to this dimension, the dimension we in the height direction is made at the same height as the dimension wd, and a rectangular opening of the dimension We is provided from the upper part. The mask plate may be slidably inserted so that the dimension We can be adjusted to various values.
 図5(a)(b)(c)は、流路切替バルブ100の切替部103に備えるレバー103aを手動で回動させたときの様子を示す斜視図である。図6(a)(b)(c)は、それぞれ図5(a)(b)(c)の斜視図に示す場合の流路切替構造物101及び本体部分102の位置関係を示す説明図である。図5(a)及び図6(a)は第1流路101aと第1流体入力通路102aとの重なりによって生じる開口部が全開の状態で、流体出力通路102cと連通している状態を示している。図5(b)及び図6(b)は、第1流路101aが半分の効率(×0.5)で第1流体入力通路102aと重なって生じる開口部が半開で、流体出力通路102cと連通している状態を示し、同時に、第2流路101bが半分の効率(×0.5)で第2流体入力通路102bと重なって生じる開口部が半開で、流体出力通路102cと連通している状態を示す。この場合、結果として、流体出力通路102cからは、図5(a)及び図6(a)に示す場合と同じ量(×1.0)のガスが出力される。図5(c)及び図6(c)は、切替部103による流路切替構造物101の回動完了時の様子を示し、第1流路101aと第1流体入力通路102aとの重なりによって生じる開口部が完全に閉じており、第2流路101bと第2流体入力通路102bとが重なってできる開口部が全開で、流体出力通路102cと連通している状態を示している。即ち、流路切替バルブ100では、流路切替構造物101を回動して第1流路101aから第2流路101bの間で、流路の切替を行っても、本体部分102の流体出力通路102cから単位時間当たりに吐出されるガス出力量を均一とすることができる。 5 (a), (b), and (c) are perspective views showing a state when the lever 103a provided in the switching portion 103 of the flow path switching valve 100 is manually rotated. 6 (a), (b), and (c) are explanatory views showing the positional relationship between the flow path switching structure 101 and the main body portion 102 when shown in the perspective views of FIGS. 5 (a), (b), and (c), respectively. is there. 5 (a) and 6 (a) show a state in which the opening formed by the overlap of the first flow path 101a and the first fluid input passage 102a is fully open and communicates with the fluid output passage 102c. There is. In FIGS. 5 (b) and 6 (b), the opening formed by the first flow path 101a overlapping the first fluid input passage 102a with half the efficiency (× 0.5) is half-open, and the fluid output passage 102c and the like. It shows a state of communication, and at the same time, the opening formed by the second flow path 101b overlapping the second fluid input passage 102b with half efficiency (× 0.5) is half open and communicates with the fluid output passage 102c. Indicates the state of being. In this case, as a result, the same amount (× 1.0) of gas as in the cases shown in FIGS. 5 (a) and 6 (a) is output from the fluid output passage 102c. 5 (c) and 6 (c) show a state when the rotation of the flow path switching structure 101 by the switching unit 103 is completed, and are generated by the overlap of the first flow path 101a and the first fluid input passage 102a. The opening is completely closed, and the opening formed by overlapping the second flow path 101b and the second fluid input passage 102b is fully open, indicating a state of communicating with the fluid output passage 102c. That is, in the flow path switching valve 100, even if the flow path switching structure 101 is rotated to switch the flow path between the first flow path 101a and the second flow path 101b, the fluid output of the main body portion 102 The amount of gas output discharged from the passage 102c per unit time can be made uniform.
 図7は、図3に示した制御部206のMPU208が実行する無停電処理の内、ガスエンジンによる発電処理(ステップS4)のサブルーチンの内容を示すフローチャートである。先ず、バッテリ202及びガス缶300からのガスを用いてガスエンジン発電機201を始動し、始動後に(ステップS41でYes)、給電線切替部204を切り替えて、バッテリ202の代わりにガスエンジン発電機201からの給電を開始する(ステップS42)。ガスエンジン発電機201による発電が開始された後、ユーザによる切替スイッチ205の操作に応じて(ステップS43でYes)、駆動部250によって流路切替バルブ100の流路切替構造物101を回動し、第1流体入力通路102aに繋がれていたガス缶300からの供給に替わって、第2流体入力通路に繋がれているプロパンガスボンベ301からのガスを前記ガスエンジン発電機201に供給する(ステップS44)。ステップS44の処理の後、または、ユーザによる切替スイッチ205の操作が無ければ(ステップS43でNo)、サブルーチンを終了し図3のメインルーチンへリターンする。 FIG. 7 is a flowchart showing the contents of the subroutine of the power generation process (step S4) by the gas engine among the uninterruptible power processes executed by the MPU 208 of the control unit 206 shown in FIG. First, the gas engine generator 201 is started using the gas from the battery 202 and the gas can 300, and after the start (Yes in step S41), the feeder line switching unit 204 is switched to replace the battery 202 with the gas engine generator. Power supply from 201 is started (step S42). After the power generation by the gas engine generator 201 is started, the flow path switching structure 101 of the flow path switching valve 100 is rotated by the drive unit 250 in response to the operation of the changeover switch 205 by the user (Yes in step S43). , Gas from the propane gas cylinder 301 connected to the second fluid input passage is supplied to the gas engine generator 201 instead of the supply from the gas can 300 connected to the first fluid input passage 102a (step). S44). After the process of step S44, or if there is no operation of the changeover switch 205 by the user (No in step S43), the subroutine is terminated and the process returns to the main routine of FIG.
 なお、図3のメインルーチンへリターンした後、系統電源11からの給電が復旧するまでの間は(ステップS5でNo)、図7のサブルーチン処理を繰り返し実行する。この際、たとえば、プロパンガスボンベ301からのガス供給時、例えば、長時間経過し、ガスボンベの交換を行うために、ユーザによる切替スイッチ205の操作が行われた場合には(ステップS43でYes)、流路切替バルブ100の切替によって、第1流体入力通路102aに繋がれているガス缶300からのガス供給に切り替わる。ユーザは、ガスボンベの交換後、再度、切替スイッチ205を操作して流路切替バルブ100を切り替え、ガス缶300からプロパンガスボンベ301にガス供給源を切り替える。流路切替バルブ100を備えたことによって、無停電ガス供給源切替処理が実現される。 After returning to the main routine of FIG. 3, the subroutine process of FIG. 7 is repeatedly executed until the power supply from the system power supply 11 is restored (No in step S5). At this time, for example, when the gas is supplied from the propane gas cylinder 301, for example, when a long time has passed and the changeover switch 205 is operated by the user in order to replace the gas cylinder (Yes in step S43), By switching the flow path switching valve 100, the gas supply is switched from the gas can 300 connected to the first fluid input passage 102a. After replacing the gas cylinder, the user operates the changeover switch 205 again to switch the flow path switching valve 100, and switches the gas supply source from the gas can 300 to the propane gas cylinder 301. By providing the flow path switching valve 100, the uninterruptible gas supply source switching process is realized.
 なお、本発明は、上記各種実施形態の構成に限られず、発明の趣旨を変更しない範囲で種々の変形が可能である。例えば、ガス缶300と、プロパンガスボンベ301との切り替えを例に説明を行ったが、流路切替バルブ100の用途は、これに限定されず、種々の容量のガス缶又はガスボンベとの切り替えを、ガスエンジン発電機201を停止させること無く、且つ、急激な供給ガス量の変更なく、実施することができる。 The present invention is not limited to the configurations of the above-mentioned various embodiments, and various modifications can be made without changing the gist of the invention. For example, the switching between the gas can 300 and the propane gas cylinder 301 has been described as an example, but the application of the flow path switching valve 100 is not limited to this, and switching between gas cans or gas cylinders having various capacities can be performed. It can be carried out without stopping the gas engine generator 201 and without a sudden change in the amount of supplied gas.
さらに、本発明の流路切替バルブは、2入力1出力型に限らず、3以上の流体入力通路及び1つの流体出力通路を有するバルブとしても構成可能であり、この場合、n(ただし、nは3以上の整数)流体入力通路と1の流体出力通路を有している流路切替バルブにおいて、円柱状で、側部を貫通する第1乃至第n番目の流路を備えている流路切替構造物と、流路切替構造物を流路切替方向に回動可能だが、流路以外に流体が流れないように気密な状態で内包しており、第1乃至第n流体入力通路と、1の流体出力通路とを有している円筒状の本体部分と、流路切替構造物を流路切替方向に回動する切替部と、で構成されており、前記本体部分の第1乃至第n流体入力通路、及び、流体出力通路は、本体部分の側面に円周に沿って配置されており、前記流路切替構造物の第1乃至第n番目の流路は、それぞれ、第1乃至第n番目の流体入力通路と流体出力通路とを繋ぐようになっており、第1乃至第n番目の全ての流路の流体出力通路側が内部で1本の通路となっており、前記流路切替構造物は前記切替部による回動によって、第m(ただし、mは1乃至n-1の何れかの整数)の流体入力通路と第m番目の流路との重なりによってできる開口面積を少なくすると同時に、第m+1の流体入力通路と第m+1番目の流路との重なりによってできる開口面積を大きくし、この際、第m及び第m+1以外の入力通路と第m及び第m+1以外の流路とは重ならずに閉塞した状態とし、流路切り替え時に、前記流体出力通路から吐出される単位時間当たりの流体が均一な量となっている、ことを特徴とする。 Further, the flow path switching valve of the present invention is not limited to the 2-input 1-output type, but can also be configured as a valve having 3 or more fluid input passages and 1 fluid output passage. In this case, n (however, n) Is an integer of 3 or more) In a flow path switching valve having a fluid input passage and 1 fluid output passage, a flow path having a columnar shape and a first to nth flow path penetrating a side portion. The switching structure and the flow path switching structure can be rotated in the flow path switching direction, but they are contained in an airtight state so that fluid does not flow to other than the flow path. It is composed of a cylindrical main body portion having the fluid output passage of 1 and a switching portion for rotating the flow path switching structure in the flow path switching direction, and the first to first main body portions of the main body portion. The n fluid input passage and the fluid output passage are arranged along the circumference on the side surface of the main body portion, and the first to nth flow paths of the flow path switching structure are the first to nth channels, respectively. The nth fluid input passage and the fluid output passage are connected to each other, and the fluid output passage side of all the first to nth flow paths is internally formed as one passage. The switching structure reduces the opening area created by the overlap of the mth (however, m is an integer of 1 to n-1) fluid input passage and the mth flow path due to the rotation by the switching portion. At the same time, the opening area created by the overlap of the m + 1 fluid input passage and the m + 1th flow path is increased, and at this time, the input passages other than the m and m + 1 and the flow paths other than the m and m + 1 are used. Is characterized in that the fluid is closed without overlapping, and the amount of fluid discharged from the fluid output passage is uniform per unit time when the flow path is switched.
 3入力1出力の流路切替バルブ400ついて説明する。流路切替バルブ400は、第1乃至第3流体入力通路401、402、403と、1つの流体出力通路404とを備えており、内部に回動可能な状態で、第1乃至第3の流路を備えている流路切替構造物450を備えている。図8(a)に示すように、第1流体入力通路401と第1の流路451の入口が開放され、当該第1の流路451の出口が流体出力通路404と繋がっており、他の第2、第3流体入力通路402、403は完全に閉塞されている状態にあるときに、流路切替構造物450を時計回りの方向に回動させる。すると、図8(b)に示すように、流路切替構造物450の回動に伴って、第1流体入力通路401と第1の流路451の入口との重なりによってできる開口面積は少なくなり、同時に、第2流体入力通路402と第2の流路452の入口との重なりによってできる開口面積が大きくなる。図8(b)は約6度回転させた場合に、第1、第2流体入力通路401、402それぞれから、半分のガス(流体)が流入している状態を示す。流路切替構造物450を約12度時計回りに回転させると図8(c)に示すように、第1、第3流体入力通路401、403と第1、第3の流路451、453との開口部分は完全に閉塞し、第2流体入力通路402と第2の流路452との開口部分が全開となる。以下同様に、流路切替構造物450を時計回りに回動させると、図8(d)に示すように、第1、第2流体入力通路401、402と第1、第2の流路451、452との開口部分は完全に閉塞し、第3流体入力通路403と第3流路453との重なりによってできる開口部分が全開となる。このように、本発明の流路切替バブルは、2入力1出力に限られず、複数入力1出力型のバルブとして実施することができる。 The flow path switching valve 400 with 3 inputs and 1 output will be described. The flow path switching valve 400 includes first to third fluid input passages 401, 402, 403 and one fluid output passage 404, and is in a state of being rotatable inside, and is a first to third flow. A flow path switching structure 450 provided with a road is provided. As shown in FIG. 8A, the inlets of the first fluid input passage 401 and the first flow path 451 are opened, and the outlet of the first flow path 451 is connected to the fluid output passage 404, and other When the second and third fluid input passages 402 and 403 are in a completely closed state, the flow path switching structure 450 is rotated in the clockwise direction. Then, as shown in FIG. 8B, as the flow path switching structure 450 rotates, the opening area formed by the overlap between the first fluid input passage 401 and the inlet of the first flow path 451 decreases. At the same time, the opening area formed by the overlap between the second fluid input passage 402 and the inlet of the second flow path 452 increases. FIG. 8B shows a state in which half of the gas (fluid) is flowing in from each of the first and second fluid input passages 401 and 402 when rotated by about 6 degrees. When the flow path switching structure 450 is rotated clockwise by about 12 degrees, as shown in FIG. 8 (c), the first and third fluid input passages 401 and 403 and the first and third flow paths 451 and 453 The opening portion of is completely closed, and the opening portion between the second fluid input passage 402 and the second flow path 452 is fully opened. Similarly, when the flow path switching structure 450 is rotated clockwise, the first and second fluid input passages 401 and 402 and the first and second flow paths 451 are shown in FIG. 8 (d). , 452 is completely closed, and the opening formed by the overlap of the third fluid input passage 403 and the third flow path 453 is fully opened. As described above, the flow path switching bubble of the present invention is not limited to 2 inputs and 1 output, and can be implemented as a multi-input 1-output type valve.
 本発明の流路切替バルブ100は、ガスを使用する機器を停止させること無く、ガス供給源の取替を可能にするもので、無停電用のガスエンジンに用いる他、例えば、飲食店で、ガスコンロの使用を停止することなく、外部に火力補強用に用いられているガスボンベの交換を可能にする。また、本発明の流路切替バルブは、ガスエンジン発電機へのガス供給時だけでなく、ガソリンエンジン等を使用する発電機へ液体燃料を供給する場合にも使用可能である。 The flow path switching valve 100 of the present invention enables replacement of a gas supply source without stopping a device that uses gas, and is used for an uninterruptible gas engine, for example, in a restaurant. It enables the replacement of gas cylinders used for thermal power reinforcement to the outside without stopping the use of the gas stove. Further, the flow path switching valve of the present invention can be used not only when supplying gas to a gas engine generator but also when supplying liquid fuel to a generator using a gasoline engine or the like.
1   無停電システム
10  コンピュータ(負荷)
11  系統電源
100、400 流路切替バルブ
101a、101b、401、402、403 流体入力通路
101c、404 流体出力通路
101、450 流路切替構造物
200 ガスエンジン発電部
250 駆動部
300 小型のガス缶
301 プロパンガスボンベ
1 Uninterruptible system 10 Computer (load)
11 System power supply 100, 400 Flow path switching valve 101a, 101b, 401, 402, 403 Fluid input passage 101c, 404 Fluid output passage 101, 450 Flow path switching structure 200 Gas engine power generation unit 250 Drive unit 300 Small gas can 301 Propane gas cylinder

Claims (7)

  1. 2入力1出力型の流路切替バルブにおいて、
     第1流路び第2流路を内部に有している流路切替構造物と、当該流路切替構造物を流路切替方向に回動可能だが、流路以外に流体が流れないように気密な状態で内包しており、第1、第2流体力通路及び1つの流体出力通路を有している本体部分と、前記流路切替構造物を流路切替方向に回動する切替部と、を備え、
     前記流路切替構造物の第1流路は前記第1流体入力通路と流体出力通路とを繋ぎ、第2流路は前記第2流体入力通路と流体出力通路とを繋ぐようになっており、
     前記流路切替構造物は前記切替部による回動に伴って、第1流体入力通路と第1流路の重なりによって生じる開口面積を減少させると同時に、第2流体入力通路と第2流路の重なりによって生じる開口面積を増加するようになっており、流路切り替え時に、前記流体出力通路から吐出される単位時間当たりの流体が均一な量となっている、ことを特徴とする流路切替バルブ。
    In the 2-input 1-output type flow path switching valve
    A flow path switching structure having a first flow path and a second flow path inside and the flow path switching structure can be rotated in the flow path switching direction, but the fluid does not flow to other than the flow path. A main body portion that is contained in an airtight state and has a first and second fluid force passage and one fluid output passage, and a switching portion that rotates the flow path switching structure in the flow path switching direction. , Equipped with
    The first flow path of the flow path switching structure connects the first fluid input passage and the fluid output passage, and the second flow path connects the second fluid input passage and the fluid output passage.
    The flow path switching structure reduces the opening area caused by the overlap between the first fluid input passage and the first flow path as the switching portion rotates, and at the same time, the second fluid input passage and the second flow path. The flow path switching valve is characterized in that the opening area generated by the overlap is increased, and the amount of fluid discharged from the fluid output passage is uniform per unit time when the flow path is switched. ..
  2. 前記流路切替構造物は円柱状で、側面を貫通する第1流路及び第2流路を有しており、第1流路及び第2流路の流体出力通路側が内部で1本の通路となっており、前記本体部分は、前記円柱状の流路切替構造物を軸中心に回動可能に内包する筒状容器である、請求項1に記載の流路切替バルブ。 The flow path switching structure is columnar and has a first flow path and a second flow path penetrating the side surface, and the fluid output passage side of the first flow path and the second flow path is one passage inside. The flow path switching valve according to claim 1, wherein the main body portion is a tubular container that rotatably contains the columnar flow path switching structure about an axis.
  3. 前記流路切替構造物の第1流路及び第2流路の開口部分と、前記第1及び第2流体入力通路の間に、前記流路切替構造物の回動量に対し、第1流体入力通路と第1流路の重なりによって生じる開口面積の減少と、第2流体入力通路と第2流路の重なりによって生じる開口面積の増加とを、同一とする断面矩形の中空部分を備えている、ことを特徴とする請求項2に記載の流路切替バルブ。 The first fluid input is made between the opening portions of the first flow path and the second flow path of the flow path switching structure and the first and second fluid input passages with respect to the rotation amount of the flow path switching structure. It is provided with a hollow portion having a rectangular cross section in which the decrease in the opening area caused by the overlap of the passage and the first flow path and the increase in the opening area caused by the overlap of the second fluid input passage and the second flow path are the same. The flow path switching valve according to claim 2, wherein the flow path switching valve is characterized in that.
  4. 前記流路切替構造物の第1流路及び第2流路の開口部分と、前記第1及び第2流体入力通路の間に、前記流路切替構造物の回動量に対し、第1流体入力通路と第1流路の重なりによって生じる開口面積の減少と、第2流体入力通路と第2流路の重なりによって生じる開口面積の増加とが、予め定めた比率で変化する矩形断面の中空部分を備えている、ことを特徴とする請求項2に記載の流路切替バルブ。 The first fluid input is made between the opening portions of the first flow path and the second flow path of the flow path switching structure and the first and second fluid input passages with respect to the rotation amount of the flow path switching structure. A hollow portion having a rectangular cross section in which a decrease in the opening area caused by the overlap between the passage and the first flow path and an increase in the opening area caused by the overlap between the second fluid input passage and the second flow path change at a predetermined ratio. The flow path switching valve according to claim 2, further comprising.
  5. 請求項1乃至請求項4の何れか一項に記載の流路切替バルブであって、第1流路が第1流体入力通路及び流体出力通路とを連通させている状態のバルブと、前記流路切替バルブの第1流体入力通路に繋がれているガス缶と、前記流路切替バルブの第2流体入力通路に繋がされているガスボンベと、ガスエンジン発電部と、で構成される発電システムにおいて、
     前記ガスエンジン発電部は、ガスによって発電を行うガスエンジン発電機と、前記バルブの流路切替構造物を回動する駆動部と、切替スイッチと、制御部とで構成されており、
     前記制御部は、前記切替スイッチの操作に応じて前記駆動部を制御して前記バルブの切替部を回動し、第1流路から第2流路に切り替えて、第2流体入力通路に繋がれているガスボンベからのガスを前記ガスエンジン発電機に供給する、無停電ガス供給源切替処理を実行することを特徴とする発電システム。
    The flow path switching valve according to any one of claims 1 to 4, wherein the first flow path communicates with the first fluid input passage and the fluid output passage, and the flow. In a power generation system composed of a gas can connected to the first fluid input passage of the path switching valve, a gas cylinder connected to the second fluid input passage of the flow switching valve, and a gas engine power generation unit. ,
    The gas engine power generation unit is composed of a gas engine generator that generates electricity by gas, a drive unit that rotates the flow path switching structure of the valve, a changeover switch, and a control unit.
    The control unit controls the drive unit in response to the operation of the changeover switch to rotate the changeover unit of the valve, switches from the first flow path to the second flow path, and is connected to the second fluid input passage. A power generation system characterized by executing a non-disruptive gas supply source switching process that supplies gas from a gas cylinder to the gas engine generator.
  6. 請求項1乃至請求項4の何れか一項に記載の流路切替バルブであって、第1流路が第1流体入力通路及び流体出力通路とを連通させている状態のバルブと、前記流路切替バルブの第1流体入力通路に繋がれているガス缶と、前記流路切替バルブの第2流体入力通路に繋がされているガスボンベと、ガスエンジン発電部とで構成され、停電時に系統電源の代わりに給電を行う無停電システムにおいて、
     前記ガスエンジン発電部は、ガスによって発電を行うガスエンジン発電機と、発電機起動及び無停電用バッテリと、停電検知部と、給電線切替部と、前記バルブの流路切替構構造物を回動する駆動部と、切替スイッチと、制御部とで構成されており、
     前記制御部は、前記停電検知部によって停電が検知された場合に、系統電源の代わりに前記バッテリによる給電を行うように前記給電線切替部を切り替え、前記バッテリ及びガス缶からのガスを用いて前記ガスエンジン発電機を始動し、当該始動後に、前記給電線切替部を切り替え、前記無停電用バッテリの代わりに、ガスエンジン発電機からの給電を開始する、無停電処理と、前記切替スイッチの操作に応じて前記駆動部によって前記バルブの流路切替構造物を回動し、第2流体入力通路に繋がれているガスボンベからのガスを前記ガスエンジン発電機に供給する、無停電ガス供給源切替処理と、を実行することを特徴とする無停電システム。
    The flow path switching valve according to any one of claims 1 to 4, wherein the first flow path communicates with the first fluid input passage and the fluid output passage, and the flow. It is composed of a gas can connected to the first fluid input passage of the path switching valve, a gas cylinder connected to the second fluid input passage of the flow switching valve, and a gas engine power generation unit, and is a system power supply in the event of a power failure. In a non-disruptive system that supplies power instead of
    The gas engine power generation unit rotates a gas engine generator that generates power with gas, a battery for starting the generator and no power failure, a power failure detection unit, a power supply line switching unit, and a flow path switching structure of the valve. It consists of a moving drive unit, a changeover switch, and a control unit.
    When a power failure is detected by the power failure detection unit, the control unit switches the power supply line switching unit so as to supply power by the battery instead of the system power supply, and uses the gas from the battery and the gas can. The power failure processing and the changeover switch, which start the gas engine generator, switch the power supply line switching unit after the start, and start power supply from the gas engine generator instead of the power failure battery. A power failure-free gas supply source that rotates the flow path switching structure of the valve by the drive unit in response to an operation and supplies gas from a gas cylinder connected to the second fluid input passage to the gas engine generator. A power-outless system characterized by switching processing and execution.
  7. n(ただし、nは3以上の整数)流体入力通路と1の流体出力通路を有している流路切替バルブにおいて、
     円柱状で、側部を貫通する第1乃至第n番目の流路を備えている流路切替構造物と、流路切替構造物を流路切替方向に回動可能だが、流路以外に流体が流れないように気密な状態で内包しており、第1乃至第n流体入力通路と、1の流体出力通路とを有している円筒状の本体部分と、流路切替構造物を流路切替方向に回動する切替部と、で構成されており、
     前記本体部分の第1乃至第n流体入力通路、及び、流体出力通路は、本体部分の側面に円周に沿って配置されており、
     前記流路切替構造物の第1乃至第n番目の流路は、それぞれ、第1乃至第n番目の流体入力通路と流体出力通路とを繋ぐようになっており、第1乃至第n番目の全ての流路の流体出力通路側が内部で1本の通路となっており、
     前記流路切替構造物は前記切替部による回動によって、第m(ただし、mは1乃至n-1の何れかの整数)の流体入力通路と第m番目の流路との重なりによってできる開口面積を少なくすると同時に、第m+1の流体入力通路と第m+1番目の流路との重なりによってできる開口面積を大きくし、この際、第m及び第m+1以外の入力通路と第m及び第m+1以外の流路とは重ならずに閉塞した状態とし、流路切り替え時に、前記流体出力通路から吐出される単位時間当たりの流体が均一な量となっている、ことを特徴とする流路切替バルブ。
    In a flow path switching valve having n (where n is an integer of 3 or more) fluid input passage and 1 fluid output passage.
    A flow path switching structure having a columnar shape and having a first to nth flow path penetrating the side portion and a flow path switching structure can be rotated in the flow path switching direction, but a fluid other than the flow path It is contained in an airtight state so that the fluid does not flow, and a cylindrical main body portion having a first to nth fluid input passage and a fluid output passage of 1 and a flow path switching structure are passed through the flow path. It consists of a switching unit that rotates in the switching direction.
    The first to nth fluid input passages and the fluid output passages of the main body portion are arranged along the circumference on the side surface of the main body portion.
    The first to nth flow paths of the flow path switching structure connect the first to nth fluid input passages and the fluid output passages, respectively, and are the first to nth flow paths. The fluid output passage side of all the passages is one passage inside.
    The flow path switching structure is an opening formed by overlapping the mth (where m is an integer of 1 to n-1) fluid input passage and the mth flow path by rotation by the switching portion. At the same time as reducing the area, the opening area created by the overlap between the fluid input passage of the m + 1 and the m + 1th flow path is increased, and at this time, the input passages other than the m and m + 1 and the input passages other than the m and m + 1 are increased. A flow path switching valve characterized in that the flow path is closed without overlapping with the flow path, and the amount of fluid discharged from the fluid output passage is uniform per unit time when the flow path is switched.
PCT/JP2020/044764 2019-12-09 2020-12-02 Flow-path switching valve, and power generating system and uninterruptible power system employing same WO2021117564A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-222542 2019-12-09
JP2019222542A JP6713575B1 (en) 2019-12-09 2019-12-09 Flow path switching valve, power generation system and uninterruptible system using the same

Publications (1)

Publication Number Publication Date
WO2021117564A1 true WO2021117564A1 (en) 2021-06-17

Family

ID=71104016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044764 WO2021117564A1 (en) 2019-12-09 2020-12-02 Flow-path switching valve, and power generating system and uninterruptible power system employing same

Country Status (2)

Country Link
JP (1) JP6713575B1 (en)
WO (1) WO2021117564A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927027U (en) * 1972-06-07 1974-03-08
JPS5033325U (en) * 1973-07-19 1975-04-10
JPS5241027U (en) * 1975-09-17 1977-03-23
JPS55175677U (en) * 1979-06-06 1980-12-16
JPS61112165U (en) * 1984-12-25 1986-07-16
JPH05149459A (en) * 1991-11-29 1993-06-15 Takagi Ind Co Ltd Hot and cold water mixing rotational valve device and hot and cold water mixing device
JP6587770B1 (en) * 2019-06-25 2019-10-09 ライズピットカンパニー株式会社 Gas supply switching valve and gas supply system for power generation gas engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927027U (en) * 1972-06-07 1974-03-08
JPS5033325U (en) * 1973-07-19 1975-04-10
JPS5241027U (en) * 1975-09-17 1977-03-23
JPS55175677U (en) * 1979-06-06 1980-12-16
JPS61112165U (en) * 1984-12-25 1986-07-16
JPH05149459A (en) * 1991-11-29 1993-06-15 Takagi Ind Co Ltd Hot and cold water mixing rotational valve device and hot and cold water mixing device
JP6587770B1 (en) * 2019-06-25 2019-10-09 ライズピットカンパニー株式会社 Gas supply switching valve and gas supply system for power generation gas engine

Also Published As

Publication number Publication date
JP6713575B1 (en) 2020-06-24
JP2021092261A (en) 2021-06-17

Similar Documents

Publication Publication Date Title
JP2012211617A (en) Valve device
KR20130114669A (en) Fluid distribution valve, fluid supply system comprising same, and method for controlling the fluid supply system
WO2021117564A1 (en) Flow-path switching valve, and power generating system and uninterruptible power system employing same
KR20070001925A (en) Electronically controlled electromechanical valve
JP5090720B2 (en) Energy regeneration system for work machines
JP2012247011A (en) Valve device
JP5350320B2 (en) Construction machine control equipment
TW201631872A (en) Controlling incoming air for a multi-directional rotational motor in a single rotational direction
JP2012247012A (en) Valve device
JP2011057179A (en) Washer pump system and method for controlling the same
JP5104897B2 (en) Flow rate adjusting valve and water heater provided with the same
JP2002227676A (en) System for supplying fuel to generator in marine vessel
US10808659B2 (en) Fuel delivery unit
JP2019148317A (en) Fluid control valve
KR20040005144A (en) Air supply apparatus for fuel cell
JP2006308009A (en) Air cylinder driving device
JP2007064198A (en) Control circuit of injector with cut solenoid of lpi engine, method of controlling cut solenoid, and method of troubleshooting cut solenoid
TWI479087B (en) Hydraulic control module and hydraulic-driving device using same
KR102006017B1 (en) Pneumatic actuator with pneumatic valve system
CN205715810U (en) A kind of faucet in water purifier of Mechanical course
JP2008008148A (en) Gaseous fuel system for engine
JP7009965B2 (en) Hot water storage type electric water heater
JP2019138342A (en) Flow passage control valve
US20240216931A1 (en) Direct access spray selection engine for water delivery devices
JP4610788B2 (en) Stirrer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899825

Country of ref document: EP

Kind code of ref document: A1