WO2021117199A1 - Dehumidifier - Google Patents

Dehumidifier Download PDF

Info

Publication number
WO2021117199A1
WO2021117199A1 PCT/JP2019/048796 JP2019048796W WO2021117199A1 WO 2021117199 A1 WO2021117199 A1 WO 2021117199A1 JP 2019048796 W JP2019048796 W JP 2019048796W WO 2021117199 A1 WO2021117199 A1 WO 2021117199A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
reheater
condenser
air
precooler
Prior art date
Application number
PCT/JP2019/048796
Other languages
French (fr)
Japanese (ja)
Inventor
拓未 西山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021563545A priority Critical patent/JP7308975B2/en
Priority to PCT/JP2019/048796 priority patent/WO2021117199A1/en
Priority to CN201980102764.2A priority patent/CN114761107A/en
Priority to TW109117995A priority patent/TWI765270B/en
Publication of WO2021117199A1 publication Critical patent/WO2021117199A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours

Definitions

  • the present invention relates to a dehumidifying device.
  • Patent Document 1 a dehumidifying device including a refrigeration cycle circuit and a heat pipe has been proposed.
  • the first refrigerant circulates in the order of the compressor, the condenser, the decompression device, and the evaporator.
  • the second refrigerant circulates in the precooler and the reheater.
  • the precooler is located upwind in the airflow rather than the evaporator.
  • the reheater is located upwind in the airflow rather than the condenser. Since the moist air sent to the evaporator is pre-cooled by the precooler, the relative humidity of the moist air increases, so that the amount of dehumidification by the evaporator can be increased.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a dehumidifying device capable of increasing the amount of dehumidification in the evaporator and suppressing a decrease in the total heat exchange amount during evaporation of the refrigerant. It is to be.
  • the dehumidifying device of the present invention includes a housing having an air passage, a first refrigerant circuit, a second refrigerant circuit, and a blower housed inside the housing.
  • the first refrigerant circuit includes a compressor, a condenser, a decompression device, an evaporator, and a first refrigerant, and is configured such that the first refrigerant flows in the order of the compressor, the condenser, the decompression device, and the evaporator.
  • the second refrigerant circuit includes a precooler, a reheater, and a second refrigerant, and is configured such that the second refrigerant circulates through the precooler and the reheater.
  • the condenser includes a first part and a second part arranged on the outlet side of the condenser with respect to the first part in the flow of the first refrigerant.
  • the second part is arranged on the upstream side of the first part in the flow direction of the air taken in by the blower from the outside to the inside of the housing.
  • the air passage is configured such that air passes through the precooler, the evaporator, the reheater, and the first part in order, and air passes through the precooler, the evaporator, and the second part in order.
  • the dehumidifying amount in the evaporator can be increased by the precooler. Further, since the air passes through the precooler, the evaporator, and the second part in this order, it is possible to suppress a decrease in the total heat exchange amount at the time of evaporation of the refrigerant.
  • FIG. It is a figure which shows schematic structure of the dehumidifying apparatus which concerns on Embodiment 1.
  • FIG. It is a front view which shows typically the structure of the condenser and the reheater of the dehumidifier which concerns on Embodiment 1.
  • FIG. It is a perspective view which shows typically the structure of the precooler and the reheater of the dehumidifier which concerns on Embodiment 1.
  • FIG. It is a front view which shows typically the structure of the precooler and the reheater of the dehumidifier which concerns on Embodiment 1.
  • FIG. It is a front view which shows roughly the structure of the precooler and the reheater of the modification 1 of the dehumidifying device which concerns on Embodiment 1.
  • FIG. 1 It is a perspective view which shows typically the structure of the precooler and the reheater of the modification 2 of the dehumidifying device which concerns on Embodiment 1.
  • FIG. It is a front view which shows roughly the structure of the precooler and the reheater of the modification 2 of the dehumidifying device which concerns on Embodiment 1.
  • FIG. It is a front view which shows roughly the structure of the precooler and the reheater of the modification 3 of the dehumidifying device which concerns on Embodiment 1.
  • FIG. It is a front view which shows typically the structure of the condenser and the reheater of the modification 4 of the dehumidifying apparatus which concerns on Embodiment 1.
  • the dehumidifying device 1 includes a first refrigerant circuit C1 including a compressor 2, a condenser 3, a depressurizing device 4, and an evaporator 5, a blower 6, and a precooler 7.
  • a second refrigerant circuit C2 including the reheater 8 and a housing 20 are provided.
  • the first refrigerant circuit C1, the second refrigerant circuit C2, and the blower 6 are housed inside the housing 20.
  • the housing 20 faces an external space (indoor space) to be dehumidified by the dehumidifying device 1.
  • the first refrigerant circuit C1 includes a compressor 2, a condenser 3, a decompression device 4, an evaporator 5, and a first refrigerant.
  • the first refrigerant circuit C1 is configured such that the first refrigerant flows in the order of the compressor 2, the condenser 3, the decompression device 4, and the evaporator 5.
  • the first refrigerant circuit C1 is configured by connecting the compressor 2, the condenser 3, the decompression device 4, and the evaporator 5 in this order via piping.
  • the first refrigerant circulates in the first refrigerant circuit C1 through the piping in the order of the compressor 2, the condenser 3, the decompression device 4, and the evaporator 5.
  • the solid line arrow in FIG. 1 indicates the flow of the first refrigerant in the first refrigerant circuit C1.
  • the compressor 2 is configured to compress the first refrigerant. Specifically, the compressor 2 is configured to suck low-pressure refrigerant from the suction port, compress it, and discharge it as high-pressure refrigerant from the discharge port.
  • the compressor 2 may have a variable discharge capacity of the refrigerant.
  • the compressor 2 may be an inverter compressor. When the compressor 2 has a variable discharge capacity of the first refrigerant, the circulation amount of the first refrigerant in the dehumidifying device 1 can be controlled by adjusting the discharge capacity of the compressor 2. It becomes.
  • the condenser 3 is configured to condense and cool the first refrigerant boosted by the compressor 2.
  • the condenser 3 is a heat exchanger that exchanges heat between the first refrigerant and air.
  • the condenser 3 has an inlet and an outlet for the first refrigerant and an inlet and an outlet for air.
  • the inlet of the first refrigerant of the condenser 3 is arranged on the upper side, and the outlet is arranged on the lower side.
  • the inlet of the first refrigerant of the condenser 3 is connected to the discharge port of the compressor 2 by a pipe.
  • the decompression device 4 is configured to depressurize and expand the first refrigerant cooled by the condenser 3.
  • the pressure reducing device 4 is, for example, an expansion valve.
  • This expansion valve may be an electronic expansion valve.
  • the electronic expansion valve may use a coil.
  • the pressure reducing device 4 is not limited to the expansion valve, and may be a capillary tube.
  • the decompression device 4 is connected to each of the refrigerant outlet of the condenser 3 and the refrigerant inlet of the evaporator 5 via a pipe.
  • the evaporator 5 is configured to evaporate the refrigerant by absorbing heat from the first refrigerant that has been decompressed and expanded by the decompression device 4.
  • the evaporator 5 is a heat exchanger that exchanges heat between the first refrigerant and air.
  • the evaporator 5 has an inlet and an outlet for the first refrigerant, and an inlet and an outlet for air.
  • the inlet of the first refrigerant of the evaporator 5 is arranged on the upper side, and the outlet is arranged on the lower side.
  • the outlet of the first refrigerant of the evaporator 5 is connected to the suction port of the compressor 2 via a pipe.
  • the evaporator 5 is arranged upstream of the condenser 3 in the air flow generated by the blower 6. That is, the evaporator 5 is arranged on the windward side of the condenser 3.
  • the blower 6 is configured to blow air.
  • the blower 6 is configured to take in air from the outside of the housing 20 to the inside and blow it to the condenser 3 and the evaporator 5.
  • the blower 6 is configured to take in air from the external space (indoor space) into the housing 20, pass through the evaporator 5 and the condenser 3, and then discharge the air to the outside of the housing 20.
  • the blower 6 has a shaft 6a and a fan 6b.
  • the fan 6b is configured to rotate about a shaft 6a.
  • air is taken into the housing 20 from the room as indicated by the arrow A in the figure.
  • the air taken into the housing 20 is discharged to the external space (indoor space). In this way, the air circulates in the external space (indoor space) via the dehumidifying device 1.
  • the blower 6 is arranged downstream of the condenser 3 in the air flow direction.
  • the blower 6 may be arranged between the condenser 3 and the evaporator 5 in the air flow direction. Further, the blower 6 may be arranged upstream of the evaporator 5 in the air flow direction.
  • the second refrigerant circuit C2 includes a precooler 7, a reheater 8, and a second refrigerant.
  • the second refrigerant circuit C2 is configured such that the second refrigerant circulates in the precooler 7 and the reheater 8.
  • the second refrigerant circuit C2 is configured by connecting the precooler 7 and the reheater 8 via a pipe.
  • the second refrigerant circuit C2 may be a natural circulation circuit.
  • the second refrigerant circuit C2 may be a heat pipe.
  • the broken line arrow in FIG. 1 indicates the flow of the second refrigerant in the second refrigerant circuit C2.
  • the precooler 7 is configured to pre-cool the air taken in by the blower 6 from the outside to the inside of the housing 20 before flowing into the evaporator 5.
  • the precooler 7 is configured to absorb heat from air to the second refrigerant to evaporate the second refrigerant.
  • the precooler 7 is a heat exchanger that exchanges heat between the second refrigerant and air.
  • the precooler 7 has an inlet and an outlet for the second refrigerant and an inlet and an outlet for air. Each of the inlet and outlet of the second refrigerant of the precooler 7 is connected to each of the outlet and inlet of the second refrigerant of the reheater 8 via a pipe.
  • the precooler 7 is arranged upstream of the reheater 8 in the air flow generated by the blower 6. Further, the precooler 7 is arranged upstream of the evaporator 5 in the air flow generated by the blower 6. That is, the precooler 7 is arranged on the windward side of the evaporator 5.
  • the reheater 8 is configured to reheat the air taken in by the blower 6 from the outside to the inside of the housing 20 before flowing into the condenser 3.
  • the reheater 8 is configured to heat the air by condensing the second refrigerant evaporated by the precooler 7.
  • the reheater 8 is a heat exchanger that exchanges heat between the second refrigerant and air.
  • the reheater 8 has an inlet and an outlet for the second refrigerant and an inlet and an outlet for air.
  • the reheater 8 is arranged between the condenser 3 and the evaporator 5.
  • the reheater 8 is arranged upstream of the condenser 3 in the air flow generated by the blower 6. That is, the reheater 8 is arranged on the windward side of the condenser 3.
  • the outlet of the second refrigerant of the reheater 8 is arranged at a height higher than the inlet of the second refrigerant of the precooler 7.
  • the outlet of the second refrigerant of the reheater 8 is preferably arranged at a height above the inlet of the second refrigerant of the precooler 7.
  • the housing 20 has an air passage FP.
  • air passes through the precooler 7, the evaporator 5, the reheater 8, and the first part 31 in this order, and the air passes through the precooler 7, the evaporator 5, and the second part 32 in this order.
  • the dehumidifying device 4 may be arranged in the air passage FP.
  • the housing 20 is provided with a suction port 21 and an outlet 22.
  • the suction port 21 is for letting air into the inside of the housing 20 from the external space (indoor space) to be dehumidified.
  • the suction port 21 communicates with the air passage FP.
  • the suction port 21 is arranged on the upstream side of the air inlet of the precooler 7 in the air passage FP in the air flow direction of the air passage FP.
  • the air outlet 22 is for blowing air from the inside of the housing 20 to the external space.
  • the housing 20 has a back surface 20a and a front surface 20b.
  • a suction port 21 is provided on the back surface 20a.
  • the suction port 21 is configured to suck air into the air passage FP.
  • the first refrigerant and the second refrigerant may be the same. Further, the first refrigerant and the second refrigerant may be different from each other.
  • the first refrigerant may be a chlorofluorocarbon-based refrigerant
  • the second refrigerant may be a hydrocarbon (HC) -based refrigerant. Since the first refrigerant and the second refrigerant are different, it is possible to reduce the cost and reduce the GWP (global warming potential) as compared with the case where both the first refrigerant and the second refrigerant are chlorofluorocarbon-based refrigerants. ..
  • both the first refrigerant and the second refrigerant are fluorocarbon-based refrigerants
  • the fluorocarbon-based refrigerant is subject to European Freon gas (F-Gas) regulations, so it is difficult to obtain and the price tends to rise. Therefore, the dehumidifying device 1 becomes expensive.
  • F-Gas European Freon gas
  • HC hydrocarbon
  • the amount of the refrigerant is subject to regulation in Europe because the risk of flammability increases as the encapsulation amount increases.
  • An inexpensive hydrocarbon (HC) -based refrigerant such as R290 may be used as the first refrigerant, and an expensive chlorofluorocarbon-based refrigerant such as R1234f may be used as the second refrigerant.
  • the first refrigerant and the second refrigerant may be combined depending on the performance, cost, and safety.
  • the configuration of the condenser 3 of the present embodiment will be described in detail with reference to FIGS. 1 and 2.
  • the condenser 3 includes a first part 31 and a second part 32.
  • Part 1 31 faces the reheater 8.
  • the first part 31 is arranged so as to overlap the reheater 8 in the air flow direction.
  • the first part 31 is arranged on the downstream side of the reheater 8 in the air flow direction.
  • the first part 31 is arranged so that the air that has passed through the reheater 8 flows directly to the first part 31.
  • Part 2 32 faces the evaporator 5.
  • the second part 32 is arranged so as to overlap the evaporator 5 in the air flow direction.
  • the second part 32 is arranged on the downstream side of the evaporator 5 in the air flow direction.
  • the second part 32 is arranged so that the air that has passed through the evaporator 5 flows directly to the second part 32.
  • the reheater 8 is not arranged between the second part 32 and the evaporator 5 in the air flow direction.
  • the second part 32 is arranged on the outlet side of the condenser 3 with respect to the first part 31 in the flow of the first refrigerant.
  • the second part 32 is arranged on the upstream side of the first part 31 in the flow direction of the air taken in by the blower 6 from the outside to the inside of the housing 20.
  • the second part 32 is arranged on the upstream side of the reheater 8 in the air flow direction.
  • the condenser 3 has a plurality of fins 3F and a tube 3P penetrating the plurality of fins 3F.
  • the plurality of fins 3F are attached to the outside of the pipe 3P.
  • the pipe 3P is configured so that the first refrigerant flows inside the pipe 3P.
  • the tubes are arranged in two rows.
  • the precooler 7 and the reheater 8 are connected to each other by two pipes.
  • Each of the precooler 7 and the reheater 8 has a plurality of fins and a tube penetrating the plurality of fins. The fins are attached to the outside of the tube.
  • the pipe is configured so that the second refrigerant flows inside the pipe.
  • the tubes are arranged in a row.
  • the pipes are not limited to one row.
  • Each of the two pipes is located on the same side of each of the plurality of fins of the precooler 7 and the reheater 8. That is, the outlet and the inlet of the second refrigerant in each of the precooler 7 and the reheater 8 are arranged on the same side with respect to the plurality of fins.
  • the tubes of the precooler 7 and the reheater 8 are arranged in a staggered state with each other. That is, it is preferable that the tubes of the precooler 7 and the reheater 8 are arranged so that their height positions deviate from each other.
  • the tubes are arranged in two rows, but in the condenser 3, the tubes are not limited to the two rows. Further, in each of the precooler 7 and the reheater 8, the pipes are arranged in one row, but in each of the precooler 7 and the reheater 8, the pipes are not limited to one row. Further, when the pipes are installed in multiple rows in the condenser 3, it is preferable that the flow of the refrigerant moving through the multiple rows of pipes is countercurrent with the flow of air passing through the condenser 3. Further, the number of stages of each tube of the condenser 3, the precooler 7, and the reheater 8 is not limited.
  • the second refrigerant circulates only by the driving force due to the temperature difference. Therefore, in the precooler 7, it is preferable that the second refrigerant flows from the lower side to the higher side in the direction of gravity. Further, in the reheater 8, it is preferable that the second refrigerant flows from the higher side to the lower side in the direction of gravity.
  • the modified example of the dehumidifying device according to the present embodiment has the same configuration, operation, and effect as the dehumidifying device according to the above-described present embodiment.
  • the tubes of the precooler 7 and the reheater 8 of the modified example 1 of the dehumidifier according to the present embodiment are arranged in a staggered state with each other. No tube is arranged at the bottom of the reheater 8.
  • the reheater 8 is configured so that the second refrigerant does not flow at a position overlapping the second part 32 in the air flow direction.
  • the precooler 7 and the reheater 8 of the modification 2 of the dehumidifier according to the present embodiment are connected to each other by two pipes.
  • Each of the two pipes is located on a different side of each of the plurality of fins of the precooler 7 and the reheater 8. That is, the outlet and the inlet of the second refrigerant in each of the precooler 7 and the reheater 8 are arranged on different sides with respect to the plurality of fins.
  • the tubes of the precooler 7 and the reheater 8 of the modification 2 of the dehumidifier according to the present embodiment are arranged in a staggered state with each other. No tube is arranged at the bottom of the reheater 8.
  • the reheater 8 is configured so that the second refrigerant does not flow at a position overlapping the second part 32 in the air flow direction.
  • the precooler 7 and the reheater 8 of the modification 3 of the dehumidifier according to the present embodiment are the precooler 7 and the reheater 8 of the modification 2 of the dehumidifier according to the present embodiment.
  • the arrangement of the tubes of the precooler 7 is different from that of the heater 8. Specifically, in the modification 3 of the dehumidifier according to the present embodiment, the pipe of the precooler 7 is arranged lower than the modification 2 of the dehumidifier according to the present embodiment.
  • the condenser 3 and the reheater 8 of the modification 4 of the dehumidifier according to the present embodiment are integrally configured. Specifically, each of the plurality of fins 3F of the condenser 3 and each of the plurality of fins of the reheater 8 are integrally formed.
  • the condenser 3 and the reheater 8 of the modification 5 of the dehumidifier according to the present embodiment are integrally configured. Specifically, each of the plurality of fins 3F of the condenser 3 and each of the plurality of fins of the reheater 8 are integrally formed.
  • a slit SP is provided between the condenser 3 and the reheater 8. Specifically, a slit SP is provided between each of the plurality of fins 3F of the condenser 3 and the plurality of fins of the reheater 8. Further, slits SP are provided between each row of the tubes of the condenser 3.
  • the superheated first refrigerant discharged from the compressor 2 flows into the condenser 3 arranged in the air passage FP.
  • the superheated gas state first refrigerant that has flowed into the condenser 3 is taken into the air passage FP from the external space through the suction port 21, and the air and heat that have passed through the precooler 7, the evaporator 5, and the reheater 8 in this order. It is replaced and becomes supercooled.
  • the supercooled first refrigerant flowing out of the condenser 3 is decompressed by passing through the decompression device 4, becomes a gas-liquid two-phase state, and then flows into the evaporator 5 arranged in the air passage FP. ..
  • the gas-liquid two-phase state first refrigerant that has flowed into the evaporator 5 is taken into the air passage FP from the external space through the suction port 21, and is heat-exchanged with the air having a high relative humidity cooled by the precooler 7. As a result, it is heated and becomes a superheated gas state.
  • the first refrigerant in the superheated gas state is sucked into the compressor 2, compressed by the compressor 2, and discharged again. In this way, the first refrigerant circulates in the first refrigerant circuit C1.
  • the second refrigerant in the precooler 7 evaporates by heat exchange with the air taken into the air passage FP.
  • the second refrigerant in the gas-liquid two-phase state or the gas state flows upward in the precooler 7 and then flows to the reheater 8 via the connecting pipe due to the pressure difference.
  • the second refrigerant that has flowed into the reheater 8 is condensed by exchanging heat with the air that has passed through the precooler 7 and the evaporator 5 in this order.
  • the gas-liquid two-phase state or the liquid second refrigerant flows downward in the reheater 8 and then flows into the precooler 7 by gravity. In this way, the second refrigerant circulates in the second refrigerant circuit C2.
  • the air taken into the air passage FP is cooled by exchanging heat with the second refrigerant in the precooler 7.
  • the air cooled in the precooler 7 is cooled to a temperature equal to or lower than the dew point of the air by exchanging heat with the first refrigerant in the evaporator 5.
  • the air is dehumidified in the evaporator 5. Since the air sent to the evaporator 5 is pre-cooled by the precooler 7, the relative density of the moist air becomes high, so that the amount of dehumidification by the evaporator 5 can be increased.
  • the air cooled in the evaporator 5 is heated by exchanging heat with the second refrigerant in the reheater 8.
  • the air heated in the reheater 8 is further heated by exchanging heat with the first refrigerant in the first part 31 of the condenser 3.
  • the air cooled in the evaporator 5 is not exchanged with the second refrigerant in the reheater 8, but is exchanged with the first refrigerant in the second part 32 of the condenser 3. That is, in the second part 32 of the condenser 3, the second refrigerant and the air cooled in the evaporator 5 directly exchange heat.
  • a signal is sent from a control unit (not shown) based on the detection results of a temperature detecting means (for example, suction temperature, discharge temperature, heat exchanger temperature, air suction temperature / humidity, etc.) (not shown), and the frequency of the compressor 2 is reached.
  • a temperature detecting means for example, suction temperature, discharge temperature, heat exchanger temperature, air suction temperature / humidity, etc.
  • the compressor 2 is controlled by ON / OFF switching in the case of constant speed, and is controlled by the frequency in the case of inverter control.
  • the throttle mechanism of the pressure reducing device 4 is an expansion valve whose throttle can be changed by a coil or the like, the temperature detection means provided near the intermediate portion of the heat exchanger on the evaporation side and the temperature detection provided in the compressor suction portion.
  • the expansion valve is controlled based on the temperature difference from the means.
  • a discharge temperature detecting means is further provided, and the throttle of the expansion valve is controlled based on the temperature difference between the detection result and the preset target discharge temperature. May be good.
  • the user's setting for example, weak wind mode or strong wind mode
  • the fan 6b may be prioritized. Even if the fan 6b is operated at a fan rotation speed preset according to the operation mode (rated (high rotation speed) or intermediate (low rotation speed)) set from the difference between the set humidity and the indoor humidity. Good. Further, since the temperature in the room tends to rise due to the characteristics of the dehumidifying device 1, the frequency of the compressor 2 may be reduced or stopped when the room temperature becomes equal to or higher than a preset temperature.
  • a temperature detecting means (not shown) is provided in the compressor discharging portion, the discharge temperature of the refrigerant is detected, and the temperature difference between the detection result of the temperature detecting means and the discharging temperature of the compressor 2 set in advance is not shown.
  • a signal may be sent to the control unit to adjust the compressor rotation speed, the fan rotation speed, or the opening degree of the expansion valve. This makes it possible to prevent the temperature from exceeding the heat resistant temperature.
  • the dehumidifying devices of Comparative Examples 1 to 3 are mainly different in that the second part 32 of the condenser 3 of the present embodiment is not provided.
  • the condenser 3 faces the reheater 8. Air passes through the reheater 8 and flows into the condenser 3.
  • the moist air sent to the evaporator 5 is pre-cooled by the precooler 7, so that the relative humidity of the moist air becomes high. Therefore, the precooler 7 can increase the amount of dehumidification in the evaporator 5. Further, air passes through the precooler 7, the evaporator 5, and the second part 32 of the condenser 3 in this order. Therefore, heat exchange is performed between the low-temperature air that has passed through the evaporator 5 and the first refrigerant that flows through the second portion 32 of the condenser 3. As a result, the temperature of the first refrigerant flowing through the second part 32 of the condenser 3 can be lowered.
  • the enthalpy difference in the condenser 3 can be increased, the evaporation capacity can be improved. Therefore, it is possible to suppress a decrease in the total heat exchange amount when the refrigerant evaporates. Therefore, the amount of dehumidification can be increased.
  • the dehumidifying amount it is an index showing the dehumidifying performance of the dehumidifying device 1, and the EF (Energy Factor) value (L / kWh) indicating the dehumidifying amount L per 1 kWh can be improved.
  • the air that has passed through the outlet of the evaporator 5 flows to the second part 32 of the condenser 3.
  • the temperature of the air at the outlet of the evaporator 5 is the lowest in the dehumidifying device 1 according to the present embodiment. Therefore, heat exchange can be performed between the air at the outlet of the evaporator 5, which has the lowest temperature, and the second refrigerant flowing through the second part 32 of the condenser 3. It is possible to further suppress a decrease in the total heat exchange amount when the refrigerant evaporates.
  • the second part 32 of the condenser 3 is arranged on the upstream side of the reheater 8 in the air flow direction. Therefore, heat exchange can be effectively performed between the low-temperature air that has passed through the evaporator 5 and the first refrigerant that flows through the second portion 32 of the condenser 3.
  • the condenser 3 includes a plurality of fins 3F and a tube 3P. Therefore, the condensing ability can be improved by the plurality of fins 3F.
  • the outlet of the second refrigerant of the reheater 8 is arranged at a height higher than the inlet of the second refrigerant of the precooler 7. Therefore, the loss due to the position head of the second refrigerant can be reduced.
  • the tubes of the precooler 7 and the reheater 8 are arranged in a staggered state with each other. Therefore, the precooler 7 can be made lower than the reheater 8 in the direction of gravity. Therefore, it is possible to facilitate the flow of the second refrigerant from the reheater 8 to the precooler 7.
  • the reheater 8 is configured so that the second refrigerant does not flow at a position overlapping the second part 32 of the condenser 3 in the air flow direction. There is. Therefore, at the position where the second refrigerant 32 overlaps the second part 32 of the condenser 3 in the flow direction of the air, the second refrigerant is not heated in the reheater 8, so that the low temperature air that has passed through the evaporator 5 and the second condenser 3 Heat exchange can be performed with the unit 32.
  • the condenser 3 and the reheater 8 are integrally configured, but the second part 32 of the condenser 3 is not provided.
  • the condenser 3 and the reheater 8 are integrally configured. Therefore, the number of components of the dehumidifying device 1 can be reduced. As a result, the manufacturing time of the dehumidifying device 1 can be reduced. Further, since the condenser 3 and the reheater 8 are integrally configured, the condenser 3 and the reheater 8 can be miniaturized.
  • a slit SP is provided between the condenser 3 and the reheater 8, but the second part 32 of the condenser 3 is not provided.
  • the slit SP is provided between the condenser 3 and the reheater 8. Therefore, the slit can block the heat conduction between the condenser 3 and the reheater 8. Specifically, when the dehumidifying device 1 is operating, the temperature of the first refrigerant flowing through the condenser 3 is different from the temperature of the second refrigerant flowing through the reheater 8. The slit SP can suppress heat conduction between the first refrigerant and the second refrigerant via the fins of the condenser 3 and the reheater 8.
  • the dehumidifying device 1 according to the second embodiment is the first embodiment in that the condenser 3 includes the first condensing part 3a, the second condensing part 3b, and the third condensing part 3c. It is mainly different from the dehumidifying device 1. Further, the dehumidifying device 1 according to the second embodiment is mainly the dehumidifying device 1 according to the first embodiment in that the air passage FP of the housing 20 includes the first path FP1 and the second path FP2. Is different.
  • the condenser 3 includes a first condensing part 3a, a second condensing part 3b, and a third condensing part 3c.
  • the first condensing part 3a includes a first part 31 and a second part 32.
  • the first condensing section 3a is configured so that the first refrigerant in the supercooled state flows.
  • the first condensing unit 3a may have a region in which the first refrigerant in the supercooled state flows, and may have a region in which the first refrigerant in the supercooled state and the gas-liquid two-phase state flows.
  • the second condensing portion 3b is configured so that the refrigerant in the superheated gas state flows.
  • the second condensing portion 3b may have a region in which the first refrigerant in the superheated gas state flows, and may have a region in which the first refrigerant in the superheated gas state and the gas-liquid two-phase state flows.
  • the third condensing section 3c is arranged between the first condensing section 3a and the second condensing section 3b in the first refrigerant circuit C1.
  • the third condensing section 3c is configured so that a gas-liquid two-phase state refrigerant flows.
  • the first refrigerant flows in the order of the second condensing section 3b, the third condensing section 3c, and the first condensing section 3a.
  • Each of the first condensing section 3a, the second condensing section 3b, and the third condensing section 3c has a refrigerant inlet and a refrigerant outlet.
  • the refrigerant inlet of the second condensing portion 3b is connected to the discharge port of the compressor 2 via a pipe.
  • the refrigerant inlet of the third condensing section 3c is connected to the refrigerant outlet of the second condensing section 3b.
  • the refrigerant inlet of the first condensing section 3a is connected to the refrigerant outlet of the third condensing section 3c.
  • the refrigerant outlet of the first condensing unit 3a is connected to the decompression device 4 via a pipe.
  • the housing 20 includes a partition portion 11.
  • the air path FP includes a first path FP1 and a second path FP2.
  • the second road FP2 is partitioned from the first road FP1.
  • the partition portion 11 is configured to partition the first road FP1 and the second road FP2.
  • Each of the first road FP1 and the second road FP2 is defined by the housing 20 and the partition portion 11. That is, inside the housing 20, two air passages (air flow paths) of the first path FP1 and the second path FP2 are provided.
  • the suction port 21 includes a first suction port 21a and a second suction port 21b.
  • the first suction port 21a communicates with the first road FP1.
  • the second suction port 21b communicates with the second road FP2.
  • the first suction port 21a is arranged on the upstream side of the air inlet of the precooler 7 in the first path FP1 in the air flow direction of the first path FP1.
  • the second suction port 21b is arranged on the upstream side of the air inlet of the second condensing portion 3b in the second path FP2 in the air flow direction of the second path FP2.
  • a first condensing unit 3a, a third condensing unit 3c, an evaporator 5, a precooler 7, and a reheater 8 are arranged in the first path FP1.
  • the air taken in by the blower 6 from the outside to the inside of the housing 20 passes through the precooler 7, the evaporator 5, the reheater 8, the first condensing section 3a, and the third condensing section 3c in this order. It is configured to do.
  • the air taken in from the outside of the housing 20 to the inside by the fan 6b rotating around the shaft 6a is recooled by the precooler 7, the evaporator 5, and re-cooled.
  • the first path FP1 is configured such that air passes through the first condensed portion 3a and then passes through the third condensed portion 3c.
  • the third condensing unit 3c is arranged leeward of the first condensing unit 3a, the evaporator 5, the precooler 7, and the reheater 8 in the air flow direction.
  • the second condensing portion 3b is arranged in the second road FP2.
  • the second path FP2 is configured such that the air taken in by the blower 6 from the outside to the inside of the housing 20 passes through the second condensing portion 3b.
  • the air taken in from the outside of the housing 20 to the inside by rotating the fan 6b around the shaft 6a passes through the second condensing portion 3b.
  • the second path FP2 is configured so that air passes through the second condensing portion 3b.
  • the second condensed portion 3b is arranged above the third condensed portion 3c.
  • the total height of the second condensing section 3b and the third condensing section 3c is higher than the height of the first condensing section 3a, the evaporator 5, the precooler 7, and the reheater 8.
  • the air in the first road FP1 and the air in the second road FP2 flow in parallel with each other and flow in the same direction.
  • the space that defines the first road FP1 does not have to be completely separated from the space that defines the second road FP2.
  • the space defining the first path FP1 is connected to the space defining the second path FP2 downstream of the first condensing portion 3a in the air flow direction in the first path FP1. There is.
  • One end (upstream end) located on the upstream side of the partition portion 11 in the air flow direction in the first path FP1 is arranged on the upstream side of the air outlet of the precooler 7.
  • the other end (downstream end) located on the downstream side of the partition portion 11 in the air flow direction in the second path FP2 is arranged at the same position as the air outlet of the reheater 8 or on the downstream side of this air outlet.
  • the partition portion 11 is formed in a flat plate shape, for example.
  • the partition portion 11 is fixed inside the housing 20.
  • the dehumidifying device 4 may be arranged in the machine room. Next, with reference to FIG. 14, the operation of the dehumidifying device 1 according to the present embodiment during the dehumidifying operation will be described.
  • the superheated first refrigerant discharged from the compressor 2 flows into the second condensing portion 3b arranged in the second path FP2.
  • the superheated gas state first refrigerant that has flowed into the second condensing portion 3b is cooled by heat exchange with the air taken into the second path FP2 from the external space through the second suction port 21b, and is cooled into a gas-liquid two-phase. It becomes a state.
  • the gas-liquid two-phase state first refrigerant flowing out of the second condensing section 3b flows into the third condensing section 3c arranged in the first path FP1.
  • the gas-liquid two-phase state first refrigerant that has flowed into the third condensing portion 3c is taken into the first path FP1 from the external space through the first suction port 21a, and is taken into the precooler 7, the evaporator 5, and the reheater 8. , Further condensing by heat exchange with the air that has passed through the first condensing portion 3a in order.
  • the gas-liquid two-phase state first refrigerant flowing out of the third condensing section 3c flows into the first condensing section 3a arranged in the first path FP1.
  • the gas-liquid two-phase state first refrigerant that has flowed into the first condensing portion 3a is taken into the first path FP1 from the external space through the first suction port 21a, and is taken into the first path FP1 and is taken into the precooler 7, the evaporator 5, and the reheater 8. It becomes a supercooled state by exchanging heat with the air that has passed through in order.
  • the supercooled first refrigerant flowing out of the first condensing unit 3a is depressurized by passing through the decompression device 4 arranged in the machine chamber, becomes a gas-liquid two-phase state, and then flows into the evaporator 5. ..
  • the gas-liquid two-phase state first refrigerant that has flowed into the evaporator 5 is taken into the first path FP1 from the external space through the first suction port 21a, and is cooled by the precooler 7 with air having a high relative humidity. By exchanging heat, it is heated and becomes a superheated gas state.
  • the first refrigerant in the superheated gas state is sucked into the compressor 2, compressed by the compressor 2, and discharged again. In this way, the first refrigerant circulates in the first refrigerant circuit C1.
  • the second refrigerant in the precooler 7 evaporates by heat exchange with the air taken into the first path FP1.
  • the second refrigerant in the gas-liquid two-phase state or the gas state flows upward in the precooler 7 and then flows to the reheater 8 via the connecting pipe due to the pressure difference.
  • the second refrigerant that has flowed into the reheater 8 is condensed by exchanging heat with the air that has passed through the precooler 7 and the evaporator 5 in this order.
  • the gas-liquid two-phase state or liquid state second refrigerant flows downward in the reheater 8 and then flows into the precooler 7 by gravity. In this way, the second refrigerant circulates in the second refrigerant circuit C2.
  • the air taken into the first path FP1 is cooled by exchanging heat with the second refrigerant in the precooler 7.
  • the air cooled in the precooler 7 is cooled to a temperature equal to or lower than the dew point of the air by exchanging heat with the first refrigerant in the evaporator 5.
  • the air is dehumidified in the evaporator 5. Since the air sent to the evaporator 5 is pre-cooled by the precooler 7, the relative density of the moist air becomes high, so that the amount of dehumidification by the evaporator 5 can be increased.
  • the air cooled in the evaporator 5 is heated by exchanging heat with the second refrigerant in the reheater 8.
  • the air heated in the reheater 8 is further heated by exchanging heat with the first refrigerant in the first part 31 of the first condensing part 3a.
  • the air heated in the first condensing section 3a is further heated by exchanging heat with the first refrigerant in the third condensing section 3c.
  • the air taken into the second path FP2 is heated by exchanging heat with the first refrigerant in the second condensing section 3b.
  • the air cooled in the evaporator 5 is not heat-exchanged with the second refrigerant in the reheater 8, but is heat-exchanged with the first refrigerant in the second part 32 of the first condensing part 3a. That is, in the second part 32 of the first condensing part 3a, the second refrigerant and the air cooled in the evaporator 5 directly exchange heat.
  • the condensing performance in the condenser 3 can be improved by the second path FP2, so that the EF value can be improved. That is, the air taken into the housing 20 flows through the second path FP2 and is heat-exchanged in the second condensing portion 3b. Therefore, the air volume of the air flowing through the condenser 3 can be increased. Further, it is possible to allow air having a temperature lower than the temperature of the air flowing through the reheater 8 to the first condensing section 3a to flow to the second condensing section 3b.
  • the condensing capacity of the condenser 3 can be improved.
  • the condensation temperature can be reduced by improving the condensation capacity of the condenser 3.
  • the compression ratio of the compressor 2 can be reduced.
  • the input of the compressor 2 can be reduced by reducing the compression ratio of the compressor 2.
  • the EF value can be improved by reducing the input of the compressor 2.
  • the first path FP1 is configured such that air passes through the first condensed portion 3a and then passes through the third condensed portion 3c.
  • the first condensed portion 3a through which the supercooled refrigerant flows has the lowest refrigerant temperature among the first condensed portion 3a, the second condensed portion 3b, and the third condensed portion 3c. Therefore, the temperature difference between the air temperature at the time of heat dissipation of the reheater 8 and the first refrigerant of the first condensing portion 3a becomes close to each other, so that the amount of heat received by the first condensing portion 3a becomes smaller. As a result, it is possible to suppress a decrease in the condensation performance due to heat dissipation of the reheater 8.
  • the refrigerant temperature of the third condensing section 3c is higher than the refrigerant temperature of the first condensing section 3a, it is possible to exchange heat with the air whose temperature has increased by heat exchange in the first condensing section 3a. As a result, the condensing performance can be ensured by the third condensing unit 3c, so that the condensing performance of the condenser 3 can be improved.
  • 1 dehumidifier 2 compressor, 3 condenser, 3a 1st condenser, 3b 2nd condenser, 3c 3rd condenser, 3F fin, 3P tube, 4 decompression device, 5 evaporator, 6 blower, 6a shaft, 6b fan, 7 precooler, 8 reheater, 11 partition, 20 housing, 21 suction port, 21a 1st suction port, 21b 2nd suction port, 22 outlet, 31 1st part, 32 2nd part , C1 1st refrigerant circuit, C2 2nd refrigerant circuit, FP air passage, FP1 1st road, FP2 2nd road, SP slit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Drying Of Gases (AREA)

Abstract

A dehumidifier (1) comprises a case (20), a first refrigerant circuit (C1), a second refrigerant circuit (C2), and a fan (6). The first refrigerant circuit (C1) includes a compressor (2), a condenser (3), a decompression device (4), an evaporator (5), and a first refrigerant. The second refrigerant circuit (C2) includes a pre-cooler (7), a reheater (8), and a second refrigerant. The condenser (3) includes a first part and a second part. The second part is positioned upstream of the first part in the flow direction of air taken in by the fan from the outside to the inside of the case. An air passage is configured to allow air to pass through the pre-cooler (7), the evaporator (5), the reheater (8), and the first part in this order, and is configured to allow air to pass through the pre-cooler (7), the evaporator (5), and the second part in this order.

Description

除湿装置Dehumidifier
 本発明は、除湿装置に関するものである。 The present invention relates to a dehumidifying device.
 従来、たとえば特開昭61-272568号公報(特許文献1)に記載されているように、冷凍サイクル回路と、ヒートパイプとを備えた除湿装置が提案されている。この冷凍サイクル回路では、圧縮機、凝縮器、減圧装置、蒸発器の順に第1冷媒が循環する。このヒートパイプでは、予冷却器および再熱器を第2冷媒が循環する。予冷却器は、蒸発器よりも空気流れにおいて風上に配置されている。再熱器は、凝縮器よりも空気流れにおいて風上に配置されている。蒸発器へ送られる湿り空気が予冷却器であらかじめ冷やされることにより湿り空気の相対湿度が高くなるため、蒸発器での除湿量を増加させることが可能となる。 Conventionally, as described in, for example, Japanese Patent Application Laid-Open No. 61-272568 (Patent Document 1), a dehumidifying device including a refrigeration cycle circuit and a heat pipe has been proposed. In this refrigeration cycle circuit, the first refrigerant circulates in the order of the compressor, the condenser, the decompression device, and the evaporator. In this heat pipe, the second refrigerant circulates in the precooler and the reheater. The precooler is located upwind in the airflow rather than the evaporator. The reheater is located upwind in the airflow rather than the condenser. Since the moist air sent to the evaporator is pre-cooled by the precooler, the relative humidity of the moist air increases, so that the amount of dehumidification by the evaporator can be increased.
特開昭61-272568号公報Japanese Unexamined Patent Publication No. 61-272568
 上記の公報に記載された除湿装置では、再熱器は凝縮器よりも空気流れにおいて風上に配置されているため、再熱器によって凝縮器に吸い込まれる空気が温められる。このため、凝縮器に吸い込まれる空気の温度は、再熱器が設けられていない場合に比べて上昇する。したがって、凝縮器の出口側での冷媒の温度は、再熱器が設けられていない場合に比べて上昇する。これにより、冷媒の蒸発時の全熱交換量(エンタルピ差)は低下する。 In the dehumidifier described in the above publication, since the reheater is arranged upwind in the air flow than the condenser, the air sucked into the condenser is warmed by the reheater. Therefore, the temperature of the air sucked into the condenser rises as compared with the case where the reheater is not provided. Therefore, the temperature of the refrigerant on the outlet side of the condenser rises as compared with the case where the reheater is not provided. As a result, the total heat exchange amount (enthalpy difference) at the time of evaporation of the refrigerant is reduced.
 本発明は上記課題に鑑みてなされたものであり、その目的は、蒸発器での除湿量を増加させることができ、かつ冷媒の蒸発時の全熱交換量の低下を抑制できる除湿装置を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a dehumidifying device capable of increasing the amount of dehumidification in the evaporator and suppressing a decrease in the total heat exchange amount during evaporation of the refrigerant. It is to be.
 本発明の除湿装置は、風路を有する筐体と、筐体の内部に収容された第1冷媒回路、第2冷媒回路および送風機とを備えている。第1冷媒回路は、圧縮機、凝縮器、減圧装置、蒸発器および第1冷媒を含み、かつ圧縮機、凝縮器、減圧装置、蒸発器の順に第1冷媒が流れるように構成されている。第2冷媒回路は、予冷却器、再熱器および第2冷媒を含み、かつ予冷却器および再熱器を第2冷媒が循環するように構成されている。凝縮器は、第1部と、第1冷媒の流れにおいて第1部よりも凝縮器の出口側に配置された第2部とを含んでいる。第2部は、筐体の外部から内部に送風機によって取り込まれた空気の流れ方向において第1部よりも上流側に配置されている。風路は、空気が予冷却器、蒸発器、再熱器、第1部を順に通過し、かつ空気が予冷却器、蒸発器、第2部を順に通過するように構成されている。 The dehumidifying device of the present invention includes a housing having an air passage, a first refrigerant circuit, a second refrigerant circuit, and a blower housed inside the housing. The first refrigerant circuit includes a compressor, a condenser, a decompression device, an evaporator, and a first refrigerant, and is configured such that the first refrigerant flows in the order of the compressor, the condenser, the decompression device, and the evaporator. The second refrigerant circuit includes a precooler, a reheater, and a second refrigerant, and is configured such that the second refrigerant circulates through the precooler and the reheater. The condenser includes a first part and a second part arranged on the outlet side of the condenser with respect to the first part in the flow of the first refrigerant. The second part is arranged on the upstream side of the first part in the flow direction of the air taken in by the blower from the outside to the inside of the housing. The air passage is configured such that air passes through the precooler, the evaporator, the reheater, and the first part in order, and air passes through the precooler, the evaporator, and the second part in order.
 本発明の除湿装置によれば、予冷却器により蒸発器での除湿量を増加させることができさせることができる。また、空気が予冷却器、蒸発器、第2部を順に通過するため、冷媒の蒸発時の全熱交換量の低下を抑制できる。 According to the dehumidifying device of the present invention, the dehumidifying amount in the evaporator can be increased by the precooler. Further, since the air passes through the precooler, the evaporator, and the second part in this order, it is possible to suppress a decrease in the total heat exchange amount at the time of evaporation of the refrigerant.
実施の形態1に係る除湿装置の構成を概略的に示す図である。It is a figure which shows schematic structure of the dehumidifying apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る除湿装置の凝縮器および再熱器の構成を概略的に示す正面図である。It is a front view which shows typically the structure of the condenser and the reheater of the dehumidifier which concerns on Embodiment 1. FIG. 実施の形態1に係る除湿装置の予冷却器および再熱器の構成を概略的に示す斜視図である。It is a perspective view which shows typically the structure of the precooler and the reheater of the dehumidifier which concerns on Embodiment 1. FIG. 実施の形態1に係る除湿装置の予冷却器および再熱器の構成を概略的に示す正面図である。It is a front view which shows typically the structure of the precooler and the reheater of the dehumidifier which concerns on Embodiment 1. FIG. 実施の形態1に係る除湿装置の変形例1の予冷却器および再熱器の構成を概略的に示す正面図である。It is a front view which shows roughly the structure of the precooler and the reheater of the modification 1 of the dehumidifying device which concerns on Embodiment 1. FIG. 実施の形態1に係る除湿装置の変形例2の予冷却器および再熱器の構成を概略的に示す斜視図である。It is a perspective view which shows typically the structure of the precooler and the reheater of the modification 2 of the dehumidifying device which concerns on Embodiment 1. FIG. 実施の形態1に係る除湿装置の変形例2の予冷却器および再熱器の構成を概略的に示す正面図である。It is a front view which shows roughly the structure of the precooler and the reheater of the modification 2 of the dehumidifying device which concerns on Embodiment 1. FIG. 実施の形態1に係る除湿装置の変形例3の予冷却器および再熱器の構成を概略的に示す正面図である。It is a front view which shows roughly the structure of the precooler and the reheater of the modification 3 of the dehumidifying device which concerns on Embodiment 1. FIG. 実施の形態1に係る除湿装置の変形例4の凝縮器および再熱器の構成を概略的に示す正面図である。It is a front view which shows typically the structure of the condenser and the reheater of the modification 4 of the dehumidifying apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る除湿装置の変形例5の凝縮器および再熱器の構成を概略的に示す正面図である。It is a front view which shows typically the structure of the condenser and the reheater of the modification 5 of the dehumidifying apparatus which concerns on Embodiment 1. FIG. 比較例1の除湿装置の凝縮器および再熱器の構成を概略的に示す正面図である。It is a front view which shows schematic structure of the condenser and the reheater of the dehumidifier of the comparative example 1. FIG. 比較例2の除湿装置の凝縮器および再熱器の構成を概略的に示す正面図である。It is a front view which shows schematic structure of the condenser and the reheater of the dehumidifier of the comparative example 2. FIG. 比較例3の除湿装置の凝縮器および再熱器の構成を概略的に示す正面図である。It is a front view which shows schematic structure of the condenser and the reheater of the dehumidifier of the comparative example 3. FIG. 実施の形態2に係る除湿装置の構成を概略的に示す図である。It is a figure which shows schematic structure of the dehumidifying apparatus which concerns on Embodiment 2.
 以下、図面を参照して、本発明の実施の形態について説明する。なお、以下の図面において、同一または相当する部分には同一の参照符号が付され、その説明は繰り返されない。また、以下の図面において、白抜き矢印は空気の流れを示している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are designated by the same reference numerals, and the description thereof will not be repeated. Further, in the following drawings, the white arrows indicate the air flow.
 実施の形態1.
 図1を参照して、実施の形態1に係る除湿装置1は、圧縮機2、凝縮器3、減圧装置4および蒸発器5を含む第1冷媒回路C1と、送風機6と、予冷却器7および再熱器8を含む第2冷媒回路C2と、筐体20とを備えている。第1冷媒回路C1、第2冷媒回路C2および送風機6は筐体20の内部に収容されている。筐体20は、除湿装置1が除湿対象とする外部空間(室内空間)に面している。
Embodiment 1.
With reference to FIG. 1, the dehumidifying device 1 according to the first embodiment includes a first refrigerant circuit C1 including a compressor 2, a condenser 3, a depressurizing device 4, and an evaporator 5, a blower 6, and a precooler 7. A second refrigerant circuit C2 including the reheater 8 and a housing 20 are provided. The first refrigerant circuit C1, the second refrigerant circuit C2, and the blower 6 are housed inside the housing 20. The housing 20 faces an external space (indoor space) to be dehumidified by the dehumidifying device 1.
 第1冷媒回路C1は、圧縮機2、凝縮器3、減圧装置4、蒸発器5および第1冷媒を含んでいる。第1冷媒回路C1は、圧縮機2、凝縮器3、減圧装置4、蒸発器5の順に第1冷媒が流れるように構成されている。具体的には、第1冷媒回路C1は、圧縮機2、凝縮器3、減圧装置4、蒸発器5の順に配管を介して接続されることにより構成されている。第1冷媒は、この配管内を通って第1冷媒回路C1を圧縮機2、凝縮器3、減圧装置4、蒸発器5の順に循環する。図1中実線矢印は、第1冷媒回路C1における第1冷媒の流れを示している。 The first refrigerant circuit C1 includes a compressor 2, a condenser 3, a decompression device 4, an evaporator 5, and a first refrigerant. The first refrigerant circuit C1 is configured such that the first refrigerant flows in the order of the compressor 2, the condenser 3, the decompression device 4, and the evaporator 5. Specifically, the first refrigerant circuit C1 is configured by connecting the compressor 2, the condenser 3, the decompression device 4, and the evaporator 5 in this order via piping. The first refrigerant circulates in the first refrigerant circuit C1 through the piping in the order of the compressor 2, the condenser 3, the decompression device 4, and the evaporator 5. The solid line arrow in FIG. 1 indicates the flow of the first refrigerant in the first refrigerant circuit C1.
 圧縮機2は第1冷媒を圧縮するように構成されている。具体的には、圧縮機2は吸入口から低圧冷媒を吸入して圧縮し、高圧冷媒として吐出口から吐出するように構成されている。圧縮機2は、冷媒の吐出容量が可変に構成されていてもよい。具体的には、圧縮機2はインバータ圧縮機であってもよい。圧縮機2が第1冷媒の吐出容量を可変に構成されている場合には、除湿装置1内の第1冷媒の循環量は、圧縮機2の吐出容量を調整することにより制御することが可能となる。 The compressor 2 is configured to compress the first refrigerant. Specifically, the compressor 2 is configured to suck low-pressure refrigerant from the suction port, compress it, and discharge it as high-pressure refrigerant from the discharge port. The compressor 2 may have a variable discharge capacity of the refrigerant. Specifically, the compressor 2 may be an inverter compressor. When the compressor 2 has a variable discharge capacity of the first refrigerant, the circulation amount of the first refrigerant in the dehumidifying device 1 can be controlled by adjusting the discharge capacity of the compressor 2. It becomes.
 凝縮器3は、圧縮機2で昇圧された第1冷媒を凝縮して冷却するように構成されている。凝縮器3は、第1冷媒と空気との間で熱交換を行う熱交換器である。凝縮器3は、第1冷媒の入口と出口、および空気の入口と出口とを有している。凝縮器3の第1冷媒の入口は上側に配置されており、出口は下側に配置されている。凝縮器3の第1冷媒の入口は圧縮機2の吐出口に配管で接続されている。 The condenser 3 is configured to condense and cool the first refrigerant boosted by the compressor 2. The condenser 3 is a heat exchanger that exchanges heat between the first refrigerant and air. The condenser 3 has an inlet and an outlet for the first refrigerant and an inlet and an outlet for air. The inlet of the first refrigerant of the condenser 3 is arranged on the upper side, and the outlet is arranged on the lower side. The inlet of the first refrigerant of the condenser 3 is connected to the discharge port of the compressor 2 by a pipe.
 減圧装置4は、凝縮器3にて冷却された第1冷媒を減圧させて膨張させるように構成されている。減圧装置4は、例えば膨張弁である。この膨張弁は電子膨張弁であってもよい。電子膨張弁はコイルを用いたものであってもよい。なお、減圧装置4は、膨張弁に限られず、キャピラリーチューブであってもよい。減圧装置4は、凝縮器3の冷媒出口と蒸発器5の冷媒入口との各々に配管を介してそれぞれ接続されている。 The decompression device 4 is configured to depressurize and expand the first refrigerant cooled by the condenser 3. The pressure reducing device 4 is, for example, an expansion valve. This expansion valve may be an electronic expansion valve. The electronic expansion valve may use a coil. The pressure reducing device 4 is not limited to the expansion valve, and may be a capillary tube. The decompression device 4 is connected to each of the refrigerant outlet of the condenser 3 and the refrigerant inlet of the evaporator 5 via a pipe.
 蒸発器5は、減圧装置4にて減圧されて膨張された第1冷媒に吸熱させて冷媒を蒸発させるように構成されている。蒸発器5は、第1冷媒と空気との間で熱交換を行う熱交換器である。蒸発器5は、第1冷媒の入口と出口、および空気の入口と出口とを有している。蒸発器5の第1冷媒の入口は上側に配置されており、出口は下側に配置されている。蒸発器5の第1冷媒の出口は圧縮機2の吸込口に配管を介して接続されている。蒸発器5は、送風機6によって発生する空気の流れにおいて凝縮器3よりも上流に配置されている。つまり、蒸発器5は、凝縮器3よりも風上に配置されている。 The evaporator 5 is configured to evaporate the refrigerant by absorbing heat from the first refrigerant that has been decompressed and expanded by the decompression device 4. The evaporator 5 is a heat exchanger that exchanges heat between the first refrigerant and air. The evaporator 5 has an inlet and an outlet for the first refrigerant, and an inlet and an outlet for air. The inlet of the first refrigerant of the evaporator 5 is arranged on the upper side, and the outlet is arranged on the lower side. The outlet of the first refrigerant of the evaporator 5 is connected to the suction port of the compressor 2 via a pipe. The evaporator 5 is arranged upstream of the condenser 3 in the air flow generated by the blower 6. That is, the evaporator 5 is arranged on the windward side of the condenser 3.
 送風機6は空気を送風するように構成されている。送風機6は、空気を筐体20の外部から内部に取り込んで凝縮器3および蒸発器5に送風可能に構成されている。具体的には、送風機6は、外部空間(室内空間)から空気を筐体20内に取り込んで蒸発器5および凝縮器3を通過させた後に筐体20外に吐き出すように構成されている。 The blower 6 is configured to blow air. The blower 6 is configured to take in air from the outside of the housing 20 to the inside and blow it to the condenser 3 and the evaporator 5. Specifically, the blower 6 is configured to take in air from the external space (indoor space) into the housing 20, pass through the evaporator 5 and the condenser 3, and then discharge the air to the outside of the housing 20.
 本実施の形態では、送風機6は、軸6aと、ファン6bとを有している。ファン6bは軸6aを中心に回転するように構成されている。ファン6bが軸6aを中心に回転することによって、図中矢印Aで示されるように室内から筐体20の内部に空気が取り込まれる。図中矢印Bで示されるように、筐体20の内部に取り込まれた空気は外部空間(室内空間)へ吐き出される。このようにして、空気は、除湿装置1を経由して外部空間(室内空間)を循環する。 In the present embodiment, the blower 6 has a shaft 6a and a fan 6b. The fan 6b is configured to rotate about a shaft 6a. As the fan 6b rotates about the shaft 6a, air is taken into the housing 20 from the room as indicated by the arrow A in the figure. As shown by the arrow B in the figure, the air taken into the housing 20 is discharged to the external space (indoor space). In this way, the air circulates in the external space (indoor space) via the dehumidifying device 1.
 本実施の形態では、送風機6は、空気の流れ方向において、凝縮器3よりも下流に配置されている。なお、送風機6は、空気の流れ方向において、凝縮器3と蒸発器5との間に配置されていてもよい。また、送風機6は、空気の流れ方向において、蒸発器5よりも上流に配置されていてもよい。 In the present embodiment, the blower 6 is arranged downstream of the condenser 3 in the air flow direction. The blower 6 may be arranged between the condenser 3 and the evaporator 5 in the air flow direction. Further, the blower 6 may be arranged upstream of the evaporator 5 in the air flow direction.
 第2冷媒回路C2は、予冷却器7、再熱器8および第2冷媒を含んでいる。第2冷媒回路C2は、予冷却器7および再熱器8を第2冷媒が循環するように構成されている。具体的には、第2冷媒回路C2は、予冷却器7と再熱器8とが配管を介して接続されることにより構成されている。第2冷媒回路C2は、自然循環回路であってもよい。具体的には、第2冷媒回路C2は、ヒートパイプであってもよい。図1中破線矢印は、第2冷媒回路C2における第2冷媒の流れを示している。 The second refrigerant circuit C2 includes a precooler 7, a reheater 8, and a second refrigerant. The second refrigerant circuit C2 is configured such that the second refrigerant circulates in the precooler 7 and the reheater 8. Specifically, the second refrigerant circuit C2 is configured by connecting the precooler 7 and the reheater 8 via a pipe. The second refrigerant circuit C2 may be a natural circulation circuit. Specifically, the second refrigerant circuit C2 may be a heat pipe. The broken line arrow in FIG. 1 indicates the flow of the second refrigerant in the second refrigerant circuit C2.
 予冷却器7は、筐体20の外部から内部に送風機6によって取り込まれた空気を蒸発器5に流入する前にあらかじめ冷却するように構成されている。予冷却器7は、空気から第2冷媒に吸熱させて第2冷媒を蒸発させるように構成されている。予冷却器7は、第2冷媒と空気との間で熱交換を行う熱交換器である。 The precooler 7 is configured to pre-cool the air taken in by the blower 6 from the outside to the inside of the housing 20 before flowing into the evaporator 5. The precooler 7 is configured to absorb heat from air to the second refrigerant to evaporate the second refrigerant. The precooler 7 is a heat exchanger that exchanges heat between the second refrigerant and air.
 予冷却器7は、第2冷媒の入口と出口、および空気の入口と出口とを有している。予冷却器7の第2冷媒の入口と出口との各々は、再熱器8の第2冷媒の出口と入口との各々にそれぞれ配管を介して接続されている。予冷却器7は、送風機6によって発生する空気の流れにおいて、再熱器8よりも上流に配置されている。また、予冷却器7は、送風機6によって発生する空気の流れにおいて、蒸発器5よりも上流に配置されている。つまり、予冷却器7は、蒸発器5よりも風上に配置されている。 The precooler 7 has an inlet and an outlet for the second refrigerant and an inlet and an outlet for air. Each of the inlet and outlet of the second refrigerant of the precooler 7 is connected to each of the outlet and inlet of the second refrigerant of the reheater 8 via a pipe. The precooler 7 is arranged upstream of the reheater 8 in the air flow generated by the blower 6. Further, the precooler 7 is arranged upstream of the evaporator 5 in the air flow generated by the blower 6. That is, the precooler 7 is arranged on the windward side of the evaporator 5.
 再熱器8は、筐体20の外部から内部に送風機6によって取り込まれた空気を凝縮器3に流入する前に再び加熱するように構成されている。再熱器8は、予冷却器7で蒸発した第2冷媒を凝縮させて空気を加熱するように構成されている。再熱器8は、第2冷媒と空気との間で熱交換を行う熱交換器である。 The reheater 8 is configured to reheat the air taken in by the blower 6 from the outside to the inside of the housing 20 before flowing into the condenser 3. The reheater 8 is configured to heat the air by condensing the second refrigerant evaporated by the precooler 7. The reheater 8 is a heat exchanger that exchanges heat between the second refrigerant and air.
 再熱器8は、第2冷媒の入口と出口、および空気の入口と出口とを有している。再熱器8は、凝縮器3と蒸発器5との間に配置されている。再熱器8は、送風機6によって発生する空気の流れにおいて、凝縮器3よりも上流に配置されている。つまり、再熱器8は、凝縮器3よりも風上に配置されている。 The reheater 8 has an inlet and an outlet for the second refrigerant and an inlet and an outlet for air. The reheater 8 is arranged between the condenser 3 and the evaporator 5. The reheater 8 is arranged upstream of the condenser 3 in the air flow generated by the blower 6. That is, the reheater 8 is arranged on the windward side of the condenser 3.
 再熱器8の第2冷媒の出口は、予冷却器7の第2冷媒の入口以上の高さに配置されている。再熱器8の第2冷媒の出口は、予冷却器7の第2冷媒の入口よりも上側の高さに配置されていることが好ましい。 The outlet of the second refrigerant of the reheater 8 is arranged at a height higher than the inlet of the second refrigerant of the precooler 7. The outlet of the second refrigerant of the reheater 8 is preferably arranged at a height above the inlet of the second refrigerant of the precooler 7.
 筐体20は風路FPを有している。風路FPは、空気が予冷却器7、蒸発器5、再熱器8、第1部31を順に通過し、かつ空気が予冷却器7、蒸発器5、第2部32を順に通過するように構成されている。なお、除湿装置1において、風路FP内には、減圧装置4が配置されていてもよい。 The housing 20 has an air passage FP. In the air passage FP, air passes through the precooler 7, the evaporator 5, the reheater 8, and the first part 31 in this order, and the air passes through the precooler 7, the evaporator 5, and the second part 32 in this order. It is configured as follows. In the dehumidifying device 1, the dehumidifying device 4 may be arranged in the air passage FP.
 筐体20には、吸込口21と、吹出口22とが設けられている。吸込口21は、除湿対象とする外部空間(室内空間)から筐体20の内部に空気を入れるためのものである。吸込口21は風路FPに連通している。吸込口21は、風路FPの空気の流通方向において、風路FP内の予冷却器7の空気入口よりも上流側に配置されている。吹出口22は、筐体20の内部から外部空間に空気を吹き出すためのものである。 The housing 20 is provided with a suction port 21 and an outlet 22. The suction port 21 is for letting air into the inside of the housing 20 from the external space (indoor space) to be dehumidified. The suction port 21 communicates with the air passage FP. The suction port 21 is arranged on the upstream side of the air inlet of the precooler 7 in the air passage FP in the air flow direction of the air passage FP. The air outlet 22 is for blowing air from the inside of the housing 20 to the external space.
 筐体20は背面20aと前面20bとを有している。背面20aに吸込口21が設けられている。背面20aにおいて吸込口21は風路FPに空気を吸い込むように構成されている。 The housing 20 has a back surface 20a and a front surface 20b. A suction port 21 is provided on the back surface 20a. On the back surface 20a, the suction port 21 is configured to suck air into the air passage FP.
 第1冷媒と第2冷媒とは同一であってもよい。また、第1冷媒と第2冷媒とは異なってもよい。例えば、第1冷媒はフロン系冷媒であり、第2冷媒は炭化水素(HC)系冷媒であってもよい。第1冷媒と第2冷媒とが異なっていることにより、第1冷媒および第2冷媒の両方がフロン系冷媒である場合に比べ、コスト低減および低GWP(地球温暖化係数)化が可能となる。 The first refrigerant and the second refrigerant may be the same. Further, the first refrigerant and the second refrigerant may be different from each other. For example, the first refrigerant may be a chlorofluorocarbon-based refrigerant, and the second refrigerant may be a hydrocarbon (HC) -based refrigerant. Since the first refrigerant and the second refrigerant are different, it is possible to reduce the cost and reduce the GWP (global warming potential) as compared with the case where both the first refrigerant and the second refrigerant are chlorofluorocarbon-based refrigerants. ..
 第1冷媒および第2冷媒の両方がフロン系冷媒である場合、フロン系冷媒は欧州のフロンガス(F-Gas)規制の対象であるため、入手が難しく、価格が高騰しやすい。このため、除湿装置1が高価となる。また、炭化水素(HC)系の可燃性冷媒が用いられる場合、封入量が多くなると可燃性のリスクが高まるため、冷媒量は欧州では規制の対象となる。第1冷媒として安価なR290等の炭化水素(HC)系冷媒が用いられ、第2冷媒として高価なR1234f等のフロン系冷媒が用いられてもよい。性能、コスト、安全性に応じて第1冷媒および第2冷媒が組み合わされてもよい。 When both the first refrigerant and the second refrigerant are fluorocarbon-based refrigerants, the fluorocarbon-based refrigerant is subject to European Freon gas (F-Gas) regulations, so it is difficult to obtain and the price tends to rise. Therefore, the dehumidifying device 1 becomes expensive. Further, when a hydrocarbon (HC) -based flammable refrigerant is used, the amount of the refrigerant is subject to regulation in Europe because the risk of flammability increases as the encapsulation amount increases. An inexpensive hydrocarbon (HC) -based refrigerant such as R290 may be used as the first refrigerant, and an expensive chlorofluorocarbon-based refrigerant such as R1234f may be used as the second refrigerant. The first refrigerant and the second refrigerant may be combined depending on the performance, cost, and safety.
 図1および図2を参照して、本実施の形態の凝縮器3の構成について詳しく説明する。
 凝縮器3は、第1部31と、第2部32とを含んでいる。第1部31は、再熱器8に向かい合っている。第1部31は、空気の流れ方向において再熱器8と重なるように配置されている。第1部31は、空気の流れ方向において再熱器8の下流側に配置されている。第1部31は、再熱器8を通過した空気が第1部31に直接流れるように配置されている。
The configuration of the condenser 3 of the present embodiment will be described in detail with reference to FIGS. 1 and 2.
The condenser 3 includes a first part 31 and a second part 32. Part 1 31 faces the reheater 8. The first part 31 is arranged so as to overlap the reheater 8 in the air flow direction. The first part 31 is arranged on the downstream side of the reheater 8 in the air flow direction. The first part 31 is arranged so that the air that has passed through the reheater 8 flows directly to the first part 31.
 第2部32は、蒸発器5に向かい合っている。第2部32は、空気の流れ方向において蒸発器5と重なるように配置されている。第2部32は、空気の流れ方向において蒸発器5の下流側に配置されている。第2部32は、蒸発器5を通過した空気が第2部32に直接流れるように配置されている。空気の流れ方向において第2部32と蒸発器5との間に再熱器8は配置されていない。 Part 2 32 faces the evaporator 5. The second part 32 is arranged so as to overlap the evaporator 5 in the air flow direction. The second part 32 is arranged on the downstream side of the evaporator 5 in the air flow direction. The second part 32 is arranged so that the air that has passed through the evaporator 5 flows directly to the second part 32. The reheater 8 is not arranged between the second part 32 and the evaporator 5 in the air flow direction.
 第2部32は、第1冷媒の流れにおいて第1部31よりも凝縮器3の出口側に配置されている。第2部32は、筐体20の外部から内部に送風機6によって取り込まれた空気の流れ方向において第1部31よりも上流側に配置されている。第2部32は、空気の流れ方向において再熱器8よりも上流側に配置されている。 The second part 32 is arranged on the outlet side of the condenser 3 with respect to the first part 31 in the flow of the first refrigerant. The second part 32 is arranged on the upstream side of the first part 31 in the flow direction of the air taken in by the blower 6 from the outside to the inside of the housing 20. The second part 32 is arranged on the upstream side of the reheater 8 in the air flow direction.
 凝縮器3は、複数のフィン3Fと、複数のフィン3Fとを貫通する管3Pとを有している。複数のフィン3Fは、管3Pの外側に取り付けられている。管3Pは、管3Pの内側に第1冷媒が流れるように構成されている。凝縮器3では、管は2列に配置されている。 The condenser 3 has a plurality of fins 3F and a tube 3P penetrating the plurality of fins 3F. The plurality of fins 3F are attached to the outside of the pipe 3P. The pipe 3P is configured so that the first refrigerant flows inside the pipe 3P. In the condenser 3, the tubes are arranged in two rows.
 図3および図4を参照して、本実施の形態の予冷却器7および再熱器8の構成について詳しく説明する。 The configurations of the precooler 7 and the reheater 8 of the present embodiment will be described in detail with reference to FIGS. 3 and 4.
 予冷却器7と再熱器8とは2つの配管により互いに接続されている。予冷却器7および再熱器8の各々は、複数のフィンと、複数のフィンとを貫通する管とを有している。複数のフィンは、管の外側に取り付けられている。管は、管の内側に第2冷媒が流れるように構成されている。予冷却器7および再熱器8の各々では、管は1列に配置されている。なお、予冷却器7および再熱器8の各々では、管は1列に限定されない。2つの配管の各々は、予冷却器7および再熱器8の各々の複数のフィンに対して同じ側に配置されている。つまり、予冷却器7および再熱器8の各々での第2冷媒の出口と入口とが複数のフィンに対して同じ側に配置されている。 The precooler 7 and the reheater 8 are connected to each other by two pipes. Each of the precooler 7 and the reheater 8 has a plurality of fins and a tube penetrating the plurality of fins. The fins are attached to the outside of the tube. The pipe is configured so that the second refrigerant flows inside the pipe. In each of the precooler 7 and the reheater 8, the tubes are arranged in a row. In each of the precooler 7 and the reheater 8, the pipes are not limited to one row. Each of the two pipes is located on the same side of each of the plurality of fins of the precooler 7 and the reheater 8. That is, the outlet and the inlet of the second refrigerant in each of the precooler 7 and the reheater 8 are arranged on the same side with respect to the plurality of fins.
 予冷却器7および再熱器8の各々の管は互いに千鳥状態に配置されていることが好ましい。つまり、予冷却器7および再熱器8の各々の管は互いに高さ位置がずれるように配置されていることが好ましい。 It is preferable that the tubes of the precooler 7 and the reheater 8 are arranged in a staggered state with each other. That is, it is preferable that the tubes of the precooler 7 and the reheater 8 are arranged so that their height positions deviate from each other.
 なお、上記では、凝縮器3において、管は2列に配置されているが、凝縮器3において、管は2列に限定されない。また、予冷却器7および再熱器8の各々において、管は1列に配置されているが、予冷却器7および再熱器8の各々において、管は1列に限定されない。また、凝縮器3において管を多列に設置する場合、多列の管を移動する冷媒の流れは凝縮器3を通過する空気の流れと対向流となることが好ましい。また、凝縮器3、予冷却器7、再熱器8の各々の管の段数は限定されない。 In the above, in the condenser 3, the tubes are arranged in two rows, but in the condenser 3, the tubes are not limited to the two rows. Further, in each of the precooler 7 and the reheater 8, the pipes are arranged in one row, but in each of the precooler 7 and the reheater 8, the pipes are not limited to one row. Further, when the pipes are installed in multiple rows in the condenser 3, it is preferable that the flow of the refrigerant moving through the multiple rows of pipes is countercurrent with the flow of air passing through the condenser 3. Further, the number of stages of each tube of the condenser 3, the precooler 7, and the reheater 8 is not limited.
 また、予冷却器7および再熱器8については、温度差による駆動力のみで第2冷媒が循環する。このため、予冷却器7においては重力方向において低い方から高い方に向かって第2冷媒が流れることが好ましい。また、再熱器8においては重力方向において高い方から低い方に向かって第2冷媒が流れることが好ましい。 Further, with respect to the precooler 7 and the reheater 8, the second refrigerant circulates only by the driving force due to the temperature difference. Therefore, in the precooler 7, it is preferable that the second refrigerant flows from the lower side to the higher side in the direction of gravity. Further, in the reheater 8, it is preferable that the second refrigerant flows from the higher side to the lower side in the direction of gravity.
 続いて、図5~図10を参照して、本実施の形態に係る除湿装置の変形例について説明する。なお、本実施の形態に係る除湿装置の変形例は、特に説明しない限り上記の本実施の形態に係る除湿装置と同一の構成、動作および効果を有している。 Subsequently, a modified example of the dehumidifying device according to the present embodiment will be described with reference to FIGS. 5 to 10. Unless otherwise specified, the modified example of the dehumidifying device according to the present embodiment has the same configuration, operation, and effect as the dehumidifying device according to the above-described present embodiment.
 図5を参照して、本実施の形態に係る除湿装置の変形例1の予冷却器7および再熱器8の各々の管は互いに千鳥状態に配置されている。再熱器8の下部には管が配置されていない。 With reference to FIG. 5, the tubes of the precooler 7 and the reheater 8 of the modified example 1 of the dehumidifier according to the present embodiment are arranged in a staggered state with each other. No tube is arranged at the bottom of the reheater 8.
 図2および図5を参照して、再熱器8は、空気の流れ方向において第2部32に重なる位置には第2冷媒が流れないように構成されている。 With reference to FIGS. 2 and 5, the reheater 8 is configured so that the second refrigerant does not flow at a position overlapping the second part 32 in the air flow direction.
 図6および図7を参照して、本実施の形態に係る除湿装置の変形例2の予冷却器7および再熱器8は、2つの配管により互いに接続されている。2つの配管の各々は、予冷却器7および再熱器8の各々の複数のフィンに対して異なる側に配置されている。つまり、予冷却器7および再熱器8の各々での第2冷媒の出口と入口とが複数のフィンに対して異なる側に配置されている。 With reference to FIGS. 6 and 7, the precooler 7 and the reheater 8 of the modification 2 of the dehumidifier according to the present embodiment are connected to each other by two pipes. Each of the two pipes is located on a different side of each of the plurality of fins of the precooler 7 and the reheater 8. That is, the outlet and the inlet of the second refrigerant in each of the precooler 7 and the reheater 8 are arranged on different sides with respect to the plurality of fins.
 本実施の形態に係る除湿装置の変形例2の予冷却器7および再熱器8の各々の管は互いに千鳥状態に配置されている。再熱器8の下部には管が配置されていない。 The tubes of the precooler 7 and the reheater 8 of the modification 2 of the dehumidifier according to the present embodiment are arranged in a staggered state with each other. No tube is arranged at the bottom of the reheater 8.
 図2および図7を参照して、再熱器8は、空気の流れ方向において第2部32に重なる位置には第2冷媒が流れないように構成されている。 With reference to FIGS. 2 and 7, the reheater 8 is configured so that the second refrigerant does not flow at a position overlapping the second part 32 in the air flow direction.
 図8を参照して、本実施の形態に係る除湿装置の変形例3の予冷却器7および再熱器8は、本実施の形態に係る除湿装置の変形例2の予冷却器7および再熱器8に比べて予冷却器7の管の配置が異なっている。具体的には、本実施の形態に係る除湿装置の変形例3では本実施の形態に係る除湿装置の変形例2に比べて予冷却器7の管が下側に配置されている。 With reference to FIG. 8, the precooler 7 and the reheater 8 of the modification 3 of the dehumidifier according to the present embodiment are the precooler 7 and the reheater 8 of the modification 2 of the dehumidifier according to the present embodiment. The arrangement of the tubes of the precooler 7 is different from that of the heater 8. Specifically, in the modification 3 of the dehumidifier according to the present embodiment, the pipe of the precooler 7 is arranged lower than the modification 2 of the dehumidifier according to the present embodiment.
 図9を参照して、本実施の形態に係る除湿装置の変形例4の凝縮器3および再熱器8は一体的に構成されている。具体的には、凝縮器3の複数のフィン3Fの各々と再熱器8の複数のフィンの各々とは一体的に構成されている。 With reference to FIG. 9, the condenser 3 and the reheater 8 of the modification 4 of the dehumidifier according to the present embodiment are integrally configured. Specifically, each of the plurality of fins 3F of the condenser 3 and each of the plurality of fins of the reheater 8 are integrally formed.
 図10を参照して、本実施の形態に係る除湿装置の変形例5の凝縮器3および再熱器8は、一体的に構成されている。具体的には、凝縮器3の複数のフィン3Fの各々と再熱器8の複数のフィンの各々とは一体的に構成されている。凝縮器3と再熱器8との間にスリットSPが設けられている。具体的には、凝縮器3の複数のフィン3Fと再熱器8の複数のフィンの各々との間にスリットSPが設けられている。また、凝縮器3の管の各列の間にスリットSPが設けられている。 With reference to FIG. 10, the condenser 3 and the reheater 8 of the modification 5 of the dehumidifier according to the present embodiment are integrally configured. Specifically, each of the plurality of fins 3F of the condenser 3 and each of the plurality of fins of the reheater 8 are integrally formed. A slit SP is provided between the condenser 3 and the reheater 8. Specifically, a slit SP is provided between each of the plurality of fins 3F of the condenser 3 and the plurality of fins of the reheater 8. Further, slits SP are provided between each row of the tubes of the condenser 3.
 続いて、図1および図2を参照して、本実施の形態に係る除湿装置1の除湿運転時の動作について説明する。 Subsequently, with reference to FIGS. 1 and 2, the operation of the dehumidifying device 1 according to the present embodiment during the dehumidifying operation will be described.
 第1冷媒回路C1において、圧縮機2から吐出された過熱ガス状態の第1冷媒は、風路FP内に配置された凝縮器3に流入する。凝縮器3に流入した過熱ガス状態の第1冷媒は、吸込口21を通じて外部空間から風路FP内に取り込まれ、予冷却器7、蒸発器5、再熱器8を順に通過した空気と熱交換されて過冷却状態となる。 In the first refrigerant circuit C1, the superheated first refrigerant discharged from the compressor 2 flows into the condenser 3 arranged in the air passage FP. The superheated gas state first refrigerant that has flowed into the condenser 3 is taken into the air passage FP from the external space through the suction port 21, and the air and heat that have passed through the precooler 7, the evaporator 5, and the reheater 8 in this order. It is replaced and becomes supercooled.
 凝縮器3から流出した過冷却状態の第1冷媒は、減圧装置4を通過することにより減圧され、気液二相状態となった後、風路FP内に配置された蒸発器5に流入する。蒸発器5に流入した気液二相状態の第1冷媒は、吸込口21を通じて外部空間から風路FP内に取り込まれ、予冷却器7にて冷却された相対湿度の高い空気と熱交換されることにより加熱されて過熱ガス状態となる。この過熱ガス状態の第1冷媒が圧縮機2に吸入され、圧縮機2で圧縮されて再び吐出される。このようにして、第1冷媒は、第1冷媒回路C1を循環する。 The supercooled first refrigerant flowing out of the condenser 3 is decompressed by passing through the decompression device 4, becomes a gas-liquid two-phase state, and then flows into the evaporator 5 arranged in the air passage FP. .. The gas-liquid two-phase state first refrigerant that has flowed into the evaporator 5 is taken into the air passage FP from the external space through the suction port 21, and is heat-exchanged with the air having a high relative humidity cooled by the precooler 7. As a result, it is heated and becomes a superheated gas state. The first refrigerant in the superheated gas state is sucked into the compressor 2, compressed by the compressor 2, and discharged again. In this way, the first refrigerant circulates in the first refrigerant circuit C1.
 第2冷媒回路C2において、予冷却器7において第2冷媒は、風路FP内に取り込まれた空気と熱交換されることにより蒸発する。気液二相状態またはガス状態の第2冷媒は、予冷却器7内を上方に向かって流れてから圧力差により接続管を経由して再熱器8に流れる。再熱器8に流れた第2冷媒は、予冷却器7、蒸発器5を順に通過した空気と熱交換されることにより凝縮する。気液二相状態または液状体の第2冷媒は、再熱器8内を下方に向かって流れてから重力により予冷却器7に流れる。このようにして、第2冷媒は、第2冷媒回路C2を循環する。 In the second refrigerant circuit C2, the second refrigerant in the precooler 7 evaporates by heat exchange with the air taken into the air passage FP. The second refrigerant in the gas-liquid two-phase state or the gas state flows upward in the precooler 7 and then flows to the reheater 8 via the connecting pipe due to the pressure difference. The second refrigerant that has flowed into the reheater 8 is condensed by exchanging heat with the air that has passed through the precooler 7 and the evaporator 5 in this order. The gas-liquid two-phase state or the liquid second refrigerant flows downward in the reheater 8 and then flows into the precooler 7 by gravity. In this way, the second refrigerant circulates in the second refrigerant circuit C2.
 風路FP内に取り込まれた空気は、予冷却器7において第2冷媒と熱交換されることにより冷却される。予冷却器7において冷却された空気は、蒸発器5において第1冷媒と熱交換されることにより空気の露点以下の温度に冷却される。これにより、蒸発器5において空気は除湿される。蒸発器5へ送られる空気は、予冷却器7であらかじめ冷却されることにより湿り空気の相対密度が高くなるため、蒸発器5での除湿量を増大させることが可能となる。 The air taken into the air passage FP is cooled by exchanging heat with the second refrigerant in the precooler 7. The air cooled in the precooler 7 is cooled to a temperature equal to or lower than the dew point of the air by exchanging heat with the first refrigerant in the evaporator 5. As a result, the air is dehumidified in the evaporator 5. Since the air sent to the evaporator 5 is pre-cooled by the precooler 7, the relative density of the moist air becomes high, so that the amount of dehumidification by the evaporator 5 can be increased.
 蒸発器5において冷却された空気は、再熱器8において第2冷媒と熱交換されることにより加熱される。再熱器8において加熱された空気は、凝縮器3の第1部31において第1冷媒と熱交換されることによりさらに加熱される。 The air cooled in the evaporator 5 is heated by exchanging heat with the second refrigerant in the reheater 8. The air heated in the reheater 8 is further heated by exchanging heat with the first refrigerant in the first part 31 of the condenser 3.
 他方、蒸発器5において冷却された空気は、再熱器8において第2冷媒と熱交換されることなく、凝縮器3の第2部32において第1冷媒と熱交換される。つまり、凝縮器3の第2部32では、第2冷媒と蒸発器5において冷却された空気とが直接熱交換される。 On the other hand, the air cooled in the evaporator 5 is not exchanged with the second refrigerant in the reheater 8, but is exchanged with the first refrigerant in the second part 32 of the condenser 3. That is, in the second part 32 of the condenser 3, the second refrigerant and the air cooled in the evaporator 5 directly exchange heat.
 除湿運転時には、図示しない温度検知手段(例えば、吸入温度、吐出温度、熱交換器温度、空気吸込み温湿度等)の検知結果に基づき、図示しない制御部より信号が送られ、圧縮機2の周波数またはファン6bの回転数が調整される。圧縮機2は、一定速の場合、ON/OFF切換えにより制御され、インバータ制御の場合、周波数にて制御される。 During the dehumidifying operation, a signal is sent from a control unit (not shown) based on the detection results of a temperature detecting means (for example, suction temperature, discharge temperature, heat exchanger temperature, air suction temperature / humidity, etc.) (not shown), and the frequency of the compressor 2 is reached. Alternatively, the rotation speed of the fan 6b is adjusted. The compressor 2 is controlled by ON / OFF switching in the case of constant speed, and is controlled by the frequency in the case of inverter control.
 また、減圧装置4の絞り機構がコイルなどで絞りを可変可能な膨張弁であれば、蒸発側の熱交換器中間部付近に設けられた温度検知手段と圧縮機吸入部に設けられた温度検知手段との温度差に基づいて膨張弁が制御される。膨張弁が冷媒吐出温度にて制御される場合には、吐出温度検知手段がさらに設けられ、検知結果と予め設定されている目標吐出温度との温度差に基づいて膨張弁の絞りが制御されてもよい。 If the throttle mechanism of the pressure reducing device 4 is an expansion valve whose throttle can be changed by a coil or the like, the temperature detection means provided near the intermediate portion of the heat exchanger on the evaporation side and the temperature detection provided in the compressor suction portion. The expansion valve is controlled based on the temperature difference from the means. When the expansion valve is controlled by the refrigerant discharge temperature, a discharge temperature detecting means is further provided, and the throttle of the expansion valve is controlled based on the temperature difference between the detection result and the preset target discharge temperature. May be good.
 また、ファン6bは、ユーザー側の設定(例えば弱風モードまたは強風モード)が優先されてもよい。ファン6bは、設定湿度と、室内湿度との差から設定される運転モード(定格(高回転時)または中間(低回転時))に応じて予め設定されたファン回転数にて運転されてもよい。また、除湿装置1の特性上、室内の温度が上昇しやすいため、室温が予め設定した温度以上となった際に、圧縮機2の周波数が低減または停止されてもよい。 Further, for the fan 6b, the user's setting (for example, weak wind mode or strong wind mode) may be prioritized. Even if the fan 6b is operated at a fan rotation speed preset according to the operation mode (rated (high rotation speed) or intermediate (low rotation speed)) set from the difference between the set humidity and the indoor humidity. Good. Further, since the temperature in the room tends to rise due to the characteristics of the dehumidifying device 1, the frequency of the compressor 2 may be reduced or stopped when the room temperature becomes equal to or higher than a preset temperature.
 また、圧縮機吐出部に図示しない温度検知手段が設けられ、冷媒の吐出温度が検知され、温度検知手段の検知結果と、予め設定した圧縮機2の吐出温度との温度差に基づき、図示しない制御部に信号が送られ、圧縮機回転数、ファン回転数の増減、または、膨張弁の開度が調整されてもよい。これにより、耐熱温度以上とならないようにすることが可能となる。 Further, a temperature detecting means (not shown) is provided in the compressor discharging portion, the discharge temperature of the refrigerant is detected, and the temperature difference between the detection result of the temperature detecting means and the discharging temperature of the compressor 2 set in advance is not shown. A signal may be sent to the control unit to adjust the compressor rotation speed, the fan rotation speed, or the opening degree of the expansion valve. This makes it possible to prevent the temperature from exceeding the heat resistant temperature.
 次に、本実施の形態に係る除湿装置1の作用効果について、比較例と対比して説明する。図11~図13を参照して、比較例1~3の除湿装置は、本実施の形態の凝縮器3の第2部32が設けられていない点で主に異なっている。凝縮器3は、再熱器8に向かい合っている。空気は、再熱器8を通過して凝縮器3に流れる。 Next, the action and effect of the dehumidifying device 1 according to the present embodiment will be described in comparison with a comparative example. With reference to FIGS. 11 to 13, the dehumidifying devices of Comparative Examples 1 to 3 are mainly different in that the second part 32 of the condenser 3 of the present embodiment is not provided. The condenser 3 faces the reheater 8. Air passes through the reheater 8 and flows into the condenser 3.
 図11を参照して、比較例1の除湿装置では、再熱器8は凝縮器3よりも空気流れにおいて風上に配置されているため、再熱器8によって凝縮器3に吸い込まれる空気が温められる。このため、凝縮器3に吸い込まれる空気の温度は、再熱器8が設けられていない場合に比べて上昇する。したがって、凝縮器3の出口側での冷媒の温度は、再熱器8が設けられていない場合に比べて上昇する。これにより、冷媒の蒸発時の全熱交換量(エンタルピ差)は低下する。 With reference to FIG. 11, in the dehumidifier of Comparative Example 1, since the reheater 8 is arranged on the windward side of the condenser 3 in the air flow, the air sucked into the condenser 3 by the reheater 8 is discharged. It is warmed up. Therefore, the temperature of the air sucked into the condenser 3 rises as compared with the case where the reheater 8 is not provided. Therefore, the temperature of the refrigerant on the outlet side of the condenser 3 rises as compared with the case where the reheater 8 is not provided. As a result, the total heat exchange amount (enthalpy difference) at the time of evaporation of the refrigerant is reduced.
 これに対して、本実施の形態に係る除湿装置1によれば、蒸発器5へ送られる湿り空気が予冷却器7であらかじめ冷やされることにより湿り空気の相対湿度が高くなる。このため、予冷却器7により蒸発器5での除湿量を増加させることができる。また、空気が予冷却器7、蒸発器5、凝縮器3の第2部32を順に通過する。このため、蒸発器5を通過した低温の空気と凝縮器3の第2部32を流れる第1冷媒との間で熱交換が行われる。これにより、凝縮器3の第2部32を流れる第1冷媒の温度を低温にすることができる。したがって、凝縮器3でのエンタルピ差を拡大させることができるため、蒸発能力を向上させることができる。よって、冷媒の蒸発時の全熱交換量の低下を抑制できる。そのため、除湿量を増加させることができる。除湿量の増加により、除湿装置1の除湿性能を示す指標であり、1kWh当たりの除湿量Lを示すEF(Energy Factor)値(L/kWh)を向上させることができる。 On the other hand, according to the dehumidifying device 1 according to the present embodiment, the moist air sent to the evaporator 5 is pre-cooled by the precooler 7, so that the relative humidity of the moist air becomes high. Therefore, the precooler 7 can increase the amount of dehumidification in the evaporator 5. Further, air passes through the precooler 7, the evaporator 5, and the second part 32 of the condenser 3 in this order. Therefore, heat exchange is performed between the low-temperature air that has passed through the evaporator 5 and the first refrigerant that flows through the second portion 32 of the condenser 3. As a result, the temperature of the first refrigerant flowing through the second part 32 of the condenser 3 can be lowered. Therefore, since the enthalpy difference in the condenser 3 can be increased, the evaporation capacity can be improved. Therefore, it is possible to suppress a decrease in the total heat exchange amount when the refrigerant evaporates. Therefore, the amount of dehumidification can be increased. By increasing the dehumidifying amount, it is an index showing the dehumidifying performance of the dehumidifying device 1, and the EF (Energy Factor) value (L / kWh) indicating the dehumidifying amount L per 1 kWh can be improved.
 また、蒸発器5の出口を通過した空気が凝縮器3の第2部32に流れることが好ましい。蒸発器5の出口の空気の温度は、本実施の形態に係る除湿装置1内で最も低温となる。このため、最も低温となる蒸発器5の出口の空気と凝縮器3の第2部32を流れる第2冷媒との間で熱交換を行うことができる。冷媒の蒸発時の全熱交換量の低下をさらに抑制できる。 Further, it is preferable that the air that has passed through the outlet of the evaporator 5 flows to the second part 32 of the condenser 3. The temperature of the air at the outlet of the evaporator 5 is the lowest in the dehumidifying device 1 according to the present embodiment. Therefore, heat exchange can be performed between the air at the outlet of the evaporator 5, which has the lowest temperature, and the second refrigerant flowing through the second part 32 of the condenser 3. It is possible to further suppress a decrease in the total heat exchange amount when the refrigerant evaporates.
 本実施の形態に係る除湿装置1によれば、凝縮器3の第2部32は、空気の流れ方向において再熱器8よりも上流側に配置されている。このため、蒸発器5を通過した低温の空気と凝縮器3の第2部32を流れる第1冷媒との間で効果的に熱交換を行うことができる。 According to the dehumidifying device 1 according to the present embodiment, the second part 32 of the condenser 3 is arranged on the upstream side of the reheater 8 in the air flow direction. Therefore, heat exchange can be effectively performed between the low-temperature air that has passed through the evaporator 5 and the first refrigerant that flows through the second portion 32 of the condenser 3.
 本実施の形態に係る除湿装置1によれば、凝縮器3は、複数のフィン3Fと、管3Pとを含んでいる。このため、複数のフィン3Fにより凝縮能力を向上させることができる。 According to the dehumidifying device 1 according to the present embodiment, the condenser 3 includes a plurality of fins 3F and a tube 3P. Therefore, the condensing ability can be improved by the plurality of fins 3F.
 本実施の形態に係る除湿装置1によれば、再熱器8の第2冷媒の出口は、予冷却器7の第2冷媒の入口以上の高さに配置されている。このため、第2冷媒の位置ヘッドによるロスを低減することができる。 According to the dehumidifying device 1 according to the present embodiment, the outlet of the second refrigerant of the reheater 8 is arranged at a height higher than the inlet of the second refrigerant of the precooler 7. Therefore, the loss due to the position head of the second refrigerant can be reduced.
 また、予冷却器7および再熱器8の各々の管は互いに千鳥状態に配置されている。このため、予冷却器7を再熱器8よりも重力方向に対して低くすることができる。よって、第2冷媒を再熱器8から予冷却器7に流しやすくすることができる。 Further, the tubes of the precooler 7 and the reheater 8 are arranged in a staggered state with each other. Therefore, the precooler 7 can be made lower than the reheater 8 in the direction of gravity. Therefore, it is possible to facilitate the flow of the second refrigerant from the reheater 8 to the precooler 7.
 本実施の形態に係る変形例1~3によれば、再熱器8は、空気の流れ方向において凝縮器3の第2部32に重なる位置には第2冷媒が流れないように構成されている。このため、空気の流れ方向において凝縮器3の第2部32に重なる位置では、再熱器8において第2冷媒が加熱されないため、蒸発器5を通過した低温の空気と凝縮器3の第2部32との間で熱交換を行うことができる。 According to the modifications 1 to 3 according to the present embodiment, the reheater 8 is configured so that the second refrigerant does not flow at a position overlapping the second part 32 of the condenser 3 in the air flow direction. There is. Therefore, at the position where the second refrigerant 32 overlaps the second part 32 of the condenser 3 in the flow direction of the air, the second refrigerant is not heated in the reheater 8, so that the low temperature air that has passed through the evaporator 5 and the second condenser 3 Heat exchange can be performed with the unit 32.
 図12を参照して、比較例2の除湿装置では、凝縮器3および再熱器8は一体的に構成されているが、凝縮器3の第2部32が設けられていない。 With reference to FIG. 12, in the dehumidifying device of Comparative Example 2, the condenser 3 and the reheater 8 are integrally configured, but the second part 32 of the condenser 3 is not provided.
 本実施の形態に係る除湿装置1の変形例4によれば、凝縮器3および再熱器8は一体的に構成されている。このため、除湿装置1の構成要素数を低減させることができる。これにより、除湿装置1の製造時間を削減することができる。また、凝縮器3および再熱器8が一体的に構成されているため、凝縮器3および再熱器8を小型化することができる。 According to the modification 4 of the dehumidifying device 1 according to the present embodiment, the condenser 3 and the reheater 8 are integrally configured. Therefore, the number of components of the dehumidifying device 1 can be reduced. As a result, the manufacturing time of the dehumidifying device 1 can be reduced. Further, since the condenser 3 and the reheater 8 are integrally configured, the condenser 3 and the reheater 8 can be miniaturized.
 図13を参照して、比較例3の除湿装置では、凝縮器3と再熱器8との間にスリットSPが設けられているが、凝縮器3の第2部32が設けられていない。 With reference to FIG. 13, in the dehumidifying device of Comparative Example 3, a slit SP is provided between the condenser 3 and the reheater 8, but the second part 32 of the condenser 3 is not provided.
 本実施の形態に係る除湿装置1の変形例5によれば、凝縮器3と再熱器8との間にスリットSPが設けられている。このため、スリットにより凝縮器3と再熱器8との間の熱伝導を遮断することができる。具体的には、除湿装置1の動作時において、凝縮器3を流れる第1冷媒の温度は再熱器8を流れる第2冷媒の温度と異なる。スリットSPにより凝縮器3および再熱器8のフィンを経由した第1冷媒と第2冷媒との間での熱伝導を抑制することができる。 According to the modification 5 of the dehumidifying device 1 according to the present embodiment, the slit SP is provided between the condenser 3 and the reheater 8. Therefore, the slit can block the heat conduction between the condenser 3 and the reheater 8. Specifically, when the dehumidifying device 1 is operating, the temperature of the first refrigerant flowing through the condenser 3 is different from the temperature of the second refrigerant flowing through the reheater 8. The slit SP can suppress heat conduction between the first refrigerant and the second refrigerant via the fins of the condenser 3 and the reheater 8.
 実施の形態2.
 図14を参照して、実施の形態2に係る除湿装置1は、凝縮器3が第1凝縮部3a、第2凝縮部3b、第3凝縮部3cを含んでいる点で実施の形態1に係る除湿装置1と主に異なっている。また、実施の形態2に係る除湿装置1は、筐体20の風路FPは、第1路FP1と、第2路FP2とを含んでいる点で実施の形態1に係る除湿装置1と主に異なっている。
Embodiment 2.
With reference to FIG. 14, the dehumidifying device 1 according to the second embodiment is the first embodiment in that the condenser 3 includes the first condensing part 3a, the second condensing part 3b, and the third condensing part 3c. It is mainly different from the dehumidifying device 1. Further, the dehumidifying device 1 according to the second embodiment is mainly the dehumidifying device 1 according to the first embodiment in that the air passage FP of the housing 20 includes the first path FP1 and the second path FP2. Is different.
 本実施の形態に係る除湿装置1では、凝縮器3は、第1凝縮部3a、第2凝縮部3b、第3凝縮部3cを含んでいる。第1凝縮部3aは、第1部31および第2部32を含んでいる。 In the dehumidifying device 1 according to the present embodiment, the condenser 3 includes a first condensing part 3a, a second condensing part 3b, and a third condensing part 3c. The first condensing part 3a includes a first part 31 and a second part 32.
 第1凝縮部3aは、過冷却状態の第1冷媒が流れるように構成されている。第1凝縮部3aは、過冷却状態の第1冷媒が流れる領域を有していればよく、過冷却状態および気液二相状態の第1冷媒が流れる領域を有していてもよい。第2凝縮部3bは、過熱ガス状態の冷媒が流れるように構成されている。第2凝縮部3bは、過熱ガス状態の第1冷媒が流れる領域を有していればよく、過熱ガス状態および気液二相状態の第1冷媒が流れる領域を有していてもよい。第3凝縮部3cは、第1冷媒回路C1において第1凝縮部3aと第2凝縮部3bとの間に配置されている。第3凝縮部3cは、気液二相状態の冷媒が流れるように構成されている。 The first condensing section 3a is configured so that the first refrigerant in the supercooled state flows. The first condensing unit 3a may have a region in which the first refrigerant in the supercooled state flows, and may have a region in which the first refrigerant in the supercooled state and the gas-liquid two-phase state flows. The second condensing portion 3b is configured so that the refrigerant in the superheated gas state flows. The second condensing portion 3b may have a region in which the first refrigerant in the superheated gas state flows, and may have a region in which the first refrigerant in the superheated gas state and the gas-liquid two-phase state flows. The third condensing section 3c is arranged between the first condensing section 3a and the second condensing section 3b in the first refrigerant circuit C1. The third condensing section 3c is configured so that a gas-liquid two-phase state refrigerant flows.
 凝縮器3において、第1冷媒は、第2凝縮部3b、第3凝縮部3c、第1凝縮部3aの順に流れる。第1凝縮部3a、第2凝縮部3bおよび第3凝縮部3cの各々は、冷媒入口および冷媒出口を有している。第2凝縮部3bの冷媒入口は圧縮機2の吐出口に配管を介して接続されている。第3凝縮部3cの冷媒入口は第2凝縮部3bの冷媒出口に接続されている。第1凝縮部3aの冷媒入口は第3凝縮部3cの冷媒出口に接続されている。第1凝縮部3aの冷媒出口は減圧装置4に配管を介して接続されている。 In the condenser 3, the first refrigerant flows in the order of the second condensing section 3b, the third condensing section 3c, and the first condensing section 3a. Each of the first condensing section 3a, the second condensing section 3b, and the third condensing section 3c has a refrigerant inlet and a refrigerant outlet. The refrigerant inlet of the second condensing portion 3b is connected to the discharge port of the compressor 2 via a pipe. The refrigerant inlet of the third condensing section 3c is connected to the refrigerant outlet of the second condensing section 3b. The refrigerant inlet of the first condensing section 3a is connected to the refrigerant outlet of the third condensing section 3c. The refrigerant outlet of the first condensing unit 3a is connected to the decompression device 4 via a pipe.
 筐体20は、仕切部11を含んでいる。風路FPは、第1路FP1と、第2路FP2とを含んでいる。第2路FP2は、第1路FP1から仕切られている。仕切部11は、第1路FP1と第2路FP2とを仕切るように構成されている。第1路FP1および第2路FP2の各々は、筐体20および仕切部11によって規定されている。つまり、筐体20の内部には、第1路FP1と第2路FP2の2つの風路(空気の流路)が設けられている。 The housing 20 includes a partition portion 11. The air path FP includes a first path FP1 and a second path FP2. The second road FP2 is partitioned from the first road FP1. The partition portion 11 is configured to partition the first road FP1 and the second road FP2. Each of the first road FP1 and the second road FP2 is defined by the housing 20 and the partition portion 11. That is, inside the housing 20, two air passages (air flow paths) of the first path FP1 and the second path FP2 are provided.
 吸込口21は、第1吸込口21aと、第2吸込口21bとを含んでいる。第1吸込口21aは、第1路FP1に連通している。第2吸込口21bは、第2路FP2に連通している。 The suction port 21 includes a first suction port 21a and a second suction port 21b. The first suction port 21a communicates with the first road FP1. The second suction port 21b communicates with the second road FP2.
 第1吸込口21aは、第1路FP1の空気の流通方向において、第1路FP1内の予冷却器7の空気入口よりも上流側に配置されている。第2吸込口21bは、第2路FP2の空気の流通方向において、第2路FP2内の第2凝縮部3bの空気入口よりも上流側に配置されている。 The first suction port 21a is arranged on the upstream side of the air inlet of the precooler 7 in the first path FP1 in the air flow direction of the first path FP1. The second suction port 21b is arranged on the upstream side of the air inlet of the second condensing portion 3b in the second path FP2 in the air flow direction of the second path FP2.
 第1路FP1内には、第1凝縮部3a、第3凝縮部3c、蒸発器5、予冷却器7および再熱器8が配置されている。第1路FP1は、筐体20の外部から内部に送風機6によって取り込まれた空気が予冷却器7、蒸発器5、再熱器8、第1凝縮部3a、第3凝縮部3cを順に通過するように構成されている。第1路FP1では、図中矢印Aで示すように、ファン6bが軸6aを中心に回転することによって筐体20の外部から内部に取り込まれた空気が予冷却器7、蒸発器5、再熱器8、第1凝縮部3a、第3凝縮部3cを順に通過する。第1路FP1は、空気が第1凝縮部3aを通過してから第3凝縮部3cを通過するように構成されている。第3凝縮部3cは、空気の流れ方向において、第1凝縮部3a、蒸発器5、予冷却器7、再熱器8よりも風下に配置されている。 A first condensing unit 3a, a third condensing unit 3c, an evaporator 5, a precooler 7, and a reheater 8 are arranged in the first path FP1. In the first path FP1, the air taken in by the blower 6 from the outside to the inside of the housing 20 passes through the precooler 7, the evaporator 5, the reheater 8, the first condensing section 3a, and the third condensing section 3c in this order. It is configured to do. In the first path FP1, as shown by the arrow A in the figure, the air taken in from the outside of the housing 20 to the inside by the fan 6b rotating around the shaft 6a is recooled by the precooler 7, the evaporator 5, and re-cooled. It passes through the heater 8, the first condensing section 3a, and the third condensing section 3c in this order. The first path FP1 is configured such that air passes through the first condensed portion 3a and then passes through the third condensed portion 3c. The third condensing unit 3c is arranged leeward of the first condensing unit 3a, the evaporator 5, the precooler 7, and the reheater 8 in the air flow direction.
 第2路FP2内には、第2凝縮部3bが配置されている。第2路FP2は、筐体20の外部から内部に送風機6によって取り込まれた空気が第2凝縮部3bを通過するように構成されている。第2路FP2では、図中矢印Cで示すように、ファン6bが軸6aを中心に回転することによって筐体20の外部から内部に取り込まれた空気が第2凝縮部3bを通過する。第2路FP2は、空気が第2凝縮部3bを通過するように構成されている。 The second condensing portion 3b is arranged in the second road FP2. The second path FP2 is configured such that the air taken in by the blower 6 from the outside to the inside of the housing 20 passes through the second condensing portion 3b. In the second path FP2, as shown by the arrow C in the figure, the air taken in from the outside of the housing 20 to the inside by rotating the fan 6b around the shaft 6a passes through the second condensing portion 3b. The second path FP2 is configured so that air passes through the second condensing portion 3b.
 第2凝縮部3bは、第3凝縮部3cの上方に配置されている。第2凝縮部3bおよび第3凝縮部3cの合計の高さは、第1凝縮部3a、蒸発器5、予冷却器7、再熱器8の高さよりも高くなっている。 The second condensed portion 3b is arranged above the third condensed portion 3c. The total height of the second condensing section 3b and the third condensing section 3c is higher than the height of the first condensing section 3a, the evaporator 5, the precooler 7, and the reheater 8.
 図中矢印Aおよび図中矢印Cで示されるように、第1路FP1内の空気および第2路FP2内の空気は、互いに並行に流れ、かつ同一の方向に流れる。 As indicated by the arrows A and C in the figure, the air in the first road FP1 and the air in the second road FP2 flow in parallel with each other and flow in the same direction.
 なお、第1路FP1を規定する空間は、第2路FP2を規定する空間と完全に分離されている必要はない。本実施の形態では、第1路FP1を規定する空間は、第1路FP1内の空気の流通方向において第1凝縮部3aよりも下流にて、第2路FP2を規定する空間に接続されている。 The space that defines the first road FP1 does not have to be completely separated from the space that defines the second road FP2. In the present embodiment, the space defining the first path FP1 is connected to the space defining the second path FP2 downstream of the first condensing portion 3a in the air flow direction in the first path FP1. There is.
 第1路FP1内の空気の流通方向において、仕切部11の上流側に位置する一端(上流端部)は、予冷却器7の空気出口よりも上流側に配置されている。第2路FP2内の空気の流通方向において、仕切部11の下流側に位置する他端(下流端部)は、再熱器8の空気出口と同じ位置またはこの空気出口よりも下流側に配置されている。仕切部11は、たとえば平板状に形成されている。仕切部11は、筐体20の内部に固定されている。 One end (upstream end) located on the upstream side of the partition portion 11 in the air flow direction in the first path FP1 is arranged on the upstream side of the air outlet of the precooler 7. The other end (downstream end) located on the downstream side of the partition portion 11 in the air flow direction in the second path FP2 is arranged at the same position as the air outlet of the reheater 8 or on the downstream side of this air outlet. Has been done. The partition portion 11 is formed in a flat plate shape, for example. The partition portion 11 is fixed inside the housing 20.
 なお、除湿装置1において、機械室内には、減圧装置4が配置されていてもよい。
 次に、図14を参照して、本実施の形態に係る除湿装置1の除湿運転時の動作について説明する。
In the dehumidifying device 1, the dehumidifying device 4 may be arranged in the machine room.
Next, with reference to FIG. 14, the operation of the dehumidifying device 1 according to the present embodiment during the dehumidifying operation will be described.
 第1冷媒回路C1において、圧縮機2から吐出された過熱ガス状態の第1冷媒は、第2路FP2内に配置された第2凝縮部3bに流入する。第2凝縮部3bに流入した過熱ガス状態の第1冷媒は、第2吸込口21bを通じて外部空間から第2路FP2内に取り込まれた空気と熱交換されることにより冷却されて気液二相状態となる。 In the first refrigerant circuit C1, the superheated first refrigerant discharged from the compressor 2 flows into the second condensing portion 3b arranged in the second path FP2. The superheated gas state first refrigerant that has flowed into the second condensing portion 3b is cooled by heat exchange with the air taken into the second path FP2 from the external space through the second suction port 21b, and is cooled into a gas-liquid two-phase. It becomes a state.
 第2凝縮部3bから流出した気液二相状態の第1冷媒は、第1路FP1内に配置された第3凝縮部3cに流入する。第3凝縮部3cに流入した気液二相状態の第1冷媒は、第1吸込口21aを通じて外部空間から第1路FP1内に取り込まれ、予冷却器7、蒸発器5、再熱器8、第1凝縮部3aを順に通過した空気と熱交換されることによりさらに凝縮する。 The gas-liquid two-phase state first refrigerant flowing out of the second condensing section 3b flows into the third condensing section 3c arranged in the first path FP1. The gas-liquid two-phase state first refrigerant that has flowed into the third condensing portion 3c is taken into the first path FP1 from the external space through the first suction port 21a, and is taken into the precooler 7, the evaporator 5, and the reheater 8. , Further condensing by heat exchange with the air that has passed through the first condensing portion 3a in order.
 第3凝縮部3cから流出した気液二相状態の第1冷媒は、第1路FP1内に配置された第1凝縮部3aに流入する。第1凝縮部3aに流入した気液二相状態の第1冷媒は、第1吸込口21aを通じて外部空間から第1路FP1内に取り込まれ、予冷却器7、蒸発器5、再熱器8を順に通過した空気と熱交換されて過冷却状態となる。 The gas-liquid two-phase state first refrigerant flowing out of the third condensing section 3c flows into the first condensing section 3a arranged in the first path FP1. The gas-liquid two-phase state first refrigerant that has flowed into the first condensing portion 3a is taken into the first path FP1 from the external space through the first suction port 21a, and is taken into the first path FP1 and is taken into the precooler 7, the evaporator 5, and the reheater 8. It becomes a supercooled state by exchanging heat with the air that has passed through in order.
 第1凝縮部3aから流出した過冷却状態の第1冷媒は、機械室内に配置された減圧装置4を通過することにより減圧され、気液二相状態となった後、蒸発器5に流入する。蒸発器5に流入した気液二相状態の第1冷媒は、第1吸込口21aを通じて外部空間から第1路FP1内に取り込まれ、予冷却器7にて冷却された相対湿度の高い空気と熱交換されることにより加熱されて過熱ガス状態となる。この過熱ガス状態の第1冷媒が圧縮機2に吸入され、圧縮機2で圧縮されて再び吐出される。このようにして、第1冷媒は、第1冷媒回路C1を循環する。 The supercooled first refrigerant flowing out of the first condensing unit 3a is depressurized by passing through the decompression device 4 arranged in the machine chamber, becomes a gas-liquid two-phase state, and then flows into the evaporator 5. .. The gas-liquid two-phase state first refrigerant that has flowed into the evaporator 5 is taken into the first path FP1 from the external space through the first suction port 21a, and is cooled by the precooler 7 with air having a high relative humidity. By exchanging heat, it is heated and becomes a superheated gas state. The first refrigerant in the superheated gas state is sucked into the compressor 2, compressed by the compressor 2, and discharged again. In this way, the first refrigerant circulates in the first refrigerant circuit C1.
 第2冷媒回路C2において、予冷却器7において第2冷媒は、第1路FP1内に取り込まれた空気と熱交換されることにより蒸発する。気液二相状態またはガス状態の第2冷媒は、予冷却器7内を上方に向かって流れてから圧力差により接続管を経由して再熱器8に流れる。再熱器8に流れた第2冷媒は、予冷却器7、蒸発器5を順に通過した空気と熱交換されることにより凝縮する。気液二相状態または液状態の第2冷媒は、再熱器8内を下方に向かって流れてから重力により予冷却器7に流れる。このようにして、第2冷媒は、第2冷媒回路C2を循環する。 In the second refrigerant circuit C2, the second refrigerant in the precooler 7 evaporates by heat exchange with the air taken into the first path FP1. The second refrigerant in the gas-liquid two-phase state or the gas state flows upward in the precooler 7 and then flows to the reheater 8 via the connecting pipe due to the pressure difference. The second refrigerant that has flowed into the reheater 8 is condensed by exchanging heat with the air that has passed through the precooler 7 and the evaporator 5 in this order. The gas-liquid two-phase state or liquid state second refrigerant flows downward in the reheater 8 and then flows into the precooler 7 by gravity. In this way, the second refrigerant circulates in the second refrigerant circuit C2.
 第1路FP1内に取り込まれた空気は、予冷却器7において第2冷媒と熱交換されることにより冷却される。予冷却器7において冷却された空気は、蒸発器5において第1冷媒と熱交換されることにより空気の露点以下の温度に冷却される。これにより、蒸発器5において空気は除湿される。蒸発器5へ送られる空気は、予冷却器7であらかじめ冷却されることにより湿り空気の相対密度が高くなるため、蒸発器5での除湿量を増大させることが可能となる。 The air taken into the first path FP1 is cooled by exchanging heat with the second refrigerant in the precooler 7. The air cooled in the precooler 7 is cooled to a temperature equal to or lower than the dew point of the air by exchanging heat with the first refrigerant in the evaporator 5. As a result, the air is dehumidified in the evaporator 5. Since the air sent to the evaporator 5 is pre-cooled by the precooler 7, the relative density of the moist air becomes high, so that the amount of dehumidification by the evaporator 5 can be increased.
 蒸発器5において冷却された空気は、再熱器8において第2冷媒と熱交換されることにより加熱される。再熱器8において加熱された空気は、第1凝縮部3aの第1部31において第1冷媒と熱交換されることによりさらに加熱される。第1凝縮部3aにおいて加熱された空気は、第3凝縮部3cにおいて第1冷媒と熱交換されることによりさらに加熱される。また、第2路FP2内に取り込まれた空気は、第2凝縮部3bにおいて第1冷媒と熱交換されることにより加熱される。 The air cooled in the evaporator 5 is heated by exchanging heat with the second refrigerant in the reheater 8. The air heated in the reheater 8 is further heated by exchanging heat with the first refrigerant in the first part 31 of the first condensing part 3a. The air heated in the first condensing section 3a is further heated by exchanging heat with the first refrigerant in the third condensing section 3c. Further, the air taken into the second path FP2 is heated by exchanging heat with the first refrigerant in the second condensing section 3b.
 他方、蒸発器5において冷却された空気は、再熱器8において第2冷媒と熱交換されることなく、第1凝縮部3aの第2部32において第1冷媒と熱交換される。つまり、第1凝縮部3aの第2部32では、第2冷媒と蒸発器5において冷却された空気とが直接熱交換される。 On the other hand, the air cooled in the evaporator 5 is not heat-exchanged with the second refrigerant in the reheater 8, but is heat-exchanged with the first refrigerant in the second part 32 of the first condensing part 3a. That is, in the second part 32 of the first condensing part 3a, the second refrigerant and the air cooled in the evaporator 5 directly exchange heat.
 次に、本実施の形態に係る除湿装置1の作用効果について説明する。
 本実施の形態に係る除湿装置1によれば、第2路FP2により凝縮器3での凝縮性能を向上させることができるため、EF値を向上させることができる。つまり、筐体20に取り込まれた空気が第2路FP2を流れて第2凝縮部3bにおいて熱交換される。したがって、凝縮器3を流れる空気の風量を増加させることができる。また、再熱器8を通過して第1凝縮部3aに流れる空気の温度よりも低温の空気を第2凝縮部3bに流すことが可能となる。このため、凝縮器3の凝縮能力を向上させることができる。凝縮器3の凝縮能力を向上させることにより凝縮温度を低減させることができる。凝縮温度を低減させることにより圧縮機2の圧縮比を低減させることができる。圧縮機2の圧縮比の低減により圧縮機2の入力を低減することができる。圧縮機2の入力を低減することでEF値を向上させることができる。
Next, the action and effect of the dehumidifying device 1 according to the present embodiment will be described.
According to the dehumidifying device 1 according to the present embodiment, the condensing performance in the condenser 3 can be improved by the second path FP2, so that the EF value can be improved. That is, the air taken into the housing 20 flows through the second path FP2 and is heat-exchanged in the second condensing portion 3b. Therefore, the air volume of the air flowing through the condenser 3 can be increased. Further, it is possible to allow air having a temperature lower than the temperature of the air flowing through the reheater 8 to the first condensing section 3a to flow to the second condensing section 3b. Therefore, the condensing capacity of the condenser 3 can be improved. The condensation temperature can be reduced by improving the condensation capacity of the condenser 3. By reducing the condensation temperature, the compression ratio of the compressor 2 can be reduced. The input of the compressor 2 can be reduced by reducing the compression ratio of the compressor 2. The EF value can be improved by reducing the input of the compressor 2.
 また、第1路FP1は、空気が第1凝縮部3aを通過してから第3凝縮部3cを通過するように構成されている。過冷却状態の冷媒が流れる第1凝縮部3aは、第1凝縮部3a、第2凝縮部3b、第3凝縮部3cの中で冷媒温度が最も低くなる。このため、再熱器8の放熱時の空気温度と第1凝縮部3aの第1冷媒との温度差が近くなることにより、第1凝縮部3aでの受熱量が小さくなる。これにより、再熱器8の放熱による凝縮性能の低下を抑制することができる。また、第3凝縮部3cの冷媒温度は第1凝縮部3aの冷媒温度よりも高いため、第1凝縮部3aにおいて熱交換されることにより温度が高くなった空気とも熱交換することができる。これにより、第3凝縮部3cにより凝縮性能を確保することができるため、凝縮器3の凝縮性能を向上させることができる。 Further, the first path FP1 is configured such that air passes through the first condensed portion 3a and then passes through the third condensed portion 3c. The first condensed portion 3a through which the supercooled refrigerant flows has the lowest refrigerant temperature among the first condensed portion 3a, the second condensed portion 3b, and the third condensed portion 3c. Therefore, the temperature difference between the air temperature at the time of heat dissipation of the reheater 8 and the first refrigerant of the first condensing portion 3a becomes close to each other, so that the amount of heat received by the first condensing portion 3a becomes smaller. As a result, it is possible to suppress a decrease in the condensation performance due to heat dissipation of the reheater 8. Further, since the refrigerant temperature of the third condensing section 3c is higher than the refrigerant temperature of the first condensing section 3a, it is possible to exchange heat with the air whose temperature has increased by heat exchange in the first condensing section 3a. As a result, the condensing performance can be ensured by the third condensing unit 3c, so that the condensing performance of the condenser 3 can be improved.
 上記の各実施の形態は適宜組み合わせることができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
Each of the above embodiments can be combined as appropriate.
It should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive. The scope of the present invention is shown by the claims rather than the above description, and it is intended to include all modifications within the meaning and scope equivalent to the claims.
 1 除湿装置、2 圧縮機、3 凝縮器、3a 第1凝縮部、3b 第2凝縮部、3c 第3凝縮部、3F フィン、3P 管、4 減圧装置、5 蒸発器、6 送風機、6a 軸、6b ファン、7 予冷却器、8 再熱器、11 仕切部、20 筐体、21 吸込口、21a 第1吸込口、21b 第2吸込口、22 吹出口、31 第1部、32 第2部、C1 第1冷媒回路、C2 第2冷媒回路、FP 風路、FP1 第1路、FP2 第2路、SP スリット。 1 dehumidifier, 2 compressor, 3 condenser, 3a 1st condenser, 3b 2nd condenser, 3c 3rd condenser, 3F fin, 3P tube, 4 decompression device, 5 evaporator, 6 blower, 6a shaft, 6b fan, 7 precooler, 8 reheater, 11 partition, 20 housing, 21 suction port, 21a 1st suction port, 21b 2nd suction port, 22 outlet, 31 1st part, 32 2nd part , C1 1st refrigerant circuit, C2 2nd refrigerant circuit, FP air passage, FP1 1st road, FP2 2nd road, SP slit.

Claims (8)

  1.  風路を有する筐体と、
     前記筐体の内部に収容された第1冷媒回路、第2冷媒回路および送風機とを備え、
     前記第1冷媒回路は、圧縮機、凝縮器、減圧装置、蒸発器および第1冷媒を含み、かつ前記圧縮機、前記凝縮器、前記減圧装置、前記蒸発器の順に前記第1冷媒が流れるように構成されており、
     前記第2冷媒回路は、予冷却器、再熱器および第2冷媒を含み、かつ前記予冷却器および前記再熱器を前記第2冷媒が循環するように構成されており、
     前記凝縮器は、第1部と、前記第1冷媒の流れにおいて前記第1部よりも前記凝縮器の出口側に配置された第2部とを含み、
     前記第2部は、前記筐体の外部から前記内部に前記送風機によって取り込まれた空気の流れ方向において前記第1部よりも上流側に配置されており、
     前記風路は、前記空気が前記予冷却器、前記蒸発器、前記再熱器、前記第1部を順に通過し、かつ前記空気が前記予冷却器、前記蒸発器、前記第2部を順に通過するように構成されている、除湿装置。
    A housing with an air passage and
    A first refrigerant circuit, a second refrigerant circuit, and a blower housed inside the housing are provided.
    The first refrigerant circuit includes a compressor, a condenser, a decompression device, an evaporator and a first refrigerant, and the first refrigerant flows in the order of the compressor, the condenser, the decompression device, and the evaporator. Is composed of
    The second refrigerant circuit includes a precooler, a reheater, and a second refrigerant, and is configured such that the second refrigerant circulates through the precooler and the reheater.
    The condenser includes a first part and a second part arranged on the outlet side of the condenser with respect to the first part in the flow of the first refrigerant.
    The second part is arranged on the upstream side of the first part in the flow direction of the air taken in by the blower from the outside to the inside of the housing.
    In the air passage, the air passes through the precooler, the evaporator, the reheater, and the first part in order, and the air passes through the precooler, the evaporator, and the second part in order. A dehumidifier that is configured to pass through.
  2.  前記第2部は、前記空気の流れ方向において前記再熱器よりも上流側に配置されている、請求項1に記載の除湿装置。 The dehumidifying device according to claim 1, wherein the second part is arranged on the upstream side of the reheater in the air flow direction.
  3.  前記凝縮器は、複数のフィンと、前記複数のフィンを貫通する管とを含み、
     前記管は、前記管の内側に前記第1冷媒が流れるように構成されている、請求項1または2に記載の除湿装置。
    The condenser comprises a plurality of fins and a tube penetrating the plurality of fins.
    The dehumidifying device according to claim 1 or 2, wherein the pipe is configured so that the first refrigerant flows inside the pipe.
  4.  前記凝縮器および前記再熱器は一体的に構成されている、請求項1~3のいずれか1項に記載の除湿装置。 The dehumidifying device according to any one of claims 1 to 3, wherein the condenser and the reheater are integrally configured.
  5.  前記凝縮器と前記再熱器との間にスリットが設けられている、請求項4に記載の除湿装置。 The dehumidifying device according to claim 4, wherein a slit is provided between the condenser and the reheater.
  6.  前記再熱器は、前記第2冷媒の出口を含み、
     前記予冷却器は、前記第2冷媒の入口を含み、
     前記再熱器の前記第2冷媒の前記出口は、前記予冷却器の前記第2冷媒の前記入口以上の高さに配置されている、請求項1~5のいずれか1項に記載の除湿装置。
    The reheater includes an outlet for the second refrigerant.
    The precooler includes an inlet for the second refrigerant.
    The dehumidification according to any one of claims 1 to 5, wherein the outlet of the second refrigerant of the reheater is arranged at a height equal to or higher than the inlet of the second refrigerant of the precooler. apparatus.
  7.  前記再熱器は、前記空気の流れ方向において前記第2部に重なる位置には前記第2冷媒が流れないように構成されている、請求項1~6のいずれか1項に記載の除湿装置。 The dehumidifier according to any one of claims 1 to 6, wherein the reheater is configured so that the second refrigerant does not flow at a position overlapping the second part in the air flow direction. ..
  8.  前記凝縮器は、過冷却液状態の前記第1冷媒が流れる第1凝縮部と、過熱ガス状態の前記第1冷媒が流れる第2凝縮部と、前記第1冷媒回路において前記第1凝縮部と前記第2凝縮部との間に配置された第3凝縮部とを含み、
     前記風路は、第1路と、前記第1路から仕切られた第2路とを含み、
     前記第1路は、前記空気が前記第1凝縮部を通過してから前記第3凝縮部を通過するように構成されており、
     前記第2路は、前記空気が前記第2凝縮部を通過するように構成されている、請求項1~7のいずれか1項に記載の除湿装置。
    The condenser includes a first condensing part through which the first refrigerant in a supercooled liquid state flows, a second condensing part through which the first refrigerant in a superheated gas state flows, and the first condensing part in the first refrigerant circuit. Including a third condensing portion arranged between the second condensing portion and the second condensing portion.
    The air passage includes a first road and a second road separated from the first road.
    The first path is configured such that the air passes through the first condensing portion and then passes through the third condensing portion.
    The dehumidifying device according to any one of claims 1 to 7, wherein the second path is configured so that the air passes through the second condensing portion.
PCT/JP2019/048796 2019-12-12 2019-12-12 Dehumidifier WO2021117199A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021563545A JP7308975B2 (en) 2019-12-12 2019-12-12 dehumidifier
PCT/JP2019/048796 WO2021117199A1 (en) 2019-12-12 2019-12-12 Dehumidifier
CN201980102764.2A CN114761107A (en) 2019-12-12 2019-12-12 Dehumidifying device
TW109117995A TWI765270B (en) 2019-12-12 2020-05-29 Dehumidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/048796 WO2021117199A1 (en) 2019-12-12 2019-12-12 Dehumidifier

Publications (1)

Publication Number Publication Date
WO2021117199A1 true WO2021117199A1 (en) 2021-06-17

Family

ID=76330070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048796 WO2021117199A1 (en) 2019-12-12 2019-12-12 Dehumidifier

Country Status (4)

Country Link
JP (1) JP7308975B2 (en)
CN (1) CN114761107A (en)
TW (1) TWI765270B (en)
WO (1) WO2021117199A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941728A (en) * 1982-08-31 1984-03-08 Matsushita Electric Ind Co Ltd Heat exchange and ventilating device for humidifier
JPS61272568A (en) * 1985-05-24 1986-12-02 松下電工株式会社 Dehumidifier
JP2002130863A (en) * 2000-10-19 2002-05-09 Chikayoshi Sato Dehumidifying method
WO2003104719A1 (en) * 2002-06-11 2003-12-18 株式会社荏原製作所 Dehumidifier/air conditioner
WO2018131121A1 (en) * 2017-01-12 2018-07-19 三菱電機株式会社 Dehumidifying device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3332512B2 (en) * 1993-11-10 2002-10-07 三洋電機株式会社 Cold air dryer
JPH1053022A (en) * 1996-01-22 1998-02-24 Denso Corp Air-conditioning device for vehicle
JP4006679B2 (en) * 2002-03-20 2007-11-14 三菱電機株式会社 Refrigeration equipment
JP4730738B2 (en) * 2005-12-26 2011-07-20 日立アプライアンス株式会社 Air conditioner
JP2010088971A (en) * 2008-10-03 2010-04-22 Smc Corp Refrigeration air dryer
JP2010094169A (en) * 2008-10-14 2010-04-30 Panasonic Corp Dehumidifying and heating apparatus, and dryer equipped with dehumidifying and heating apparatus
KR101231810B1 (en) * 2012-12-18 2013-02-08 온시스텍 주식회사 Energy-saving type dehumidifier using heat pipe
TWI693366B (en) * 2014-12-22 2020-05-11 日商松下知識產權經營股份有限公司 Dehumidifier
CN109312968B (en) * 2016-06-22 2020-11-06 三菱电机株式会社 Dehumidifying device
CN107560019A (en) * 2017-09-30 2018-01-09 佛山市耐堡电气有限公司 Dehumidifier
CN108119973A (en) * 2017-12-25 2018-06-05 苏州海派特热能设备有限公司 A kind of energy saving dehumidification air conditioner in cool place storehouse and dehumidification control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941728A (en) * 1982-08-31 1984-03-08 Matsushita Electric Ind Co Ltd Heat exchange and ventilating device for humidifier
JPS61272568A (en) * 1985-05-24 1986-12-02 松下電工株式会社 Dehumidifier
JP2002130863A (en) * 2000-10-19 2002-05-09 Chikayoshi Sato Dehumidifying method
WO2003104719A1 (en) * 2002-06-11 2003-12-18 株式会社荏原製作所 Dehumidifier/air conditioner
WO2018131121A1 (en) * 2017-01-12 2018-07-19 三菱電機株式会社 Dehumidifying device

Also Published As

Publication number Publication date
CN114761107A (en) 2022-07-15
TWI765270B (en) 2022-05-21
JP7308975B2 (en) 2023-07-14
TW202122720A (en) 2021-06-16
JPWO2021117199A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
JP6029750B2 (en) Dehumidifier
CN104955548B (en) Dehydrating unit
TWI753323B (en) Dehumidifier
JP5627721B2 (en) Dehumidifier
JP6644173B2 (en) Dehumidifier
WO2005079957A1 (en) Air conditioning method and air conditioning system
JP6336101B2 (en) Dehumidifier
CN108472579B (en) Dehumidifying device
WO2021117199A1 (en) Dehumidifier
JP2021021525A (en) Dehumidifier
JP2013137151A (en) Air conditioner
JP7378502B2 (en) air conditioner
WO2021245940A1 (en) Dehumidifying device
TWI830175B (en) Dehumidifying device
WO2022264375A1 (en) Dehumidifying device
WO2022145003A1 (en) Dehumidifying device
JP4474710B2 (en) Air conditioner
JP7394722B2 (en) dehumidifier
TWI836224B (en) Dehumidification device
KR100512146B1 (en) Air conditioner for dehumidification and control method
WO2003104727A1 (en) Heat pump and dehumidifying air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563545

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955517

Country of ref document: EP

Kind code of ref document: A1