WO2021115440A1 - 潜望式摄像模组及其制造方法 - Google Patents

潜望式摄像模组及其制造方法 Download PDF

Info

Publication number
WO2021115440A1
WO2021115440A1 PCT/CN2020/135809 CN2020135809W WO2021115440A1 WO 2021115440 A1 WO2021115440 A1 WO 2021115440A1 CN 2020135809 W CN2020135809 W CN 2020135809W WO 2021115440 A1 WO2021115440 A1 WO 2021115440A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
light
component
circuit board
light quantity
Prior art date
Application number
PCT/CN2020/135809
Other languages
English (en)
French (fr)
Inventor
王启
袁栋立
俞丝丝
郑雪莹
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911288944.2A external-priority patent/CN112995445A/zh
Priority claimed from CN201911278714.8A external-priority patent/CN112995443B/zh
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to CN202080085310.1A priority Critical patent/CN115053511B/zh
Publication of WO2021115440A1 publication Critical patent/WO2021115440A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof

Definitions

  • the present invention relates to the technical field of camera modules, in particular to a periscope camera module and a manufacturing method thereof.
  • the periscope camera module has greatly changed people's perception of the photography capabilities of portable electronic devices (such as smart phones), and has a broad market prospect.
  • the existing periscope camera module 1P includes a photosensitive component 11P and a lens barrel unit 12P.
  • the lens barrel unit 12P includes a lens group 121P, a prism 122P, and a liquid crystal dimming device 123P.
  • the lens group 121P and the prism 122P are sequentially arranged in the light-sensing path of the photosensitive element 11P, and the lens group 121P is located between the prism 122P and the photosensitive element 11P, wherein the liquid crystal dimming device 123P is mounted to the prism 122P
  • the inclined plane is used to change the orientation of the liquid crystal molecules under the action of an applied voltage, thereby changing the light transmittance of the liquid crystal dimming device 123P.
  • the light entering the prism 122P first enters the liquid crystal dimming device 123P through the prism 122P, and then is reflected at the liquid crystal dimming device 123P, so that the reflected light passes through the prism 122P and the lens group 121P To be imaged by the photosensitive element 11P.
  • the orientation of the liquid crystal molecules is adjusted under the voltage of the liquid crystal layer to change the amount of light reflected by the liquid crystal dimming device 123P, so that the light passing through the prism 122P and the lens group 121P to be received by the photosensitive element 11P The amount of light is changed, thereby changing the amount of light entering the periscope camera module 1P.
  • the light undergoes multiple reflections and/or refractions, and enters and exits multiple interfaces (such as the interface between the liquid crystal dimming device and the prism). Etc.), this will cause the loss of light energy, which will result in insufficient light during imaging.
  • the liquid crystal dimming device 123P it is difficult for the liquid crystal dimming device 123P to be assembled on the inclined surface of the prism 122P, which results in high assembly cost of the existing periscope camera module 1P.
  • An advantage of the present invention is to provide a periscope camera module and a manufacturing method thereof, which can make the structure compact and help reduce the overall size of the module.
  • Another advantage of the present invention is to provide a periscope camera module and a manufacturing method thereof, wherein, in an embodiment of the present invention, the light quantity adjustment component of the periscope camera module is arranged on the light steering component The light emitting end helps to reduce the difficulty of assembling the periscope camera module.
  • Another advantage of the present invention is to provide a periscope camera module and a manufacturing method thereof, wherein, in an embodiment of the present invention, the light quantity adjustment component of the periscope camera module is provided in the module component, It helps to reduce the difficulty of assembling the periscope camera module, so that the light quantity adjustment component can be debugged during assembly.
  • Another advantage of the present invention is to provide a periscope camera module and a manufacturing method thereof, wherein, in an embodiment of the present invention, the periscope camera module directly bonds or clamps the light quantity adjustment component It fits into the housing bracket of the light steering component to reduce the difficulty of assembling the module, improve the utilization rate of the internal space of the module, and help reduce the size of the periscope camera module.
  • Another advantage of the present invention is to provide a periscope camera module and a manufacturing method thereof, wherein, in an embodiment of the present invention, the periscope camera module adopts a split circuit board for electrical control, avoiding integrated The performance of the type circuit board is unstable due to being too large.
  • Another advantage of the present invention is to provide a periscope camera module and a manufacturing method thereof, wherein, in an embodiment of the present invention, the periscope camera module can blur the background and multi-fold long-range shooting The functions are integrated and can be switched.
  • Another advantage of the present invention is to provide a periscope camera module and a manufacturing method thereof, wherein, in an embodiment of the present invention, the periscope camera module can prevent the flexible board from being bent at an excessively large angle. Being damaged helps to improve the stable performance of the periscope camera module.
  • Another advantage of the present invention is to provide a periscope camera module and a manufacturing method thereof.
  • the present invention does not need to use expensive materials or complicated structures. Therefore, the present invention successfully and effectively provides a solution that not only provides a periscope camera module and its manufacturing method, but also increases the practicability and reliability of the periscope camera module and its manufacturing method. .
  • a periscope camera module including:
  • a module component wherein the module component has a photosensitive path
  • a light turning assembly wherein the light turning assembly is correspondingly arranged on the photosensitive path of the module assembly, and the light turning assembly has a light input end and a light output end facing the module assembly,
  • the light turning component is used for turning the light incident from the light entrance end to be emitted from the light exit end, and propagate along the photosensitive path to be received by the module component for imaging;
  • a light quantity adjusting component wherein the light quantity adjusting component is assembled to the light exit end of the light turning component so as to be located between the light turning component and the module component, and is used to adjust the entry into the module component The amount of light;
  • a circuit board assembly wherein the circuit board assembly is arranged to be electrically connected to the light quantity adjustment assembly, and is used to provide the light quantity adjustment assembly with electric energy required for operation.
  • the circuit board assembly includes a first circuit board electrically connected to the light steering assembly, a second circuit board electrically connected to the module assembly, and A first extension circuit board, wherein the first extension circuit board extends from the module assembly to the light steering assembly, and the first extension circuit board is connected to the first circuit board and the second The circuit board is electrically connected.
  • the circuit board assembly further includes at least one electrical connection element, wherein the electrical connection element electrically connects the first extension circuit board and the light quantity adjustment assembly for passing through the The first extension circuit board provides the electric energy required for the operation of the light quantity adjustment assembly.
  • the electrical connection element is a conductive pin, wherein the conductive pin is electrically connected to the light quantity adjustment component, so as to adjust the light quantity through the conductive pin
  • the component is electrically connected to the first extension circuit board.
  • the conductive pins extend side by side from the side wall of the light quantity adjustment component to the first extension circuit board, and the conductive pins are welded to the first extension circuit board. Extension circuit board.
  • the conductive pins are spaced and electrically connected to the side wall of the light quantity adjustment assembly, wherein the first extension circuit board is provided with two notches, and the first The notches on the extension circuit board respectively correspond one-to-one with the conductive pins provided on the light quantity adjustment assembly, so as to weld the conductive pins to the first extension circuit board.
  • the circuit board assembly further includes at least one electrical connection element, wherein the electrical connection element electrically connects the first circuit board and the light quantity adjustment assembly for passing through the first circuit board.
  • a circuit board provides the power required for the operation of the light quantity adjustment component.
  • the electrical connection element is a conductive pin, wherein the conductive pin is electrically connected to the light quantity adjustment component, and the conductive pin is self-contained from the light quantity adjustment component.
  • the bottom wall of the side-by-side extends forward to the first circuit board, and the conductive pins are soldered to the first circuit board.
  • the electrical connection element includes a lead, wherein one end of the lead is electrically connected to the first circuit board, and the other end of the lead is electrically connected to the light quantity adjustment component
  • the circuit board assembly further includes a drive circuit board, wherein the drive circuit board is electrically connected to the bottom side of the module assembly, and the drive circuit board is electrically connected to In the first extension circuit board, the circuit board assembly further includes at least one electrical connection element, wherein the electrical connection element electrically connects the driving circuit board and the light quantity adjustment assembly for driving through the The circuit board provides the electric energy required for the operation of the light quantity adjustment component.
  • the electrical connection element is a conductive pin, wherein the conductive pin is electrically connected to the light quantity adjustment component, and the conductive pin is self-contained from the light quantity adjustment component.
  • the bottom wall side by side extends back to the driving circuit board, and the conductive pins are soldered to the driving circuit board.
  • the circuit board assembly further includes a first flexible board, wherein the first flexible board is bent and electrically connected to the second circuit board and the first extended circuit board .
  • the circuit board assembly further includes a first flexible board, a second extended circuit board, and a second flexible board, wherein the second circuit board is disposed on the module assembly And the second extension circuit board is stacked on the second circuit board, wherein the first flexible board is bent and electrically connected to the first extension circuit board and the second extension The circuit board, wherein the second flexible board is bent and electrically connected to the second circuit board and the second extension circuit board.
  • the periscope camera module further includes a gasket, wherein the gasket is stacked between the second circuit board and the second extension circuit board , Wherein the height of the second extension circuit board is smaller than the height of the second circuit board.
  • the circuit board assembly further includes a connector and a connection flexible board, wherein the connection flexible board electrically connects the connector in the height direction of the second extension circuit board On the second extension circuit board, and the connector is used to electrically connect the main board of the electronic device.
  • the periscope camera module further includes an adhesive layer, so that the light turning assembly and the module assembly are respectively adhered to the Light adjustment components.
  • the light quantity adjusting component is fastened to the light exit end of the light turning component.
  • the present invention further provides a method for manufacturing a periscope camera module, which includes the steps:
  • a light quantity adjusting component to a light exit end of a light turning component, for making light incident from an entrance end of the light turning component first turn through the turning component to be emitted from the light exit end, And then through the adjustment of the light quantity adjusting component to change the amount of light passing through the light quantity adjusting component;
  • the light quantity adjusting component and the light turning component are arranged in the photosensitive path of a module component, and the light quantity adjusting component is located between the light turning component and the module component, and is used to pass the light quantity The light of the adjusting component is received by the module component for imaging; and
  • a circuit board assembly is electrically connected to the light quantity adjustment assembly, and is used to provide the power required for the operation of the light quantity adjustment assembly.
  • the circuit board assembly is electrically connected to the light quantity adjustment assembly for providing the light steering assembly, the module assembly, and the light quantity adjustment assembly with work required
  • the steps of electric energy include the following steps:
  • a first circuit board is electrically connected to the light steering assembly, so as to electrically connect the first circuit board to an anti-shake driver of the light steering assembly;
  • a second circuit board is electrically connected to the module assembly, so as to electrically connect the second circuit board to a photosensitive chip of a photosensitive assembly of the module assembly;
  • a first extension circuit board is extended to the module assembly and the light steering assembly, and the first extension circuit board is electrically connected to the first circuit board and the second circuit board, respectively;
  • the light quantity adjusting component is electrically connected to the first circuit board or the first extension circuit board through at least one electrical connection element.
  • the step of electrically connecting a circuit board assembly to the light quantity adjustment assembly for providing the power required for operation of the light quantity adjustment assembly further includes the step of:
  • a gasket is stacked between the second circuit board and the second extension circuit board.
  • the manufacturing method of the periscope camera module further includes the steps:
  • the light quantity adjusting component is bonded to the module component.
  • the manufacturing method of the periscope camera module further includes the steps:
  • the light quantity adjustment component is debugged so that the amount of light input controlled by the light quantity adjustment component meets a predetermined requirement.
  • the manufacturing method of the periscope camera module further includes the steps:
  • the position of the light turning assembly is adjusted.
  • An advantage of the present invention is to provide a periscope camera module, which can make the structure compact and help reduce the overall size of the module.
  • Another advantage of the present invention is to provide a periscope camera module, wherein, in an embodiment of the present invention, the light quantity adjustment component of the periscope camera module is arranged on the light steering component, which helps to reduce The difficulty of assembling the periscope camera module.
  • Another advantage of the present invention is to provide a periscope camera module, wherein, in an embodiment of the present invention, the light quantity adjustment component of the periscope camera module is provided in the module component, which helps to reduce The difficulty of assembling the periscope camera module is so that the light quantity adjustment component can be debugged during assembly.
  • Another advantage of the present invention is to provide a periscope camera module, wherein, in an embodiment of the present invention, the periscope camera module directly adheres or engages the light quantity adjustment component to the
  • the housing bracket of the light steering component improves the utilization rate of the internal space of the module and helps reduce the size of the periscope camera module.
  • Another advantage of the present invention is to provide a periscope camera module, wherein, in an embodiment of the present invention, the periscope camera module can adjust the amount of light before assembling the light steering assembly
  • the component is assembled in the module component to adjust and debug the light quantity adjustment component in advance, which helps to improve the assembly quality of the periscope camera module.
  • Another advantage of the present invention is to provide a periscope camera module, wherein, in an embodiment of the present invention, the periscope camera module can integrate the functions of background blur and multi-fold perspective shooting. , And can be switched to use.
  • Another advantage of the present invention is to provide a periscope camera module.
  • the present invention does not need to use expensive materials or complicated structures. Therefore, the present invention successfully and effectively provides a solution that not only provides a simple periscope camera module, but also increases the practicability and reliability of the periscope camera module.
  • a periscope camera module including:
  • a module assembly wherein the module assembly includes:
  • a photosensitive component wherein the photosensitive component has a photosensitive path
  • a lens assembly wherein the lens assembly is correspondingly disposed on the photosensitive path of the photosensitive assembly
  • a light turning assembly wherein the light turning assembly is correspondingly disposed on the photosensitive path of the photosensitive assembly, and the lens assembly is located between the photosensitive assembly and the light turning assembly;
  • a light quantity adjusting component wherein the light quantity adjusting component is assembled at the end of the light turning component, and the light quantity adjusting component is located in the photosensitive path of the photosensitive component, and is used for adjusting the light quantity received by the photosensitive component. The amount of light.
  • the light turning assembly includes a reflective element, a carrier, and a housing bracket with a turning channel, wherein the reflective element and the carrier are both disposed on all the housing brackets.
  • the reflective element is carried on the carrier to keep the reflective element correspondingly located in the photosensitive path of the photosensitive component, wherein the adhesive layer is disposed on the light quantity adjustment component
  • the housing support of the light turning assembly to bond the light quantity adjustment assembly to the housing support of the light turning assembly.
  • the end of the light turning assembly includes a light entrance end and a light exit end, and the turning passage of the housing bracket is from the light entrance end of the light turning assembly.
  • the end is bent to extend to the light exit end of the light turning assembly, wherein the light quantity adjustment assembly is bonded to the housing bracket, and the light quantity adjustment assembly is located at the light entrance end of the light turning assembly.
  • the end of the light turning assembly includes a light entrance end and a light exit end, and the turning passage of the housing bracket is from the light entrance end of the light turning assembly.
  • the end bends and extends to the light output end of the light turning assembly, wherein the light quantity adjustment assembly is bonded to the housing bracket, and the light quantity adjustment assembly is located at the light output end and the light output end of the light turning assembly.
  • the light quantity adjusting component is welded to the lens component of the module component.
  • the periscope camera module further includes an adhesive layer, wherein the adhesive layer is disposed on the light quantity adjustment component and the lens of the module component Between the components, the light quantity adjustment component is bonded to the module component through the adhesive layer.
  • the lens assembly of the module assembly includes an optical lens, a focusing driver, and an assembly housing, wherein the optical lens is drivably assembled to the focusing driver , And the focusing driver and the photosensitive component are correspondingly assembled in the assembly housing, wherein the focusing driver is used to drive the optical lens to move along the photosensitive path; wherein the amount of light
  • the adjustment component is directly bonded between the assembly housings of the lens assembly through the adhesive layer, and the thickness of the adhesive layer is between 0.901 mm and 0.92 mm.
  • the thickness of the adhesive layer is between 0.903 mm and 0.915 mm.
  • the light quantity adjusting component has a rectangular end face, and the long side and the short side of the light quantity adjusting component are parallel to the long side and the short side of the lens component, respectively.
  • the ratio of the width to the length of the rectangular end surface of the light quantity adjustment component is greater than 0.975 and less than 1.
  • the light quantity adjustment assembly includes a pair of blades, a plurality of electric actuators, and a frame, wherein the blades are partially overlapped and installed on the frame to form an aperture through the blades.
  • the adjustable aperture hole wherein the electric actuators are respectively arranged on the left and right sides of the frame, for actuating the blades to adjust the aperture size of the aperture hole.
  • the adhesive layer corresponds to the left and right sides and/or the bottom side of the assembly housing of the lens assembly.
  • the light quantity adjusting component is buckled and adhered to the light turning component.
  • the periscope camera module further includes a circuit board assembly, wherein the circuit board assembly is electrically connected to the light quantity adjustment assembly for providing The electrical energy required for work.
  • the present invention further provides a periscope camera module, including:
  • a module assembly wherein the module assembly includes:
  • a photosensitive component wherein the photosensitive component has a photosensitive path
  • a lens assembly wherein the lens assembly is correspondingly disposed on the photosensitive path of the photosensitive assembly
  • a light turning assembly wherein the light turning assembly is assembled to the lens assembly, and the light turning assembly corresponds to the photosensitive path of the photosensitive assembly, so that the lens assembly is located between the photosensitive assembly and the lens assembly. Between the light turning components;
  • a light quantity adjustment assembly wherein the light quantity adjustment assembly is assembled to the lens assembly, and the light quantity adjustment assembly is located in the photosensitive path of the photosensitive assembly, and is used to adjust the amount of light received by the photosensitive assembly.
  • the lens assembly of the module assembly includes an optical lens, a focusing driver, and an assembly housing, wherein the optical lens is drivably assembled to the focusing driver , And the focus driver and the photosensitive component are respectively assembled in the assembly housing, wherein the focus driver is used to drive the optical lens to move along the photosensitive path, wherein the amount of light
  • An adjustment component is assembled to the optical lens of the lens assembly to keep the light quantity adjustment component corresponding to the photosensitive path of the photosensitive component.
  • the optical lens includes a first lens group and a second lens group, wherein the light quantity adjusting component is disposed between the first lens group and the second lens group .
  • the optical lens further includes a lens barrel, wherein the first lens group, the light quantity adjustment assembly, and the second lens group are assembled in the lens barrel in sequence, and The second lens group is located between the light quantity adjusting component and the photosensitive component.
  • the optical lens further includes a first lens barrel and a second lens barrel, wherein the first lens group is assembled to the first lens barrel, and the second lens The group is assembled in the second lens barrel, wherein the light quantity adjustment assembly is installed in the first lens barrel and/or the second lens barrel, and the second lens group is located in the light quantity adjustment assembly and Between the photosensitive components.
  • the light quantity adjustment assembly is integrally formed with the focus driver of the lens assembly, and the optical lens is located between the light quantity adjustment assembly and the photosensitive assembly.
  • FIG. 1 shows a schematic structural diagram of a periscope camera module in the prior art.
  • FIG. 2 is a system schematic diagram of a periscope camera module according to a first embodiment of the present invention.
  • FIG. 3 shows a three-dimensional schematic diagram of the periscope camera module according to the first embodiment of the present invention.
  • Fig. 4 shows an exploded schematic diagram of the periscope camera module according to the above-mentioned first embodiment of the present invention.
  • FIG. 5 shows a schematic structural diagram of the periscope camera module according to the above-mentioned first embodiment of the present invention.
  • Fig. 6 shows a schematic structural diagram of the light steering assembly of the periscope camera module according to the above-mentioned first embodiment of the present invention.
  • FIG. 7A shows an example of the circuit board assembly of the periscope camera module according to the above-mentioned first embodiment of the present invention.
  • Fig. 7B shows a first example of the circuit board assembly of the periscope camera module according to the above-mentioned first embodiment of the present invention.
  • FIG. 7C shows a second example of the circuit board assembly of the periscope camera module according to the above-mentioned first embodiment of the present invention.
  • FIGS. 8A and 8B show schematic structural diagrams of the light quantity adjustment component of the periscope camera module according to the above-mentioned first embodiment of the present invention.
  • FIG. 9 shows a schematic structural diagram of the photosensitive component of the module component of the periscope camera module according to the above-mentioned first embodiment of the present invention.
  • Fig. 10 shows an expanded schematic diagram of the circuit board assembly of the periscope camera module according to the above-mentioned first embodiment of the present invention.
  • FIG. 11A shows a first modified implementation of the periscope camera module according to the above-mentioned first embodiment of the present invention.
  • FIG. 11B shows a second modified implementation of the periscope camera module according to the above-mentioned first embodiment of the present invention.
  • FIG. 12 is a three-dimensional schematic diagram of a periscope camera module according to a second embodiment of the present invention.
  • FIG. 13 shows a three-dimensional schematic diagram of the light quantity adjustment component of the periscope camera module according to the above second embodiment of the present invention.
  • 16 to 18 show a second modified implementation of the periscope camera module according to the above-mentioned second embodiment of the present invention.
  • FIG. 19 is a schematic structural diagram of a periscope camera module according to a third embodiment of the present invention.
  • 20A to 20C show a schematic flowchart of a method for manufacturing a periscope camera module according to an embodiment of the present invention.
  • FIG. 21 is a system diagram of a periscope camera module according to a first embodiment of the present invention.
  • FIG. 22 shows a three-dimensional schematic diagram of the periscope camera module according to the first embodiment of the present invention.
  • FIG. 23 shows a schematic structural diagram of the periscope camera module according to the above-mentioned first embodiment of the present invention.
  • FIG. 24 shows a schematic structural diagram of the light steering assembly of the periscope camera module according to the above-mentioned first embodiment of the present invention.
  • Fig. 25A shows a three-dimensional schematic diagram of the light quantity adjustment component of the periscope camera module according to the above-mentioned first embodiment of the present invention.
  • 25B and 25C respectively show the state schematic diagrams of the light quantity adjustment assembly according to the above-mentioned first embodiment of the present invention.
  • 25D and 25E show a modified embodiment of the light quantity adjustment assembly according to the above-mentioned first embodiment of the present invention.
  • FIG. 26 shows a first modified implementation of the periscope camera module according to the above-mentioned first embodiment of the present invention.
  • FIG. 27 shows a second modified implementation of the periscope camera module according to the above-mentioned first embodiment of the present invention.
  • 28A and 28B show a third modified embodiment of the periscope camera module according to the above-mentioned first embodiment of the present invention.
  • FIG. 29 shows a fourth modified implementation of the periscope camera module according to the above-mentioned first embodiment of the present invention.
  • FIG. 30 shows a fifth modified implementation of the periscope camera module according to the above-mentioned first embodiment of the present invention.
  • FIG. 31A is a schematic structural diagram of a periscope camera module according to a second embodiment of the present invention.
  • FIG. 31B shows an example of the position distribution of the adhesive layer in the periscope camera module according to the above-mentioned second embodiment of the present invention.
  • FIG. 31C shows another example of the position distribution of the adhesive layer in the periscope camera module according to the above-mentioned second embodiment of the present invention.
  • FIG. 32 shows a first modified implementation of the periscope camera module according to the above-mentioned second embodiment of the present invention.
  • FIG. 33 shows a second modified implementation of the periscope camera module according to the above-mentioned second embodiment of the present invention.
  • FIG. 34 shows a third modified implementation of the periscope camera module according to the above-mentioned second embodiment of the present invention.
  • FIG. 35 shows a fourth modified implementation of the periscope camera module according to the above-mentioned second embodiment of the present invention.
  • FIG. 36 shows a fifth modified implementation of the periscope camera module according to the above-mentioned second embodiment of the present invention.
  • the term "a” in the claims and specification should be understood as “one or more”, that is, in one embodiment, the number of an element may be one, and in another embodiment, the number of the element It can be more than one. Unless it is clearly stated in the disclosure of the present invention that the number of the element is only one, the term “one” cannot be understood as unique or singular, and the term “one” cannot be understood as a limitation on the number.
  • the periscope camera module can achieve telephoto shooting, and the module volume is small, especially in line with the current trend of smaller development.
  • the present invention is designed to match the light quantity adjustment component (such as the variable aperture) with the periscope camera module, which can not only realize the large aperture and telephoto shooting mode, but also achieve the effect of blurring the background during portrait shooting and make the portrait more prominent ; And can also achieve a small aperture and telephoto shooting mode, in order to achieve multiple long-range shooting. Therefore, the periscope camera module of the present invention can combine the background blur shooting function and the multi-fold perspective shooting function into one camera module, and can be switched for use.
  • the periscope camera module 81 includes a module component 810, a light steering component 820, a light quantity adjustment component 830 and a circuit board component 840.
  • the module assembly 810 has a photosensitive path 8100 for receiving light along the photosensitive path 8100 for imaging.
  • the light turning assembly 820 is correspondingly disposed on the photosensitive path 8100 of the module assembly 810, and the light turning assembly 820 has a light input end 8201 and a light output end 8202 facing the module assembly 810 , wherein the light turning component 820 is used for turning the light incident from the light input end 8201 to be emitted from the light output end 8202, so that the light emitted from the light output end 8202 propagates along the photosensitive path 8100 So as to be received and imaged by the module assembly 810.
  • the light quantity adjusting component 830 is assembled to the light exit end 8202 of the light turning component 820 so as to be located between the light turning component 820 and the module component 810, and used to adjust the entrance to the module component 810. The amount of light.
  • the light quantity adjustment assembly 830 is assembled between the light exit end 8202 of the light turning assembly 820 and the module assembly 810, so that the light quantity adjustment assembly 830 is located in the light turning assembly 820. And the module assembly 810, for adjusting the amount of light entering the module assembly 810 through the light turning assembly 820.
  • the light quantity adjusting component 830 and the light turning component 820 are sequentially located on the photosensitive path 8100 of the module component 810, and the light quantity adjusting component 830 is located on the module component 810 and the light turning component. 820 between the light exit ends 8202, so that the light incident from the light entrance end 8201 of the light turning assembly 820 is first turned by the light turning assembly 820 to be emitted from the light exit end 8202, and then passes through After the light quantity adjusting component 830 adjusts the light quantity, it is received by the module component 810 for imaging.
  • the periscope camera module 81 of the present invention can make full use of the module’s
  • the internal space makes the internal structure of the module more compact and helps reduce the overall size of the module.
  • the module component 810, the light turning component 820, and the light quantity adjusting component 830 in the periscope camera module 81 are independent of each other, so that when one component fails, it can be replaced separately. It does not affect other components, and helps reduce the maintenance cost of the periscope camera module 81.
  • the light steering assembly 820 of the periscope camera module 81 may include a reflective element 821, a carrier 822, and a housing bracket 823, wherein the housing bracket 823 has a turning channel 8230, wherein the reflective element 821 and the carrier 822 are both arranged in the turning channel 8230 of the housing bracket 823, and the reflective element 821 is carried on the carrier 822 to hold
  • the reflecting element 821 is correspondingly located on the photosensitive path 8100 of the module assembly 810, so that the light turning assembly 820 is used for reflection by the reflecting element 821, and incident from the light entrance end 8201 The light is turned to be emitted from the light emitting end 8202, so that the light emitted from the light emitting end 8202 travels along the photosensitive path 8100 to be received and imaged by the module assembly 810.
  • the reflective element 821 of the light turning assembly 820 may be, but is not limited to, implemented as a prism 8210, that is to say
  • the prism 8210 has a light incident surface 8211, a light output surface 8212, and a reflective surface 8213, wherein the light incident surface 8211 of the prism 8210 is located at the light incident end 8201 of the light turning component 820, and
  • the reflecting surface 8213 of the prism 8210 is disposed on the carrier 822, wherein the light exit surface 8212 of the prism 8210 is located at the light exit end 8202 of the light turning component 820, and the light exit surface 8212 faces
  • the module assembly 810 makes the light incident on the prism 8210 through the light incident surface 8211 first be deflected by the reflection of the reflecting surface 8213, and then exit the prism 8210 through the light exit surface 8212 to It travels along the photosensitive path 8100 and is received by the module
  • the reflective element 821 of the light turning assembly 820 can also be implemented as a reflective plane mirror, waveguide and other optical elements, or the reflective element 821 can also be replaced by a refractive element. As long as the propagation direction of the light can be changed, this will not be repeated in the present invention.
  • the light incident surface 8211 of the prism 8210 is perpendicular to the light exit surface 8212 of the prism 8210, so that the prism 8210 is implemented as a right-angle prism, so that the light incident surface 8211 is vertically emitted.
  • the light entering the prism 8210 is first reflected by the reflecting surface 8213 to be turned to 890°, and then exits the prism 8210 vertically through the light exit surface 8212 to propagate along the photosensitive path 8100, and then be captured by the prism 8210.
  • the module assembly 810 is received for imaging.
  • the light incident surface 8211 of the prism 8210 is parallel to the photosensitive path 8100 of the module assembly 810, and the light exit surface 8212 of the prism 8210 is perpendicular to the module assembly 810.
  • the light-sensing path 8100 allows light traveling perpendicular to the light-sensing path 8100 to travel along the light-sensing path 8100 after being reflected by the prism 8210 to be received by the module assembly 810 for imaging.
  • the prism 8210 is completely contained in the housing support 823, that is, the light incident surface 8211 and the light output surface 8212 of the prism 8210 are both located at The inside of the turning channel 8230 of the housing bracket 823 is used to protect the prism 8210 and reduce wear.
  • the light steering assembly 820 of the periscope camera module 81 may further include an anti-shake driver 824, wherein the anti-shake driver 824 is disposed in the Between the carrier 822 and the housing bracket 823, the carrier 822 is used to drive the prism 8210 to rotate, so as to change the rotation angle of the prism 8210, so that the light diverted by the prism 8210 can be better Propagation along the photosensitive path 8100 to achieve the anti-shake effect of the periscope camera module 81 is helpful to improve the image quality of the periscope camera module 81.
  • the carrier 822 of the light turning assembly 820 has a bearing surface 8221 and at least one non-bearing surface 8222, wherein the reflecting surface 8213 of the prism 8210 is arranged face-to-face.
  • the anti-shake function of the periscope camera module 81 is realized.
  • the anti-shake driver 824 may include, but is not limited to, a magnet 8241 and a coil 8242, wherein the magnet 8241 is disposed on the non-bearing surface 8222 of the carrier 822, and The coil 8242 is correspondingly disposed on the inner wall surface of the housing bracket 823, so that the position of the magnet 8241 and the position of the coil 8242 correspond to each other to form an electric motor, which is used to drive the The carrier 822 drives the prism 8210 to rotate to achieve the anti-shake effect.
  • the magnet 8241 may also be disposed on the inner wall surface of the housing bracket 823, and the coil 8242 may be correspondingly disposed on the non-bearing surface 8222 of the carrier 822 As long as an electric motor can be formed, the present invention does not limit the positions of the magnet 8241 and the coil 8242.
  • the circuit board assembly 840 of the periscope camera module 81 includes a first circuit board 841, wherein the first circuit board 841
  • the board 841 is arranged on the housing bracket 823 of the light steering assembly 820, and the first circuit board 841 can be energized and connected to the anti-shake driver 824 for providing the anti-shake driver 824 required for operation.
  • the electric energy makes the prism 8210 rotate, so as to achieve optical anti-shake.
  • the first circuit board 841 of the circuit board assembly 840 is attached to the outer side of the housing bracket 823 of the light turning assembly 820 and is located at the light turning assembly 820
  • the first circuit board 841 is directly electrically connected to the anti-shake driver 824 through leads (not shown in the figure), so as to realize the anti-shake function of the periscope camera module 81.
  • the first circuit board 841 may also be electrically connected to the anti-shake driver 824 through conductive pins.
  • the first circuit board 841 of the circuit board assembly 840 can be implemented as a rigid PCB, a flexible FPC, or a flexible-hard combination board, and the present invention does not limit the type of the first circuit board 841.
  • the bottom side mentioned in the present invention is defined as the side facing away from the light entrance end 8201 of the light turning assembly 820, and the front and back mentioned in the present invention respectively correspond to the The light turning component 820 and the module component 810, that is, the light travels from front to back along the photosensitive path of the module component 810 to be received and imaged by the module component 810.
  • the light quantity adjustment component 830 of the periscope camera module 81 can be, but is not limited to, implemented such as a voltage-type iris or a liquid crystal-type variable diaphragm.
  • Various types of iris diaphragms such as diaphragms or leaf-type iris diaphragms, are used to change the size of the diaphragm aperture of the iris diaphragm under the action of electric energy, and then adjust the size of the aperture into the module assembly 810 The amount of light.
  • the light quantity adjustment component 830 of the periscope camera module 81 of the present invention can be electrically connected to the circuit board assembly 840 to provide power to the light quantity adjustment component 830 through the circuit board assembly 840 , So that the light quantity adjusting component 830 adjusts the amount of light entering the module component 810 under the action of electric energy.
  • the circuit board assembly 840 may further include at least one electrical connection element 842, wherein the electrical connection element 842 connects the light quantity adjustment assembly 830 with the first circuit board
  • the 841 can be electrically connected together to transmit power to the light quantity adjustment assembly 830 through the first circuit board 841 and the electrical connection element 842.
  • the electrical connection element 842 may be implemented as a conductive pin 8421 that is electrically connected to the light quantity adjustment assembly 830, wherein the conductive The pins 8421 extend side-by-side from the bottom wall 8301 of the light quantity adjustment assembly 830 to the first circuit board 841, so that the conductive pins 8421 are directly soldered to the first circuit board 841, thereby realizing all The electrical connection between the light quantity adjusting component 830 and the first circuit board 841. It can be understood that, in other examples of the present invention, the conductive pin 8421 may also be electrically connected and adhered to the first circuit board 841 through a conductive glue, which is not repeated in the present invention.
  • the conductive pins 8421 extend directly to the bottom of the light turning assembly 820, and the first circuit board 841 is just assembled on the bottom of the light turning assembly 820, the The conductive pins 8421 can directly contact the first circuit board 841 to electrically connect the first circuit board 841 by soldering, thereby realizing electrical connection between the first circuit board 841 and the light quantity adjustment component 830.
  • the electrical connection element 842 can also be implemented as a lead 8422, wherein one end of the lead 8422 is electrically connected to the first circuit board 841 And the other end of the lead 8422 is electrically connected to the light quantity adjustment assembly 830, so that the light quantity adjustment assembly 830 at the light output end 8202 of the light turning assembly 820 can be electrically connected through the lead 8422 On the first circuit board 841.
  • the electrical connection element 842 may include the conductive pin 8421 and the lead 8422, wherein the conductive pin 8421 is electrically connected to the ground. Is provided in the light quantity adjustment assembly 830, wherein one end of the lead 8422 is electrically connected to the first circuit board 841, and the other end of the lead 8422 is electrically connected to the conductive pin 8421 to pass the conductive The combination between the pin 8421 and the lead 8422 connects the light quantity adjustment component 830 to the first circuit board 841 electrically, which facilitates the disassembly of the light quantity adjustment component 830.
  • the periscope camera module 81 may further include an adhesive layer 850, wherein the adhesive layer 850 is located Between the light quantity adjusting component 830 and the light emitting end 8202 of the light turning component 820, the light quantity adjusting component 830 is bonded to the light emitting end 8202 of the light turning component 820 through the adhesive layer 850 At the end 8202, the light deflected by the light turning component 820, after being emitted from the light exit end 8202, first passes through the light quantity adjusting component 830, and then enters the module component 810 to be received and imaged.
  • the periscope camera module 81 can more accurately adjust the amount of light entering the module component 810 through the light amount adjustment component 830, so that the periscope camera module 81 can meet the requirements of different shooting modes. At the same time as the demand for light input, it also helps to improve its own imaging quality.
  • the light quantity adjustment component 830 of the periscope camera module 81 may include, but is not limited to, a plurality of blades 831, a plurality of electric actuators 832, and a frame 833 , Wherein the blades 831 are partially overlapped and installed on the frame 833 to form an adjustable aperture aperture 8300 through the plurality of blades 831, wherein the electric actuator 832 is correspondingly disposed on the The frame 833, and the electric actuator 832 and the blades 831 are connected in a one-to-one correspondence, and are used to actuate the corresponding blades 831 to adjust the aperture size of the diaphragm hole 8300.
  • the electric actuator 832 may include a magnet, a coil, and a lever.
  • a magnetic field is generated to drive the magnet to move in a specific direction, thereby driving the lever to move;
  • the shift lever is connected to the blade 831, so that the blade 831 can realize a position change (such as rotating within a specific angle range, etc.) with the movement of the shift lever, thereby changing the aperture of the diaphragm hole 8300 size.
  • the number and shape of the blades 831 in the light quantity adjustment assembly 830 can be arbitrary, as long as the aperture hole 8300 with a variable aperture can be formed, which is not limited in the present invention.
  • the adhesive layer 850 is located between the housing bracket 823 of the light turning assembly 820 and the frame 833 of the light quantity adjusting assembly 830,
  • the light quantity adjusting component 830 is firmly attached to the light exit end 8202 of the light turning component 820.
  • the adhesive layer 850 can also be located between the light quantity adjusting component 830 and the module component 810 at the same time, so that the light turning component 820 and the light quantity are sequentially transferred through the adhesive layer 850.
  • the adjusting component 830 and the module component 810 are bonded together to be assembled into the periscope camera module 81 independently.
  • the adhesive layer 850 may be, but is not limited to, cured by an adhesive such as glue, so as to adjust the light turning component 820, the light quantity adjusting component 830, and the module component 810 before curing. Ensure that the center of the aperture hole 8300 of the light quantity adjustment assembly 830 is aligned or substantially aligned with the photosensitive path 8100 of the module assembly 810, so that the light-redirecting assembly 820 turns around The light can pass through the aperture 8300 of the light quantity adjustment assembly 830 to enter the module assembly 810 and be received for imaging.
  • an adhesive such as glue
  • a circle of adhesive is first applied to the frame 833 of the light quantity adjustment assembly 830, and then the light quantity adjustment assembly 830 is correspondingly placed on the light turning The light output end 8202 of the component 820, and the adhesive is located between the housing bracket 823 of the light turning component 820 and the frame 833 of the light quantity adjustment component 830, so as to bond the After curing, the adhesive layer 850 is formed, so that the light quantity adjusting component 830 is adhesively fixed to the light emitting end 8202 of the light turning component 820 through the adhesive layer 850; An adhesive is applied between the light quantity adjustment component 830 and the module component 810 to form an adhesive and fix the light quantity adjustment component 830 and the module component 810 after the adhesive is cured. ⁇ 850.
  • the light quantity adjustment component 830 and the module component 810 are bonded together through the adhesive layer 850 first, and after the light quantity adjustment component 830 is debugged, Then, the light exit end 8202 of the light turning assembly 820 is correspondingly bonded to the light quantity adjustment assembly 830 through the adhesive layer 850 to complete the assembly of the periscope camera module 81.
  • the light quantity adjustment assembly 830 can be debugged through the photographing effect of the lens and the photosensitive chip to determine the aperture of the light quantity adjustment assembly 830. Whether the center is aligned with the optical center of the optical lens of the module assembly 810; or, testing whether the influence of the opening and closing of the blades in the light amount adjustment assembly 830 on the amount of light can achieve the expected effect, and so on.
  • the module component 810 of the periscope camera module 81 may include an optical lens 811, a photosensitive component 812, and a focusing The driver 813 and an assembly housing 814, wherein the optical lens 811, the photosensitive component 812, and the focusing driver 813 are all assembled in the assembly housing 814, wherein the optical lens 811 is drivably Is provided in the focus driver 813, and the focus driver 813 is correspondingly provided in the photosensitive component 812, so that the optical lens 811 is held in the photosensitive path of the photosensitive component 812 (that is, the mold The photosensitive path 8100 of the group component 810), wherein the focus driver 813 is used to drive the optical lens 811 to move on the photosensitive path 8100 to realize the focus adjustment of the periscope camera module 81 Features.
  • the optical lens 811 may include a lens barrel 8111 and a plurality of lenses 8112, wherein the plurality of lenses 8112 are co-optically arranged on the lens barrel 8111 to pass all the lenses.
  • the focusing driver 813 drives the lens barrel 8111 to move, and then drives the lens 8112 to move to achieve a focusing effect.
  • the angle between the optical axis of the optical lens 811 and the reflecting surface 8213 of the prism 8210 of the light turning assembly 820 is 45°, so as to ensure that the light quantity of the light quantity adjustment assembly 830
  • the center of the stop 8300 is substantially coincident with the optical axis of the optical lens 811, which helps to improve the imaging quality of the periscope camera module 81.
  • the focusing driver 813 may include a driving motor 8131 and a driving housing 8132.
  • the driving motor 8131 may include a magnet and a coil, wherein the magnet is installed on the lens barrel 8111 of the optical lens 811, wherein the coil is installed on the driving housing 8132, and the magnet The position of and the position of the coil correspond to each other.
  • the driving housing 8131 has a groove hole for installing the optical lens 811. It can be understood that the driving motor 8131 can be, but is not limited to, implemented as a voice coil motor or a piezoelectric motor.
  • the coil may be installed on the lens barrel 8111, and the magnet may be installed on the drive housing 8132.
  • the circuit board assembly 840 of the present invention may include a driving circuit board 843, wherein the driving circuit board 843 is installed in the driving housing of the focusing driver 813
  • the outside of the body 8132, and the driving circuit board 843 is provided with pins extending horizontally from the outside of the driving housing 8132, and the circuit boards of other components can be welded together through the pins.
  • the driving motor 8131 of the focusing driver 813 can also be electrically connected to the driving circuit board 843 through pins or wires, so as to obtain power from the driving circuit board 843, so that the optical lens 811 is Driven by the driving motor 8131, it moves relative to the photosensitive component 812 to achieve a focusing function.
  • the type of the driving circuit board 843 is not a limitation of the present invention, and may be a rigid PCB, a flexible FPC, or a rigid-flex board.
  • the photosensitive component 812 of the module assembly 810 may include a photosensitive chip 8121 and a filter element 8122, wherein the filter element 8122 is arranged between the photosensitive chip 8121 and the optical lens 811, so that the light entering the module assembly 810 first passes through the convergence of the optical lens 811, and then passes through the filter element 8122 after filtering , Received by the photosensitive chip 8121 for imaging.
  • the circuit board assembly 840 of the periscope camera module 81 further includes a second circuit board 844, wherein the photosensitive chip 8121 of the photosensitive assembly 812 is Mounted on the second circuit board 844, and the photosensitive chip 8121 is electrically connected to the second circuit board 844, so as to provide electrical energy to the photosensitive chip 8121 through the second circuit board 844, so that the photosensitive chip 8121 The chip 8121 can receive light for imaging.
  • the photosensitive component 812 may further include a seat 8123, wherein the filter element 8122 is arranged on the seat 8123, and the seat 8123 is arranged correspondingly On the second circuit board 844 to hold the filter element 8122 between the photosensitive chip 8121 and the optical lens 811 so that light passes through the optical lens 811 and the filter element 8122 in sequence , And then received and imaged by the photosensitive chip 8121.
  • the circuit board assembly 840 of the periscope camera module 81 further includes a first extension circuit board 845, wherein the first extension circuit board 845 extends from the module assembly 810 to the light steering assembly 820, and the first extension circuit board 845 is electrically connected to the first circuit board 841, the The circuit board 843 and the second circuit board 844 are driven to form the separate conductive circuit board assembly 840, so that power can be provided to each part of the circuit board assembly 840 through a connector.
  • the first extension circuit board 845 can energize and extend from the second circuit board 844 to the first circuit board 841, and is located between the first circuit board 841 and the second circuit board 844
  • the driving circuit board 843 can be electrically connected to the first extension circuit board 845 to form the separate conductive circuit board assembly 840.
  • the first extension circuit board 845 is provided with a processing chip 8451 to control the module assembly 810, the light steering assembly 820, and the light quantity adjustment through the processing chip 8451
  • the driving/actuating components in the component 830 further realize the functions of lens focusing, anti-shake, and light input adjustment.
  • first extension circuit board 845 can be electrically connected to the first circuit board 841 and the driving circuit board 843 by means of pin welding; at the same time, the light quantity adjustment assembly The 830 may be indirectly electrically connected to the first extension circuit board 845 through the first circuit board 841. In particular, as shown in FIG.
  • the first circuit board 841 and the driving circuit board 843 are respectively located at the bottom of the periscope camera module 81, and the first extension circuit board 845 is preferably Located on the side of the periscope camera module 81, so that the first diffractive circuit board 845 can intersect the first circuit board 841 and the driving circuit board 843 at the same time, so as to be separately soldered by pins
  • the first circuit board 841 and the driving circuit board 843 are directly electrically connected to the first diffractive circuit board 845.
  • the first extension circuit board 845 may also be disposed at the bottom of the periscope camera module 81, so that the first circuit board 841 and the driving circuit board 843 They are respectively energized and stacked on the first extension circuit board 845.
  • the second circuit board 844 in the circuit board assembly 840 of the present invention is usually located on the rear side of the module main body 810 of the periscope camera module 81 , So that the angle between the second circuit board 844 and the first extension circuit board 845 is a right angle, so in order to electrically connect the second circuit board 844 and the first extension circuit board 845, all of the present invention
  • the circuit board assembly 840 may further include a first flexible board 846, wherein the first flexible board 846 is bent and arranged between the first extension circuit board 845 and the second circuit board 844 to pass The first flexible board 846 is electrically connected to the first extension circuit board 845 and the second circuit board 844.
  • first flexible board 846 can be implemented as a flexible flexible board FPC, so that the first flexible board 846 connects the first extension circuit board 845 and the second circuit board 844 While being electrically connected together stably, the size of the periscope camera module 81 can also be reduced.
  • the circuit board assembly 840 of the periscope camera module 81 may further include a connector 847, wherein the connector 847 is electrically connected to the first
  • the second circuit board 844 is used to be electrically connected to the main board of an electronic device such as a mobile phone, so as to provide power and/or control signals to the circuit board assembly 840 through the main board of the electronic device.
  • the connector 847 is preferably electrically connected to the second circuit board 844 through a connecting soft board 8470, so that the position of the connector 847 relative to the second circuit board 844 can be adjusted as required. Make adjustments so as to be electrically connected to the main board of the electronic device.
  • the periscope camera module 81 may further include a housing or an outer bracket (not shown in the figure), wherein the module assembly 810, the light The steering assembly 820, the light quantity adjustment assembly 830, and the circuit board assembly 840 are all assembled in the housing or the outer bracket, so as to protect the module assembly 810, the module assembly 810, and the module assembly 810 through the housing or the outer bracket.
  • the light turning assembly 820, the light quantity adjusting assembly 830, and the circuit board assembly 840 avoid contamination of the module assembly 810, the light turning assembly 820, the light quantity adjusting assembly 830, and the circuit board assembly 840 .
  • FIG. 11A shows a first modified implementation of the periscope camera module 81 according to the above-mentioned first embodiment of the present invention, in which the light quantity adjustment component 830 is fastened to the The light output end 8202 of the light turning assembly 820 is used to omit the adhesive layer 850, and the light quantity adjusting assembly 830 is directly detachably assembled to the light turning assembly 820 so as to replace the light turning assembly 820. Or the light quantity adjustment component 830.
  • the light exit end 8202 of the light turning assembly 820 is provided with a first buckling structure 8231 located on the housing bracket 823, and the frame 833 of the light quantity adjustment assembly 830 is provided with a connection with the first The second buckling structure 8232 that is adapted to the buckling structure, wherein when the first buckling structure 8231 and the second buckling structure 8232 are fitly buckled together, the light quantity adjustment component 830
  • the frame 833 is installed on the housing bracket 823 of the light turning assembly 820 so that the light quantity adjusting assembly 830 is assembled to the light exit end 8202 of the light turning assembly 820.
  • the first fastening structure 8231 is implemented to be disposed on the housing bracket 823
  • the second buckling structure 8232 is implemented as a protrusion provided on the frame 833, so as to insert the protrusion on the frame 833 into the groove on the housing bracket 823 Realize the fixed assembly between the light quantity adjustment component 830 and the light steering component 820, which not only can reduce the size of the periscope camera module 81, but also can simplify the periscope camera module 81 The disassembly and assembly.
  • the light quantity adjustment assembly 830 is more firmly installed on the light steering assembly 820.
  • the adhesive layer 850 of the present invention may also be disposed between the first fastening structure 8231 and the second fastening structure 8232.
  • first apply an adhesive to the first fastening structure 8231 that is, the groove of the housing bracket 823
  • fasten the first fastening structure 8231 and the second fastening structure 8232 To form the adhesive layer 850 between the first buckling structure 8231 and the second buckling structure 8232 after the adhesive is cured, so as to firmly fix the light quantity adjustment component 830
  • the housing bracket 823 of the light turning assembly 820 The housing bracket 823 of the light turning assembly 820.
  • first buckling structure 8231 and the second buckling structure 8232 in the periscope camera module 81 as shown in FIG. 11A are implemented as grooves and protrusions in sequence to achieve
  • the buckling connection between the light quantity adjusting component 830 and the light turning component 820 is only an example, and the buckling method mentioned in the present invention is not limited to this. For example, as shown in FIG.
  • a second modified embodiment of the periscope camera module 81 according to the above-mentioned first embodiment of the present invention is illustrated, wherein the first embodiment of the periscope camera module 81 A buckling structure 8231 is implemented as a protrusion provided on the housing bracket 823, and the second buckling structure 8232 is implemented as a groove provided on the frame 833 to protrude upward through the housing bracket 823 By inserting into the groove on the frame 833, the fixed assembly between the light quantity adjusting assembly 830 and the light turning assembly 820 is also realized.
  • a periscope camera module according to a second embodiment of the present invention is illustrated.
  • the difference of the periscope camera module 81 according to the second embodiment of the present invention is that the light quantity adjustment component 830 is directly and electrically connected to the The first extension circuit board 845 of the circuit board assembly 840 does not need to be indirectly electrically connected to the first extension circuit board 845 through the first circuit board 841, so that the first circuit The board 841 alone provides power to the light steering assembly 820, which helps to simplify the circuit design of the first circuit board 841.
  • the electrical connection element 842 of the circuit board assembly 840 is implemented as the conductive pin 8421 electrically connected to the side wall 8302 of the light quantity adjustment assembly 830, wherein The conductive pin 8421 is soldered to the first extension circuit board 845 to electrically connect the light quantity adjustment component 830 to the first extension circuit board 845 through the conductive pin 8421.
  • the electrical connection element 842 includes two conductive pins 8421, wherein the conductive pins 8421 are spaced apart on the light quantity adjustment assembly 830.
  • the outer side wall of the frame 833, and the conductive pin 8421 can be electrically connected to the electric actuator 832 of the light quantity adjustment assembly 830, wherein the conductive pin 8421 can be electrically connected by a solder ball Ground welded to the first extension circuit board 845 of the circuit board assembly 840, so as to provide electrical energy to the electric actuator 832 of the light quantity adjustment assembly 830 through the first extension circuit board 845, so as to achieve all
  • the light quantity adjustment effect of the light quantity adjusting component 830 is described.
  • the number of conductive pins 8421 may exceed two, and the conductive pins 8421 may also be electrically connected to the first extension circuit board by means of conductive glue. 845.
  • the first extension circuit board 845 of the circuit board assembly 840 is provided with two notches 8452, 8453, and the notches 8452, 8453 respectively correspond to the light quantity adjustment components 830
  • the conductive pins 8421 are so that the conductive pins 8421 can be soldered to the first extension circuit board 845 at the openings 8452, 8453 of the first extension circuit board 845, respectively. It is understandable that because the first extension circuit board 845 is provided with the notches 8452, 8453, the conductive pins 8421 can be placed on the first extension circuit board 845 by means of solder balls. While the notches 8452 and 8453 are electrically connected to the first extension circuit board 845, the increase in the size of the periscope camera module 81 is avoided, and welding is also convenient.
  • one conductive pin 8421 is provided on the upper part of the outer side wall of the frame 833 to form an upper pin; the other conductive pin 8422 is provided on the frame 833 The lower part of the outer side wall to form the lower pin.
  • the first extension circuit board 845 of the circuit board assembly 840 is provided with an upper notch 8452 and a lower notch 8453, and the upper notch 8452 and the lower notch 8453 of the first extension circuit board 845 correspond to the respective The upper pins and the lower pins on the frame 833, so that the conductive pins 8421 are respectively soldered to the first extension circuit board 845, thereby integrally electrically connecting the light quantity adjustment assembly 830
  • the first extension circuit board 845 is used to obtain power from the first extension circuit board 845 to adjust the amount of light input.
  • the upper notch 8452 and the lower notch 8453 are provided on the first extension circuit board 845 of the present invention, which not only facilitates the welding of the conductive pins 8421, but also helps reduce the Installation space for the periscope camera module 81.
  • FIGS. 14 and 15 show a modified implementation of the periscope camera module 81 according to the above-mentioned second embodiment of the present invention, wherein the conductive pin 8421 is removed from the light quantity adjustment component 830.
  • the side walls 8302 extend side by side to the first extension circuit board 845 so as to weld the conductive pins 8421 to the first extension circuit board 845.
  • the conductive pins 8421 are electrically connected to the light quantity adjustment component 830, wherein the conductive pins 8421 extend side by side outward to protrude from the light quantity adjustment component 830
  • the height of the second circuit board 844 of the circuit board assembly 840 of the periscope camera module 81 of the present invention is substantially equal to the height of the periscope camera module 81.
  • the connecting soft board 8470 used to connect the connector 847 and the second circuit board 844 does not protrude from the side surface of the periscope camera module 81, the result is that the connecting soft board 8470 used to connect the connector 847 and the second circuit board 844 The bending angle of the connecting soft board 8470 of the second circuit board 844 is too large, which may easily cause damage to the circuit elements of the connecting soft board 8470.
  • FIGS. 16 to 18 show a second modified implementation of the periscope camera module according to the above-mentioned second embodiment of the present invention.
  • the difference between the periscope camera module 81 according to the second modified embodiment of the present invention is: the circuit board assembly 840 further includes a second extension Circuit board 848 and a second flexible board 849, wherein the second flexible board 849 electrically connects the second extension circuit board 848 to the second circuit board 844 in a bendable manner, and the first flexible board 846 electrically connects the first extension circuit board 848 to the second extension circuit board 848 in a bendable manner.
  • the second extension circuit board 848 is stacked on the second circuit board 844, and the height of the second extension circuit board 848 is smaller than the height of the second circuit board 844, wherein the connector 847 is electrically connected to the second extension circuit board 848 in the height direction of the second extension circuit board 848, so as to electrically connect the circuit board assembly 840 to the main board of the electronic device through the connector 847.
  • the height of the second extension circuit board 848 is smaller than the height of the second circuit board 844 (as shown in FIG. 18), so that the second extension circuit board 848 and the first A height difference is formed between the two circuit boards 844, so that the connection soft board 8470 connected to the connector 847 still has enough space to carry out the operation without protruding from the side of the periscope camera module 81. Bending to reduce the bending angle of the connecting soft board 8470, thereby avoiding the connecting soft board 8470 from being damaged due to the excessive bending angle.
  • the periscope camera module 81 further includes a gasket 860, wherein the gasket 860 is stacked on the second circuit board 844 and the first circuit board 844.
  • the gasket 860 is stacked on the second circuit board 844 and the first circuit board 844.
  • the gasket 860 is made of a metal material, so that the heat of the second circuit board 844 is transferred to the second extension circuit board 848 through the gasket 860, which helps to improve the periscope.
  • the heat dissipation performance of the integrated camera module 81 is made of a metal material, so that the heat of the second circuit board 844 is transferred to the second extension circuit board 848 through the gasket 860, which helps to improve the periscope.
  • the heat dissipation performance of the integrated camera module 81 is made of a metal material, so that the heat of the second circuit board 844 is transferred to the second extension circuit board 848 through the gasket 860, which helps to improve the periscope.
  • the heat dissipation performance of the integrated camera module 81 is made of a metal material, so that the heat of the second circuit board 844 is transferred to the second extension circuit board 848 through the gasket 860, which helps to improve the periscope. The heat dissipation performance of the integrated camera module 81.
  • the first extension circuit board 845 and the driving circuit board 843 in the circuit board assembly 840 are electrically conductive.
  • the pins are welded together and conducted, and the first extension circuit board 845 and the first circuit board 841 are welded together and conducted through conductive pins, wherein the first extension circuit board 845 and the light quantity
  • the adjusting component 830 is welded together and conducted through the conductive pins 8421, which helps to reduce the installation area of the periscope camera module 81. It can be understood that the first circuit board 841, the driving circuit board 843, the light quantity adjustment assembly 830 and the first extension circuit board 846 in the circuit board assembly 840 are all welded by conductive pins.
  • the electrical connection is connected in one body, which avoids unstable performance caused by an oversized integrated circuit board.
  • the first extension circuit board 846 can be flexibly connected to the second extension circuit board 848 through the first flexible board 847, and the second extension circuit board 848 passes through the second extension circuit board 848.
  • the two soft boards 849 are electrically connected to the second circuit board 844 in a bendable manner, which further utilizes the internal space of the periscope camera module 81 to make the structure of the periscope camera module 81 more compact. The volume of the periscope camera module 81 is reduced.
  • the electrical connection element 842 can be implemented as a conductive pin 8421 electrically connected to the light quantity adjustment component 830, wherein the conductive pin 8421 extends side by side from the bottom wall 8301 of the light quantity adjustment component 830 back to the
  • the driving circuit board 843 is used to directly solder the conductive pins 8421 to the driving circuit board 843, so as to realize the electrical connection between the light quantity adjusting component 830 and the driving circuit board 843.
  • the conductive pins 8421 may also be electrically connected and bonded to the driving circuit board 843 through conductive glue, which is not repeated in the present invention.
  • the conductive pins 8421 extend directly to the bottom of the module assembly 810, and the driving circuit board 843 is just assembled on the module assembly 810. At the bottom, the conductive pins 8421 can directly contact the driving circuit board 843 to electrically connect the driving circuit board 843 by welding, thereby realizing the electrical connection between the driving circuit board 843 and the light quantity adjustment component 830 .
  • the present invention further provides a method for manufacturing a periscope camera module.
  • the manufacturing method of the periscope camera module includes the steps:
  • S8200 Set the light quantity adjusting component and the light turning component in a photosensitive path of a module component, and the light quantity adjusting component is located between the light turning component and the module component for passing through The light of the light quantity adjusting component is received by the module component for imaging;
  • S8300 Electrically connect a circuit board component to the light quantity adjustment component, and is used to provide the power required by the light quantity adjustment component to work.
  • the step S8300 of the manufacturing method of the periscope camera module further includes the steps:
  • a first circuit board is electrically connected to the light steering assembly, so as to electrically connect the first circuit board to an anti-shake driver of the light steering assembly;
  • a second circuit board is electrically connected to the module assembly to electrically connect the second circuit board to a photosensitive chip of a photosensitive assembly of the module assembly;
  • a first extension circuit board is extended to the module assembly and the light steering assembly, and the first extension circuit board is electrically connected to the first circuit board and the second circuit board, respectively; as well as
  • S8340 Electrically connect the light quantity adjustment component to the first circuit board or the first extension circuit board through at least one electrical connection element.
  • the step S8300 of the manufacturing method of the periscope camera module further includes the steps:
  • S8350 Stack a second extension circuit board on the second circuit board, and electrically connect the second extension circuit board to the second circuit board through a second soft board;
  • S8360 Electrically connect the first extension circuit board to the second extension circuit board or the second circuit board through a first flexible board.
  • the step S8300 of the manufacturing method of the periscope camera module further includes the steps:
  • S8370 Stack a gasket between the second circuit board and the second extension circuit board.
  • the manufacturing method of the periscope camera module further includes the steps:
  • S8500 Correspondingly bond the light quantity adjustment component to the module component.
  • the manufacturing method of the periscope camera module may further include the steps :
  • S8610 Pre-position the light quantity adjustment component 830 and the module component 810 so that the center line of the light quantity adjustment component 830 and the module component 810 is along the optical axis of the optical lens 811 of the module component 810 The direction is basically aligned;
  • S8630 Debug the light quantity adjustment component 830, so that the amount of light input controlled by the light quantity adjustment component 830 meets a predetermined requirement.
  • the manufacturing method of the periscope camera module may further include the following steps:
  • S8640 Pre-position the light turning assembly 820, the light quantity adjustment assembly 830, and the module assembly 810 so that the center lines of the light turning assembly 820, the light quantity adjustment assembly 830, and the module assembly 810 Basically aligned;
  • S8650 Adjust the position of the light turning assembly 820 according to the photographing effect of the target plate taken by the photosensitive assembly 812.
  • the light quantity adjustment assembly 830 and the module assembly 810 may be pre-positioned by using a picking tool such as a clamp or a suction cup, so that the light quantity adjustment assembly
  • the center lines of 830 and the module component 810 are substantially aligned (or roughly aligned) along the optical axis direction of the optical lens 811 of the module component 810, so that the photosensitive component 812 can pass through the light quantity adjustment component 830 to shoot To the image of the target plate; and then adjust the position of the light quantity adjustment component 830 according to the image quality (such as the SFR value of the image, etc.), so as to improve the alignment between the light quantity adjustment component 830 and the optical axis of the optical lens 811 Afterwards, debug the control effect of the light quantity adjustment component 830 to test whether the SFR value of the image reaches the expected SFR value during the adjustment of the light quantity adjustment component 830 within the light input adjustment range, which is convenient for assembly
  • the light turning assembly 820 was previously replaced with
  • the light turning component 820, the light quantity adjusting component 830, and the module component 810 can be further pre-positioned so that the light turning component 820, the light turning component 830, and the module component 810 can be further pre-positioned.
  • the center lines of the light quantity adjusting component 830 and the module component 810 are basically aligned; and the position of the light turning component 820 is adjusted according to the image quality (ie, the shooting effect) taken by the photosensitive component 812, so as to further improve the The degree of alignment between the light turning assembly 820 and the optical axis of the optical lens 811; finally, after the adjustment and debugging are completed, the light turning assembly 820, the light quantity adjusting assembly 830 and the module assembly are fixed in position 810, to complete the manufacturing of the periscope camera module 81.
  • the relative position of the light steering component 820 can also be adjusted according to the SFR value of the captured image to test and adjust the anti-shake effect of the periscope camera module 81;
  • the relative position of the optical lens 811 of the module assembly 810 is adjusted according to the SFR value of the captured image to test and adjust the autofocus effect or anti-shake effect of the periscope camera module 81.
  • the steps of the manufacturing method of the periscope camera module of the present invention are drawn in sequence in the figure, the steps of the method of manufacturing the periscope camera module of the present invention are The order is not limited to this, and can also be implemented as other orders.
  • the manufacturing method of the periscope camera module may include only some of the steps shown in FIGS. 20A and 20B, or may include steps other than those shown in FIGS. 20A and 20B. For the other steps, as long as one of the above-mentioned periscope camera modules 81 can be manufactured, the present invention will not be repeated here.
  • the periscope camera module 91 includes a module component 910, a light turning component 920 and a light quantity adjusting component 930.
  • the module assembly 910 includes a lens assembly 911 and a photosensitive assembly 912, wherein the photosensitive assembly 912 has a photosensitive path 9120 for receiving light for imaging along the photosensitive path 9120, and the lens assembly 911 is The light-sensing path 9120 corresponding to the light-sensing component 912 is used to condense the light propagating along the light-sensing path 9120 to be received by the light-sensing component 912.
  • the light turning assembly 920 is correspondingly disposed on the photosensitive path 9120 of the photosensitive assembly 912, and the lens assembly 911 of the module assembly 910 is located between the photosensitive assembly 912 and the light turning assembly 920 Meanwhile, the photosensitive path 9120 of the photosensitive assembly 912 is bent, so that the light traveling along the photosensitive path 9120 is firstly deflected by the light deflecting assembly 920, and then converged by the lens assembly 911. The image is received by the photosensitive component 912.
  • the light quantity adjusting component 930 is assembled at the end 9200 of the light turning component 920, and the light quantity adjusting component 930 is located in the photosensitive path 9120 of the photosensitive component 912 for adjusting the light receiving component 912.
  • the amount of light It can be understood that the end portion 9200 of the light turning assembly 920 includes a light input end 9201 and a light output end 9202 facing the module assembly 910, wherein the light turning assembly 920 is used to make the light sensitive
  • the path 9120 bends and extends from the light inlet end 9201 to the light outlet end 9202, so that the light propagating along the photosensitive path 9120 enters from the light inlet end 9201, and then exits from the light outlet end after turning. 9202 is emitted and then received by the photosensitive component 912 for imaging.
  • the light quantity adjusting component 930 is directly assembled to the end portion 9200 of the light turning component 920, the module components 910, The light turning assembly 920 and the light quantity adjusting assembly 930 are independent of each other, so that when one component fails, it can be replaced separately without affecting other components, which helps reduce the maintenance cost of the periscope camera module 91 .
  • the light quantity adjustment assembly 930 is preferably assembled to the light output end 9201 of the light turning assembly 920, so that the The light quantity adjusting component 930 is located between the light turning component 920 and the module component 910, which helps the periscope camera module 91 of the present invention to make full use of the internal space of the module, so that the internal structure of the module is more Compactness helps reduce the overall size of the module.
  • the light steering assembly 920 of the periscope camera module 91 may include a reflective element 921, a carrier 922, and a housing bracket 923, wherein the housing bracket 923 has a turning channel 9230, wherein the reflective element 921 and the carrier 922 are both disposed in the turning channel 9230 of the housing bracket 923, and the reflective element 921 is carried on the carrier 922 to hold
  • the reflective element 921 is correspondingly located in the photosensitive path 9120 of the module assembly 910.
  • the light quantity adjustment assembly 930 is installed on the housing bracket 923 of the light turning assembly 920, and the light quantity adjustment assembly 930 is located at the light output end 9201 of the light turning assembly 920, so that The light incident from the light input end 9201 is firstly deflected by the reflection of the reflecting element 921, and is emitted from the light output end 9202 after being deflected, and then is adjusted by the light quantity of the light quantity adjustment component 930 to be adjusted by the light quantity adjustment component 930.
  • the photosensitive component 912 of the group component 910 receives imaging.
  • the reflective element 921 of the light turning assembly 920 can be, but is not limited to, implemented as a prism 9210, that is, The prism 9210 has a light incident surface 9211, a light output surface 9212, and a reflective surface 9213, wherein the light incident surface 9211 of the prism 9210 is located at the light incident end 9201 of the light turning assembly 920, and The reflecting surface 9213 of the prism 9210 is disposed on the carrier 922, wherein the light emitting surface 9212 of the prism 9210 is located at the light emitting end 9202 of the light turning component 920, and the light emitting surface 9202 of the prism 9210
  • the light exit surface 9212 faces the module assembly 910, so that the light entering the prism 9210 through the light entrance surface 9211 is first reflected by the reflective surface 9213 to be deflected, and then exits the light exit surface 9212.
  • the prism 9210 propagates along the photosensitive path 9120, and then is received by the module assembly 910 for imaging.
  • the reflective element 921 of the light turning assembly 920 can also be implemented as a reflective plane mirror, waveguide and other optical elements, or the reflective element 921 can also be replaced by a refractive element. As long as the propagation direction of the light can be changed, this will not be repeated in the present invention.
  • the light incident surface 9211 of the prism 9210 is perpendicular to the light exit surface 9212 of the prism 9210, so that the prism 9210 is implemented as a right-angle prism, so that the light incident surface 9211 is perpendicular to the light.
  • the light entering the prism 9210 is first reflected by the reflecting surface 9213 to turn 990°, and then exits the prism 9210 perpendicularly through the light exit surface 9212 to propagate along the photosensitive path 9120, and then be captured by the prism 9210.
  • the module component 910 is received for imaging.
  • the photosensitive path 9120 of the photosensitive component 912 of the module assembly 910 is respectively perpendicular to the light incident surface 9211 and the light exit surface 9212 of the prism 9210 before and after turning, so that it is along the photosensitive path 9120.
  • the light propagating through the path 9120 is reflected by the prism 9210 to be turned and then received by the photosensitive component 912 of the module component 910 for imaging.
  • the prism 9210 is completely contained in the housing support 923, that is, the light incident surface 9211 and the light output surface 9212 of the prism 9210 are both located at The inside of the turning channel 9230 of the housing bracket 923 is used to protect the prism 9210 and reduce wear.
  • the light steering assembly 920 of the periscope camera module 91 may further include an anti-shake driver 924, wherein the anti-shake driver 924 is disposed in the Between the carrier 922 and the housing bracket 923, the carrier 922 is used to drive the prism 9210 to rotate, so as to change the rotation angle of the prism 9210, so that the light diverted by the prism 9210 can be better Propagation along the photosensitive path 9120 to achieve the anti-shake effect of the periscope camera module 91 is helpful to improve the image quality of the periscope camera module 91.
  • the carrier 922 of the light turning assembly 920 has a bearing surface 9221 and at least one non-bearing surface 9222, wherein the reflective surface 9213 of the prism 9210 is arranged face-to-face on The bearing surface 9221 of the carrier 922, wherein the anti-shake driver 924 is arranged between the non-bearing surface 9222 of the carrier 922 and the inner wall surface of the housing bracket 923 for driving the carrier 922 drives the prism 9210 to rotate, thereby realizing the anti-shake function of the periscope camera module 91.
  • the anti-shake driver 924 may include, but is not limited to, a magnet 9241 and a coil 9242, wherein the magnet 9241 is disposed on the non-bearing surface 9222 of the carrier 922, and The coil 9242 is correspondingly arranged on the inner wall surface of the housing bracket 923, so that the position of the magnet 9241 and the position of the coil 9242 correspond to each other to form an electric motor for driving the
  • the carrier 922 drives the prism 9210 to rotate to achieve an anti-shake effect.
  • the magnet 9241 may also be disposed on the inner wall surface of the housing bracket 923, and the coil 9242 may be correspondingly disposed on the non-bearing surface 9222 of the carrier 922 As long as it can form an electric motor, the present invention does not limit the positions of the magnet 9241 and the coil 9242.
  • the periscope camera module 91 may further include an adhesive layer 950, wherein the adhesive layer 950 is located Between the light quantity adjusting component 930 and the light emitting end 9202 of the light turning component 920, the light quantity adjusting component 930 is bonded to the light emitting end 9202 of the light turning component 920 through the adhesive layer 950 The end 9202 enables the light deflected by the light turning component 920 to pass through the light quantity adjusting component 930 after being emitted from the light emitting end 9202, and then enter the photosensitive component 912 to be received and imaged.
  • the periscope camera module 91 can more accurately adjust the amount of light entering the photosensitive component 912 through the light amount adjustment component 930, and then accurately control the amount of light received by the photosensitive component 912, so that the The periscope camera module 91 can not only meet the light input requirements of different shooting modes, but also help improve its own imaging quality.
  • the light quantity adjustment component 930 of the periscope camera module 91 may include, but is not limited to, a plurality of blades 931, a plurality of electric actuators 932, and a frame 933, wherein The blades 931 are partially overlapped and installed on the frame 933 to form an aperture 9300 with adjustable aperture through the plurality of blades 931, wherein the electric actuators 932 are correspondingly arranged on the frame 933, And the electric actuator 932 is connected to the blade 931 in a one-to-one correspondence, and is used to actuate the corresponding blade 931 to adjust the aperture size of the diaphragm hole 9300 (as shown in FIG. 25B and FIG. 25C) ).
  • the electric actuator 932 may include a magnet, a coil, and a lever.
  • the coil generates a magnetic field when energized to drive the magnet to move in a specific direction, thereby driving the lever to move;
  • the shift lever is connected to the blade 931, so that the blade 931 can realize a position change (such as rotating in a specific angle range, etc.) with the movement of the shift lever, thereby changing the aperture of the diaphragm hole 9300 size.
  • the number and shape of the blades 931 in the light quantity adjustment assembly 930 can be arbitrary, as long as the aperture 9300 with a variable aperture can be formed, which is not limited in the present invention.
  • the light quantity adjustment assembly 930 has a square end surface, and the electric actuators 932 are evenly distributed around the frame 933, so that the electric actuators 932 It is connected with the blades 931 in a one-to-one correspondence and is used to actuate the corresponding blades 931 to adjust the aperture size of the diaphragm hole 9300.
  • the end faces mentioned in the present invention are the end faces of the light quantity adjusting assembly 930 corresponding to the light turning assembly 920 and the lens assembly 911 respectively.
  • the light quantity adjustment component 930 may also have a rectangular end surface, so that the shape of the light quantity adjustment component 930 is the same as that of the lens assembly 911.
  • the shapes are matched, that is, the long side and the short side of the light quantity adjusting component 930 are parallel to the long side and the short side of the lens component 911, respectively.
  • the parallel defined in the present invention can be understood to mean that the two can be parallel or have a certain angle, for example, the angle is 90-910°.
  • the electric actuators 932 are symmetrically distributed on the left and right sides of the frame 933, and the electric actuators 932 are used to actuate the blades 931 to adjust the aperture size of the aperture 9300. It is understandable that, in order to ensure that the shape of the light quantity adjustment assembly 930 matches the shape of the lens assembly 911, the electro-actuated circuit in the light quantity adjustment assembly 930 can be designed/adjusted according to the shape of the lens assembly 911.
  • the distribution positions of the actuators 932, for example, the electric actuators 932 may also be symmetrically distributed on the upper and lower sides of the frame 933.
  • the light quantity adjustment component 930 may also have a rectangular-like end surface, for example, a rounded rectangular end surface and so on.
  • the ratio of the width to the length of the rectangular end surface of the light quantity adjustment component 930 is greater than 0.975 and less than 1, that is, as shown in FIG. 25D, the ratio of the width W to the length L of the rectangular end surface (W /L) is between 0.975 and 1.
  • the adhesive layer 950 is located on the surface of the housing bracket 923 of the light turning assembly 920 and the light quantity adjusting assembly 930. Between the frames 933, the light quantity adjusting assembly 930 is firmly attached to the light exit 9202 of the light turning assembly 920. At the same time, the adhesive layer 950 can also be located between the light quantity adjustment assembly 930 and the lens assembly 911 of the module assembly 910 at the same time, so as to turn the light in turn through the adhesive layer 950 The component 920, the light quantity adjusting component 930, and the module component 910 are bonded together so as to be independently assembled into the periscope camera module 91.
  • the adhesive layer 950 may be, but is not limited to, cured by an adhesive such as glue, so as to adjust the light redirecting component 920, the light quantity adjusting component 930, and the module component 910 before curing. Ensure that the center of the aperture 9300 of the light quantity adjustment assembly 930 is aligned or substantially aligned with the photosensitive path 9120 of the photosensitive assembly 912, so that the light deflected by the light redirecting assembly 920 It can pass through the aperture 9300 of the light quantity adjusting component 930 to enter the module component 910 and be received by the photosensitive component 912 for imaging.
  • an adhesive such as glue
  • the adhesive is first applied to the frame 933 of the light quantity adjustment assembly 930, and then the light quantity adjustment assembly 930 is correspondingly placed on the light turning assembly 920
  • the light emitting end 9202 of the light-emitting end 9202, and the adhesive is located between the housing bracket 923 of the light turning assembly 920 and the frame 933 of the light quantity adjusting assembly 930, so that the adhesive is cured
  • the adhesive layer 950 is formed so that the light quantity adjusting component 930 is adhesively fixed to the housing bracket 923 of the light turning component 920 through the adhesive layer 950, so as to connect the light quantity adjusting component 930 It is stably maintained at the light exit end 9202 of the light turning assembly 920; finally, an adhesive is applied between the light quantity adjustment assembly 930 and the module assembly 910 to cure the adhesive
  • the adhesive layer 950 for adhesively fixing the light quantity adjusting component 930 and the module component 910 is formed.
  • FIG. 26 shows a first modified implementation of the periscope camera module 91 according to the above-mentioned embodiment of the present invention, in which the light quantity adjustment component 930 is directly fastened to the light
  • the housing bracket 923 of the turning assembly 920 is located at the light emitting end 9202 of the light turning assembly 920.
  • the present invention directly detachably assembles the light quantity adjusting component 930 to the light turning component 920, which helps to conveniently replace the light turning component 920 or the light quantity adjusting component 930.
  • the light output end 9202 of the light turning assembly 920 is provided with a first buckling structure 9231 located on the housing bracket 923, and the frame 933 of the light quantity adjustment assembly 930 is provided with There is a second buckling structure 9232 that is adapted to the first buckling structure, wherein when the first buckling structure 9231 and the second buckling structure 9232 are buckled together, all The frame 933 of the light quantity adjusting assembly 930 is installed on the housing bracket 923 of the light turning assembly 920, so that the light quantity adjusting assembly 930 is assembled to the light output end 9202 of the light turning assembly 920 .
  • the first buckling structure 9231 is implemented to be disposed on the housing bracket 923
  • the second buckling structure 9232 is implemented as a protrusion provided on the frame 933, so as to insert the protrusion on the frame 933 into the groove on the housing bracket 923 Realize the fixed assembly between the light quantity adjusting component 930 and the light turning component 920, which not only can reduce the size of the periscope camera module 91, but also can simplify the periscope camera module 91 The disassembly and assembly.
  • the adhesive layer 950 of the present invention may also be disposed between the first fastening structure 9231 and the second fastening structure 9232.
  • first apply an adhesive to the first fastening structure 9231 that is, the groove of the housing bracket 923
  • fasten the first fastening structure 9231 and the second fastening structure 9232 To form the adhesive layer 950 between the first buckling structure 9231 and the second buckling structure 9232 after the adhesive is cured, so as to bond the light quantity adjustment component 930 to ground It is fastened to the housing bracket 923 of the light turning assembly 920 so that the light quantity adjusting assembly 930 is firmly fixed to the light turning assembly 920.
  • first buckling structure 9231 and the second buckling structure 9232 in the periscope camera module 91 shown in FIG. 26 are implemented as grooves and protrusions in sequence to achieve
  • the fastening connection between the light quantity adjusting component 930 and the light turning component 920 is only an example, and the fastening method mentioned in the present invention is not limited to this. For example, as shown in FIG.
  • the second modified embodiment of the periscope camera module 91 according to the above-mentioned first embodiment of the present invention is illustrated, wherein the first embodiment of the periscope camera module 91 A buckling structure 9231 is implemented as a protrusion provided on the housing bracket 923, and the second buckling structure 9232 is implemented as a groove provided on the frame 933 to protrude through the housing bracket 923 Inserting into the groove on the frame 933 also realizes the fixed assembly between the light quantity adjusting assembly 930 and the light turning assembly 920.
  • the light quantity adjusting component 930 of the periscope camera module 91 is not limited to be assembled only on the light emitting end 9202 of the light turning component 920, for example, in other examples of the present invention
  • the light quantity adjusting component 930 can also be assembled to the light entrance 9201 of the light turning component 920, so that the light propagating along the photosensitive path 9120 first passes through the light quantity adjusting of the light quantity adjusting component 930. Then, it enters the light turning component 920 from the light input end 9201 to be turned, and then exits from the light output end 9202 to enter the module assembly 910 to be received and imaged by the photosensitive component 912.
  • FIGS. 28A and 28B show a third modified embodiment of the periscope camera module 91 according to the above-mentioned first embodiment of the present invention, wherein the adhesive layer 950 is located in the light turning Between the housing bracket 923 of the assembly 920 and the frame 933 of the light quantity adjustment assembly 930, and the light quantity adjustment assembly 930 is located at the light entrance 9201 of the light turning assembly 920 to reduce the amount of light
  • the adjusting component 930 is firmly attached to the light entrance 9201 of the light turning component 920.
  • the adhesive layer 950 can also be located between the light emitting end 9202 of the light turning assembly 920 and the lens assembly 911 of the module assembly 910 at the same time, so as to pass through the adhesive layer 950.
  • the light quantity adjusting component 930, the light turning component 920, and the module component 910 are bonded together to separately assemble the periscope camera module 91.
  • the light quantity adjustment assembly 930 is independently assembled to the light entrance 9201 of the light turning assembly 920, and the light turning assembly 920 is independently assembled to the module assembly 910.
  • the light steering assembly 920 and the module assembly 910 can be assembled first, so as to ensure the potential of the light steering assembly 920 by adjusting/adjusting the position and posture (ie position and posture) of the light steering assembly
  • the viewing camera module 91 has high imaging quality. Thereafter, in the process of assembling and debugging the light quantity adjustment assembly 930, there is no need to adjust the light steering assembly 920 and the module assembly 910, which is beneficial to reduce debugging variables and improve the debugging efficiency and accuracy of the light quantity adjustment assembly 930. degree.
  • the light quantity adjusting component 930 is independently assembled to the light inlet 9201 of the light turning component 920, which is more helpful for detecting and replacing the light quantity adjusting component 930, so as to reduce repair and maintenance costs.
  • the adhesive layer 950 is disposed between the frame 933 of the light quantity adjustment assembly 930 and the housing bracket 923 of the light turning assembly 920 to pass the The adhesive layer 950 adhesively mounts the light quantity adjusting component 930 to the light entrance 9201 of the light turning component 920.
  • the thickness D of the adhesive layer 950 is implemented as the distance between the frame 933 of the light quantity adjusting assembly 930 and the housing bracket 923 of the light turning assembly 920 so as to pass through the adhesive
  • the thickness D of the junction layer 950 can be used to controllably adjust the distance between the light quantity adjusting component 930 and the light turning component 920, so as to adjust the relative relationship between the light turning component 920 and the light turning component 930. Position so as to realize that the center of the aperture 9300 of the light quantity adjustment assembly 930 is aligned with the center of the light incident surface of the light turning assembly 920.
  • the thickness of the adhesive layer 950 also has It helps to adjust the relative position between the light turning component 920 and the light quantity adjusting component 930, so as to realize the center of the aperture 9300 of the light quantity adjusting component 930 and the light exit surface of the light turning component 920. Align the center.
  • the thickness D of the adhesive layer 950 located between the light quantity adjustment component 930 and the light turning component 920 is between 0.901 mm and 0.92 mm, that is, the thickness of the adhesive layer 950
  • the value range of D is preferably implemented as 0.901mm ⁇ D ⁇ 0.92mm.
  • the thickness D of the adhesive layer 950 located between the light quantity adjustment component 930 and the light turning component 920 is between 0.903 mm and 0.915 mm, that is, the thickness D of the adhesive layer 950 is between 0.903 mm and 0.915 mm.
  • the value range of the thickness D is preferably implemented as 0.903mm ⁇ D ⁇ 0.915mm.
  • FIG. 29 shows a fourth modified implementation of the periscope camera module 91 according to the above-mentioned first embodiment of the present invention, in which the light quantity adjustment component 930 is directly fastened to the light steering
  • the housing bracket 923 of the assembly 920 is located at the light entrance 9201 of the light turning assembly 920.
  • the present invention directly detachably assembles the light quantity adjusting component 930 to the light inlet 9201 of the light turning component 920, which is more conducive to the convenient replacement of the light quantity adjusting component 930.
  • the light inlet end 9201 of the light turning assembly 920 is provided with a first buckling structure 9231 located on the housing bracket 923, and the frame of the light quantity adjusting assembly 930 933 is provided with a second buckling structure 9232 that is adapted to the first buckling structure, wherein when the first buckling structure 9231 and the second buckling structure 9232 are fitly buckled together
  • the frame 933 of the light quantity adjustment assembly 930 is mounted on the housing bracket 923 of the light turning assembly 920, so that the light quantity adjustment assembly 930 is assembled to the entrance of the light turning assembly 920.
  • the first buckling structure 9231 is implemented to be disposed on the housing bracket 923
  • the second buckling structure 9232 is implemented as a protrusion provided on the frame 933, so as to insert the protrusion on the frame 933 into the groove on the housing bracket 923 Realize the fixed assembly between the light quantity adjusting component 930 and the light turning component 920, which not only can reduce the size of the periscope camera module 91, but also can simplify the periscope camera module 91 The disassembly and assembly.
  • first buckling structure 9231 and the second buckling structure 9232 in the periscope camera module 91 shown in FIG. 29 are implemented as grooves and protrusions in sequence to achieve
  • the fastening connection between the light quantity adjusting component 930 and the light turning component 920 is only an example, and the fastening method mentioned in the present invention is not limited to this. For example, as shown in FIG.
  • the fifth modified embodiment of the periscope camera module 91 according to the above-mentioned first embodiment of the present invention is illustrated, wherein the first embodiment of the periscope camera module 91
  • a buckling structure 9231 is implemented as a protrusion provided on the housing bracket 923
  • the second buckling structure 9232 is implemented as a groove provided on the frame 933 to protrude through the housing bracket 923 Inserting into the groove on the frame 933 can also realize the fixed assembly between the light quantity adjusting assembly 930 and the light turning assembly 920.
  • the adhesive layer 950 may be disposed between the light emitting end 9202 of the light turning assembly 920 and the lens assembly 911 of the module assembly 910,
  • the light turning assembly 920 is directly bonded to the module assembly 910 through the adhesive layer 950, so that after the light turning assembly 920 is debugged, the light quantity adjusting assembly 930 is glued. Connected or buckled to the light inlet 9201 of the light turning assembly 920 to complete the assembly of the periscope camera module 91.
  • the light turning assembly 920 can be debugged by the photographing effect of the photosensitive assembly 912 to determine the light output end 9202 of the light turning assembly 920. Whether the center is aligned with the optical center of the optical lens of the module assembly 910; or, testing whether the light turning effect of the light turning assembly 920 can achieve the expected effect, etc.
  • the lens assembly 911 of the module assembly 910 of the periscope camera module 91 may include an optical lens 9111.
  • the focusing driver 913 is driven to move back and forth along the photosensitive path 9100 to realize the focusing function of the periscope camera module 91.
  • the photosensitive assembly 912 of the module assembly 910 may include a photosensitive chip 9121 and a filter element 9122, wherein the filter element 9122 is disposed on the photosensitive chip 9121 and the photosensitive chip 9121.
  • the light entering the module assembly 910 is first collected by the optical lens 9111, and then filtered by the filter element 9122, and then received by the photosensitive chip 9121 for imaging.
  • the light quantity adjustment component 930 of the periscope camera module 91 can be, but is not limited to, implemented such as a voltage-type iris, a liquid crystal-type variable
  • iris diaphragms such as diaphragms or leaf-type iris diaphragms, can be used to change the size of the diaphragm aperture of the iris diaphragm under the action of electric energy, and then adjust the amount of input into the module assembly 910 The amount of light.
  • the periscope camera module 91 of the present invention further includes a circuit board assembly 940, wherein the light quantity adjustment assembly 930 and the light steering assembly 920 have the anti-shake
  • the driver 924, the photosensitive chip 9121 and the focusing driver 9112 in the module assembly 910 can be electrically connected to the circuit board assembly 940, so that the circuit board assembly 940 serves as the light quantity adjustment assembly 930, the anti-shake driver 924 of the light steering assembly 920, and the photosensitive chip 9121 and the focusing driver 9112 in the module assembly 910 provide electrical energy required for operation.
  • the circuit board assembly 940 of the periscope camera module 91 includes a first circuit board 941, a second circuit board 942, a driving circuit board 943, and An extension circuit board 944, wherein the extension circuit board 944 extends from the rear end to the front end of the periscope camera module 91, and the extension circuit board 944 is electrically connected to the first circuit board 941 and the The second circuit board 942 and the driving circuit board 943.
  • the first circuit board 941 is disposed on the housing bracket 923 of the light steering assembly 920, and the first circuit board 941 can be energized connected to the anti-shake driver 924 for providing the anti-shake
  • the power required for the operation of the driver 924 causes the prism 9210 to rotate, thereby achieving optical anti-shake.
  • the second circuit board 942 is disposed on the photosensitive component 912 of the module assembly 910, and is used to mount the photosensitive chip 9121 energized, so that the second circuit board 942 serves as the photosensitive chip 9121 provides power so that the photosensitive chip 9121 can receive light for imaging.
  • the driving circuit board 943 is disposed on the lens assembly 911 of the module assembly 910, and the driving circuit board 943 is electrically connected to the focusing driver 9112 for providing a working place for the focusing driver 9112.
  • the required electrical energy enables the optical lens 9111 to move relative to the photosensitive chip 9121 of the photosensitive component 912 under the driving of the focusing driver 9112 to achieve a focusing function.
  • the light quantity adjustment assembly 930 of the present invention can be, but is not limited to, directly electrically connected to the extension circuit board 944 of the circuit board assembly 940 to provide the light quantity adjustment assembly 930 through the extension circuit board 944 The electrical energy required for work.
  • the light quantity adjustment component 930 may also be directly electrically connected to the first circuit board 941 or the driving circuit board 943, so as to pass through the first circuit board 941 or the driving circuit board 943.
  • the circuit board 943 provides the power required for the operation of the light quantity adjustment component 930.
  • the light quantity adjustment component 930 can be, but not limited to, be welded or conductively bonded to the corresponding circuit board through electrical connection elements such as leads or conductive pins to achieve the effect of electrically connecting. This will not be repeated here.
  • the light quantity adjustment assembly 930 of the present invention needs to be debugged during assembly so that the aperture 9300 of the light quantity adjustment assembly 930 corresponds to the photosensitive path 9120 of the photosensitive assembly 912, and The light quantity adjustment range of the light quantity adjustment component 930 meets the working requirements of the periscope camera module 91 to prevent the light quantity adjustment component 930 from adversely affecting the imaging quality of the periscope camera module 91.
  • FIG. 31A of FIG. 29 of the specification refers to FIG. 31A of FIG. 29 of the specification, according to a second embodiment of the present invention.
  • the camera module is clarified.
  • the difference of the periscope camera module 91 according to the second embodiment of the present invention is that the light quantity adjustment component 930 is directly assembled in the mold.
  • the lens assembly 911 of the assembly assembly 910, and the light quantity adjustment assembly 930 is located in the photosensitive path 9120 of the photosensitive assembly 912, so as to also adjust the light received by the photosensitive assembly 912 through the light quantity adjustment assembly 930 the amount.
  • the light quantity adjustment component 930 is directly adhered to the assembly housing 9113 of the lens assembly 911 through the adhesive layer 950, and the light quantity adjustment component 930 is located at the Between the optical lens 9111 and the light turning assembly 920, the light propagating along the photosensitive path 9120 is first turned by the light turning assembly 920, then adjusted by the light quantity adjustment assembly 930, and finally passed through the light turning assembly 930. The convergence of the optical lens 9111 is received by the photosensitive chip 9121 of the photosensitive component 912 to form an image.
  • the light quantity adjustment component 930 is directly bonded to the assembly housing 9113 of the lens assembly 911, the light quantity can be adjusted first before the light turning component 920 is assembled.
  • the adjustment assembly 930 is assembled on the assembly housing 9113 of the lens assembly 911 of the module assembly 910, so as to adjust the light quantity adjustment assembly according to the image effect taken by the photosensitive chip 9121 of the photosensitive assembly 912
  • the pose and light quantity adjustment quality of the 930 help reduce the difficulty of debugging the light quantity adjustment component 930 and improve the debugging accuracy of the light quantity adjustment component 930.
  • the light quantity adjustment assembly 930 can be directly replaced with a new light quantity adjustment assembly 930 to avoid disassembling the light steering assembly 920 and simplify the assembly process.
  • the adhesive layer 950 is disposed between the frame 933 of the light quantity adjustment assembly 930 and the assembly housing 9113 of the lens assembly 911 to pass the adhesion
  • the layer 950 adhesively mounts the light quantity adjusting component 930 to the lens component 911.
  • the thickness d of the adhesive layer 950 is implemented as the distance d between the frame 933 of the light quantity adjustment assembly 930 and the assembly housing 9113 of the lens assembly 911 so as to pass through
  • the thickness d of the adhesive layer 950 is used to controllably adjust the distance between the light quantity adjusting component 930 and the lens component 911.
  • the distance between the light quantity adjustment component 930 and the lens component 911 can reduce the "vignetting" phenomenon and achieve image brightness.
  • the image is enlarged, the image is clearer, and the relative position between the light quantity adjustment assembly 930 and the lens assembly 911 can also be adjusted, so that the center of the aperture 9300 of the light quantity adjustment assembly 930 and The optical axis of the optical lens 9111 of the lens assembly 911 is aligned.
  • the thickness d of the adhesive layer 950 located between the light quantity adjustment assembly 930 and the lens assembly 911 is between 0.901 mm and 0.92 mm, that is, the thickness d of the adhesive layer 950
  • the value range of is preferably implemented as 0.901mm ⁇ d ⁇ 0.92mm.
  • the thickness d of the adhesive layer 950 located between the light quantity adjustment assembly 930 and the lens assembly 911 is between 0.903 mm and 0.915 mm, that is, the thickness of the adhesive layer 950
  • the value range of d is preferably implemented as 0.903mm ⁇ d ⁇ 0.915mm.
  • the adhesive layer 950 is correspondingly located on the left and right sides of the assembly housing 9113 of the lens assembly 911 so as to pass through the adhesive layer In 950, the light quantity adjusting assembly 930 is directly bonded to the assembly housing 9113 of the lens assembly 911.
  • the adhesive is first placed on the left and right sides of the assembly housing 9113 in the form of paint, and then the light quantity adjustment assembly 930 is attached to the assembly housing 9113 of the lens assembly 911.
  • the adhesive layer 950 is correspondingly located on the left and right sides and the bottom side of the assembly housing 9113 of the lens assembly 911 so as to pass through the
  • the adhesive layer 950 firmly adheres the light quantity adjustment assembly 930 to the assembly housing 9113 of the lens assembly 911.
  • the adhesive is first placed on the left and right sides and bottom side of the assembly housing 9113 in the form of paint, and then the light quantity adjustment assembly 930 is attached to the assembly of the lens assembly 911 correspondingly.
  • Body shell 9113 so that after the adhesive is cured, the adhesive layer 950 on the left and right sides and the bottom side of the assembled body shell 9113 is formed, which helps to increase the adhesion of the adhesive layer 950.
  • the contact area further enhances the bonding strength of the light quantity adjusting component 930 and the lens component 911.
  • the adhesive layer 950 correspondingly located on the left and right sides and the bottom side of the assembly housing 9113 of the lens assembly 911 also helps to reduce the thickness of the periscope camera module 91.
  • FIG. 32 shows a first modified implementation of the periscope camera module 91 according to the above-mentioned second embodiment of the present invention, in which the light quantity adjustment component 930 is directly fastened to The assembly housing 9113 of the lens assembly 911 and the light quantity adjustment assembly 930 are located between the optical lens 9111 and the light steering assembly 920.
  • the present invention directly detachably assembles the light quantity adjustment assembly 930 to the assembly housing 9113 of the lens assembly 911, which is more helpful to reduce the difficulty of debugging and replacement of the light quantity adjustment assembly 930.
  • the assembly housing 9113 of the lens assembly 911 is provided with a first buckling structure 9231
  • the frame 933 of the light quantity adjustment assembly 930 is provided with a connection with the first The second buckling structure 9232 to which the buckling structure 9231 is matched, wherein when the first buckling structure 9231 and the second buckling structure 9232 are fitly buckled together, the light quantity adjustment assembly 930
  • the frame 933 is mounted on the assembly housing 9113 of the lens assembly 911, and the light quantity adjustment assembly 930 is detachably assembled to the assembly housing 9113 of the lens assembly 911.
  • the first buckling structure 9231 is implemented as a part of the assembly housing 9113.
  • Groove, and the second buckling structure 9232 is implemented as a protrusion provided on the frame 933, so as to insert the protrusion on the frame 933 into the groove on the assembly housing 9113 Realize the fixed assembly between the light quantity adjusting component 930 and the lens component 911 of the module component 910, which can not only reduce the size of the periscope camera module 91, but also simplify the potential Disassembly and assembly of the viewing camera module 91.
  • first buckling structure 9231 and the second buckling structure 9232 in the periscope camera module 91 shown in FIG. 32 are implemented as grooves and protrusions in sequence to achieve
  • the buckling connection between the light quantity adjusting component 930 and the lens component 911 is only an example, and the buckling method mentioned in the present invention is not limited to this. For example, as shown in FIG.
  • a second modified embodiment of the periscope camera module 91 according to the above-mentioned second embodiment of the present invention is illustrated, wherein the first embodiment of the periscope camera module 91
  • a fastening structure 9231 is implemented as a protrusion provided on the assembly housing 9113
  • the second fastening structure 9232 is implemented as a groove provided on the frame 933 to pass through the assembly housing 9113
  • the upper protrusion is inserted into the groove on the frame 933, which can also realize the fixed assembly between the light quantity adjustment assembly 930 and the lens assembly 911.
  • the light quantity adjustment assembly 930 can also be directly welded to the lens assembly 911 of the module assembly 910, so that the light quantity adjustment assembly 930 can be more firmly installed on the lens assembly 911.
  • the lens assembly 911 is not described in detail in the present invention.
  • FIG. 34 shows a third modified implementation of the periscope camera module 91 according to the above-mentioned second embodiment of the present invention, in which the light quantity adjustment assembly 930 is directly assembled to the lens assembly 911.
  • the optical lens 9111 is used to keep the light quantity adjusting component 930 better aligned with the photosensitive path 9120 of the photosensitive component 912.
  • the optical lens 9111 may include a first lens group 91111 and a second lens group 91112, wherein the light quantity adjustment component 930 is disposed in the first lens group 91111 and the The second lens group 91112 is located between the second lens group 91112, and the second lens group 91112 is located between the light quantity adjusting component 930 and the photosensitive component 912, so that the light deflected by the light turning component 920 sequentially passes through the first After a lens group 91111, the light quantity adjusting component 930, and the second lens group 91112, they are received by the photosensitive chip 9121 of the photosensitive component 912 for imaging.
  • the first and second lens groups 91111 of the optical lens 9111 may include one or more lenses for condensing light passing through the optical lens 9111.
  • the optical lens 9111 further includes a lens barrel 91113, wherein the first lens group 91111, the light quantity adjustment assembly 930, and the second lens group 91112 are sequentially assembled in the Inside the lens barrel 91113 so as to maintain the co-optical axis of the first lens group 91111 and the second lens group 91112, and the center of the aperture 9300 of the light quantity adjustment assembly 930 is located in the first lens group 91111 On the optical axis of the second lens group 91112, it helps to improve the imaging quality of the periscope camera module 91.
  • the lens barrel 91113 of the optical lens 9111 is assembled to the focusing driver 9112, so that the lens barrel 91113 is driven by the adjusting driver 9112 to drive the first lens group 91111 and the second lens group 91111.
  • Both the lens group 91112 and the light quantity adjusting component 930 move along the photosensitive path 9120 to prevent the light quantity adjusting component 930 from affecting the focusing effect of the periscope camera module 91.
  • the optical lens 9111 in the periscope camera module 91 shown in FIG. 34 only includes one lens barrel 91113, it is only an example.
  • the lens barrel mentioned in the present invention The number of 91113 is not limited to this.
  • FIG. 35 a fourth modified embodiment of the periscope camera module 91 according to the above-mentioned second embodiment of the present invention is illustrated, wherein the optical system of the periscope camera module 91
  • the lens 9111 may include a first lens barrel 91114 and a second lens barrel 91115, wherein the first lens group 91111 is assembled in the first lens barrel 91114, and the second lens group 91112 is assembled in the The second lens barrel 91115.
  • the light quantity adjustment assembly 930 is assembled between the first lens barrel 91114 and the second lens barrel 91115 to ensure that the light quantity adjustment assembly 930 is located in the first lens group 91111 and the Between the second lens group 91112.
  • the focusing driver 913 of the lens assembly 911 of the present invention can realize the periscope camera module by driving the first lens barrel 91114 and/or the second lens barrel 91115 91's focusing effect.
  • the light quantity adjusting component 930 may be, but not limited to, be mounted on the first lens barrel 91114 and/or the second lens barrel 91115 of the optical lens 9111 by means such as bonding or buckling. The present invention will not be repeated here.
  • the light quantity adjustment assembly 930 may also be separately installed on the first lens barrel 91114, and the first and second lens groups 91111 and 91112 are both located in the light quantity adjustment assembly. Between the component 930 and the photosensitive component 912, the light is adjusted by the light quantity of the light quantity adjustment component 930, and then passes through the first and second lens groups 91111 and 91112 in order to be absorbed by the photosensitive component 912. Receive imaging.
  • FIG. 36 shows a fifth modified implementation of the periscope camera module 91 according to the above-mentioned second embodiment of the present invention, in which the light quantity adjustment assembly 930 and the focus adjustment of the lens assembly 911
  • the driver 9112 is integrally formed, that is to say, the light quantity adjustment component 930 and the lens assembly 911 are integrally connected to form a driver with the function of adjusting the light input, which can realize the adjustment of the light input while achieving the focusing effect. Effect.
  • the focusing driver 9112 of the present invention may include a driving motor and a driving housing.
  • the drive motor may include a magnet and a coil, wherein the magnet is mounted on the barrel of the optical lens 9111, wherein the coil is mounted on the drive housing, and the position of the magnet and the The positions of the coils correspond to each other.
  • the drive housing has a groove hole for installing the optical lens 9111.
  • the drive motor can be, but is not limited to, implemented as a voice coil motor or a piezoelectric motor.
  • the coil can also be mounted on the barrel of the optical lens 9111, and the magnet can be mounted on the drive housing.
  • the frame 933 of the light quantity adjustment assembly 930 is integrally connected to the drive housing of the focus driver 9112, so that the light quantity adjustment assembly 930 and The focusing driver 9112 has an integrated structure.
  • the light quantity adjusting component 930 is integrally installed on the focusing driver 9112 to maximize the connection strength between the light quantity adjusting component 930 and the focusing driver 9112.
  • the light quantity adjusting component 930 may also be installed on the driving housing of the focusing driver 9112 by means of bonding and/or buckling.
  • the light quantity adjustment assembly 930 and the light quantity adjustment assembly 930 can be pre-positioned by a picking tool such as a clamp or a suction cup.
  • the module assembly 910 is such that the center line of the aperture 9300 of the light quantity adjustment assembly 930 is substantially aligned with the optical axis of the optical lens 9111 of the lens assembly 911 of the module assembly 910 ( Or roughly aligned), so that the light-sensing component 912 can capture the image of the target plate through the light-quantity adjustment component 930; and then adjust the light-quantity adjustment component 930 according to the image quality (such as the SFR value of the image, etc.) Position, so as to improve the degree of alignment between the light quantity adjustment component 930 and the optical axis of the optical lens 9111; then, adjust the control effect of the light quantity adjustment component 930 to test the light quantity adjustment component 930 in the light input adjustment range In the process of internal adjustment, whether the SFR value of the image reaches the expected SFR value, it is convenient to replace the light quantity adjustment assembly 930 that fails the test before assembling the light steering assembly 920.
  • the light turning component 920 can be further pre-positioned so that the center lines of the light turning component 920, the light quantity adjusting component 930, and the module component 910 And adjust the position of the light turning assembly 920 according to the quality of the image taken by the photosensitive assembly 912 (ie, the photographing effect), so as to further improve the center of the light output end 9201 of the light turning assembly 920 and the The degree of alignment between the optical axes of the optical lens 9111; finally, after the adjustment and debugging are completed, positionally fix the light steering assembly 920, the light quantity adjustment assembly 930, and the module assembly 910 to complete the Manufacture of periscope camera module 91.
  • the relative position of the light steering assembly 920 can also be adjusted according to the SFR value of the captured image to test and adjust the anti-shake effect of the periscope camera module 91;
  • the relative position of the optical lens 911 of the module assembly 910 is adjusted according to the SFR value of the captured image to test and adjust the autofocus effect or anti-shake effect of the periscope camera module 91.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Endoscopes (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Studio Devices (AREA)

Abstract

本申请公开了一种潜望式摄像模组及其制造方法。该潜望式摄像模组包括一模组组件、一光转向组件、一光量调节组件以及一线路板组件。该模组组件具有一感光路径。该光转向组件被对应地设置于该模组组件的该感光路径,并且该光转向组件具有一进光端和一面向该模组组件的出光端,其中该光转向组件用于将从该进光端射入的光线转向以从该出光端射出,并沿着该感光路径传播以被该模组组件接收以成像。该光量调节组件被组装于该光转向组件的该出光端,以位于该光转向组件和该模组组件之间,用于调节进入该模组组件的光线量。所述线路板组件被设置以电连接于所述光量调节组件,用于为所述光量调节组件提供工作所需的电能。

Description

潜望式摄像模组及其制造方法 技术领域
本发明涉及摄像模组技术领域,尤其是涉及一潜望式摄像模组及其制造方法。
背景技术
近年来,人们对于便携式电子设备(比如平板电脑、智能手机等等)的摄像功能需求仍在快速增加,电子设备所配置的摄像模组逐渐实现了背景虚化、夜间拍摄、双摄变焦等诸多功能。特别地,由于潜望式摄像模组的应用,双摄变焦的能力正在逐渐增加,例如其光学变焦能力已经由2倍变焦提升至3倍变焦,甚至是5倍变焦。换言之,潜望式摄像模组极大地改变了人们对便携式电子设备(例如智能手机)的摄影能力的认知,具有广阔的市场前景。
众所周知,摄像模组拍摄图像质量的好坏与摄像模组的进光量有密切的联系,而摄像模组的进光量通常由设置在摄像模组上的光圈来控制,并且光圈(孔径)越大,摄像模组的进光量也就越大。例如,如图1所示,现有的潜望式摄像模组1P包括感光组件11P和镜筒单元12P,其中该镜筒单元12P包括透镜组121P、棱镜122P以及液晶调光装置123P,其中该透镜组121P和该棱镜122P依次被设置于该感光组件11P的感光路径,并且该透镜组121P位于该棱镜122P和该感光组件11P之间,其中该液晶调光装置123P被安装至该棱镜122P的斜面,用于在施加电压的作用下,改变液晶分子的取向,进而改变该液晶调光装置123P的透光率。换言之,进入该棱镜122P的光线会先通过该棱镜122P进入该液晶调光装置123P,再在该液晶调光装置123P处发生反射,使得被反射回的光线穿过该棱镜122P和该透镜组121P以被该感光组件11P接收成像。此时,在液晶层电压的驱动下调节液晶分子的取向,以改变经由该液晶调光装置123P反射回来的光线量,使得穿过该棱镜122P和该透镜组121P以被该感光组件11P接收的光线量得以改变,从而改变该潜望式摄像模组1P的进光量。
然而,在该现有的潜望式摄像模组1P调节进光量的过程中,光线经过 多次反射和/或折射,并且进出多个界面(如该液晶调光装置与该棱镜之间的界面等等),这将造成光能损失,会导致成像时的光量不足。此外,该液晶调光装置123P难以被组装于该棱镜122P的斜面,导致该现有的潜望式摄像模组1P的组装成本较高。
发明内容
本发明的一优势在于提供一潜望式摄像模组及其制造方法,其能够使结构紧凑,有助于减小模组的整体尺寸。
本发明的另一优势在于提供一潜望式摄像模组及其制造方法,其中,在本发明的一实施例中,所述潜望式摄像模组的光量调节组件被设置于光转向组件的出光端,有助于降低所述潜望式摄像模组的组装难度。
本发明的另一优势在于提供一潜望式摄像模组及其制造方法,其中,在本发明的一实施例中,所述潜望式摄像模组的光量调节组件被设置于模组组件,有助于降低所述潜望式摄像模组的组装难度,以便可以在组装时对光量调节组件进行调试。
本发明的另一优势在于提供一潜望式摄像模组及其制造方法,其中,在本发明的一实施例中,所述潜望式摄像模组将所述光量调节组件直接粘接或卡合于所述光转向组件的外壳支架,以降低模组的组装难度,提高模组的内部空间利用率,有助于减小所述潜望式摄像模组的尺寸。
本发明的另一优势在于提供一潜望式摄像模组及其制造方法,其中,在本发明的一实施例中,所述潜望式摄像模组采用分体式线路板进行电控制,避免一体式线路板因过大造成的性能不稳定。
本发明的另一优势在于提供一潜望式摄像模组及其制造方法,其中,在本发明的一实施例中,所述潜望式摄像模组能够将背景虚化和多倍远景拍摄的功能集合于一体,并可切换使用。
本发明的另一优势在于提供一潜望式摄像模组及其制造方法,其中,在本发明的一实施例中,所述潜望式摄像模组能够避免软板因弯折角度过大而被损坏,有助于提高所述潜望式摄像模组的稳定性能。
本发明的另一优势在于提供一潜望式摄像模组及其制造方法,其中为了达到上述优势,在本发明中不需要采用昂贵的材料或复杂的结构。因此,本发明成功和有效地提供一解决方案,不只提供一种潜望式摄像模组及其制造 方法,同时还增加了所述潜望式摄像模组及其制造方法的实用性和可靠性。
为了实现上述至少一优势或其他优势和目的,本发明提供了一潜望式摄像模组,包括:
一模组组件,其中所述模组组件具有一感光路径;
一光转向组件,其中所述光转向组件被对应地设置于所述模组组件的所述感光路径,并且所述光转向组件具有一进光端和一面向所述模组组件的出光端,其中所述光转向组件用于将从所述进光端射入的光线转向以从所述出光端射出,并沿着所述感光路径传播以被所述模组组件接收以成像;
一光量调节组件,其中所述光量调节组件被组装于所述光转向组件的所述出光端,以位于所述光转向组件和所述模组组件之间,用于调节进入所述模组组件的光线量;以及
一线路板组件,其中所述线路板组件被设置以电连接于所述光量调节组件,用于为所述光量调节组件提供工作所需的电能。
在本发明的一实施例中,所述线路板组件包括一被电连接地设置于所述光转向组件的第一线路板、一被电连接地设置所述模组组件的第二线路板以及一第一延伸线路板,其中所述第一延伸线路板自所述模组组件延伸至所述光转向组件,并且所述第一延伸线路板分别与所述第一线路板和所述第二线路板电连接。
在本发明的一实施例中,所述线路板组件进一步包括至少一电连接元件,其中所述电连接元件将所述第一延伸线路板与所述光量调节组件电连接,用于通过所述第一延伸线路板提供所述光量调节组件工作所需的电能。
在本发明的一实施例中,所述电连接元件为一导电引脚,其中所述导电引脚被电连接地设置于所述光量调节组件,以通过所述导电引脚将所述光量调节组件电连接于所述第一延伸线路板。
在本发明的一实施例中,所述导电引脚自所述光量调节组件的侧壁并排地向外延伸至所述第一延伸线路板,并且所述导电引脚被焊接于所述第一延伸线路板。
在本发明的一实施例中,所述导电引脚被间隔地且电连接地设置于所述光量调节组件的侧壁,其中所述第一延伸线路板设有二缺口,并且所述第一延伸线路板上的所述缺口分别与被设置于所述光量调节组件的所述导电引脚一一对应,以将所述导电引脚焊接于所述第一延伸线路板。
在本发明的一实施例中,所述线路板组件进一步包括至少一电连接元件,其中所述电连接元件将所述第一线路板与所述光量调节组件电连接,用于通过所述第一线路板提供所述光量调节组件工作所需的电能。
在本发明的一实施例中,所述电连接元件为一导电引脚,其中所述导电引脚被电连接地设置于所述光量调节组件,并且所述导电引脚自所述光量调节组件的底壁并排地向前延伸至所述第一线路板,并且所述导电引脚被焊接于所述第一线路板。
在本发明的一实施例中,所述电连接元件包括一引线,其中所述引线的一端电连接于所述第一线路板,并且所述引线的另一端电连接于所述光量调节组件
在本发明的一实施例中,所述线路板组件进一步包括一驱动线路板,其中所述驱动线路板被电连接地设置于所述模组组件的底侧,并且所述驱动线路板电连接于所述第一延伸线路板,其中所述线路板组件进一步包括至少一电连接元件,其中所述电连接元件将所述驱动线路板与所述光量调节组件电连接,用于通过所述驱动线路板提供所述光量调节组件工作所需的电能。
在本发明的一实施例中,所述电连接元件为一导电引脚,其中所述导电引脚被电连接地设置于所述光量调节组件,并且所述导电引脚自所述光量调节组件的底壁并排地向后延伸至所述驱动线路板,并且所述导电引脚被焊接于所述驱动线路板。
在本发明的一实施例中,所述线路板组件进一步包括一第一软板,其中所述第一软板被弯折地电连接于所述第二线路板和所述第一延伸线路板。
在本发明的一实施例中,所述线路板组件进一步包括一第一软板、一第二延伸线路板以及一第二软板,其中所述第二线路板被设置于所述模组组件的后侧,并且所述第二延伸线路板被叠置于所述第二线路板,其中所述第一软板被弯折地电连接于所述第一延伸线路板和所述第二延伸线路板,其中所述第二软板被弯折地电连接于所述第二线路板和所述第二延伸线路板。
在本发明的一实施例中,所述的潜望式摄像模组,进一步包括一垫片,其中所述垫片被叠置于所述第二线路板和所述第二延伸线路板之间,其中所述第二延伸线路板的高度小于所述第二线路板的高度。
在本发明的一实施例中,所述线路板组件进一步包括一连接器和一连接软板,其中所述连接软板在所述第二延伸线路板的高度方向上将所述连接器 电连接于所述第二延伸线路板,并且所述连接器用于电连接电子设备的主板。
在本发明的一实施例中,所述的潜望式摄像模组,进一步包括粘接层,以通过所述粘接层分别将所述光转向组件和所述模组组件粘接于所述光量调节组件。
在本发明的一实施例中,所述光量调节组件被扣合于所述光转向组件的所述出光端。
根据本发明的另一方面,本发明进一步提供了一潜望式摄像模组的制造方法,包括步骤:
组装一光量调节组件于一光转向组件的一出光端,用于使从所述光转向组件的一入光端射入的光线先在经由所述转向组件转向以从所述出光端射出后,再经由所述光量调节组件的调节以改变穿过所述光量调节组件的光线量;
设置所述光量调节组件和所述光转向组件于一模组组件的感光路径,并且所述光量调节组件位于所述光转向组件和所述模组组件之间,用于使穿过所述光量调节组件的光线被所述模组组件接收以成像;以及
将一线路板组件电连接于所述光量调节组件,用于为所述光量调节组件提供工作所需的电能。
在本发明的一实施例中,所述将一线路板组件电连接于所述光量调节组件,用于为所述光转向组件、所述模组组件以及所述光量调节组件提供工作所需的电能的步骤,包括步骤:
电连接地设置一第一线路板于所述光转向组件,以将所述第一线路板电连接于所述光转向组件的一防抖驱动器;
电连接地设置一第二线路板于所述模组组件,以将所述第二线路板电连接于所述模组组件的一感光组件的一感光芯片;
延伸地设置一第一延伸线路板于所述模组组件和所述光转向组件,并且所述第一延伸线路板分别电连接于所述第一线路板和所述第二线路板;以及
藉由至少一电连接元件将所述光量调节组件电连接于所述第一线路板或所述第一延伸线路板。
在本发明的一实施例中,所述将一线路板组件电连接于所述光量调节组件,用于为所述光量调节组件提供工作所需的电能的步骤,进一步包括步骤:
叠置一第二延伸线路板于所述第二线路板,并通过一第二软板将所述第 二延伸线路板电连接于所述第二线路板;
通过一第一软板将所述第一延伸线路板电连接于所述第二延伸线路板或所述第二线路板;以及
叠置一垫片于所述第二线路板和所述第二延伸线路板之间。
在本发明的一实施例中,所述的潜望式摄像模组的制造方法,进一步包括步骤:
粘接或扣合所述光量调节组件于所述光转向组件的所述出光端;和
对应地粘接所述光量调节组件于所述模组组件。
在本发明的一实施例中,所述的潜望式摄像模组的制造方法,进一步包括步骤:
预定位所述光量调节组件和所述模组组件,以使所述光量调节组件和所述模组组件的中心线沿所述模组组件的光学镜头的光轴方向基本对齐;
根据通过所述模组组件的感光组件拍摄一标板的拍摄效果,调整所述光量调节组件的位置;以及
调试所述光量调节组件,以使所述光量调节组件所控制的进光量大小满足预定要求。
在本发明的一实施例中,所述的潜望式摄像模组的制造方法,进一步包括步骤:
预定位所述光转向组件、所述光量调节组件以及所述模组组件,以使所述光转向组件、所述光量调节组件以及所述模组组件的中心线基本对齐;和
根据通过所述感光组件拍摄所述标板的拍摄效果,调整所述光转向组件的位置。
本发明的一优势在于提供一潜望式摄像模组,其能够使结构紧凑,有助于减小模组的整体尺寸。
本发明的另一优势在于提供一潜望式摄像模组,其中,在本发明的一实施例中,所述潜望式摄像模组的光量调节组件被设置于光转向组件,有助于降低所述潜望式摄像模组的组装难度。
本发明的另一优势在于提供一潜望式摄像模组,其中,在本发明的一实施例中,所述潜望式摄像模组的光量调节组件被设置于模组组件,有助于降低所述潜望式摄像模组的组装难度,以便可以在组装时对光量调节组件进行调试。
本发明的另一优势在于提供一潜望式摄像模组,其中,在本发明的一实施例中,所述潜望式摄像模组将所述光量调节组件直接粘接或卡合于所述光转向组件的外壳支架,提高模组的内部空间利用率,有助于减小所述潜望式摄像模组的尺寸。
本发明的另一优势在于提供一潜望式摄像模组,其中,在本发明的一实施例中,所述潜望式摄像模组能够在组装所述光转向组件之前先将所述光量调节组件组装于所述模组组件,以便提前调整和调试所述光量调节组件,有助于提升所述潜望式摄像模组的组装质量。
本发明的另一优势在于提供一潜望式摄像模组,其中,在本发明的一实施例中,所述潜望式摄像模组能够将背景虚化和多倍远景拍摄的功能集合于一体,并可切换使用。
本发明的另一优势在于提供一潜望式摄像模组,其中为了达到上述优势,在本发明中不需要采用昂贵的材料或复杂的结构。因此,本发明成功和有效地提供一解决方案,不只提供一种简单的潜望式摄像模组,同时还增加了所述潜望式摄像模组的实用性和可靠性。
为了实现上述至少一优势或其他优势和目的,本发明提供了一潜望式摄像模组,包括:
一模组组件,其中所述模组组件包括:
一感光组件,其中所述感光组件具有一感光路径;和
一镜头组件,其中所述镜头组件被对应地设置于所述感光组件的所述感光路径;
一光转向组件,其中所述光转向组件被对应地设置于所述感光组件的所述感光路径,并且所述镜头组件位于所述感光组件和所述光转向组件之间;以及
一光量调节组件,其中所述光量调节组件被组装于所述光转向组件的端部,并且所述光量调节组件位于所述感光组件的所述感光路径,用于调节被所述感光组件接收的光线量。
在本发明的一实施例中,所述光转向组件包括一反射元件、一载体以及具有一转向通道的一外壳支架,其中所述反射元件和所述载体均被设置于所述外壳支架的所述转向通道内,并且所述反射元件被承载于所述载体,以保持所述反射元件对应地位于所述感光组件的所述感光路径,其中所述粘接层 被设置于所述光量调节组件和所述光转向组件的所述外壳支架之间,以将所述光量调节组件粘接于所述光转向组件的所述外壳支架。
在本发明的一实施例中,所述光转向组件的所述端部包括一进光端和一出光端,其中所述外壳支架的所述转向通道自所述光转向组件的所述进光端弯折地延伸至所述光转向组件的所述出光端,其中所述光量调节组件被粘接所述外壳支架,并且所述光量调节组件位于所述光转向组件的所述进光端。
在本发明的一实施例中,所述光转向组件的所述端部包括一进光端和一出光端,其中所述外壳支架的所述转向通道自所述光转向组件的所述进光端弯折地延伸至所述光转向组件的所述出光端,其中所述光量调节组件被粘接于所述外壳支架,并且所述光量调节组件位于所述光转向组件的所述出光端和所述模组组件之间。
在本发明的一实施例中,所述光量调节组件被焊接于所述模组组件的所述镜头组件。
在本发明的一实施例中,所述的潜望式摄像模组,进一步包括一粘接层,其中所述粘接层被设置于所述光量调节组件和所述模组组件的所述镜头组件之间,以通过所述粘接层将所述光量调节组件粘接于所述模组组件。
在本发明的一实施例中,所述模组组件的所述镜头组件包括一光学镜头、一调焦驱动器以及一组装体外壳,其中所述光学镜头被可驱动地组装于所述调焦驱动器,并且所述调焦驱动器和所述感光组件均被对应地组装于所述组装体外壳内,其中所述调焦驱动器用于驱动所述光学镜头沿着所述感光路径移动;其中所述光量调节组件通过所述粘接层被直接粘接于所述镜头组件的所述组装体外壳之间,并且所述粘接层的厚度在0.901mm至0.92mm之间。
在本发明的一实施例中,所述粘接层的厚度在0.903mm至0.915mm之间。
在本发明的一实施例中,所述光量调节组件具有长方形端面,并且所述光量调节组件的长边和短边分别平行于所述镜头组件的长边和短边。
在本发明的一实施例中,所述光量调节组件的所述长方形端面的宽度与长度的比值大于0.975且小于1。
在本发明的一实施例中,所述光量调节组件包括对个叶片、多个电致动器以及一框架,其中所述叶片被部分重叠地安装于所述框架,以通过所述叶片形成孔径可调的光阑孔,其中所述电致动器分别被设置于所述框架的左右两侧,用于致动所述叶片以调节所述光阑孔的孔径大小。
在本发明的一实施例中,所述粘接层对应于所述镜头组件的所述组装体外壳的左右两侧和/或底侧。
在本发明的一实施例中,所述光量调节组件被扣合地粘接于所述光转向组件。
在本发明的一实施例中,所述的潜望式摄像模组,进一步包括一线路板组件,其中所述线路板组件电连接于所述光量调节组件,用于为所述光量调节组件提供工作所需的电能。
根据本发明的另一方面,本发明进一步提供了一潜望式摄像模组,包括:
一模组组件,其中所述模组组件包括:
一感光组件,其中所述感光组件具有一感光路径;和
一镜头组件,其中所述镜头组件被对应地设置于所述感光组件的所述感光路径;
一光转向组件,其中所述光转向组件被组装于所述镜头组件,并且所述光转向组件对应于所述感光组件的所述感光路径,以使所述镜头组件位于所述感光组件和所述光转向组件之间;以及
一光量调节组件,其中所述光量调节组件被组装于所述镜头组件,并且所述光量调节组件位于所述感光组件的所述感光路径,用于调节被所述感光组件接收的光线量。
在本发明的一实施例中,所述模组组件的所述镜头组件包括一光学镜头、一调焦驱动器以及一组装体外壳,其中所述光学镜头被可驱动地组装于所述调焦驱动器,并且所述调焦驱动器和所述感光组件均被对应地组装于所述组装体外壳内,其中所述调焦驱动器用于驱动所述光学镜头沿着所述感光路径移动,其中所述光量调节组件被组装于所述镜头组件的所述光学镜头,以保持所述光量调节组件对应于所述感光组件的所述感光路径。
在本发明的一实施例中,所述光学镜头包括一第一透镜组和一第二透镜组,其中所述光量调节组件被设置于所述第一透镜组和所述第二透镜组之间。
在本发明的一实施例中,所述光学镜头进一步包括一镜筒,其中所述第一透镜组、所述光量调节组件以及所述第二透镜组依次被组装于所述镜筒,并且所述第二透镜组位于所述光量调节组件和所述感光组件之间。
在本发明的一实施例中,所述光学镜头进一步包括一第一镜筒和一第二镜筒,其中所述第一透镜组被组装于所述第一镜筒,并且所述第二透镜组被 组装于所述第二镜筒,其中所述光量调节组件被安装于所述第一镜筒和/或所述第二镜筒,并且所述第二透镜组位于所述光量调节组件和所述感光组件之间。
在本发明的一实施例中,所述光量调节组件与所述镜头组件的所述调焦驱动器一体成型,并且所述光学镜头位于所述光量调节组件和所述感光组件之间。
通过对随后的描述和附图的理解,本申请进一步的目的和优势将得以充分体现。
本申请的这些和其它目的、特点和优势,通过下述的详细说明,附图和权利要求得以充分体现。
附图说明
通过结合附图对本申请实施例进行更详细的描述,本申请的上述以及其他目的、特征和优势将变得更加明显。附图用来提供对本申请实施例的进一步理解,并且构成说明书的一部分,与本申请实施例一起用于解释本申请,并不构成对本申请的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1示出了现有技术的潜望式摄像模组的结构示意图。
图2是根据本发明的一第一实施例的一潜望式摄像模组的***示意图。
图3示出了根据本发明的上述第一实施例的所述潜望式摄像模组的立体示意图。
图4示出了根据本发明的上述第一实施例的所述潜望式摄像模组的***示意图。
图5示出了根据本发明的上述第一实施例的所述潜望式摄像模组的结构示意图。
图6示出了根据本发明的上述第一实施例的所述潜望式摄像模组的光转向组件的结构示意图。
图7A示出了根据本发明的上述第一实施例的所述潜望式摄像模组的线路板组件的一个示例。
图7B示出了根据本发明的上述第一实施例的所述潜望式摄像模组的所 述线路板组件的第一示例。
图7C示出了根据本发明的上述第一实施例的所述潜望式摄像模组的所述线路板组件的第二示例。
图8A和图8B示出了根据本发明的上述第一实施例的所述潜望式摄像模组的光量调节组件的结构示意图。
图9示出了根据本发明的上述第一实施例的所述潜望式摄像模组的模组组件的感光组件的结构示意图。
图10示出了根据本发明的上述第一实施例的所述潜望式摄像模组的所述线路板组件的展开示意图。
图11A示出了根据本发明的上述第一实施例的所述潜望式摄像模组的第一变形实施方式。
图11B示出了根据本发明的上述第一实施例的所述潜望式摄像模组的第二变形实施方式。
图12是根据本发明的一第二实施例的一潜望式摄像模组的立体示意图。
图13示出了根据本发明的上述第二实施例的所述潜望式摄像模组的光量调节组件的立体示意图。
图14和图15示出了根据本发明的上述第二实施例的所述潜望式摄像模组的第一变形实施方式。
图16至图18示出了根据本发明的上述第二实施例的所述潜望式摄像模组的第二变形实施方式。
图19是根据本发明的一第三实施例的一潜望式摄像模组的结构示意图。
图20A至图20C示出了根据本发明的一实施例的潜望式摄像模组的制造方法的流程示意图。
图21是根据本发明的一第一实施例的一潜望式摄像模组的***示意图。
图22示出了根据本发明的上述第一实施例的所述潜望式摄像模组的立体示意图。
图23示出了根据本发明的上述第一实施例的所述潜望式摄像模组的结构示意图。
图24示出了根据本发明的上述第一实施例的所述潜望式摄像模组的光转向组件的结构示意图。
图25A示出了根据本发明的上述第一实施例的所述潜望式摄像模组的光 量调节组件的立体示意图。
图25B和图25C分别示出了根据本发明的上述第一实施例的所述光量调节组件的状态示意图。
图25D和图25E示出了根据本发明的上述第一实施例的所述光量调节组件的一个变形实施方式。
图26示出了根据本发明的上述第一实施例的所述潜望式摄像模组的第一变形实施方式。
图27示出了根据本发明的上述第一实施例的所述潜望式摄像模组的第二变形实施方式。
图28A和图28B示出了根据本发明的上述第一实施例的所述潜望式摄像模组的第三变形实施方式。
图29示出了根据本发明的上述第一实施例的所述潜望式摄像模组的第四变形实施方式。
图30示出了根据本发明的上述第一实施例的所述潜望式摄像模组的第五变形实施方式。
图31A是根据本发明的一第二实施例的一潜望式摄像模组的结构示意图。
图31B示出了根据本发明的上述第二实施例的所述潜望式摄像模组中粘接层的位置分布的一个示例。
图31C示出了根据本发明的上述第二实施例的所述潜望式摄像模组中所述粘接层的位置分布的另一示例。
图32示出了根据本发明的上述第二实施例的所述潜望式摄像模组的第一变形实施方式。
图33示出了根据本发明的上述第二实施例的所述潜望式摄像模组的第二变形实施方式。
图34示出了根据本发明的上述第二实施例的所述潜望式摄像模组的第三变形实施方式。
图35示出了根据本发明的上述第二实施例的所述潜望式摄像模组的第四变形实施方式。
图36示出了根据本发明的上述第二实施例的所述潜望式摄像模组的第五变形实施方式。
具体实施方式
下面,将参考附图详细地描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
在本发明中,权利要求和说明书中术语“一”应理解为“一个或多个”,即在一个实施例,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个。除非在本发明的揭露中明确示意该元件的数量只有一个,否则术语“一”并不能理解为唯一或单一,术语“一”不能理解为对数量的限制。
在本发明的描述中,需要理解的是,属于“第一”、“第二”等仅用于描述目的,而不能理解为指示或者暗示相对重要性。本发明的描述中,需要说明的是,除非另有明确的规定和限定,属于“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接或者一体地连接;可以是机械连接,也可以是电连接;可以是直接连接,也可以是通过媒介间接连结。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实 施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
潜望式摄像模组可实现长焦拍摄,并且模组体积较小,特别符合当下更小型化发展的趋势。本发明将光量调节组件(如可变光圈)与潜望式摄像模组进行匹配地设计,不仅可以实现大光圈加长焦的拍摄模式,以达到人像拍摄时背景虚化的效果,使人像更加突出;而且还可以实现小光圈加长焦的拍摄模式,以实现多倍远景拍摄。因此,本发明的所述潜望式摄像模组能够将背景虚化拍摄功能和多倍远景拍摄功能结合于一个摄像模组中,并可以切换使用。
参考说明书附图之图2至图6所示,根据本发明的一第一实施例的一潜望式摄像模组被阐明。具体地,如图2和图3所示,所述潜望式摄像模组81包括一模组组件810、一光转向组件820、一光量调节组件830以及一线路板组件840。所述模组组件810具有一感光路径8100,用于沿着所述感光路径8100接收光线以成像。所述光转向组件820被对应地设置于所述模组组件810的所述感光路径8100,并且所述光转向组件820具有一进光端8201和一面向所述模组组件810的出光端8202,其中所述光转向组件820用于将从所述进光端8201射入的光线转向以从所述出光端8202射出,使得从所述出光端8202射出的光线沿着所述感光路径8100传播以被所述模组组件810接收成像。所述光量调节组件830被组装于所述光转向组件820的所述出光端8202,以位于所述光转向组件820和所述模组组件810之间,用于调节进入所述模组组件810的光线量。可以理解的是,所述光量调节组件830被组装于所述光转向组件820的所述出光端8202和所述模组组件810之间,使得所述光量调节组件830位于所述光转向组件820和所述模组组件810之间,用于调节经由所述光转向组件820进入所述模组组件810的光线量。
换言之,所述光量调节组件830和所述光转向组件820依次位于所述模组组件810的所述感光路径8100,并且所述光量调节组件830位于所述模组组件810和所述光转向组件820的所述出光端8202之间,使得从所述光转向组件820的所述入光端8201射入的光线先经由所述光转向组件820转向以从所述出光端8202射出,再在经由所述光量调节组件830调节光线量之 后,被所述模组组件810接收以成像。
值得注意的是,正是由于所述光量调节组件830直接被组装于所述光转向组件820的所述出光端8202,因此本发明的所述潜望式摄像模组81能够充分利用模组的内部空间,使得模组内部结构更加紧凑,有助于减小模组的整体尺寸。与此同时,所述潜望式摄像模组81中的所述模组组件810、所述光转向组件820以及所述光量调节组件830各自独立,以便在一个部件出问题时单独进行更换,而不会影响其他部件,有助于降低所述潜望式摄像模组81的维修成本。
更具体地,如图4和图6所示,所述潜望式摄像模组81的所述光转向组件820可以包括一反射元件821、一载体822以及一外壳支架823,其中所述外壳支架823具有一转向通道8230,其中所述反射元件821和所述载体822均被设置于所述外壳支架823的所述转向通道8230内,并且所述反射元件821被承载于所述载体822以保持所述反射元件821对应地位于所述模组组件810的所述感光路径8100,使得所述光转向组件820用于通过所述反射元件821的反射,将从所述进光端8201射入的光线转向以从所述出光端8202射出,使得从所述出光端8202射出的光线沿着所述感光路径8100传播以被所述模组组件810接收成像。
示例性地,在本发明的上述第一实施例中,如图4和图6所示,所述光转向组件820的所述反射元件821可以但不限于被实施为一棱镜8210,也就是说,所述棱镜8210具有一入光面8211、一出光面8212以及一反射面8213,其中所述棱镜8210的所述入光面8211位于所述光转向组件820的所述入光端8201,并且所述棱镜8210的所述反射面8213被设置于所述载体822,其中所述棱镜8210的所述出光面8212位于所述光转向组件820的所述出光端8202,并且所述出光面8212面向所述模组组件810,使得经由所述入光面8211射入所述棱镜8210的光线先经由所述反射面8213的反射以转向后,再经由所述出光面8212射出所述棱镜8210,以沿着所述感光路径8100传播,进而被所述模组组件810接收以成像。当然,在本发明的其他示例中,所述光转向组件820的所述反射元件821还可以被实施为反射平面镜、波导等其他光学元件,或者所述反射元件821也可以被折射元件来替代,只要能够改变光线的传播方向即可,本发明对此不再赘述。
优选地,所述棱镜8210的所述入光面8211垂直于所述棱镜8210的所 述出光面8212,以使所述棱镜8210被实施为直角棱镜,使得经由所述入光面8211垂直地射入所述棱镜8210的光线先经由所述反射面8213的反射以转向890°后,再经由所述出光面8212垂直地射出所述棱镜8210,以沿着所述感光路径8100传播,进而被所述模组组件810接收以成像。换言之,所述棱镜8210的所述入光面8211平行于所述模组组件810的所述感光路径8100,并且所述棱镜8210的所述出光面8212垂直于所述模组组件810的所述感光路径8100,使得垂直于所述感光路径8100传播的光线在经由所述棱镜8210反射后能够沿着所述感光路径8100传播,以被所述模组组件810接收成像。
更优选地,如图6所示,所述棱镜8210被完整地容纳于所述外壳支架823之内,也就是说,所述棱镜8210的所述入光面8211和所述出光面8212均位于所述外壳支架823的所述转向通道8230之内,以保护所述棱镜8210,减少磨损。
值得一提的是,如图6所示,所述潜望式摄像模组81的所述光转向组件820还可以进一步包括一防抖驱动器824,其中所述防抖驱动器824被设置于所述载体822和所述外壳支架823之间,用于驱动所述载体822以带动所述棱镜8210进行转动,以改变所述棱镜8210的转动角度,使得经由所述棱镜8210转向的光线能够更好地沿着所述感光路径8100传播,以实现所述潜望式摄像模组81的防抖效果,有助于提升所述潜望式摄像模组81的图像质量。
具体地,如图6所示,所述光转向组件820的所述载体822具有一承载面8221和至少一非承载面8222,其中所述棱镜8210的所述反射面8213被面对面地设置于所述载体822的所述承载面8221,其中所述防抖驱动器824被设置于所述载体822的所述非承载面8222和所述外壳支架823的内壁面之间,用于驱动所述载体822以带动所述棱镜8210进行转动,进而实现所述潜望式摄像模组81的防抖功能。
示例性地,如图6所示,所述防抖驱动器824可以但不限于包括一磁石8241和一线圈8242,其中所述磁石8241被设置于所述载体822的所述非承载面8222,并且所述线圈8242被对应地设置于所述外壳支架823的内壁面,使得所述磁石8241的位置和所述线圈8242的位置相互对应,以形成电动马达,用于在电力作用下,驱动所述载体822带动所述棱镜8210转动以实现 防抖效果。当然,在本发明的其他示例中,所述磁石8241也可以被设置于所述外壳支架823的内壁面,而所述线圈8242可以被对应地设置于所述载体822的所述非承载面8222,只要能够形成电动马达即可,本发明对所述磁石8241和所述线圈8242的位置不作限定。
在本发明的上述第一实施例中,如图4和图5所示,所述潜望式摄像模组81的所述线路板组件840包括一第一线路板841,其中所述第一线路板841被设置于所述光转向组件820的所述外壳支架823,并且所述第一线路板841可通电地连接于所述防抖驱动器824,用于提供所述防抖驱动器824工作所需的电能,使得所述棱镜8210旋转,从而达到光学防抖。
示例性地,如图3所示,所述线路板组件840的所述第一线路板841被贴附于所述光转向组件820的所述外壳支架823的外侧且位于所述光转向组件820的底侧,其中所述第一线路板841直接通过引线(图中未示出)电连接于所述防抖驱动器824,以便实现所述潜望式摄像模组81的防抖功能。可以理解的是,所述第一线路板841还可以通过导电引脚来电连接所述防抖驱动器824。此外,所述线路板组件840的所述第一线路板841可以被实施为硬板PCB、软板FPC或软硬结合板,本发明对所述第一线路板841的类型不做限制。可以理解的是,本发明所提及的底侧被定义为背向所述光转向组件820的所述进光端8201的一侧,并且本发明所提及的前和后分别对应于所述光转向组件820和所述模组组件810,也就是说,光线沿着所述模组组件810的感光路径由前向后传播以被所述模组组件810接收成像。
值得注意的是,根据本发明的上述第一实施例的所述潜望式摄像模组81的所述光量调节组件830可以但不限于被实施为诸如电压式可变光阑、液晶式可变光阑或叶片式可变光阑等等各种类型的可变光阑,以在电能的作用下改变所述可变光阑的光阑孔的大小,进而调节进入所述模组组件810的光线量。因此,本发明的所述潜望式摄像模组81的所述光量调节组件830可通电地连接于所述线路板组件840,以通过所述线路板组件840为所述光量调节组件830提供电能,使得所述光量调节组件830在电能的作用下调节进入所述模组组件810的光线量。
更具体地,如图4和图5所示,所述线路板组件840可以进一步包括至少一电连接元件842,其中所述电连接元件842将所述光量调节组件830与所述第一线路板841可通电地连接在一起,以通过所述第一线路板841和所 述电连接元件842为所述光量调节组件830传输电能。
在本发明的一示例中,如图4和图7A所示,所述电连接元件842可以被实施为一被电连接地设置于所述光量调节组件830的导电引脚8421,其中所述导电引脚8421自所述光量调节组件830的底壁8301并排地向前延伸至所述第一线路板841,以将所述导电引脚8421直接焊接于所述第一线路板841,从而实现所述光量调节组件830和所述第一线路板841之间的电连接。可以理解的是,在本发明的其他示例中,所述导电引脚8421也可以通过导电胶被电连接地粘接于所述第一线路板841,本发明对此不再赘述。
值得注意的是,由于所述导电引脚8421直接延伸至所述光转向组件820的底部,而所述第一线路板841刚好被组装于所述光转向组件820的所述底部,因此所述导电引脚8421能够直接接触所述第一线路板841以通过焊接的方式来电连接所述第一线路板841,进而实现所述第一线路板841和所述光量调节组件830的电连接。
当然,在本发明的第一变形示例中,如图7B所示,所述电连接元件842也可以被实施为一引线8422,其中所述引线8422的一端电连接于所述第一线路板841,并且所述引线8422的另一端电连接于所述光量调节组件830,以通过所述引线8422将位于所述光转向组件820的所述出光端8202的所述光量调节组件830可通电地连接于所述第一线路板841。
又如,在本发明的第二变形示例中,如图7C所示,所述电连接元件842可以包括所述导电引脚8421和所述引线8422,其中所述导电引脚8421被电连接地设置于所述光量调节组件830,其中所述引线8422的一端电连接于所述第一线路板841,并且所述引线8422的另一端电连接于所述导电引脚8421,以通过所述导电引脚8421与所述引线8422之间的结合,将所述光量调节组件830可通电地连接于所述第一线路板841,便于拆卸所述光量调节组件830。
值得一提的是,根据本发明的上述第一实施例,如图2和图5所示,所述潜望式摄像模组81可以进一步包括粘接层850,其中所述粘接层850位于所述光量调节组件830和所述光转向组件820的所述出光端8202之间,以通过所述粘接层850将所述光量调节组件830粘合于所述光转向组件820的所述出光端8202,使得经由所述光转向组件820转向后的光线在从所述出光端8202射出后,先穿过所述光量调节组件830,再进入所述模组组件810以被接收成像。这样所述潜望式摄像模组81能够通过所述光量调节组件830 较准确地调节进入所述模组组件810的光线量,使得所述潜望式摄像模组81能够在满足不同拍摄模式的进光量需求的同时,也有助于提高自身的成像品质。
示例性地,如图8A和图8B所示,所述潜望式摄像模组81的所述光量调节组件830可以但不限于包括多个叶片831、多个电致动器832以及一框架833,其中所述叶片831被部分重叠地安装于所述框架833,以通过所述多个叶片831形成孔径可调的光阑孔8300,其中所述电致动器832被对应地设置于所述框架833,并且所述电致动器832与所述叶片831一一对应地连接,用于致动相应的所述叶片831,以调节所述光阑孔8300的孔径大小。可以理解的是,所述电致动器832可以包括磁铁、线圈和拨杆,所述线圈在通电时产生磁场,以驱动所述磁铁在特定方向上运动,从而带动所述拨杆移动;所述拨杆与所述叶片831连接,使得所述叶片831能够随着所述拨杆的移动而实现位置变化(如在特定的角度范围内旋转等),进而改变所述光阑孔8300的孔径大小。此外,所述光量调节组件830中的所述叶片831的数量和形状可以为任意的,只要能够形成孔径可变的所述光阑孔8300即可,本发明对此不作限制。
值得注意的是,在本发明的上述第一实施例中,所述粘接层850位于所述光转向组件820的所述外壳支架823与所述光量调节组件830的所述框架833之间,以将所述光量调节组件830牢靠地贴附于所述光转向组件820的所述出光端8202。与此同时,所述粘接层850还可以同时位于所述光量调节组件830和所述模组组件810之间,从而通过所述粘接层850依次将所述光转向组件820、所述光量调节组件830以及所述模组组件810粘接在一起,以各自独立地组装成所述潜望式摄像模组81。
特别地,所述粘接层850可以但不限于由诸如胶水等粘接剂固化而成,以便在固化前调整所述光转向组件820、所述光量调节组件830以及所述模组组件810之间的相对位置,确保所述光量调节组件830的所述光阑孔8300的中心与所述模组组件810的所述感光路径8100对齐或基本对齐,使得经由所述光转向组件820转向后的光线能够穿过所述光量调节组件830的所述光阑孔8300,以进入所述模组组件810而被接收成像。
示例性地,在本发明的上述示例中,先在所述光量调节组件830的所述框架833上施涂一圈粘接剂,再将所述光量调节组件830对应地放置于所述 光转向组件820的所述出光端8202,并使所述粘接剂位于所述光转向组件820的所述外壳支架823与所述光量调节组件830的所述框架833之间,以在所述粘接剂固化后形成所述粘接层850,以通过所述粘接层850将所述光量调节组件830粘接地固定于所述光转向组件820的所述出光端8202;最后,再在所述光量调节组件830和所述模组组件810之间施涂粘接剂,以在所述粘接剂固化后形成粘接地固定所述光量调节组件830和所述模组组件810的所述粘接层850。
当然,在本发明的其他示例中,先通过所述粘接层850将所述光量调节组件830与所述模组组件810粘接在一起,并在对所述光量调节组件830进行调试之后,再通过所述粘接层850将所述光转向组件820的所述出光端8202对应地粘接于所述光量调节组件830,以完成所述潜望式摄像模组81的组装。这样,在组装所述光转向组件820之前,就可以先通过镜头和感光芯片的拍照效果来对所述光量调节组件830进行调试,以判断所述光量调节组件830的所述光阑孔8300的中心是否与所述模组组件810的光学镜头的光学中心对齐;或者,测试所述光量调节组件830中的叶片开合对进光量的影响是否能够达到预期效果等等。
根据本发明的上述第一实施例,如图4和图5所示,所述潜望式摄像模组81的所述模组组件810可以包括一光学镜头811、一感光组件812、一调焦驱动器813以及一组装体外壳814,其中所述光学镜头811、所述感光组件812以及所述调焦驱动器813均被组装于所述组装体外壳814内,其中所述光学镜头811被可驱动地设置于所述调焦驱动器813,并且所述调焦驱动器813被对应地设置于所述感光组件812,以使所述光学镜头811被保持于所述感光组件812的感光路径(即所述模组组件810的所述感光路径8100),其中所述调焦驱动器813用于驱动所述光学镜头811在所述感光路经8100上移动,以实现所述潜望式摄像模组81的调焦功能。
更具体地,如图5所示,所述光学镜头811可以包括一镜筒8111和多个镜片8112,其中所述多个镜片8112被共光轴地设置于所述镜筒8111,以通过所述调焦驱动器813来驱动所述镜筒8111移动,进而带动所述镜片8112移动以实现调焦效果。优选地,所述光学镜头811的光轴与所述光转向组件820的所述棱镜8210的所述反射面8213之间的夹角为45°,以便确保所述光量调节组件830的所述光阑孔8300的中心基本重合于所述光学镜头811 的光轴,有助于提升所述潜望式摄像模组81的成像质量。
值得注意的是,在本发明的一示例中,如图5所示,所述调焦驱动器813可以包括一驱动马达8131和一驱动壳体8132。所述驱动马达8131可以包括磁石和线圈,其中所述磁石被安装于所述光学镜头811的所述镜筒8111上,其中所述线圈被安装于所述驱动壳体8132上,并且所述磁石的位置和所述线圈的位置相互对应。所述驱动壳体8131具有一凹槽孔,用于安装所述光学镜头811。可以理解的是,所述驱动马达8131可以但不限于被实施为音圈马达或压电马达。此外,在本发明的其他示例中,也可以将所述线圈安装于所述镜筒8111上,并将所述磁石安装于所述驱动壳体8132上。
特别地,如图3和图5所示,本发明的所述线路板组件840可以包括一驱动线路板843,其中所述驱动线路板843被安装于所述调焦驱动器813的所述驱动壳体8132的外部,并且所述驱动线路板843设有从所述驱动壳体8132的外部水平延伸出引脚,其他元件的线路板可通过所述引脚焊接在一起。当然,所述调焦驱动器813的所述驱动马达8131也可以通过引脚或导线电连接于所述驱动线路板843,以便于从所述驱动线路板843获取电能,使得所述光学镜头811在所述驱动马达8131的驱动下,相对于所述感光组件812进行移动,以实现对焦功能。可以理解的是,所述驱动路板843的种类不是本发明的限制,可以为硬板PCB、软板FPC或软硬结合板。
根据本发明的上述第一实施例,如图3和图9所示,所述模组组件810的所述感光组件812可以包括一感光芯片8121和一滤光元件8122,其中所述滤光元件8122被设置于所述感光芯片8121和所述光学镜头811之间,使得进入所述模组组件810的光线先通过所述光学镜头811的汇聚,再在通过所述滤光元件8122的过滤之后,被所述感光芯片8121接收以成像。
相应地,如图3和图5所示,所述潜望式摄像模组81的所述线路板组件840进一步包括一第二线路板844,其中所述感光组件812的所述感光芯片8121被贴装于所述第二线路板844,并且所述感光芯片8121电连接于所述第二线路板844,以通过所述第二线路板844为所述感光芯片8121提供电能,使得所述感光芯片8121能够接收光线以成像。
示例性地,如图9所示,所述感光组件812还可以进一步包括一支座8123,其中所述滤光元件8122被设置于所述支座8123,并且所述支座8123被对应地设置于所述第二线路板844,以将所述滤光元件8122保持在所述感光芯片 8121和所述光学镜头811之间,使得光线依次通过所述光学镜头811和所述滤光元件8122之后,再被所述感光芯片8121接收成像。
值得一提的是,在本发明的上述第一实施例中,如图3和图10所示,所述潜望式摄像模组81的所述线路板组件840进一步包括一第一延伸线路板845,其中所述第一延伸线路板845自所述模组组件810延伸至所述光转向组件820,并且所述第一延伸线路板845同时电连接于所述第一线路板841、所述驱动线路板843以及所述第二线路板844,以形成分体式导通的所述线路板组件840,便于通过一个连接器就能够为所述线路板组件840中的各部分线路板提供电能。换言之,所述第一延伸线路板845自所述第二线路板844可通电地延伸至所述第一线路板841,并且位于所述第一线路板841和所述第二线路板844之间的所述驱动线路板843可通电地连接于所述第一延伸线路板845,以形成分体式导通的所述线路板组件840。
优选地,如图10所示,所述第一延伸线路板845设有一处理芯片8451,以通过所述处理芯片8451来控制所述模组组件810、所述光转向组件820以及所述光量调节组件830中的驱动/致动部件,进而实现镜头调焦、防抖以及进光量调节的功能。
值得注意的是,所述第一延伸线路板845可以通过引脚焊接的方式分别与所述第一线路板841和所述驱动线路板843可通电地连接;与此同时,所述光量调节组件830可以通过所述第一线路板841间接地电连接于所述第一延伸线路板845。特别地,如图3所示,所述第一线路板841和所述驱动线路板843分别对应地位于所述潜望式摄像模组81的底部,并且所述第一延伸线路板845优选地位于所述潜望式摄像模组81的侧部,使得所述第一衍射线路板845能够同时相交于所述第一线路板841和所述驱动线路板843,以便通过引脚焊接的方式分别将所述第一线路板841和所述驱动线路板843直接电连接于所述第一衍射线路板845。当然,在本发明的其他示例中,所述第一延伸线路板845也可以被设置于所述潜望式摄像模组81的底部,使得所述第一线路板841和所述驱动线路板843分别被可通电地叠置于所述第一延伸线路板845。
此外,如图3和图5所示,本发明的所述线路板组件840中的所述第二线路板844通常位于所述潜望式摄像模组81的所述模组主体810的后侧,使得所述第二线路板844和所述第一延伸线路板845之间夹角为直角,因此 为了电连接所述第二线路板844和所述第一延伸线路板845,本发明的所述线路板组件840还可以包括一第一软板846,其中所述第一软板846被弯折地设置于所述第一延伸线路板845和所述第二线路板844之间,以通过所述第一软板846电连接所述第一延伸线路板845和所述第二线路板844。可以理解的是,所述第一软板846可以被实施为能够弯折的软板FPC,使得所述第一软板846在将所述第一延伸线路板845和所述第二线路板844稳定地电连接在一起的同时,还能够减小所述潜望式摄像模组81的尺寸。
更进一步地,如图3和图10所示,所述潜望式摄像模组81的所述线路板组件840还可以包括一连接器847,其中所述连接器847被电连接于所述第二线路板844,用于电连接于诸如手机等电子设备的主板,以便通过所述电子设备的主板来为所述线路板组件840提供电能和/或控制信号。值得注意的是,所述连接器847优选地通过一连接软板8470来与所述第二线路板844电连接,使得所述连接器847相对于所述第二线路板844的位置能够根据需要进行调整,以便与所述电子设备的主板进行电连接。
值得注意的是,在本发明的一示例中,所述潜望式摄像模组81还可以进一步包括一外壳或外支架(图中未示出),其中所述模组组件810、所述光转向组件820、所述光量调节组件830以及所述线路板组件840均被组装于所述外壳或所述外支架内,以通过所述外壳或所述外支架保护所述模组组件810、所述光转向组件820、所述光量调节组件830以及所述线路板组件840,避免所述模组组件810、所述光转向组件820、所述光量调节组件830以及所述线路板组件840受到污染。
值得一提的是,附图11A示出了根据本发明的上述第一实施例的所述潜望式摄像模组81的第一变形实施方式,其中所述光量调节组件830被扣合于所述光转向组件820的所述出光端8202,以省去所述粘接层850,直接将所述光量调节组件830可拆卸地组装于所述光转向组件820,以便更换所述光转向组件820或所述光量调节组件830。
具体地,所述光转向组件820的所述出光端8202设有一位于所述外壳支架823的第一扣合结构8231,并且所述光量调节组件830的所述框架833设有一与所述第一扣合结构相适配的第二扣合结构8232,其中当所述第一扣合结构8231和所述第二扣合结构8232被适配地扣合在一起时,所述光量调节组件830的所述框架833被安装在所述光转向组件820的所述外壳支架 823上,以使所述光量调节组件830被组装于所述光转向组件820的所述出光端8202。
优选地,如图11A所示,在根据本发明的上述第一变形实施方式的所述潜望式摄像模组81中,所述第一扣合结构8231被实施为设置于所述外壳支架823的凹槽,并且所述第二扣合结构8232被实施为设置于所述框架833的凸起,以通过将所述框架833上的凸起***所述外壳支架823上的凹槽内,来实现所述光量调节组件830与所述光转向组件820之间的固定组装,这不仅能够减小所述潜望式摄像模组81的尺寸,而且还能够简化所述潜望式摄像模组81的拆装。
特别地,为了进一步增强所述第一扣合结构8231和所述第二扣合结构8232之间的连接强度,使得所述光量调节组件830更牢固地安装于所述光转向组件820的所述外壳支架823,本发明的所述粘接层850还可以被设置于所述第一扣合结构8231和所述第二扣合结构8232之间。例如,先在所述第一扣合结构8231(即所述外壳支架823的凹槽)内施涂粘接剂,再扣合所述第一扣合结构8231和所述第二扣合结构8232,以在所述粘接剂固化后形成位于所述第一扣合结构8231和所述第二扣合结构8232之间的所述粘接层850,进而将所述光量调节组件830牢靠地固定于所述光转向组件820的所述外壳支架823。
值得注意的是,尽管如图11A所示的所述潜望式摄像模组81中所述第一扣合结构8231和所述第二扣合结构8232依次被实施为凹槽和凸起以实现所述光量调节组件830与所述光转向组件820之间的扣合连接,但其仅为举例,本发明所提及的扣合方式并不局限于此。例如,如图11B所示,根据本发明的上述第一实施例的所述潜望式摄像模组81的第二变形实施方式被阐明,其中所述潜望式摄像模组81的所述第一扣合结构8231被实施为设置于所述外壳支架823的凸起,并且所述第二扣合结构8232被实施为设置于所述框架833的凹槽,以通过所述外壳支架823上凸起***所述框架833上的凹槽,同样实现所述光量调节组件830与所述光转向组件820之间的固定组装。
具体地,参考说明书附图之图12图13所示,根据本发明的一第二实施例的一潜望式摄像模组被阐明。相比于根据本发明的上述第一实施例,根据本发明的所述第二实施例的所述潜望式摄像模组81的区别在于:所述光量 调节组件830直接地电连接于所述线路板组件840的所述第一延伸线路板845,无需通过所述第一线路板841将所述光量调节组件830间接地电连接于所述第一延伸线路板845,使得所述第一线路板841单独为所述光转向组件820提供电能,有助于简化所述第一线路板841的电路设计。
具体地,如图13所示,所述线路板组件840的所述电连接元件842被实施为电连接地设置于所述光量调节组件830的侧壁8302的所述导电引脚8421,其中所述导电引脚8421被焊接于所述第一延伸线路板845,以通过所述导电引脚8421将所述光量调节组件830可通电地连接于所述第一延伸线路板845。
示例性地,如图12和图13所示,所述电连接元件842包括两个所述导电引脚8421,其中所述导电引脚8421被间隔地设置于所述光量调节组件830的所述框架833的外侧壁,并且所述导电引脚8421与所述光量调节组件830的所述电致动器832可通电地连接,其中所述导电引脚8421能够通过点锡球的方式被电连接地焊接于所述线路板组件840的所述第一延伸线路板845,以通过所述第一延伸线路板845为所述光量调节组件830的所述电致动器832提供电能,从而实现所述光量调节组件830的进光量调节效果。当然,在本发明的其他示例中,所述导电引脚8421数量可以超过两个,并且所述导电引脚8421还可以通过导电胶的方式被电连接地粘接于所述第一延伸线路板845。
优选地,如图12所示,所述线路板组件840的所述第一延伸线路板845设有二缺口8452、8453,并且所述缺口8452、8453分别对应于所述光量调节组件830上的所述导电引脚8421,以便将所述导电引脚8421能够在所述第一延伸线路板845的所述缺口8452、8453处分别被焊接于所述第一延伸线路板845。可以理解的是,正是由于所述第一延伸线路板845设有所述缺口8452、8453,因此所述导电引脚8421能够通过点锡球的方式在所述第一延伸线路板845的所述缺口8452、8453处电连接于所述第一延伸线路板845的同时,避免增加所述潜望式摄像模组81的尺寸,并且也方便焊接。
更优选地,如图12所示,一个所述导电引脚8421被设置于所述框架833外侧壁的上部,以形成上部引脚;另一个所述导电引脚8422被设置于所述框架833外侧壁的下部,以形成下部引脚。所述线路板组件840的所述第一延伸线路板845设有一上缺口8452和一下缺口8453,并且所述第一延伸线 路板845的所述上缺口8452和所述下缺口8453分别对应于所述框架833上的所述上部引脚和所述下部引脚,以便将所述导电引脚8421分别被焊接于所述第一延伸线路板845,从而将所述光量调节组件830一体地电连接于所述第一延伸线路板845,用于从所述第一延伸线路板845获取电能,以进行进光量的调节。可以理解的是,本发明的所述第一延伸线路板845上设有所述上缺口8452和所述下缺口8453,不仅有利于所述导电引脚8421的焊接,而且有利于减小所述潜望式摄像模组81的安装空间。
附图14和图15示出了根据本发明的上述第二实施例的所述潜望式摄像模组81的一个变形实施方式,其中所述导电引脚8421自所述光量调节组件830的所述侧壁8302并排地向外延伸至所述第一延伸线路板845,以便将所述导电引脚8421焊接于所述第一延伸线路板845。
示例性地,如图15所示,所述导电引脚8421被电连接地设置于所述光量调节组件830,其中所述导电引脚8421并排地向外延伸以突出于所述光量调节组件830的所述侧壁8302,使得所述导电引脚8421位于所述第一延伸线路板845的底侧,也就是说,所述导电引脚8421和所述第一延伸线路板845位于所述光量调节组件830的同一侧,便于将所述导电引脚8421和所述第一延伸线路板845焊接于一体。
值得注意的是,由于本发明的所述潜望式摄像模组81的所述线路板组件840的所述第二线路板844的高度基本等于所述潜望式摄像模组81的高度,而为了用于连接所述连接器847和所述第二线路板844的连接软板8470不伸出所述潜望式摄像模组81的侧面,导致所述用于连接所述连接器847和所述第二线路板844的所述连接软板8470的弯折角度过大,容易造成所述连接软板8470的线路元件发生损坏。
因此,为了解决上述问题,附图16至图18示出了根据本发明的上述第二实施例的所述潜望式摄像模组第二变形实施方式。相比于根据本发明的上述第二实施例,根据本发明的所述第二变形实施方式的所述潜望式摄像模组81的区别在于:所述线路板组件840进一步包括一第二延伸线路板848和一第二软板849,其中所述第二软板849将所述第二延伸线路板848可弯折地电连接于所述第二线路板844,并且所述第一软板846将所述第一延伸线路板848可弯折地电连接于所述第二延伸线路板848。特别地,所述第二延伸线路板848被叠置于所述第二线路板844,并且所述第二延伸线路板848的 高度小于所述第二线路板844的高度,其中所述连接器847在所述第二延伸线路板848的高度方向上电连接于所述第二延伸线路板848,以通过所述连接器847将所述线路板组件840电连接于所述电子设备的主板。
值得注意的是,正是由于所述第二延伸线路板848的高度小于所述第二线路板844的高度(如图18所示),以在所述第二延伸线路板848和所述第二线路板844之间形成一高度差,使得连接所述连接器847的所述连接软板8470在不伸出所述潜望式摄像模组81的侧面的情况下,仍具有足够的空间进行弯折,以减小所述连接软板8470的弯折角度,进而避免所述连接软板8470因弯折角度过大而被损坏。
更进一步地,如图16和图17所示,所述潜望式摄像模组81进一步包括一垫片860,其中所述垫片860被叠置于所述第二线路板844和所述第二延伸线路板848之间,以减小所述第一软板846和所述第二软板849的弯折角度,有助于避免所述第一软板846和所述第二软板849因弯折过大而损坏。
优选地,所述垫片860由金属材料制成,以通过所述垫片860将所述第二线路板844的热量传递至所述第二延伸线路板848,有助于提升所述潜望式摄像模组81的散热性能。
值得一提的是,在本发明的所述第二变形实施方式中,如图17所示,所述线路板组件840中的所述第一延伸线路板845与所述驱动线路板843通过导电引脚焊接于一体并导通,并且所述第一延伸线路板845与所述第一线路板841通过导电引脚焊接于一体并导通,其中所述第一延伸线路板845与所述光量调节组件830通过所述导电引脚8421被焊接于一体并导通,有助于减小所述潜望式摄像模组81的安装面积。可以理解的是,所述线路板组件840中的所述第一线路板841、所述驱动线路板843、所述光量调节组件830与所述第一延伸线路板846均通过导电引脚焊接的电连接方式连接于一体,避免了一体式线路板过大而造成的性能不稳定。与此同时,所述第一延伸线路板846能够通过所述第一软板847可弯折地电连接于所述第二延伸线路板848,并且所述第二延伸线路板848通过所述第二软板849可弯折地电连接于所述第二线路板844,进一步利用了所述潜望式摄像模组81的内部空间,使所述潜望式摄像模组81的结构更加紧凑,减小了所述潜望式摄像模组81的体积。
具体地,参考说明书附图之图19所示,根据本发明的一第三实施例的 一潜望式摄像模组被阐明。相比于根据本发明的上述第二实施例的所述第二变形实施方式,根据本发明的所述第三实施例的所述潜望式摄像模组81的区别在于:所述电连接元件842可以被实施为一被电连接地设置于所述光量调节组件830的导电引脚8421,其中所述导电引脚8421自所述光量调节组件830的底壁8301并排地向后延伸至所述驱动线路板843,以将所述导电引脚8421直接焊接于所述驱动线路板843,从而实现所述光量调节组件830和所述驱动线路板843之间的电连接。可以理解的是,在本发明的其他示例中,所述导电引脚8421也可以通过导电胶被电连接地粘接于所述驱动线路板843,本发明对此不再赘述。
值得注意的是,如图19所示,由于所述导电引脚8421直接延伸至所述模组组件810的底部,而所述驱动线路板843刚好被组装于所述模组组件810的所述底部,因此所述导电引脚8421能够直接接触所述驱动线路板843以通过焊接的方式来电连接所述驱动线路板843,进而实现所述驱动线路板843和所述光量调节组件830的电连接。
根据本发明的另一方面,本发明进一步提供了一潜望式摄像模组的制造方法。具体地,如图20A所示,所述潜望式摄像模组的制造方法,包括步骤:
S8100:组装一光量调节组件于一光转向组件的一出光端,用于使从所述光转向组件的一入光端射入的光线先在经由所述转向组件转向以从所述出光端射出后,再经由所述光量调节组件的调节以改变穿过所述光量调节组件的光线量;和
S8200:设置所述光量调节组件和所述光转向组件于一模组组件的感光路径,并且所述光量调节组件位于所述光转向组件和所述模组组件之间,用于使穿过所述光量调节组件的光线被所述模组组件接收以成像;以及
S8300:将一线路板组件电连接于所述光量调节组件,用于为所述光量调节组件提供工作所需的电能。
在本发明的一实施例中,如图20B所示,所述的潜望式摄像模组的制造方法的所述步骤S8300,进一步包括步骤:
S8310:电连接地设置一第一线路板于所述光转向组件,以将所述第一线路板电连接于所述光转向组件的一防抖驱动器;
S8320:电连接地设置一第二线路板于所述模组组件,以将所述第二线路板电连接于所述模组组件的一感光组件的一感光芯片;
S8330:延伸地设置一第一延伸线路板于所述模组组件和所述光转向组件,并且所述第一延伸线路板分别电连接于所述第一线路板和所述第二线路板;以及
S8340:藉由至少一电连接元件将所述光量调节组件电连接于所述第一线路板或所述第一延伸线路板。
在本发明的一示例中,如图20B所示,所述的潜望式摄像模组的制造方法的所述步骤S8300,进一步包括步骤:
S8350:叠置一第二延伸线路板于所述第二线路板,并通过一第二软板将所述第二延伸线路板电连接于所述第二线路板;和
S8360:通过一第一软板将所述第一延伸线路板电连接于所述第二延伸线路板或所述第二线路板。
在本发明的一示例中,如图20B所示,所述的潜望式摄像模组的制造方法的所述步骤S8300,进一步包括步骤:
S8370:叠置一垫片于所述第二线路板和所述第二延伸线路板之间。
根据本发明的上述实施例,如图20A所示,所述的潜望式摄像模组的制造方法,进一步包括步骤:
S8400:粘接或扣合所述光量调节组件于所述光转向组件的所述出光端;和
S8500:对应地粘接所述光量调节组件于所述模组组件。
值得一提的是,在本发明的一示例中,如图20C所示,为了精确地组装所述潜望式摄像模组81,所述的潜望式摄像模组的制造方法可以进一步包括步骤:
S8610:预定位所述光量调节组件830和所述模组组件810,以使所述光量调节组件830和所述模组组件810的中心线沿所述模组组件810的光学镜头811的光轴方向基本对齐;
S8620:根据通过所述模组组件810的感光组件812拍摄一标板的拍摄效果,调整所述光量调节组件830的位置;以及
S8630:调试所述光量调节组件830,以使所述光量调节组件830所控制的进光量大小满足预定要求。
进一步地,如图20C所示,所述的潜望式摄像模组的制造方法,还可以进一步包括步骤:
S8640:预定位所述光转向组件820、所述光量调节组件830以及所述模组组件810,以使所述光转向组件820、所述光量调节组件830以及所述模组组件810的中心线基本对齐;和
S8650:根据通过所述感光组件812拍摄所述标板的拍摄效果,调整所述光转向组件820的位置。
示例性地,在组装所述潜望式摄像模组81时,可以先通过夹具或吸盘等摄取工具,预定位所述光量调节组件830和所述模组组件810,以使所述光量调节组件830和所述模组组件810的中心线沿所述模组组件810的光学镜头811的光轴方向基本对齐(或大致对齐),使得所述感光组件812能够透过所述光量调节组件830拍摄到所述标板的图像;再根据图像质量(如图像的SFR值等)来调整所述光量调节组件830的位置,以便提升所述光量调节组件830与所述光学镜头811的光轴的对准程度;之后,调试所述光量调节组件830的控制效果,以测试所述光量调节组件830在进光量调节范围内调节的过程中,图像的SFR值是否达到预期的SFR值,便于在组装所述光转向组件820之前更换测试不合格的所述光量调节组件830。
然后,在所述光量调节组件830满足要求的情况下,可以进一步预定位所述光转向组件820、所述光量调节组件830以及所述模组组件810,使得所述光转向组件820、所述光量调节组件830以及所述模组组件810的中心线基本对齐;并根据通过所述感光组件812拍摄的图像质量(即拍摄效果)来调整所述光转向组件820的位置,以便进一步提升所述光转向组件820与所述光学镜头811的光轴之间的对准程度;最后在调整和调试完成之后,定位地固定所述光转向组件820、所述光量调节组件830以及所述模组组件810,以完整所述潜望式摄像模组81的制造。
当然,在本发明的其他示例中,还可以根据所拍摄图像的SFR值来调整所述光转向组件820的相对位置,以测试调整所述潜望式摄像模组81的防抖效果;又可以根据所拍摄图像的SFR值来调整所述模组组件810的所述光学镜头811的相对位置,以测试调整所述潜望式摄像模组81的自动对焦效果或防抖效果。
值得注意的是,尽管本发明的所述潜望式摄像模组的制造方法的各个步骤在图中依次绘出,但本发明的所述潜望式摄像模组的制造方法的所述步骤的次序不局限于此,还可以被实施为其他次序。此外,在本发明的其他示例 中,所述潜望式摄像模组的制造方法可以仅包括如图20A和图20B所示的部分步骤,也可以包括除如图20A和图20B所示的步骤之外的其他步骤,只要能够制造出上述潜望式摄像模组81之一即可,本发明在此不再赘述。
参考说明书附图之图21至图23所示,根据本发明的一第一实施例的一潜望式摄像模组被阐明。具体地,如图21和图22所示,所述潜望式摄像模组91包括一模组组件910、一光转向组件920以及一光量调节组件930。所述模组组件910包括一镜头组件911和一感光组件912,其中所述感光组件912具有一感光路径9120,用于沿着所述感光路径9120接收光线以成像,并且所述镜头组件911被对应地设置于所述感光组件912的所述感光路径9120,用于汇聚沿着所述感光路径9120传播的光线以被所述感光组件912接收。所述光转向组件920被对应地设置于所述感光组件912的所述感光路径9120,并且所述模组组件910的所述镜头组件911位于所述感光组件912和所述光转向组件920之间,用于弯折所述感光组件912的所述感光路径9120,使得沿着所述感光路径9120传播的光线先经由所述光转向组件920的转向,再经由所述镜头组件911的汇聚以被所述感光组件912接收成像。
所述光量调节组件930被组装于所述光转向组件920的端部9200,并且所述光量调节组件930位于所述感光组件912的所述感光路径9120,用于调节被所述感光组件912接收的光线量。可以理解的是,所述光转向组件920的所述端部9200包括一进光端9201和一面向所述模组组件910的出光端9202,其中所述光转向组件920用于使所述感光路径9120由所述进光端9201弯折地延伸至所述出光端9202,使得沿着所述感光路径9120传播的光线从所述进光端9201射入,并在转向后从所述出光端9202射出,进而被所述感光组件912接收成像。
值得注意的是,正是由于所述光量调节组件930直接被组装于所述光转向组件920的所述端部9200,因此所述潜望式摄像模组91中的所述模组组件910、所述光转向组件920以及所述光量调节组件930各自独立,以便在一个部件出问题时单独进行更换,而不会影响其他部件,有助于降低所述潜望式摄像模组91的维修成本。
更具体地,在本发明的上述实施例中,如图21和图23所示,所述光量调节组件930优选地被组装于所述光转向组件920的所述出光端9201,以使 所述光量调节组件930位于所述光转向组件920和所述模组组件910之间,有助于本发明的所述潜望式摄像模组91充分利用模组的内部空间,使得模组内部结构更加紧凑,有助于减小模组的整体尺寸。
示例性地,如图23和图24所示,所述潜望式摄像模组91的所述光转向组件920可以包括一反射元件921、一载体922以及一外壳支架923,其中所述外壳支架923具有一转向通道9230,其中所述反射元件921和所述载体922均被设置于所述外壳支架923的所述转向通道9230内,并且所述反射元件921被承载于所述载体922以保持所述反射元件921对应地位于所述模组组件910的所述感光路径9120。与此同时,所述光量调节组件930被安装于所述光转向组件920的所述外壳支架923,并且所述光量调节组件930位于所述光转向组件920的所述出光端9201,使得从所述进光端9201射入的光线先通过所述反射元件921的反射以转向,并在转向后从所述出光端9202射出,再通过所述光量调节组件930的光量调节,以被所述模组组件910的所述感光组件912接收成像。
进一步地,在本发明的上述第一实施例中,如图23和图24所示,所述光转向组件920的所述反射元件921可以但不限于被实施为一棱镜9210,也就是说,所述棱镜9210具有一入光面9211、一出光面9212以及一反射面9213,其中所述棱镜9210的所述入光面9211位于所述光转向组件920的所述入光端9201,并且所述棱镜9210的所述反射面9213被设置于所述载体922,其中所述棱镜9210的所述出光面9212位于所述光转向组件920的所述出光端9202,并且所述棱镜9210的所述出光面9212面向所述模组组件910,使得经由所述入光面9211射入所述棱镜9210的光线先经由所述反射面9213的反射以转向后,再经由所述出光面9212射出所述棱镜9210,以沿着所述感光路径9120传播,进而被所述模组组件910接收以成像。当然,在本发明的其他示例中,所述光转向组件920的所述反射元件921还可以被实施为反射平面镜、波导等其他光学元件,或者所述反射元件921也可以被折射元件来替代,只要能够改变光线的传播方向即可,本发明对此不再赘述。
优选地,所述棱镜9210的所述入光面9211垂直于所述棱镜9210的所述出光面9212,以使所述棱镜9210被实施为直角棱镜,使得经由所述入光面9211垂直地射入所述棱镜9210的光线先经由所述反射面9213的反射以转向990°后,再经由所述出光面9212垂直地射出所述棱镜9210,以沿着 所述感光路径9120传播,进而被所述模组组件910接收以成像。换言之,所述模组组件910的所述感光组件912的所述感光路径9120在转向前后分别垂直于所述棱镜9210的所述入光面9211和所述出光面9212,使得沿着所述感光路径9120传播的光线在经由所述棱镜9210反射以转向后被所述模组组件910的所述感光组件912接收成像。
更优选地,如图24所示,所述棱镜9210被完整地容纳于所述外壳支架923之内,也就是说,所述棱镜9210的所述入光面9211和所述出光面9212均位于所述外壳支架923的所述转向通道9230之内,以保护所述棱镜9210,减少磨损。
值得一提的是,如图24所示,所述潜望式摄像模组91的所述光转向组件920还可以进一步包括一防抖驱动器924,其中所述防抖驱动器924被设置于所述载体922和所述外壳支架923之间,用于驱动所述载体922以带动所述棱镜9210进行转动,以改变所述棱镜9210的转动角度,使得经由所述棱镜9210转向的光线能够更好地沿着所述感光路径9120传播,以实现所述潜望式摄像模组91的防抖效果,有助于提升所述潜望式摄像模组91的图像质量。
示例性地,如图24所示,所述光转向组件920的所述载体922具有一承载面9221和至少一非承载面9222,其中所述棱镜9210的所述反射面9213被面对面地设置于所述载体922的所述承载面9221,其中所述防抖驱动器924被设置于所述载体922的所述非承载面9222和所述外壳支架923的内壁面之间,用于驱动所述载体922以带动所述棱镜9210进行转动,进而实现所述潜望式摄像模组91的防抖功能。
更详细地,如图24所示,所述防抖驱动器924可以但不限于包括一磁石9241和一线圈9242,其中所述磁石9241被设置于所述载体922的所述非承载面9222,并且所述线圈9242被对应地设置于所述外壳支架923的内壁面,使得所述磁石9241的位置和所述线圈9242的位置相互对应,以形成电动马达,用于在电力作用下,驱动所述载体922带动所述棱镜9210转动以实现防抖效果。当然,在本发明的其他示例中,所述磁石9241也可以被设置于所述外壳支架923的内壁面,而所述线圈9242可以被对应地设置于所述载体922的所述非承载面9222,只要能够形成电动马达即可,本发明对所述磁石9241和所述线圈9242的位置不作限定。
值得一提的是,根据本发明的上述第一实施例,如图21和图23所示,所述潜望式摄像模组91可以进一步包括粘接层950,其中所述粘接层950位于所述光量调节组件930和所述光转向组件920的所述出光端9202之间,以通过所述粘接层950将所述光量调节组件930粘合于所述光转向组件920的所述出光端9202,使得经由所述光转向组件920转向后的光线在从所述出光端9202射出后,先穿过所述光量调节组件930,再进入所述感光组件912以被接收成像。这样所述潜望式摄像模组91能够通过所述光量调节组件930较准确地调节进入所述感光组件912的光线量,进而准确地控制被所述感光组件912接收的光线量,使得所述潜望式摄像模组91能够在满足不同拍摄模式的进光量需求的同时,也有助于提高自身的成像品质。
示例性地,如图25A所示,所述潜望式摄像模组91的所述光量调节组件930可以但不限于包括多个叶片931、多个电致动器932以及一框架933,其中所述叶片931被部分重叠地安装于所述框架933,以通过所述多个叶片931形成孔径可调的光阑孔9300,其中所述电致动器932被对应地设置于所述框架933,并且所述电致动器932与所述叶片931一一对应地连接,用于致动相应的所述叶片931,以调节所述光阑孔9300的孔径大小(如图25B和图25C所示)。可以理解的是,所述电致动器932可以包括磁铁、线圈和拨杆,所述线圈在通电时产生磁场,以驱动所述磁铁在特定方向上运动,从而带动所述拨杆移动;所述拨杆与所述叶片931连接,使得所述叶片931能够随着所述拨杆的移动而实现位置变化(如在特定的角度范围内旋转等),进而改变所述光阑孔9300的孔径大小。此外,所述光量调节组件930中的所述叶片931的数量和形状可以为任意的,只要能够形成孔径可变的所述光阑孔9300即可,本发明对此不作限制。
换言之,如图25B和图25C所示,所述光量调节组件930具有正方形端面,并且所述电致动器932被均匀地分布于所述框架933的四周,以使所述电致动器932与所述叶片931一一对应地连接,用于致动相应的所述叶片931,以调节所述光阑孔9300的孔径大小。可以理解的是,本发明所提及的端面是所述光量调节组件930上分别对应于所述光转向组件920和所述镜头组件911的端面。
当然,在本发明的一个变形实施方式中,如图25D和图25E所示,所述光量调节组件930也可以具有长方形端面,以使所述光量调节组件930的形 状与所述镜头组件911的形状相匹配,即所述光量调节组件930的长边和短边分别平行于所述镜头组件911的长边和短边。值得一提的是,本发明界定的平行可以理解为两者之间可以是平行的,也可以存在一定角度,例如角度为90-910°。
所述电致动器932被对称地分布于所述框架933的左右两侧,并且所述电致动器932用于致动所述叶片931以调节所述光阑孔9300的孔径大小。可以理解的是,为了保证所述光量调节组件930的形状与所述镜头组件911的形状相匹配,可以根据所述镜头组件911的形状来设计/调整所述光量调节组件930中所述电致动器932的分布位置,例如,所述电致动器932也可以被对称地分布于所述框架933的上下两侧。当然,在本发明的其他示例中,所述光量调节组件930还可以具有类长方形端面,例如,圆角长方形端面等等。
优选地,所述光量调节组件930的所述长方形端面的宽度与长度的比值大于0.975且小于1,也就是说,如图25D所示,所述长方形端面的宽度W与长度L之比(W/L)在0.975至1之间。
值得注意的是,在本发明的上述第一实施例中,如图23所示,所述粘接层950位于所述光转向组件920的所述外壳支架923与所述光量调节组件930的所述框架933之间,以将所述光量调节组件930牢靠地贴附于所述光转向组件920的所述出光端9202。与此同时,所述粘接层950还可以同时位于所述光量调节组件930和所述模组组件910的所述镜头组件911之间,从而通过所述粘接层950依次将所述光转向组件920、所述光量调节组件930以及所述模组组件910粘接在一起,以各自独立地组装成所述潜望式摄像模组91。
特别地,所述粘接层950可以但不限于由诸如胶水等粘接剂固化而成,以便在固化前调整所述光转向组件920、所述光量调节组件930以及所述模组组件910之间的相对位置,确保所述光量调节组件930的所述光阑孔9300的中心与所述感光组件912的所述感光路径9120对齐或基本对齐,使得经由所述光转向组件920转向后的光线能够穿过所述光量调节组件930的所述光阑孔9300,以进入所述模组组件910而被所述感光组件912接收成像。
示例性地,在本发明的上述示例中,先在所述光量调节组件930的所述框架933上施涂粘接剂,再将所述光量调节组件930对应地放置于所述光转 向组件920的所述出光端9202,并使所述粘接剂位于所述光转向组件920的所述外壳支架923与所述光量调节组件930的所述框架933之间,以在所述粘接剂固化后形成所述粘接层950,以通过所述粘接层950将所述光量调节组件930粘接地固定于所述光转向组件920的所述外壳支架923,以将所述光量调节组件930稳定地保持于所述光转向组件920的所述出光端9202;最后,再在所述光量调节组件930和所述模组组件910之间施涂粘接剂,以在所述粘接剂固化后形成粘接地固定所述光量调节组件930和所述模组组件910的所述粘接层950。
值得注意的是,附图26示出了根据本发明的上述实施例的所述潜望式摄像模组91的第一变形实施方式,其中所述光量调节组件930直接被扣合于所述光转向组件920的所述外壳支架923,并位于所述光转向组件920的所述出光端9202。换言之,本发明直接将所述光量调节组件930可拆卸地组装于所述光转向组件920,有助于便捷地更换所述光转向组件920或所述光量调节组件930。
具体地,如图26所示,所述光转向组件920的所述出光端9202设有一位于所述外壳支架923的第一扣合结构9231,并且所述光量调节组件930的所述框架933设有一与所述第一扣合结构相适配的第二扣合结构9232,其中当所述第一扣合结构9231和所述第二扣合结构9232被适配地扣合在一起时,所述光量调节组件930的所述框架933被安装在所述光转向组件920的所述外壳支架923上,以使所述光量调节组件930被组装于所述光转向组件920的所述出光端9202。
优选地,如图26所示,在根据本发明的上述第一变形实施方式的所述潜望式摄像模组91中,所述第一扣合结构9231被实施为设置于所述外壳支架923的凹槽,并且所述第二扣合结构9232被实施为设置于所述框架933的凸起,以通过将所述框架933上的凸起***所述外壳支架923上的凹槽内,来实现所述光量调节组件930与所述光转向组件920之间的固定组装,这不仅能够减小所述潜望式摄像模组91的尺寸,而且还能够简化所述潜望式摄像模组91的拆装。
更优选地,为了进一步增强所述第一扣合结构9231和所述第二扣合结构9232之间的连接强度,使得所述光量调节组件930更牢固地安装于所述光转向组件920的所述外壳支架923,本发明的所述粘接层950还可以被设 置于所述第一扣合结构9231和所述第二扣合结构9232之间。例如,先在所述第一扣合结构9231(即所述外壳支架923的凹槽)内施涂粘接剂,再扣合所述第一扣合结构9231和所述第二扣合结构9232,以在所述粘接剂固化后形成位于所述第一扣合结构9231和所述第二扣合结构9232之间的所述粘接层950,进而将所述光量调节组件930粘接地扣合于所述光转向组件920的所述外壳支架923,使得所述光量调节组件930被牢靠地固定于所述光转向组件920。
值得注意的是,尽管如图26所示的所述潜望式摄像模组91中所述第一扣合结构9231和所述第二扣合结构9232依次被实施为凹槽和凸起以实现所述光量调节组件930与所述光转向组件920之间的扣合连接,但其仅为举例,本发明所提及的扣合方式并不局限于此。例如,如图27所示,根据本发明的上述第一实施例的所述潜望式摄像模组91的第二变形实施方式被阐明,其中所述潜望式摄像模组91的所述第一扣合结构9231被实施为设置于所述外壳支架923的凸起,并且所述第二扣合结构9232被实施为设置于所述框架933的凹槽,以通过所述外壳支架923上凸起***所述框架933上的凹槽,同样实现所述光量调节组件930与所述光转向组件920之间的固定组装。
值得一提的是,所述潜望式摄像模组91的所述光量调节组件930并不限于仅被组装于所述光转向组件920的所述出光端9202,例如,在本发明的其他示例中,所述光量调节组件930也可以被组装于所述光转向组件920的所述进光端9201,以使沿着所述感光路径9120传播的光线先通过所述光量调节组件930的光量调节,再从所述进光端9201进入所述光转向组件920以被转向后,再从所述出光端9202射出以进入所述模组组件910而被所述感光组件912接收成像。
示例性地,附图28A和28B示出了根据本发明的上述第一实施例的所述潜望式摄像模组91的第三变形实施方式,其中所述粘接层950位于所述光转向组件920的所述外壳支架923与所述光量调节组件930的所述框架933之间,并且所述光量调节组件930位于所述光转向组件920的所述进光端9201,以将所述光量调节组件930牢靠地贴附于所述光转向组件920的所述进光端9201。与此同时,所述粘接层950还可以同时位于所述光转向组件920的所述出光端9202和所述模组组件910的所述镜头组件911之间,从而通过所述粘接层950将所述光量调节组件930、所述光转向组件920以及所 述模组组件910粘接在一起,以各自独立地组装成所述潜望式摄像模组91。
这样,由于所述光量调节组件930被独立地组装于所述光转向组件920的所述进光端9201,并且所述光转向组件920被独立地组装于所述模组组件910,因此在组装所述光量调节组件930之前就可以先组装所述光转向组件920和所述模组组件910,以便通过调试/调整所述光转向组件920的位姿(即位置和姿态)来确保所述潜望式摄像模组91具有较高的成像质量。此后,在组装和调试所述光量调节组件930的过程中,无需调整所述光转向组件920和所述模组组件910,有利于减少调试变量,提高所述光量调节组件930的调试效率和准度。当然,所述光量调节组件930被独立地组装于所述光转向组件920的所述进光端9201,更有助于检测和更换所述光量调节组件930,以降低维修和保养成本。
值得注意的是,如图28B所示,所述粘接层950被设置于所述光量调节组件930的所述框架933和所述光转向组件920的所述外壳支架923之间,以通过所述粘接层950将所述光量调节组件930粘接地安装于所述光转向组件920的所述进光端9201。与此同时,所述粘接层950的厚度D被实施为所述光量调节组件930的所述框架933和所述光转向组件920的所述外壳支架923之间的距离,以便通过所述粘接层950的厚度D的大小来可控地调节所述光量调节组件930与所述光转向组件920之间的距离,以便调整所述光转向组件920和所述光量调节组件930之间的相对位置,从而实现所述光量调节组件930的所述光阑孔9300的中心与所述光转向组件920的入光面的中心对齐。可以理解的是,当通过所述粘接层950将所述光量调节组件930粘接地安装于所述光转向组件920的所述出光端9202时,通过所述粘接层950的厚度同样有助于调整所述光转向组件920和所述光量调节组件930之间的相对位置,从而实现所述光量调节组件930的所述光阑孔9300的中心与所述光转向组件920的出光面的中心对齐。
优选地,位于所述光量调节组件930与所述光转向组件920之间的所述粘接层950的厚度D在0.901mm至0.92mm之间,也就是说,所述粘接层950的厚度D的取值范围优选地被实施为0.901mm≤D≤0.92mm。
更优选地,位于所述光量调节组件930与所述光转向组件920之间的所述粘接层950的厚度D在0.903mm至0.915mm之间,也就是说,所述粘接层950的厚度D的取值范围优选地被实施为0.903mm≤D≤0.915mm。
另外,附图29示出了根据本发明的上述第一实施例的所述潜望式摄像模组91的第四变形实施方式,其中所述光量调节组件930直接被扣合于所述光转向组件920的所述外壳支架923,并位于所述光转向组件920的所述进光端9201。换言之,本发明直接将所述光量调节组件930可拆卸地组装于所述光转向组件920的所述进光端9201,更有助于便捷地更换所述光量调节组件930。
示例性地,如图29所示,所述光转向组件920的所述进光端9201设有一位于所述外壳支架923的第一扣合结构9231,并且所述光量调节组件930的所述框架933设有一与所述第一扣合结构相适配的第二扣合结构9232,其中当所述第一扣合结构9231和所述第二扣合结构9232被适配地扣合在一起时,所述光量调节组件930的所述框架933被安装在所述光转向组件920的所述外壳支架923上,以使所述光量调节组件930被组装于所述光转向组件920的所述进光端9201。
优选地,如图29所示,在根据本发明的上述第四变形实施方式的所述潜望式摄像模组91中,所述第一扣合结构9231被实施为设置于所述外壳支架923的凹槽,并且所述第二扣合结构9232被实施为设置于所述框架933的凸起,以通过将所述框架933上的凸起***所述外壳支架923上的凹槽内,来实现所述光量调节组件930与所述光转向组件920之间的固定组装,这不仅能够减小所述潜望式摄像模组91的尺寸,而且还能够简化所述潜望式摄像模组91的拆装。
值得注意的是,尽管如图29所示的所述潜望式摄像模组91中所述第一扣合结构9231和所述第二扣合结构9232依次被实施为凹槽和凸起以实现所述光量调节组件930与所述光转向组件920之间的扣合连接,但其仅为举例,本发明所提及的扣合方式并不局限于此。例如,如图30所示,根据本发明的上述第一实施例的所述潜望式摄像模组91的第五变形实施方式被阐明,其中所述潜望式摄像模组91的所述第一扣合结构9231被实施为设置于所述外壳支架923的凸起,并且所述第二扣合结构9232被实施为设置于所述框架933的凹槽,以通过所述外壳支架923上凸起***所述框架933上的凹槽,同样能够实现所述光量调节组件930与所述光转向组件920之间的固定组装。
与此同时,在本发明的一些示例中,所述粘接层950可以被设置于所述光转向组件920的所述出光端9202和所述模组组件910的所述镜头组件911 之间,以通过所述粘接层950将所述光转向组件920直接与所述模组组件910粘接在一起,以便在对所述光转向组件920进行调试之后,再将所述光量调节组件930粘接或扣合于所述光转向组件920的所述进光端9201,以完成所述潜望式摄像模组91的组装。换言之,在组装所述光量调节组件930之前,就可以先通过所述感光组件912的拍照效果来对所述光转向组件920进行调试,以判断所述光转向组件920的所述出光端9202的中心是否与所述模组组件910的光学镜头的光学中心对齐;或者,测试所述光转向组件920的光转向效果是否能够达到预期效果等等。
值得一提的是,根据本发明的上述第一实施例,如图23所示,所述潜望式摄像模组91的所述模组组件910的所述镜头组件911可以包括一光学镜头9111、一调焦驱动器9112以及一组装体外壳9113,其中所述光学镜头9111和所述调焦驱动器9112均被组装于所述组装体外壳9113内,并且所述感光组件912被对应地组装于所述组装体外壳9113,其中所述光学镜头9111被可驱动地设置于所述调焦驱动器9112,以使所述光学镜头911被保持于所述感光组件912的所述感光路径9120,并在所述调焦驱动器913的驱动下沿着所述感光路经9100前后移动,以实现所述潜望式摄像模组91的调焦功能。
此外,如图23所示,所述模组组件910的所述感光组件912可以包括一感光芯片9121和一滤光元件9122,其中所述滤光元件9122被设置于所述感光芯片9121和所述光学镜头9111之间,使得进入所述模组组件910的光线先通过所述光学镜头9111的汇聚,再在通过所述滤光元件9122的过滤之后,被所述感光芯片9121接收以成像。
值得注意的是,根据本发明的上述第一实施例的所述潜望式摄像模组91的所述光量调节组件930可以但不限于被实施为诸如电压式可变光阑、液晶式可变光阑或叶片式可变光阑等等各种类型的可变光阑,以在电能的作用下改变所述可变光阑的光阑孔的大小,进而调节进入所述模组组件910的光线量。与此同时,所述光转向组件920的所述防抖驱动器924以及所述模组组件910中的所述感光芯片9121和所述调焦驱动器9112在工作时也需要电能。因此,如图22和图23所示,本发明的所述潜望式摄像模组91进一步包括一线路板组件940,其中所述光量调节组件930、所述光转向组件920的所述防抖驱动器924以及所述模组组件910中的所述感光芯片9121和所述调焦驱动器9112均可通电地连接于所述线路板组件940,以通过所述线路板组 件940为所述光量调节组件930、所述光转向组件920的所述防抖驱动器924以及所述模组组件910中的所述感光芯片9121和所述调焦驱动器9112提供工作所需的电能。
示例性地,如图22和图23所示,所述潜望式摄像模组91的所述线路板组件940包括一第一线路板941、一第二线路板942、一驱动线路板943以及一延伸线路板944,其中所述延伸线路板944自所述潜望式摄像模组91的后端延伸至前端,并且所述延伸线路板944电连接于所述第一线路板941、所述第二线路板942以及所述驱动线路板943。所述第一线路板941被设置于所述光转向组件920的所述外壳支架923,并且所述第一线路板941可通电地连接于所述防抖驱动器924,用于提供所述防抖驱动器924工作所需的电能,使得所述棱镜9210旋转,从而达到光学防抖。所述第二线路板942被设置于所述模组组件910的所述感光组件912,用于可通电地贴装所述感光芯片9121,以通过所述第二线路板942为所述感光芯片9121提供电能,使得所述感光芯片9121能够接收光线以成像。所述驱动线路板943被设置于所述模组组件910的所述镜头组件911,并且所述驱动线路板943电连接于所述调焦驱动器9112,用于提供所述调焦驱动器9112工作所需的电能,使得所述光学镜头9111在所述调焦驱动器9112的驱动下,相对于所述感光组件912的所述感光芯片9121进行移动,以实现对焦功能。
特别地,本发明的所述光量调节组件930可以但不限于直接电连接于所述线路板组件940的所述延伸线路板944,以通过所述延伸线路板944为所述光量调节组件930提供工作所需的电能。当然,在本发明的其他示例中,所述光量调节组件930也可以直接电连接于所述第一线路板941或所述驱动线路板943,以通过所述第一线路板941或所述驱动线路板943为所述光量调节组件930提供工作所需的电能。可以理解的是,所述光量调节组件930可以但不限于通过引线或导电引脚等电连接元件被焊接或导电地粘接于相应的线路板,以实现可通电地连接的效果,本发明对此不再赘述。
值得注意的是,本发明的所述光量调节组件930在组装时需要被调试以使所述光量调节组件930的所述光阑孔9300对应于所述感光组件912的所述感光路径9120,且所述光量调节组件930的光线量调节范围满足所述潜望式摄像模组91的工作需求,以避免所述光量调节组件930对所述潜望式摄像模组91的成像质量产生不利影响。
因此,为了能够在组装所述光转向组件920之前,就能够对所述光量调节组件930进行调试,参考说明书附图29之图31A所示,根据本发明的一第二实施例的一潜望式摄像模组被阐明。相比于根据本发明的上述第一实施例,根据本发明的所述第二实施例的所述潜望式摄像模组91的区别在于:所述光量调节组件930直接被组装于所述模组组件910的所述镜头组件911,并且所述光量调节组件930位于所述感光组件912的所述感光路径9120,以同样通过所述光量调节组件930来调节被所述感光组件912接收的光线量。
示例性地,如图31A所示,所述光量调节组件930直接通过所述粘接层950被粘接于所述镜头组件911的所述组装体外壳9113,并且所述光量调节组件930位于所述光学镜头9111和所述光转向组件920之间,使得沿所述感光路径9120传播的光线先经由所述光转向组件920的转向,再经由所述光量调节组件930的调节,最后在经由所述光学镜头9111的汇聚后被所述感光组件912的所述感光芯片9121接收而成像。
值得注意的是,正是由于所述光量调节组件930直接被粘接于所述镜头组件911的所述组装体外壳9113,因此在组装所述光转向组件920之前,就可以先将所述光量调节组件930组装于所述模组组件910的所述镜头组件911的所述组装体外壳9113上,以便根据所述感光组件912的所述感光芯片9121拍摄的图像效果来调试所述光量调节组件930的位姿和光量调节质量,有助于降低所述光量调节组件930的调试难度,提升所述光量调节组件930的调试精度。与此同时,如果所述光量调节组件930因自身缺陷而经调试后仍无法满足要求,则可以直接更换新的所述光量调节组件930,以避免拆卸所述光转向组件920而简化组装工序。
此外,如图31A所示,所述粘接层950被设置于所述光量调节组件930的所述框架933和所述镜头组件911的所述组装体外壳9113之间,以通过所述粘接层950将所述光量调节组件930粘接地安装于所述镜头组件911。与此同时,所述粘接层950的厚度d被实施为所述光量调节组件930的所述框架933和所述镜头组件911的所述组装体外壳9113之间的距离d,以便通过所述粘接层950的厚度d的大小来可控地调节所述光量调节组件930与所述镜头组件911之间的距离。
可以理解的是,所述光量调节组件930与所述镜头组件911之间的距离(或所述粘接层950的厚度d),从光学上来讲,可以实现“渐晕”现象缓 解、图像亮度增大、图像更加清晰,并且也可以实现对所述光量调节组件930和所述镜头组件911之间的相对位置进行调节,使得使得所述光量调节组件930的所述光阑孔9300的中心与所述镜头组件911的所述光学镜头9111的光轴对齐。
优选地,位于所述光量调节组件930与所述镜头组件911之间的所述粘接层950的厚度d在0.901mm至0.92mm之间,也就是说,所述粘接层950的厚度d的取值范围优选地被实施为0.901mm≤d≤0.92mm。
更优选地,位于所述光量调节组件930与所述镜头组件911之间的所述粘接层950的厚度d在0.903mm至0.915mm之间,也就是说,所述粘接层950的厚度d的取值范围优选地被实施为0.903mm≤d≤0.915mm。
进一步地,在本发明的一个示例中,如图31B所示,所述粘接层950对应地位于所述镜头组件911的所述组装体外壳9113的左右两侧,以便通过所述粘接层950将所述光量调节组件930直接粘接于所述镜头组件911的所述组装体外壳9113。换言之,先将粘接剂以画胶的方式设置于所述组装体外壳9113的左右两侧,再将所述光量调节组件930对应地贴附于所述镜头组件911的所述组装体外壳9113,以便在所述粘接剂固化之前,根据所拍摄的图像效果来调整所述光量调节组件930的位姿和光量调节质量,有助于提升所述光量调节组件930的调试精度。
当然,在本发明的另一示例中,如图31C所示,所述粘接层950对应地位于所述镜头组件911的所述组装体外壳9113的左右两侧和底侧,以便通过所述粘接层950将所述光量调节组件930牢靠地粘接于所述镜头组件911的所述组装体外壳9113。换言之,先将粘接剂以画胶的方式设置于所述组装体外壳9113的左右两侧和底侧,再将所述光量调节组件930对应地贴附于所述镜头组件911的所述组装体外壳9113,以便在所述粘接剂固化之后,形成位于所述组装体外壳9113的左右两侧和底侧的所述粘接层950,有助于增大所述粘接层950的粘接面积,进而增强所述光量调节组件930与所述镜头组件911的粘接强度。此外,所述粘接层950对应地位于所述镜头组件911的所述组装体外壳9113的左右两侧和底侧也有助于减小所述潜望式摄像模组91的厚度。
值得一提的是,附图32示出了根据本发明的上述第二实施例的所述潜望式摄像模组91的第一变形实施方式,其中所述光量调节组件930直接被 扣合于所述镜头组件911的所述组装体外壳9113,并且所述光量调节组件930位于所述光学镜头9111和所述光转向组件920之间。换言之,本发明直接将所述光量调节组件930可拆卸地组装于所述镜头组件911的所述组装体外壳9113,更有助于降低所述光量调节组件930的调试和更换难度。
示例性地,如图32所示,所述镜头组件911的所述组装体外壳9113设有一第一扣合结构9231,并且所述光量调节组件930的所述框架933设有一与所述第一扣合结构9231相适配的第二扣合结构9232,其中当所述第一扣合结构9231和所述第二扣合结构9232被适配地扣合在一起时,所述光量调节组件930的所述框架933被安装在所述镜头组件911的所述组装体外壳9113上,进而将所述光量调节组件930可拆卸地组装于所述镜头组件911的所述组装体外壳9113。
特别地,如图32所示,在根据本发明的这个变形实施方式的所述潜望式摄像模组91中,所述第一扣合结构9231被实施为设置于所述组装体外壳9113的凹槽,并且所述第二扣合结构9232被实施为设置于所述框架933的凸起,以通过将所述框架933上的凸起***所述组装体外壳9113上的凹槽内,来实现所述光量调节组件930与所述模组组件910的所述镜头组件911之间的固定组装,这不仅能够减小所述潜望式摄像模组91的尺寸,而且还能够简化所述潜望式摄像模组91的拆装。
值得注意的是,尽管如图32所示的所述潜望式摄像模组91中所述第一扣合结构9231和所述第二扣合结构9232依次被实施为凹槽和凸起以实现所述光量调节组件930与所述镜头组件911之间的扣合连接,但其仅为举例,本发明所提及的扣合方式并不局限于此。例如,如图33所示,根据本发明的上述第二实施例的所述潜望式摄像模组91的第二变形实施方式被阐明,其中所述潜望式摄像模组91的所述第一扣合结构9231被实施为设置于所述组装体外壳9113的凸起,并且所述第二扣合结构9232被实施为设置于所述框架933的凹槽,以通过所述组装体外壳9113上的凸起***所述框架933上的凹槽,同样能够实现所述光量调节组件930与所述镜头组件911之间的固定组装。
当然,在本发明的其他示例中,所述光量调节组件930也可以直接被焊接于所述模组组件910的所述镜头组件911,以便将所述光量调节组件930更加牢固地安装于所述镜头组件911,本发明对此不再赘述。
附图34示出了根据本发明的上述第二实施例的所述潜望式摄像模组91的第三变形实施方式,其中所述光量调节组件930直接被组装于所述镜头组件911的所述光学镜头9111,以便保持所述光量调节组件930更好地对准所述感光组件912的所述感光路径9120。
具体地,如图34所示,所述光学镜头9111可以包括一第一透镜组91111和一第二透镜组91112,其中所述光量调节组件930被设置于所述第一透镜组91111和所述第二透镜组91112之间,并且所述第二透镜组91112位于所述光量调节组件930和所述感光组件912之间,使得经由所述光转向组件920转向后的光线依次穿过所述第一透镜组91111、所述光量调节组件930以及所述第二透镜组91112之后,再被所述感光组件912的所述感光芯片9121接收以成像。可以理解的是,所述光学镜头9111的所述第一和第二透镜组91111可以包括一个或多个镜片,用于汇聚穿过所述光学镜头9111的光线。
优选地,如图34所示,所述光学镜头9111进一步包括一镜筒91113,其中所述第一透镜组91111、所述光量调节组件930以及所述第二透镜组91112依次被组装于所述镜筒91113内,以便保持所述第一透镜组91111和所述第二透镜组91112共光轴,并且所述光量调节组件930的所述光阑孔9300的中心位于所述第一透镜组91111和所述第二透镜组91112的光轴上,有助于提升所述潜望式摄像模组91的成像质量。与此同时,所述光学镜头9111的所述镜筒91113被组装于所述调焦驱动器9112,以通过所述调节驱动器9112驱动所述镜筒91113以带动所述第一透镜组91111、第二透镜组91112以及所述光量调节组件930均沿着所述感光路径9120移动,以防所述光量调节组件930影响所述潜望式摄像模组91的调焦效果。
值得注意的是,尽管如图34所示的所述潜望式摄像模组91中所述光学镜头9111仅包括一个镜筒91113,但其仅为举例,本发明所提及的所述镜筒91113的数量并不局限于此。例如,如图35所示,根据本发明的上述第二实施例的所述潜望式摄像模组91的第四变形实施方式被阐明,其中所述潜望式摄像模组91的所述光学镜头9111可以包括一第一镜筒91114和一第二镜筒91115,其中所述第一透镜组91111被组装于所述第一镜筒91114,并且所述第二透镜组91112被组装于所述第二镜筒91115。与此同时,所述光量调节组件930被组装于所述第一镜筒91114和所述第二镜筒91115之间,以保证所述光量调节组件930位于所述第一透镜组91111和所述第二透镜组 91112之间。
值得注意的是,正是由于所述第一和第二透镜组91111、91112分别被组装于所述第一和第二镜筒91114、91115,并且所述第一和第二镜筒91114、91115相互独立,因此本发明的所述镜头组件911的所述调焦驱动器913能够通过驱动所述第一镜筒91114和/或所述第二镜筒91115,来实现所述潜望式摄像模组91的调焦效果。
示例性地,所述光量调节组件930可以但不限于通过诸如粘接或扣合等方式被安装于所述光学镜头9111的所述第一镜筒91114和/或所述第二镜筒91115,本发明在此不再赘述。
当然,在本发明的其他示例中,所述光量调节组件930也可以被单独地安装于所述第一镜筒91114,并且所述第一和第二透镜组91111、91112均位于所述光量调节组件930和所述感光组件912之间,使得光线先经由所述光量调节组件930的光量调节之后,再依次穿过所述第一和第二透镜组91111、91112,以被所述感光组件912接收成像。
附图36示出了根据本发明的上述第二实施例的所述潜望式摄像模组91的第五变形实施方式,其中所述光量调节组件930与所述镜头组件911的所述调焦驱动器9112一体成型,也就是说,所述光量调节组件930与所述镜头组件911一体地连接,以形成具有调节进光量功能的驱动器,进而在实现调焦效果的同时,也能够实现调节进光量的效果。
值得注意的是,本发明的所述调焦驱动器9112可以包括一驱动马达和一驱动壳体。所述驱动马达可以包括磁石和线圈,其中所述磁石被安装于所述光学镜头9111的镜筒上,其中所述线圈被安装于所述驱动壳体上,并且所述磁石的位置和所述线圈的位置相互对应。所述驱动壳体具有一凹槽孔,用于安装所述光学镜头9111。可以理解的是,所述驱动马达可以但不限于被实施为音圈马达或压电马达。此外,在本发明的其他示例中,也可以将所述线圈安装于所述光学镜头9111的镜筒上,并将所述磁石安装于所述驱动壳体上。
示例性地,在本发明的这个变形实施方式中,所述光量调节组件930的所述框架933一体地连接于所述调焦驱动器9112的所述驱动壳体,使得所述光量调节组件930与所述调焦驱动器9112具有一体式结构。换言之,所述所述光量调节组件930被一体地安装于所述调焦驱动器9112,以最大限度 地提升所述光量调节组件930与所述调焦驱动器9112的连接强度。当然,在本发明的其他示例中,所述光量调节组件930也可以通过粘接和/或扣合的方式被安装于所述调焦驱动器9112的所述驱动壳体。
值得一提的是,在根据本发明的上述第二实施例中,当组装所述潜望式摄像模组91时,可以先通过夹具或吸盘等摄取工具,预定位所述光量调节组件930和所述模组组件910,以使所述光量调节组件930的所述光阑孔9300的中心线与所述模组组件910的所述镜头组件911的所述光学镜头9111的光轴基本对齐(或大致对齐),使得所述感光组件912能够透过所述光量调节组件930拍摄到所述标板的图像;再根据图像质量(如图像的SFR值等)来调整所述光量调节组件930的位置,以便提升所述光量调节组件930与所述光学镜头9111的光轴的对准程度;之后,调试所述光量调节组件930的控制效果,以测试所述光量调节组件930在进光量调节范围内调节的过程中,图像的SFR值是否达到预期的SFR值,便于在组装所述光转向组件920之前更换测试不合格的所述光量调节组件930。
然后,在所述光量调节组件930满足要求的情况下,可以进一步预定位所述光转向组件920,使得所述光转向组件920、所述光量调节组件930以及所述模组组件910的中心线基本对齐;并根据通过所述感光组件912拍摄的图像质量(即拍摄效果)来调整所述光转向组件920的位置,以便进一步提升所述光转向组件920的所述出光端9201的中心与所述光学镜头9111的光轴之间的对准程度;最后在调整和调试完成之后,定位地固定所述光转向组件920、所述光量调节组件930以及所述模组组件910,以完整所述潜望式摄像模组91的制造。
当然,在本发明的其他示例中,还可以根据所拍摄图像的SFR值来调整所述光转向组件920的相对位置,以测试调整所述潜望式摄像模组91的防抖效果;又可以根据所拍摄图像的SFR值来调整所述模组组件910的所述光学镜头911的相对位置,以测试调整所述潜望式摄像模组91的自动对焦效果或防抖效果。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发 明的实施方式可以有任何变形或修改。

Claims (43)

  1. 一潜望式摄像模组,其特征在于,包括:
    一模组组件,其中所述模组组件具有一感光路径;
    一光转向组件,其中所述光转向组件被对应地设置于所述模组组件的所述感光路径,并且所述光转向组件具有一进光端和一面向所述模组组件的出光端,其中所述光转向组件用于将从所述进光端射入的光线转向以从所述出光端射出,并沿着所述感光路径传播以被所述模组组件接收以成像;
    一光量调节组件,其中所述光量调节组件被组装于所述光转向组件的所述出光端,以位于所述光转向组件和所述模组组件之间,用于调节进入所述模组组件的光线量;以及
    一线路板组件,其中所述线路板组件被设置以电连接于所述光量调节组件,用于为所述光量调节组件提供工作所需的电能。
  2. 如权利要求1所述的潜望式摄像模组,其中,所述线路板组件包括一被电连接地设置于所述光转向组件的第一线路板、一被电连接地设置所述模组组件的第二线路板以及一第一延伸线路板,其中所述第一延伸线路板自所述模组组件延伸至所述光转向组件,并且所述第一延伸线路板分别与所述第一线路板和所述第二线路板电连接。
  3. 如权利要求2所述的潜望式摄像模组,其中,所述线路板组件进一步包括至少一电连接元件,其中所述电连接元件将所述第一延伸线路板与所述光量调节组件电连接,用于通过所述第一延伸线路板提供所述光量调节组件工作所需的电能。
  4. 如权利要求3所述的潜望式摄像模组,其中,所述电连接元件为一导电引脚,其中所述导电引脚被电连接地设置于所述光量调节组件,以通过所述导电引脚将所述光量调节组件电连接于所述第一延伸线路板。
  5. 如权利要求4所述的潜望式摄像模组,其中,所述导电引脚自所述光量调节组件的侧壁并排地向外延伸至所述第一延伸线路板,并且所述导电 引脚被焊接于所述第一延伸线路板。
  6. 如权利要求4所述的潜望式摄像模组,其中,所述导电引脚被间隔地且电连接地设置于所述光量调节组件的侧壁,其中所述第一延伸线路板设有二缺口,并且所述第一延伸线路板上的所述缺口分别与被设置于所述光量调节组件的所述导电引脚一一对应,以将所述导电引脚焊接于所述第一延伸线路板。
  7. 如权利要求2所述的潜望式摄像模组,其中,所述线路板组件进一步包括至少一电连接元件,其中所述电连接元件将所述第一线路板与所述光量调节组件电连接,用于通过所述第一线路板提供所述光量调节组件工作所需的电能。
  8. 如权利要求7所述的潜望式摄像模组,其中,所述电连接元件为一导电引脚,其中所述导电引脚被电连接地设置于所述光量调节组件,并且所述导电引脚自所述光量调节组件的底壁并排地向前延伸至所述第一线路板,并且所述导电引脚被焊接于所述第一线路板。
  9. 如权利要求8所述的潜望式摄像模组,其中,所述电连接元件包括一引线,其中所述引线的一端电连接于所述第一线路板,并且所述引线的另一端电连接于所述光量调节组件
  10. 如权利要求2所述的潜望式摄像模组,其中,所述线路板组件进一步包括一驱动线路板,其中所述驱动线路板被电连接地设置于所述模组组件的底侧,并且所述驱动线路板电连接于所述第一延伸线路板,其中所述线路板组件进一步包括至少一电连接元件,其中所述电连接元件将所述驱动线路板与所述光量调节组件电连接,用于通过所述驱动线路板提供所述光量调节组件工作所需的电能。
  11. 如权利要求10所述的潜望式摄像模组,其中,所述电连接元件为一导电引脚,其中所述导电引脚被电连接地设置于所述光量调节组件,并且 所述导电引脚自所述光量调节组件的底壁并排地向后延伸至所述驱动线路板,并且所述导电引脚被焊接于所述驱动线路板。
  12. 如权利要求2至11中任一所述的潜望式摄像模组,其中,所述线路板组件进一步包括一第一软板,其中所述第一软板被弯折地电连接于所述第二线路板和所述第一延伸线路板。
  13. 如权利要求2至11中任一所述的潜望式摄像模组,其中,所述线路板组件进一步包括一第一软板、一第二延伸线路板以及一第二软板,其中所述第二线路板被设置于所述模组组件的后侧,并且所述第二延伸线路板被叠置于所述第二线路板,其中所述第一软板被弯折地电连接于所述第一延伸线路板和所述第二延伸线路板,其中所述第二软板被弯折地电连接于所述第二线路板和所述第二延伸线路板。
  14. 如权利要求13所述的潜望式摄像模组,进一步包括一垫片,其中所述垫片被叠置于所述第二线路板和所述第二延伸线路板之间,其中所述第二延伸线路板的高度小于所述第二线路板的高度。
  15. 如权利要求14所述的潜望式摄像模组,其中,所述线路板组件进一步包括一连接器和一连接软板,其中所述连接软板在所述第二延伸线路板的高度方向上将所述连接器电连接于所述第二延伸线路板,并且所述连接器用于电连接电子设备的主板。
  16. 如权利要求1至11中任一所述的潜望式摄像模组,进一步包括粘接层,以通过所述粘接层分别将所述光转向组件和所述模组组件粘接于所述光量调节组件。
  17. 如权利要求1至11中任一所述的潜望式摄像模组,其中,所述光量调节组件被扣合于所述光转向组件的所述出光端。
  18. 一潜望式摄像模组的制造方法,其特征在于,包括步骤:
    组装一光量调节组件于一光转向组件的一出光端,用于使从所述光转向组件的一入光端射入的光线先在经由所述转向组件转向以从所述出光端射出后,再经由所述光量调节组件的调节以改变穿过所述光量调节组件的光线量;
    设置所述光量调节组件和所述光转向组件于一模组组件的感光路径,并且所述光量调节组件位于所述光转向组件和所述模组组件之间,用于使穿过所述光量调节组件的光线被所述模组组件接收以成像;以及
    将一线路板组件电连接于所述光量调节组件,用于为所述光量调节组件提供工作所需的电能。
  19. 如权利要求18所述的潜望式摄像模组的制造方法,其中,所述将一线路板组件电连接于所述光量调节组件,用于为所述光转向组件、所述模组组件以及所述光量调节组件提供工作所需的电能的步骤,包括步骤:
    电连接地设置一第一线路板于所述光转向组件,以将所述第一线路板电连接于所述光转向组件的一防抖驱动器;
    电连接地设置一第二线路板于所述模组组件,以将所述第二线路板电连接于所述模组组件的一感光组件的一感光芯片;
    延伸地设置一第一延伸线路板于所述模组组件和所述光转向组件,并且所述第一延伸线路板分别电连接于所述第一线路板和所述第二线路板;以及
    藉由至少一电连接元件将所述光量调节组件电连接于所述第一线路板或所述第一延伸线路板。
  20. 如权利要求19所述的潜望式摄像模组的制造方法,其中,所述将一线路板组件电连接于所述光量调节组件,用于为所述光量调节组件提供工作所需的电能的步骤,进一步包括步骤:
    叠置一第二延伸线路板于所述第二线路板,并通过一第二软板将所述第二延伸线路板电连接于所述第二线路板;
    通过一第一软板将所述第一延伸线路板电连接于所述第二延伸线路板或所述第二线路板;以及
    叠置一垫片于所述第二线路板和所述第二延伸线路板之间。
  21. 如权利要求18至20中任一所述的潜望式摄像模组的制造方法,进一步包括步骤:
    粘接或扣合所述光量调节组件于所述光转向组件的所述出光端;和
    对应地粘接所述光量调节组件于所述模组组件。
  22. 如权利要求18所述的潜望式摄像模组的制造方法,进一步包括步骤:
    预定位所述光量调节组件和所述模组组件,以使所述光量调节组件和所述模组组件的中心线沿所述模组组件的光学镜头的光轴方向基本对齐;
    根据通过所述模组组件的感光组件拍摄一标板的拍摄效果,调整所述光量调节组件的位置;以及
    调试所述光量调节组件,以使所述光量调节组件所控制的进光量大小满足预定要求。
  23. 如权利要求22所述的潜望式摄像模组的制造方法,进一步包括步骤:
    预定位所述光转向组件、所述光量调节组件以及所述模组组件,以使所述光转向组件、所述光量调节组件以及所述模组组件的中心线基本对齐;和
    根据通过所述感光组件拍摄所述标板的拍摄效果,调整所述光转向组件的位置。
  24. 一潜望式摄像模组,其特征在于,包括:
    一模组组件,其中所述模组组件包括:
    一感光组件,其中所述感光组件具有一感光路径;和
    一镜头组件,其中所述镜头组件被对应地设置于所述感光组件的所述感光路径;
    一光转向组件,其中所述光转向组件被对应地设置于所述感光组件的所述感光路径,并且所述镜头组件位于所述感光组件和所述光转向组件之间;以及
    一光量调节组件,其中所述光量调节组件被组装于所述光转向组件的端部,并且所述光量调节组件位于所述感光组件的所述感光路径,用于调节被 所述感光组件接收的光线量。
  25. 如权利要求24所述的潜望式摄像模组,其中,所述光转向组件包括一反射元件、一载体以及具有一转向通道的一外壳支架,其中所述反射元件和所述载体均被设置于所述外壳支架的所述转向通道内,并且所述反射元件被承载于所述载体,以保持所述反射元件对应地位于所述感光组件的所述感光路径,其中所述粘接层被设置于所述光量调节组件和所述光转向组件的所述外壳支架之间,以将所述光量调节组件粘接于所述光转向组件的所述外壳支架。
  26. 如权利要求25所述的潜望式摄像模组,其中,所述光转向组件的所述端部包括一进光端和一出光端,其中所述外壳支架的所述转向通道自所述光转向组件的所述进光端弯折地延伸至所述光转向组件的所述出光端,其中所述光量调节组件被粘接所述外壳支架,并且所述光量调节组件位于所述光转向组件的所述进光端。
  27. 如权利要求25所述的潜望式摄像模组,其中,所述光转向组件的所述端部包括一进光端和一出光端,其中所述外壳支架的所述转向通道自所述光转向组件的所述进光端弯折地延伸至所述光转向组件的所述出光端,其中所述光量调节组件被粘接于所述外壳支架,并且所述光量调节组件位于所述光转向组件的所述出光端和所述模组组件之间。
  28. 如权利要求27所述的潜望式摄像模组,其中,所述光量调节组件被焊接于所述模组组件的所述镜头组件。
  29. 如权利要求27所述的潜望式摄像模组,进一步包括一粘接层,其中所述粘接层被设置于所述光量调节组件和所述模组组件的所述镜头组件之间,以通过所述粘接层将所述光量调节组件粘接于所述模组组件。
  30. 如权利要求29所述的潜望式摄像模组,其中,所述模组组件的所述镜头组件包括一光学镜头、一调焦驱动器以及一组装体外壳,其中所述光 学镜头被可驱动地组装于所述调焦驱动器,并且所述调焦驱动器和所述感光组件均被对应地组装于所述组装体外壳内,其中所述调焦驱动器用于驱动所述光学镜头沿着所述感光路径移动;其中所述光量调节组件通过所述粘接层被直接粘接于所述镜头组件的所述组装体外壳之间,并且所述粘接层的厚度在0.01mm至0.2mm之间。
  31. 如权利要求30所述的潜望式摄像模组,其中,所述粘接层的厚度在0.03mm至0.15mm之间。
  32. 如权利要求30所述的潜望式摄像模组,其中,所述粘接层对应于所述镜头组件的所述组装体外壳的左右两侧和/或底侧。
  33. 如权利要求30所述的潜望式摄像模组,其中,所述光量调节组件具有长方形端面,并且所述光量调节组件的长边和短边分别平行于所述镜头组件的长边和短边。
  34. 如权利要求33所述的潜望式摄像模组,其中,所述光量调节组件的所述长方形端面的宽度与长度的比值大于0.75且小于1。
  35. 如权利要求34所述的潜望式摄像模组,其中,所述光量调节组件包括对个叶片、多个电致动器以及一框架,其中所述叶片被部分重叠地安装于所述框架,以通过所述叶片形成孔径可调的光阑孔,其中所述电致动器分别被设置于所述框架的左右两侧,用于致动所述叶片以调节所述光阑孔的孔径大小。
  36. 如权利要求24至35中任一所述的潜望式摄像模组,其中,所述光量调节组件被扣合地粘接于所述光转向组件。
  37. 如权利要求24至36中任一所述的潜望式摄像模组,进一步包括一线路板组件,其中所述线路板组件电连接于所述光量调节组件,用于为所述光量调节组件提供工作所需的电能。
  38. 一潜望式摄像模组,其特征在于,包括:
    一模组组件,其中所述模组组件包括:
    一感光组件,其中所述感光组件具有一感光路径;和
    一镜头组件,其中所述镜头组件被对应地设置于所述感光组件的所述感光路径;
    一光转向组件,其中所述光转向组件被组装于所述镜头组件,并且所述光转向组件对应于所述感光组件的所述感光路径,以使所述镜头组件位于所述感光组件和所述光转向组件之间;以及
    一光量调节组件,其中所述光量调节组件被组装于所述镜头组件,并且所述光量调节组件位于所述感光组件的所述感光路径,用于调节被所述感光组件接收的光线量。
  39. 如权利要求38所述的潜望式摄像模组,其中,所述模组组件的所述镜头组件包括一光学镜头、一调焦驱动器以及一组装体外壳,其中所述光学镜头被可驱动地组装于所述调焦驱动器,并且所述调焦驱动器和所述感光组件均被对应地组装于所述组装体外壳内,其中所述调焦驱动器用于驱动所述光学镜头沿着所述感光路径移动,其中所述光量调节组件被组装于所述镜头组件的所述光学镜头,以保持所述光量调节组件对应于所述感光组件的所述感光路径。
  40. 如权利要求39所述的潜望式摄像模组,其中,所述光学镜头包括一第一透镜组和一第二透镜组,其中所述光量调节组件被设置于所述第一透镜组和所述第二透镜组之间。
  41. 如权利要求40所述的潜望式摄像模组,其中,所述光学镜头进一步包括一镜筒,其中所述第一透镜组、所述光量调节组件以及所述第二透镜组依次被组装于所述镜筒,并且所述第二透镜组位于所述光量调节组件和所述感光组件之间。
  42. 如权利要求40所述的潜望式摄像模组,其中,所述光学镜头进一 步包括一第一镜筒和一第二镜筒,其中所述第一透镜组被组装于所述第一镜筒,并且所述第二透镜组被组装于所述第二镜筒,其中所述光量调节组件被安装于所述第一镜筒和/或所述第二镜筒,并且所述第二透镜组位于所述光量调节组件和所述感光组件之间。
  43. 如权利要求39所述的潜望式摄像模组,其中,所述光量调节组件与所述镜头组件的所述调焦驱动器一体成型,并且所述光学镜头位于所述光量调节组件和所述感光组件之间。
PCT/CN2020/135809 2019-12-13 2020-12-11 潜望式摄像模组及其制造方法 WO2021115440A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080085310.1A CN115053511B (zh) 2019-12-13 2020-12-11 潜望式摄像模组及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911288944.2A CN112995445A (zh) 2019-12-13 2019-12-13 潜望式摄像模组
CN201911288944.2 2019-12-13
CN201911278714.8 2019-12-13
CN201911278714.8A CN112995443B (zh) 2019-12-13 2019-12-13 潜望式摄像模组及其制造方法

Publications (1)

Publication Number Publication Date
WO2021115440A1 true WO2021115440A1 (zh) 2021-06-17

Family

ID=76329630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135809 WO2021115440A1 (zh) 2019-12-13 2020-12-11 潜望式摄像模组及其制造方法

Country Status (2)

Country Link
CN (1) CN115053511B (zh)
WO (1) WO2021115440A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113747021A (zh) * 2021-09-08 2021-12-03 维沃移动通信有限公司 潜望式摄像模组和电子设备
CN113747024A (zh) * 2021-09-13 2021-12-03 维沃移动通信有限公司 摄像头模组及电子设备
CN114006999A (zh) * 2021-10-29 2022-02-01 重庆盛泰光电有限公司 潜望式摄像装置的加工方法
CN115942073A (zh) * 2021-09-10 2023-04-07 宁波舜宇光电信息有限公司 摄像模组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130342919A1 (en) * 2012-06-26 2013-12-26 Largan Precision Co., Ltd. Single focus optical image capturing system
CN108037578A (zh) * 2018-01-10 2018-05-15 浙江舜宇光学有限公司 摄像透镜***
WO2018166261A1 (zh) * 2017-03-15 2018-09-20 华为技术有限公司 一种移动终端的潜望式镜头模组及移动终端
CN208110149U (zh) * 2018-04-27 2018-11-16 南昌欧菲精密光学制品有限公司 潜望式镜头、成像模组和电子装置
CN209525525U (zh) * 2018-01-25 2019-10-22 台湾东电化股份有限公司 光学元件驱动机构
CN209593574U (zh) * 2019-02-25 2019-11-05 德淮半导体有限公司 一种潜望式变焦镜头、成像模组及电子装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI490537B (zh) * 2012-06-29 2015-07-01 Young Optics Inc 變焦鏡頭及變焦鏡頭模組
CN206117816U (zh) * 2016-08-24 2017-04-19 宁波舜宇光电信息有限公司 潜望式摄像模组
CN208351111U (zh) * 2018-05-22 2019-01-08 宁波舜宇光电信息有限公司 潜望式摄像模组、潜望式阵列模组以及电子设备
CN208581286U (zh) * 2018-06-08 2019-03-05 宁波舜宇光电信息有限公司 潜望式摄像模组、阵列摄像模组和电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130342919A1 (en) * 2012-06-26 2013-12-26 Largan Precision Co., Ltd. Single focus optical image capturing system
WO2018166261A1 (zh) * 2017-03-15 2018-09-20 华为技术有限公司 一种移动终端的潜望式镜头模组及移动终端
CN108037578A (zh) * 2018-01-10 2018-05-15 浙江舜宇光学有限公司 摄像透镜***
CN209525525U (zh) * 2018-01-25 2019-10-22 台湾东电化股份有限公司 光学元件驱动机构
CN208110149U (zh) * 2018-04-27 2018-11-16 南昌欧菲精密光学制品有限公司 潜望式镜头、成像模组和电子装置
CN209593574U (zh) * 2019-02-25 2019-11-05 德淮半导体有限公司 一种潜望式变焦镜头、成像模组及电子装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113747021A (zh) * 2021-09-08 2021-12-03 维沃移动通信有限公司 潜望式摄像模组和电子设备
CN115942073A (zh) * 2021-09-10 2023-04-07 宁波舜宇光电信息有限公司 摄像模组
CN113747024A (zh) * 2021-09-13 2021-12-03 维沃移动通信有限公司 摄像头模组及电子设备
CN113747024B (zh) * 2021-09-13 2023-05-23 维沃移动通信有限公司 摄像头模组及电子设备
CN114006999A (zh) * 2021-10-29 2022-02-01 重庆盛泰光电有限公司 潜望式摄像装置的加工方法
CN114006999B (zh) * 2021-10-29 2023-10-10 盛泰光电科技股份有限公司 潜望式摄像装置的加工方法

Also Published As

Publication number Publication date
CN115053511B (zh) 2024-04-09
CN115053511A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
WO2021115440A1 (zh) 潜望式摄像模组及其制造方法
CN112995443B (zh) 潜望式摄像模组及其制造方法
US8564718B2 (en) Camera module and mobile terminal unit
US7190404B2 (en) Solid state imaging apparatus
KR20210118129A (ko) 액체 렌즈를 구동하기 위한 보이스 코일 모터 및 보이스 코일 모터를 구비한 렌즈 어셈블리
US7515817B2 (en) Camera module
CN100583953C (zh) 摄像装置
US20050168834A1 (en) Camera
WO2021017181A1 (zh) 摄像模组及其镜头组件以及移动终端
JP2019530899A (ja) カメラレンズバレル、カメラモジュール及び光学装置
WO2020118752A1 (zh) 双向防抖反射模块及潜望式模组
WO2021052157A1 (zh) 潜望式摄像模组及电子设备
CN112995445A (zh) 潜望式摄像模组
WO2022151806A1 (zh) 摄像头组件及电子设备
WO2021213216A1 (zh) 潜望式摄像模组、多摄摄像模组和摄像模组的组装方法
WO2008029944A1 (fr) Dispositif d'imagerie et procédé de production correspondant
KR20110108183A (ko) 오토 포커싱 가능한 카메라 모듈 및 그 제조 방법
CN113691705B (zh) 摄像模组及电子设备
US20200371407A1 (en) Optical imaging apparatus capable of focusing
CN113534398A (zh) 镜头模组及摄像装置、电子设备、光轴对准方法
CN109246268B (zh) 电子装置
US20090147128A1 (en) Digital photographing apparatus
CN111953895B (zh) 可对焦成像装置
TWI832457B (zh) 潛望式攝像模組及電子裝置
CN115428429B (zh) 潜望式摄像模组、多摄摄像模组和摄像模组的组装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899119

Country of ref document: EP

Kind code of ref document: A1