WO2021112609A1 - 열가소성 성형 조성물 및 이의 성형물을 포함하는 자동차 부품 - Google Patents

열가소성 성형 조성물 및 이의 성형물을 포함하는 자동차 부품 Download PDF

Info

Publication number
WO2021112609A1
WO2021112609A1 PCT/KR2020/017605 KR2020017605W WO2021112609A1 WO 2021112609 A1 WO2021112609 A1 WO 2021112609A1 KR 2020017605 W KR2020017605 W KR 2020017605W WO 2021112609 A1 WO2021112609 A1 WO 2021112609A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding composition
thermoplastic molding
weight
stabilizer
specimen
Prior art date
Application number
PCT/KR2020/017605
Other languages
English (en)
French (fr)
Inventor
류광수
나상욱
손선모
곽민한
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to JP2021542480A priority Critical patent/JP7145338B2/ja
Priority to CN202080010668.8A priority patent/CN113348209A/zh
Priority to US17/425,647 priority patent/US20220098408A1/en
Priority to EP20896054.2A priority patent/EP3901208A4/en
Priority claimed from KR1020200167993A external-priority patent/KR102602710B1/ko
Publication of WO2021112609A1 publication Critical patent/WO2021112609A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds

Definitions

  • the present invention relates to a thermoplastic molding composition and an automobile part comprising a molding thereof. Specifically, it relates to a thermoplastic molding composition having excellent chemical resistance and an automobile part including a molded product thereof.
  • Polyamide 66 is a crystalline plastic and has excellent mechanical properties, heat resistance, abrasion resistance and processability. Recently, due to improved fuel efficiency and increased use of high-performance engines, it is widely used as automobile parts.
  • polyamide 66 has an amide bond structure, and the amide bond is a hydrolyzable bond, which is vulnerable to moisture. In particular, its physical properties are rapidly weakened under high temperature and high humidity conditions.
  • An object of the present invention is to provide a thermoplastic molding composition with improved chemical resistance and moldability, and automobile parts including a molded product thereof.
  • polyamide 66 polyamide 66; glass fiber; and a stabilizer, wherein the polyamide 66 has at least 85 meqiv/kg of amine end groups.
  • polyamide 66; glass fiber; and stabilizers Including, glycol and water 50% by weight: 50% by weight of the mixed solution and specimen are put together in an autoclave facility and left for 1000 hours at a temperature of 130°C, then take out the specimen and chapion according to ISO 179
  • a thermoplastic molding composition having an impact strength of 35 kJ/m 2 or more as measured by a notch flat and an unnotched edge may be provided.
  • polyamide 66; glass fiber; and stabilizers Including, glycol and water 50% by weight: 50% by weight of a mixed solution and specimen are put together in an autoclave facility and left at a temperature of 130° C. for 1000 hours, then take out the specimen and use a tensile tester according to ISO 527 A thermoplastic molding composition having a measured elongation of 1.8% or more when the specimen is broken at a crosshead speed of 5 mm/min can be provided.
  • polyamide 66 may be provided in a thermoplastic molding composition.
  • an automobile part comprising a molding of the composition.
  • thermoplastic molding composition according to an exemplary embodiment of the present invention can maintain excellent physical properties such as tensile strength, elongation, and impact even when left for a long time in a high-temperature, high-humidity environment.
  • the polyamide 66 When the polyamide 66 has an amine end group of 85 meqiv/kg or more, the polyamide 66 may have excellent hydrolysis resistance, so that the thermoplastic molding composition may have excellent physical properties such as chemical resistance and moldability.
  • the polyamide 66 preferably has 85 to 102 meqiv/kg of amine end groups, more preferably 85 to 95 meqiv/kg of amine end groups, within which the hydrolysis resistance of the polyamide 66 is Due to this excellent property, physical properties such as chemical resistance and moldability of the thermoplastic molding composition may be excellent.
  • amine end groups or “amine end groups of 85 meqiv/kg or more” may mean the concentration of amine end groups contained in the polyamide resin, and the published literature [Nylon Plastics Handbook by Melvin. I. Kohan (Hanser, 1995, 79-80 p)].
  • the polyamide 66 may be included in the thermoplastic molding composition in an amount of 50 to 75% by weight, preferably 65 to 70% by weight. When included in an amount within the above range, there may be an effect of improving the hydrolysis resistance of the thermoplastic molding composition.
  • the polyamide 66 may have a relative viscosity of 2.0 to 3.2, preferably 2.3 to 2.7.
  • suitable moldability and long-term chemical resistance may be improved.
  • the relative viscosity can be measured with a Ubbelohde viscometer by the ISO 307 sulfuric acid method. Specifically, a solution prepared by dissolving 1 g of a sample to be measured in 100 ml of an aqueous solution of sulfuric acid having a concentration of 96 wt% is 25 using a Ubbelohde viscometer. It can be measured at °C.
  • the glass fiber may be included in the thermoplastic molding composition in an amount of 20 to 50% by weight, preferably 30 to 40% by weight, more preferably 30 to 35% by weight.
  • the glass fiber is included in an amount within the above range, there may be an effect of improving rigidity and long-term physical properties.
  • the glass fiber may have a hydrolysis-resistant coating treatment on the surface.
  • the glass fiber may be coated with amino silane on the surface to have excellent hydrolysis resistance.
  • the amino silane is N-(2-aminoethyl)-3-aminopropyltriethoxysilane, gamma-aminopropyltriethoxysilane, N-phenyl-gamma-aminopropyltrime group consisting of oxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane and gamma-aminopropyltrimethoxysilane It may be one or more selected from, in this case, there is an advantage of excellent hydrolysis resistance.
  • the stabilizer may be included in the thermoplastic molding composition in an amount of 0.01 to 4% by weight, preferably 0.1 to 3% by weight, and more preferably 0.2 to 2% by weight.
  • the stabilizer may serve to improve the deterioration of properties by preventing decomposition by heat and oxidation during processing with polyamide 66 in the thermoplastic molding composition.
  • the stabilizer may include at least one of an amine-based stabilizer and a phenol-based stabilizer.
  • the amine stabilizer preferably includes a diphenylamine stabilizer, more preferably phenylnaphthylamine, 4,4'-dimethoxydiphenylamine, 4,4'-bis( ⁇ , ⁇ -dimethylbenzyl) ) at least one selected from diphenylamine, 4-(1-methyl-1-phenylethyl) N- [4-(1-methyl-1-phenylethyl)phenyl]aniline, and 4-isopropoxydiphenylamine
  • a diphenylamine stabilizer more preferably phenylnaphthylamine, 4,4'-dimethoxydiphenylamine, 4,4'-bis( ⁇ , ⁇ -dimethylbenzyl) ) at least one selected from diphenylamine, 4-(1-methyl-1-phenylethyl) N- [4-(1-methyl-1-phenylethyl)phenyl]aniline, and 4-isopropoxydiphenylamine
  • the amine-based stabilizer may be 4-(1-methyl-1-phenylethyl)N-[4-(1-methyl-1-phenylethyl)phenyl]aniline.
  • the phenolic stabilizer preferably includes a hindered phenolic stabilizer, more preferably N,N′-hexane-1,6-diyl-bis[3-(3,5-di-t-butyl-4). -Hydroxyphenyl propionamide)], pentaerythritol tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], N,N'-hexamethylene-bis(3 ,5-di-t-butyl-4-hydroxyhydrocinnamide), triethyleneglycol-bis[3-(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate], 3, 5-di-t-butyl-4-hydroxybenzylphosphonate-diethyl ester, 1,3,5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hyde It may be at least one selected from the group consisting of hydroxy
  • the phenolic stabilizer may be 1,6-hexanediyl bis[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenylpropanamide].
  • the amine-based stabilizer and the phenol-based stabilizer are in a weight ratio of 2:1 to 1:2, preferably 2:1 to 1:1, more preferably 1.5:1 to 1: 1, more preferably 1.5:1 to 1.1:1 may be included.
  • thermoplastic molding composition may further include 0.01 to 10% by weight of an additive.
  • the additive may include one or more of a pigment, a dye, a lubricant, a coupling agent, and a UV stabilizer.
  • the additive may be included without limitation as long as it is widely used in the technical field, if necessary, in addition to the materials listed above.
  • the thermoplastic molding composition has a tensile strength of, for example, 190 MPa or more, preferably 193 MPa or more, more preferably measured at a crosshead speed of 5 mm/min in a tensile tester according to ISO 527. It is preferably 194 MPa or more, more preferably 200 MPa or more, and a specific example is 190 to 250 MPa, preferably 193 to 250 MPa, more preferably 194 to 250 MPa, even more preferably 200 to 250 MPa, and within this range Formability, mechanical properties, and chemical resistance are all advantageous.
  • the thermoplastic molding composition has an elongation of 3.0% or more, preferably 3.2% or more, when the specimen is broken at a crosshead speed of 5 mm/min in accordance with ISO 527. More preferably, it is 3.4% or more, more preferably 3.5% or more, and a specific example is 3.0 to 4.0%, preferably 3.2 to 4.0%, more preferably 3.4 to 4.0%, still more preferably 3.5 to 4.0%, , within this range, the moldability, mechanical properties, and chemical resistance are all excellent.
  • the thermoplastic molding composition has an impact strength of, for example, 70 kJ/m 2 or more, preferably 73 kJ/m 2 or more, as measured by a Sharpie unnotched flat and unnotched edge according to ISO 179. , More preferably 75 kJ/m 2 or more, more preferably 76 kJ/m 2 or more, and specifically, 70 to 100 kJ/m 2 , preferably 73 to 100 kJ/m 2 , more preferably 75 to 100 kJ/m 2 , more preferably 76 to 100 kJ/m 2 , and within this range, moldability, mechanical properties, and chemical resistance are all excellent.
  • the thermoplastic molding composition is a mixture of glycol and water 50% by weight: 50% by weight of a solution and a specimen are put together in an autoclave facility and left at a temperature of 130° C. for 500 hours. , the specimen is taken out and the tensile strength measured under the condition of a crosshead speed of 5 mm/min of a tensile tester according to ISO 527 is, for example, 101 MPa or more, preferably 102 MPa or more, more preferably 103 MPa or more, more preferably 104 MPa or more, a specific example is 101 to 200 MPa, a preferred example is 102 to 200 MPa, a more preferable example is 103-200 MPa, and a more preferable example is 104 to 200 MPa, and within this range moldability, mechanical properties and chemical resistance are all There are excellent advantages.
  • the thermoplastic molding composition is a mixture of glycol and water 50% by weight: 50% by weight of a solution and a specimen are put together in an autoclave facility and left at a temperature of 130° C. for 500 hours. , take out the specimen, and the elongation measured when the specimen is broken at the crosshead speed of 5 mm/min of the tensile tester according to ISO 527 is, for example, 4.0% or more, preferably 4.2% or more, more preferably 4.4% or more, more preferably preferably 4.5% or more, and a specific example is 4.0 to 5.0%, preferably 4.2 to 5.0%, more preferably 4.4 to 5.0%, still more preferably 4.5 to 5.0%, and moldability and mechanical properties within this range and excellent chemical resistance.
  • the thermoplastic molding composition is a mixture of glycol and water 50% by weight: 50% by weight of a solution and a specimen are put together in an autoclave facility and left at a temperature of 130° C. for 500 hours. , the specimen is taken out and the impact strength measured with a Sharpie unnotched flat and unnotched edge according to ISO 179 is, for example, 68 kJ/m 2 or more, preferably 70 kJ/m 2 or more, more preferably 71 kJ/m 2 or more, more preferably 73 kJ/m 2 or more, and specifically, 68 to 90 kJ/m 2 , preferably 70 to 90 kJ/m 2 , more preferably 71 to 90 kJ/m 2 , more preferably is 73 to 90 kJ/m 2 , and within this range, moldability, mechanical properties, and chemical resistance are all excellent.
  • BASF's G48 glycol may be used.
  • the thermoplastic molding composition is a mixture of glycol and water 50% by weight: 50% by weight of a solution and a specimen are put together in an autoclave facility and left at a temperature of 130° C. for 1000 hours. , the specimen is taken out and the tensile strength measured under the condition of a crosshead speed of 5 mm/min of a tensile tester according to ISO 527 is, for example, 68 MPa or more, preferably 70 MPa or more, more preferably 71 MPa or more, more preferably 73 MPa or more, a specific example is 68 to 120 MPa, a preferred example is 70 to 120 MPa, a more preferable example is 71 to 120 MPa, a more preferable example is 73 to 120 MPa, and within this range moldability, mechanical properties and chemical resistance are all There are excellent advantages.
  • the thermoplastic molding composition is a mixture of glycol and water 50% by weight: 50% by weight of a solution and a specimen are put together in an autoclave facility and left at a temperature of 130° C. for 1000 hours. , take out the specimen, and the elongation measured when the specimen is broken at the crosshead speed of 5 mm/min of the tensile tester according to ISO 527 is, for example, 1.8% or more, preferably 2.0% or more, more preferably 2.1% or more, more preferably preferably 2.2% or more, specifically, 1.8 to 4.0%, preferably 2.0 to 4.0%, more preferably 2.1 to 4.0%, still more preferably 2.2 to 4.0%, within this range moldability, mechanical properties and excellent chemical resistance.
  • the thermoplastic molding composition is a mixture of glycol and water 50% by weight: 50% by weight of a solution and a specimen are put together in an autoclave facility and left at a temperature of 130° C. for 1000 hours. , the specimen is taken out and the impact strength measured with a Sharpie unnotched flat and unnotched edge according to ISO 179 is, for example, 35 kJ/m 2 or more, preferably 36 kJ/m 2 or more, more preferably 37 kJ/m 2 or more, more preferably 38 kJ/m 2 or more, and a specific example of 35 to 50 kJ/m 2 , preferably 36 to 50 kJ/m 2 , more preferably 37 to 50 kJ/m 2 , more preferably is 38 to 50 kJ/m 2 , and within this range, moldability, mechanical properties, and chemical resistance are all excellent.
  • the thermoplastic molding composition has an injection temperature of 300°C, a mold temperature of 80°C, and a spiral test value measured using a spiral mold (2.0T) under the conditions of a pressure of 500 Kgf. 25 cm or more, preferably 28 cm or more, more preferably 30 cm or more, still more preferably 31 cm or more, and specifically 25 to 35 cm, preferably 28 to 35 cm, more preferably 30 to 35 cm, more preferably 31 to 35 cm.
  • a pressure 500 Kgf. 25 cm or more, preferably 28 cm or more, more preferably 30 cm or more, still more preferably 31 cm or more, and specifically 25 to 35 cm, preferably 28 to 35 cm, more preferably 30 to 35 cm, more preferably 31 to 35 cm.
  • moldability, mechanical properties, and chemical resistance are all excellent.
  • an injection molding machine (Engel, Victory 80) may be used as a specific example, and the spiral test value may mean the length of a molded article.
  • an automobile part comprising a molded product of the composition according to an embodiment of the present invention.
  • thermoplastic molding composition according to an embodiment of the present invention, by including the thermoplastic molding composition according to an embodiment of the present invention, excellent physical properties such as tensile strength, elongation, and impact strength can be maintained even if left in a high-temperature, high-humidity environment for a long period of time. have.
  • Example 1 68.4 - 31 - 0.2 - 0.4
  • Example 2 66.7 - 31 - 1.0 0.9 0.4
  • Example 3 68.4 - - 31 0.2 - 0.4
  • Example 4 39.4 - - 60 0.2 - 0.4
  • Example 5 84.4 - - 15 0.2 - 0.4 Comparative Example 1 - 68.4 31 - 0.2 - 0.4 Comparative Example 2 - 68.4 - 31 0.2 - 0.4 Comparative Example 3 - 84.4 - 15 0.2 - 0.4 Comparative Example 4 - 68.1 31 - 0.5 - 0.4 Comparative Example 5 - 67.6 31 - 1.0 - 0.4 Comparative Example 6 - 66.7 - 31 1.0 0.9 0.4
  • B-1 Glass fiber for chemical resistance improvement with a diameter of 10 to 13 ⁇ m and a chop length of 3 to 4 mm (CPIC)
  • B-2 General glass fiber with a diameter of 10 to 13 ⁇ m and a chop length of 3 to 4 mm (Owens Corning)
  • Tensile strength and elongation In accordance with ISO 527, the tensile strength was measured at a crosshead speed of 5 mm/min in a tensile tester, and the elongation at break of the tensile specimen was measured/calculated.
  • Impact strength Sharpie unnotched flat and unnotched edge impact strength were measured according to ISO 179. In the case of low-temperature impact, a notch was made on the specimen in a constant temperature chamber at -30°C, and the measurement was performed after storage for 3 hours.
  • a glycol/water (50%/50%) solution was prepared using BASF's G48 glycol.
  • the specimens prepared in Examples 1 to 5 and Comparative Examples 1 to 6 together with the prepared solution were left in an autoclave facility at a temperature of 130° C. for 500 hours and 1000 hours, and tensile strength, elongation and impact strength as described above. was measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 내화학성이 우수한 열가소성 성형 조성물 및 이의 성형물을 포함하는 자동차 부품을 제공한다.

Description

열가소성 성형 조성물 및 이의 성형물을 포함하는 자동차 부품
〔출원(들)과의 상호 인용〕
본 출원은 2019.12.06일자 한국특허출원 제 10-2019-0161151호 및 그를 토대로 2020.12.04일자로 재출원한 한국특허출원 제 10-2020-0167993호를 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 열가소성 성형 조성물 및 이의 성형물을 포함하는 자동차 부품에 관한 것이다. 구체적으로, 내화학성이 우수한 열가소성 성형 조성물 및 이의 성형물을 포함하는 자동차 부품에 관한 것이다.
폴리아미드 66은 결정성 플라스틱으로, 우수한 기계적 성질, 내열성, 내마모성 및 가공성이 있는 소재이다. 최근에는 자동차 연비 개선 및 고성능 엔진 사용 증가로, 자동차용 부품으로 널리 사용되고 있다.
그러나 폴리아미드 66은 아미드 결합 구조를 가지고 있고, 아미드 결합은 가수분해가 가능한 결합으로서 수분에 취약한 단점이 있다. 특히나 고온 고습 조건에서는 그 물성이 급격히 약화된다.
따라서 폴리아미드 66의 활용도를 높이기 위해서는 내가수분해성능이 향상될 필요가 있다.
가수분해 방지를 위한 방안으로 폴리아미드 66의 점도를 증가시키거나, 유리섬유의 종류를 변경시키는 등의 노력이 있으나, 이의 결과로 유동성이 저하됨에 따라 외관이 열등해지는 문제가 있었다.
즉, 고온 고습 환경에서 장기간 방치되더라도 가수분해에 의한 물성 저하를 방지하면서도, 유리섬유의 들뜸 및 가스 발생에 의한 제품의 외관상 문제도 발생하지 않는 조성물이 요구되는 실정이다.
본 발명이 이루고자 하는 기술적 과제는 내화학성 및 성형성이 향상된 열가소성 성형 조성물 및 이의 성형물을 포함하는 자동차 부품을 제공하는 것이다.
다만, 본 발명이 해결하고자 하는 과제는 상기 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 하기의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기의 목적을 달성하기 위하여, 본 발명의 일 측면에 따르면, 폴리아미드 66; 유리 섬유; 및 안정제를 포함하고, 상기 폴리아미드 66은 85 meqiv/kg 이상의 아민 말단기를 가지는 것인 열가소성 성형 조성물이 제공된다.
또한, 본 발명의 또 다른 일 측면에 따르면, 폴리아미드 66; 유리 섬유; 및 안정제; 를 포함하고, 글라이콜과 물이 50 중량% : 50 중량%로 혼합된 용액과 시편을 오토클레이브 설비에 함께 넣고 온도 130℃ 하에 1000 시간 동안 방치한 후, 시편을 꺼내어 ISO 179에 따라 샤피 언노치 플랫 및 언노치 엣지로 측정한 충격강도가 35 kJ/m2 이상인 것인 열가소성 성형 조성물이 제공될 수 있다.
또한, 본 발명의 또 다른 일 측면에 따르면, 폴리아미드 66; 유리 섬유; 및 안정제; 를 포함하고, 글라이콜과 물이 50 중량% : 50 중량%로 혼합된 용액과 시편을 오토클레이브 설비에 함께 넣고 온도 130℃ 하에 1000 시간 동안 방치한 후, 시편을 꺼내어 ISO 527에 따라 인장시험기의 크로스헤드 속도 5 mm/min 조건으로 시편 파단 시 측정된 신율이 1.8 % 이상인 것인 열가소성 성형 조성물이 제공될 수 있다.
또한, 본 발명의 또 다른 일 측면에 따르면, 폴리아미드 66; 유리 섬유; 및 안정제; 를 포함하고, 상기 폴리아미드 66은 상대점도가 2.0 내지 3.2이며 50 내지 75 중량%로 포함되는 것인 열가소성 성형 조성물이 제공될 수 있다.
본 발명의 다른 측면에 따르면, 조성물의 성형물을 포함하는 자동차 부품이 제공된다.
본 발명의 일 구현예에 따른 열가소성 성형 조성물은 고온 고습 환경에서 장기간 방치되더라도 인장 강도, 신율, 충격 등의 물성이 우수하게 유지될 수 있다.
본 발명의 효과는 상술한 효과로 한정되는 것은 아니며, 언급되지 아니한 효과들은 본원 명세서 및 첨부된 도면으로부터 당업자에게 명확히 이해될 수 있을 것이다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다
이하, 본 발명에 대하여 더욱 상세하게 설명한다.
본 발명의 일 구현예에 따른 열가소성 성형 조성물은 폴리아미드 66; 유리 섬유; 및 안정제; 를 포함하고, 상기 폴리아미드 66은 85 meqiv/kg 이상의 아민 말단기를 가진다.
상기 폴리아미드 66이 85 meqiv/kg 이상의 아민 말단기를 가지는 경우, 상기 폴리아미드 66의 내가수분해성이 우수하여 열가소성 성형 조성물의 내화학성 및 성형성과 같은 물성이 우수할 수 있다.
상기 폴리아미드 66은 바람직하게는 85 내지 102 meqiv/kg의 아민 말단기를 가지고, 보다 바람직하게는 85 내지 95 meqiv/kg의 아민 말단기를 가지며, 이 범위 내에서 상기 폴리아미드 66의 내가수분해성이 우수하여 열가소성 성형 조성물의 내화학성 및 성형성과 같은 물성이 우수할 수 있다.
상기 “아민 말단기”또는 "85 meqiv/kg 이상의 아민 말단기"란, 폴리아미드 수지에 포함되어 있는 아민 말단기의 농도를 의미할 수 있고, 공개된 문헌인 [Nylon Plastics Handbook by Melvin. I. Kohan (Hanser, 1995, 79-80 p)]에 기재된 방법으로 측정될 수 있다.
본 발명의 일 구현예에 따르면 상기 폴리아미드 66은 50 내지 75 중량%, 바람직하게는 65 내지 70 중량%로 상기 열가소성 성형 조성물에 포함될 수 있다. 상기 범위 내의 함량으로 포함되는 경우, 열가소성 성형 조성물의 내가수분해성이 개선되는 효과가 있을 수 있다.
본 발명의 일 구현예에 따르면, 상기 폴리아미드 66은 상대점도가 2.0 내지 3.2, 바람직하게 2.3 내지 2.7일 수 있다. 폴리아미드 66이 상기 범위 내의 점도를 갖는 경우, 적합한 성형성 및 장기 내화학성이 개선되는 효과가 있을 수 있다.
본 기재에서 상대 점도는 ISO 307 황산법에 의해 Ubbelohde 점도계로 측정할 수 있고, 구체적으로 설명하면 96 중량% 농도의 황산 수용액 100ml에 측정하고자 하는 시료 1g을 용해시켜 제조된 용액을 Ubbelohde 점도계를 이용하여 25℃에서 측정할 수 있다.
본 발명의 일 구현예에 따르면, 상기 유리 섬유는 20 내지 50 중량%, 바람직하게는 30 내지 40 중량%, 보다 바람직하게는 30 내지 35 중량%로 상기 열가소성 성형 조성물에 포함될 수 있다. 유리 섬유가 상기 범위 내의 함량으로 포함되는 경우, 강성 및 장기 물성이 개선되는 효과가 있을 수 있다.
본 발명의 일 구현예에 따르면, 상기 유리 섬유는 표면에 내가수분해 코팅처리가 되어 있는 것일 수 있다. 구체적으로, 상기 유리 섬유는 표면에 아미노 실란으로 코팅처리되어 내가수분해성이 우수할 수 있다.
본 발명의 일 구현예에 따르면, 상기 아미노 실란은 N-(2-아미노에틸)-3-아미노프로필트리에톡시실란, 감마-아미노프로필트리에톡시실란, N-페닐-감마-아미노프로필트리메톡시실란, N-(2-아미노에틸)-3-아미노프로필메틸디메톡시실란, N-(2-아미노에틸)-3-아미노프로필트리메톡시실란 및 감마-아미노프로필트리메톡시실란으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 내가수분해성이 우수한 이점이 있다.
본 발명의 일 구현예에 따르면, 상기 안정제는 0.01 내지 4 중량%, 바람직하게는 0.1 내지 3 중량%, 보다 바람직하게는 0.2 내지 2 중량%로 상기 열가소성 성형 조성물에 포함될 수 있다. 이때 안정제는 열가소성 성형 조성물 내에서 폴리아미드 66과 가공 과정에서 열 및 산화에 의한 분해를 방지하는 작용을 통해 물성 저하를 개선하는 역할을 할 수 있다.
본 발명의 일 구현예에 따르면, 상기 안정제는 아민계 안정제 및 페놀계 안정제 중 1종 이상을 포함할 수 있다.
상기 아민계 안정제는 바람직하게는 디페닐아민계 안정제를 포함하고, 보다 바람직하게는 페닐나프틸아민, 4,4'-디메톡시디페닐아민, 4,4'-비스(α,α-디메틸벤질)디페닐 아민, 4-(1-메틸-1-페닐에틸) N-[4-(1-메틸-1-페닐에틸)페닐]아닐린 및 4-이소프로폭시 디페닐 아민 중에서 선택되는 1종 이상을 포함할 수 있고, 이 경우 본 발명이 목적하는 효과를 저해하지 않으면서 안정화 효과가 잘 발현되는 이점이 있다.
본 발명의 더욱 바람직한 일 구현예에 따르면, 상기 아민계 안정제는 4-(1-메틸-1-페닐에틸) N-[4-(1-메틸-1-페닐에틸)페닐]아닐린일 수 있다.
상기 페놀계 안정제는 바람직하게는 힌더드 페놀계 안정제를 포함하고, 보다 바람직하게는 N,N′-헥산-1,6-디일-비스[3-(3,5-디-t-부틸-4-하이드록시페닐 프로피온아미드)], 펜타에리트리톨 테트라키스[3-(3,5-디-t-부틸-4-하이드록시페닐)프로피오네이트], N,N′-헥사메틸렌-비스(3,5-디-t-부틸-4-하이드록시하이드로신나미드), 트리에틸렌글리콜-비스[3-(3-t-부틸-5-메틸-4-하이드록시페닐)프로피오네이트], 3,5-디-t-부틸-4-하이드록시벤질포스포네이트-디에틸에스테르, 1,3,5-트리메틸-2,4,6-트리스(3,5-디-t-부틸-4-하이드록시벤질)벤젠 및 1,3,5-트리스(4-t-부틸-3-하이드록시-2,6-디메틸벤질)이소시아누레이트로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 본 발명이 목적하는 효과를 저해하지 않으면서 안정제화 효과가 잘 발현되는 이점이 있다.
본 발명의 더욱 바람직한 일 구현예에 따르면, 상기 페놀계 안정제는 1,6-헥산디일 비스[3,5-비스(1,1-디메틸에틸)-4-하이드록시페닐프로판아미드]일 수 있다.
본 발명의 일 구현예에 따르면, 상기 아민계 안정제 및 상기 페놀계 안정제는 2:1 내지 1:2의 중량비, 바람직하게는 2:1 내지 1:1, 보다 바람직하게는 1.5:1 내지 1:1, 더욱 바람직하게는 1.5:1 내지 1.1:1로 포함될 수 있다.
본 발명의 일 구현예에 따르면, 상기 열가소성 성형 조성물은 0.01 내지 10 중량%의 첨가제를 더 포함할 수 있다.
본 발명의 일 구현예에 따르면, 상기 첨가제는 안료, 염료, 활제, 커플링제, 자외선안정제 중 1종 이상을 포함할 수 있다. 첨가제로는 상기 열거한 물질 외에도 필요에 따라 해당 기술 분야에서 널리 사용되는 것이면 제한없이 포함될 수 있다.
본 발명의 일 구현예에 따르면, 상기 열가소성 성형 조성물은 ISO 527에 따라 인장시험기의 크로스헤드 속도 5 mm/min 조건으로 측정된 인장강도가 일례로 190 MPa 이상, 바람직하게는 193 MPa 이상, 보다 바람직하게는 194 MPa 이상, 더욱 바람직하게는 200 MPa 이상이고, 구체적인 예로 190 내지 250 MPa, 바람직한 예로 193 내지 250 MPa, 보다 바람직한 예로 194 내지 250 MPa, 더욱 바람직한 예로 200 내지 250 MPa이며, 이 범위 내에서 성형성, 기계적 물성 및 내화학성이 모두 우수한 이점이 있다.
본 발명의 일 구현예에 따르면, 상기 열가소성 성형 조성물은 ISO 527에 따라 인장시험기의 크로스헤드 속도 5 mm/min 조건으로 시편 파단 시 측정된 신율이 일례로 3.0 % 이상, 바람직하게는 3.2 % 이상, 보다 바람직하게는 3.4 % 이상, 더욱 바람직하게는 3.5 % 이상이고, 구체적인 예로 3.0 내지 4.0 %, 바람직하게는 3.2 내지 4.0 %, 보다 바람직하게는 3.4 내지 4.0 %, 더욱 바람직하게는 3.5 내지 4.0 %이며, 이 범위 내에서 성형성, 기계적 물성 및 내화학성이 모두 우수한 이점이 있다.
본 발명의 일 구현예에 따르면, 상기 열가소성 성형 조성물은 ISO 179에 따라 샤피 언노치 플랫 및 언노치 엣지로 측정한 충격강도가 일례로 70 kJ/m2 이상, 바람직하게는 73 kJ/m2 이상, 보다 바람직하게는 75 kJ/m2 이상, 더욱 바람직하게는 76 kJ/m2 이상이고, 구체적인 예로 70 내지 100 kJ/m2, 바람직하게는 73 내지 100 kJ/m2, 보다 바람직하게는 75 내지 100 kJ/m2, 더욱 바람직하게는 76 내지 100 kJ/m2이며, 이 범위 내에서 성형성, 기계적 물성 및 내화학성이 모두 우수한 이점이 있다.
본 발명의 일 구현예에 따르면, 상기 열가소성 성형 조성물은 글라이콜과 물이 50 중량% : 50 중량%로 혼합된 용액과 시편을 오토클레이브 설비에 함께 넣고 온도 130℃ 하에 500 시간 동안 방치한 후, 시편을 꺼내어 ISO 527에 따라 인장시험기의 크로스헤드 속도 5 mm/min 조건으로 측정된 인장강도가 일례로 101 MPa 이상, 바람직하게는 102 MPa 이상, 보다 바람직하게는 103 MPa 이상, 더욱 바람직하게는 104 MPa 이상이고, 구체적인 예로 101 내지 200 MPa, 바람직한 예로 102 내지 200 MPa, 보다 바람직한 예로 103 내지 200 MPa, 더욱 바람직한 예로 104 내지 200 MPa이며, 이 범위 내에서 성형성, 기계적 물성 및 내화학성이 모두 우수한 이점이 있다.
본 발명의 일 구현예에 따르면, 상기 열가소성 성형 조성물은 글라이콜과 물이 50 중량% : 50 중량%로 혼합된 용액과 시편을 오토클레이브 설비에 함께 넣고 온도 130℃ 하에 500 시간 동안 방치한 후, 시편을 꺼내어 ISO 527에 따라 인장시험기의 크로스헤드 속도 5 mm/min 조건으로 시편 파단 시 측정된 신율이 일례로 4.0 % 이상, 바람직하게는 4.2 % 이상, 보다 바람직하게는 4.4 % 이상, 더욱 바람직하게는 4.5 % 이상이고, 구체적인 예로 4.0 내지 5.0 %, 바람직하게는 4.2 내지 5.0 %, 보다 바람직하게는 4.4 내지 5.0 %, 더욱 바람직하게는 4.5 내지 5.0 %이며, 이 범위 내에서 성형성, 기계적 물성 및 내화학성이 모두 우수한 이점이 있다.
본 발명의 일 구현예에 따르면, 상기 열가소성 성형 조성물은 글라이콜과 물이 50 중량% : 50 중량%로 혼합된 용액과 시편을 오토클레이브 설비에 함께 넣고 온도 130℃ 하에 500 시간 동안 방치한 후, 시편을 꺼내어 ISO 179에 따라 샤피 언노치 플랫 및 언노치 엣지로 측정한 충격강도가 일례로 68 kJ/m2 이상, 바람직하게는 70 kJ/m2 이상, 보다 바람직하게는 71 kJ/m2 이상, 더욱 바람직하게는 73 kJ/m2 이상이고, 구체적인 예로 68 내지 90 kJ/m2, 바람직하게는 70 내지 90 kJ/m2, 보다 바람직하게는 71 내지 90 kJ/m2, 더욱 바람직하게는 73 내지 90 kJ/m2이며, 이 범위 내에서 성형성, 기계적 물성 및 내화학성이 모두 우수한 이점이 있다.
상기 글라이콜은 구체적인 예로 BASF 社 G48 글라이콜을 사용할 수 있다.
본 발명의 일 구현예에 따르면, 상기 열가소성 성형 조성물은 글라이콜과 물이 50 중량% : 50 중량%로 혼합된 용액과 시편을 오토클레이브 설비에 함께 넣고 온도 130℃ 하에 1000 시간 동안 방치한 후, 시편을 꺼내어 ISO 527에 따라 인장시험기의 크로스헤드 속도 5 mm/min 조건으로 측정된 인장강도가 일례로 68 MPa 이상, 바람직하게는 70 MPa 이상, 보다 바람직하게는 71 MPa 이상, 더욱 바람직하게는 73 MPa 이상이고, 구체적인 예로 68 내지 120 MPa, 바람직한 예로 70 내지 120 MPa, 보다 바람직한 예로 71 내지 120 MPa, 더욱 바람직한 예로 73 내지 120 MPa이며, 이 범위 내에서 성형성, 기계적 물성 및 내화학성이 모두 우수한 이점이 있다.
본 발명의 일 구현예에 따르면, 상기 열가소성 성형 조성물은 글라이콜과 물이 50 중량% : 50 중량%로 혼합된 용액과 시편을 오토클레이브 설비에 함께 넣고 온도 130℃ 하에 1000 시간 동안 방치한 후, 시편을 꺼내어 ISO 527에 따라 인장시험기의 크로스헤드 속도 5 mm/min 조건으로 시편 파단 시 측정된 신율이 일례로 1.8 % 이상, 바람직하게는 2.0 % 이상, 보다 바람직하게는 2.1 % 이상, 더욱 바람직하게는 2.2 % 이상이고, 구체적인 예로 1.8 내지 4.0 %, 바람직하게는 2.0 내지 4.0 %, 보다 바람직하게는 2.1 내지 4.0 %, 더욱 바람직하게는 2.2 내지 4.0 %이며, 이 범위 내에서 성형성, 기계적 물성 및 내화학성이 모두 우수한 이점이 있다.
본 발명의 일 구현예에 따르면, 상기 열가소성 성형 조성물은 글라이콜과 물이 50 중량% : 50 중량%로 혼합된 용액과 시편을 오토클레이브 설비에 함께 넣고 온도 130℃ 하에 1000 시간 동안 방치한 후, 시편을 꺼내어 ISO 179에 따라 샤피 언노치 플랫 및 언노치 엣지로 측정한 충격강도가 일례로 35 kJ/m2 이상, 바람직하게는 36 kJ/m2 이상, 보다 바람직하게는 37 kJ/m2 이상, 더욱 바람직하게는 38 kJ/m2 이상이고, 구체적인 예로 35 내지 50 kJ/m2, 바람직하게는 36 내지 50 kJ/m2, 보다 바람직하게는 37 내지 50 kJ/m2, 더욱 바람직하게는 38 내지 50 kJ/m2이며, 이 범위 내에서 성형성, 기계적 물성 및 내화학성이 모두 우수한 이점이 있다.
본 발명의 일 구현예에 따르면, 상기 열가소성 성형 조성물은 사출 온도 300℃, 금형 온도 80 ℃ 및 압력 500 Kgf의 조건으로 스파이럴 금형(2.0T)를 이용하여 측정된 스파이럴 테스트(spiral test) 값이 일례로 25 cm 이상, 바람직하게는 28 cm 이상, 보다 바람직하게는 30 cm 이상, 더욱 바람직하게는 31 cm 이상이고, 구체적인 예로 25 내지 35 cm, 바람직한 예로는 28 내지 35 cm, 보다 바람직한 예로는 30 내지 35 cm, 더욱 바람직한 예로는 31 내지 35 cm이며, 이 범위 내에서 성형성, 기계적 물성 및 내화학성이 모두 우수한 이점이 있다.
상기 스파이럴 테스트는 구체적인 예로 사출 성형기(Engel,Victory 80)를 이용할 수 있고, 스파이럴 테스크 값은 성형품의 길이를 의미할 수 있다.
본 발명의 다른 구현예에 따르면, 본 발명의 일 구현예에 따른 조성물의 성형물을 포함하는 자동차 부품이 제공된다.
본 발명의 일 구현예에 따른 자동차 부품의 경우, 본 발명의 일 구현예에 따른 열가소성 성형 조성물을 포함함으로써 장기간 고온 고습 환경에 방치되더라도 인장 강도, 신율, 충격 강도와 같은 물성이 우수하게 유지될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 구현예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 구현예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 기술하는 구현예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 구현예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1 내지 실시예 5 및 비교예 1 내지 비교예 6
하기 표 1에 기재된 조성으로 혼합한 후, 이축 압출기를 사용하여 260 내지 285℃의 온도 범위 내에서 혼련된 스트랜드를 용융 및 압출하여 펠렛을 제조하였다. 상기 제조된 펠렛을 120℃에서 3 시간 동안 건조한 후 사출 온도 300℃, 금형 온도 80℃에서 ISO 규격 시편을 사출하고, 온도 23 ℃ 및 상대습도 60%의 환경에서 48 시간 동안 방치한 후 ISO 규격에 따라 물성을 측정하였다.
구분 A-1 A-2 B-1 B-2 C D E
실시예 1 68.4 - 31 - 0.2 - 0.4
실시예 2 66.7 - 31 - 1.0 0.9 0.4
실시예 3 68.4 - - 31 0.2 - 0.4
실시예 4 39.4 - - 60 0.2 - 0.4
실시예 5 84.4 - - 15 0.2 - 0.4
비교예 1 - 68.4 31 - 0.2 - 0.4
비교예 2 - 68.4 - 31 0.2 - 0.4
비교예 3 - 84.4 - 15 0.2 - 0.4
비교예 4 - 68.1 31 - 0.5 - 0.4
비교예 5 - 67.6 31 - 1.0 - 0.4
비교예 6 - 66.7 - 31 1.0 0.9 0.4
* A-1: 아민 말단기가 85 meqiv/kg 이상인 폴리아미드 66 (Invista 社)
* A-2: 아민 말단기가 80 meqiv/kg 이하인 폴리아미드 66
* B-1: 지름 10~13 μm 및 춉(chop) 길이 3~4 mm인 내화학 개선용 유리섬유(CPIC 社)
* B-2: 지름 10~13 μm 및 춉(chop) 길이 3~4 mm인 일반 유리섬유 (오웬스코닝 社)
* C: 방향족 아민계 안정제인 Naugard 445
* D: 페놀계 안정제인 Irganox 1098
* E: 클라리언트인 OP-wax, 안료인 K003(카본블랙 함량 30 중량%, 폴리아미드 6 캐리어 함량 70 중량%), 염료인 K007(열안정성을 가진 니그로신계 염료)를 포함하는 첨가제
* 인장강도 및 신율: ISO 527에 따라 인장시험기 크로스헤드 속도는 5 mm/min으로 하여 인장강도를 측정하고, 인장 시편 파단시 신율을 측정/계산하였다.
* 충격강도: ISO 179에 따라 샤피 언노치 플랫 및 언노치 엣지 충격강도를 측정하였다. 저온 충격의 경우 -30℃의 항온 챔버에서 시편에 노치를 내어 3시간 보관 후 측정하였다.
* 내화학성 평가: BASF 社 G48 글라이콜을 이용하여 글라이콜/물(50%/50%) 용액을 제조하였다. 제조한 용액과 함께 실시예 1 내지 실시예 5 및 비교예 1 내지 6에서 제조한 시편을 오토클레이브 설비에 온도 130℃ 로 500 시간 및 1000 시간 동안 방치하여, 상기와 같이 인장강도, 신율 및 충격강도를 측정하였다.
상기 물성 측정 결과를 하기 표 2에 나타내었다.
구분 초기 물성 500 시간 내화학 평가 1000 시간 내화학 평가
인장강도(MPa) 신율(%) 충격강도(kJ/m2) 인장강도(MPa) 신율(%) 충격강도(kJ/m2) 인장강도(MPa) 신율(%) 충격강도(kJ/m2)
실시예 1 201 3.6 77 105 4.3 74 74 2.1 38
실시예 2 194 3.4 73 103 4.5 71 73 2.3 40
실시예 3 191 3.4 74 95 3.7 61 54 1.0 25
실시예 4 265 2.3 110 140 2.0 92 125 0.7 35
실시예 5 120 4.5 40 75 5.2 29 40 1.3 15
비교예 1 191 3.4 74 95 3.7 61 54 1.0 25
비교예 2 187 3.1 62 100 4.2 60 50 0.8 20
비교예 3 120 4.5 40 75 5.2 29 40 1.3 15
비교예 4 199 3.4 78 92 4.2 62 54 1.0 26
비교예 5 199 3.3 74 97 4.7 61 61 1.1 28
비교예 6 182 3.3 74 97 3.6 63 62 1.2 30
* 스파이럴 테스트(spiral test): 사출 성형기(Engel,Victory 80)를 이용하여, 실시예 1 내지 실시예 3 및 비교예 1 내지 6에서 제조한 조성물을 사출 온도 300℃, 금형 온도 80 ℃, 압력 500 Kgf의 조건으로 스파이럴 금형(2.0T)를 이용하여 성형품의 길이를 측정하였다.측정한 성형품의 길이를 하기 표 3에 나타내었다.
구분 스파이럴 테스트 (cm)
실시예 1 30.0
실시예 2 31.5
실시예 3 29.5
비교예 1 29.5
비교예 2 31.0
비교예 3 35.0
비교예 4 30.0
비교예 5 31.5
비교예 6 32.0
상기 표 2 및 표 3을 참조하면, 실시예 1 내지 실시예 5의 경우 내화학성 평가시 고온 고습의 환경에서 500시간 또는 1000시간 방치되더라도 인장 강도, 신율 및 충격 강도가 감소하는 정도가 비교예 1 내지 6보다 적은 것을 확인할 수 있고, 스파이럴 테스트 결과 사출되는 시편의 길이가 길어 성형성도 우수한 것을 확인할 수 있다.
특히, 실시예 1 및 실시예 2의 경우, 화학 물질에 민감하여 내화학성 평가시 급격히 저하되는 인장강도와 신율에 있어서, 고온 고습의 환경에서 500시간 또는 1000시간 화학 물질 하에 방치되더라도 감소하는 정도가 실시예 3 내지 5보다도 적고, 나아가 비교예 1 내지 6보다 월등하게 적은 것을 확인할 수 있었다.
반면에 아민 말단기가 80 meqiv/kg 이하인 폴리아미드 66을 포함하는 비교예 1 내지 6의 경우, 고온 고습의 환경에서 장시간 방치되는 경우 물성이 현저하게 열등해지거나, 사출 시편의 길이가 짧아 성형성이 매우 열등한 것을 확인할 수 있다.

Claims (15)

  1. 폴리아미드 66; 유리 섬유; 및 안정제; 를 포함하고,
    상기 폴리아미드 66은 85 meqiv/kg 이상의 아민 말단기를 가지는 것인 열가소성 성형 조성물.
  2. 제1항에 있어서,
    상기 열가소성 성형 조성물은 글라이콜과 물이 50 중량% : 50 중량%로 혼합된 용액과 시편을 오토클레이브 설비에 함께 넣고 온도 130℃ 하에 1000 시간 동안 방치한 후, 시편을 꺼내어 ISO 179에 따라 샤피 언노치 플랫 및 언노치 엣지로 측정한 충격강도가 35 kJ/m2 이상인 것인 열가소성 성형 조성물.
  3. 제1항에 있어서,
    상기 열가소성 성형 조성물은 글라이콜과 물이 50 중량% : 50 중량%로 혼합된 용액과 시편을 오토클레이브 설비에 함께 넣고 온도 130℃ 하에 1000 시간 동안 방치한 후, 시편을 꺼내어 ISO 527에 따라 인장시험기의 크로스헤드 속도 5 mm/min 조건으로 시편 파단 시 측정된 신율이 1.8 % 이상인 것인 열가소성 성형 조성물.
  4. 제1항에 있어서,
    상기 폴리아미드 66은 50 내지 75 중량%로 포함되는 것인 열가소성 성형 조성물.
  5. 제1항에 있어서,
    상기 폴리아미드 66은 상대점도가 2.0 내지 3.2인 열가소성 성형 조성물.
  6. 제1항에 있어서,
    상기 유리 섬유는 20 내지 50 중량%로 포함되는 것인 열가소성 성형 조성물.
  7. 제1항에 있어서,
    상기 유리 섬유는 표면에 내가수분해 코팅 처리되어 있는 것인 열가소성 성형 조성물.
  8. 제1항에 있어서,
    상기 안정제는 0.01 내지 4 중량%로 포함되는 것인 열가소성 성형 조성물.
  9. 제1항에 있어서,
    상기 안정제는 아민계 안정제 및 페놀계 안정제 중 1종 이상을 포함하는 것인 열가소성 성형 조성물.
  10. 제9항에 있어서,
    상기 아민계 안정제는 페닐나프틸아민, 4,4'-디메톡시디페닐아민, 4,4'-비스(α,α-디메틸벤질)디페닐 아민, 4-(1-메틸-1-페닐에틸) N-[4-(1-메틸-1-페닐에틸)페닐]아닐린 및 4-이소프로폭시 디페닐 아민 중에서 선택되는 1종 이상을 포함하는 것인 열가소성 성형 조성물.
  11. 제9항에 있어서,
    상기 페놀계 안정제는 1,6-헥산디일비스[3,5-비스(1,1-디메틸에틸)-4-하이드록시페닐프로판아미드] 힌더드 페놀계 안정제를 포함하고, 보다 바람직하게는 N,N′-헥산-1,6-디일-비스[3-(3,5-디-t-부틸-4-하이드록시페닐 프로피온아미드)], 펜타에리트리톨 테트라키스[3-(3,5-디-t-부틸-4-하이드록시페닐)프로피오네이트], N,N′-헥사메틸렌-비스(3,5-디-t-부틸-4-하이드록시하이드로신나미드), 트리에틸렌글리콜-비스[3-(3-t-부틸-5-메틸-4-하이드록시페닐)프로피오네이트], 3,5-디-t-부틸-4-하이드록시벤질포스포네이트-디에틸에스테르, 1,3,5-트리메틸-2,4,6-트리스(3,5-디-t-부틸-4-하이드록시벤질)벤젠 및 1,3,5-트리스(4-t-부틸-3-하이드록시-2,6-디메틸벤질)이소시아누레이트인 열가소성 성형 조성물.
  12. 제9항에 있어서,
    상기 아민계 안정제 및 상기 페놀계 안정제는 2:1 내지 1:2의 중량비로 포함되는 것인 열가소성 성형 조성물.
  13. 제1항에 있어서,
    0.01 내지 10 중량%의 첨가제를 더 포함하는 것인 열가소성 성형 조성물.
  14. 제11항에 있어서,
    상기 첨가제는 안료, 염료, 활제, 커플링제 및 자외선안정제 중 1종 이상을 포함하는 것인 열가소성 성형 조성물.
  15. 제1항에 따른 조성물의 성형물을 포함하는 자동차 부품.
PCT/KR2020/017605 2019-12-06 2020-12-04 열가소성 성형 조성물 및 이의 성형물을 포함하는 자동차 부품 WO2021112609A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021542480A JP7145338B2 (ja) 2019-12-06 2020-12-04 熱可塑性成形組成物及びその成形物を含む自動車部品
CN202080010668.8A CN113348209A (zh) 2019-12-06 2020-12-04 热塑性成型组合物和包括其成型制品的汽车零部件
US17/425,647 US20220098408A1 (en) 2019-12-06 2020-12-04 Thermoplastic molding composition and automobile component including molded article thereof
EP20896054.2A EP3901208A4 (en) 2019-12-06 2020-12-04 THERMOPLASTIC MOLDING COMPOUND AND AUTOMOTIVE PARTS WITH MOLDING MATERIAL THEREOF

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0161151 2019-12-06
KR20190161151 2019-12-06
KR10-2020-0167993 2020-12-04
KR1020200167993A KR102602710B1 (ko) 2019-12-06 2020-12-04 열가소성 성형 조성물 및 이의 성형물을 포함하는 자동차 부품

Publications (1)

Publication Number Publication Date
WO2021112609A1 true WO2021112609A1 (ko) 2021-06-10

Family

ID=76220973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017605 WO2021112609A1 (ko) 2019-12-06 2020-12-04 열가소성 성형 조성물 및 이의 성형물을 포함하는 자동차 부품

Country Status (3)

Country Link
US (1) US20220098408A1 (ko)
JP (1) JP7145338B2 (ko)
WO (1) WO2021112609A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005513186A (ja) * 2001-12-17 2005-05-12 ロディアニル 超分岐ポリマーを有する熱可塑性ポリマー組成物、及びその組成物を用いて製造される製品
JP2015105378A (ja) * 2013-11-28 2015-06-08 ランクセス・ドイチュランド・ゲーエムベーハー ポリアミド組成物
JP2015196834A (ja) * 2014-03-31 2015-11-09 エーエムエス−パテント アクチェンゲゼルシャフト ポリアミド成形組成物、その製造プロセス及びこれらのポリアミド成形組成物の使用
KR20150139447A (ko) * 2014-06-02 2015-12-11 삼성에스디아이 주식회사 자동차용 열가소성 수지 조성물 및 이로부터 제조된 성형품
JP2016117817A (ja) * 2014-12-19 2016-06-30 旭化成ケミカルズ株式会社 ガラス繊維強化ポリアミド樹脂組成物及び成形体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291118A (ja) * 2005-04-14 2006-10-26 Asahi Kasei Chemicals Corp 自動車冷却空調部品用ポリアミド樹脂組成物
JP5328079B2 (ja) * 2006-04-06 2013-10-30 旭化成ケミカルズ株式会社 ガラス長繊維強化ポリアミドペレットおよび成形品
US9505912B2 (en) * 2006-08-23 2016-11-29 Basf Se Polyamide molding materials with improved thermal aging and hydrolysis stability
CN105579528B (zh) * 2013-07-22 2018-05-18 罗地亚经营管理公司 稳定的聚酰胺组合物
WO2016091668A1 (en) * 2014-12-12 2016-06-16 Rhodia Operations Polyamide compositions comprising a polyamide 6,6 and a blend of high chain-length polyamides, use thereof, and articles obtained therefrom
US10934433B2 (en) * 2014-12-12 2021-03-02 Performance Polyamides, Sas Polyamide compositions comprising a blend of polyamide 6,6 and at least one high chain-length polyamide, and A1 stearate, use thereof, and articles obtained therefrom
CN109943067B (zh) * 2019-03-28 2021-07-13 江苏晋伦塑料科技有限公司 一种纯净耐水解聚酰胺组合物及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005513186A (ja) * 2001-12-17 2005-05-12 ロディアニル 超分岐ポリマーを有する熱可塑性ポリマー組成物、及びその組成物を用いて製造される製品
JP2015105378A (ja) * 2013-11-28 2015-06-08 ランクセス・ドイチュランド・ゲーエムベーハー ポリアミド組成物
JP2015196834A (ja) * 2014-03-31 2015-11-09 エーエムエス−パテント アクチェンゲゼルシャフト ポリアミド成形組成物、その製造プロセス及びこれらのポリアミド成形組成物の使用
KR20150139447A (ko) * 2014-06-02 2015-12-11 삼성에스디아이 주식회사 자동차용 열가소성 수지 조성물 및 이로부터 제조된 성형품
JP2016117817A (ja) * 2014-12-19 2016-06-30 旭化成ケミカルズ株式会社 ガラス繊維強化ポリアミド樹脂組成物及び成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MELVIN. I. KOHAN: "Nylon Plastics Handbook", 1995, HANSER, pages: 79 - 80

Also Published As

Publication number Publication date
JP2022518052A (ja) 2022-03-11
JP7145338B2 (ja) 2022-09-30
US20220098408A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
WO2017188604A1 (ko) 내가수분해성이 우수한 폴리아릴렌 설파이드 수지 조성물
JPS62288649A (ja) ポリアセタ−ルの安定化組成物
RU2635136C1 (ru) Стеклонаполненная композиция на основе полифениленсульфида
WO2017200203A1 (ko) 내화학성이 우수한 폴리아릴렌 설파이드 수지 조성물
CN115368716B (zh) 一种高效阻燃的塑料制备方法
WO2015088239A1 (ko) 할로겐계 난연 유리섬유 강화 폴리아미드 수지 조성물, 및 제조방법
WO2021112609A1 (ko) 열가소성 성형 조성물 및 이의 성형물을 포함하는 자동차 부품
KR102602710B1 (ko) 열가소성 성형 조성물 및 이의 성형물을 포함하는 자동차 부품
WO2017022999A1 (en) Resin composition for cable tie
CN116285326A (zh) 一种高强度抗冲击耐热氧老化尼龙材料及其制备方法
WO2019132629A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2022145799A1 (ko) 수소 탱크 라이너용 폴리아미드 수지 조성물 및 이로부터 제조된 성형품
WO2020197261A1 (ko) 폴리아미드 수지 조성물 및 이를 포함하는 성형품
WO2016129833A1 (ko) 금속과의 접착성이 우수한 폴리아릴렌 설파이드 조성물
US4056505A (en) Glass-reinforced thermoplastic moulding compositions
WO2021054721A1 (ko) 바이오폴리머 조성물, 이의 제조방법 및 이를 이용한 바이오플라스틱
CN111040445A (zh) 具有高力学性能的阻燃尼龙66/尼龙6复合材料
WO2020138772A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2022169155A1 (ko) 폴리아마이드 하이브리드 수지 조성물 및 이로부터 제조되는 경량 및 고강도 성형품
CN113845760B (zh) 一种低浮纤的增强pbt/pet合金组合物及其制备方法和应用
WO2023096046A1 (ko) 폴리프로필렌 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
KR20200115055A (ko) 폴리아미드 수지 조성물 및 이를 포함하는 성형품
WO2021060898A1 (ko) 지방족 폴리아미드 수지와 방향족 폴리아미드 수지의 용융 혼합을 통한 고강성 장섬유 강화 폴리아미드 수지 조성물
RU1812204C (ru) Композици дл склеивани жгутов из полиакрилонитрила
WO2023234582A1 (ko) 열가소성 수지 조성물 및 이로부터 제조되는 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896054

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542480

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020896054

Country of ref document: EP

Effective date: 20210720

NENP Non-entry into the national phase

Ref country code: DE