WO2021111911A1 - Substrate processing method and substrate processing apparatus - Google Patents

Substrate processing method and substrate processing apparatus Download PDF

Info

Publication number
WO2021111911A1
WO2021111911A1 PCT/JP2020/043469 JP2020043469W WO2021111911A1 WO 2021111911 A1 WO2021111911 A1 WO 2021111911A1 JP 2020043469 W JP2020043469 W JP 2020043469W WO 2021111911 A1 WO2021111911 A1 WO 2021111911A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
film
treatment
base film
resist
Prior art date
Application number
PCT/JP2020/043469
Other languages
French (fr)
Japanese (ja)
Inventor
聡一郎 岡田
圭佑 吉田
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2021111911A1 publication Critical patent/WO2021111911A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • This disclosure relates to a substrate processing method and a substrate processing apparatus.
  • Patent Document 1 discloses a substrate processing method for irradiating a resist film with extreme ultraviolet (EUV) light and developing a resist film after exposure to form an ultrafine resist pattern (for example, 20 nm or less). doing.
  • EUV extreme ultraviolet
  • the present disclosure provides a technique capable of preventing the resist pattern from collapsing in EUV lithography.
  • the substrate treatment method is to form a carbon-based undercoat film on the surface of the substrate, and to apply a resist solution having photosensitivity to EUV light on the surface of the substrate. Includes feeding to form a coating film.
  • a technique capable of preventing the resist pattern from collapsing in EUV lithography is provided.
  • FIG. 1 is a schematic perspective view showing an example of a substrate processing system.
  • FIG. 2 is a top view showing an example of the processing module.
  • FIG. 3 is a cross-sectional view showing an example of a plasma processing apparatus.
  • FIG. 4 is a block diagram showing an example of the hardware configuration of the control device.
  • FIG. 5 is a flowchart showing an example of the substrate processing method.
  • FIG. 6 is a plot of an example of the surface free energy of the resist, the target substrate, the developing solution, and the base film.
  • 7 (a) and 7 (b) show an example of a process window for explaining the difference in the state of the resist pattern depending on the presence or absence of the base film.
  • 8 (a) and 8 (b) are diagrams showing an example of the state of the resist pattern.
  • FIG. 1 is a schematic perspective view showing an example of a substrate processing system.
  • FIG. 2 is a top view showing an example of the processing module.
  • FIG. 3 is a cross-sectional view
  • FIG. 9 is a flowchart showing a modified example of the substrate processing method.
  • 10 (a), 10 (b), and 10 (c) are schematic visual views showing an example of the state of each part during substrate processing.
  • FIG. 11 is a diagram showing an example of a process window showing a state of a resist pattern when the acid decomposition treatment is not performed.
  • FIG. 12 is a diagram showing an example of a process window showing a state of a resist pattern when UV light is irradiated as an acid decomposition treatment.
  • FIG. 13 is a diagram showing an example of a process window showing a state of a resist pattern when heat treatment is performed as an acid decomposition treatment.
  • FIG. 14 is a diagram showing an example of a change in characteristics due to a change in processing conditions.
  • the substrate processing method is to form a carbon-based substrate film on the surface of the substrate and to apply a resist solution having photosensitivity to EUV light on the substrate film. Includes supplying to the surface to form a coating film.
  • a coating film to be a resist film is formed by supplying a resist liquid having photosensitivity to EUV light on a carbon-based base film. Since the carbon-based base film is provided on the surface of the substrate, the adhesion of the resist film to the substrate is improved via the base film, so that it is possible to prevent the resist pattern from collapsing in EUV lithography.
  • the formation of the base film can be performed by plasma treatment.
  • the undercoat film when the undercoat film is formed by plasma treatment, the undercoat film can be formed thinner and more uniformly. Therefore, since the adhesion of the resist film to the substrate is further enhanced by providing the base film, it is possible to effectively prevent the resist pattern from collapsing.
  • one is selected from methane (CH 4 ) gas, hexafluoro-1,3-butadiene (C 4 F 6 ) gas, octafluorocyclobutane (C 4 F 8 ) gas, and trifluoromethane (CHF 3 ) gas. It can be an embodiment in which a processing gas containing a kind or more components is turned into plasma.
  • the treatment liquid for the base film in a state where the solvent remains is supplied to the surface of the substrate, and the acid decomposition treatment is performed after the treatment liquid for the base film is supplied.
  • the treatment liquid for the base film in a state where the solvent remains is supplied to the surface of the substrate, and the acid decomposition treatment is performed after the treatment liquid for the base film is supplied.
  • the acid decomposition treatment is performed after the treatment liquid for the base film is supplied.
  • the acid contained in the solvent may affect the shape of the resist pattern formed on the upper part.
  • the acid decomposition treatment as described above it is possible to prevent the resist pattern from collapsing.
  • the acid decomposition treatment can be carried out in a low oxygen atmosphere.
  • the mode may further include performing a preliminary heat treatment on the base film treatment liquid supplied to the surface of the substrate before performing the acid decomposition treatment.
  • the treatment conditions in the acid decomposition treatment can be further adjusted based on the surface condition of the substrate after the treatment.
  • the conditions suitable for forming the resist pattern and the characteristics of the resist pattern can be changed. Therefore, by adjusting the treatment conditions in consideration of the surface state of the substrate after the treatment (that is, the state of the resist pattern), it is possible to form a base film under desired conditions.
  • the resist When the developer is supplied to the substrate after the coating film made of the resist solution is exposed to EUV light, the resist may be peeled off by the developer. On the other hand, by forming the coating film on the undercoat film as described above, the resistance to the developing solution is enhanced and a better resist pattern can be obtained.
  • the substrate processing apparatus supplies a substrate film forming portion that forms a carbon-based substrate film to the surface of the substrate and a resist liquid that is photosensitive to EUV light to the surface of the substrate.
  • a resist liquid supply unit and a control unit are provided so as to form a coating film, and the control unit comprises the base film so as to form a carbon-based base film on the surface of the substrate.
  • a process of controlling the forming portion and a process of controlling the resist liquid supply portion so as to form the coating film on the base film of the substrate are executed.
  • a coating film to be a resist film is formed by supplying a resist liquid having photosensitivity to EUV light on a carbon-based base film. Since the carbon-based base film is provided on the surface of the substrate, the adhesion of the resist film to the substrate is improved via the base film, so that it is possible to prevent the resist pattern from collapsing in EUV lithography.
  • the substrate processing system 1 is a system for forming a base film, forming a resist film (photosensitive film), and exposing and developing a resist film on a substrate (work W).
  • the work W to be processed is, for example, a substrate for a semiconductor.
  • the substrate is a silicon wafer.
  • the work W may be formed in a circular shape.
  • the work W to be processed may be a glass substrate, a mask substrate, an FPD (Flat Panel Display), or the like, but at least EUV lithography can be applied as a material.
  • a resist film for EUV lithography (Extreme ultraviolet lithography) is used. Therefore, as the resist solution (chemical solution) used for forming the resist film, one having photosensitivity to EUV light is used. A known resist solution that can be used for such a resist film for EUV lithography can be used.
  • the work W may have, for example, a silicon-containing antireflection coating (SiARC) layer formed on the surface of the substrate.
  • SiARC silicon-containing antireflection coating
  • an intermediate layer for preventing reflection may be generally formed, but since EUV light reflects less material on the substrate, the intermediate layer can be omitted.
  • a silicon-containing antireflection coating (SiARC) layer may be formed on the substrate.
  • another intermediate layer may be formed instead of the silicon-containing antireflection coating (SiARC) layer.
  • the board processing system 1 (board processing device) includes a coating / developing device 2, an exposure device 3, a plasma processing device 10, and a control device 100.
  • the exposure apparatus 3 is an apparatus for exposing a resist film (photosensitive film) formed on the work W. Specifically, the exposure apparatus 3 irradiates the exposed portion of the resist film with energy rays by a method such as immersion exposure.
  • the coating / developing device 2 performs a process of applying a resist (chemical solution) to the surface of the work W to form a resist film before the exposure process by the exposure device 3. Further, the coating / developing apparatus 2 develops the resist film after the exposure treatment.
  • the coating / developing device 2 includes a carrier block 4, a processing block 5, and an interface block 6.
  • the carrier block 4 introduces the work W into the coating / developing device 2 and derives the work W from the coating / developing device 2.
  • the carrier block 4 can support a plurality of carriers C for the work W, and includes a transfer device A1 including a delivery arm.
  • the carrier C accommodates, for example, a plurality of circular workpieces W.
  • the transport device A1 takes out the work W from the carrier C, passes it to the processing block 5, receives the work W from the processing block 5, and returns it to the carrier C.
  • the processing block 5 has a plurality of processing modules 11, 12, 13, and 14.
  • the processing module 11 incorporates a coating unit U1, a heat treatment unit U2, and a transport device A3 for transporting the work W to these units.
  • the treatment module 11 uses the coating unit U1 and the heat treatment unit U2 to perform a part of the treatment of forming a resist film on the surface of the work W on which the base film is formed by the plasma processing device 10 described later.
  • the coating unit U1 resist liquid supply unit
  • the heat treatment unit U2 performs various heat treatments accompanying the formation of the resist film.
  • the processing module 12 incorporates a coating unit U1, a heat treatment unit U2, and a transport device A3 for transporting the work W to these units.
  • the processing module 13 forms an upper layer film on the resist film by the coating unit U1 and the heat treatment unit U2.
  • the coating unit U1 coats the treatment liquid for forming the upper layer film on the resist film.
  • the heat treatment unit U2 performs various heat treatments accompanying the formation of the upper layer film.
  • the processing module 13 develops the resist film after exposure by the coating unit U1 and the heat treatment unit U2.
  • the coating unit U1 of the processing module 13 applies the developing solution on the surface of the exposed work W and then rinses it with a rinsing solution to develop the resist film.
  • the heat treatment unit U2 performs various heat treatments associated with the development process. Specific examples of the heat treatment associated with the development treatment include heat treatment before the development treatment (PEB: Post Exposure Bake), heat treatment after the development treatment (PB: Post Bake), and the like.
  • the processing module 14 has a coating unit U1 and a heat treatment unit U2.
  • the processing module 14 may perform the same processing as any of the above processing modules 11 to 13, or may perform a different processing from the above processing modules 11 to 13.
  • the coating unit U1 and the heat treatment unit U2 included in the above processing modules 11 to 13 a coating unit and a heat treatment unit having a known structure can be applied.
  • the coating unit U1 has a structure in which the work W is held in a substantially horizontal state and a predetermined processing liquid is supplied while rotating at a predetermined rotation speed.
  • the heat treatment unit U2 has a structure in which a heat treatment space is formed by covering a hot plate holding the work W with a chamber, and heat treatment is performed while supplying gas into the chamber.
  • the above structure is an example of the coating unit U1 and the heat treatment unit U2, and is not limited to the above structure.
  • a shelf unit U10 is provided on the carrier block 4 side in the processing block 5.
  • the shelf unit U10 is divided into a plurality of cells arranged in the vertical direction.
  • a transport device A7 including an elevating arm is provided in the vicinity of the shelf unit U10. The transport device A7 raises and lowers the work W between the cells of the shelf unit U10.
  • a shelf unit U11 is provided on the interface block 6 side in the processing block 5.
  • the shelf unit U11 is divided into a plurality of cells arranged in the vertical direction.
  • the interface block 6 transfers the work W to and from the exposure apparatus 3.
  • the interface block 6 has a built-in transfer device A8 including a transfer arm, and is connected to the exposure device 3.
  • the transport device A8 passes the work W arranged on the shelf unit U11 to the exposure device 3.
  • the transport device A8 receives the work W from the exposure device 3 and returns it to the shelf unit U11.
  • the plasma processing apparatus 10 forms a base film on the work W.
  • the plasma processing apparatus 10 forms a base film on the surface of the work W by bringing the gas that is the raw material of the base film into a plasma state and bringing it into contact with the surface Wa of the work W.
  • the plasma processing device 10 is connected to the coating / developing device 2 via the transport mechanism 19 (see FIG. 2).
  • the transport mechanism 19 transports the work W between the coating / developing device 2 and the plasma processing device 10.
  • the plasma processing device 10 is, for example, a parallel plate type device.
  • the plasma processing device 10 includes a processing container 68, a mounting table 60, a top plate unit 70, a power supply unit 80, and an exhaust unit 90.
  • the processing container 68 has conductivity and is formed in a substantially cylindrical shape.
  • a ground wire 69 is electrically connected to the processing container 68, and the processing container 68 is grounded.
  • the mounting table 60 is provided in the processing container 68 and supports the work W to be processed.
  • the mounting table 60 includes a substantially disk-shaped electrostatic chuck 61 and a substantially annular focus ring 62.
  • the electrostatic chuck 61 is a substantially disk-shaped member, and is formed by, for example, sandwiching an electrode for an electrostatic chuck between a pair of ceramics.
  • a susceptor 63 as a lower electrode is provided on the lower surface of the electrostatic chuck 61.
  • the susceptor 63 is formed of a metal such as aluminum in a substantially disk shape.
  • a support base 64 is provided on the bottom of the processing container 68 via an insulating plate 65, and the susceptor 63 is supported on the upper surface of the support base 64.
  • An electrode (not shown) is provided inside the electrostatic chuck 61, and the work W is attracted and held by the electrostatic chuck 61 by the electrostatic force generated by applying a DC voltage to the electrode.
  • the focus ring 62 for improving the uniformity of plasma processing is formed of, for example, conductive silicon, and is arranged on the upper surface of the susceptor 63 and on the outer peripheral portion of the electrostatic chuck 61.
  • the outer surfaces of the susceptor 63 and the support 64 are covered with, for example, a cylindrical member 66 made of quartz.
  • a refrigerant flow path (not shown) through which the refrigerant flows is provided inside the support base 64, and the temperature of the work W held by the electrostatic chuck 61 is controlled by controlling the temperature of the refrigerant.
  • the power supply unit 80 includes high-frequency power supplies 81 and 83 and matchers 82 and 84.
  • a high-frequency power supply 81 for supplying high-frequency power to generate plasma is electrically connected to the susceptor 63 via a matching unit 82.
  • the high-frequency power supply 81 is configured to output high-frequency power having a frequency of, for example, 27 to 100 MHz. Further, the internal impedance and the load impedance of the high frequency power supply 81 are matched by the matching unit 82.
  • a high frequency power supply 83 for drawing ions into the work W by supplying high frequency power to the susceptor 63 and applying a bias to the work W is electrically connected to the susceptor 63 via a matching unit 84.
  • the high-frequency power supply 83 is configured to output high-frequency power having a frequency of, for example, 400 kHz to 13.56 MHz.
  • the matcher 84 like the matcher 82, matches the internal impedance of the high-frequency power supply 83 with the load impedance.
  • a top plate 70 is arranged above the mounting table 60 (upper part of the processing container 68).
  • the top plate portion 70 includes an upper electrode 73 and a gas diffusion chamber 76.
  • the upper electrode 73 is provided in parallel with the susceptor 63 facing the susceptor 63.
  • the upper electrode 73 is supported on the upper part of the processing container 68 via the conductive holding member 71. Therefore, the upper electrode 73 is grounded via the holding member 71 and the processing container 68.
  • the upper electrode 73 is composed of an electrode plate 74 that forms a facing surface with the work W held by the electrostatic chuck 61, and an electrode support 75 that supports the electrode plate 74 from above.
  • the electrode plate 74 is made of a low-resistance conductor or semiconductor having low Joule heat. Further, the electrode support 75 is made of a conductor.
  • a gas diffusion chamber 76 formed in a substantially disk shape is provided in the central portion inside the electrode support 75. At the lower part of the electrode plate 74 and the electrode support 75, a plurality of gas discharge holes 77 for supplying the processing gas to the inside of the processing container 68 are formed so as to penetrate the lower part of the electrode plate 74 and the electrode support 75. ing.
  • a gas supply pipe 78 is connected to the gas diffusion chamber 76.
  • a gas supply source 79 is connected to the gas supply pipe 78, and the gas supply source 79 supplies the processing gas to the gas diffusion chamber 76 via the gas supply pipe 78.
  • the processing gas supplied to the gas diffusion chamber 76 is introduced into the processing container 68 through the gas discharge hole 77.
  • the processing gas supplied from the gas supply source 79 is methane (CH 4 ) gas, hexafluoro-1,3-butadiene (C 4 F 6 ) gas, octafluorocyclobutane (C 4 F 8 ) gas, and trifluoromethane (CHF).
  • CH 4 methane
  • C 4 F 6 hexafluoro-1,3-butadiene
  • C 4 F 8 octafluorocyclobutane
  • CHF trifluoromethane
  • a processing gas can be formed by combining with hydrogen (H 2 ) gas, argon (Ar) gas, and oxygen (O 2) gas. Specifically, for example, CH 4 / H 2 gas or the like can be used. The flow rate of each component contained in the above-mentioned processing gas can be appropriately changed.
  • a base film made of a carbon-based thin film derived from the processing gas can be formed on the surface of the work W.
  • the "carbon-based" thin film means a thin film containing at least carbon (C) or fluorocarbon (CF).
  • the ratio of carbon (C) or fluorocarbon (CF) in the base film is not particularly limited, but can be, for example, about 50% to 90%.
  • An exhaust unit 90 is arranged below the processing container 68.
  • the exhaust unit 90 includes an exhaust port 91, an exhaust chamber 92, an exhaust pipe 93, and an exhaust device 94.
  • An exhaust port 91 is provided on the bottom surface of the processing container 68.
  • An exhaust chamber 92 is formed below the exhaust port 91, and an exhaust device 94 is connected to the exhaust chamber 92 via an exhaust pipe 93. Therefore, by driving the exhaust device 94, the inside of the processing container 68 can be exhausted through the exhaust port 91, and the inside of the processing container can be depressurized to a predetermined degree of vacuum.
  • the control device 100 controls the substrate processing system 1 partially or entirely.
  • the control device 100 is composed of one or a plurality of control computers.
  • the control device 100 has a circuit 120 shown in FIG.
  • the circuit 120 has one or more processors 121, a memory 122, a storage 123, a timer 124, and an input / output port 125.
  • the storage 123 has a storage medium that can be read by a computer, such as a hard disk.
  • the storage medium stores a program for causing the control device 100 to execute the substrate processing procedure described later.
  • the storage medium may be a removable medium such as a non-volatile semiconductor memory, a magnetic disk, or an optical disk.
  • the memory 122 temporarily stores the program loaded from the storage medium of the storage 123 and the calculation result by the processor 121.
  • the processor 121 constitutes each of the above-mentioned functional modules by executing the above program in cooperation with the memory 122.
  • the timer 124 measures the elapsed time, for example, by counting a reference pulse having a fixed cycle.
  • the input / output port 125 inputs / outputs an electric signal to / from a controlled unit or device according to a command from the processor 121.
  • the hardware configuration of the control device 100 is not necessarily limited to the one that configures each functional module by a program.
  • each functional module of the control device 100 may be configured by a dedicated logic circuit or an ASIC (Application Specific Integrated Circuit) in which the logic circuit is integrated.
  • ASIC Application Specific Integrated Circuit
  • the substrate processing procedure including the procedure for forming the base film and the resist film will be described with reference to FIG.
  • the control device 100 controls the substrate processing system 1 so as to execute the substrate processing including the formation of the resist film in the following procedure.
  • control device 100 controls the transfer mechanism 19 so as to transfer the work W housed in the carrier C to the plasma processing device 10. Then, the control device 100 controls the plasma processing device 10 so as to perform the plasma treatment using the above-mentioned processing gas on the surface of the work W (step S01).
  • step S01 first, the work W is placed on the electrostatic chuck 61 so that the surface on which the plasma-based base film is to be formed faces upward. Then, the control device 100 controls the plasma processing device 10 so that the processing gas for plasma generation is supplied from the gas supply source 79 into the processing container 68.
  • the control device 100 controls the power supply unit 80 by the high frequency power supply 81 and the high frequency power supply 83 so that the high frequency power is continuously applied to the susceptor 63 which is the lower electrode.
  • a high frequency electric field is formed between the upper electrode 73 and the electrostatic chuck 61.
  • plasma of the processing gas is generated in the processing container 68 and is laminated on the surface of the work W.
  • the control device 100 maintains a state in which the work W is housed in the processing container 68 while generating plasma of the processing gas so that the plasma processing is performed for a predetermined time.
  • the time for performing the plasma treatment may be, for example, about 30 seconds to 120 seconds (60 seconds as an example).
  • a base film is formed on the work W.
  • the pressure in the plasma processing step can be, for example, 6.67 pa (50 mT) or less. Further, the temperature of the work W may be adjusted when performing the plasma treatment.
  • the film thickness of the base film can be, for example, about 1 nm to 10 nm. When forming a film by plasma as described in the present embodiment, an ultrathin film having a thickness of 5 nm or less can be formed.
  • control device 100 transfers the transport mechanism 19 so as to transport the work W having the base film formed on the work W by the plasma treatment to the coating / developing device 2 (carrier block 4). Control. Then, the control device 100 controls the transport device A1 so as to transport the work W in the carrier C to the shelf unit U10, and controls the transport device A7 so as to arrange the work W in the cell for the processing module 11. .. After that, the control device 100 controls the transfer device A3 so as to transfer the work W to the coating unit U1 in the processing module 11.
  • step S02 controls the coating unit U1 so as to coat the resist film on the base film of the work W (step S02).
  • step S02 for example, the control device 100 controls the rotation holding portion of the coating unit U1 to rotate the work W at a predetermined rotation speed while holding the work W.
  • the control device 100 discharges a processing liquid for forming a resist film on the surface of the work W.
  • a resist film is formed on the base film of the work W.
  • the control device 100 controls the transfer device A3 so as to transfer the work W to the heat treatment unit U2 in the processing module 11.
  • control device 100 controls the transfer device A3 so as to transfer the work W of the shelf unit U10 to the coating unit U1 and the heat treatment unit U2 in the processing module 12. Then, the control device 100 may control the coating unit U1 and the heat treatment unit U2 so as to form an upper layer film on the resist film of the work W. After that, the control device 100 controls the transfer device A3 so as to transfer the work W to the shelf unit U11.
  • control device 100 controls the transport device A8 so as to send the work W housed in the shelf unit U11 to the exposure device 3. Then, in the exposure apparatus 3, the resist film formed on the work W is exposed (step S03). After that, the control device 100 receives the exposed work W from the exposure device 3 and controls the transfer device A8 so as to arrange the work W in the cell for the processing module 14 in the shelf unit U11.
  • control device 100 controls the transfer device A3 so as to transfer the work W of the shelf unit U11 to the heat treatment unit U2 in the processing module 14. Then, the control device 100 controls the heat treatment unit U2 so as to perform the heat treatment before development on the resist film of the work W. Next, the control device 100 develops the resist film of the work W that has been heat-treated before development by the heat treatment unit U2 (step S04), and the coating unit U1 and the heat treatment unit U2 so as to perform the heat treatment after the development treatment. To control. After that, the control device 100 controls the transfer device A3 so as to return the work W to the shelf unit U10, and controls the transfer device A7 and the transfer device A1 so as to return the work W to the carrier C. This completes the substrate processing procedure including the formation of the base film.
  • a carbon-based thin film is formed on the surface of the work W as a base film before forming a resist film for EUV lithography.
  • the adhesion of the resist film to the work W can be improved, and the collapse of the resist pattern can be reduced. This point will be described.
  • the square roots of the resist, the target substrate, the developer, and the surface free energy of the base film are calculated and plotted with the vertical axis as the polar component and the horizontal axis as the dispersion component (dispersion). It was done.
  • the positional relationship of the surface free energy of each component shown in FIG. 6 is an example, and naturally changes depending on the selection of the material.
  • the target substrate shown in FIG. 6 is a work W, and is a plot based on the material of the surface (the surface on which the resist is formed). In this embodiment, as an example, it is assumed that a silicon-containing antireflection coating (SiARC) layer is formed on the surface.
  • SiARC silicon-containing antireflection coating
  • the surface free energy is an index related to so-called wettability, and in other words, it also affects the adhesion to the film / pattern formed on the surface.
  • the resist film formed on the surface of the target substrate is subjected to liquid treatment with a developing solution after exposure.
  • the energy required for the resist pattern to collapse (peel off) on the target substrate when the developer is supplied to the surface of the resist pattern can be calculated as an adhesive work.
  • the difference in surface free energy between the developing solution and the resist film is defined as ⁇ LR
  • the difference in surface free energy between the developing solution and the target substrate is defined as ⁇ SL
  • the difference in surface free energy between the target substrate and the resist film is defined as ⁇ SL.
  • the bonding work is the energy required for the resist film to separate from the target substrate (the resist pattern collapses) when the developer is supplied.
  • the resist material, the surface material of the target substrate, and the developer material are designed and selected so that ⁇ LR and ⁇ SL are large and ⁇ SR is small.
  • the resist material and the surface material of the target substrate can be selected so that the ⁇ SR becomes small.
  • the tendency of surface free energy is determined to some extent. Further, the tendency of the surface free energy of the target substrate (for example, the substrate on which the silicon-containing antireflection coating (SiARC) layer is formed on the surface) that has been subjected to the surface treatment suitable for EUV lithography is determined to some extent. Therefore, the range of adjustment of ⁇ SR when these are combined is small, and there is a limit to the adjustment that reduces the collapse of the resist pattern (peeling of the resist film).
  • SiARC silicon-containing antireflection coating
  • an undercoat film is provided between the target substrate and the resist film.
  • the target substrate is in contact with the base film, and the resist is also in contact with the base film.
  • the resist will be peeled from the target substrate. Therefore, by adjusting the base film and adjusting the bonding work between the target substrate and the base film on the developing solution and the bonding work between the resist and the base film on the developing solution, peeling of the resist on the developing solution is suppressed. be able to. Further, by suppressing the influence of the developing solution on the peeling of the resist, it is possible to suppress the collapse of the resist pattern in EUV lithography.
  • FIG. 6 shows the surface free energy of the base film in which the polar component (polar) and the dispersion component (dispersion) are appropriately set.
  • polar polar
  • dispersion dispersion
  • the effect of suppressing the collapse of the resist pattern can be further enhanced.
  • film formation by plasma treatment it is considered that there are few defects on the film surface as compared with the film formation by coating treatment.
  • the film thickness is 5 nm or less
  • pinking may occur in the case of film formation by the coating treatment.
  • the film formation by plasma treatment the occurrence of pinking at the time of film formation can be suppressed.
  • the relationship of the surface free energy of each material shown in FIG. 6 is an example, and the relationship of the surface free energy of each material changes according to the selection of the material and the like. In such a case, if the film is formed by plasma treatment, the composition of the base film can be easily adjusted, so that it becomes easy to select a base film suitable for preventing the resist pattern from collapsing.
  • FIG. 7 shows an example of the result of evaluating the change in the presence or absence of the resist pattern collapse depending on the presence or absence of the undercoat film.
  • FIG. 7 shows an example of a process window in which the exposure amount and the focus amount are changed when a pattern made of an EUV resist film is formed on a target substrate at a predetermined height (20 nm).
  • FIG. 7A shows a case where the base film is not provided between the target substrate and the resist film
  • FIG. 7B shows a case where the base film is provided between the target substrate and the resist film.
  • the resist material for EUV lithography is a known material
  • the base film is a carbon-based C-containing film. A resist film was formed, exposed, and developed under the same conditions except for the presence or absence of a base film, and the results were evaluated.
  • the region R1 (the region where the cells are outlined) shown in FIGS. 7 (a) and 7 (b) is a region in which no damage was observed in the resist pattern. Further, the region R2 is a region where a bridge is generated, the region R3 is a region where a pattern collapse is observed, and the region R4 is a region where the pattern itself is crushed. Comparing FIG. 7A and FIG. 7B, as shown in FIG. 7B, when the undercoat was provided, the exposure amount was increased and the pattern width was substantially reduced. No damage such as pattern collapse is observed in the region (particularly the region on the right side in FIG. 7B), and the pattern is formed well. By providing the undercoat film in this way, it was possible to prevent the resist pattern from collapsing.
  • the LWR Line Width Roughness
  • the LWR is a value related to the variation in the line width of the resist, and may be directly related to the performance of the work W having a miniaturized pattern. It is considered that the reason why the LWR is improved is that by providing the base film, the roughness of the surface is reduced as compared with the surface of the target substrate, and the disturbance of the line width due to the unevenness of the surface forming the resist pattern can be suppressed. ..
  • FIG. 8A and 8 (b) are diagrams schematically showing the disorder of the line width of the resist pattern due to the roughness of the lower surface of the resist pattern.
  • FIG. 8A shows a state in which the resist pattern P is affected by the surface of the lower work W.
  • FIG. 8B as a result of providing the base film G on the surface of the work W, the roughness of the surface is suppressed and the side wall of the resist pattern P is more flattened.
  • the thin film containing carbon (C) can enhance the effect of improving LWR as compared with the thin film containing fluorocarbon (CF).
  • the coating / developing device 2 may perform the coating process.
  • the carbon-based base film material (main component) used in the base film treatment liquid include a SiC precursor polymer (polycarbosilane).
  • the material (main component) of the carbon-based base film may be a SiOC precursor polymer or a SiOCN precursor polymer.
  • polycarbosilane may be used as a SiOC precursor polymer by forming a SiOC film by applying a treatment to the polycarbosilane under conditions different from the conditions for forming a SiC film. ..
  • FIG. 9 shows the procedure for applying the treatment liquid for the base film to form the base film.
  • FIG. 9 shows a procedure of the process included in step S01 (formation of the base film) shown in FIG.
  • the control device 100 of the coating / developing device 2 determines the processing conditions in the acid decomposition treatment described later (step S11).
  • the details of the acid decomposition treatment will be described later, but the characteristics of the resist pattern formed on the base film can be changed by changing the treatment conditions in the acid decomposition treatment. Therefore, the treatment conditions in the acid decomposition treatment are determined so that the characteristics of the resist pattern become the desired conditions. Further, when determining the conditions for the acid decomposition treatment, for example, the surface state of the work W after the treatment has already been completed (for example, the shape of the resist pattern, etc.), the sensitivity at the time of exposure, and the like may be taken into consideration. In addition, this step may be performed at any timing as long as it is before the acid decomposition treatment is performed.
  • the work W is conveyed to the coating unit U1 (coating unit for forming the base film) in the processing module 11 and the treatment liquid for the base film is supplied to the surface of the work W (step S12).
  • the base film treatment liquid is, for example, in a state in which the main component forming the carbon-based base film is dispersed in the solvent. Therefore, immediately after the base film treatment liquid is supplied onto the work W, the solvent remains on the surface of the work W.
  • the work W is conveyed to the heat treatment unit U2 in the processing module 11 and the work W is preliminarily heat-treated (step S13).
  • the preheat treatment is a process of heating the work W to some extent before the acid decomposition treatment described later.
  • the preliminary heat treatment is performed by arranging the work W in an environment of 180 ° C. to 350 ° C. for about 30 seconds to 120 seconds in an air atmosphere.
  • the conditions of the preliminary heat treatment can be changed depending on the type of treatment liquid, coating conditions, and the like.
  • the work W is subjected to acid decomposition treatment on the work W in a predetermined unit in the processing module 11 (step S14).
  • the acid decomposition treatment is a treatment for decomposing the acid contained in the treatment liquid for the base film.
  • the solvent of the treatment liquid for the base film may contain a photoacid generator (PAG) or a similar material as a catalyst for the cross-linking reaction.
  • a photoacid generator is a component that generates an acid by decomposition. As shown in FIG. 10A, when the undercoat treatment liquid G0 is supplied to the work W, at least a part of the photoacid generator is decomposed to generate an acid. Therefore, the acid ac stays in the base film treatment liquid G0 on the work W.
  • the resist liquid P0 when the resist liquid P0 is a chemically amplified resist material for forming the resist pattern P, the resist liquid P0 supplied to the work W may contain acid ac and quencher q.
  • the quencher has the function of capturing the surrounding acid.
  • a photodegradable quencher is used as the quencher. In this case, the quencher is decomposed in the exposed region, while the quencher remains in the unexposed region. For example, in FIG.
  • the acid catalyst reaction does not proceed in the region where the light L is not irradiated and the quencher q remains, and the resist pattern P is formed, while the region where the quencher q is decomposed by the light L is formed. , It is shown that the acid-catalyzed reaction by the acid ac proceeds.
  • the acid ac in the lower layer may inactivate the function of the quencher q.
  • quencher q may not be able to completely suppress the diffusion of acid ac.
  • the width of the resist pattern P on the lower side (undercoat film G side) is smaller than that on the upper side, and the pattern may collapse.
  • the resist pattern P used in EUV lithography can be adjusted so that the aspect ratio indicating the pattern height with respect to the line width is greater than 1 and less than 3. With such a resist pattern P, there may be a strong concern about pattern collapse.
  • the acid ac in the base film treatment liquid G0 also contributes to the acid catalytic reaction, so that the sensitivity of the resist can be increased.
  • the acid ac remains, the width below the resist pattern P tends to be small, and the risk of pattern collapse can be improved. Therefore, before supplying the resist liquid P0 to the work W, an acid decomposition treatment may be performed for the purpose of reducing the acid remaining in the base film treatment liquid G0.
  • the acid decomposition treatment may be performed, for example, by irradiation with UV light.
  • the acid in the treatment liquid is decomposed.
  • the acid can be decomposed by irradiating the base film treatment liquid G0 with light contained in a wavelength range of 200 nm or less.
  • the irradiation amount may vary depending on the wavelength of UV light and the like, but can be adjusted in the range of , for example, 50 mJ / cm 2 to 1000 mJ / cm 2.
  • the irradiation condition of UV light for example, when irradiating UV light having a wavelength of 172 nm, the decomposition of acid can be promoted by setting the irradiation amount to 150 mJ / cm 2.
  • the acid decomposition treatment may be performed by, for example, a heat treatment.
  • the acid in the treatment liquid is decomposed.
  • the acid can be decomposed by heating at 250 ° C. to 400 ° C. for about 60 seconds to 180 seconds.
  • the heating temperature in the acid decomposition treatment can be set higher than the heating temperature in the preheat treatment.
  • the acid decomposition treatment can be performed in a low oxygen atmosphere regardless of whether it is irradiated with UV light or heat-treated.
  • the treatment may be carried out in a state where the inside of the unit to be subjected to the acid decomposition treatment is replaced with nitrogen.
  • the undercoat film is formed by using the undercoat film treatment liquid, the pattern collapse can be effectively suppressed by performing the acid decomposition treatment.
  • the plasma gas H 2 gas
  • FIGS. 11 to 13 show a process window in which the exposure amount (vertical direction) and the focus amount (horizontal direction) when a pattern of EUV resist film is formed on a target substrate at a predetermined height (50 nm) are changed.
  • FIG. 11 shows a case where the acid decomposition treatment was not performed
  • FIG. 12 shows a case where UV light irradiation (UV light having a wavelength of 172 nm, irradiation amount 150 mJ / cm 2 , nitrogen atmosphere) was performed as the acid decomposition treatment. Shown. Further, FIG.
  • the resist material for EUV lithography is a known material
  • the base film is a film containing carbon-based C, and the same type of treatment liquid for the base film was supplied. Further, under any condition, a preliminary heat treatment (temperature 220 degrees, 60 seconds, air atmosphere) is performed. That is, the resist film was formed, exposed, and developed under the same conditions except for the presence or absence of the acid decomposition treatment, and the results were evaluated.
  • the region R1 (the region where the cells are outlined) shown in FIGS. 11 to 13 is a region where no damage was observed in the resist pattern. Further, the region R2 is a region where a bridge is generated, and the region R2'is a region where a bridge is slightly generated. Further, the region R3 is a region where pattern collapse (pinching) is observed, and the region R4 is a region where the pattern itself is collapsed. Comparing FIG. 11 with FIGS. 12 and 13, the acid decomposition treatment reduced damage such as pattern collapse under the condition of increasing the exposure amount. As a result, it was confirmed that the region R1 in which the resist pattern was not substantially damaged was widened and the pattern was formed well. As described above, it was confirmed that when the treatment liquid for the base film is used, the resist pattern is suppressed from collapsing by performing the acid decomposition treatment.
  • FIG. 12 and FIG. 13 were compared, the size of the region R1 and the occurrence of pattern damage (R2 to R4 regions) were similar. It was also confirmed that the exposure amount was about the same. Therefore, it was confirmed that the same result can be obtained regardless of the method of acid decomposition treatment.
  • FIG. 14 shows a case where the acid decomposition treatment is not performed (X1) and a case where the acid decomposition treatment is performed (X2). Also, for each of the above, what is the relationship between the amount of light required to form the resist pattern (effective Dose: mJ / cm 2 ) and the line width (CD: nm) of the pattern that can be created? It is shown schematically. The regions shown by the straight lines X1 and X2 indicate the range (condition) in which the resist pattern can be appropriately formed.
  • the amount of light when creating a pattern having the same line width is larger in the straight line X2 than in the straight line X1. That is, when the acid decomposition treatment is performed, the sensitivity of the resist to exposure is lowered.
  • the straight line X2 can suppress the pattern collapse as compared with the straight line X1, the line width that can be created can be reduced.
  • the sensitivity at the time of forming the resist pattern is lowered, but the pattern collapse is suppressed.
  • the sensitivity (exposure sensitivity) when forming the resist pattern is high, but the effect of suppressing pattern collapse (pattern stability) is not high.
  • the straight line X2 shown in FIG. 14 schematically shows the result when the oxidative decomposition treatment is performed under the condition that the decomposition of the acid proceeds sufficiently.
  • the conditions of the acid decomposition treatment can be adjusted by using the exposure sensitivity and the stability of the pattern as indexes. Therefore, as shown in step S01 of FIG. 10, by adjusting the processing conditions of the acid decomposition treatment, the conditions for forming the resist pattern can be adjusted. For example, when it is desired to form a resist pattern under a condition in which the amount of exposure is suppressed, the sensitivity can be increased by setting a condition in which the decomposition of acid is suppressed to some extent even when the acid decomposition treatment is performed. it can. On the other hand, in the case of forming a pattern having a shape in which pattern collapse is likely to occur, the acid decomposition treatment is performed under conditions under which the acid decomposition proceeds sufficiently. In this way, it is possible to adjust the conditions at the time of forming the resist pattern by using the acid decomposition treatment.
  • a coating film to be a resist film is formed by supplying a resist solution having photosensitivity to EUV light onto a carbon-based base film. Since the carbon-based base film is provided on the surface of the substrate, the adhesion of the resist film to the substrate is improved via the base film, so that it is possible to prevent the resist pattern from collapsing in EUV lithography.
  • the base film when the base film is formed by plasma treatment as in the method described using the substrate processing system 1, the base film can be formed thinner and more uniformly. Therefore, since the adhesion of the resist film to the substrate is further enhanced by providing the base film, it is possible to effectively prevent the resist pattern from collapsing. Even when the carbon-based base film is formed by a method different from the plasma treatment (for example, coating treatment), the resist film and the substrate (work W) are based on the relationship of surface free energy as described above. ) Can be improved.
  • methane (CH 4 ) gas, hexafluoro-1,3-butadiene (C 4 F 6 ) gas, octafluorocyclobutane (C 4 F 8 ) gas, and trifluoromethane (CHF 3 ) gas are selected.
  • the mode may be such that a processing gas containing one or more components is turned into plasma.
  • the methods described in the above embodiments include irradiating the coating film with EUV light to expose the coating film, and supplying a developing solution to the substrate after the coating film is exposed. It is effective when further containing.
  • the developer is supplied to the substrate after the coating film made of the resist solution is exposed to EUV light, the resist may be peeled off by the developer.
  • the coating film on the undercoat film as described above, the resistance to the developing solution is enhanced and a better resist pattern can be obtained.
  • the acid contained in the solvent affects the shape of the resist pattern formed on the upper part of the base film.
  • the acid decomposition treatment by performing the acid decomposition treatment on the treatment liquid for the base film, it is possible to prevent the resist pattern formed thereafter from collapsing.
  • the base film treatment liquid supplied to the surface of the substrate may be subjected to a preliminary heat treatment.
  • a preliminary heat treatment it is possible to prevent stress or the like from being generated in the treatment liquid for the base film on the substrate by the acid decomposition treatment, and it is possible to prevent the resist pattern on the base film from being affected.
  • the treatment conditions in the acid decomposition treatment may be adjusted based on the surface condition of the substrate after the treatment. As described in the above embodiment, by changing the treatment conditions for the acid decomposition treatment in the treatment liquid for the undercoat film, the conditions and characteristics for forming the resist pattern can be changed. Therefore, by adjusting the treatment conditions in consideration of the surface state of the substrate after the treatment (that is, the state of the resist pattern), it is possible to form a base film under desired conditions.
  • the specific configuration of the substrate processing system is not limited to the configuration of the substrate processing system 1 illustrated above.
  • the substrate processing system may be any as long as it includes a unit (device) capable of forming a base film, forming a resist film, exposing and developing.
  • the plasma processing device 10 may be provided in the coating / developing device 2.
  • the plasma processing device 10 may be provided in the processing module 11 or the interface block 6.
  • Substrate processing system board processing equipment
  • 2 Coating / developing equipment
  • 10 Plasma processing equipment
  • base film forming unit base film forming unit
  • U1 Coating unit
  • U2 Heat treatment unit
  • W Work.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

A substrate processing method according to the present invention comprises: formation of a carbon-containing base film on the surface of a substrate; and formation of a coating film on the base film by supplying a resist liquid, which is photosensitive to EUV light, to the surface of the substrate.

Description

基板処理方法及び基板処理装置Substrate processing method and substrate processing equipment
 本開示は、基板処理方法及び基板処理装置に関する。 This disclosure relates to a substrate processing method and a substrate processing apparatus.
 半導体デバイスの露光工程において、回路の高集積化と高速度化に伴い、レジストパターンをより微細に形成するための手法が求められている。特許文献1は、極紫外線(EUV:extreme ultraviolet)光をレジスト膜に照射することと、露光後のレジスト膜を現像して極微細なレジストパターン(例えば20nm以下)を形成する基板処理方法を開示している。 In the exposure process of semiconductor devices, a method for forming a resist pattern more finely is required as the circuit becomes more integrated and the speed becomes higher. Patent Document 1 discloses a substrate processing method for irradiating a resist film with extreme ultraviolet (EUV) light and developing a resist film after exposure to form an ultrafine resist pattern (for example, 20 nm or less). doing.
特表2016-539361号公報Special Table 2016-539361
 本開示は、EUVリソグラフィにおけるレジストパターンの倒れを防ぐことが可能な技術を提供する。 The present disclosure provides a technique capable of preventing the resist pattern from collapsing in EUV lithography.
 本開示の一態様による基板処理方法は、基板の表面に対してカーボン系の下地膜を形成することと、前記下地膜上に、EUV光に対して感光性を有するレジスト液を基板の表面に供給して塗布膜を形成することと、を含む。 The substrate treatment method according to one aspect of the present disclosure is to form a carbon-based undercoat film on the surface of the substrate, and to apply a resist solution having photosensitivity to EUV light on the surface of the substrate. Includes feeding to form a coating film.
 本開示によれば、EUVリソグラフィにおけるレジストパターンの倒れを防ぐことが可能な技術が提供される。 According to the present disclosure, a technique capable of preventing the resist pattern from collapsing in EUV lithography is provided.
図1は、基板処理システムの一例を示す模式的な斜視図である。FIG. 1 is a schematic perspective view showing an example of a substrate processing system. 図2は、処理モジュールの一例を示す上面図である。FIG. 2 is a top view showing an example of the processing module. 図3は、プラズマ処理装置の一例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of a plasma processing apparatus. 図4は、制御装置のハードウェア構成の一例を示すブロック図である。FIG. 4 is a block diagram showing an example of the hardware configuration of the control device. 図5は、基板処理方法の一例を示すフローチャートである。FIG. 5 is a flowchart showing an example of the substrate processing method. 図6は、レジスト、対象基板、現像液、及び、下地膜の表面自由エネルギーの一例についてプロットした図である。FIG. 6 is a plot of an example of the surface free energy of the resist, the target substrate, the developing solution, and the base film. 図7(a)及び図7(b)は、下地膜の有無によるレジストパターンの状態の違いを説明するプロセスウィンドウの一例を示している。7 (a) and 7 (b) show an example of a process window for explaining the difference in the state of the resist pattern depending on the presence or absence of the base film. 図8(a)及び図8(b)は、レジストパターンの状態の一例を示す図である。8 (a) and 8 (b) are diagrams showing an example of the state of the resist pattern. 図9は、基板処理方法の変形例を示すフローチャートである。FIG. 9 is a flowchart showing a modified example of the substrate processing method. 図10(a)、図10(b)、図10(c)は、基板処理中の各部の状態の一例を示す模式視図である。10 (a), 10 (b), and 10 (c) are schematic visual views showing an example of the state of each part during substrate processing. 図11は、酸分解処理を行わない場合のレジストパターンの状態を示すプロセスウィンドウの一例を示す図である。FIG. 11 is a diagram showing an example of a process window showing a state of a resist pattern when the acid decomposition treatment is not performed. 図12は、酸分解処理としてUV光の照射を行った場合のレジストパターンの状態を示すプロセスウィンドウの一例を示す図である。FIG. 12 is a diagram showing an example of a process window showing a state of a resist pattern when UV light is irradiated as an acid decomposition treatment. 図13は、酸分解処理として熱処理を行った場合のレジストパターンの状態を示すプロセスウィンドウの一例を示す図である。FIG. 13 is a diagram showing an example of a process window showing a state of a resist pattern when heat treatment is performed as an acid decomposition treatment. 図14は、処理条件の変更による特性の変化の一例を示す図である。FIG. 14 is a diagram showing an example of a change in characteristics due to a change in processing conditions.
 以下、種々の例示的実施形態について説明する。 Hereinafter, various exemplary embodiments will be described.
 一つの例示的実施形態において、基板処理方法は、基板の表面に対してカーボン系の下地膜を形成することと、前記下地膜上に、EUV光に対して感光性を有するレジスト液を基板の表面に供給して塗布膜を形成することと、を含む。 In one exemplary embodiment, the substrate processing method is to form a carbon-based substrate film on the surface of the substrate and to apply a resist solution having photosensitivity to EUV light on the substrate film. Includes supplying to the surface to form a coating film.
 上記の基板処理方法によれば、EUV光に対して感光性を有するレジスト液をカーボン系の下地膜の上に供給することで、レジスト膜となる塗布膜が形成される。カーボン系の下地膜が基板の表面に設けられていることで、下地膜を介してレジスト膜の基板に対する密着性が高くなるため、EUVリソグラフィにおけるレジストパターンの倒れを防ぐことが可能となる。 According to the above-mentioned substrate treatment method, a coating film to be a resist film is formed by supplying a resist liquid having photosensitivity to EUV light on a carbon-based base film. Since the carbon-based base film is provided on the surface of the substrate, the adhesion of the resist film to the substrate is improved via the base film, so that it is possible to prevent the resist pattern from collapsing in EUV lithography.
 前記下地膜を形成することは、プラズマ処理によって行われる態様とすることができる。 The formation of the base film can be performed by plasma treatment.
 上記のように、プラズマ処理によって下地膜を形成する場合、下地膜をより薄く且つ均一に形成することができる。したがって、下地膜を設けることによる基板に対するレジスト膜の密着性がさらに高められるため、レジストパターンの倒れを効果的に防ぐことができる。 As described above, when the undercoat film is formed by plasma treatment, the undercoat film can be formed thinner and more uniformly. Therefore, since the adhesion of the resist film to the substrate is further enhanced by providing the base film, it is possible to effectively prevent the resist pattern from collapsing.
 前記プラズマ処理において、メタン(CH)ガス、ヘキサフルオロ-1,3-ブタジエン(C)ガス、オクタフルオロシクロブタン(C)ガス、トリフルオロメタン(CHF)ガスから選ばれる1種類またはそれ以上の成分を含む処理ガスをプラズマ化する態様とすることができる。 In the plasma treatment, one is selected from methane (CH 4 ) gas, hexafluoro-1,3-butadiene (C 4 F 6 ) gas, octafluorocyclobutane (C 4 F 8 ) gas, and trifluoromethane (CHF 3 ) gas. It can be an embodiment in which a processing gas containing a kind or more components is turned into plasma.
 上記の成分を含む処理ガスを用いてプラズマ処理によって下地膜を形成することで、レジストパターンの倒れを効果的に防ぐことができる。 By forming an undercoat film by plasma treatment using a processing gas containing the above components, it is possible to effectively prevent the resist pattern from collapsing.
 前記下地膜を形成することは、溶剤が残存した状態の下地膜用処理液を前記基板の表面に対して供給することと、前記下地膜用処理液を供給した後に、酸分解処理を行うことと、を含む態様とすることができる。 To form the base film, the treatment liquid for the base film in a state where the solvent remains is supplied to the surface of the substrate, and the acid decomposition treatment is performed after the treatment liquid for the base film is supplied. And can be an aspect including.
 下地膜を形成する際に、溶剤が残存した状態の下地膜用処理液を供給する場合、特に溶剤に含まれる酸が、上部に形成されるレジストパターンの形状に影響を与える可能性がある。これに対して、上記のように酸分解処理を行うことで、レジストパターンの倒れを防ぐことができる。 When the treatment liquid for the base film with the solvent remaining is supplied when the base film is formed, the acid contained in the solvent may affect the shape of the resist pattern formed on the upper part. On the other hand, by performing the acid decomposition treatment as described above, it is possible to prevent the resist pattern from collapsing.
 前記酸分解処理を、低酸素雰囲気で行う態様とすることができる。 The acid decomposition treatment can be carried out in a low oxygen atmosphere.
 上記のように、酸分解処理を低酸素雰囲気で行うことにより、下地膜の酸化が防がれるため、下地膜を介したレジスト膜の基板に対する密着性が高くなるため、レジストパターンの倒れを防ぐことができる。 As described above, by performing the acid decomposition treatment in a low oxygen atmosphere, oxidation of the undercoat film is prevented, so that the adhesion of the resist film to the substrate via the undercoat film is improved, and thus the resist pattern is prevented from collapsing. be able to.
 前記酸分解処理を行う前に、前記基板の表面に供給した前記下地膜用処理液に対して、予備熱処理を行うことをさらに含む態様とすることができる。 The mode may further include performing a preliminary heat treatment on the base film treatment liquid supplied to the surface of the substrate before performing the acid decomposition treatment.
 上記のように、酸分解処理の前に予備熱処理を行うことで、酸分解処理によって基板上の下地膜用処理液に応力等が発生することを防ぐことができ、下地膜上のレジストパターンに対して影響が発生することが防がれる。 As described above, by performing the preliminary heat treatment before the acid decomposition treatment, it is possible to prevent stress or the like from being generated in the treatment liquid for the base film on the substrate due to the acid decomposition treatment, and the resist pattern on the base film can be formed. On the other hand, it is possible to prevent the influence from occurring.
 前記酸分解処理における処理条件を、処理後の基板の表面状態に基づいて調整することをさらに含む態様とすることができる。 The treatment conditions in the acid decomposition treatment can be further adjusted based on the surface condition of the substrate after the treatment.
 下地膜用処理液における酸分解処理の処理条件を変更することで、レジストパターンの形成に適した条件およびレジストパターンの特性が変化し得る。したがって、処理後の基板の表面状態(すなわち、レジストパターンの状態)を考慮して処理条件を調整することによって、所望の条件の下地膜を形成することができる。 By changing the treatment conditions for the acid decomposition treatment in the base film treatment liquid, the conditions suitable for forming the resist pattern and the characteristics of the resist pattern can be changed. Therefore, by adjusting the treatment conditions in consideration of the surface state of the substrate after the treatment (that is, the state of the resist pattern), it is possible to form a base film under desired conditions.
 前記塗布膜に対してEUV光を照射して、前記塗布膜を露光することと、前記塗布膜の露光後に、前記基板に対して現像液を供給することと、をさらに含む態様とすることができる。 An embodiment further comprising irradiating the coating film with EUV light to expose the coating film, and supplying a developing solution to the substrate after the coating film is exposed. it can.
 レジスト液からなる塗布膜をEUV光によって露光した後に、基板に対して現像液を供給する場合、現像液によるレジストの剥がれも生じ得る。これに対して、上記のように、下地膜上に塗布膜を形成する構成とすることで、現像液に対する耐性も高められ、より良好なレジストパターンを得ることができる。 When the developer is supplied to the substrate after the coating film made of the resist solution is exposed to EUV light, the resist may be peeled off by the developer. On the other hand, by forming the coating film on the undercoat film as described above, the resistance to the developing solution is enhanced and a better resist pattern can be obtained.
 一つの例示的実施形態において、基板処理装置は、基板の表面に対してカーボン系の下地膜を形成する下地膜形成部と、EUV光に対して感光性を有するレジスト液を基板の表面に供給して塗布膜を形成するように構成されたレジスト液供給部と、制御部と、を備え、前記制御部は、前記基板の表面に対してカーボン系の下地膜を形成するように前記下地膜形成部を制御する処理と、前記基板の前記下地膜上に前記塗布膜を形成するように前記レジスト液供給部を制御する処理と、を実行する。 In one exemplary embodiment, the substrate processing apparatus supplies a substrate film forming portion that forms a carbon-based substrate film to the surface of the substrate and a resist liquid that is photosensitive to EUV light to the surface of the substrate. A resist liquid supply unit and a control unit are provided so as to form a coating film, and the control unit comprises the base film so as to form a carbon-based base film on the surface of the substrate. A process of controlling the forming portion and a process of controlling the resist liquid supply portion so as to form the coating film on the base film of the substrate are executed.
 上記の基板処理装置によれば、EUV光に対して感光性を有するレジスト液をカーボン系の下地膜の上に供給することで、レジスト膜となる塗布膜が形成される。カーボン系の下地膜が基板の表面に設けられていることで、下地膜を介してレジスト膜の基板に対する密着性が高くなるため、EUVリソグラフィにおけるレジストパターンの倒れを防ぐことが可能となる。 According to the above-mentioned substrate processing apparatus, a coating film to be a resist film is formed by supplying a resist liquid having photosensitivity to EUV light on a carbon-based base film. Since the carbon-based base film is provided on the surface of the substrate, the adhesion of the resist film to the substrate is improved via the base film, so that it is possible to prevent the resist pattern from collapsing in EUV lithography.
 以下、図面を参照して種々の例示的実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。 Hereinafter, various exemplary embodiments will be described in detail with reference to the drawings. In addition, the same reference numerals are given to the same or corresponding parts in each drawing.
[基板処理システム]
 まず、図1及び図2を参照して基板処理システム1の概略構成を説明する。基板処理システム1は、基板(ワークW)に対し、下地膜の形成、レジスト膜(感光性被膜)の形成、レジスト膜の露光及び現像を施すシステムである。処理対象のワークWは、例えば半導体用の基板である。基板としては、一例として、シリコンウェハである。ワークWは円形に形成されてもよい。また、処理対象のワークWは、ガラス基板、マスク基板、FPD(Flat Panel Display)などであってもよいが、少なくともEUVリソグラフィを適用可能な材料とすることができる。ワークWに形成されるレジスト膜としては、EUVリソグラフィ(Extreme ultraviolet lithography:極端紫外線リソグラフィ)用のレジスト膜が用いられる。したがって、レジスト膜の形成に用いられるレジスト液(薬液)は、EUV光に対して感光性を有するものが用いられる。なお、このようなEUVリソグラフィ用のレジスト膜に使用することができる公知のレジスト液を用いることができる。
[Board processing system]
First, a schematic configuration of the substrate processing system 1 will be described with reference to FIGS. 1 and 2. The substrate processing system 1 is a system for forming a base film, forming a resist film (photosensitive film), and exposing and developing a resist film on a substrate (work W). The work W to be processed is, for example, a substrate for a semiconductor. As an example, the substrate is a silicon wafer. The work W may be formed in a circular shape. Further, the work W to be processed may be a glass substrate, a mask substrate, an FPD (Flat Panel Display), or the like, but at least EUV lithography can be applied as a material. As the resist film formed on the work W, a resist film for EUV lithography (Extreme ultraviolet lithography) is used. Therefore, as the resist solution (chemical solution) used for forming the resist film, one having photosensitivity to EUV light is used. A known resist solution that can be used for such a resist film for EUV lithography can be used.
 ワークWは、例えば、基板の表面にシリコン含有反射防止コーティング(SiARC)層が形成されたものであってもよい。UV光によってリソグラフィを行う場合、UV光が基板で反射することによって生じる定在波がレジスト側壁に影響を及ぼす可能性がある。そのため、一般的に反射を防止するための中間層が形成されることがあるが、EUV光は基板での材料の反射が少ないため、中間層を省略することができる。ただし、剥がれ等を防止する観点からEUVリソグラフィ用のレジスト膜を設ける場合、基板に対してシリコン含有反射防止コーティング(SiARC)層を形成することがある。なお、シリコン含有反射防止コーティング(SiARC)層に代えて、他の中間層が形成されていてもよい。 The work W may have, for example, a silicon-containing antireflection coating (SiARC) layer formed on the surface of the substrate. When lithography is performed by UV light, standing waves generated by the reflection of UV light on the substrate may affect the resist side wall. Therefore, an intermediate layer for preventing reflection may be generally formed, but since EUV light reflects less material on the substrate, the intermediate layer can be omitted. However, when a resist film for EUV lithography is provided from the viewpoint of preventing peeling or the like, a silicon-containing antireflection coating (SiARC) layer may be formed on the substrate. In addition, another intermediate layer may be formed instead of the silicon-containing antireflection coating (SiARC) layer.
 基板処理システム1(基板処理装置)は、塗布・現像装置2と、露光装置3と、プラズマ処理装置10と、制御装置100とを備える。露光装置3は、ワークW上に形成されたレジスト膜(感光性被膜)を露光する装置である。具体的には、露光装置3は、液浸露光等の方法によりレジスト膜の露光対象部分にエネルギー線を照射する。塗布・現像装置2は、露光装置3による露光処理の前に、ワークWの表面にレジスト(薬液)を塗布してレジスト膜を形成する処理を行う。また、塗布・現像装置2は、露光処理後にレジスト膜の現像処理を行う。 The board processing system 1 (board processing device) includes a coating / developing device 2, an exposure device 3, a plasma processing device 10, and a control device 100. The exposure apparatus 3 is an apparatus for exposing a resist film (photosensitive film) formed on the work W. Specifically, the exposure apparatus 3 irradiates the exposed portion of the resist film with energy rays by a method such as immersion exposure. The coating / developing device 2 performs a process of applying a resist (chemical solution) to the surface of the work W to form a resist film before the exposure process by the exposure device 3. Further, the coating / developing apparatus 2 develops the resist film after the exposure treatment.
(塗布・現像装置)
 図1及び図2に示されるように、塗布・現像装置2は、キャリアブロック4と、処理ブロック5と、インタフェースブロック6とを備える。
(Applying / developing equipment)
As shown in FIGS. 1 and 2, the coating / developing device 2 includes a carrier block 4, a processing block 5, and an interface block 6.
 キャリアブロック4は、塗布・現像装置2内へのワークWの導入及び塗布・現像装置2内からのワークWの導出を行う。例えばキャリアブロック4は、ワークW用の複数のキャリアCを支持可能であり、受け渡しアームを含む搬送装置A1を内蔵している。キャリアCは、例えば円形の複数枚のワークWを収容する。搬送装置A1は、キャリアCからワークWを取り出して処理ブロック5に渡し、処理ブロック5からワークWを受け取ってキャリアC内に戻す。処理ブロック5は、複数の処理モジュール11,12,13,14を有する。 The carrier block 4 introduces the work W into the coating / developing device 2 and derives the work W from the coating / developing device 2. For example, the carrier block 4 can support a plurality of carriers C for the work W, and includes a transfer device A1 including a delivery arm. The carrier C accommodates, for example, a plurality of circular workpieces W. The transport device A1 takes out the work W from the carrier C, passes it to the processing block 5, receives the work W from the processing block 5, and returns it to the carrier C. The processing block 5 has a plurality of processing modules 11, 12, 13, and 14.
 処理モジュール11は、塗布ユニットU1と、熱処理ユニットU2と、これらのユニットにワークWを搬送する搬送装置A3とを内蔵している。処理モジュール11は、塗布ユニットU1及び熱処理ユニットU2により、後述のプラズマ処理装置10によって表面に下地膜が形成されたワークWの表面上にレジスト膜を形成する処理の一部を行う。塗布ユニットU1(レジスト液供給部)は、レジスト膜形成用の薬液(レジスト液)をワークW上に塗布してレジスト液からなる塗布膜(レジスト膜)を形成する。熱処理ユニットU2は、レジスト膜の形成に伴う各種熱処理を行う。 The processing module 11 incorporates a coating unit U1, a heat treatment unit U2, and a transport device A3 for transporting the work W to these units. The treatment module 11 uses the coating unit U1 and the heat treatment unit U2 to perform a part of the treatment of forming a resist film on the surface of the work W on which the base film is formed by the plasma processing device 10 described later. The coating unit U1 (resist liquid supply unit) coats a chemical solution (resist solution) for forming a resist film on the work W to form a coating film (resist film) composed of the resist solution. The heat treatment unit U2 performs various heat treatments accompanying the formation of the resist film.
 処理モジュール12は、塗布ユニットU1と、熱処理ユニットU2と、これらのユニットにワークWを搬送する搬送装置A3とを内蔵している。処理モジュール13は、塗布ユニットU1及び熱処理ユニットU2によりレジスト膜上に上層膜を形成する。塗布ユニットU1は、上層膜形成用の処理液をレジスト膜の上に塗布する。熱処理ユニットU2は、上層膜の形成に伴う各種熱処理を行う。 The processing module 12 incorporates a coating unit U1, a heat treatment unit U2, and a transport device A3 for transporting the work W to these units. The processing module 13 forms an upper layer film on the resist film by the coating unit U1 and the heat treatment unit U2. The coating unit U1 coats the treatment liquid for forming the upper layer film on the resist film. The heat treatment unit U2 performs various heat treatments accompanying the formation of the upper layer film.
 処理モジュール13は、塗布ユニットU1及び熱処理ユニットU2により、露光後のレジスト膜の現像処理を行う。処理モジュール13の塗布ユニットU1は、露光済みのワークWの表面上に現像液を塗布した後、これをリンス液により洗い流すことで、レジスト膜の現像処理を行う。熱処理ユニットU2は、現像処理に伴う各種熱処理を行う。現像処理に伴う熱処理の具体例としては、現像処理前の加熱処理(PEB:Post Exposure Bake)、現像処理後の加熱処理(PB:Post Bake)等が挙げられる。 The processing module 13 develops the resist film after exposure by the coating unit U1 and the heat treatment unit U2. The coating unit U1 of the processing module 13 applies the developing solution on the surface of the exposed work W and then rinses it with a rinsing solution to develop the resist film. The heat treatment unit U2 performs various heat treatments associated with the development process. Specific examples of the heat treatment associated with the development treatment include heat treatment before the development treatment (PEB: Post Exposure Bake), heat treatment after the development treatment (PB: Post Bake), and the like.
 なお、処理モジュール14は、塗布ユニットU1及び熱処理ユニットU2を有している。処理モジュール14は、上記の処理モジュール11~13のいずれかと同じ処理を行ってもよいし、上記の処理モジュール11~13とは異なる処理を行ってもよい。 The processing module 14 has a coating unit U1 and a heat treatment unit U2. The processing module 14 may perform the same processing as any of the above processing modules 11 to 13, or may perform a different processing from the above processing modules 11 to 13.
 上記の処理モジュール11~13に含まれる塗布ユニットU1及び熱処理ユニットU2としては、公知の構造を有する塗布ユニット及び熱処理ユニットを適用することができる。例えば、塗布ユニットU1は、ワークWを略水平な状態で保持し、所定の回転数で回転させながら所定の処理液を供給する構造を有する。また、熱処理ユニットU2は、ワークWを保持する熱板をチャンバで覆うことで熱処理空間を形成し、チャンバ内にガスを供給しながら加熱処理を行う構造を有する。ただし、上記の構造は塗布ユニットU1及び熱処理ユニットU2の一例であり、上記の構造に限定されない。 As the coating unit U1 and the heat treatment unit U2 included in the above processing modules 11 to 13, a coating unit and a heat treatment unit having a known structure can be applied. For example, the coating unit U1 has a structure in which the work W is held in a substantially horizontal state and a predetermined processing liquid is supplied while rotating at a predetermined rotation speed. Further, the heat treatment unit U2 has a structure in which a heat treatment space is formed by covering a hot plate holding the work W with a chamber, and heat treatment is performed while supplying gas into the chamber. However, the above structure is an example of the coating unit U1 and the heat treatment unit U2, and is not limited to the above structure.
 処理ブロック5内におけるキャリアブロック4側には棚ユニットU10が設けられている。棚ユニットU10は、上下方向に並ぶ複数のセルに区画されている。棚ユニットU10の近傍には昇降アームを含む搬送装置A7が設けられている。搬送装置A7は、棚ユニットU10のセル同士の間でワークWを昇降させる。 A shelf unit U10 is provided on the carrier block 4 side in the processing block 5. The shelf unit U10 is divided into a plurality of cells arranged in the vertical direction. A transport device A7 including an elevating arm is provided in the vicinity of the shelf unit U10. The transport device A7 raises and lowers the work W between the cells of the shelf unit U10.
 処理ブロック5内におけるインタフェースブロック6側には棚ユニットU11が設けられている。棚ユニットU11は、上下方向に並ぶ複数のセルに区画されている。 A shelf unit U11 is provided on the interface block 6 side in the processing block 5. The shelf unit U11 is divided into a plurality of cells arranged in the vertical direction.
 インタフェースブロック6は、露光装置3との間でワークWの受け渡しを行う。例えばインタフェースブロック6は、受け渡しアームを含む搬送装置A8を内蔵しており、露光装置3に接続される。搬送装置A8は、棚ユニットU11に配置されたワークWを露光装置3に渡す。搬送装置A8は、露光装置3からワークWを受け取って棚ユニットU11に戻す。 The interface block 6 transfers the work W to and from the exposure apparatus 3. For example, the interface block 6 has a built-in transfer device A8 including a transfer arm, and is connected to the exposure device 3. The transport device A8 passes the work W arranged on the shelf unit U11 to the exposure device 3. The transport device A8 receives the work W from the exposure device 3 and returns it to the shelf unit U11.
(プラズマ処理装置)
 続いて、図3を参照して、プラズマ処理装置10(下地膜形成部)の一例について、説明する。プラズマ処理装置10は、ワークW上に下地膜を形成する。例えば、プラズマ処理装置10は、下地膜の原材料となるガスをプラズマ状態として、ワークWの表面Waに当接させることで、ワークWの表面に下地膜を形成する。
(Plasma processing equipment)
Subsequently, an example of the plasma processing apparatus 10 (undercoat film forming portion) will be described with reference to FIG. The plasma processing apparatus 10 forms a base film on the work W. For example, the plasma processing apparatus 10 forms a base film on the surface of the work W by bringing the gas that is the raw material of the base film into a plasma state and bringing it into contact with the surface Wa of the work W.
 プラズマ処理装置10は、搬送機構19を介して塗布・現像装置2に接続されている(図2参照)。搬送機構19は、塗布・現像装置2とプラズマ処理装置10との間でワークWを搬送する。プラズマ処理装置10は、例えば平行平板型の装置である。図3に示されるように、プラズマ処理装置10は、処理容器68と、載置台60と、天板部70と、電源部80と、排気部90とを備える。 The plasma processing device 10 is connected to the coating / developing device 2 via the transport mechanism 19 (see FIG. 2). The transport mechanism 19 transports the work W between the coating / developing device 2 and the plasma processing device 10. The plasma processing device 10 is, for example, a parallel plate type device. As shown in FIG. 3, the plasma processing device 10 includes a processing container 68, a mounting table 60, a top plate unit 70, a power supply unit 80, and an exhaust unit 90.
 処理容器68は、導電性を有しており、略円筒状に形成されている。処理容器68には、接地線69が電気的に接続されており、処理容器68は接地されている。 The processing container 68 has conductivity and is formed in a substantially cylindrical shape. A ground wire 69 is electrically connected to the processing container 68, and the processing container 68 is grounded.
 載置台60は、処理容器68内に設けられ、処理対象のワークWを支持する。載置台60は、略円板状の静電チャック61と、略円環状のフォーカスリング62とを備える。静電チャック61は、略円板状の部材であり、例えば一対のセラミックの間に静電チャック用の電極を挟みこんで形成されている。 The mounting table 60 is provided in the processing container 68 and supports the work W to be processed. The mounting table 60 includes a substantially disk-shaped electrostatic chuck 61 and a substantially annular focus ring 62. The electrostatic chuck 61 is a substantially disk-shaped member, and is formed by, for example, sandwiching an electrode for an electrostatic chuck between a pair of ceramics.
 静電チャック61の下面には下部電極としてのサセプタ63が設けられている。サセプタ63は、例えばアルミニウム等の金属により略円板状に形成されている。処理容器68の底部には、絶縁板65を介して支持台64が設けられ、サセプタ63は、この支持台64の上面に支持されている。静電チャック61の内部には電極(図示せず)が設けられており、当該電極に直流電圧を印加することにより生じる静電気力でワークWが静電チャック61に吸着保持される。 A susceptor 63 as a lower electrode is provided on the lower surface of the electrostatic chuck 61. The susceptor 63 is formed of a metal such as aluminum in a substantially disk shape. A support base 64 is provided on the bottom of the processing container 68 via an insulating plate 65, and the susceptor 63 is supported on the upper surface of the support base 64. An electrode (not shown) is provided inside the electrostatic chuck 61, and the work W is attracted and held by the electrostatic chuck 61 by the electrostatic force generated by applying a DC voltage to the electrode.
 プラズマ処理の均一性を向上させるためのフォーカスリング62は、例えば導電性のシリコンにより形成されており、サセプタ63の上面であって静電チャック61の外周部に配置されている。サセプタ63及び支持台64の外側面は、例えば石英からなる円筒部材66により覆われている。支持台64の内部には、冷媒が流れる冷媒流路(図示せず)が設けられており、冷媒の温度を制御することにより、静電チャック61で保持されているワークWの温度が制御される。 The focus ring 62 for improving the uniformity of plasma processing is formed of, for example, conductive silicon, and is arranged on the upper surface of the susceptor 63 and on the outer peripheral portion of the electrostatic chuck 61. The outer surfaces of the susceptor 63 and the support 64 are covered with, for example, a cylindrical member 66 made of quartz. A refrigerant flow path (not shown) through which the refrigerant flows is provided inside the support base 64, and the temperature of the work W held by the electrostatic chuck 61 is controlled by controlling the temperature of the refrigerant. To.
 電源部80は、高周波電源81,83と、整合器82,84とを備える。サセプタ63には、高周波電力を供給してプラズマを生成するための高周波電源81が、整合器82を介して電気的に接続されている。高周波電源81は、例えば27~100MHzの周波数の高周波電力を出力するように構成されている。また、高周波電源81の内部インピーダンスと負荷インピーダンスは、整合器82によりマッチングされる。 The power supply unit 80 includes high- frequency power supplies 81 and 83 and matchers 82 and 84. A high-frequency power supply 81 for supplying high-frequency power to generate plasma is electrically connected to the susceptor 63 via a matching unit 82. The high-frequency power supply 81 is configured to output high-frequency power having a frequency of, for example, 27 to 100 MHz. Further, the internal impedance and the load impedance of the high frequency power supply 81 are matched by the matching unit 82.
 また、サセプタ63には、当該サセプタ63に高周波電力を供給してワークWにバイアスを印加することでワークWにイオンを引き込むための高周波電源83が、整合器84を介して電気的に接続されている。高周波電源83は、例えば400kHz~13.56MHzの周波数の高周波電力を出力するように構成されている。整合器84は、整合器82と同様に、高周波電源83の内部インピーダンスと負荷インピーダンスをマッチングさせるものである。これら高周波電源81,83、及び整合器82,84は、制御装置100に接続されており、これらの動作は制御装置100により制御される。 Further, a high frequency power supply 83 for drawing ions into the work W by supplying high frequency power to the susceptor 63 and applying a bias to the work W is electrically connected to the susceptor 63 via a matching unit 84. ing. The high-frequency power supply 83 is configured to output high-frequency power having a frequency of, for example, 400 kHz to 13.56 MHz. The matcher 84, like the matcher 82, matches the internal impedance of the high-frequency power supply 83 with the load impedance. These high-frequency power supplies 81, 83 and matchers 82, 84 are connected to the control device 100, and their operations are controlled by the control device 100.
 載置台60の上方(処理容器68の上部)には、天板部70が配置されている。天板部70は、上部電極73と、ガス拡散室76とを備える。下部電極であるサセプタ63の上方には、上部電極73がサセプタ63に対向して平行に設けられている。上部電極73は、導電性の保持部材71を介して処理容器68の上部に支持されている。したがって、上部電極73は、保持部材71及び処理容器68を介して接地されている。 A top plate 70 is arranged above the mounting table 60 (upper part of the processing container 68). The top plate portion 70 includes an upper electrode 73 and a gas diffusion chamber 76. Above the susceptor 63, which is the lower electrode, the upper electrode 73 is provided in parallel with the susceptor 63 facing the susceptor 63. The upper electrode 73 is supported on the upper part of the processing container 68 via the conductive holding member 71. Therefore, the upper electrode 73 is grounded via the holding member 71 and the processing container 68.
 上部電極73は、静電チャック61に保持されたワークWと対向面を形成する電極板74と、当該電極板74を上方から支持する電極支持体75とにより構成されている。電極板74は、ジュール熱の少ない低抵抗の導電体又は半導体により構成されている。また、電極支持体75は導電体により構成されている。電極支持体75内部の中央部には、略円板状に形成されたガス拡散室76が設けられている。電極板74及び電極支持体75の下部には、処理容器68の内部に処理ガスを供給する複数のガス吐出孔77が、当該電極板74及び電極支持体75の下部を貫通するように形成されている。 The upper electrode 73 is composed of an electrode plate 74 that forms a facing surface with the work W held by the electrostatic chuck 61, and an electrode support 75 that supports the electrode plate 74 from above. The electrode plate 74 is made of a low-resistance conductor or semiconductor having low Joule heat. Further, the electrode support 75 is made of a conductor. A gas diffusion chamber 76 formed in a substantially disk shape is provided in the central portion inside the electrode support 75. At the lower part of the electrode plate 74 and the electrode support 75, a plurality of gas discharge holes 77 for supplying the processing gas to the inside of the processing container 68 are formed so as to penetrate the lower part of the electrode plate 74 and the electrode support 75. ing.
 ガス拡散室76には、ガス供給管78が接続されている。ガス供給管78には、図3に示すようにガス供給源79が接続されており、ガス供給源79は、ガス供給管78を介してガス拡散室76に処理ガスを供給する。ガス拡散室76に供給された処理ガスは、ガス吐出孔77を通じて処理容器68内に導入される。ガス供給源79から供給される処理ガスは、メタン(CH)ガス、ヘキサフルオロ-1,3-ブタジエン(C)ガス、オクタフルオロシクロブタン(C)ガス、トリフルオロメタン(CHF)ガスから選ばれる1種類またはそれ以上の成分が含まれる。そのほか、水素(H)ガス、アルゴン(Ar)ガス、酸素(O)ガスと組み合わせることで処理ガスを構成することができる。具体的には、例えば、CH/Hガス等を用いることができる。上記の処理ガスに含まれる各成分の流量は、適宜変更することができる。上記の処理ガスを処理容器68内に供給し、プラズマ化することにより、ワークWの表面に処理ガスに由来するカーボン系の薄膜からなる下地膜を形成することができる。なお、「カーボン系」の薄膜とは、少なくとも炭素(C)またはフッ化炭素(CF)を含む薄膜をいう。下地膜における炭素(C)またはフッ化炭素(CF)の割合は特に限定されないが、例えば、50%~90%程度とすることができる。 A gas supply pipe 78 is connected to the gas diffusion chamber 76. As shown in FIG. 3, a gas supply source 79 is connected to the gas supply pipe 78, and the gas supply source 79 supplies the processing gas to the gas diffusion chamber 76 via the gas supply pipe 78. The processing gas supplied to the gas diffusion chamber 76 is introduced into the processing container 68 through the gas discharge hole 77. The processing gas supplied from the gas supply source 79 is methane (CH 4 ) gas, hexafluoro-1,3-butadiene (C 4 F 6 ) gas, octafluorocyclobutane (C 4 F 8 ) gas, and trifluoromethane (CHF). 3 ) Contains one or more components selected from gas. In addition, a processing gas can be formed by combining with hydrogen (H 2 ) gas, argon (Ar) gas, and oxygen (O 2) gas. Specifically, for example, CH 4 / H 2 gas or the like can be used. The flow rate of each component contained in the above-mentioned processing gas can be appropriately changed. By supplying the above-mentioned processing gas into the processing container 68 and turning it into plasma, a base film made of a carbon-based thin film derived from the processing gas can be formed on the surface of the work W. The "carbon-based" thin film means a thin film containing at least carbon (C) or fluorocarbon (CF). The ratio of carbon (C) or fluorocarbon (CF) in the base film is not particularly limited, but can be, for example, about 50% to 90%.
 処理容器68の下方には、排気部90が配置されている。排気部90は、排気口91と、排気室92と、排気管93と、排気装置94とを備える。処理容器68の底面には排気口91が設けられている。排気口91の下方には、排気室92が形成されており、当該排気室92には排気管93を介して排気装置94が接続されている。したがって、排気装置94を駆動することにより、排気口91を介して処理容器68内を排気し、処理容器内を所定の真空度まで減圧することができる。 An exhaust unit 90 is arranged below the processing container 68. The exhaust unit 90 includes an exhaust port 91, an exhaust chamber 92, an exhaust pipe 93, and an exhaust device 94. An exhaust port 91 is provided on the bottom surface of the processing container 68. An exhaust chamber 92 is formed below the exhaust port 91, and an exhaust device 94 is connected to the exhaust chamber 92 via an exhaust pipe 93. Therefore, by driving the exhaust device 94, the inside of the processing container 68 can be exhausted through the exhaust port 91, and the inside of the processing container can be depressurized to a predetermined degree of vacuum.
(制御装置)
 制御装置100は、基板処理システム1を部分的又は全体的に制御する。制御装置100は、一つ又は複数の制御用コンピュータにより構成される。例えば制御装置100は、図4に示される回路120を有する。回路120は、一つ又は複数のプロセッサ121と、メモリ122と、ストレージ123と、タイマー124と、入出力ポート125とを有する。ストレージ123は、例えばハードディスク等、コンピュータによって読み取り可能な記憶媒体を有する。記憶媒体は、後述の基板処理手順を制御装置100に実行させるためのプログラムを記憶している。記憶媒体は、不揮発性の半導体メモリ、磁気ディスク及び光ディスク等の取り出し可能な媒体であってもよい。メモリ122は、ストレージ123の記憶媒体からロードしたプログラム及びプロセッサ121による演算結果を一時的に記憶する。プロセッサ121は、メモリ122と協働して上記プログラムを実行することで、上述した各機能モジュールを構成する。タイマー124は、例えば一定周期の基準パルスをカウントすることで経過時間を計測する。入出力ポート125は、プロセッサ121からの指令に従って、制御対象のユニット又は装置との間で電気信号の入出力を行う。
(Control device)
The control device 100 controls the substrate processing system 1 partially or entirely. The control device 100 is composed of one or a plurality of control computers. For example, the control device 100 has a circuit 120 shown in FIG. The circuit 120 has one or more processors 121, a memory 122, a storage 123, a timer 124, and an input / output port 125. The storage 123 has a storage medium that can be read by a computer, such as a hard disk. The storage medium stores a program for causing the control device 100 to execute the substrate processing procedure described later. The storage medium may be a removable medium such as a non-volatile semiconductor memory, a magnetic disk, or an optical disk. The memory 122 temporarily stores the program loaded from the storage medium of the storage 123 and the calculation result by the processor 121. The processor 121 constitutes each of the above-mentioned functional modules by executing the above program in cooperation with the memory 122. The timer 124 measures the elapsed time, for example, by counting a reference pulse having a fixed cycle. The input / output port 125 inputs / outputs an electric signal to / from a controlled unit or device according to a command from the processor 121.
 なお、制御装置100のハードウェア構成は、必ずしもプログラムにより各機能モジュールを構成するものに限られない。例えば制御装置100の各機能モジュールは、専用の論理回路又はこれを集積したASIC(Application Specific Integrated Circuit)により構成されていてもよい。 The hardware configuration of the control device 100 is not necessarily limited to the one that configures each functional module by a program. For example, each functional module of the control device 100 may be configured by a dedicated logic circuit or an ASIC (Application Specific Integrated Circuit) in which the logic circuit is integrated.
[基板処理方法]
 続いて、基板処理方法の一例として、下地膜及びレジスト膜の形成手順を含む基板処理手順について図5を参照しながら説明する。例えば、制御装置100は、以下の手順でレジスト膜の形成を含む基板処理を実行するように基板処理システム1を制御する。
[Board processing method]
Subsequently, as an example of the substrate processing method, the substrate processing procedure including the procedure for forming the base film and the resist film will be described with reference to FIG. For example, the control device 100 controls the substrate processing system 1 so as to execute the substrate processing including the formation of the resist film in the following procedure.
 まず、制御装置100は、キャリアC内に収容されたワークWを、プラズマ処理装置10に搬送するように搬送機構19を制御する。そして、制御装置100は、ワークWの表面に対して、上述の処理ガスを用いたプラズマ処理を施すようにプラズマ処理装置10を制御する(ステップS01)。ステップS01では、まず、プラズマによる下地膜を形成対象となる面が上方となるようにワークWが静電チャック61に載置される。そして、制御装置100は、ガス供給源79から処理容器68内にプラズマ生成用の処理ガスが供給されるように、プラズマ処理装置10を制御する。 First, the control device 100 controls the transfer mechanism 19 so as to transfer the work W housed in the carrier C to the plasma processing device 10. Then, the control device 100 controls the plasma processing device 10 so as to perform the plasma treatment using the above-mentioned processing gas on the surface of the work W (step S01). In step S01, first, the work W is placed on the electrostatic chuck 61 so that the surface on which the plasma-based base film is to be formed faces upward. Then, the control device 100 controls the plasma processing device 10 so that the processing gas for plasma generation is supplied from the gas supply source 79 into the processing container 68.
 その後、制御装置100は、高周波電源81と高周波電源83とにより、下部電極であるサセプタ63に高周波電力が連続的に印加されるように、電源部80を制御する。これにより、上部電極73と静電チャック61との間において、高周波電界が形成される。高周波電界が形成されることで、処理容器68内に処理ガスのプラズマが発生し、ワークW表面に積層される。制御装置100は、所定時間プラズマ処理が施されるように、処理ガスのプラズマを発生させつつ、ワークWを処理容器68内に収容した状態を維持する。プラズマ処理を施す時間は、例えば、30秒~120秒程度(一例として60秒)であってもよい。この処理により、ワークW上には下地膜が形成される。なお、プラズマ処理工程での圧力は、例えば、6.67pa(50mT)以下とすることができる。また、プラズマ処理を行う際のワークWの温度調整等を行ってもよい。下地膜の膜厚は、例えば、1nm~10nm程度とすることができる。本実施形態で説明したようにプラズマによる成膜を行う場合、5nm以下の極薄膜とすることができる。 After that, the control device 100 controls the power supply unit 80 by the high frequency power supply 81 and the high frequency power supply 83 so that the high frequency power is continuously applied to the susceptor 63 which is the lower electrode. As a result, a high frequency electric field is formed between the upper electrode 73 and the electrostatic chuck 61. By forming a high-frequency electric field, plasma of the processing gas is generated in the processing container 68 and is laminated on the surface of the work W. The control device 100 maintains a state in which the work W is housed in the processing container 68 while generating plasma of the processing gas so that the plasma processing is performed for a predetermined time. The time for performing the plasma treatment may be, for example, about 30 seconds to 120 seconds (60 seconds as an example). By this treatment, a base film is formed on the work W. The pressure in the plasma processing step can be, for example, 6.67 pa (50 mT) or less. Further, the temperature of the work W may be adjusted when performing the plasma treatment. The film thickness of the base film can be, for example, about 1 nm to 10 nm. When forming a film by plasma as described in the present embodiment, an ultrathin film having a thickness of 5 nm or less can be formed.
 次に、制御装置100は、プラズマ処理が施されることでワークW上に形成された下地膜を有するワークWを、塗布・現像装置2(キャリアブロック4)に搬送するように搬送機構19を制御する。そして、制御装置100は、キャリアC内のワークWを棚ユニットU10に搬送するように搬送装置A1を制御し、このワークWを処理モジュール11用のセルに配置するように搬送装置A7を制御する。その後、制御装置100は、ワークWを処理モジュール11内の塗布ユニットU1に搬送するように搬送装置A3を制御する。 Next, the control device 100 transfers the transport mechanism 19 so as to transport the work W having the base film formed on the work W by the plasma treatment to the coating / developing device 2 (carrier block 4). Control. Then, the control device 100 controls the transport device A1 so as to transport the work W in the carrier C to the shelf unit U10, and controls the transport device A7 so as to arrange the work W in the cell for the processing module 11. .. After that, the control device 100 controls the transfer device A3 so as to transfer the work W to the coating unit U1 in the processing module 11.
 そして、制御装置100は、ワークWの下地膜上にレジスト膜を塗布するように塗布ユニットU1を制御する(ステップS02)。ステップS02では、例えば制御装置100が、塗布ユニットU1の回転保持部を制御して、ワークWを保持した状態で所定の回転数でワークWを回転させる。この状態で、制御装置100は、ワークWの表面に対してレジスト膜を形成するための処理液を吐出させる。これによりレジスト膜がワークWの下地膜上に形成される。その後、制御装置100は、ワークWを処理モジュール11内の熱処理ユニットU2に搬送するように搬送装置A3を制御する。 Then, the control device 100 controls the coating unit U1 so as to coat the resist film on the base film of the work W (step S02). In step S02, for example, the control device 100 controls the rotation holding portion of the coating unit U1 to rotate the work W at a predetermined rotation speed while holding the work W. In this state, the control device 100 discharges a processing liquid for forming a resist film on the surface of the work W. As a result, a resist film is formed on the base film of the work W. After that, the control device 100 controls the transfer device A3 so as to transfer the work W to the heat treatment unit U2 in the processing module 11.
 次に、制御装置100は、棚ユニットU10のワークWを処理モジュール12内の塗布ユニットU1及び熱処理ユニットU2に搬送するように搬送装置A3を制御する。そして、制御装置100は、ワークWのレジスト膜上に上層膜を形成するように塗布ユニットU1及び熱処理ユニットU2を制御してもよい。その後、制御装置100は、ワークWを棚ユニットU11に搬送するように搬送装置A3を制御する。 Next, the control device 100 controls the transfer device A3 so as to transfer the work W of the shelf unit U10 to the coating unit U1 and the heat treatment unit U2 in the processing module 12. Then, the control device 100 may control the coating unit U1 and the heat treatment unit U2 so as to form an upper layer film on the resist film of the work W. After that, the control device 100 controls the transfer device A3 so as to transfer the work W to the shelf unit U11.
 次に、制御装置100は、棚ユニットU11に収容されたワークWを露光装置3に送り出すように搬送装置A8を制御する。そして、露光装置3において、ワークWに形成されたレジスト膜に露光処理が施される(ステップS03)。その後制御装置100は、露光処理が施されたワークWを露光装置3から受け入れて、当該ワークWを棚ユニットU11における処理モジュール14用のセルに配置するように搬送装置A8を制御する。 Next, the control device 100 controls the transport device A8 so as to send the work W housed in the shelf unit U11 to the exposure device 3. Then, in the exposure apparatus 3, the resist film formed on the work W is exposed (step S03). After that, the control device 100 receives the exposed work W from the exposure device 3 and controls the transfer device A8 so as to arrange the work W in the cell for the processing module 14 in the shelf unit U11.
 次に制御装置100は、棚ユニットU11のワークWを処理モジュール14内の熱処理ユニットU2に搬送するように搬送装置A3を制御する。そして、制御装置100は、ワークWのレジスト膜に現像前の熱処理を施すように熱処理ユニットU2を制御する。次に、制御装置100は、熱処理ユニットU2により現像前の熱処理が施されたワークWのレジスト膜に現像処理(ステップS04)、及び現像処理後の熱処理を施すように塗布ユニットU1及び熱処理ユニットU2を制御する。その後、制御装置100は、ワークWを棚ユニットU10に戻すように搬送装置A3を制御し、このワークWをキャリアC内に戻すように搬送装置A7及び搬送装置A1を制御する。以上で下地膜の形成を含む基板処理手順が完了する。 Next, the control device 100 controls the transfer device A3 so as to transfer the work W of the shelf unit U11 to the heat treatment unit U2 in the processing module 14. Then, the control device 100 controls the heat treatment unit U2 so as to perform the heat treatment before development on the resist film of the work W. Next, the control device 100 develops the resist film of the work W that has been heat-treated before development by the heat treatment unit U2 (step S04), and the coating unit U1 and the heat treatment unit U2 so as to perform the heat treatment after the development treatment. To control. After that, the control device 100 controls the transfer device A3 so as to return the work W to the shelf unit U10, and controls the transfer device A7 and the transfer device A1 so as to return the work W to the carrier C. This completes the substrate processing procedure including the formation of the base film.
[下地膜について]
 本実施形態での基板処理方法では、EUVリソグラフィ用のレジスト膜を形成する前に、下地膜としてカーボン系の薄膜をワークW表面に形成する。これにより、レジスト膜のワークWに対する密着性を高めることができ、レジストパターンの倒れを低減することができる。この点について説明する。
[About the base film]
In the substrate processing method of the present embodiment, a carbon-based thin film is formed on the surface of the work W as a base film before forming a resist film for EUV lithography. As a result, the adhesion of the resist film to the work W can be improved, and the collapse of the resist pattern can be reduced. This point will be described.
 図6は、レジスト、対象基板、現像液、及び、下地膜の表面自由エネルギーについて、縦軸を極性成分(polar)とし、横軸を分散成分(dispersion)として、それぞれの平方根を算出してプロットしたものである。図6に示す各成分の表面自由エネルギーの位置関係は一例であり、当然ながら材料の選択によって変化する。なお、図6に示す対象基板とは、ワークWであり、表面(レジストを形成する面)の材料に基づくプロットとしている。本実施形態では、一例として、シリコン含有反射防止コーティング(SiARC)層が表面に形成された場合を想定している。 In FIG. 6, the square roots of the resist, the target substrate, the developer, and the surface free energy of the base film are calculated and plotted with the vertical axis as the polar component and the horizontal axis as the dispersion component (dispersion). It was done. The positional relationship of the surface free energy of each component shown in FIG. 6 is an example, and naturally changes depending on the selection of the material. The target substrate shown in FIG. 6 is a work W, and is a plot based on the material of the surface (the surface on which the resist is formed). In this embodiment, as an example, it is assumed that a silicon-containing antireflection coating (SiARC) layer is formed on the surface.
 表面自由エネルギーは所謂濡れ性とも関係する指標であり、換言すると表面に形成する膜・パターンとの密着性にも影響する。また、対象基板の表面に形成されたレジスト膜は露光後に現像液による液処理が行われる。現像液をレジストパターンの表面に供給した際のレジストパターンが対象基板で倒れる(剥がれる)ために必要なエネルギーは接着仕事として算出することができる。現像液とレジスト膜との間の表面自由エネルギーの差をγLRとし、現像液と対象基板との間の表面自由エネルギーの差をγSLとし、対象基板とレジスト膜との間の表面自由エネルギーの差をγSRとすると、接着仕事は以下の数式で表すことができる。
接着仕事=γLR+γSL-γSR  …(1)
The surface free energy is an index related to so-called wettability, and in other words, it also affects the adhesion to the film / pattern formed on the surface. Further, the resist film formed on the surface of the target substrate is subjected to liquid treatment with a developing solution after exposure. The energy required for the resist pattern to collapse (peel off) on the target substrate when the developer is supplied to the surface of the resist pattern can be calculated as an adhesive work. The difference in surface free energy between the developing solution and the resist film is defined as γLR, the difference in surface free energy between the developing solution and the target substrate is defined as γSL, and the difference in surface free energy between the target substrate and the resist film is defined as γSL. Is γSR, the bonding work can be expressed by the following formula.
Adhesive work = γLR + γSL-γSR ... (1)
 上述のように接着仕事は、現像液を供給した際にレジスト膜が対象基板から離間する(レジストパターンが倒れる)ために必要なエネルギーである。換言するとレジストパターンの倒れを防ぐためには、接着仕事を大きくすることが望まれるともいえる。したがって、γLR及びγSLが大きく、γSRが小さくなるように、レジストの材料、対象基板の表面の材料、及び、現像液の材料が設計・選択される。特に、レジスト膜の対象基板からの剥がれという観点では、γSRが小さくなるように、レジストの材料及び対象基板の表面の材料を選択することができる。 As described above, the bonding work is the energy required for the resist film to separate from the target substrate (the resist pattern collapses) when the developer is supplied. In other words, it can be said that it is desirable to increase the adhesive work in order to prevent the resist pattern from collapsing. Therefore, the resist material, the surface material of the target substrate, and the developer material are designed and selected so that γLR and γSL are large and γSR is small. In particular, from the viewpoint of peeling of the resist film from the target substrate, the resist material and the surface material of the target substrate can be selected so that the γSR becomes small.
 しかしながら、EUVリソグラフィ用のレジスト材料は互いに異なる種類のレジスト材料であっても、ある程度表面自由エネルギーの傾向が定まっている。また、EUVリソグラフィに適した表面処理が行われている対象基板(例えば、シリコン含有反射防止コーティング(SiARC)層が表面に形成された基板)についても表面自由エネルギーの傾向がある程度定まっている。したがって、これらを組み合わせた場合のγSRには調整の幅が少なく、レジストパターンの倒れ(レジスト膜の剥がれ)を低減するような調整には限界が見られた。 However, even if the resist materials for EUV lithography are different types of resist materials, the tendency of surface free energy is determined to some extent. Further, the tendency of the surface free energy of the target substrate (for example, the substrate on which the silicon-containing antireflection coating (SiARC) layer is formed on the surface) that has been subjected to the surface treatment suitable for EUV lithography is determined to some extent. Therefore, the range of adjustment of γSR when these are combined is small, and there is a limit to the adjustment that reduces the collapse of the resist pattern (peeling of the resist film).
 これに対して、本実施形態における基板処理方法では、対象基板とレジスト膜との間に下地膜を設ける。この結果、対象基板は下地膜と接すると共に、レジストも下地膜と接することになる。このとき、対象基板と下地膜との間、もしくは、下地膜とレジストとの間に剥がれが生じた場合に、レジストが対象基板から剥がれることになる。したがって、下地膜を調整して、現像液に対する対象基板と下地膜との接着仕事、及び、現像液に対するレジストと下地膜との接着仕事を調整することで、現像液に対するレジストの剥がれを抑制することができる。また、現像液等によるレジストの剥がれに対する影響を抑制することで、EUVリソグラフィにおけるレジストパターンの倒れを抑制することができる。 On the other hand, in the substrate processing method of the present embodiment, an undercoat film is provided between the target substrate and the resist film. As a result, the target substrate is in contact with the base film, and the resist is also in contact with the base film. At this time, if peeling occurs between the target substrate and the base film or between the base film and the resist, the resist will be peeled from the target substrate. Therefore, by adjusting the base film and adjusting the bonding work between the target substrate and the base film on the developing solution and the bonding work between the resist and the base film on the developing solution, peeling of the resist on the developing solution is suppressed. be able to. Further, by suppressing the influence of the developing solution on the peeling of the resist, it is possible to suppress the collapse of the resist pattern in EUV lithography.
 図6では、下地膜の表面自由エネルギーの極性成分(polar)及び分散成分(dispersion)を適当に設定したものを示している。しかしながら、上記のように対象基板に対するレジスト膜の剥がれを抑制することに適した表面自由エネルギーを有する下地膜の材料を選択することができる。その結果、現像液に対する対象基板とレジスト膜との接着仕事と比べて、現像液に対する対象基板と下地膜との接着仕事、及び、現像液に対するレジストと下地膜との接着仕事を大きくすることができる。その結果、EUVリソグラフィにおけるレジストパターンの倒れを抑制することができる。なお、EUVリソグラフィ用のレジスト材料の場合、下地膜としてカーボン系の材料を用いた場合に、表面自由エネルギーをレジスト材料と近付けることが可能であることが確認された。また、上記のカーボン系の材料は現像液との表面自由エネルギーの差をある程度確保することが可能であることも確認された。したがって、現像液に対する対象基板と下地膜との接着仕事、及び、現像液に対するレジストと下地膜との接着仕事を大きくすることができる。そのため、対象基板とレジスト膜との間に剥がれが生じることを抑制することができ、EUVリソグラフィによりレジストパターンを形成する際にレジストパターンに倒れが生じることを防ぐことができる。 FIG. 6 shows the surface free energy of the base film in which the polar component (polar) and the dispersion component (dispersion) are appropriately set. However, as described above, it is possible to select a material for the base film having surface free energy suitable for suppressing peeling of the resist film from the target substrate. As a result, the bonding work between the target substrate and the base film on the developer and the bonding work between the resist and the base film on the developer can be increased as compared with the bonding work between the target substrate and the resist film on the developer. it can. As a result, it is possible to suppress the collapse of the resist pattern in EUV lithography. In the case of a resist material for EUV lithography, it was confirmed that when a carbon-based material is used as the base film, the surface free energy can be brought close to that of the resist material. It was also confirmed that the above carbon-based material can secure a certain difference in surface free energy from the developing solution. Therefore, the work of adhering the target substrate and the base film to the developer and the work of adhering the resist to the base film to the developer can be increased. Therefore, it is possible to suppress the occurrence of peeling between the target substrate and the resist film, and it is possible to prevent the resist pattern from being tilted when the resist pattern is formed by EUV lithography.
 また、上記の下地膜をプラズマ処理によって形成する場合、レジストパターンの倒れの抑制効果をさらに高めることができる。プラズマ処理による成膜の場合、塗布処理による成膜と比較して、膜表面の欠陥が少ないと考えられる。特に、膜厚が5nm以下では、塗布処理による膜形成の場合、ピンキングが発生し得る。これに対してプラズマ処理による成膜では、膜形成時のピンキングの発生を抑制することができる。また、成膜条件の調整が容易であり、例えば、対象基板の種類または下地膜の材料等に応じて成膜条件を変更する場合にも、ガス比や真空度等の各種条件の調整を容易に行うことができる。図6で示した各材料の表面自由エネルギーの関係は一例であり、材料の選択等に応じて各材料同士の表面自由エネルギーの関係は変化する。このような場合に、プラズマ処理による成膜であれば、下地膜の組成を容易に調整することができるので、レジストパターンの倒れを防ぐことに適した下地膜の選択が容易となる。 Further, when the above-mentioned base film is formed by plasma treatment, the effect of suppressing the collapse of the resist pattern can be further enhanced. In the case of film formation by plasma treatment, it is considered that there are few defects on the film surface as compared with the film formation by coating treatment. In particular, when the film thickness is 5 nm or less, pinking may occur in the case of film formation by the coating treatment. On the other hand, in the film formation by plasma treatment, the occurrence of pinking at the time of film formation can be suppressed. Further, it is easy to adjust the film forming conditions. For example, even when the film forming conditions are changed according to the type of the target substrate or the material of the base film, it is easy to adjust various conditions such as the gas ratio and the degree of vacuum. Can be done. The relationship of the surface free energy of each material shown in FIG. 6 is an example, and the relationship of the surface free energy of each material changes according to the selection of the material and the like. In such a case, if the film is formed by plasma treatment, the composition of the base film can be easily adjusted, so that it becomes easy to select a base film suitable for preventing the resist pattern from collapsing.
 さらに、プラズマ処理による成膜の場合、上記のように膜厚が5nm以下の下地膜を均一に形成することが可能である。したがって、後段のEUV光を用いたエッチングにおいて、下地膜が設けられていることによるレジストパターンの低背化を防ぐことができる。したがって、エッチングによる加工の精度を高めることもできる。したがって、カーボン系の下地膜を形成する場合には、塗布処理による膜形成よりもプラズマ処理を採用したほうがよりレジスト膜の密着性を高めるという点で優位であると考えられる。ただし、カーボン系の下地膜をEUVリソグラフィ用のレジスト膜と組み合わせて使用することによって、下地膜を設けない場合と比較してレジスト膜の対象基板に対する密着性を高めることが可能である。 Furthermore, in the case of film formation by plasma treatment, it is possible to uniformly form an undercoat film having a film thickness of 5 nm or less as described above. Therefore, in the etching using EUV light in the subsequent stage, it is possible to prevent the resist pattern from being lowered due to the provision of the base film. Therefore, it is possible to improve the accuracy of processing by etching. Therefore, when forming a carbon-based base film, it is considered that the adoption of plasma treatment is more advantageous than the film formation by coating treatment in that the adhesion of the resist film is further enhanced. However, by using a carbon-based base film in combination with a resist film for EUV lithography, it is possible to improve the adhesion of the resist film to the target substrate as compared with the case where the base film is not provided.
 図7は、下地膜の有無によるレジストパターンの倒れの有無の変化について評価を行った結果の例を示している。図7では、対象基板上にEUVレジスト膜によるパターンを所定の高さ(20nm)で形成する場合の露光量とフォーカス量とを変化させたプロセスウィンドウの一例を示している。図7(a)は、対象基板とレジスト膜との間に下地膜を設けなかった場合を示し、図7(b)は、対象基板とレジスト膜との間に下地膜を設けた場合を示している。EUVリソグラフィ用レジスト材料は公知の材料であり、下地膜はカーボン系のCを含む膜である。下地膜の有無以外は同じ条件でレジスト膜の形成・露光・現像処理を行ない、その結果を評価した。 FIG. 7 shows an example of the result of evaluating the change in the presence or absence of the resist pattern collapse depending on the presence or absence of the undercoat film. FIG. 7 shows an example of a process window in which the exposure amount and the focus amount are changed when a pattern made of an EUV resist film is formed on a target substrate at a predetermined height (20 nm). FIG. 7A shows a case where the base film is not provided between the target substrate and the resist film, and FIG. 7B shows a case where the base film is provided between the target substrate and the resist film. ing. The resist material for EUV lithography is a known material, and the base film is a carbon-based C-containing film. A resist film was formed, exposed, and developed under the same conditions except for the presence or absence of a base film, and the results were evaluated.
 図7(a)及び図7(b)に示す領域R1(セルが白抜きとなっている領域)は、レジストパターンに損傷が見られなかった領域である。また、領域R2は、ブリッジが生じた領域であり、領域R3は、パターン倒れが見られた領域であり、領域R4は、パターン自体が潰れた領域である。図7(a)と図7(b)とを比較すると、図7(b)に示すように、下地膜を設けた場合には、露光量を大きくし、実質的にパターン幅が小さくなった領域(特に図7(b)における右側の領域)もパターン倒れ等の損傷が見られず、パターンが良好に形成される。このように、下地膜を設けることで、レジストパターンの倒れ等を抑制することができた。 The region R1 (the region where the cells are outlined) shown in FIGS. 7 (a) and 7 (b) is a region in which no damage was observed in the resist pattern. Further, the region R2 is a region where a bridge is generated, the region R3 is a region where a pattern collapse is observed, and the region R4 is a region where the pattern itself is crushed. Comparing FIG. 7A and FIG. 7B, as shown in FIG. 7B, when the undercoat was provided, the exposure amount was increased and the pattern width was substantially reduced. No damage such as pattern collapse is observed in the region (particularly the region on the right side in FIG. 7B), and the pattern is formed well. By providing the undercoat film in this way, it was possible to prevent the resist pattern from collapsing.
 なお、上記のようにEUVリソグラフィ用レジスト膜の下に下地膜を設けた場合には、下地膜上に形成されるレジストパターンのLWR(Line Width Roughness)も改善されることが確認された。LWRはレジストの線幅のばらつきに関係する値であり、微細化されたパターンを有するワークWではその性能に直結する可能性がある。LWRが改善する理由として下地膜を設けることで対象基板の表面よりも表面の粗さが低減され、レジストパターンを形成する表面の凹凸に由来する線幅の乱れを抑制することができると考えられる。図8(a)及び図8(b)はレジストパターンの下面の粗さに由来するレジストパターンの線幅の乱れを模式的に示した図である。図8(a)はレジストパターンPが下層のワークWの表面の影響を受けている状態を示している。一方、図8(b)は、ワークWの表面に下地膜Gを設けた結果、表面の粗さが抑制されて、レジストパターンPの側壁がより平坦化されている。このように、下地膜を形成することにより、下層の表面の粗さに応じたレジストパターンPの線幅のばらつきを抑制することができると考えられる。なお、炭素(C)を含む薄膜のほうが、フッ化炭素(CF)を含む薄膜よりもLWRの改善効果を高めることが可能である。 It was confirmed that when the undercoat film is provided under the EUV lithography resist film as described above, the LWR (Line Width Roughness) of the resist pattern formed on the undercoat film is also improved. The LWR is a value related to the variation in the line width of the resist, and may be directly related to the performance of the work W having a miniaturized pattern. It is considered that the reason why the LWR is improved is that by providing the base film, the roughness of the surface is reduced as compared with the surface of the target substrate, and the disturbance of the line width due to the unevenness of the surface forming the resist pattern can be suppressed. .. 8 (a) and 8 (b) are diagrams schematically showing the disorder of the line width of the resist pattern due to the roughness of the lower surface of the resist pattern. FIG. 8A shows a state in which the resist pattern P is affected by the surface of the lower work W. On the other hand, in FIG. 8B, as a result of providing the base film G on the surface of the work W, the roughness of the surface is suppressed and the side wall of the resist pattern P is more flattened. By forming the base film in this way, it is considered that the variation in the line width of the resist pattern P according to the roughness of the surface of the lower layer can be suppressed. The thin film containing carbon (C) can enhance the effect of improving LWR as compared with the thin film containing fluorocarbon (CF).
[薬液塗布による下地膜形成について]
 上記では、プラズマ処理装置10によって下地膜を形成する場合について説明したが、下地膜の形成を薬液の塗布による塗布処理で形成する場合、塗布・現像装置2において塗布処理を行う構成としてもよい。塗布処理によって下地膜を形成する場合、下地膜用の薬液(下地膜用処理液)を供給した後に、後述の酸分解処理を行うことによって、EUVリソグラフィにおけるレジストパターンの倒れを防ぐことを実現し得る。下地膜用処理液に用いられるカーボン系の下地膜の材料(主成分)とは、例えば、SiC前駆体ポリマー(ポリカルボシラン)が挙げられる。また、カーボン系の下地膜の材料(主成分)は、SiOC前駆体ポリマーやSiOCN前駆体ポリマーであってもよい。なお、ポリカルボシランに対して、SiC膜成膜用の条件とは異なる条件での処理を適用することによってSiOC膜を形成することで、ポリカルボシランをSiOC前駆体ポリマーとして使用してもよい。
[About base film formation by applying chemicals]
In the above, the case where the base film is formed by the plasma processing device 10 has been described, but when the base film is formed by the coating process by applying the chemical solution, the coating / developing device 2 may perform the coating process. When forming a base film by coating treatment, it is possible to prevent the resist pattern from collapsing in EUV lithography by performing the acid decomposition treatment described later after supplying the chemical solution for the base film (treatment liquid for the base film). obtain. Examples of the carbon-based base film material (main component) used in the base film treatment liquid include a SiC precursor polymer (polycarbosilane). Further, the material (main component) of the carbon-based base film may be a SiOC precursor polymer or a SiOCN precursor polymer. In addition, polycarbosilane may be used as a SiOC precursor polymer by forming a SiOC film by applying a treatment to the polycarbosilane under conditions different from the conditions for forming a SiC film. ..
 図9では、下地膜用処理液を塗布して下地膜を形成する際の手順を示している。図9では、図5に示すステップS01(下地膜の形成)に含まれる処理の手順を示している。 FIG. 9 shows the procedure for applying the treatment liquid for the base film to form the base film. FIG. 9 shows a procedure of the process included in step S01 (formation of the base film) shown in FIG.
 まず、塗布・現像装置2の制御装置100では、後述の酸分解処理における処理条件を決定する(ステップS11)。酸分解処理についての詳細は後述するが、酸分解処理における処理条件を変更することによって、下地膜の上に形成されるレジストパターンの特性が変化し得る。したがって、レジストパターンの特性が所望の条件となるように、酸分解処理における処理条件を決定する。また、酸分解処理の条件を決定する際には、例えば、既に処理が終わった後のワークWの表面状態(例えば、レジストパターンの形状等)、露光時の感度等を考慮してもよい。なお、このステップは、酸分解処理を行う前であればどのタイミングで行ってもよい。 First, the control device 100 of the coating / developing device 2 determines the processing conditions in the acid decomposition treatment described later (step S11). The details of the acid decomposition treatment will be described later, but the characteristics of the resist pattern formed on the base film can be changed by changing the treatment conditions in the acid decomposition treatment. Therefore, the treatment conditions in the acid decomposition treatment are determined so that the characteristics of the resist pattern become the desired conditions. Further, when determining the conditions for the acid decomposition treatment, for example, the surface state of the work W after the treatment has already been completed (for example, the shape of the resist pattern, etc.), the sensitivity at the time of exposure, and the like may be taken into consideration. In addition, this step may be performed at any timing as long as it is before the acid decomposition treatment is performed.
 次に、塗布・現像装置2では、ワークWを処理モジュール11内の塗布ユニットU1(下地膜形成用の塗布ユニット)に搬送し、ワークWの表面に下地膜用処理液を供給する(ステップS12)。下地膜用処理液は、例えば、カーボン系の下地膜を形成する主成分が、溶媒中に分散した状態となっている。したがって、下地膜用処理液をワークW上に供給した直後は、ワークWの表面には溶媒が残存する状態となる。 Next, in the coating / developing apparatus 2, the work W is conveyed to the coating unit U1 (coating unit for forming the base film) in the processing module 11 and the treatment liquid for the base film is supplied to the surface of the work W (step S12). ). The base film treatment liquid is, for example, in a state in which the main component forming the carbon-based base film is dispersed in the solvent. Therefore, immediately after the base film treatment liquid is supplied onto the work W, the solvent remains on the surface of the work W.
 次に、塗布・現像装置2では、ワークWを処理モジュール11内の熱処理ユニットU2に搬送し、ワークWに対する予備熱処理を行う(ステップS13)。予備熱処理とは、後述の酸分解処理の前に、ワークWをある程度加熱する処理である。一例として、予備熱処理は、大気雰囲気中で180℃~350℃の環境にワークWを30秒~120秒程度配置することで行われる。なお、予備熱処理の条件は処理液の種類・塗布条件等によって変更され得る。 Next, in the coating / developing apparatus 2, the work W is conveyed to the heat treatment unit U2 in the processing module 11 and the work W is preliminarily heat-treated (step S13). The preheat treatment is a process of heating the work W to some extent before the acid decomposition treatment described later. As an example, the preliminary heat treatment is performed by arranging the work W in an environment of 180 ° C. to 350 ° C. for about 30 seconds to 120 seconds in an air atmosphere. The conditions of the preliminary heat treatment can be changed depending on the type of treatment liquid, coating conditions, and the like.
 次に、塗布・現像装置2では、ワークWを処理モジュール11内の所定のユニットにおいて、ワークWに対する酸分解処理を行う(ステップS14)。酸分解処理とは、下地膜用処理液に含まれる酸を分解するための処理である。 Next, in the coating / developing apparatus 2, the work W is subjected to acid decomposition treatment on the work W in a predetermined unit in the processing module 11 (step S14). The acid decomposition treatment is a treatment for decomposing the acid contained in the treatment liquid for the base film.
 下地膜用処理液の溶媒中には、架橋反応の触媒として、光酸発生剤(Photo Acid Generator:PAG)またはこれに類する材料が含まれ得る。光酸発生剤は、分解によって酸を発生する成分である。図10(a)に示すように、下地膜用処理液G0がワークWに供給された状態では、光酸発生剤の少なくとも一部が分解し酸を発生している。そのため、ワークW上の下地膜用処理液G0中には酸acが滞留した状態となる。 The solvent of the treatment liquid for the base film may contain a photoacid generator (PAG) or a similar material as a catalyst for the cross-linking reaction. A photoacid generator is a component that generates an acid by decomposition. As shown in FIG. 10A, when the undercoat treatment liquid G0 is supplied to the work W, at least a part of the photoacid generator is decomposed to generate an acid. Therefore, the acid ac stays in the base film treatment liquid G0 on the work W.
 一方、レジストパターンPを形成するためにレジスト液P0が化学増幅型レジスト材料である場合、ワークWに供給されるレジスト液P0には酸acとクエンチャqとが含まれ得る。ワークW上でのレジスト液P0では、加熱に伴う酸触媒反応により、レジスト液P0に含まれるベース成分の現像液への溶解性が変化し、現像(レジストパターンPの形成)が可能となる。クエンチャは周囲の酸を捕捉する機能を有する。クエンチャとしては、例えば、光分解型クエンチャが用いられる。この場合、露光された領域ではクエンチャが分解される一方、露光されない領域ではクエンチャが残存する。例えば、図10(b)では、光Lが照射されず、クエンチャqが残存する領域では酸触媒反応が進行せずレジストパターンPが形成される一方、クエンチャqが光Lによって分解された領域では、酸acによる酸触媒反応が進行することを示している。 On the other hand, when the resist liquid P0 is a chemically amplified resist material for forming the resist pattern P, the resist liquid P0 supplied to the work W may contain acid ac and quencher q. In the resist liquid P0 on the work W, the solubility of the base component contained in the resist liquid P0 in the developing liquid changes due to the acid catalytic reaction accompanying heating, and development (formation of the resist pattern P) becomes possible. The quencher has the function of capturing the surrounding acid. As the quencher, for example, a photodegradable quencher is used. In this case, the quencher is decomposed in the exposed region, while the quencher remains in the unexposed region. For example, in FIG. 10B, the acid catalyst reaction does not proceed in the region where the light L is not irradiated and the quencher q remains, and the resist pattern P is formed, while the region where the quencher q is decomposed by the light L is formed. , It is shown that the acid-catalyzed reaction by the acid ac proceeds.
 ここで、レジスト液P0の下方に設けられている下地膜用処理液G0に酸acが含まれている場合、クエンチャqの機能を下層の酸acが失活させる場合がある。その結果、レジスト液P0の下方(下地膜側)では、クエンチャqが酸acの拡散を抑制しきれなくなる場合がある。その場合、図10(c)に示すように、レジストパターンPの幅が下方(下地膜G側)が上方と比べて小さくなり、パターン倒れが発生する可能性がある。 Here, when the acid ac is contained in the base film treatment liquid G0 provided below the resist liquid P0, the acid ac in the lower layer may inactivate the function of the quencher q. As a result, below the resist liquid P0 (undercoat film side), quencher q may not be able to completely suppress the diffusion of acid ac. In that case, as shown in FIG. 10 (c), the width of the resist pattern P on the lower side (undercoat film G side) is smaller than that on the upper side, and the pattern may collapse.
 EUVリソグラフィにおける用いられるレジストパターンPは、線幅に対するパターン高さを示すアスペクト比が、1より大きく3未満となるように調整され得る。このようなレジストパターンPでは、パターン倒れに対する懸念が強くなり得る。 The resist pattern P used in EUV lithography can be adjusted so that the aspect ratio indicating the pattern height with respect to the line width is greater than 1 and less than 3. With such a resist pattern P, there may be a strong concern about pattern collapse.
 酸acが下地膜用処理液G0中に残存している場合、下地膜用処理液G0中の酸acも酸触媒反応に寄与するため、レジストの感度が上昇し得る。一方、酸acが残存していると、レジストパターンPの下方の幅が小さくなる傾向があり、パターン倒れのリスクが向上し得る。そこで、レジスト液P0をワークWに対して供給する前に、下地膜用処理液G0に残存する酸を低減させることを目的として酸分解処理が行われ得る。 When the acid ac remains in the base film treatment liquid G0, the acid ac in the base film treatment liquid G0 also contributes to the acid catalytic reaction, so that the sensitivity of the resist can be increased. On the other hand, when the acid ac remains, the width below the resist pattern P tends to be small, and the risk of pattern collapse can be improved. Therefore, before supplying the resist liquid P0 to the work W, an acid decomposition treatment may be performed for the purpose of reducing the acid remaining in the base film treatment liquid G0.
 酸分解処理は、例えば、UV光の照射によって行われてもよい。UV光をワークW表面の下地膜用処理液G0に対して照射することで、処理液中の酸を分解する。一例として、波長200nm以下の波長範囲に含まれる光を下地膜用処理液G0に対して照射することで、酸を分解することが可能である。照射量は、UV光の波長等によっても変動し得るが、例えば、50mJ/cm~1000mJ/cmの範囲で調整することができる。なお、UV光の照射条件としては、例えば、波長172nmのUV光を照射する場合、照射量を150mJ/cmとすることで、酸の分解を促進することができる。 The acid decomposition treatment may be performed, for example, by irradiation with UV light. By irradiating the treatment liquid G0 for the base film on the surface of the work W with UV light, the acid in the treatment liquid is decomposed. As an example, the acid can be decomposed by irradiating the base film treatment liquid G0 with light contained in a wavelength range of 200 nm or less. The irradiation amount may vary depending on the wavelength of UV light and the like, but can be adjusted in the range of , for example, 50 mJ / cm 2 to 1000 mJ / cm 2. As the irradiation condition of UV light, for example, when irradiating UV light having a wavelength of 172 nm, the decomposition of acid can be promoted by setting the irradiation amount to 150 mJ / cm 2.
 また、酸分解処理は、例えば、加熱処理によって行われてもよい。ワークW表面の下地膜用処理液G0を加熱することで、処理液中の酸を分解する。一例として、250℃~400℃の条件で、60秒~180秒程度加熱を行うことで、酸を分解することが可能である。なお、酸分解処理における加熱温度は、予備熱処理時の加熱温度よりも高く設定され得る。 Further, the acid decomposition treatment may be performed by, for example, a heat treatment. By heating the base film treatment liquid G0 on the surface of the work W, the acid in the treatment liquid is decomposed. As an example, the acid can be decomposed by heating at 250 ° C. to 400 ° C. for about 60 seconds to 180 seconds. The heating temperature in the acid decomposition treatment can be set higher than the heating temperature in the preheat treatment.
 UV光の照射および加熱処理のいずれであっても、酸分解処理は低酸素雰囲気において行われ得る。一例として、酸分解処理を行うユニットの内部を窒素に置換した状態で処理を行ってもよい。酸分解処理を低酸素雰囲気下で行うことによって、下地膜の)が防がれる。 The acid decomposition treatment can be performed in a low oxygen atmosphere regardless of whether it is irradiated with UV light or heat-treated. As an example, the treatment may be carried out in a state where the inside of the unit to be subjected to the acid decomposition treatment is replaced with nitrogen. By performing the acid decomposition treatment in a low oxygen atmosphere, (of the base film) can be prevented.
 このように、下地膜用処理液を用いて下地膜を形成する場合、酸分解処理を行うことによって、パターン倒れを効果的に抑制することができる。なお、UV光の照射または熱処理を行うことに代えて、プラズマガス(Hガス)によって酸分解処理を行ってもよい。 As described above, when the undercoat film is formed by using the undercoat film treatment liquid, the pattern collapse can be effectively suppressed by performing the acid decomposition treatment. Instead of carrying out the irradiation or heat treatment of UV light, it may be subjected to acid decomposition treatment by the plasma gas (H 2 gas).
(酸分解処理による効果)
 図11~図13を参照しながら、酸分解処理を行うことによる効果について説明する。図11~図13は、対象基板上にEUVレジスト膜によるパターンを所定の高さ(50nm)で形成する場合の露光量(縦方向)とフォーカス量(横方向)とを変化させたプロセスウィンドウの一例を示している。図11は、酸分解処理を行わなかった場合を示し、図12は、酸分解処理として、UV光の照射(波長172nmのUV光、照射量150mJ/cm、窒素雰囲気)を行った場合を示している。さらに、図13は、酸分解処理として、熱処理(温度350度、180秒間、窒素雰囲気)を行った場合を示している。EUVリソグラフィ用レジスト材料は公知の材料であり、下地膜はカーボン系のCを含む膜であり、同じ種類の下地膜用処理液を供給した。また、いずれの条件でも予備熱処理(温度220度、60秒間、大気雰囲気)を行っている。すなわち、酸分解処理の有無以外は同じ条件でレジスト膜の形成・露光・現像処理を行ない、その結果を評価した。
(Effect of acid decomposition treatment)
The effect of performing the acid decomposition treatment will be described with reference to FIGS. 11 to 13. 11 to 13 show a process window in which the exposure amount (vertical direction) and the focus amount (horizontal direction) when a pattern of EUV resist film is formed on a target substrate at a predetermined height (50 nm) are changed. An example is shown. FIG. 11 shows a case where the acid decomposition treatment was not performed, and FIG. 12 shows a case where UV light irradiation (UV light having a wavelength of 172 nm, irradiation amount 150 mJ / cm 2 , nitrogen atmosphere) was performed as the acid decomposition treatment. Shown. Further, FIG. 13 shows a case where heat treatment (temperature 350 degrees, 180 seconds, nitrogen atmosphere) is performed as the acid decomposition treatment. The resist material for EUV lithography is a known material, and the base film is a film containing carbon-based C, and the same type of treatment liquid for the base film was supplied. Further, under any condition, a preliminary heat treatment (temperature 220 degrees, 60 seconds, air atmosphere) is performed. That is, the resist film was formed, exposed, and developed under the same conditions except for the presence or absence of the acid decomposition treatment, and the results were evaluated.
 図11~図13に示す領域R1(セルが白抜きとなっている領域)は、レジストパターンに損傷が見られなかった領域である。また、領域R2は、ブリッジが生じた領域であり、領域R2’は、ブリッジが少し生じた領域である。さらに、領域R3は、パターンつぶれ(ピンチング)が見られた領域であり、領域R4は、パターン自体が潰れた領域である。図11と、図12,13とを比較すると、酸分解処理を行うことで、露光量を大きくした条件においてのパターン倒れ等の損傷が少なくなった。その結果、実質的にレジストパターンの損傷が見られなかった領域R1が広がり、パターンが良好に形成されることが確認された。このように、下地膜用処理液を用いる場合、酸分解処理を行うことで、レジストパターンの倒れ等を抑制することが確認された。 The region R1 (the region where the cells are outlined) shown in FIGS. 11 to 13 is a region where no damage was observed in the resist pattern. Further, the region R2 is a region where a bridge is generated, and the region R2'is a region where a bridge is slightly generated. Further, the region R3 is a region where pattern collapse (pinching) is observed, and the region R4 is a region where the pattern itself is collapsed. Comparing FIG. 11 with FIGS. 12 and 13, the acid decomposition treatment reduced damage such as pattern collapse under the condition of increasing the exposure amount. As a result, it was confirmed that the region R1 in which the resist pattern was not substantially damaged was widened and the pattern was formed well. As described above, it was confirmed that when the treatment liquid for the base film is used, the resist pattern is suppressed from collapsing by performing the acid decomposition treatment.
 なお、図12と図13とを比較した場合、領域R1の大きさ、パターンの損傷(R2~R4領域)の発生状況は同程度であった。また、露光量も同程度であることが確認された。したがって、酸分解処理の手法を関係なく同様の結果が得られることが確認された。 When FIG. 12 and FIG. 13 were compared, the size of the region R1 and the occurrence of pattern damage (R2 to R4 regions) were similar. It was also confirmed that the exposure amount was about the same. Therefore, it was confirmed that the same result can be obtained regardless of the method of acid decomposition treatment.
(酸分解処理の処理条件とレジストパターン形成時の特性との関係について)
 図14を参照しながら、酸分解処理を行うことによって下地膜上でレジストパターンを形成する場合のレジストの特性がどのように変化するかについて説明する。図14では、酸分解処理を行わない場合(X1)と、酸分解処理を行う場合(X2)について示している。また、上記のそれぞれについて、レジストパターンの形成に必要な光量(実効Dose:mJ/cm)と、作成可能なパターンの線幅(CD:nm)との関係がどのような関係となるかを模式的に示している。直線X1,X2を示している領域は、レジストパターンを適切に形成することができる範囲(条件)を示している。図14のd1,d2に示すように、直線X1と比べて直線X2のほうが同一の線幅のパターンを作成する際の光量が多くなる。すなわち、酸分解処理を行う場合は、レジストの露光に対する感度が低下する。一方、図14のc1,c2に示すように、直線X1と比べて直線X2のほうがパターン倒れを抑制できるため、作成可能な線幅を小さくすることができる。
(Relationship between the treatment conditions of acid decomposition treatment and the characteristics at the time of resist pattern formation)
With reference to FIG. 14, how the characteristics of the resist when the resist pattern is formed on the base film is changed by performing the acid decomposition treatment will be described. FIG. 14 shows a case where the acid decomposition treatment is not performed (X1) and a case where the acid decomposition treatment is performed (X2). Also, for each of the above, what is the relationship between the amount of light required to form the resist pattern (effective Dose: mJ / cm 2 ) and the line width (CD: nm) of the pattern that can be created? It is shown schematically. The regions shown by the straight lines X1 and X2 indicate the range (condition) in which the resist pattern can be appropriately formed. As shown in d1 and d2 of FIG. 14, the amount of light when creating a pattern having the same line width is larger in the straight line X2 than in the straight line X1. That is, when the acid decomposition treatment is performed, the sensitivity of the resist to exposure is lowered. On the other hand, as shown in c1 and c2 of FIG. 14, since the straight line X2 can suppress the pattern collapse as compared with the straight line X1, the line width that can be created can be reduced.
 図14に示す結果によれば、酸分解処理を行うことによって、レジストパターンを形成する際の感度が低くなるが、パターン倒れが抑制される。換言すると、酸分解処理を行わない場合は、レジストパターンを形成する際の感度(露光感度)が高くなるが、パターン倒れの抑制効果(パターンの安定性)は高いとは言えない。また、図14に示す直線X2は、酸の分解が十分に進む条件で酸化分解処理を行った場合の結果を模式的に示している。このように、酸分解処理の処理条件を調整することで、露光感度とパターンの安定性といったレジストパターンの特性を直線X1と直線X2との間で調整することが可能である。つまり、露光感度とパターンの安定性を指標として、酸分解処理の条件を調整することが可能であるといえる。したがって、図10のステップS01で示したように、酸分解処理の処理条件の調整を行うことで、レジストパターンを形成する際の条件調整を行うことができる。例えば、露光量を抑えた条件でレジストパターン形成を行いたい場合には、酸分解処理を行う場合であっても、酸の分解がある程度抑制される条件とすることで、感度を高くすることができる。一方、パターン倒れが発生しやすい形状のパターンを形成する場合には、酸の分解が十分に進行するような条件で酸分解処理を行う。このように、酸分解処理を利用して、レジストパターン形成時の条件を調整することが可能となる。 According to the result shown in FIG. 14, by performing the acid decomposition treatment, the sensitivity at the time of forming the resist pattern is lowered, but the pattern collapse is suppressed. In other words, when the acid decomposition treatment is not performed, the sensitivity (exposure sensitivity) when forming the resist pattern is high, but the effect of suppressing pattern collapse (pattern stability) is not high. Further, the straight line X2 shown in FIG. 14 schematically shows the result when the oxidative decomposition treatment is performed under the condition that the decomposition of the acid proceeds sufficiently. By adjusting the processing conditions of the acid decomposition treatment in this way, it is possible to adjust the characteristics of the resist pattern such as the exposure sensitivity and the stability of the pattern between the straight line X1 and the straight line X2. That is, it can be said that the conditions of the acid decomposition treatment can be adjusted by using the exposure sensitivity and the stability of the pattern as indexes. Therefore, as shown in step S01 of FIG. 10, by adjusting the processing conditions of the acid decomposition treatment, the conditions for forming the resist pattern can be adjusted. For example, when it is desired to form a resist pattern under a condition in which the amount of exposure is suppressed, the sensitivity can be increased by setting a condition in which the decomposition of acid is suppressed to some extent even when the acid decomposition treatment is performed. it can. On the other hand, in the case of forming a pattern having a shape in which pattern collapse is likely to occur, the acid decomposition treatment is performed under conditions under which the acid decomposition proceeds sufficiently. In this way, it is possible to adjust the conditions at the time of forming the resist pattern by using the acid decomposition treatment.
[作用]
 上記の基板処理システム1及び基板処理方法によれば、EUV光に対して感光性を有するレジスト液をカーボン系の下地膜の上に供給することで、レジスト膜となる塗布膜が形成される。カーボン系の下地膜が基板の表面に設けられていることで、下地膜を介してレジスト膜の基板に対する密着性が高くなるため、EUVリソグラフィにおけるレジストパターンの倒れを防ぐことが可能となる。
[Action]
According to the substrate processing system 1 and the substrate processing method described above, a coating film to be a resist film is formed by supplying a resist solution having photosensitivity to EUV light onto a carbon-based base film. Since the carbon-based base film is provided on the surface of the substrate, the adhesion of the resist film to the substrate is improved via the base film, so that it is possible to prevent the resist pattern from collapsing in EUV lithography.
 近年は、レジストパターンの微細化に伴い、レジストパターンの倒れに対する懸念が高まっている。レジストパターンの倒れは、現像液を基板に供給して行う現像処理において発生することが多いため、現像処理でのレジストパターンの倒れを防ぐための検討が進められている場合が多かった。一方、レジスト液の塗布膜自体の基板に対する密着性を高めることについてはあまり着目されていなかった。これに対して、上記の基板処理システム1及び基板処理方法によれば、基板の表面とEUV光に対して感光性を有するEUVリソグラフィ用のレジスト液の塗布膜との間に、カーボン系の下地膜を設けている。このため、レジストパターンの基板に対する密着性が高められ、これにより、レジストパターンの倒れが抑制される。 In recent years, with the miniaturization of resist patterns, there has been increasing concern about the collapse of resist patterns. Since the resist pattern collapse often occurs in the development process performed by supplying the developing solution to the substrate, studies have been made in many cases to prevent the resist pattern from collapsing in the development process. On the other hand, much attention has not been paid to improving the adhesion of the coating film itself of the resist liquid to the substrate. On the other hand, according to the substrate processing system 1 and the substrate processing method described above, between the surface of the substrate and the coating film of the resist solution for EUV lithography having photosensitivity to EUV light, the bottom of the carbon system The ground film is provided. Therefore, the adhesion of the resist pattern to the substrate is enhanced, and thus the collapse of the resist pattern is suppressed.
 また、基板処理システム1を用いて説明した方法のように、プラズマ処理によって下地膜を形成する場合、下地膜をより薄く且つ均一に形成することができる。したがって、下地膜を設けることによる基板に対するレジスト膜の密着性がさらに高められるため、レジストパターンの倒れを効果的に防ぐことができる。なお、プラズマ処理とは異なる方法(例えば、塗布処理等)によってカーボン系の下地膜を形成した場合であっても、上述のように表面自由エネルギーの関係に基づいて、レジスト膜と基板(ワークW)との密着性を高めることができる。 Further, when the base film is formed by plasma treatment as in the method described using the substrate processing system 1, the base film can be formed thinner and more uniformly. Therefore, since the adhesion of the resist film to the substrate is further enhanced by providing the base film, it is possible to effectively prevent the resist pattern from collapsing. Even when the carbon-based base film is formed by a method different from the plasma treatment (for example, coating treatment), the resist film and the substrate (work W) are based on the relationship of surface free energy as described above. ) Can be improved.
 また、プラズマ処理では、メタン(CH)ガス、ヘキサフルオロ-1,3-ブタジエン(C)ガス、オクタフルオロシクロブタン(C)ガス、トリフルオロメタン(CHF)ガスから選ばれる1種類またはそれ以上の成分を含む処理ガスをプラズマ化する態様とすることができる。これらの成分を含む処理ガスを用いてプラズマ処理によって下地膜を形成することで、カーボン系の下地膜を形成することができ、レジストパターンの倒れを効果的に防ぐことができる。 In plasma treatment, methane (CH 4 ) gas, hexafluoro-1,3-butadiene (C 4 F 6 ) gas, octafluorocyclobutane (C 4 F 8 ) gas, and trifluoromethane (CHF 3 ) gas are selected. The mode may be such that a processing gas containing one or more components is turned into plasma. By forming the base film by plasma treatment using a treatment gas containing these components, a carbon-based base film can be formed, and the resist pattern can be effectively prevented from collapsing.
 また、上記実施形態で説明した方法は、塗布膜に対してEUV光を照射して、塗布膜を露光することと、塗布膜の露光後に、前記基板に対して現像液を供給することと、をさらに含む場合に効果的である。レジスト液からなる塗布膜をEUV光によって露光した後に、基板に対して現像液を供給する場合、現像液によるレジストの剥がれも生じ得る。これに対して、上記のように、下地膜上に塗布膜を形成する構成とすることで、現像液に対する耐性も高められ、より良好なレジストパターンを得ることができる。 Further, the methods described in the above embodiments include irradiating the coating film with EUV light to expose the coating film, and supplying a developing solution to the substrate after the coating film is exposed. It is effective when further containing. When the developer is supplied to the substrate after the coating film made of the resist solution is exposed to EUV light, the resist may be peeled off by the developer. On the other hand, by forming the coating film on the undercoat film as described above, the resistance to the developing solution is enhanced and a better resist pattern can be obtained.
 また、下地膜を形成する際に、溶剤が残存した状態の下地膜用処理液を供給する場合、特に溶剤に含まれる酸が、下地膜の上部に形成されるレジストパターンの形状に影響を与える可能性がある。この場合、上記実施形態で説明したように、下地膜用処理液に対して酸分解処理を行うことで、その後に形成するレジストパターンの倒れを防ぐことができる。 Further, when the treatment liquid for the base film in which the solvent remains is supplied when the base film is formed, the acid contained in the solvent affects the shape of the resist pattern formed on the upper part of the base film. there is a possibility. In this case, as described in the above embodiment, by performing the acid decomposition treatment on the treatment liquid for the base film, it is possible to prevent the resist pattern formed thereafter from collapsing.
 また、下地膜用処理液を用いる場合、酸分解処理を低酸素雰囲気で行うことにより、下地膜の酸化が防がれる。したがって、下地膜を介したレジスト膜の基板に対する密着性が高くなるため、レジストパターンの倒れを防ぐことができる。 In addition, when a treatment liquid for a base film is used, oxidation of the base film can be prevented by performing the acid decomposition treatment in a low oxygen atmosphere. Therefore, since the adhesion of the resist film to the substrate via the base film is improved, it is possible to prevent the resist pattern from collapsing.
 酸分解処理を行う前に、基板の表面に供給した下地膜用処理液に対して、予備熱処理を行ってもよい。この場合、酸分解処理によって基板上の下地膜用処理液に応力等が発生することを防ぐことができ、下地膜上のレジストパターンに対して影響が発生することが防がれる。 Prior to the acid decomposition treatment, the base film treatment liquid supplied to the surface of the substrate may be subjected to a preliminary heat treatment. In this case, it is possible to prevent stress or the like from being generated in the treatment liquid for the base film on the substrate by the acid decomposition treatment, and it is possible to prevent the resist pattern on the base film from being affected.
 さらに、酸分解処理における処理条件を、処理後の基板の表面状態に基づいて調整してもよい。上記実施形態で説明したように、下地膜用処理液における酸分解処理の処理条件を変更することで、レジストパターンを形成する際の条件・特性が変化し得る。したがって、処理後の基板の表面状態(すなわち、レジストパターンの状態)を考慮して処理条件を調整することによって、所望の条件の下地膜を形成することができる。 Further, the treatment conditions in the acid decomposition treatment may be adjusted based on the surface condition of the substrate after the treatment. As described in the above embodiment, by changing the treatment conditions for the acid decomposition treatment in the treatment liquid for the undercoat film, the conditions and characteristics for forming the resist pattern can be changed. Therefore, by adjusting the treatment conditions in consideration of the surface state of the substrate after the treatment (that is, the state of the resist pattern), it is possible to form a base film under desired conditions.
[変形例]
 以上、種々の例示的実施形態について説明してきたが、上述した例示的実施形態に限定されることなく、様々な省略、置換、及び変更がなされてもよい。また、異なる実施形態における要素を組み合わせて他の実施形態を形成することが可能である。
[Modification example]
Although various exemplary embodiments have been described above, various omissions, substitutions, and changes may be made without being limited to the above-mentioned exemplary embodiments. It is also possible to combine elements in different embodiments to form other embodiments.
 基板処理システムの具体的な構成は、以上に例示した基板処理システム1の構成に限られない。基板処理システムは、下地膜の形成、レジスト膜の形成、露光及び現像を行うことが可能なユニット(装置)を備えていればどのようなものであってもよい。例えば、プラズマ処理装置10は、塗布・現像装置2内に設けられてもよい。具体的には、プラズマ処理装置10が、処理モジュール11内又はインタフェースブロック6内に設けられてもよい。 The specific configuration of the substrate processing system is not limited to the configuration of the substrate processing system 1 illustrated above. The substrate processing system may be any as long as it includes a unit (device) capable of forming a base film, forming a resist film, exposing and developing. For example, the plasma processing device 10 may be provided in the coating / developing device 2. Specifically, the plasma processing device 10 may be provided in the processing module 11 or the interface block 6.
 以上の説明から、本開示の種々の実施形態は、説明の目的で本明細書で説明されており、本開示の範囲及び主旨から逸脱することなく種々の変更をなし得ることが、理解されるであろう。したがって、本明細書に開示した種々の実施形態は限定することを意図しておらず、真の範囲と主旨は、添付の特許請求の範囲によって示される。 From the above description, it is understood that the various embodiments of the present disclosure are described herein for purposes of explanation and that various modifications can be made without departing from the scope and gist of the present disclosure. Will. Therefore, the various embodiments disclosed herein are not intended to be limiting, and the true scope and gist is indicated by the appended claims.
 1…基板処理システム(基板処理装置)、2…塗布・現像装置、10…プラズマ処理装置(下地膜形成部)、U1…塗布ユニット(レジスト液供給部)、U2…熱処理ユニット、W…ワーク。 1 ... Substrate processing system (board processing equipment), 2 ... Coating / developing equipment, 10 ... Plasma processing equipment (base film forming unit), U1 ... Coating unit (resist liquid supply unit), U2 ... Heat treatment unit, W ... Work.

Claims (9)

  1.  基板の表面に対してカーボン系の下地膜を形成することと、
     前記下地膜上に、EUV光に対して感光性を有するレジスト液を基板の表面に供給して塗布膜を形成することと、を含む、基板処理方法。
    Forming a carbon-based base film on the surface of the substrate and
    A substrate treatment method comprising supplying a resist solution having photosensitivity to EUV light to the surface of a substrate to form a coating film on the undercoat film.
  2.  前記下地膜を形成することは、プラズマ処理によって行われる、請求項1に記載の基板処理方法。 The substrate processing method according to claim 1, wherein the base film is formed by plasma treatment.
  3.  前記プラズマ処理において、メタン(CH)ガス、ヘキサフルオロ-1,3-ブタジエン(C)ガス、オクタフルオロシクロブタン(C)ガス、トリフルオロメタン(CHF)ガスから選ばれる1種類またはそれ以上の成分を含む処理ガスをプラズマ化する、請求項2に記載の基板処理方法。 In the plasma treatment, one is selected from methane (CH 4 ) gas, hexafluoro-1,3-butadiene (C 4 F 6 ) gas, octafluorocyclobutane (C 4 F 8 ) gas, and trifluoromethane (CHF 3 ) gas. The substrate processing method according to claim 2, wherein the processing gas containing a type or more of the components is turned into plasma.
  4.  前記下地膜を形成することは、
      溶剤が残存した状態の下地膜用処理液を前記基板の表面に対して供給することと、
      前記下地膜用処理液を供給した後に、酸分解処理を行うことと、を含む、請求項1に記載の基板処理方法。
    Forming the base film
    Supplying the treatment liquid for the base film with the solvent remaining to the surface of the substrate, and
    The substrate treatment method according to claim 1, further comprising performing an acid decomposition treatment after supplying the treatment liquid for an undercoat film.
  5.  前記酸分解処理を、低酸素雰囲気で行う、請求項4に記載の基板処理方法。 The substrate processing method according to claim 4, wherein the acid decomposition treatment is performed in a low oxygen atmosphere.
  6.  前記酸分解処理を行う前に、前記基板の表面に供給した前記下地膜用処理液に対して、予備熱処理を行うことをさらに含む、請求項4または5に記載の基板処理方法。 The substrate treatment method according to claim 4 or 5, further comprising performing a preliminary heat treatment on the base film treatment liquid supplied to the surface of the substrate before performing the acid decomposition treatment.
  7.  前記酸分解処理における処理条件を、処理後の基板の表面状態に基づいて調整することをさらに含む、請求項4~6のいずれか一項に記載の基板処理方法。 The substrate processing method according to any one of claims 4 to 6, further comprising adjusting the processing conditions in the acid decomposition treatment based on the surface condition of the substrate after the treatment.
  8.  前記塗布膜に対してEUV光を照射して、前記塗布膜を露光することと、
     前記塗布膜の露光後に、前記基板に対して現像液を供給することと、をさらに含む、請求項1~7のいずれか一項に記載の基板処理方法。
    By irradiating the coating film with EUV light to expose the coating film,
    The substrate processing method according to any one of claims 1 to 7, further comprising supplying a developing solution to the substrate after exposure of the coating film.
  9.  基板の表面に対してカーボン系の下地膜を形成する下地膜形成部と、
     EUV光に対して感光性を有するレジスト液を基板の表面に供給して塗布膜を形成するように構成されたレジスト液供給部と、
     制御部と、を備え、
     前記制御部は、
      前記基板の表面に対してカーボン系の下地膜を形成するように前記下地膜形成部を制御する処理と、
      前記基板の前記下地膜上に前記塗布膜を形成するように前記レジスト液供給部を制御する処理と、を実行する、基板処理装置。
    A base film forming portion that forms a carbon-based base film on the surface of the substrate,
    A resist liquid supply unit configured to supply a resist liquid sensitive to EUV light to the surface of a substrate to form a coating film, and a resist liquid supply unit.
    With a control unit
    The control unit
    A process of controlling the base film forming portion so as to form a carbon-based base film on the surface of the substrate, and
    A substrate processing apparatus that executes a process of controlling the resist liquid supply unit so as to form the coating film on the undercoat film of the substrate.
PCT/JP2020/043469 2019-12-02 2020-11-20 Substrate processing method and substrate processing apparatus WO2021111911A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019217866 2019-12-02
JP2019-217866 2019-12-02
JP2020189695 2020-11-13
JP2020-189695 2020-11-13

Publications (1)

Publication Number Publication Date
WO2021111911A1 true WO2021111911A1 (en) 2021-06-10

Family

ID=76221038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043469 WO2021111911A1 (en) 2019-12-02 2020-11-20 Substrate processing method and substrate processing apparatus

Country Status (2)

Country Link
TW (1) TW202135162A (en)
WO (1) WO2021111911A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635206A (en) * 1992-07-17 1994-02-10 Toshiba Corp Formation of pattern
JPH08172039A (en) * 1994-12-16 1996-07-02 Mitsubishi Electric Corp Production of semiconductor device
JP2003027237A (en) * 2002-05-10 2003-01-29 Semiconductor Energy Lab Co Ltd Film of carbon or essentially consisting of carbon
JP2003209046A (en) * 2002-01-16 2003-07-25 Mitsubishi Electric Corp Resist pattern forming method and semiconductor device manufacturing method
JP2008210930A (en) * 2007-02-26 2008-09-11 Elpida Memory Inc Manufacturing method of semiconductor device
WO2013133088A1 (en) * 2012-03-08 2013-09-12 日産化学工業株式会社 Composition for forming highly adhesive resist underlayer film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635206A (en) * 1992-07-17 1994-02-10 Toshiba Corp Formation of pattern
JPH08172039A (en) * 1994-12-16 1996-07-02 Mitsubishi Electric Corp Production of semiconductor device
JP2003209046A (en) * 2002-01-16 2003-07-25 Mitsubishi Electric Corp Resist pattern forming method and semiconductor device manufacturing method
JP2003027237A (en) * 2002-05-10 2003-01-29 Semiconductor Energy Lab Co Ltd Film of carbon or essentially consisting of carbon
JP2008210930A (en) * 2007-02-26 2008-09-11 Elpida Memory Inc Manufacturing method of semiconductor device
WO2013133088A1 (en) * 2012-03-08 2013-09-12 日産化学工業株式会社 Composition for forming highly adhesive resist underlayer film

Also Published As

Publication number Publication date
TW202135162A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US11899366B2 (en) Method and apparatus for post exposure processing of photoresist wafers
KR101313426B1 (en) Post-etch treatment system for removing residue on a substrate
US20120031875A1 (en) Plasma processing method and plasma processing apparatus
US9466502B2 (en) Line width roughness improvement with noble gas plasma
US10975468B2 (en) Method of cleaning plasma processing apparatus
US9958782B2 (en) Apparatus for post exposure bake
US10067418B2 (en) Particle removal system and method thereof
JP2009044169A (en) Methods and apparatus for processing semiconductor wafer using plasma processing chamber in wafer track environment
KR20150048134A (en) Plasma processing method and plasma processing device
JP2017092376A (en) Etching method
WO2021111911A1 (en) Substrate processing method and substrate processing apparatus
TW469479B (en) Method of wet etching and apparatus thereof
WO2016047493A1 (en) Substrate processing method, computer storage medium and substrate processing system
US7569478B2 (en) Method and apparatus for manufacturing semiconductor device, control program and computer storage medium
TW202247280A (en) Chamber and methods of treating a substrate after exposure to radiation
TWI814810B (en) Method for etching organic region
JP4865951B2 (en) Plasma etching method
WO2023106012A1 (en) Substrate processing device and substrate processing method
JP2024001648A (en) Substrate processing method and substrate processing system
JPH11231554A (en) Method and device for peeling resist
KR20170140074A (en) Line edge roughness improvement with photon-assisted plasma process
JPS6132523A (en) Removing process of organic film
JPS62108529A (en) Processing method for resist pattern
KR20020092662A (en) Apparatus for removing a photoresist residue
JPS6370426A (en) Ashing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 20897322

Country of ref document: EP

Kind code of ref document: A1