WO2021111863A1 - Composition for chemical mechanical polishing and chemical mechanical polishing method - Google Patents

Composition for chemical mechanical polishing and chemical mechanical polishing method Download PDF

Info

Publication number
WO2021111863A1
WO2021111863A1 PCT/JP2020/042769 JP2020042769W WO2021111863A1 WO 2021111863 A1 WO2021111863 A1 WO 2021111863A1 JP 2020042769 W JP2020042769 W JP 2020042769W WO 2021111863 A1 WO2021111863 A1 WO 2021111863A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical mechanical
mechanical polishing
composition
polishing
silicon nitride
Prior art date
Application number
PCT/JP2020/042769
Other languages
French (fr)
Japanese (ja)
Inventor
山田 裕也
岡本 匡史
浩平 吉尾
紀彦 杉江
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2021111863A1 publication Critical patent/WO2021111863A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a composition for chemical mechanical polishing and a chemical polishing method.
  • CMP chemical mechanical polishing
  • polishing rate ratio (hereinafter, also referred to as "selection ratio") of the silicon nitride film to the silicon oxide film or polysilicon film.
  • selection ratio a polishing rate ratio
  • Patent Document 1 a polishing solution containing phosphoric acid, nitric acid, and hydrofluoric acid and adjusting the pH to 1 to 5 (see Patent Document 1) and etching.
  • Patent Document 2 A polishing solution (see Patent Document 2) that contains an acidic additive whose action is suppressed and can selectively polish a silicon nitride film has been proposed.
  • the above-mentioned polishing liquid can selectively polish the silicon nitride film, the selection ratio is too large, so that the silicon nitride film is dish-shaped at the step portion between the silicon nitride film and the silicon oxide film. Surface defects called dishing, which are easily scraped off, were likely to occur. Such surface defects contribute to a decrease in the yield of semiconductor device manufacturing.
  • One aspect of the chemical mechanical polishing composition according to the present invention is (A) Silica abrasive grains having a functional group represented by the following general formula (1) and (B) Liquid medium and A composition for chemical mechanical polishing containing The silica abrasive grains (A) satisfy the following conditions (a) and (b). (A) The zeta potential in the composition for chemical mechanical polishing is less than -10 mV. (B) A chain sphere formed by connecting three or more particles. -SO 3 - M + ... (1) (M + represents a monovalent cation.)
  • the component (A) can be silica abrasive grains in which a functional group represented by the general formula (1) is fixed on the surface thereof via a covalent bond.
  • the pH can be 2 or more and 5 or less.
  • the content of the component (A) can be 0.1% by mass or more and 10% by mass or less.
  • the chemical mechanical polishing composition can contain acidic compounds.
  • the chemical mechanical polishing composition can contain one or more selected from polyvinyl methyl ether and poly (N-isopropylacrylamide).
  • any aspect of the chemical mechanical polishing composition Among a plurality of materials constituting a semiconductor device, it can be used for polishing a material that has a positive charge during chemical mechanical polishing.
  • the positively charged material can be a silicon nitride film.
  • One aspect of the chemical mechanical polishing method according to the present invention is The step of polishing a material having a positive charge at the time of chemical mechanical polishing among a plurality of materials constituting a semiconductor device by using the composition for chemical mechanical polishing of any one of the above embodiments is included.
  • the positively charged material can be a silicon nitride film.
  • the polishing rate ratio of the silicon nitride film to the silicon oxide film can be increased, and the occurrence of dishing in the silicon nitride film can be reduced.
  • FIG. 1 is a cross-sectional view schematically showing a manufacturing process of an object to be processed in separation between elements.
  • FIG. 2 is a cross-sectional view schematically showing an object to be processed after the first polishing step.
  • FIG. 3 is a cross-sectional view schematically showing the object to be processed after the second polishing step.
  • FIG. 4 is a perspective view schematically showing a chemical mechanical polishing apparatus.
  • composition for chemical mechanical polishing is (A) silica abrasive grains having a functional group represented by the following general formula (1) (in the present specification, simply " (Also referred to as “component (A)”) and (B) liquid medium (also simply referred to as “component (B)” in the present specification), and the above-mentioned (A) silica abrasive grains are conditions (referred to as “component (B)”).
  • component (B) liquid medium
  • the zeta potential in the composition for chemical mechanical polishing is less than -10 mV, and the condition (b) is a chain sphere formed by connecting three or more particles.
  • each component contained in the chemical mechanical polishing composition according to the present embodiment will be described in detail.
  • composition for chemical mechanical polishing contains (A) silica abrasive grains having a functional group represented by the following general formula (1) as an abrasive grain component. -SO 3 - M + ... (1)
  • M + represents a monovalent cation.
  • Examples of the monovalent cation represented by M + but not limited to, for example, H +, Li +, Na +, K +, include NH 4 +. That is, the component (A) can be rephrased as "silica abrasive grains having at least one functional group selected from the group consisting of (A) a sulfo group and a salt thereof".
  • the component (A) is a silica abrasive grain in which a functional group represented by the general formula (1) is fixed on the surface thereof via a covalent bond, and the functional group represented by the general formula (1) is fixed on the surface thereof. It does not include substances in which a compound having a group is physically or ionically adsorbed.
  • the component (A) used in the present embodiment can be produced, for example, as follows.
  • silica particles are prepared.
  • the silica particles include fumed silica and colloidal silica, but colloidal silica is preferable from the viewpoint of reducing polishing defects such as scratches.
  • colloidal silica for example, those manufactured by the method described in JP-A-2003-109921 can be used.
  • the component (A) that can be used in the present embodiment can be produced.
  • a method of modifying the surface of silica particles will be illustrated, but the present invention is not limited to this specific example.
  • the mercapto group-containing silane coupling agent can be covalently bonded to the surface of the silica particles by sufficiently stirring the silica particles and the mercapto group-containing silane coupling agent in an acidic medium.
  • the mercapto group-containing silane coupling agent include 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethoxysilane.
  • the component (A) can be obtained by further adding an appropriate amount of hydrogen peroxide and leaving it to stand sufficiently.
  • the component (A) used in the present embodiment satisfies the condition (a): that the zeta potential in the composition for chemical mechanical polishing is less than -10 mV.
  • the component (A) used in the present embodiment has a zeta potential of less than -10 mV, preferably -40 mV or more and less than -10 mV, and more preferably -40 mV or more and -20 mV or less in the composition for chemical mechanical polishing. It is particularly preferably -40 mV or more and -25 mV or less.
  • the pH of the chemical mechanical polishing composition according to the present embodiment is preferably 2 or more and 5 or less as described later, but the zeta potential of the component (A) in any of the regions where the pH is 2 or more and 5 or less is If it is less than -10 mV, the component (A) is likely to be localized on the surface of the silicon nitride film due to the attractive force based on the electrostatic interaction between the component (A) and the silicon nitride film. realizable.
  • the zeta potential of the component (A) in the region of pH 2 or more and 5 or less is -10 mV or more
  • the electrostatic interaction between the component (A) and the silicon nitride film becomes small or a repulsive force acts.
  • the polishing rate for the silicon nitride film may be insufficient.
  • the amount of the mercapto group-containing silane coupling agent added in the above-mentioned surface modification of the silica particles is appropriately adjusted. It can be adjusted by increasing or decreasing.
  • the zeta potential of the component (A) can be measured by a conventional method using a zeta potential measuring device based on the laser Doppler method.
  • a zeta potential measuring device examples include a "zeta potential analyzer” manufactured by Brook Haven Instruments Co., Ltd. and an "ELSZ-1000ZS” manufactured by Otsuka Electronics Co., Ltd.
  • the component (A) used in the present embodiment satisfies the condition (b): a chain sphere formed by connecting three or more particles.
  • chained sphere refers to a group of particles formed by combining three or more particles in a single row or a plurality of rows, and includes not only a linear structure but also a branched structure.
  • the component (A) is a chain sphere formed by connecting three or more particles
  • a sample of the component (A) is prepared by a conventional method, and a transmission electron microscope (Transmission Electron) is used. It can be confirmed by observing with a Microscope).
  • the lower limit of the average particle size of the primary particles constituting the component (A) is preferably 30 nm, more preferably 40 nm.
  • the upper limit of the average particle size of the primary particles constituting the component (A) is preferably 100 nm, more preferably 80 nm.
  • the silicon nitride film to be polished may be polished at a practical polishing rate while suppressing the occurrence of polishing defects. is there.
  • the average particle size of the primary particles constituting the component (A) can be confirmed by preparing a sample of the component (A) by a conventional method and observing it with a transmission electron microscope.
  • the lower limit of the content of the component (A) is preferably 0.1% by mass, more preferably 0.5% by mass, when the total mass of the composition for chemical mechanical polishing is 100% by mass. , Particularly preferably 1% by mass.
  • the upper limit of the content of the component (A) is preferably 10% by mass, more preferably 8% by mass, and particularly preferably 8% by mass when the total mass of the composition for chemical mechanical polishing is 100% by mass. It is 6% by mass.
  • the composition for chemical mechanical polishing according to this embodiment contains (B) a liquid medium.
  • the component (B) include a mixed medium of water, water and alcohol, a mixed medium containing an organic solvent compatible with water and water, and the like. Among these, it is preferable to use a mixed medium of water, water and alcohol, and it is more preferable to use water.
  • the water is not particularly limited, but pure water is preferable. Water may be blended as the remainder of the constituent material of the composition for chemical mechanical polishing, and the content of water is not particularly limited.
  • composition for chemical mechanical polishing according to the present embodiment further contains additives such as an acidic compound, a water-soluble polymer, a surfactant, an oxidizing agent, an anticorrosive agent, and a pH adjuster, if necessary. You may. Hereinafter, each additive will be described.
  • the composition for chemical mechanical polishing according to the present embodiment preferably contains an acidic compound.
  • an acidic compound By containing the acidic compound, a synergistic effect with the component (A) can be obtained, and the polishing rate of the silicon nitride film may be improved.
  • Examples of such acidic compounds include organic acids and inorganic acids.
  • Examples of the organic acid include saturated carboxylic acids such as malonic acid, citric acid, malic acid, tartaric acid, oxalic acid, lactic acid and iminodiacetic acid; acrylic acid, methacrylic acid, crotonic acid, 2-butenoic acid and 2-methyl-3.
  • -Unsaturated monocarboxylic acids such as butenoic acid, 2-hexenoic acid, 3-methyl-2-hexenoic acid; maleic acid, fumaric acid, citraconic acid, mesaconic acid, 2-pentenedioic acid, itaconic acid, allylmalonic acid, isopropi Unsaturated dicarboxylic acids such as redensuccinic acid, 2,4-hexadiendioic acid, and acetylenedicarboxylic acid; aromatic carboxylic acids such as trimellitic acid, and salts thereof.
  • the inorganic acid include phosphoric acid, sulfuric acid, hydrochloric acid, nitric acid, and salts thereof. These acidic compounds may be used alone or in combination of two or more.
  • the content of the acidic compound is preferably 0.001 when the total mass of the composition for chemical mechanical polishing is 100% by mass. It is about 5% by mass, more preferably 0.003 to 1% by mass, and particularly preferably 0.005 to 0.5% by mass.
  • the composition for chemical mechanical polishing according to the present embodiment may contain a water-soluble polymer.
  • the water-soluble polymer has the effect of adsorbing to the surface of the silicon nitride film and reducing polishing friction. Due to this effect, the occurrence of dishing in the silicon nitride film may be significantly reduced.
  • Water-soluble polymers include polyethyleneimine, poly (meth) acrylamide, poly N-alkyl (meth) acrylamide, poly (meth) acrylic acid, polyoxyethylene alkylamine, polyvinyl alcohol, polyvinyl alkyl ether, polyvinylpyrrolidone, and hydroxyethyl cellulose. , Carboxymethyl cellulose, a copolymer of (meth) acrylic acid and maleic acid, a polymer amine compound such as poly (meth) acrylic amine, and the like. These water-soluble polymers may be used alone or in combination of two or more.
  • heat-responsive polymers such as polyvinyl methyl ether and poly (N-isopropylacrylamide) and polymer amine compounds such as poly (meth) acrylic amine are preferable, and polyvinyl methyl ether and poly (N-isopropylacrylamide) are more preferable. preferable.
  • the weight average molecular weight (Mw) of the water-soluble polymer is preferably 1,000 to 1,000,000, more preferably 3,000 to 800,000.
  • the weight average molecular weight of the water-soluble polymer is within the above range, it is likely to be adsorbed on the surface of the silicon nitride film, and polishing friction may be further reduced. As a result, the occurrence of dishing in the silicon nitride film may be reduced more effectively.
  • the "weight average molecular weight (Mw)" in the present specification refers to a polyethylene glycol-equivalent weight average molecular weight measured by GPC (gel permeation chromatography).
  • the content of the water-soluble polymer is preferably 100% by mass when the total mass of the composition for chemical mechanical polishing is 100% by mass. Is 0.005 to 0.5% by mass, more preferably 0.01 to 0.2% by mass.
  • the content of the water-soluble polymer depends on the weight average molecular weight (Mw) of the water-soluble polymer, but the viscosity of the composition for chemical mechanical polishing at 25 ° C. is 0.5 mPa ⁇ s or more and less than 10 mPa ⁇ s. It is preferable to adjust so as to be.
  • Mw weight average molecular weight
  • the viscosity of the chemical mechanical polishing composition at 25 ° C. is 0.5 mPa ⁇ s or more and less than 10 mPa ⁇ s, it is easy to polish the silicon nitride film at high speed, and the viscosity is appropriate, so that the chemical is stable on the polishing cloth.
  • a composition for mechanical polishing can be supplied.
  • the composition for chemical mechanical polishing according to the present embodiment may contain a surfactant.
  • a surfactant By containing a surfactant, it may be possible to impart an appropriate viscosity to the composition for chemical mechanical polishing.
  • the viscosity of the chemical mechanical polishing composition is preferably adjusted to be 0.5 mPa ⁇ s or more and less than 10 mPa ⁇ s at 25 ° C.
  • the surfactant is not particularly limited, and examples thereof include anionic surfactants, cationic surfactants, and nonionic surfactants.
  • anionic surfactant examples include carboxylic acid salts such as fatty acid soap and alkyl ether carboxylate; sulfonates such as alkylbenzene sulfonate, alkylnaphthalene sulfonate and ⁇ -olefin sulfonate; higher alcohol sulfate. Sulfates such as ester salts, alkyl ether sulfates and polyoxyethylene alkyl phenyl ether sulfates; fluorine-containing surfactants such as perfluoroalkyl compounds and the like can be mentioned.
  • the cationic surfactant examples include an aliphatic amine salt and an aliphatic ammonium salt.
  • nonionic surfactant examples include a nonionic surfactant having a triple bond such as acetylene glycol, an acetylene glycol ethylene oxide adduct, and an acetylene alcohol; a polyethylene glycol type surfactant and the like. These surfactants may be used alone or in combination of two or more.
  • the content of the surfactant is preferably 0 when the total mass of the composition for chemical mechanical polishing is 100% by mass. It is .001 to 5% by mass, more preferably 0.003 to 3% by mass, and particularly preferably 0.005 to 1% by mass.
  • the composition for chemical mechanical polishing according to the present embodiment may contain an oxidizing agent.
  • an oxidizing agent By containing an oxidizing agent, the silicon nitride film can be oxidized to form a fragile modified layer, which may improve the polishing rate.
  • oxidizing agent examples include ammonium persulfate, potassium persulfate, hydrogen peroxide, ferric nitrate, cerium diammonium nitrate, potassium hypochlorite, ozone, potassium periodate, peracetic acid and the like.
  • ammonium persulfate, potassium persulfate, and hydrogen peroxide are preferable, and hydrogen peroxide is more preferable, in consideration of oxidizing power and ease of handling.
  • These oxidizing agents may be used alone or in combination of two or more.
  • the content of the oxidizing agent is preferably 0.1 when the total mass of the composition for chemical mechanical polishing is 100% by mass. It is about 5% by mass, more preferably 0.3 to 4% by mass, and particularly preferably 0.5 to 3% by mass. Since the oxidizing agent is easily decomposed in the composition for chemical mechanical polishing, it is desirable to add the oxidizing agent immediately before the polishing step of CMP.
  • the composition for chemical mechanical polishing according to the present embodiment may contain an anticorrosive agent.
  • the anticorrosive agent include benzotriazole and its derivatives.
  • the benzotriazole derivative refers to one in which one or more hydrogen atoms contained in benzotriazole are replaced with, for example, a carboxy group, a methyl group, an amino group, a hydroxy group or the like.
  • Specific examples of the benzotriazole derivative include 4-carboxybenzotriazole, 7-carboxybenzotriazole, benzotriazole butyl ester, 1-hydroxymethylbenzotriazole, 1-hydroxybenzotriazole, and salts thereof.
  • the content of the anticorrosive agent is preferably 1% by mass when the total mass of the composition for chemical mechanical polishing is 100% by mass. It is more preferably 0.001 to 0.1% by mass.
  • the composition for chemical mechanical polishing according to the present embodiment may further contain a pH adjuster, if necessary.
  • a pH adjuster examples include bases such as potassium hydroxide, ethylenediamine, monoethanolamine, TMAH (tetramethylammonium hydroxide), TEAH (tetraethylammonium hydroxide), and ammonia, and one or more of these bases may be used. it can.
  • the pH of the chemical mechanical polishing composition according to the present embodiment is not particularly limited, but is preferably 2 or more and 5 or less, and more preferably 2 or more and 4 or less.
  • the pH is in the above range, the dispersibility of the component (A) in the composition for chemical mechanical polishing is improved, and the storage stability of the composition for chemical mechanical polishing is improved, which is preferable.
  • the pH of the chemical mechanical polishing composition according to the present embodiment can be adjusted, for example, by appropriately increasing or decreasing the content of the acidic compound, the pH adjuster, or the like.
  • the pH refers to a hydrogen ion index, the value of which is a commercially available pH meter (for example, a tabletop pH meter manufactured by HORIBA, Ltd.) under the conditions of 25 ° C. and 1 atm. Can be measured.
  • the chemical mechanical polishing composition according to the present embodiment can be used as an abrasive for polishing a material that is positively charged during chemical mechanical polishing among a plurality of materials constituting a semiconductor device.
  • Typical materials that are positively charged during chemical mechanical polishing include silicon nitride films and doped polysilicon.
  • the composition for chemical mechanical polishing according to the present embodiment is particularly suitable for the use of polishing a silicon nitride film.
  • the ratio of the polishing rate of the (PR N) and the silicon oxide film of the silicon nitride film in the chemical mechanical polishing composition of this embodiment (PR O) is a silicon nitride film and each of the silicon oxide film when polished with the same polishing conditions, it is preferable that the value of PR N / PR O is less than 3 more than 10, it can be said that it is more preferably 4 to 9.
  • composition for chemical mechanical polishing can be prepared by dissolving or dispersing each of the above-mentioned components in a liquid medium such as water.
  • the method for dissolving or dispersing is not particularly limited, and any method may be applied as long as it can be uniformly dissolved or dispersed. Further, the mixing order and mixing method of each of the above-mentioned components are not particularly limited.
  • composition for chemical mechanical polishing according to the present embodiment can be prepared as a concentrated type stock solution and diluted with a liquid medium such as water at the time of use.
  • the polishing method according to the embodiment of the present invention is a material that is positively charged during chemical mechanical polishing among a plurality of materials constituting a semiconductor device using the above-mentioned chemical mechanical polishing composition. Includes the step of polishing. Examples of materials that are positively charged during chemical mechanical polishing include silicon nitride films and doped polysilicon.
  • materials that are positively charged during chemical mechanical polishing include silicon nitride films and doped polysilicon.
  • FIG. 1 is a cross-sectional view schematically showing a manufacturing process of the object to be processed in the separation between elements.
  • the object to be processed 100 is produced by going through the following steps (1) to (3).
  • a silicon wafer 10 is prepared.
  • a functional device such as a transistor (not shown) may be formed on the silicon wafer 10.
  • a thermal oxide film 12 is formed on the silicon wafer 10 by using a thermal oxidation method.
  • the silicon nitride film 14 is deposited on the thermal oxide film 12.
  • the silicon nitride film 14 has a function as a stopper film.
  • the thermal oxide film 12 may adversely affect the silicon wafer 10
  • the silicon wafer 10 and the silicon nitride film 14 may be peeled off due to the difference in thermal expansion.
  • a thermal oxide film 12 is interposed between the silicon wafer 10 and the silicon nitride film 14.
  • the silicon nitride film 14 is patterned.
  • the groove 16 is formed by dry etching.
  • the object to be processed 100 is formed.
  • FIG. 2 is a cross-sectional view schematically showing an object to be processed at the end of the first polishing step.
  • the silicon oxide film 18 in which the silicon nitride film 14 is embedded as a stopper is polished by CMP using the polishing device 200 shown in FIG.
  • CMP is performed using a chemical mechanical polishing composition for a silicon oxide film.
  • FIG. 3 is a cross-sectional view schematically showing an object to be processed at the end of the second polishing step.
  • the silicon nitride film 14 and the silicon oxide film embedded in the groove 16 are used by using the polishing apparatus 200 shown in FIG. 4 and using the above-mentioned chemical mechanical polishing composition. 18 is polished and flattened. Since the above-mentioned composition for chemical mechanical polishing has an appropriate selection ratio, the silicon nitride film 14 and the silicon oxide film 18 can be polished, and the occurrence of dishing of the silicon nitride film 14 can be reduced, so that the second polishing Suitable for the process. After that, the so-called inter-element separation can be performed by removing the thermal oxide film 12 by further continuing CMP or performing wet etching.
  • FIG. 4 is a perspective view schematically showing the polishing apparatus 200.
  • the semiconductor substrate is supplied with the slurry (composition for chemical mechanical polishing) 44 from the slurry supply nozzle 42, and the turntable 48 to which the polishing pad 46 is attached is rotated. This is performed by bringing the carrier head 52 holding the 50 into contact with the carrier head 52.
  • FIG. 4 also shows the water supply nozzle 54 and the dresser 56.
  • the polishing load of the carrier head 52 can be selected within the range of 10 to 980 hPa, preferably 30 to 490 hPa.
  • the rotation speed of the turntable 48 and the carrier head 52 can be appropriately selected within the range of 10 to 400 rpm, and is preferably 30 to 150 rpm.
  • the flow rate of the slurry (composition for chemical mechanical polishing) 44 supplied from the slurry supply nozzle 42 can be selected within the range of 10 to 1,000 mL / min, and is preferably 50 to 400 mL / min.
  • polishing equipment examples include, for example, Ebara Corporation, model “EPO-112", “EPO-222”; Lapmaster SFT, model “LGP-510", “LGP-552”; Applied Material Co., Ltd. , Model “Mirra”, “Reflection”; manufactured by G & P TECHNOLOGY, model “POLI-400L”; manufactured by AMAT, model "Reflexion LK” and the like.
  • a predetermined amount was added to prepare a mother liquor. This was heated, and when it was in a reflux state, feeding of the TMOS hydrolyzate was started. The addition rate was 2.5 mL / min (5.9 g silica / hour / kg mother liquor). When the feed of the hydrolyzed solution was completed, it was kept in that state for 30 minutes.
  • the silica abrasive particles contained in the aqueous dispersion A were observed with a transmission electron microscope (Hitachi, Ltd., model "H-7000") at a magnification of 30,000, and 50 of them were arbitrarily selected and observed. It was confirmed that the above particles were connected to form a chain sphere. Moreover, when the average particle diameter of the primary particles of silica abrasive grains arbitrarily selected 50 was measured, it was 64 nm.
  • Aqueous Dispersion B The silica sol synthesized by the method described in Example 1 of JP2011-201719A was heated and concentrated to 5000 mL under normal pressure. 6.0 g of 3-mercaptopropyltrimethoxysilane as a silane coupling agent was added to this concentrated solution, and the mixture was refluxed at the boiling point for thermal aging. Then, in order to keep the volume constant, methanol and ammonia were replaced with water while adding pure water, and when the pH became 8 or less, the liquid temperature of the silica sol was once lowered to room temperature.
  • aqueous dispersion B a sulfonic acid-modified aqueous anionic silica sol was obtained. This was designated as an aqueous dispersion B.
  • the silica abrasive particles contained in the aqueous dispersion B were observed with a transmission electron microscope (Hitachi, Ltd., model "H-7000") at a magnification of 30,000, and 50 of them were arbitrarily selected and observed. It was confirmed that the above particles were connected to form a chain sphere. Moreover, when the average particle diameter of the primary particles of silica abrasive grains arbitrarily selected 50 was measured, it was 64 nm.
  • aqueous dispersion C 53.5 g of 35% hydrogen peroxide solution was added and heated again, the reaction was continued for 8 hours, and after cooling to room temperature, a sulfonic acid-modified aqueous anionic silica sol was obtained. This was designated as an aqueous dispersion C.
  • the silica abrasive particles contained in the aqueous dispersion C were observed with a transmission electron microscope (Hitachi, Ltd., model "H-7000") at a magnification of 30,000, and 50 of them were arbitrarily selected and observed. It was confirmed that the above particles were connected to form a chain sphere. Moreover, when the average particle diameter of the primary particles of silica abrasive grains arbitrarily selected 50 was measured, it was 64 nm.
  • the flask was volume 2000 cm 3 of aqueous dispersion D, ammonia water 70g of 25% strength by weight, ion-exchanged water 40 g, ethanol 175g and tetraethoxysilane 21g were charged and heated with stirring to 60 ° C. at 180 rpm. After stirring at 60 ° C. for 1 hour, the mixture was cooled to obtain a colloidal silica / alcohol dispersion. Next, the operation of removing the alcohol content while adding ion-exchanged water to the dispersion at 80 ° C. was repeated several times by an evaporator to remove the alcohol in the dispersion, and the aqueous dispersion D having a solid content concentration of 15% was obtained. Prepared.
  • the silica abrasive particles contained in the aqueous dispersion D were observed with a transmission electron microscope (Hitachi, Ltd., model "H-7000") at a magnification of 30,000, and 50 of them were arbitrarily selected and observed. It was confirmed that it was not a chain sphere formed by connecting the above particles. Moreover, when the average particle diameter of the primary particles of silica abrasive grains arbitrarily selected 50 was measured, it was 70 nm.
  • Aqueous Dispersion E 5 g of acetic acid was added to 50 g of ion-exchanged water, and 5 g of a mercapto group-containing silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name "KBE803") was gradually added dropwise with stirring. After 30 minutes, 1000 g of the aqueous dispersion D prepared above was added, and stirring was continued for another 1 hour. Then, by adding 200 g of 31% hydrogen peroxide solution and leaving it at room temperature for 48 hours, colloidal silica (aqueous dispersion E) having at least one functional group selected from the group consisting of a sulfo group and a salt thereof. ) was obtained.
  • a mercapto group-containing silane coupling agent manufactured by Shin-Etsu Chemical Co., Ltd., trade name "KBE803
  • the silica abrasive particles contained in the aqueous dispersion E were observed with a transmission electron microscope (Hitachi, Ltd., model "H-7000") at a magnification of 30,000, and 50 of them were arbitrarily selected and observed. It was confirmed that it was not a chain sphere formed by connecting the above particles. Moreover, when the average particle diameter of the primary particles of silica abrasive grains arbitrarily selected 50 was measured, it was 68 nm.
  • compositions for chemical mechanical polishing Add each component to a polyethylene container so that the aqueous dispersion prepared above has a predetermined solid content concentration (mass%) so as to have the compositions shown in Tables 1 to 3. Then, if necessary, potassium hydroxide was added to adjust the pH to the pH shown in Tables 1 to 3, and the total amount of all the components was adjusted to 100 parts by mass with pure water. Compositions for chemical mechanical polishing of Examples and Comparative Examples were prepared.
  • Tables 1 to 3 show the results of measuring the zeta potential of the abrasive grains of each chemical mechanical polishing composition thus obtained by using a zeta potential measuring device (manufactured by Dispersion Technology Inc., model "DT300"). It is also shown in.
  • the thickness of the silicon nitride film and the p-TEOS film was calculated by measuring the refractive index using a non-contact optical film thickness measuring device (manufactured by KLA Tencor, model "ASET-F5x"). ..
  • the evaluation criteria for the polishing speed test are as follows.
  • the polishing rate results of the silicon nitride film, the polishing rate results of the p-TEOS film, and the evaluation results thereof are also shown in Tables 1 to 3.
  • (Evaluation criteria) - "A” ... polishing rate of a silicon nitride film (PR N) is not less 500 ⁇ / min or more, the ratio of the polishing rate (PR O) polishing rate (PR N) and the silicon oxide film of a silicon nitride film (PR N / If PR O) is less than 3 more than 10, the speed balance of both the polishing film in the actual semiconductor polishing easily be secured, it is determined as good because it is practical.
  • polishing rate (PR N) is less than 500 ⁇ / min of the silicon nitride film, or the ratio of the polishing rate (PR O) polishing rate (PR N) and the silicon oxide film of a silicon nitride film (PR N / If PR O) is less than 3 or more than 10, it is determined that can not be secured rate balance of both the polishing film in the actual semiconductor polishing defects.
  • the patterned substrate was polished until the silicon oxide film was exposed.
  • S) confirmed the step (dishing) of the silicon nitride film / silicon oxide film wiring in the pattern portion of 10 ⁇ m / 10 ⁇ m, respectively.
  • the evaluation criteria are as follows. The values of dishing and their evaluation results are also shown in Tables 1 to 3. (Evaluation criteria) -"A" ... If the dishing is less than 5 nm, it is judged to be very good. -"B": When the dishing is 5 nm or more and less than 20 nm, it is judged to be good. -"C” ... If the dishing is 20 nm or more, it is judged to be defective.
  • Tables 1 to 3 below show the composition of the chemical mechanical polishing composition of each example and each comparative example, and each evaluation result.
  • the present invention includes a configuration that is substantially the same as the configuration described in the embodiment (for example, a configuration that has the same function, method, and result, or a configuration that has the same purpose and effect).
  • the present invention also includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
  • the present invention includes a configuration that exhibits the same effects as the configuration described in the embodiment or a configuration that can achieve the same object.
  • the present invention includes a configuration in which a known technique is added to the configuration described in the embodiment.

Abstract

The present invention provides: a composition for chemical mechanical polishing, said composition increasing the polishing rate ratio of a silicon nitride film to a silicon oxide film, while reducing the occurrence of dishing in the silicon nitride film; and a chemical mechanical polishing method. A composition for chemical mechanical polishing according to the present invention contains (A) silica abrasive grains having a functional group represented by general formula (1), and (B) a liquid medium; and the silica abrasive grains (A) satisfy the conditions (a) and (b) described below. (a) The zeta potential thereof in the composition for chemical mechanical polishing is less than -10 mV. (b) The silica abrasive grains are chained spherical grains, in each of which three or more particles are connected. (1): -SO3 -M+ (In the formula, M+ represents a monovalent positive ion.)

Description

化学機械研磨用組成物及び化学機械研磨方法Composition for chemical mechanical polishing and chemical mechanical polishing method
 本発明は、化学機械研磨用組成物及び化学研磨方法に関する。 The present invention relates to a composition for chemical mechanical polishing and a chemical polishing method.
 半導体装置内に形成される配線及びプラグ等からなる配線層の微細化が進んでいる。これに伴い、配線層を化学機械研磨(以下、「CMP」ともいう。)により平坦化する手法が用いられている。一般に、シリコン酸化膜(SiO)を研磨するCMPでは、シリコン窒化膜(SiN)が研磨し難い膜であることを利用して、シリコン窒化膜をストッパー膜とすることにより終点を検出している。シリコン酸化膜をCMPにより除去した後は、ストッパー膜としてのシリコン窒化膜についても除去する必要がある。 The miniaturization of the wiring layer composed of wiring, plugs, etc. formed in the semiconductor device is progressing. Along with this, a method of flattening the wiring layer by chemical mechanical polishing (hereinafter, also referred to as “CMP”) has been used. Generally, in CMP for polishing a silicon oxide film (SiO 2 ), the end point is detected by using a silicon nitride film as a stopper film by utilizing the fact that the silicon nitride film (SiN) is a film that is difficult to polish. .. After removing the silicon oxide film by CMP, it is also necessary to remove the silicon nitride film as the stopper film.
 シリコン窒化膜をCMPにより選択的に除去するためには、シリコン酸化膜やポリシリコン膜に対するシリコン窒化膜の研磨速度比(以下、「選択比」ともいう)を大きくする必要がある。このような特性を実現するために、リン酸、硝酸、フッ酸を含有し、pHを1~5に調整した研磨液を用いてシリコン窒化膜を研磨する方法(特許文献1参照)や、エッチング作用を抑制させた酸性添加剤を含有し、シリコン窒化膜を選択的に研磨し得る研磨液(特許文献2参照)が提案されている。 In order to selectively remove the silicon nitride film by CMP, it is necessary to increase the polishing rate ratio (hereinafter, also referred to as "selection ratio") of the silicon nitride film to the silicon oxide film or polysilicon film. In order to realize such characteristics, a method of polishing a silicon nitride film using a polishing solution containing phosphoric acid, nitric acid, and hydrofluoric acid and adjusting the pH to 1 to 5 (see Patent Document 1) and etching. A polishing solution (see Patent Document 2) that contains an acidic additive whose action is suppressed and can selectively polish a silicon nitride film has been proposed.
特開2004-214667号公報Japanese Unexamined Patent Publication No. 2004-214667 特開2006-120728号公報JP-A-2006-120728
 しかしながら、上述の研磨液は、シリコン窒化膜を選択的に研磨することはできるが、選択比が大きすぎるために、シリコン窒化膜とシリコン酸化膜との段差部の所でシリコン窒化膜が皿状に削れてしまうディッシングと呼ばれる表面欠陥が発生しやすかった。このような表面欠陥は、半導体装置製造の歩留まりを低下させる一因となる。 However, although the above-mentioned polishing liquid can selectively polish the silicon nitride film, the selection ratio is too large, so that the silicon nitride film is dish-shaped at the step portion between the silicon nitride film and the silicon oxide film. Surface defects called dishing, which are easily scraped off, were likely to occur. Such surface defects contribute to a decrease in the yield of semiconductor device manufacturing.
 このように、シリコン酸化膜に対するシリコン窒化膜の研磨速度比を大きくするとともに、シリコン窒化膜におけるディッシングの発生を低減できる化学機械研磨用組成物、及び化学機械研磨方法が要求されている。 As described above, there is a demand for a composition for chemical mechanical polishing and a chemical mechanical polishing method capable of increasing the polishing rate ratio of the silicon nitride film to the silicon oxide film and reducing the occurrence of dishing in the silicon nitride film.
 本発明に係る化学機械研磨用組成物の一態様は、
 (A)下記一般式(1)で表される官能基を有するシリカ砥粒と、
 (B)液状媒体と、
を含有する化学機械研磨用組成物であって、
 前記(A)シリカ砥粒が下記条件(a)及び(b)を満たす。
(a)化学機械研磨用組成物中におけるゼータ電位が-10mV未満であること。
(b)3つ以上の粒子が繋がって形成された連鎖球状であること。
 -SO  ・・・・・(1)
 (Mは1価の陽イオンを表す。)
One aspect of the chemical mechanical polishing composition according to the present invention is
(A) Silica abrasive grains having a functional group represented by the following general formula (1) and
(B) Liquid medium and
A composition for chemical mechanical polishing containing
The silica abrasive grains (A) satisfy the following conditions (a) and (b).
(A) The zeta potential in the composition for chemical mechanical polishing is less than -10 mV.
(B) A chain sphere formed by connecting three or more particles.
-SO 3 - M + ... (1)
(M + represents a monovalent cation.)
 前記化学機械研磨用組成物の一態様において、
 前記(A)成分が、その表面に前記一般式(1)で表される官能基が共有結合を介して固定されたシリカ砥粒であることができる。
In one aspect of the chemical mechanical polishing composition,
The component (A) can be silica abrasive grains in which a functional group represented by the general formula (1) is fixed on the surface thereof via a covalent bond.
 前記化学機械研磨用組成物のいずれかの態様において、
 pHが2以上5以下であることができる。
In any aspect of the chemical mechanical polishing composition.
The pH can be 2 or more and 5 or less.
 前記化学機械研磨用組成物のいずれかの態様において、
 化学機械研磨用組成物の全質量を100質量%としたときに、
 前記(A)成分の含有量が0.1質量%以上10質量%以下であることができる。
In any aspect of the chemical mechanical polishing composition.
When the total mass of the chemical mechanical polishing composition is 100% by mass,
The content of the component (A) can be 0.1% by mass or more and 10% by mass or less.
 前記化学機械研磨用組成物のいずれかの態様において、
 さらに、酸性化合物を含有することができる。
In any aspect of the chemical mechanical polishing composition.
In addition, it can contain acidic compounds.
 前記化学機械研磨用組成物のいずれかの態様において、
  さらに、ポリビニルメチルエーテル及びポリ(N-イソプロピルアクリルアミド)から選ばれる1種以上を含有することができる。
In any aspect of the chemical mechanical polishing composition.
Furthermore, it can contain one or more selected from polyvinyl methyl ether and poly (N-isopropylacrylamide).
 前記化学機械研磨用組成物のいずれかの態様は、
 半導体装置を構成する複数の材料のうち、化学機械研磨の際に正電荷を帯びる材料を研磨するために用いられることができる。
Any aspect of the chemical mechanical polishing composition
Among a plurality of materials constituting a semiconductor device, it can be used for polishing a material that has a positive charge during chemical mechanical polishing.
 前記化学機械研磨用組成物のいずれかの態様において、
 前記正電荷を帯びる材料がシリコン窒化膜であることができる。
In any aspect of the chemical mechanical polishing composition.
The positively charged material can be a silicon nitride film.
 本発明に係る化学機械研磨方法の一態様は、
 前記いずれかの態様の化学機械研磨用組成物を用いて、半導体装置を構成する複数の材料のうち、化学機械研磨の際に正電荷を帯びる材料を研磨する工程を含む。
One aspect of the chemical mechanical polishing method according to the present invention is
The step of polishing a material having a positive charge at the time of chemical mechanical polishing among a plurality of materials constituting a semiconductor device by using the composition for chemical mechanical polishing of any one of the above embodiments is included.
 前記化学機械研磨方法の一態様において、
 前記正電荷を帯びる材料がシリコン窒化膜であることができる。
In one aspect of the chemical mechanical polishing method
The positively charged material can be a silicon nitride film.
 本発明に係る化学機械研磨用組成物によれば、シリコン酸化膜に対するシリコン窒化膜の研磨速度比を大きくすることができ、かつ、シリコン窒化膜におけるディッシングの発生を低減することができる。 According to the chemical mechanical polishing composition according to the present invention, the polishing rate ratio of the silicon nitride film to the silicon oxide film can be increased, and the occurrence of dishing in the silicon nitride film can be reduced.
図1は、素子間分離における被処理体の作製工程を模式的に示した断面図である。FIG. 1 is a cross-sectional view schematically showing a manufacturing process of an object to be processed in separation between elements. 図2は、第1研磨工程後の被処理体を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an object to be processed after the first polishing step. 図3は、第2研磨工程後の被処理体を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing the object to be processed after the second polishing step. 図4は、化学機械研磨装置を模式的に示した斜視図である。FIG. 4 is a perspective view schematically showing a chemical mechanical polishing apparatus.
 以下、本発明の好適な実施形態について詳細に説明する。なお、本発明は、下記の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含む。 Hereinafter, preferred embodiments of the present invention will be described in detail. The present invention is not limited to the following embodiments, and includes various modifications that are carried out without changing the gist of the present invention.
 本明細書において、「X~Y」のように記載された数値範囲は、数値Xを下限値として含み、かつ、数値Yを上限値として含むものとして解釈される。 In the present specification, the numerical range described as "XY" is interpreted as including the numerical value X as the lower limit value and the numerical value Y as the upper limit value.
 1.化学機械研磨用組成物
 本発明の一実施形態に係る化学機械研磨用組成物は、(A)下記一般式(1)で表される官能基を有するシリカ砥粒(本明細書において、単に「(A)成分」ともいう。)と、(B)液状媒体(本明細書において、単に「(B)成分」ともいう。)と、を含有し、前記(A)シリカ砥粒が、条件(a)化学機械研磨用組成物中におけるゼータ電位が-10mV未満であること及び条件(b)3つ以上の粒子が繋がって形成された連鎖球状であることを満たす。
 -SO  ・・・・・(1)
 (Mは1価の陽イオンを表す。)
 以下、本実施形態に係る化学機械研磨用組成物に含まれる各成分について詳細に説明する。
1. 1. Composition for Chemical Mechanical Polishing The composition for chemical mechanical polishing according to an embodiment of the present invention is (A) silica abrasive grains having a functional group represented by the following general formula (1) (in the present specification, simply " (Also referred to as “component (A)”) and (B) liquid medium (also simply referred to as “component (B)” in the present specification), and the above-mentioned (A) silica abrasive grains are conditions (referred to as “component (B)”). a) The zeta potential in the composition for chemical mechanical polishing is less than -10 mV, and the condition (b) is a chain sphere formed by connecting three or more particles.
-SO 3 - M + ... (1)
(M + represents a monovalent cation.)
Hereinafter, each component contained in the chemical mechanical polishing composition according to the present embodiment will be described in detail.
 1.1.(A)成分
 本実施形態に係る化学機械研磨用組成物は、砥粒成分として、(A)下記一般式(1)で表される官能基を有するシリカ砥粒を含有する。
 -SO  ・・・・・(1)
 (Mは1価の陽イオンを表す。)
 Mで表される1価の陽イオンとしては、これらに限定されないが、例えば、H、Li、Na、K、NH が挙げられる。すなわち、(A)成分は、「(A)スルホ基及びその塩よりなる群から選択される少なくとも1種の官能基を有するシリカ砥粒」と言い換えることもできる。ここで、「スルホ基の塩」とは、スルホ基(-SOH)に含まれている水素イオンをLi、Na、K、NH 等の1価の陽イオンで置換した官能基のことをいう。(A)成分は、その表面に上記一般式(1)で表される官能基が共有結合を介して固定されたシリカ砥粒であり、その表面に上記一般式(1)で表される官能基を有する化合物が物理的あるいはイオン的に吸着したようなものは含まれない。
1.1. (A) Component The composition for chemical mechanical polishing according to the present embodiment contains (A) silica abrasive grains having a functional group represented by the following general formula (1) as an abrasive grain component.
-SO 3 - M + ... (1)
(M + represents a monovalent cation.)
Examples of the monovalent cation represented by M +, but not limited to, for example, H +, Li +, Na +, K +, include NH 4 +. That is, the component (A) can be rephrased as "silica abrasive grains having at least one functional group selected from the group consisting of (A) a sulfo group and a salt thereof". Here, the "salt of a sulfo group", + hydrogen ions contained in the sulfo group (-SO 3 H) Li, Na +, K +, and substituted with a monovalent cation NH 4 +, etc. It refers to a functional group. The component (A) is a silica abrasive grain in which a functional group represented by the general formula (1) is fixed on the surface thereof via a covalent bond, and the functional group represented by the general formula (1) is fixed on the surface thereof. It does not include substances in which a compound having a group is physically or ionically adsorbed.
 本実施形態において使用される(A)成分は、例えば、以下のようにして製造することができる。
 まず、シリカ粒子を用意する。シリカ粒子としては、例えば、ヒュームドシリカ、コロイダルシリカ等が挙げられるが、スクラッチ等の研磨欠陥を低減する観点から、コロイダルシリカが好ましい。コロイダルシリカは、例えば、特開2003-109921号公報等に記載された方法で製造されたものを使用することができる。このようなシリカ粒子の表面を修飾することにより、本実施形態で使用可能な(A)成分を製造することができる。以下にシリカ粒子の表面を修飾する方法を例示するが、本発明はこの具体例により何ら限定されるものではない。
The component (A) used in the present embodiment can be produced, for example, as follows.
First, silica particles are prepared. Examples of the silica particles include fumed silica and colloidal silica, but colloidal silica is preferable from the viewpoint of reducing polishing defects such as scratches. As the colloidal silica, for example, those manufactured by the method described in JP-A-2003-109921 can be used. By modifying the surface of such silica particles, the component (A) that can be used in the present embodiment can be produced. Hereinafter, a method of modifying the surface of silica particles will be illustrated, but the present invention is not limited to this specific example.
 シリカ粒子の表面の修飾は、特開2010-269985号公報や、J.Ind.Eng.Chem.,Vol.12,No.6,(2006)911-917等に記載された方法を適用することができる。例えば、前記シリカ粒子とメルカプト基含有シランカップリング剤を酸性媒体中で十分に撹拌することにより、前記シリカ粒子の表面にメルカプト基含有シランカップリング剤を共有結合させることができる。メルカプト基含有シランカップリング剤としては、例えば、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン等が挙げられる。 For modification of the surface of silica particles, see Japanese Patent Application Laid-Open No. 2010-269985 and J.A. Ind. Eng. Chem. , Vol. 12, No. 6, (2006) 911-917 and the like can be applied. For example, the mercapto group-containing silane coupling agent can be covalently bonded to the surface of the silica particles by sufficiently stirring the silica particles and the mercapto group-containing silane coupling agent in an acidic medium. Examples of the mercapto group-containing silane coupling agent include 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethoxysilane.
 次いで、さらに過酸化水素を適量添加して十分に放置することにより、(A)成分を得ることができる。 Next, the component (A) can be obtained by further adding an appropriate amount of hydrogen peroxide and leaving it to stand sufficiently.
 本実施形態において使用される(A)成分は、条件(a):化学機械研磨用組成物中におけるゼータ電位が-10mV未満であることを満たす。本実施形態において使用される(A)成分は、化学機械研磨用組成物中におけるゼータ電位が-10mV未満であり、好ましくは-40mV以上-10mV未満であり、より好ましくは-40mV以上-20mV以下であり、特に好ましくは-40mV以上-25mV以下である。本実施形態に係る化学機械研磨用組成物のpHは、後述のように2以上5以下であることが好ましいが、pHが2以上5以下の領域のいずれかにおける(A)成分のゼータ電位が-10mV未満であると、(A)成分とシリコン窒化膜との静電相互作用に基づく引力によって(A)成分がシリコン窒化膜の表面に局在化しやすくなるので、シリコン窒化膜に対する高速研磨を実現できる。一方、pHが2以上5以下の領域における(A)成分のゼータ電位が-10mV以上であると、(A)成分とシリコン窒化膜との静電相互作用が小さくなるかもしくは斥力が働くので、シリコン窒化膜に対する研磨速度が不十分となる場合がある。pHが2以上5以下の領域のいずれかにおける(A)成分のゼータ電位を-10mV未満とするためには、上述のシリカ粒子の表面修飾において、メルカプト基含有シランカップリング剤の添加量を適宜増減することにより調整することができる。 The component (A) used in the present embodiment satisfies the condition (a): that the zeta potential in the composition for chemical mechanical polishing is less than -10 mV. The component (A) used in the present embodiment has a zeta potential of less than -10 mV, preferably -40 mV or more and less than -10 mV, and more preferably -40 mV or more and -20 mV or less in the composition for chemical mechanical polishing. It is particularly preferably -40 mV or more and -25 mV or less. The pH of the chemical mechanical polishing composition according to the present embodiment is preferably 2 or more and 5 or less as described later, but the zeta potential of the component (A) in any of the regions where the pH is 2 or more and 5 or less is If it is less than -10 mV, the component (A) is likely to be localized on the surface of the silicon nitride film due to the attractive force based on the electrostatic interaction between the component (A) and the silicon nitride film. realizable. On the other hand, when the zeta potential of the component (A) in the region of pH 2 or more and 5 or less is -10 mV or more, the electrostatic interaction between the component (A) and the silicon nitride film becomes small or a repulsive force acts. The polishing rate for the silicon nitride film may be insufficient. In order to make the zeta potential of the component (A) less than -10 mV in any of the regions where the pH is 2 or more and 5 or less, the amount of the mercapto group-containing silane coupling agent added in the above-mentioned surface modification of the silica particles is appropriately adjusted. It can be adjusted by increasing or decreasing.
 (A)成分のゼータ電位は、レーザードップラー法を測定原理とするゼータ電位測定装置を用いて常法により測定することできる。このようなゼータ電位測定装置としては、例えば、ブルックヘブンインスツルメント社製の「ゼータポテンシャルアナライザー」、大塚電子株式会社製の「ELSZ-1000ZS」等が挙げられる。 The zeta potential of the component (A) can be measured by a conventional method using a zeta potential measuring device based on the laser Doppler method. Examples of such a zeta potential measuring device include a "zeta potential analyzer" manufactured by Brook Haven Instruments Co., Ltd. and an "ELSZ-1000ZS" manufactured by Otsuka Electronics Co., Ltd.
 本実施形態において使用される(A)成分は、条件(b):3つ以上の粒子が繋がって形成された連鎖球状であることを満たす。本明細書において、「連鎖球状」とは、3つ以上の粒子が一列もしくは複数列に結合してできた粒子群のことをいい、直線構造だけでなく分岐構造も含まれる。(A)成分が3つ以上の粒子が繋がって形成された連鎖球状であると、被研磨面であるシリコン窒化膜との接触抵抗が大きくなることで、シリコン窒化膜に対する高速研磨を実現できるとともに、適度な選択比が得られることが明らかとなった。 The component (A) used in the present embodiment satisfies the condition (b): a chain sphere formed by connecting three or more particles. As used herein, the term "chained sphere" refers to a group of particles formed by combining three or more particles in a single row or a plurality of rows, and includes not only a linear structure but also a branched structure. When the component (A) is a chain sphere formed by connecting three or more particles, the contact resistance with the silicon nitride film, which is the surface to be polished, increases, so that high-speed polishing of the silicon nitride film can be realized. , It became clear that an appropriate selection ratio can be obtained.
 (A)成分が3つ以上の粒子が繋がって形成された連鎖球状であるか否かを確認するためには、常法により(A)成分の試料を作製し、透過型電子顕微鏡(Transmission Electron Microscope)を用いて観察することにより確認することができる。 In order to confirm whether or not the component (A) is a chain sphere formed by connecting three or more particles, a sample of the component (A) is prepared by a conventional method, and a transmission electron microscope (Transmission Electron) is used. It can be confirmed by observing with a Microscope).
 (A)成分を構成する一次粒子の平均粒子径の下限値は、好ましくは30nmであり、より好ましくは40nmである。(A)成分を構成する一次粒子の平均粒子径の上限値は、好ましくは100nmであり、より好ましくは80nmである。(A)成分を構成する一次粒子の平均粒子径が前記範囲であると、被研磨面であるシリコン窒化膜に対して、研磨欠陥の発生を抑制しつつ実用的な研磨速度で研磨できる場合がある。(A)成分を構成する一次粒子の平均粒子径は、常法により(A)成分の試料を作製し、透過型電子顕微鏡(Transmission Electron Microscope)を用いて観察することにより確認することができる。 The lower limit of the average particle size of the primary particles constituting the component (A) is preferably 30 nm, more preferably 40 nm. The upper limit of the average particle size of the primary particles constituting the component (A) is preferably 100 nm, more preferably 80 nm. When the average particle size of the primary particles constituting the component (A) is within the above range, the silicon nitride film to be polished may be polished at a practical polishing rate while suppressing the occurrence of polishing defects. is there. The average particle size of the primary particles constituting the component (A) can be confirmed by preparing a sample of the component (A) by a conventional method and observing it with a transmission electron microscope.
 (A)成分の含有量の下限値は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.1質量%であり、より好ましくは0.5質量%であり、特に好ましくは1質量%である。(A)成分の含有量の上限値は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは10質量%であり、より好ましくは8質量%であり、特に好ましくは6質量%である。(A)成分の含有量が前記範囲であると、被研磨面であるシリコン窒化膜に対する高速研磨を実現できるとともに、化学機械研磨用組成物の保存安定性が良好となる場合がある。 The lower limit of the content of the component (A) is preferably 0.1% by mass, more preferably 0.5% by mass, when the total mass of the composition for chemical mechanical polishing is 100% by mass. , Particularly preferably 1% by mass. The upper limit of the content of the component (A) is preferably 10% by mass, more preferably 8% by mass, and particularly preferably 8% by mass when the total mass of the composition for chemical mechanical polishing is 100% by mass. It is 6% by mass. When the content of the component (A) is within the above range, high-speed polishing of the silicon nitride film to be polished can be realized, and the storage stability of the composition for chemical mechanical polishing may be improved.
 1.2.(B)液状媒体
 本実施形態に係る化学機械研磨用組成物は、(B)液状媒体を含有する。(B)成分としては、水、水及びアルコールの混合媒体、水及び水との相溶性を有する有機溶媒を含む混合媒体等が挙げられる。これらの中でも、水、水及びアルコールの混合媒体を用いることが好ましく、水を用いることがより好ましい。水としては、特に制限されるものではないが、純水が好ましい。水は、化学機械研磨用組成物の構成材料の残部として配合されていればよく、水の含有量については特に制限はない。
1.2. (B) Liquid medium The composition for chemical mechanical polishing according to this embodiment contains (B) a liquid medium. Examples of the component (B) include a mixed medium of water, water and alcohol, a mixed medium containing an organic solvent compatible with water and water, and the like. Among these, it is preferable to use a mixed medium of water, water and alcohol, and it is more preferable to use water. The water is not particularly limited, but pure water is preferable. Water may be blended as the remainder of the constituent material of the composition for chemical mechanical polishing, and the content of water is not particularly limited.
 1.3.その他の添加剤
 本実施形態に係る化学機械研磨用組成物は、必要に応じて、酸性化合物、水溶性高分子、界面活性剤、酸化剤、防蝕剤、pH調整剤等の添加剤をさらに含有してもよい。以下、各添加剤について説明する。
1.3. Other Additives The composition for chemical mechanical polishing according to the present embodiment further contains additives such as an acidic compound, a water-soluble polymer, a surfactant, an oxidizing agent, an anticorrosive agent, and a pH adjuster, if necessary. You may. Hereinafter, each additive will be described.
<酸性化合物>
 本実施形態に係る化学機械研磨用組成物は、酸性化合物を含有することが好ましい。酸性化合物を含有することにより、(A)成分との相乗効果が得られ、シリコン窒化膜の研磨速度を向上できる場合がある。
<Acid compound>
The composition for chemical mechanical polishing according to the present embodiment preferably contains an acidic compound. By containing the acidic compound, a synergistic effect with the component (A) can be obtained, and the polishing rate of the silicon nitride film may be improved.
 このような酸性化合物としては、有機酸及び無機酸が挙げられる。有機酸としては、例えば、マロン酸、クエン酸、リンゴ酸、酒石酸、シュウ酸、乳酸、イミノジ酢酸等の飽和カルボン酸;アクリル酸、メタクリル酸、クロトン酸、2-ブテン酸、2-メチル-3-ブテン酸、2-ヘキセン酸、3-メチル-2-ヘキセン酸等の不飽和モノカルボン酸;マレイン酸、フマル酸、シトラコン酸、メサコン酸、2-ペンテン二酸、イタコン酸、アリルマロン酸、イソプロピリデンコハク酸、2,4-ヘキサジエン二酸、アセチレンジカルボン酸等の不飽和ジカルボン酸;トリメリット酸等の芳香族カルボン酸、及びこれらの塩が挙げられる。無機酸としては、例えば、リン酸、硫酸、塩酸、硝酸、及びこれらの塩が挙げられる。これらの酸性化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of such acidic compounds include organic acids and inorganic acids. Examples of the organic acid include saturated carboxylic acids such as malonic acid, citric acid, malic acid, tartaric acid, oxalic acid, lactic acid and iminodiacetic acid; acrylic acid, methacrylic acid, crotonic acid, 2-butenoic acid and 2-methyl-3. -Unsaturated monocarboxylic acids such as butenoic acid, 2-hexenoic acid, 3-methyl-2-hexenoic acid; maleic acid, fumaric acid, citraconic acid, mesaconic acid, 2-pentenedioic acid, itaconic acid, allylmalonic acid, isopropi Unsaturated dicarboxylic acids such as redensuccinic acid, 2,4-hexadiendioic acid, and acetylenedicarboxylic acid; aromatic carboxylic acids such as trimellitic acid, and salts thereof. Examples of the inorganic acid include phosphoric acid, sulfuric acid, hydrochloric acid, nitric acid, and salts thereof. These acidic compounds may be used alone or in combination of two or more.
 本実施形態に係る化学機械研磨用組成物が酸性化合物を含有する場合において、酸性化合物の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.001~5質量%であり、より好ましくは0.003~1質量%であり、特に好ましくは0.005~0.5質量%である。 When the composition for chemical mechanical polishing according to the present embodiment contains an acidic compound, the content of the acidic compound is preferably 0.001 when the total mass of the composition for chemical mechanical polishing is 100% by mass. It is about 5% by mass, more preferably 0.003 to 1% by mass, and particularly preferably 0.005 to 0.5% by mass.
<水溶性高分子>
 本実施形態に係る化学機械研磨用組成物は、水溶性高分子を含有してもよい。水溶性高分子には、シリコン窒化膜の表面に吸着して研磨摩擦を低減させる効果がある。この効果により、シリコン窒化膜におけるディッシングの発生を大幅に低減できる場合がある。
<Water-soluble polymer>
The composition for chemical mechanical polishing according to the present embodiment may contain a water-soluble polymer. The water-soluble polymer has the effect of adsorbing to the surface of the silicon nitride film and reducing polishing friction. Due to this effect, the occurrence of dishing in the silicon nitride film may be significantly reduced.
 水溶性高分子としては、ポリエチレンイミン、ポリ(メタ)アクリルアミド、ポリN-アルキル(メタ)アクリルアミド、ポリ(メタ)アクリル酸、ポリオキシエチレンアルキルアミン、ポリビニルアルコール、ポリビニルアルキルエーテル、ポリビニルピロリドン、ヒドロキシエチルセルロース、カルボキシメチルセルロース、(メタ)アクリル酸とマレイン酸の共重合体、ポリ(メタ)アクリルアミン等の高分子アミン化合物等が挙げられる。これらの水溶性高分子は、1種単独で用いてもよいし、2種以上組み合わせて用いてもよい。 Water-soluble polymers include polyethyleneimine, poly (meth) acrylamide, poly N-alkyl (meth) acrylamide, poly (meth) acrylic acid, polyoxyethylene alkylamine, polyvinyl alcohol, polyvinyl alkyl ether, polyvinylpyrrolidone, and hydroxyethyl cellulose. , Carboxymethyl cellulose, a copolymer of (meth) acrylic acid and maleic acid, a polymer amine compound such as poly (meth) acrylic amine, and the like. These water-soluble polymers may be used alone or in combination of two or more.
 これらの中でも、ポリビニルメチルエーテル、ポリ(N-イソプロピルアクリルアミド)等の熱応答性ポリマーやポリ(メタ)アクリルアミン等の高分子アミン化合物が好ましく、ポリビニルメチルエーテル、ポリ(N-イソプロピルアクリルアミド)がより好ましい。これらの水溶性高分子を添加することにより、シリコン窒化膜に対する研磨速度を低下させることなく、シリコン窒化膜におけるディッシングの発生をより効果的に低減できる場合がある。 Among these, heat-responsive polymers such as polyvinyl methyl ether and poly (N-isopropylacrylamide) and polymer amine compounds such as poly (meth) acrylic amine are preferable, and polyvinyl methyl ether and poly (N-isopropylacrylamide) are more preferable. preferable. By adding these water-soluble polymers, it may be possible to more effectively reduce the occurrence of dishing in the silicon nitride film without lowering the polishing rate for the silicon nitride film.
 水溶性高分子の重量平均分子量(Mw)は、好ましくは1,000~1,000,000であり、より好ましくは3,000~800,000である。水溶性高分子の重量平均分子量が前記範囲にあると、シリコン窒化膜の表面に吸着しやすくなり、研磨摩擦をより低減できる場合がある。その結果、シリコン窒化膜におけるディッシングの発生をより効果的に低減できる場合がある。なお、本明細書中における「重量平均分子量(Mw)」とは、GPC(ゲルパーミエーションクロマトグラフィー)によって測定されたポリエチレングリコール換算の重量平均分子量のことを指す。 The weight average molecular weight (Mw) of the water-soluble polymer is preferably 1,000 to 1,000,000, more preferably 3,000 to 800,000. When the weight average molecular weight of the water-soluble polymer is within the above range, it is likely to be adsorbed on the surface of the silicon nitride film, and polishing friction may be further reduced. As a result, the occurrence of dishing in the silicon nitride film may be reduced more effectively. The "weight average molecular weight (Mw)" in the present specification refers to a polyethylene glycol-equivalent weight average molecular weight measured by GPC (gel permeation chromatography).
 本実施形態に係る化学機械研磨用組成物が水溶性高分子を含有する場合において、水溶性高分子の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.005~0.5質量%であり、より好ましくは0.01~0.2質量%である。 When the composition for chemical mechanical polishing according to the present embodiment contains a water-soluble polymer, the content of the water-soluble polymer is preferably 100% by mass when the total mass of the composition for chemical mechanical polishing is 100% by mass. Is 0.005 to 0.5% by mass, more preferably 0.01 to 0.2% by mass.
 なお、水溶性高分子の含有量は、水溶性高分子の重量平均分子量(Mw)にも依存するが、化学機械研磨用組成物の25℃における粘度が0.5mPa・s以上10mPa・s未満となるように調整することが好ましい。化学機械研磨用組成物の25℃における粘度が0.5mPa・s以上10mPa・s未満であると、シリコン窒化膜を高速で研磨しやすく、粘度が適正であるため研磨布上に安定して化学機械研磨用組成物を供給することができる。 The content of the water-soluble polymer depends on the weight average molecular weight (Mw) of the water-soluble polymer, but the viscosity of the composition for chemical mechanical polishing at 25 ° C. is 0.5 mPa · s or more and less than 10 mPa · s. It is preferable to adjust so as to be. When the viscosity of the chemical mechanical polishing composition at 25 ° C. is 0.5 mPa · s or more and less than 10 mPa · s, it is easy to polish the silicon nitride film at high speed, and the viscosity is appropriate, so that the chemical is stable on the polishing cloth. A composition for mechanical polishing can be supplied.
<界面活性剤>
 本実施形態に係る化学機械研磨用組成物は、界面活性剤を含有してもよい。界面活性剤を含有することにより、化学機械研磨用組成物に適度な粘性を付与できる場合がある。化学機械研磨用組成物の粘度は、25℃において0.5mPa・s以上10mPa・s未満となるように調整することが好ましい。
<Surfactant>
The composition for chemical mechanical polishing according to the present embodiment may contain a surfactant. By containing a surfactant, it may be possible to impart an appropriate viscosity to the composition for chemical mechanical polishing. The viscosity of the chemical mechanical polishing composition is preferably adjusted to be 0.5 mPa · s or more and less than 10 mPa · s at 25 ° C.
 界面活性剤としては、特に制限されず、アニオン性界面活性剤、カチオン性界面活性剤、非イオン性界面活性剤等が挙げられる。 The surfactant is not particularly limited, and examples thereof include anionic surfactants, cationic surfactants, and nonionic surfactants.
 アニオン性界面活性剤としては、例えば、脂肪酸石鹸、アルキルエーテルカルボン酸塩等のカルボン酸塩;アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、α-オレフィンスルホン酸塩等のスルホン酸塩;高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩等の硫酸塩;パーフルオロアルキル化合物等の含フッ素系界面活性剤等が挙げられる。カチオン性界面活性剤としては、例えば、脂肪族アミン塩、脂肪族アンモニウム塩等が挙げられる。非イオン性界面活性剤としては、例えば、アセチレングリコール、アセチレングリコールエチレンオキサイド付加物、アセチレンアルコール等の三重結合を有する非イオン性界面活性剤;ポリエチレングリコール型界面活性剤等が挙げられる。これらの界面活性剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the anionic surfactant include carboxylic acid salts such as fatty acid soap and alkyl ether carboxylate; sulfonates such as alkylbenzene sulfonate, alkylnaphthalene sulfonate and α-olefin sulfonate; higher alcohol sulfate. Sulfates such as ester salts, alkyl ether sulfates and polyoxyethylene alkyl phenyl ether sulfates; fluorine-containing surfactants such as perfluoroalkyl compounds and the like can be mentioned. Examples of the cationic surfactant include an aliphatic amine salt and an aliphatic ammonium salt. Examples of the nonionic surfactant include a nonionic surfactant having a triple bond such as acetylene glycol, an acetylene glycol ethylene oxide adduct, and an acetylene alcohol; a polyethylene glycol type surfactant and the like. These surfactants may be used alone or in combination of two or more.
 本実施形態に係る化学機械研磨用組成物が界面活性剤を含有する場合において、界面活性剤の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.001~5質量%であり、より好ましくは0.003~3質量%であり、特に好ましくは0.005~1質量%である。 When the composition for chemical mechanical polishing according to the present embodiment contains a surfactant, the content of the surfactant is preferably 0 when the total mass of the composition for chemical mechanical polishing is 100% by mass. It is .001 to 5% by mass, more preferably 0.003 to 3% by mass, and particularly preferably 0.005 to 1% by mass.
<酸化剤>
 本実施形態に係る化学機械研磨用組成物は、酸化剤を含有してもよい。酸化剤を含有することにより、シリコン窒化膜を酸化して脆弱な改質層を作り出すことができるため、研磨速度が向上する場合がある。
<Oxidizing agent>
The composition for chemical mechanical polishing according to the present embodiment may contain an oxidizing agent. By containing an oxidizing agent, the silicon nitride film can be oxidized to form a fragile modified layer, which may improve the polishing rate.
 酸化剤としては、例えば、過硫酸アンモニウム、過硫酸カリウム、過酸化水素、硝酸第二鉄、硝酸二アンモニウムセリウム、次亜塩素酸カリウム、オゾン、過ヨウ素酸カリウム、過酢酸等が挙げられる。これらの酸化剤のうち、酸化力及び取り扱いやすさを考慮すると、過硫酸アンモニウム、過硫酸カリウム、過酸化水素が好ましく、過酸化水素がより好ましい。これらの酸化剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the oxidizing agent include ammonium persulfate, potassium persulfate, hydrogen peroxide, ferric nitrate, cerium diammonium nitrate, potassium hypochlorite, ozone, potassium periodate, peracetic acid and the like. Among these oxidizing agents, ammonium persulfate, potassium persulfate, and hydrogen peroxide are preferable, and hydrogen peroxide is more preferable, in consideration of oxidizing power and ease of handling. These oxidizing agents may be used alone or in combination of two or more.
 本実施形態に係る化学機械研磨用組成物が酸化剤を含有する場合において、酸化剤の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.1~5質量%であり、より好ましくは0.3~4質量%であり、特に好ましくは0.5~3質量%である。なお、酸化剤は、化学機械研磨用組成物中で分解されやすいため、CMPの研磨工程を行う直前に添加されることが望ましい。 When the composition for chemical mechanical polishing according to the present embodiment contains an oxidizing agent, the content of the oxidizing agent is preferably 0.1 when the total mass of the composition for chemical mechanical polishing is 100% by mass. It is about 5% by mass, more preferably 0.3 to 4% by mass, and particularly preferably 0.5 to 3% by mass. Since the oxidizing agent is easily decomposed in the composition for chemical mechanical polishing, it is desirable to add the oxidizing agent immediately before the polishing step of CMP.
<防蝕剤>
 本実施形態に係る化学機械研磨用組成物は、防蝕剤を含有してもよい。防蝕剤としては、例えば、ベンゾトリアゾール及びその誘導体が挙げられる。ここで、ベンゾトリアゾール誘導体とは、ベンゾトリアゾールの有する1個又は2個以上の水素原子を、例えば、カルボキシ基、メチル基、アミノ基、ヒドロキシ基等で置換したものをいう。ベンゾトリアゾール誘導体の具体例としては、4-カルボキシルベンゾトリアゾール、7-カルボキシベンゾトリアゾール、ベンゾトリアゾールブチルエステル、1-ヒドロキシメチルベンゾトリアゾール、1-ヒドロキシベンゾトリアゾール、及びこれらの塩等が挙げられる。
<Corrosion proofing agent>
The composition for chemical mechanical polishing according to the present embodiment may contain an anticorrosive agent. Examples of the anticorrosive agent include benzotriazole and its derivatives. Here, the benzotriazole derivative refers to one in which one or more hydrogen atoms contained in benzotriazole are replaced with, for example, a carboxy group, a methyl group, an amino group, a hydroxy group or the like. Specific examples of the benzotriazole derivative include 4-carboxybenzotriazole, 7-carboxybenzotriazole, benzotriazole butyl ester, 1-hydroxymethylbenzotriazole, 1-hydroxybenzotriazole, and salts thereof.
 本実施形態に係る化学機械研磨用組成物が防蝕剤を含有する場合において、防蝕剤の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは1質量%以下であり、より好ましくは0.001~0.1質量%である。 When the composition for chemical mechanical polishing according to the present embodiment contains an anticorrosive agent, the content of the anticorrosive agent is preferably 1% by mass when the total mass of the composition for chemical mechanical polishing is 100% by mass. It is more preferably 0.001 to 0.1% by mass.
<pH調整剤>
 本実施形態に係る化学機械研磨用組成物は、さらに必要に応じてpH調整剤を含有してもよい。pH調整剤としては、水酸化カリウム、エチレンジアミン、モノエタノールアミン、TMAH(テトラメチルアンモニウムヒドロキシド)、TEAH(テトラエチルアンモニウムヒドロキシド)、アンモニア等の塩基が挙げられ、これらの1種以上を用いることができる。
<pH adjuster>
The composition for chemical mechanical polishing according to the present embodiment may further contain a pH adjuster, if necessary. Examples of the pH adjuster include bases such as potassium hydroxide, ethylenediamine, monoethanolamine, TMAH (tetramethylammonium hydroxide), TEAH (tetraethylammonium hydroxide), and ammonia, and one or more of these bases may be used. it can.
 1.4.pH
 本実施形態に係る化学機械研磨用組成物のpHは、特に制限されないが、好ましくは2以上5以下であり、より好ましくは2以上4以下である。pHが前記範囲にあると、化学機械研磨用組成物中の(A)成分の分散性が向上することで、化学機械研磨用組成物の貯蔵安定性が良好となるため好ましい。
1.4. pH
The pH of the chemical mechanical polishing composition according to the present embodiment is not particularly limited, but is preferably 2 or more and 5 or less, and more preferably 2 or more and 4 or less. When the pH is in the above range, the dispersibility of the component (A) in the composition for chemical mechanical polishing is improved, and the storage stability of the composition for chemical mechanical polishing is improved, which is preferable.
 なお、本実施形態に係る化学機械研磨用組成物のpHは、例えば、前記酸性化合物や前記pH調整剤等の含有量を適宜増減することにより調整することができる。 The pH of the chemical mechanical polishing composition according to the present embodiment can be adjusted, for example, by appropriately increasing or decreasing the content of the acidic compound, the pH adjuster, or the like.
 本発明において、pHとは、水素イオン指数のことを指し、その値は、25℃、1気圧の条件下で市販のpHメーター(例えば、株式会社堀場製作所製、卓上型pHメーター)を用いて測定することができる。 In the present invention, the pH refers to a hydrogen ion index, the value of which is a commercially available pH meter (for example, a tabletop pH meter manufactured by HORIBA, Ltd.) under the conditions of 25 ° C. and 1 atm. Can be measured.
 1.5.用途
 本実施形態に係る化学機械研磨用組成物は、半導体装置を構成する複数の材料のうち、化学機械研磨の際に正電荷を帯びる材料を研磨するための研磨材として使用することができる。化学機械研磨の際に正電荷を帯びる代表的な材料としては、シリコン窒化膜、ドープされたポリシリコン等が挙げられる。本実施形態に係る化学機械研磨用組成物は、これらの中でもシリコン窒化膜を研磨する用途に特に適している。
1.5. Applications The chemical mechanical polishing composition according to the present embodiment can be used as an abrasive for polishing a material that is positively charged during chemical mechanical polishing among a plurality of materials constituting a semiconductor device. Typical materials that are positively charged during chemical mechanical polishing include silicon nitride films and doped polysilicon. Among these, the composition for chemical mechanical polishing according to the present embodiment is particularly suitable for the use of polishing a silicon nitride film.
 なお、本実施形態に係る化学機械研磨用組成物におけるシリコン窒化膜の研磨速度(PR)とシリコン酸化膜の研磨速度(PR)との比(PR/PR)は、シリコン窒化膜及びシリコン酸化膜のそれぞれを同一の研磨条件で研磨した際に、PR/PRの値が3以上10未満であることが好ましく、4以上9以下であることがより好ましいといえる。 The ratio of the polishing rate of the (PR N) and the silicon oxide film of the silicon nitride film in the chemical mechanical polishing composition of this embodiment (PR O) (PR N / PR O) is a silicon nitride film and each of the silicon oxide film when polished with the same polishing conditions, it is preferable that the value of PR N / PR O is less than 3 more than 10, it can be said that it is more preferably 4 to 9.
 1.6.化学機械研磨用組成物の調製方法
 本実施形態に係る化学機械研磨用組成物は、水等の液状媒体に上述の各成分を溶解又は分散させることにより調製することができる。溶解又は分散させる方法は、特に制限されず、均一に溶解又は分散できればどのような方法を適用してもよい。また、上述の各成分の混合順序や混合方法についても特に制限されない。
1.6. Method for Preparing Composition for Chemical Mechanical Polishing The composition for chemical mechanical polishing according to this embodiment can be prepared by dissolving or dispersing each of the above-mentioned components in a liquid medium such as water. The method for dissolving or dispersing is not particularly limited, and any method may be applied as long as it can be uniformly dissolved or dispersed. Further, the mixing order and mixing method of each of the above-mentioned components are not particularly limited.
 また、本実施形態に係る化学機械研磨用組成物は、濃縮タイプの原液として調製し、使用時に水等の液状媒体で希釈して使用することもできる。 Further, the composition for chemical mechanical polishing according to the present embodiment can be prepared as a concentrated type stock solution and diluted with a liquid medium such as water at the time of use.
 2.化学機械研磨方法
 本発明の一実施形態に係る研磨方法は、上述した化学機械研磨用組成物を用いて、半導体装置を構成する複数の材料のうち、化学機械研磨の際に正電荷を帯びる材料を研磨する工程を含む。化学機械研磨の際に正電荷を帯びる材料としては、例えばシリコン窒化膜やドープされたポリシリコン等が挙げられる。以下、本実施形態に係る化学機械研磨方法の一具体例として、素子間分離について図面を用いながら説明する。
2. Chemical Mechanical Polishing Method The polishing method according to the embodiment of the present invention is a material that is positively charged during chemical mechanical polishing among a plurality of materials constituting a semiconductor device using the above-mentioned chemical mechanical polishing composition. Includes the step of polishing. Examples of materials that are positively charged during chemical mechanical polishing include silicon nitride films and doped polysilicon. Hereinafter, as a specific example of the chemical mechanical polishing method according to the present embodiment, separation between elements will be described with reference to the drawings.
 2.1.被処理体
 図1は、素子間分離における被処理体の作製工程を模式的に示した断面図である。被処理体100は、以下の工程(1)~工程(3)を経ることにより作製される。
2.1. The object to be processed FIG. 1 is a cross-sectional view schematically showing a manufacturing process of the object to be processed in the separation between elements. The object to be processed 100 is produced by going through the following steps (1) to (3).
 (1)まず、図1に示すように、シリコンウエハ10を用意する。シリコンウエハ10には、(図示しない)トランジスタ等の機能デバイスが形成されていてもよい。次に、シリコンウエハ10の上に、熱酸化法を用いて熱酸化膜12を形成する。次に、熱酸化膜12の上にシリコン窒化膜14を堆積させる。シリコン窒化膜14は、ストッパー膜としての機能を有する。熱酸化膜12は、シリコンウエハ10上に直接シリコン窒化膜14を形成するとシリコンウエハ10に悪影響を及ぼすことがあり、またシリコンウエハ10とシリコン窒化膜14とが熱膨張の違いによって剥離することを防ぐために、シリコンウエハ10とシリコン窒化膜14との間に熱酸化膜12を介在させている。 (1) First, as shown in FIG. 1, a silicon wafer 10 is prepared. A functional device such as a transistor (not shown) may be formed on the silicon wafer 10. Next, a thermal oxide film 12 is formed on the silicon wafer 10 by using a thermal oxidation method. Next, the silicon nitride film 14 is deposited on the thermal oxide film 12. The silicon nitride film 14 has a function as a stopper film. When the silicon nitride film 14 is formed directly on the silicon wafer 10, the thermal oxide film 12 may adversely affect the silicon wafer 10, and the silicon wafer 10 and the silicon nitride film 14 may be peeled off due to the difference in thermal expansion. In order to prevent this, a thermal oxide film 12 is interposed between the silicon wafer 10 and the silicon nitride film 14.
 (2)次いで、シリコン窒化膜14をパターニングする。得られたパターンをマスクとして、ドライエッチングにより溝16を形成する。 (2) Next, the silicon nitride film 14 is patterned. Using the obtained pattern as a mask, the groove 16 is formed by dry etching.
 (3)次いで、CVD法を適用して溝16の内側にシリコン酸化膜18を成長させる。 (3) Next, the CVD method is applied to grow the silicon oxide film 18 inside the groove 16.
 以上の工程により、被処理体100が形成される。 By the above steps, the object to be processed 100 is formed.
 2.2.化学機械研磨方法
 2.2.1.第1研磨工程
 図2は、第1研磨工程終了時での被処理体を模式的に示した断面図である。図2に示すように、第1研磨工程では、図4に示す研磨装置200を用いて、シリコン窒化膜14をストッパーとして埋め込んだシリコン酸化膜18をCMPで研磨する。第1研磨工程では、シリコン酸化膜用の化学機械研磨用組成物を用いてCMPを行う。
2.2. Chemical mechanical polishing method 2.2.1. First Polishing Step FIG. 2 is a cross-sectional view schematically showing an object to be processed at the end of the first polishing step. As shown in FIG. 2, in the first polishing step, the silicon oxide film 18 in which the silicon nitride film 14 is embedded as a stopper is polished by CMP using the polishing device 200 shown in FIG. In the first polishing step, CMP is performed using a chemical mechanical polishing composition for a silicon oxide film.
 2.2.2.第2研磨工程
 図3は、第2研磨工程終了時での被処理体を模式的に示した断面図である。図3に示すように、第2研磨工程では、図4に示す研磨装置200を用いて、上述の化学機械研磨用組成物を用いてシリコン窒化膜14、及び溝16に埋め込まれたシリコン酸化膜18を研磨して平坦化する。上述の化学機械研磨用組成物は、適度な選択比を有するので、シリコン窒化膜14及びシリコン酸化膜18を研磨することができ、シリコン窒化膜14のディッシングの発生を低減できるので、第2研磨工程に適している。その後、更にCMPを継続するかウエットエッチングを行うことにより熱酸化膜12を除去することで、いわゆる素子間分離を行うことができる。
2.2.2. Second Polishing Step FIG. 3 is a cross-sectional view schematically showing an object to be processed at the end of the second polishing step. As shown in FIG. 3, in the second polishing step, the silicon nitride film 14 and the silicon oxide film embedded in the groove 16 are used by using the polishing apparatus 200 shown in FIG. 4 and using the above-mentioned chemical mechanical polishing composition. 18 is polished and flattened. Since the above-mentioned composition for chemical mechanical polishing has an appropriate selection ratio, the silicon nitride film 14 and the silicon oxide film 18 can be polished, and the occurrence of dishing of the silicon nitride film 14 can be reduced, so that the second polishing Suitable for the process. After that, the so-called inter-element separation can be performed by removing the thermal oxide film 12 by further continuing CMP or performing wet etching.
 2.3.化学機械研磨装置
 上述の第1研磨工程及び第2研磨工程には、例えば図4に示すような研磨装置200を用いることができる。図4は、研磨装置200を模式的に示した斜視図である。上述の第1研磨工程及び第2研磨工程は、スラリー供給ノズル42からスラリー(化学機械研磨用組成物)44を供給し、かつ研磨布46が貼付されたターンテーブル48を回転させながら、半導体基板50を保持したキャリアーヘッド52を当接させることにより行う。なお、図4には、水供給ノズル54及びドレッサー56も併せて示してある。
2.3. Chemical mechanical polishing apparatus For the first polishing step and the second polishing step described above, for example, the polishing apparatus 200 as shown in FIG. 4 can be used. FIG. 4 is a perspective view schematically showing the polishing apparatus 200. In the first polishing step and the second polishing step described above, the semiconductor substrate is supplied with the slurry (composition for chemical mechanical polishing) 44 from the slurry supply nozzle 42, and the turntable 48 to which the polishing pad 46 is attached is rotated. This is performed by bringing the carrier head 52 holding the 50 into contact with the carrier head 52. Note that FIG. 4 also shows the water supply nozzle 54 and the dresser 56.
 キャリアーヘッド52の研磨荷重は、10~980hPaの範囲内で選択することができ、好ましくは30~490hPaである。また、ターンテーブル48及びキャリアーヘッド52の回転数は10~400rpmの範囲内で適宜選択することができ、好ましくは30~150rpmである。スラリー供給ノズル42から供給されるスラリー(化学機械研磨用組成物)44の流量は、10~1,000mL/分の範囲内で選択することができ、好ましくは50~400mL/分である。 The polishing load of the carrier head 52 can be selected within the range of 10 to 980 hPa, preferably 30 to 490 hPa. The rotation speed of the turntable 48 and the carrier head 52 can be appropriately selected within the range of 10 to 400 rpm, and is preferably 30 to 150 rpm. The flow rate of the slurry (composition for chemical mechanical polishing) 44 supplied from the slurry supply nozzle 42 can be selected within the range of 10 to 1,000 mL / min, and is preferably 50 to 400 mL / min.
 市販の研磨装置としては、例えば、荏原製作所社製、型式「EPO-112」、「EPO-222」;ラップマスターSFT社製、型式「LGP-510」、「LGP-552」;アプライドマテリアル社製、型式「Mirra」、「Reflexion」;G&P TECHNOLOGY社製、型式「POLI-400L」;AMAT社製、型式「Reflexion LK」等が挙げられる。 Examples of commercially available polishing equipment include, for example, Ebara Corporation, model "EPO-112", "EPO-222"; Lapmaster SFT, model "LGP-510", "LGP-552"; Applied Material Co., Ltd. , Model "Mirra", "Reflection"; manufactured by G & P TECHNOLOGY, model "POLI-400L"; manufactured by AMAT, model "Reflexion LK" and the like.
 3.実施例
 以下、本発明を実施例により説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、本実施例における「部」及び「%」は、特に断らない限り質量基準である。
3. 3. Examples Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to these Examples. In addition, "part" and "%" in this Example are based on mass unless otherwise specified.
 3.1.シリカ粒子水分散体の調製
 3.1.1.水分散体Aの調製
 三角フラスコ(容量300mL)にテトラメチルオルトシリケート(TMOS)102.6gを計り取った。このTMOSを三角フラスコ(容量1L)に計量した純水347.4gに攪拌下に加えた。当初は不透明であった反応液が、15分後には加水分解反応の進行により透明な均一溶液となった。そのまま反応を1時間継続し、シリカ分9質量%のTMOS加水分解液450gを調製した。
3.1. Preparation of water dispersion of silica particles 3.1.1. Preparation of Aqueous Dispersion A 102.6 g of tetramethyl orthosilicate (TMS) was weighed in an Erlenmeyer flask (volume 300 mL). This TMOS was added to 347.4 g of pure water measured in an Erlenmeyer flask (capacity 1 L) under stirring. The initially opaque reaction solution became a transparent uniform solution after 15 minutes due to the progress of the hydrolysis reaction. The reaction was continued for 1 hour as it was, and 450 g of a TMOS hydrolyzed solution having a silica content of 9% by mass was prepared.
 温度計及びジムロート冷却管、蒸気温確認用温度計をつけたト字管(distilling head)、活性ケイ酸水溶液フィード管、攪拌機を取り付けた4つ口フラスコ(3L)に純水2250g、アルカリ触媒を所定量加え、母液とした。これを加熱し、リフラックス状態となったところでTMOS加水分解液のフィードを開始した。添加速度は2.5mL/分(5.9gシリカ/時/kg母液)とした。加水分解液をフィード終了したら、その状態で30分間保持した。その後、上記アルカリ触媒の1mmol/g水溶液4.5gを加え、pH8~9に調整した。以後pH8を保持するようアルカリ触媒水溶液を適宜添加しながら、上記要領で、3時間毎にTMOS加水分解液を調製しつつ、添加を継続した。TMOS加水分解液は、合計12回調製して添加した。その後、残留メタノールを水置換/除去後、加熱濃縮を行い、SiOに換算した濃度が20%となるまで濃縮した。濃縮後、混合セルロース3μmメンブランフィルター(東洋濾紙株式会社製)でろ過し、シリカ砥粒を含有する水分散体Aを得た。 A distilling head with a thermometer and a Dimroth condenser, a distilling head with a steam temperature confirmation thermometer, an active silicic acid aqueous solution feed tube, and a four-necked flask (3L) equipped with a stirrer, with 2250 g of pure water and an alkaline catalyst. A predetermined amount was added to prepare a mother liquor. This was heated, and when it was in a reflux state, feeding of the TMOS hydrolyzate was started. The addition rate was 2.5 mL / min (5.9 g silica / hour / kg mother liquor). When the feed of the hydrolyzed solution was completed, it was kept in that state for 30 minutes. Then, 4.5 g of a 1 mmol / g aqueous solution of the above alkaline catalyst was added to adjust the pH to 8-9. After that, while appropriately adding an alkaline catalyst aqueous solution so as to maintain pH 8, the addition was continued while preparing a TMOS hydrolyzed solution every 3 hours in the same manner as described above. The TMOS hydrolyzate was prepared and added 12 times in total. Then, after replacing / removing the residual methanol with water, heat concentration was performed, and the residue was concentrated until the concentration converted to SiO 2 became 20%. After concentration, the mixture was filtered through a mixed cellulose 3 μm membrane filter (manufactured by Toyo Filter Paper Co., Ltd.) to obtain an aqueous dispersion A containing silica abrasive grains.
 水分散体Aに含まれるシリカ砥粒を透過型電子顕微鏡(日立製作所社、型式「H-7000」)にて30,000倍で観察し、任意に50個選び観察したところ、いずれも3つ以上の粒子が繋がって形成された連鎖球状であることが確認できた。また、任意に50個選んだシリカ砥粒の一次粒子の平均粒子径を測定したところ、64nmであった。 The silica abrasive particles contained in the aqueous dispersion A were observed with a transmission electron microscope (Hitachi, Ltd., model "H-7000") at a magnification of 30,000, and 50 of them were arbitrarily selected and observed. It was confirmed that the above particles were connected to form a chain sphere. Moreover, when the average particle diameter of the primary particles of silica abrasive grains arbitrarily selected 50 was measured, it was 64 nm.
 3.1.2.水分散体Bの調製
 特開2011-201719号公報の実施例1に記載の方法にて合成して得られたシリカゾルを常圧下で5000mLまで加熱濃縮した。この濃縮液にシランカップリング剤として3-メルカプトプロピルトリメトキシシラン6.0gを加え、沸点で還流して熱熟成を行った。その後、容量を一定に保つために純水を追加しながらメタノール及びアンモニアを水置換し、pHが8以下になった時点で一旦シリカゾルの液温を室温に下げた。次に、35%過酸化水素水を53.5g添加して再び加熱し、8時間反応を続け、室温まで冷却後、スルホン酸修飾水性アニオンシリカゾルを得た。これを水分散体Bとした。
3.1.2. Preparation of Aqueous Dispersion B The silica sol synthesized by the method described in Example 1 of JP2011-201719A was heated and concentrated to 5000 mL under normal pressure. 6.0 g of 3-mercaptopropyltrimethoxysilane as a silane coupling agent was added to this concentrated solution, and the mixture was refluxed at the boiling point for thermal aging. Then, in order to keep the volume constant, methanol and ammonia were replaced with water while adding pure water, and when the pH became 8 or less, the liquid temperature of the silica sol was once lowered to room temperature. Next, 53.5 g of 35% hydrogen peroxide solution was added and heated again, the reaction was continued for 8 hours, and after cooling to room temperature, a sulfonic acid-modified aqueous anionic silica sol was obtained. This was designated as an aqueous dispersion B.
 水分散体Bに含まれるシリカ砥粒を透過型電子顕微鏡(日立製作所社、型式「H-7000」)にて30,000倍で観察し、任意に50個選び観察したところ、いずれも3つ以上の粒子が繋がって形成された連鎖球状であることが確認できた。また、任意に50個選んだシリカ砥粒の一次粒子の平均粒子径を測定したところ、64nmであった。 The silica abrasive particles contained in the aqueous dispersion B were observed with a transmission electron microscope (Hitachi, Ltd., model "H-7000") at a magnification of 30,000, and 50 of them were arbitrarily selected and observed. It was confirmed that the above particles were connected to form a chain sphere. Moreover, when the average particle diameter of the primary particles of silica abrasive grains arbitrarily selected 50 was measured, it was 64 nm.
 3.1.3.水分散体Cの調製
 特許第4132432号公報の実施例1に記載の方法で合成して得られたシリカゾルを常圧下で5000mLまで加熱濃縮した。この濃縮液にシランカップリング剤として3-メルカプトプロピルトリメトキシシラン6.0gを加え、沸点で還流して熱熟成を行った。その後、容量を一定に保つために純水を追加しながらメタノール及びアンモニアを水置換し、pHが8以下になった時点で一旦シリカゾルの液温を室温に下げた。次に、35%過酸化水素水を53.5g添加して再び加熱し、8時間反応を続け、室温まで冷却後、スルホン酸修飾水性アニオンシリカゾルを得た。これを水分散体Cとした。
3.1.3. Preparation of Aqueous Dispersion C The silica sol synthesized by the method described in Example 1 of Japanese Patent No. 4132432 was heated and concentrated to 5000 mL under normal pressure. 6.0 g of 3-mercaptopropyltrimethoxysilane as a silane coupling agent was added to this concentrated solution, and the mixture was refluxed at the boiling point for thermal aging. Then, in order to keep the volume constant, methanol and ammonia were replaced with water while adding pure water, and when the pH became 8 or less, the liquid temperature of the silica sol was once lowered to room temperature. Next, 53.5 g of 35% hydrogen peroxide solution was added and heated again, the reaction was continued for 8 hours, and after cooling to room temperature, a sulfonic acid-modified aqueous anionic silica sol was obtained. This was designated as an aqueous dispersion C.
 水分散体Cに含まれるシリカ砥粒を透過型電子顕微鏡(日立製作所社、型式「H-7000」)にて30,000倍で観察し、任意に50個選び観察したところ、いずれも3つ以上の粒子が繋がって形成された連鎖球状であることが確認できた。また、任意に50個選んだシリカ砥粒の一次粒子の平均粒子径を測定したところ、64nmであった。 The silica abrasive particles contained in the aqueous dispersion C were observed with a transmission electron microscope (Hitachi, Ltd., model "H-7000") at a magnification of 30,000, and 50 of them were arbitrarily selected and observed. It was confirmed that the above particles were connected to form a chain sphere. Moreover, when the average particle diameter of the primary particles of silica abrasive grains arbitrarily selected 50 was measured, it was 64 nm.
 3.1.4.水分散体Dの調製
 容量2000cmのフラスコに、25質量%濃度のアンモニア水70g、イオン交換水40g、エタノール175g及びテトラエトキシシラン21gを投入し、180rpmで撹拌しながら60℃に昇温した。60℃のまま1時間撹拌した後冷却し、コロイダルシリカ/アルコール分散体を得た。次いで、エバポレータにより、80℃でこの分散体にイオン交換水を添加しながらアルコール分を除去する操作を数回繰り返すことにより分散体中のアルコールを除き、固形分濃度15%の水分散体Dを調製した。
3.1.4. The flask was volume 2000 cm 3 of aqueous dispersion D, ammonia water 70g of 25% strength by weight, ion-exchanged water 40 g, ethanol 175g and tetraethoxysilane 21g were charged and heated with stirring to 60 ° C. at 180 rpm. After stirring at 60 ° C. for 1 hour, the mixture was cooled to obtain a colloidal silica / alcohol dispersion. Next, the operation of removing the alcohol content while adding ion-exchanged water to the dispersion at 80 ° C. was repeated several times by an evaporator to remove the alcohol in the dispersion, and the aqueous dispersion D having a solid content concentration of 15% was obtained. Prepared.
 水分散体Dに含まれるシリカ砥粒を透過型電子顕微鏡(日立製作所社、型式「H-7000」)にて30,000倍で観察し、任意に50個選び観察したところ、いずれも3つ以上の粒子が繋がって形成された連鎖球状ではないことが確認できた。また、任意に50個選んだシリカ砥粒の一次粒子の平均粒子径を測定したところ、70nmであった。 The silica abrasive particles contained in the aqueous dispersion D were observed with a transmission electron microscope (Hitachi, Ltd., model "H-7000") at a magnification of 30,000, and 50 of them were arbitrarily selected and observed. It was confirmed that it was not a chain sphere formed by connecting the above particles. Moreover, when the average particle diameter of the primary particles of silica abrasive grains arbitrarily selected 50 was measured, it was 70 nm.
 3.1.5.水分散体Eの調製
 イオン交換水50gに酢酸5gを投入し、撹拌しながらさらにメルカプト基含有シランカップリング剤(信越化学工業株式会社製、商品名「KBE803」)5gを徐々に滴下した。30分後、上記で調製した水分散体Dを1000g添加し、さらに1時間撹拌を継続した。その後、31%過酸化水素水を200g投入し、48時間室温にて放置することにより、スルホ基及びその塩よりなる群から選択される少なくとも1種の官能基を有するコロイダルシリカ(水分散体E)を得た。
3.1.5. Preparation of Aqueous Dispersion E 5 g of acetic acid was added to 50 g of ion-exchanged water, and 5 g of a mercapto group-containing silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name "KBE803") was gradually added dropwise with stirring. After 30 minutes, 1000 g of the aqueous dispersion D prepared above was added, and stirring was continued for another 1 hour. Then, by adding 200 g of 31% hydrogen peroxide solution and leaving it at room temperature for 48 hours, colloidal silica (aqueous dispersion E) having at least one functional group selected from the group consisting of a sulfo group and a salt thereof. ) Was obtained.
 水分散体Eに含まれるシリカ砥粒を透過型電子顕微鏡(日立製作所社、型式「H-7000」)にて30,000倍で観察し、任意に50個選び観察したところ、いずれも3つ以上の粒子が繋がって形成された連鎖球状ではないことが確認できた。また、任意に50個選んだシリカ砥粒の一次粒子の平均粒子径を測定したところ、68nmであった。 The silica abrasive particles contained in the aqueous dispersion E were observed with a transmission electron microscope (Hitachi, Ltd., model "H-7000") at a magnification of 30,000, and 50 of them were arbitrarily selected and observed. It was confirmed that it was not a chain sphere formed by connecting the above particles. Moreover, when the average particle diameter of the primary particles of silica abrasive grains arbitrarily selected 50 was measured, it was 68 nm.
 3.2.化学機械研磨用組成物の調製
 上記で調製した水分散体を所定の固形分濃度(質量%)となるようにポリエチレン製容器に、表1~表3に示す組成となるように各成分を添加し、更に必要に応じて水酸化カリウムを加え、表1~表3に示すpHとなるように調整し、全成分の合計量が100質量部となるように純水で調整することにより、各実施例及び各比較例の化学機械研磨用組成物を調製した。
3.2. Preparation of composition for chemical mechanical polishing Add each component to a polyethylene container so that the aqueous dispersion prepared above has a predetermined solid content concentration (mass%) so as to have the compositions shown in Tables 1 to 3. Then, if necessary, potassium hydroxide was added to adjust the pH to the pH shown in Tables 1 to 3, and the total amount of all the components was adjusted to 100 parts by mass with pure water. Compositions for chemical mechanical polishing of Examples and Comparative Examples were prepared.
 このようにして得られた各化学機械研磨用組成物について、ゼータ電位測定装置(Dispersion Technology Inc.製、型式「DT300」)を用いて砥粒のゼータ電位を測定した結果を表1~表3に併せて示す。 Tables 1 to 3 show the results of measuring the zeta potential of the abrasive grains of each chemical mechanical polishing composition thus obtained by using a zeta potential measuring device (manufactured by Dispersion Technology Inc., model "DT300"). It is also shown in.
 3.3.評価方法
 3.3.1.研磨速度試験
 上記で得られた化学機械研磨用組成物を用いて、直径12インチのシリコン窒化膜300nm付きウエハ又は直径12インチのp-TEOS膜(シリコン酸化膜)300nm付きウエハを被研磨体として、下記の研磨条件で60秒間の化学機械研磨試験を行った。
3.3. Evaluation method 3.3.1. Polishing rate test Using the composition for chemical mechanical polishing obtained above, a wafer with a diameter of 12 inches and a silicon nitride film with a diameter of 300 nm or a wafer with a diameter of 12 inches and a p-TEOS film (silicon oxide film) with a diameter of 300 nm is used as an object to be polished. , A chemical mechanical polishing test was carried out for 60 seconds under the following polishing conditions.
<研磨条件>
・研磨装置:AMAT社製、型式「Reflexion LK」
・研磨パッド:富士紡ホールディングス株式会社製、「多硬質ポリウレタン製パッド;H800-type1(3-1S)775」
・化学機械研磨用組成物供給速度:300mL/分
・定盤回転数:100rpm
・ヘッド回転数:90rpm
・ヘッド押し付け圧:2.5psi
・研磨速度(Å/分)=(研磨前の膜の厚さ-研磨後の膜の厚さ)/研磨時間
<Polishing conditions>
・ Polishing equipment: AMAT, model "Reflection LK"
-Polishing pad: Fujibo Holdings, Inc., "Multi-hard polyurethane pad; H800-type1 (3-1S) 775"
-Chemical mechanical polishing composition supply speed: 300 mL / min-Surface plate rotation speed: 100 rpm
・ Head rotation speed: 90 rpm
・ Head pressing pressure: 2.5psi
・ Polishing speed (Å / min) = (thickness of film before polishing-thickness of film after polishing) / polishing time
 なお、シリコン窒化膜及びp-TEOS膜の厚さは、非接触式光学式膜厚測定装置(ケーエルエー・テンコール社製、型式「ASET-F5x」)を用いて屈折率を測定することにより算出した。 The thickness of the silicon nitride film and the p-TEOS film was calculated by measuring the refractive index using a non-contact optical film thickness measuring device (manufactured by KLA Tencor, model "ASET-F5x"). ..
 研磨速度試験の評価基準は下記の通りである。シリコン窒化膜の研磨速度結果、p-TEOS膜の研磨速度結果、及びその評価結果を表1~表3に併せて示す。
(評価基準)
・「A」…シリコン窒化膜の研磨速度(PR)が500Å/分以上であり、シリコン窒化膜の研磨速度(PR)とシリコン酸化膜の研磨速度(PR)の比(PR/PR)が3以上10未満である場合、実際の半導体研磨において双方の研磨膜の速度バランスが容易に確保でき、実用的であるため良好と判断する。
・「B」…シリコン窒化膜の研磨速度(PR)が500Å/分未満、又は、シリコン窒化膜の研磨速度(PR)とシリコン酸化膜の研磨速度(PR)の比(PR/PR)が3未満もしくは10以上の場合は、実際の半導体研磨において双方の研磨膜の速度バランスが確保できず不良と判断する。
The evaluation criteria for the polishing speed test are as follows. The polishing rate results of the silicon nitride film, the polishing rate results of the p-TEOS film, and the evaluation results thereof are also shown in Tables 1 to 3.
(Evaluation criteria)
- "A" ... polishing rate of a silicon nitride film (PR N) is not less 500 Å / min or more, the ratio of the polishing rate (PR O) polishing rate (PR N) and the silicon oxide film of a silicon nitride film (PR N / If PR O) is less than 3 more than 10, the speed balance of both the polishing film in the actual semiconductor polishing easily be secured, it is determined as good because it is practical.
- "B" ... polishing rate (PR N) is less than 500 Å / min of the silicon nitride film, or the ratio of the polishing rate (PR O) polishing rate (PR N) and the silicon oxide film of a silicon nitride film (PR N / If PR O) is less than 3 or more than 10, it is determined that can not be secured rate balance of both the polishing film in the actual semiconductor polishing defects.
 3.3.2.平坦性評価
 パターン付き基板(SEMATECH INTERNATIONAL製)として、80nmのシリコン酸化膜が成膜されたシリコンウエハをパターン加工し、その後、厚さ150nmのシリコン窒化膜を積層した「SEMATECH 754」テスト用基板を用いた。
3.3.2. Flatness evaluation As a patterned substrate (manufactured by SEMATECH INTERENTIONAL), a silicon wafer on which a silicon oxide film of 80 nm was formed was patterned, and then a substrate for the "SEMATECH 754" test in which a silicon nitride film having a thickness of 150 nm was laminated was used. Using.
 上記パターン付き基板をシリコン酸化膜が露出するまで研磨を行った。研磨処理後のパターン付き基板の被研磨面を触針式プロファイリングシステム(BRUKER社製、形式「Dektak XTL」)を用いて、シリコン窒化膜配線幅(ライン、L)/シリコン酸化膜配線幅(スペース、S)がそれぞれ10μm/10μmのパターン部分におけるシリコン窒化膜/シリコン酸化膜配線の段差(ディッシング)を確認した。評価基準は以下の通りである。ディッシングの値及びその評価結果を表1~表3に併せて示す。
(評価基準)
・「A」…ディッシングが5nm未満の場合、非常に良好と判断する。
・「B」…ディッシングが5nm以上20nm未満の場合、良好と判断する。
・「C」…ディッシングが20nm以上の場合、不良と判断する。
The patterned substrate was polished until the silicon oxide film was exposed. Silicon nitride film wiring width (line, L) / silicon oxide film wiring width (space) using a stylus type profiling system (BRUKER, type "Dectak XTL") on the surface to be polished of the patterned substrate after polishing. , S) confirmed the step (dishing) of the silicon nitride film / silicon oxide film wiring in the pattern portion of 10 μm / 10 μm, respectively. The evaluation criteria are as follows. The values of dishing and their evaluation results are also shown in Tables 1 to 3.
(Evaluation criteria)
-"A" ... If the dishing is less than 5 nm, it is judged to be very good.
-"B": When the dishing is 5 nm or more and less than 20 nm, it is judged to be good.
-"C" ... If the dishing is 20 nm or more, it is judged to be defective.
 3.4.評価結果
 下表1~下表3に、各実施例及び各比較例の化学機械研磨用組成物の組成並びに各評価結果を示す。
3.4. Evaluation Results Tables 1 to 3 below show the composition of the chemical mechanical polishing composition of each example and each comparative example, and each evaluation result.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上表1~上表3中の各成分は、それぞれ下記の商品又は試薬を用いた。なお、上表1~上表3中の砥粒の含有量は、各水分散体の固形分濃度を表す。
<シリカ砥粒>
・水分散体A~E:上記で調製したシリカ砥粒の水分散体A~E
<酸性化合物>
・硫酸:関東化学株式会社製、商品名「硫酸(96%)」
・硝酸:関東化学株式会社製、商品名「硝酸1.38」
・マレイン酸:東京化成工業株式会社製、商品名「Maleic Acid」
<水溶性高分子>
・ポリビニルメチルエーテル:東京化成工業株式会社製、商品名「Poly(Methyl Vinyl Ether)(30% in Water)」
・ポリ(N-イソプロピルアクリルアミド):シグマアルドリッチジャパン製、商品名「Poly(N-isopropylacrylamide)」、Mn:~40,000
・エスリームAD-3172M:日油株式会社製、商品名「エスリームAD-3172M」
<酸化剤>
・過酸化水素:東京化成工業株式会社製、商品名「Hydrogen Peroxide(35% in Water)」
<pH調整剤>
・水酸化カリウム:関東化学株式会社製、商品名「48%-水酸化カリウム水溶液」
The following products or reagents were used for each component in Tables 1 to 3 above. The content of abrasive grains in Tables 1 to 3 above represents the solid content concentration of each aqueous dispersion.
<Silica abrasive grains>
-Aqueous dispersions A to E: A to E aqueous dispersions of silica abrasive grains prepared above.
<Acid compound>
・ Sulfate: Made by Kanto Chemical Co., Inc., trade name "Sulfate (96%)"
・ Nitric acid: Made by Kanto Chemical Co., Inc., trade name "Nitric acid 1.38"
-Maleic acid: Made by Tokyo Chemical Industry Co., Ltd., product name "Maleic Acid"
<Water-soluble polymer>
-Polyvinyl methyl ether: Made by Tokyo Chemical Industry Co., Ltd., trade name "Poly (Methyl Vinyl Ether) (30% in Water)"
-Poly (N-isopropylacrylamide): Made by Sigma-Aldrich Japan, trade name "Poly (N-isopropylacrylamide)", Mn: ~ 40,000
-Esleam AD-3172M: Made by NOF CORPORATION, product name "Esleam AD-3172M"
<Oxidizing agent>
-Hydrogen peroxide: Made by Tokyo Chemical Industry Co., Ltd., trade name "Hydrogen Peroxide (35% in Water)"
<pH adjuster>
-Potassium hydroxide: Made by Kanto Chemical Co., Inc., trade name "48% -potassium hydroxide aqueous solution"
 上表1~上表3の評価結果によれば、実施例1~34の化学機械研磨用組成物を用いた場合には、適度な選択比を有するために、シリコン窒化膜を実用的な研磨速度で研磨することができ、かつ、シリコン窒化膜のディッシングの発生を有意に低減できていることがわかる。 According to the evaluation results of Tables 1 to 3 above, when the compositions for chemical mechanical polishing of Examples 1 to 34 were used, the silicon nitride film was practically polished in order to have an appropriate selection ratio. It can be seen that the polishing can be performed at a high speed and the occurrence of dishing of the silicon nitride film can be significantly reduced.
 これに対し、スルホ基を有さず、かつ、連鎖球状でもないシリカ砥粒を含有する、比較例1の化学機械研磨用組成物を用いた場合には、シリコン窒化膜に対する実用的な研磨速度が得られないだけでなく、シリコン窒化膜にディッシングの発生が認められた。 On the other hand, when the composition for chemical mechanical polishing of Comparative Example 1 containing silica abrasive grains which does not have a sulfo group and is not a chain spherical shape is used, a practical polishing rate for a silicon nitride film is used. Not only was it not possible to obtain, but also the occurrence of dishing was observed in the silicon nitride film.
 スルホ基を有するが連鎖球状ではないシリカ砥粒を含有する、比較例2の化学機械研磨用組成物を用いた場合には、選択比が大きくなりすぎることにより、シリコン窒化膜にディッシングの発生が認められた。 When the composition for chemical mechanical polishing of Comparative Example 2 containing silica abrasive grains having a sulfo group but not a chain spherical shape is used, the selectivity becomes too large, so that dishing occurs in the silicon nitride film. Admitted.
 スルホ基を有さないが連鎖球状であるシリカ砥粒を含有する、比較例3の化学機械研磨用組成物を用いた場合には、シリコン窒化膜に対する実用的な研磨速度が得られず、選択比が小さくなりすぎることがわかる。なお、シリコン酸化膜に対する研磨速度が大きいために、シリコン酸化膜にディッシングの発生が認められた。 When the composition for chemical mechanical polishing of Comparative Example 3 containing silica abrasive grains having no sulfo group but having spherical chains was used, a practical polishing rate for the silicon nitride film could not be obtained, and the selection was made. It can be seen that the ratio becomes too small. Since the polishing rate for the silicon oxide film was high, the occurrence of dishing was observed in the silicon oxide film.
 本発明は、上述した実施形態に限定されるものではなく、種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。 The present invention is not limited to the above-described embodiment, and various modifications are possible. For example, the present invention includes a configuration that is substantially the same as the configuration described in the embodiment (for example, a configuration that has the same function, method, and result, or a configuration that has the same purpose and effect). The present invention also includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced. In addition, the present invention includes a configuration that exhibits the same effects as the configuration described in the embodiment or a configuration that can achieve the same object. Further, the present invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
10…シリコンウエハ、12…熱酸化膜、14…シリコン窒化膜、16…溝、18…シリコン酸化膜、42…スラリー供給ノズル、44…化学機械研磨用組成物(スラリー)、46…研磨布、48…ターンテーブル、50…半導体基板、52…キャリアーヘッド、54…水供給ノズル、56…ドレッサー、100…被処理体、200…化学機械研磨装置 10 ... Silicon wafer, 12 ... Thermal oxide film, 14 ... Silicon nitride film, 16 ... Groove, 18 ... Silicon oxide film, 42 ... Slurry supply nozzle, 44 ... Chemical mechanical polishing composition (slurry), 46 ... Polishing cloth, 48 ... turntable, 50 ... semiconductor substrate, 52 ... carrier head, 54 ... water supply nozzle, 56 ... dresser, 100 ... object to be treated, 200 ... chemical mechanical polishing equipment

Claims (10)

  1.  (A)下記一般式(1)で表される官能基を有するシリカ砥粒と、
     (B)液状媒体と、
    を含有する化学機械研磨用組成物であって、
     前記(A)シリカ砥粒が下記条件(a)及び(b)を満たす、化学機械研磨用組成物。
    (a)化学機械研磨用組成物中におけるゼータ電位が-10mV未満であること。
    (b)3つ以上の粒子が繋がって形成された連鎖球状であること。
     -SO  ・・・・・(1)
     (Mは1価の陽イオンを表す。)
    (A) Silica abrasive grains having a functional group represented by the following general formula (1) and
    (B) Liquid medium and
    A composition for chemical mechanical polishing containing
    A composition for chemical mechanical polishing, wherein the silica abrasive grains (A) satisfy the following conditions (a) and (b).
    (A) The zeta potential in the composition for chemical mechanical polishing is less than -10 mV.
    (B) A chain sphere formed by connecting three or more particles.
    -SO 3 - M + ... (1)
    (M + represents a monovalent cation.)
  2.  前記(A)成分が、その表面に前記一般式(1)で表される官能基が共有結合を介して固定されたシリカ砥粒である、請求項1に記載の化学機械研磨用組成物。 The composition for chemical mechanical polishing according to claim 1, wherein the component (A) is silica abrasive grains in which a functional group represented by the general formula (1) is fixed on the surface thereof via a covalent bond.
  3.  pHが2以上5以下である、請求項1または請求項2に記載の化学機械研磨用組成物。 The composition for chemical mechanical polishing according to claim 1 or 2, wherein the pH is 2 or more and 5 or less.
  4.  化学機械研磨用組成物の全質量を100質量%としたときに、
     前記(A)成分の含有量が0.1質量%以上10質量%以下である、請求項1ないし請求項3のいずれか一項に記載の化学機械研磨用組成物。
    When the total mass of the chemical mechanical polishing composition is 100% by mass,
    The composition for chemical mechanical polishing according to any one of claims 1 to 3, wherein the content of the component (A) is 0.1% by mass or more and 10% by mass or less.
  5.  さらに、酸性化合物を含有する、請求項1ないし請求項4のいずれか一項に記載の化学機械研磨用組成物。 The composition for chemical mechanical polishing according to any one of claims 1 to 4, further containing an acidic compound.
  6.  さらに、ポリビニルメチルエーテル及びポリ(N-イソプロピルアクリルアミド)から選ばれる1種以上を含有する、請求項1ないし請求項5のいずれか一項に記載の化学機械研磨用組成物。 The composition for chemical mechanical polishing according to any one of claims 1 to 5, further containing one or more selected from polyvinyl methyl ether and poly (N-isopropylacrylamide).
  7.  半導体装置を構成する複数の材料のうち、化学機械研磨の際に正電荷を帯びる材料を研磨するために用いられる、請求項1ないし請求項6のいずれか一項に記載の化学機械研磨用組成物。 The composition for chemical mechanical polishing according to any one of claims 1 to 6, which is used for polishing a material having a positive charge during chemical mechanical polishing among a plurality of materials constituting a semiconductor device. Stuff.
  8.  前記正電荷を帯びる材料がシリコン窒化膜である、請求項7に記載の化学機械研磨用組成物。 The composition for chemical mechanical polishing according to claim 7, wherein the positively charged material is a silicon nitride film.
  9.  請求項1ないし請求項6のいずれか一項に記載の化学機械研磨用組成物を用いて、半導体装置を構成する複数の材料のうち、化学機械研磨の際に正電荷を帯びる材料を研磨する工程を含む、化学機械研磨方法。 Using the composition for chemical mechanical polishing according to any one of claims 1 to 6, among a plurality of materials constituting a semiconductor device, a material having a positive charge during chemical mechanical polishing is polished. Chemical mechanical polishing method, including steps.
  10.  前記正電荷を帯びる材料がシリコン窒化膜である、請求項9に記載の化学機械研磨方法。 The chemical mechanical polishing method according to claim 9, wherein the positively charged material is a silicon nitride film.
PCT/JP2020/042769 2019-12-03 2020-11-17 Composition for chemical mechanical polishing and chemical mechanical polishing method WO2021111863A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-218691 2019-12-03
JP2019218691 2019-12-03

Publications (1)

Publication Number Publication Date
WO2021111863A1 true WO2021111863A1 (en) 2021-06-10

Family

ID=76221580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042769 WO2021111863A1 (en) 2019-12-03 2020-11-17 Composition for chemical mechanical polishing and chemical mechanical polishing method

Country Status (2)

Country Link
TW (1) TW202122517A (en)
WO (1) WO2021111863A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133267A (en) * 2001-10-30 2003-05-09 Catalysts & Chem Ind Co Ltd Polishing particle and polishing material
JP2011020208A (en) * 2009-07-15 2011-02-03 Hitachi Chem Co Ltd Cmp polishing liquid, and polishing method using the same
WO2011093153A1 (en) * 2010-02-01 2011-08-04 Jsr株式会社 Aqueous dispersion for chemical mechanical polishing, and chemical mechanical polishing method using same
JP2013041992A (en) * 2011-08-16 2013-02-28 Jsr Corp Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method using the same
WO2016067923A1 (en) * 2014-10-27 2016-05-06 Jsr株式会社 Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method
JP2017524767A (en) * 2014-06-25 2017-08-31 キャボット マイクロエレクトロニクス コーポレイション Chemical mechanical polishing composition of tungsten
WO2019131874A1 (en) * 2017-12-27 2019-07-04 日揮触媒化成株式会社 Method for producing chain-like particle dispersion, and dispersion of chain-like particles
WO2019181399A1 (en) * 2018-03-23 2019-09-26 富士フイルム株式会社 Polishing liquid and chemical mechanical polishing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133267A (en) * 2001-10-30 2003-05-09 Catalysts & Chem Ind Co Ltd Polishing particle and polishing material
JP2011020208A (en) * 2009-07-15 2011-02-03 Hitachi Chem Co Ltd Cmp polishing liquid, and polishing method using the same
WO2011093153A1 (en) * 2010-02-01 2011-08-04 Jsr株式会社 Aqueous dispersion for chemical mechanical polishing, and chemical mechanical polishing method using same
JP2013041992A (en) * 2011-08-16 2013-02-28 Jsr Corp Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method using the same
JP2017524767A (en) * 2014-06-25 2017-08-31 キャボット マイクロエレクトロニクス コーポレイション Chemical mechanical polishing composition of tungsten
WO2016067923A1 (en) * 2014-10-27 2016-05-06 Jsr株式会社 Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method
WO2019131874A1 (en) * 2017-12-27 2019-07-04 日揮触媒化成株式会社 Method for producing chain-like particle dispersion, and dispersion of chain-like particles
WO2019181399A1 (en) * 2018-03-23 2019-09-26 富士フイルム株式会社 Polishing liquid and chemical mechanical polishing method

Also Published As

Publication number Publication date
TW202122517A (en) 2021-06-16

Similar Documents

Publication Publication Date Title
CN101016440B (en) Multi-component barrier polishing solution
JP5327427B2 (en) Chemical mechanical polishing aqueous dispersion preparation set, chemical mechanical polishing aqueous dispersion preparation method, chemical mechanical polishing aqueous dispersion, and chemical mechanical polishing method
KR20070105301A (en) Aqueous slurry containing metallate-modified silica particles
JP2016524325A (en) Method of using a chemical mechanical polishing (CMP) composition for polishing a substrate or layer containing at least one III-V material
JP2005158867A (en) Set for adjusting water-based dispersing element for chemical-mechanical polishing
JP2004153158A (en) Aqueous dispersing element for chemical/mechanical polishing, chemical/mechanical polishing method using the same and method for manufacturing semiconductor device
JP2021055041A (en) Polishing composition and polishing method
WO2021111863A1 (en) Composition for chemical mechanical polishing and chemical mechanical polishing method
WO2021095414A1 (en) Composition for chemical-mechanical polishing and chemical-mechanical polishing method
JP7375515B2 (en) Chemical mechanical polishing composition and chemical mechanical polishing method
WO2021124771A1 (en) Composition for chemical mechanical polishing, chemical mechanical polishing method, and method for manufacturing particles for chemical mechanical polishing
WO2021095412A1 (en) Chemical mechanical polishing composition and chemical mechanical polishing method
WO2021095415A1 (en) Chemical mechanical polishing composition and chemical mechanical polishing method
JP6892034B1 (en) Composition for chemical mechanical polishing and chemical mechanical polishing method
TWI837428B (en) Chemical mechanical polishing composition and chemical mechanical polishing method
WO2021124772A1 (en) Composition for chemical mechanical polishing, method for chemical mechanical polishing, and method for manufacturing chemical mechanical polishing particles
JP6958774B1 (en) Abrasive grain manufacturing method, chemical mechanical polishing composition and chemical mechanical polishing method
WO2022004197A1 (en) Method for manufacturing abrasive grains, composition for chemical mechanical polishing and method for chemical mechanical polishing
JP7375483B2 (en) Chemical mechanical polishing composition and chemical mechanical polishing method
WO2023189400A1 (en) Method for producing abrasive grains, composition for chemical mechanical polishing, and polishing method
JP2009302551A (en) Set for manufacturing water-based dispersing element for chemical-mechanical polishing
JP2023093850A (en) Composition for chemical mechanical polishing and polishing method
JP2023094060A (en) Chemical mechanical polishing composition and polishing method
JP2009224767A (en) Aqueous dispersion for chemical mechanical polishing and method of manufacturing the same, and chemical mechanical polishing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP