WO2021109983A1 - 生态抛石防波堤建造方法、诱导型水泥基涂料及制备方法 - Google Patents

生态抛石防波堤建造方法、诱导型水泥基涂料及制备方法 Download PDF

Info

Publication number
WO2021109983A1
WO2021109983A1 PCT/CN2020/133082 CN2020133082W WO2021109983A1 WO 2021109983 A1 WO2021109983 A1 WO 2021109983A1 CN 2020133082 W CN2020133082 W CN 2020133082W WO 2021109983 A1 WO2021109983 A1 WO 2021109983A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
cement
calcium carbonate
oyster
concrete
Prior art date
Application number
PCT/CN2020/133082
Other languages
English (en)
French (fr)
Inventor
吕建福
郭轶宏
许飞
胡新宇
Original Assignee
哈尔滨工程大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911210502.6A external-priority patent/CN111270648B/zh
Priority claimed from CN201911210521.9A external-priority patent/CN111268960B/zh
Application filed by 哈尔滨工程大学 filed Critical 哈尔滨工程大学
Priority to JP2022533424A priority Critical patent/JP2023517785A/ja
Priority to EP20895864.5A priority patent/EP4071305A1/en
Priority to KR1020227022564A priority patent/KR20220144358A/ko
Publication of WO2021109983A1 publication Critical patent/WO2021109983A1/zh
Priority to US17/831,294 priority patent/US20220307213A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/06Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/06Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment
    • E02B3/066Quays
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/50Culture of aquatic animals of shellfish
    • A01K61/54Culture of aquatic animals of shellfish of bivalves, e.g. oysters or mussels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/52Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/245Curing concrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/003Methods for mixing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/26Carbonates
    • C04B14/28Carbonates of calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/027Lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/18Waste materials; Refuse organic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • C04B20/1037Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • C04B22/142Sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • C04B28/065Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00758Uses not provided for elsewhere in C04B2111/00 for agri-, sylvi- or piscicultural or cattle-breeding applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Definitions

  • the invention relates to an ecological breakwater technology, in particular to a construction method of an ecological riprap breakwater, an induction type cement-based paint and a preparation method, and belongs to the field of marine ecological engineering.
  • the purpose of the present invention is to address the problems of damage to coastal ecology caused by the expansion and restoration of current breakwaters and the short service period of existing breakwaters, and to provide a high-durability method for constructing eco-riprap breakwaters, so that the breakwaters also have good wave-elimination functions , Long-term service capability and excellent ecological benefits.
  • the invention is based on the preference of oysters to adhere to the surface of dark-colored substrates and similar shells. Higher alkalinity will affect the adhesion and metamorphosis of the oysters. At the same time, the influence of the added substances on the performance of cement-based coatings and concrete is considered.
  • the design of the paint and concrete that induce the adhesion of oysters and the method of forming and curing are determined. The specific technical solutions are as follows:
  • Stone surface treatment cleaning the surface of the rock, spraying or painting a cement-based paint for inducing sessile organisms on the surface of marine engineering when the saturated surface is dry;
  • Placement of oyster attachment base on site Transport the oyster base with the gonad development stage of (2) as mature stage to the sea area where the breakwater is constructed, and place a light-weight rough surface on each single rock or pile of rocks Concrete oysters are attached to the base and fixed with ropes and stones or piles of rocks; and according to the plankton in the local sea area, bait or nutrient salts of bait are placed when necessary.
  • Monitoring the attachment and management of larvae monitor the attachment of oyster larvae on the concrete surface. When 30-40 per 100cm 2 , remove the oyster attachment base, and monitor the ecological situation of the breakwater for a long time, and adopt corresponding measures according to the actual situation. .
  • the light-weight concrete oyster attachment base with rough surface described in the specific measures, its material components are: cementing material, light-weight coarse aggregate, light-weight fine aggregate, water, dark pigment, biological calcium powder , Calcium carbonate powder, trace elements, chopped fiber and superplasticizer weight ratio: 21.8% ⁇ 34.5%, 24.6% ⁇ 37.5%, 15.8% ⁇ 29.6%, 8.4% ⁇ 16.4%, 0.6 ⁇ 3.0% , 0.4% to 2.0%, 0.4% to 2.0%, 0.2% to 1.8%, 0.15% to 1.5%, and 0.03% to 0.18%.
  • the dark pigment is one or two of iron oxide black, aniline black, carbon black, antimony sulfide, iron oxide red, and organic pigment red.
  • the dark pigment is: according to the degree of influence on the performance of concrete, these pigments are modified, and one of transparent resin, silicone, dimethylsiloxane, and superhydrophobic material is used for modification. .
  • the biological calcium powder is: the biological calcium powder is beef bone powder, and the biological calcium carbonate powder includes one or more of oyster shell powder, fish bone powder, egg shell powder, and coral powder.
  • the degree is from 100 mesh to 1000 mesh.
  • the biological calcium powder is: egg shell powder, coral powder, oyster shell powder, and fish bone powder between 100 mesh and 500 mesh are treated with the following acids, including acetic acid, acetic acid, silicic acid, and sulfurous acid.
  • One or two; and 100 mesh to 500 mesh cattle bone meal is treated with the following acids, including one or two of diluted phosphoric acid, sulfuric acid, hydrochloric acid and nitric acid.
  • the calcium carbonate powder is: calcite, chalk, limestone, marble, aragonite, travertine powder, and processed light calcium carbonate, active calcium carbonate, calcium carbonate whiskers and ultrafine light carbonic acid One or more of calcium, and the fineness is greater than 200 mesh.
  • the trace elements zinc, iron, potassium and phosphorus can be selected from natural minerals, industrial products or chemical reagents, including zinc sulfate, calcium phosphate, zinc phosphate, potassium sulfate, potassium nitrate, iron sulfate, ammonium nitrate, One or more of potassium phosphate, ammonium phosphate, and iron phosphate, and modify them to achieve the slow release of corresponding ions and reduce or eliminate the adverse effects on the performance of concrete.
  • substances containing nitrogen and phosphorus are not selected.
  • the cementitious material is one of Portland cement mixed with mineral admixtures, sulphoaluminate cement and alkali-activated cementitious materials.
  • the mineral admixtures in Portland cement with mineral admixtures include one or more combinations of silica fume, slag powder and fly ash;
  • sulphoaluminate cements include fast hardening sulphoaluminate One or two of salt cement, high-strength sulphoaluminate cement, and expanded sulphoaluminate cement;
  • alkali-activated cementitious materials include one of alkali-activated slag, alkali-activated slag + fly ash.
  • the chopped fibers are inorganic fibers (12-20 mm in length), including one or more of basalt fibers, alkali-resistant glass fibers, and carbon fibers.
  • the lightweight coarse aggregate is one or two of: crushed lightweight porous basalt with a maximum particle size of less than 20 mm and lightweight ceramsite.
  • the lightweight fine aggregate is one or two of crushed zeolite and lightweight ceramic sand, with a particle size of 0.2mm-5mm.
  • a method for preparing cement concrete oyster attachment base with rough surface including the following steps:
  • a cement concrete oyster attachment base with a rough surface with good induction effect can be prepared.
  • the light-weight concrete oyster attachment base with rough surface described in the specific measures its material components are: dark pigments, cementing materials, light coarse aggregates, light fine aggregates, water and superplasticizing Agent; Among them, the weight ratio of dark pigment, cementing material, light coarse aggregate, light fine aggregate, water and superplasticizer are 0.6 ⁇ 3.0%, 21.8% ⁇ 34.5%, 24.6% ⁇ 37.5%, 15.8% to 29.6%, 8.4% to 16.4%, and 0.03% to 0.18%.
  • the light-weight concrete oyster attachment base with rough surface described in the specific measures, its material components are: calcium carbonate powder, cementing material, light coarse aggregate, light fine aggregate, water and superplasticizing Agent; Among them, the weight ratio of calcium carbonate powder, cementing material, light coarse aggregate, light fine aggregate, water and superplasticizer are: 0.4 ⁇ 2.35%, 21.8% ⁇ 34.5%, 24.6% ⁇ 37.5%, 15.8% to 29.6%, 8.4% to 16.4%, and 0.03% to 0.18%.
  • the lightweight concrete oyster attachment base with rough surface described in the specific measures, its material components are: bovine bone meal, cementing material, lightweight coarse aggregate, lightweight fine aggregate, water and superplasticizer ; Among them, the weight ratio of beef bone meal, cementitious material, lightweight coarse aggregate, lightweight fine aggregate, water and superplasticizer are: 0.4 ⁇ 2.35%, 21.8% ⁇ 34.5%, 24.6% ⁇ 37.5% , 15.8% ⁇ 29.6%, 8.4% ⁇ 16.4% and 0.03% ⁇ 0.18%.
  • the light-weight concrete oyster attachment base with rough surface described in the specific measures its material components are: modified dark pigment, calcium carbonate powder, cementing material, light coarse aggregate, light fine aggregate , Water and superplasticizer; among them, the weight ratio of modified dark pigment, calcium carbonate powder, cementing material, lightweight coarse aggregate, lightweight fine aggregate, water and superplasticizer is 0.6 ⁇ 3.0%, 0.4 to 2.35%, 21.8% to 34.5%, 24.6% to 37.5%, 15.8% to 29.6%, 8.4% to 16.4%, and 0.03% to 0.18%.
  • the light-weight concrete attachment base with rough surface described in the specific measures shall reserve round holes with a diameter of 3 to 5 mm during forming.
  • the metamorphic period of concentrated attachment of oyster plankton larvae in the specific measures in (3) generally lasts from May to August in the north and April to October in the south.
  • the material components are: gelling materials, sand, water, dark pigments, biological calcium powder, calcium carbonate powder, trace elements, lignocellulose, dispersible rubber powder and superplasticizer in weight ratio: 1:( 0.35 ⁇ 0.7):(0.20 ⁇ 0.60):(0.02 ⁇ 0.10):(0.02 ⁇ 0.10):(0.02 ⁇ 0.10):(0.01 ⁇ 0.08):(0.04 ⁇ 0.12):(0.05 ⁇ 0.15):(0.001 ⁇ 0.010).
  • the dark pigment is one or two of iron oxide black, aniline black, carbon black, antimony sulfide, iron oxide red, and organic pigment red.
  • the dark pigment is: according to the degree of influence on the performance of concrete, these pigments are modified, and one of transparent resin, silicone, dimethylsiloxane, and superhydrophobic material is used for modification. .
  • the biological calcium powder is: the biological calcium powder is beef bone powder, and the biological calcium carbonate powder includes one or more of oyster shell powder, fish bone powder, egg shell powder, and coral powder.
  • the degree is from 100 mesh to 1000 mesh.
  • the biological calcium powder is: egg shell powder, coral powder, oyster shell powder, and fish bone powder between 100 mesh and 500 mesh are treated with the following acids, including acetic acid, acetic acid, silicic acid, and sulfurous acid.
  • One or two; and 100 mesh to 500 mesh cattle bone meal is treated with the following acids, including one or two of diluted phosphoric acid, sulfuric acid, hydrochloric acid and nitric acid.
  • the calcium carbonate powder is: calcite, chalk, limestone, marble, aragonite, travertine powder, and processed light calcium carbonate, active calcium carbonate, calcium carbonate whiskers and ultrafine light carbonic acid One or more of calcium, and the fineness is greater than 200 mesh.
  • the trace elements zinc, iron, potassium and phosphorus can be selected from natural minerals, industrial products or chemical reagents, including zinc sulfate, calcium phosphate, zinc phosphate, potassium sulfate, potassium nitrate, iron sulfate, ammonium nitrate, One or more of potassium phosphate, ammonium phosphate, and iron phosphate, and modify them to achieve the slow release of corresponding ions and reduce or eliminate the adverse effects on the performance of concrete.
  • substances containing nitrogen and phosphorus are not selected.
  • the cementitious material is one of Portland cement mixed with mineral admixtures, sulphoaluminate cement and alkali-activated cementitious materials.
  • the mineral admixtures in Portland cement with mineral admixtures include one or more combinations of silica fume, slag powder and fly ash;
  • sulphoaluminate cements include fast hardening sulphoaluminate One or two of salt cement, high-strength sulphoaluminate cement, and expanded sulphoaluminate cement;
  • alkali-activated cementitious materials include one of alkali-activated slag, alkali-activated slag + fly ash.
  • the sand is one or more of river sand, machine-made sand (the parent rock can be limestone, basalt or granite) with a particle size of 0.16mm-2.36mm, and sea sand.
  • the superplasticizer is one of polycarboxylic acid and naphthalene.
  • S1 Weigh gelling materials, sand, water, dark pigments, biological calcium powder, calcium carbonate powder, trace elements, lignocellulose, dispersible rubber powder and superplasticizer;
  • S2 Put the gelling material, dark pigments, biological calcium powder, calcium carbonate powder, and trace elements into the mixer at a rotation speed of 1000-1500 rpm, and a mixing time of 2 to 5 minutes, and mix evenly;
  • a cement coating for inducing fixed organisms on the surface of marine engineering with good inducing effect can be prepared.
  • the rope mentioned in the specific measures in (5) is one of brown rope, glass fiber and basalt fiber rope.
  • the purpose of the present invention is to invent a coating that can be painted and cured directly in a humid environment, which can induce fixed organisms to quickly and densely adhere to the surface of concrete, utilize the fixing properties of oysters to achieve the effect of biological anti-corrosion, and immobilize biological
  • a large number of attachments can also achieve the purpose of purifying water bodies and restoring ecology. Solve the problems of limited effectiveness of anti-corrosion measures in tidal range and underwater areas of marine concrete projects, short service time, high cost and other problems, as well as the problems of ecological deterioration that urgently require marine ecological restoration.
  • the purpose of the present invention is achieved in this way.
  • the present invention uses low-alkalinity gelling materials, lignocellulose, dispersible rubber powder and superplasticizers, and adds modified dark pigments and modified biological calcium to the paint. Powder, calcium carbonate powder, and trace elements, so that the prepared cement-based paint has a high ability to induce the attachment and metamorphosis of oyster larvae, and realizes the dense and uniform effect of oyster attachment.
  • the use of oyster fixation properties improves the durability of the concrete structure, and improves the durability of the concrete structure. There is no pollution to the marine environment.
  • the invention also includes such structural features:
  • the material components are: gelling materials, sand, water, dark pigments, biological calcium powder, calcium carbonate powder, trace elements, lignocellulose, dispersible rubber powder and superplasticizer in weight ratio: 1:( 0.35 ⁇ 0.7): (0.20 ⁇ 0.60): (0.02 ⁇ 0.10): (0.02 ⁇ 0.10): (0.02 ⁇ 0.10): (0.01 ⁇ 0.08): (0.04 ⁇ 0.12): (0.05 ⁇ 0.15): (0.001 ⁇ 0.010).
  • the dark pigment is one or two of iron oxide black, aniline black, carbon black, antimony sulfide, iron oxide red, and organic pigment red.
  • the dark pigment is: according to the degree of influence on the performance of concrete, these pigments are modified, and one of transparent resin, silicone, dimethylsiloxane, and superhydrophobic material is used for modification. .
  • the biological calcium powder is: the biological calcium powder is beef bone powder, and the biological calcium carbonate powder includes one or more of oyster shell powder, fish bone powder, egg shell powder, and coral powder.
  • the degree is from 100 mesh to 1000 mesh.
  • the biological calcium powder is: egg shell powder, coral powder, oyster shell powder, and fish bone powder between 100 mesh and 500 mesh are treated with the following acids, including acetic acid, acetic acid, silicic acid, and sulfurous acid.
  • One or two; and 100 mesh to 500 mesh cattle bone meal is treated with the following acids, including one or two of diluted phosphoric acid, sulfuric acid, hydrochloric acid and nitric acid.
  • the calcium carbonate powder is: calcite, chalk, limestone, marble, aragonite, travertine powder, and processed light calcium carbonate, active calcium carbonate, calcium carbonate whiskers and ultrafine light carbonic acid One or more of calcium, and the fineness is greater than 200 mesh.
  • the trace elements zinc, iron, potassium and phosphorus can be selected from natural minerals, industrial products or chemical reagents, including zinc sulfate, calcium phosphate, zinc phosphate, potassium sulfate, potassium nitrate, iron sulfate, ammonium nitrate, One or more of potassium phosphate, ammonium phosphate, and iron phosphate, and modify them to achieve the slow release of corresponding ions and reduce or eliminate the adverse effects on the performance of concrete.
  • substances containing nitrogen and phosphorus are not selected.
  • the cementitious material is one of Portland cement mixed with mineral admixtures, sulphoaluminate cement and alkali-activated cementitious materials.
  • the mineral admixtures in Portland cement with mineral admixtures include one or more combinations of silica fume, slag powder and fly ash;
  • sulphoaluminate cements include fast hardening sulphoaluminate One or two of salt cement, high-strength sulphoaluminate cement, and expanded sulphoaluminate cement;
  • alkali-activated cementitious materials include one of alkali-activated slag, alkali-activated slag + fly ash.
  • the sand is one or more of river sand, machine-made sand (the parent rock can be limestone, basalt or granite) with a particle size of 0.16mm-2.36mm, and sea sand.
  • the superplasticizer is one of polycarboxylic acid and naphthalene.
  • S1 Accurately weigh gelling materials, sand, water, dark pigments, biological calcium powder, calcium carbonate powder, trace elements, lignocellulose, dispersible rubber powder and superplasticizer;
  • S2 Put the gelling material, dark pigments, biological calcium powder, calcium carbonate powder, and trace elements into the mixer at a rotation speed of 1000-1500 rpm, and a mixing time of 2 to 5 minutes, and mix evenly;
  • a cement-based paint with good inducing effect for inducing fixed organisms on the surface of marine engineering can be prepared.
  • a cement-based paint for inducing fixed organisms on the surface of marine engineering is painted on the surface of natural stones, and a cement concrete oyster attachment base with a rough surface is placed on the pile of stones, so that the oyster larvae can quickly and densely It attaches to the surface of the rock and can ingest sufficient nutrients during the process of attachment, metamorphosis, and development.
  • each rock pile (block) can effectively eliminate waves when the current load is large, and the breakwater can exchange smoothly on both sides of the water body.
  • the ecological breakwater can also purify the water body and improve the ecological environment of the surrounding sea area. This completely solves the problems of traditional breakwaters that block the exchange of water bodies on both sides, change the pH value of some sea areas and even destroy the ecological environment, and can be used to repair the ecological environment of the sea area.
  • both the durability of marine concrete and the ecologicalization of marine concrete projects lack a green and economical method.
  • oyster As the marine "ecological engineer", it has the functions of densifying the surface of concrete structures and improving the ecological environment.
  • the cement-based paint for inducing sessile organisms proposed by the present invention not only has the characteristics of rapidly inducing the attachment, metamorphosis of sessile organisms and promoting long-term growth, but also has the characteristics of simple construction and easy painting. It can be applied to newly-built marine projects, especially a large number of projects in service in the ocean. It can not only improve the durability of the reinforced concrete structure, but also realize the restoration of the marine ecological environment simply and economically. This not only greatly broadens the anti-corrosion application of marine sessile organisms in existing reinforced concrete structures, but also can be widely used in marine ecological environment restoration projects.
  • Fig. 1 Mold on the surface of concrete mixed with 10% bovine bone meal in different proportions
  • FIG. 3 Schematic diagram of the actual sea attachment experiment 210d
  • Figure 4 300d schematic diagram of the actual sea attachment experiment
  • Figure 5 is a schematic diagram of concrete oyster attachment base
  • Figure 6 is a schematic diagram of concrete oyster attachment base
  • Figure 7 is a schematic diagram of a concrete oyster attachment base.
  • Stone surface treatment check the rock surface, clean the rock surface with sundries and chemical pollutants, and apply a cement-based paint for inducing fixed organisms on the surface of marine engineering when the saturated surface is dry;
  • Placement of oyster attachment base on site transport the well-attached oyster base on the concrete surface (the gonad development stage is the mature stage) to the sea area where the breakwater is constructed, and place an oyster attachment base on each single rock (pile), and use it
  • the rope is fixed to stones or piles of stones;
  • Monitoring larval attachment and management monitoring the attachment density of oyster larvae on the concrete surface reaches 35/100cm 2 , remove the oyster attachment base; at the same time, monitor the type and quantity of plankton in the sea area and decide whether to continue feeding bait.
  • Stone surface treatment check the rock surface, clean the rock surface with sundries and chemical pollutants, and apply a cement-based paint for inducing fixed organisms on the surface of marine engineering when the saturated surface is dry;
  • Placement of oyster attachment base on site transport the well-attached oyster base on the concrete surface (the gonad development stage is the mature stage) to the sea area where the breakwater is constructed, and place an oyster attachment base on each single rock (pile), and use it
  • the rope fixes the stones or piles of stones.
  • Monitoring larvae attachment and management Monitoring the attachment density of oyster larvae on the concrete surface reaches 40/100cm 2 , remove the oyster attachment base; at the same time, monitor the type and quantity of plankton in the sea area and decide whether to continue feeding bait.
  • the mixing ratios of the oyster attachment base and the cement-based paint described in Example 1 and Example 2 are as follows.
  • the specific shape design of the concrete oyster attachment base is shown in Figure 5-7:
  • the lightweight coarse aggregate is one or two of crushed lightweight porous basalt and lightweight ceramsite with a maximum particle size of less than 20 mm.
  • the said lightweight fine aggregate is one or two of crushed zeolite and lightweight ceramic sand, with a particle size of 0.2mm-5mm and a good gradation.
  • the said water should comply with the water standard for concrete (JGJ63-2006), Cl - content ⁇ 1000mg/L, PH value>4.5, and has little effect on the initial setting time difference and final setting time, strength and permeability of cement. And the above materials selected in 1-25 are the same.
  • Benchmark concrete mixing ratio the weight ratio of ordinary Portland cement, silica fume, blast furnace slag powder, lightweight coarse aggregate, lightweight fine aggregate, water and polycarboxylate water-reducing agent powder is in order: 17.62%, 1.47%, 10.28%, 33.57%, 24.48%, 12.59%, 0.03%.
  • the weight ratio of the polycarboxylic acid water reducing agent powder is 0.87%, 17.62%, 1.36%, 9.52%, 33.57%, 24.48%, 12.59%, 0.03%.
  • the weight ratio of the polycarboxylic acid water reducing agent powder is 1.47%, 17.62%, 1.28%, 8.99%, 33.57%, 24.48%, 12.59%, 0.03%.
  • the weight ratio of the polycarboxylic acid water-reducing agent powder is: 2.35%, 17.62%, 1.18%, 8.23%, 33.57%, 24.48%, 12.59%, 0.03%.
  • the modified dark pigment uses 196 transparent resin, mixed with 3% curing agent and 1.5% accelerator, and the volume ratio of pigment to resin is 1:0.2; curing at room temperature for 4 hours, curing at 60°C for 4 hours, and then Crush it and grind it with a vibrating mill, and the fineness is greater than 400 mesh.
  • the weight ratio of calcium carbonate powder, ordinary Portland cement, silica fume, blast furnace slag powder, lightweight coarse aggregate, lightweight fine aggregate, water and polycarboxylate water-reducing agent powder is: 0.87%, 17.62 %, 1.36%, 9.52%, 33.57%, 24.48%, 12.59%, 0.03%.
  • the weight ratio of calcium carbonate powder, ordinary Portland cement, silica fume, blast furnace slag powder, lightweight coarse aggregate, lightweight fine aggregate, water and polycarboxylate water-reducing agent powder is: 1.47%, 17.62 %, 1.28%, 8.99%, 33.57%, 24.48%, 12.59%, 0.03%.
  • the weight ratio of calcium carbonate powder, ordinary Portland cement, silica fume, blast furnace slag powder, lightweight coarse aggregate, lightweight fine aggregate, water and polycarboxylate water-reducing agent powder is: 2.35%, 17.62 %, 1.18%, 8.23%, 33.57%, 24.48%, 12.59%, 0.03%.
  • the weight ratio of material, water and polycarboxylic acid water reducing agent powder is 1.47%, 0.87%, 17.62%, 1.18%, 8.23%, 33.57%, 24.48%, 12.59%, 0.03%.
  • the weight ratio of material, water and polycarboxylic acid water reducing agent powder is 1.47%, 1.47%, 17.62%, 1.10%, 7.71%, 33.57%, 24.48%, 12.59%, 0.03%.
  • the weight ratio of material, water and polycarboxylic acid water reducing agent powder is 1.47%, 2.35%, 17.62%, 0.99%, 6.94%, 33.57%, 24.48%, 12.59%, 0.03%.
  • the weight ratio of unmodified beef bone powder, ordinary Portland cement, silica fume, blast furnace slag powder, lightweight coarse aggregate, lightweight fine aggregate, water and polycarboxylic acid water-reducing agent powder is: 0.87% , 17.62%, 1.36%, 9.52%, 33.57%, 24.48%, 12.59%, 0.03%.
  • modified beef bone powder The weight ratio of modified beef bone powder, ordinary Portland cement, silica fume, blast furnace slag powder, lightweight coarse aggregate, lightweight fine aggregate, water and polycarboxylate water-reducing agent powder is: 0.87%, 17.62%, 1.36%, 9.52%, 33.57%, 24.48%, 12.59%, 0.03%.
  • modified beef bone powder The weight ratio of modified beef bone powder, ordinary Portland cement, silica fume, blast furnace slag powder, light coarse aggregate, light fine aggregate, water and polycarboxylate water-reducing agent powder is 1.47%, 17.62%, 1.28%, 8.99%, 33.57%, 24.48%, 12.59%, 0.03%.
  • modified beef bone powder The weight ratio of modified beef bone powder, ordinary Portland cement, silica fume, blast furnace slag powder, light coarse aggregate, light fine aggregate, water and polycarboxylate water-reducing agent powder is: 2.35%, 17.62%, 1.18%, 8.23%, 33.57%, 24.48%, 12.59%, 0.03%.
  • Modification method of beef bone meal add 100 mesh beef bone meal to 2% phosphoric acid solution, the weight ratio of the two is 1:3, the temperature is 20 ⁇ 30°C, and the rotation speed is 200 ⁇ 500rpm. Centrifuge for 30 minutes in a centrifuge at 3000-5000 rpm for 3 minutes, discard the supernatant, and wash the solid matter after centrifugation with water for 2 to 3 times. The washing water no longer shows acidity; The solid material is vacuum dried at 40°C, the dried beef bone powder and the slag powder are mixed according to the mass of 1:4, and then ground to a fineness greater than 200 mesh with a vibrating mill, and set aside.
  • the weight ratios of ordinary Portland cement, silica fume, blast furnace slag powder, crushed stone, sand, water and polycarboxylic acid water reducer powder are: 0.5%, 1.47%, 1.47%, 0.87%, 17.62%, 0.93% , 6.50%, 33.57%, 24.48%, 12.59%, 0.03%.
  • the weight ratios of ordinary Portland cement, silica fume, blast furnace slag powder, crushed stone, sand, water and polycarboxylic acid water reducer powder are: 0.6%, 1.47%, 1.47%, 0.87%, 17.62%, 0.84% , 5.89%, 33.57%, 24.48%, 12.59%, 0.03%.
  • Modification method of zinc sulfate select diatomaceous earth with SiO 2 content> 90% and fineness of 600 mesh diatomaceous earth, add 150 g of water in a mixer at 60 °C, and then add 100 g of zinc sulfate, stir until the dissolution is complete. Use; then heat 150g of the above diatomaceous earth to 60 °C and add it to the solution, stir in a stirrer with a rotation speed of 200 to 500 rpm for 10 minutes, and then dry in a drying oven at a drying temperature of 100 °C, that is Modified zinc sulfate can be obtained.
  • Zinc sulfate, modified dark pigment, modified biological calcium powder (modified beef bone powder: oyster shell powder 2:1), calcium carbonate powder, ordinary Portland cement, silica fume, blast furnace slag powder, crushed stone
  • the weight ratios of, sand, water, chopped fiber and polycarboxylic acid water reducing agent powder are: 0.5%, 1.47%, 1.47%, 0.87%, 17.62%, 0.93%, 6.50%, 33.07%, 24.18%, 12.59 %, 0.8%, 0.03%.
  • Modification method of beef bone meal add 100 mesh beef bone meal to 2% phosphoric acid solution, the weight ratio of the two is 1:3, the temperature is 20 ⁇ 30°C, and the rotation speed is 200 ⁇ 500rpm. Centrifuge for 30 minutes in a centrifuge at 3000-5000 rpm for 3 minutes, discard the supernatant, and wash the solid matter after centrifugation with water for 2 to 3 times. The washing water no longer shows acidity; The solid material is vacuum dried at 40°C, the dried beef bone powder and the slag powder are mixed according to the mass of 1:4, and then ground to a fineness greater than 200 mesh with a vibrating mill, and set aside.
  • Modification method of zinc sulfate select diatomaceous earth with SiO 2 content> 90% and fineness of 600 mesh diatomaceous earth, add 150 g of water in a mixer at 60° C., and then add 100 g of zinc sulfate, and stir until the dissolution is complete. Use; then heat 150g of the above diatomaceous earth to 60 °C and add it to the solution, stir in a stirrer with a rotation speed of 200 to 500 rpm for 10 minutes, and then dry in a drying oven at a drying temperature of 100 °C, that is Modified zinc sulfate can be obtained.
  • Comparative Document 1 The construction of "living" breakwaters was carried out in Comparative Document 1.
  • the macro design, surface texture, and the use of low-alkali cement to make concrete components increase the marine biomass, but the increase includes marine plants and marine sessile organisms, and mainly marine plant.
  • the present invention also adds dark pigments, biological calcium powder, calcium carbonate powder and trace elements to the concrete to induce oyster larvae.
  • the induction has the characteristics of rapid and compactness. Good, can greatly improve the ecological environment of the sea area.
  • Comparative Document 2 is coated with a layer of cement mortar mixed with ground oyster shells on the surface of the concrete, its purpose is mainly achieved by the surface bionics, which is to collect fish. , Collect microorganisms and algae, increase the number of microorganisms and improve the water environment, without mentioning oysters.
  • the purpose of the cement-based paint of the present invention is to induce the attachment of oysters.
  • Comparative Document 2 points out that in cement mortar, biological calcium carbonate powder (150-200 mesh) with a cement mass of less than 10% is not obvious for inducing adhesion. However, in the research process of the present invention, modified beef bone powder and biological calcium carbonate powder are mixed with cement-based paint (fineness: 100-1000 mesh), and the optimum mixing amount of beef bone powder and biological calcium carbonate powder is obtained as a cementitious material Less than 10%.
  • the invention can achieve a good effect of inducing fixed organisms by painting a layer of cement-based paint on the surface of the concrete, without inlaying oyster shells, not only the construction is simple, but also the adhesion amount of oysters can be greatly increased.
  • Comparative Document 3 uses 80 mesh beef bone powder, calcium powder and gypsum powder, which are separately mixed into concrete.
  • the fineness of all the calcareous materials in the present invention is greater than 100 mesh, which is greater than the material fineness in the reference document 3. It is also mixed with bovine bone powder, modified, and considers the paint and concrete particle gradation and its inducing ability.
  • the present invention gives full play to the inducing ability of bovine bone powder, greatly reduces the amount of bovine bone powder, and carries out anti-corrosion treatment and modification, and realizes the compound induction based on bovine bone powder. It has a small dosage and hardly affects the strength and permeability of paint and concrete. At the same time, it has strong adhesion to oyster larvae and solves the problem of mildew in paint and concrete. Compared with concrete without inducer, it is mixed The number of concrete oyster larvae attached to the inducer increased significantly, as shown in Figure 3. .
  • the comparative documents and the literature data that have been consulted show that the calcium content is very important for the attachment of oyster larvae.
  • some current experimental results also prove that adding an appropriate amount of calcium carbonate to cement-based materials can promote the attachment and growth of oyster larvae.
  • the pH value in the pore solution is generally greater than 12.5.
  • the pH value of the saturated calcium hydroxide solution is about 12 at room temperature, so the calcium ion concentration in the concrete pore solution is about 5mmol/L ;
  • the solubility of calcium carbonate is very small, only 9.5 ⁇ 10 -5 mol/L (9.5 ⁇ 10 -2 mmol/L) at 25°C.
  • Comparative Document 4 composite Portland cement, slag Portland cement, pozzolanic Portland cement, fly ash Portland cement and aluminate cement are used: ordinary Portland cement and minerals are used in the present invention.
  • the compound admixture of admixtures is used to achieve low alkalinity cement; among them, silica fume is a kind of mineral admixture with high activity, and the appropriate amount of admixture has a significant effect on the durability of reinforced concrete in the marine environment. Through optimized design and experiments, it can be A low alkalinity cement with excellent strength and durability is obtained.
  • the concrete in Comparative Document 4 is used to enrich marine organisms, which mainly starts from the size and diversity of attached biomass, and the main attached organisms are various algae.
  • the research purpose of the present invention is to induce the attachment of oysters, but the tolerance of oysters and barnacles to alkalinity is higher than that of algae, and the attachment and metamorphosis of oysters require a large amount of calcium ions, so the two concretes seem to be the same, but in reality There is a big difference.
  • Fig. 4 and Fig. 5 are the comparisons of the biological attachment conditions of Comparative Document 3 after the actual sea attachment experiment of about 210 days and the present invention after the actual sea attachment experiment of 300 days.
  • the concrete in Comparative Document 4 is used to enrich marine organisms, which mainly starts from the size and diversity of attached biomass, and the main attached organisms are various algae.
  • the research purpose of the present invention is to induce the attachment of oysters, but the tolerance of oysters and barnacles to alkalinity is higher than that of algae, and the attachment and metamorphosis of oysters require a large amount of calcium ions, so the two concretes seem to be the same, but in reality There is a big difference.
  • dark pigments one or two of iron oxide black, aniline black, carbon black, antimony sulfide, iron oxide red, and organic pigment red
  • the color of the concrete darkens the color of the concrete and makes the oyster larvae think it is a dark environment. It induces the oyster larvae to reach the dark concrete surface by themselves, increases the chance of contact between the larvae and the concrete surface, and achieves an increase in the induced attachment rate of the oyster larvae.
  • the impermeability of concrete is designed and controlled, and the main measures are: the selection of the type of dark pigment, the control of the addition amount, and the modification.
  • the attachment rate of the larvae increases first.
  • the blending amount is 0.5% to 6% of the gelling material, the attachment amount of the larvae is the largest, but thereafter it increases slightly or remains unchanged.
  • Marine biological researchers in order to clarify the attachment mechanism of oysters and the purpose of breeding and proliferation, study the attachment and metamorphosis of different ions to marine sessile organisms, belonging to the Department of Marine Biology. It is quite different from marine concrete engineering or concrete materials disciplines, and they are completely two major disciplines. Through the intersection of marine sessile organisms and concrete disciplines, the use of paint and concrete to add corresponding substances to induce the attachment of oyster larvae on the concrete surface. Because soluble salts have a great influence on the performance of concrete, such as affecting early workability, setting time, and later strength and impermeability, the present invention uses diatomaceous earth as a carrier to fix these inorganic salts on the diatomaceous earth.
  • the strength and permeability of paint and concrete are the two most important properties of paint and concrete.
  • the mixing of different inducers in paint and concrete will affect the performance of paint and concrete. Therefore, when considering adding different substances to promote the attachment, metamorphosis and later growth of oyster larvae, it is necessary to control the overall effect of the paint and concrete.
  • the strength and permeability of concrete do not have a big impact, and then choose the raw materials according to the compatibility of various raw materials. When the performance of the raw materials cannot meet the actual requirements, the raw materials are modified and then added to meet our expectations. Function.
  • Comparative Document 2 is coated with a layer of cement mortar mixed with ground oyster shells on the surface of the concrete, its purpose is mainly achieved by the surface bionics, which is to collect fish. , Collect microorganisms and algae, increase the number of microorganisms and improve the water environment, without mentioning oysters.
  • the purpose of the cement-based paint of the present invention is to induce the adhesion of fixed organisms, mainly oysters, and the adhesion of barnacles is considered when the reinforced concrete is anti-corrosive in the tidal range.
  • Comparative Document 2 points out that in cement mortar, biological calcium carbonate powder (150-200 mesh) with a cement mass of less than 10% is not obvious for inducing adhesion. However, in the research process of the present invention, modified beef bone powder and biological calcium carbonate powder are mixed with cement-based paint (fineness: 100-1000 mesh), and the optimum mixing amount of beef bone powder and biological calcium carbonate powder is obtained as a cementitious material Less than 10%.
  • the invention can achieve a good effect of inducing fixed organisms by painting a layer of cement-based paint on the surface of the concrete, without inlaying oyster shells, not only the construction is simple, but also the adhesion amount of oysters can be greatly increased.
  • Comparative Document 3 uses 80 mesh beef bone powder, calcium powder and gypsum powder, which are separately mixed into concrete.
  • the fineness of all the calcareous materials in the present invention is greater than 100 mesh, which is greater than the material fineness in the reference document 3.
  • modified bovine bone powder is added, and the particle gradation in the coating and its inducing ability are considered.
  • bovine bone meal is rich in organic substances such as collagen, a large amount of these substances will cause the strength and impermeability of the coating to decrease, especially when it exceeds 5%, increase the dosage, and the strength of the coating will decrease rapidly.
  • the impermeability is significantly worse, and it will grow mold under standard curing conditions.
  • the present invention gives full play to the inducing ability of bovine bone powder, greatly reduces the amount of bovine bone powder, and carries out anti-corrosion treatment and modification, and realizes the compound induction based on bovine bone powder. It has a small content and hardly affects the performance of the paint. At the same time, it has a strong adhesion of oyster larvae and solves the problem of mildew after the paint is painted. Compared with the paint without the inducer, the number of oyster larvae attached to the concrete after the paint with the inducer is significantly increased.
  • the comparative documents and the literature data that have been consulted show that the calcium content is very important for the attachment of oyster larvae.
  • some current experimental results also prove that adding an appropriate amount of calcium carbonate to cement-based materials can promote the attachment and growth of oyster larvae.
  • the pH value in the pore solution is generally greater than 12.5.
  • the pH value of the saturated calcium hydroxide solution is about 12 at room temperature, and the calcium ion concentration in the pore solution is about 5 mmol/L;
  • the solubility of calcium is very small, only 9.5 ⁇ 10 -5 mol/L (9.5 ⁇ 10 -2 mmol/L) at 25°C.
  • Comparative Document 4 composite Portland cement, slag Portland cement, pozzolanic Portland cement, fly ash Portland cement and aluminate cement are used: ordinary Portland cement and minerals are used in the present invention.
  • the compound admixture of admixtures is used to achieve low alkalinity cement; among them, silica fume is a kind of mineral admixture with high activity, and the appropriate amount of admixture has a significant effect on the durability of reinforced concrete in the marine environment. Through optimized design and experiments, it can be A low alkalinity cement with excellent strength and durability is obtained.
  • the concrete in Comparative Document 4 is used to enrich marine organisms, which mainly starts from the size and diversity of attached biomass, and the main attached organisms are various algae.
  • the research purpose of the present invention is to induce the attachment of oysters, but the tolerance of oysters and barnacles to alkalinity is higher than that of algae, and the attachment and metamorphosis of oysters require a large amount of calcium ions, so the two cement-based materials seem to be the same , In fact, there is a big difference.
  • dark pigments one or two of iron oxide black, aniline black, carbon black, antimony sulfide, iron oxide red, and organic pigment red
  • the color of the paint makes the color of the paint darker and makes the oyster larvae think it is a dark environment, induces the oyster larvae to reach the dark concrete surface by themselves, increases the contact probability of the larvae and the concrete surface, and achieves an increase in the induction rate of the oyster larvae.
  • the impermeability of the cement-based coating is designed and controlled, and the main measures are: selection of the type of dark pigment, control of the addition amount, and modification.
  • the attachment rate of the larvae increases first.
  • the blending amount is 0.5% to 6% of the gelling material, the attachment amount of the larvae is the largest, but thereafter it increases slightly or remains unchanged.
  • Marine biological researchers in order to clarify the attachment mechanism of oysters and the purpose of breeding and proliferation, study the attachment and metamorphosis of different ions to marine sessile organisms, belonging to the Department of Marine Biology. It is quite different from marine concrete engineering or concrete materials disciplines, and they are completely two major disciplines. Through the intersection of marine fixed organisms and concrete disciplines, it is obtained that the corresponding substances are added to the paint to induce the attachment of oyster larvae on the concrete surface. Because soluble salts have a great influence on the performance of the coating, such as affecting the early workability, setting time, and later strength and impermeability, the present invention uses diatomaceous earth as a carrier to fix these inorganic salts on the diatomaceous earth.
  • the strength and permeability of the coating are critical.
  • the addition of different inducers to cement-based coatings will all have an impact on the performance of the coating. Therefore, when considering the addition of different substances to promote the attachment, metamorphosis and later growth of oyster larvae, we must first control the overall effect on the coating.
  • the performance has a big impact, and then the raw materials are selected according to the compatibility of various raw materials. When the performance of the raw materials cannot meet the actual requirements, the raw materials are modified and then added to achieve the desired function.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Environmental Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Zoology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Fish Reefs (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Revetment (AREA)
  • Paints Or Removers (AREA)

Abstract

一种诱导海洋固着生物附着的水泥涂料与应用技术,尤其是生态抛石防波堤建造方法、诱导型水泥基涂料及制备方法。上述诱导海洋固着生物附着的水泥涂料,涂覆在石材表面,运用合理的空间布局,使各个石堆(块)能有效消波且保证两侧水体畅通交换。各个石堆(块)附着的牡蛎大量繁殖后,还能净化水体及改善周围海域生态环境。

Description

生态抛石防波堤建造方法、诱导型水泥基涂料及制备方法
本申请要求于2019年12月2日提交中国专利局、申请号为201911210502.6,发明名称为“一种生态抛石防波堤的建造方法”的中国专利申请的优先权,要求2019年12月2日提交中国专利局、申请号为201911210521.9,发明名称为“一种用于海洋工程表面诱导固着生物的水泥基涂料及制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种生态防波堤技术,尤其涉及一种生态抛石防波堤建造方法、诱导型水泥基涂料及制备方法,属于海洋生态工程领域。
背景技术
由于近几十年沿海经济的快速发展且不注重环境保护,已造成沿海生态大规模破坏,并且已对我国海岸的生态和经济造成了巨大影响。而目前国家一系列相关政策的出台,我国海洋工程建设也将迎来一个高峰期,同时大规模建设的海洋工程及保障其周围海域稳定的防波堤使海洋本就脆弱的生态***进一步破坏。若不采取适当的生态环境的保护,必将给海洋沿岸的生态带来更大的灾难。同时大多数沿海基础设施无法拆除,且所在海域的生态需要修复,使得人们逐渐意识到在大量的基础设施上进行生态化技术的应用,可以有效改善或修复海域的生态。因此,建设具有良好生态效应的防波堤,或者对现有的防波堤生态化是目前改善近海生态环境是非常重要和迫切的。
发明内容
本发明的目的是针对当今防波堤的扩建修复对沿海生态造成破坏及现有防波堤服役周期短的问题,提供了一种高耐久的生态抛石防波堤的建造方法,使防波堤同时兼备良好的消波功能、长久服役能力及优良的生态效益。本发明是依据牡蛎喜好在深色底质和同类贝壳表面附着,较高的碱度又会影响牡蛎的附着和***,同时考虑外掺加的物质对水泥基涂料和混凝土性能的影响,进行了诱导牡蛎附着的涂料与混凝土设计和成型、养护的方法确定。具体技术方案如下:
(1)防波堤修建位置海区调查:调研该海区的牡蛎优势种属以及是否有牡蛎附着,并对该海区进行不同季节的气温、海水温度、溶解氧、浮游生物、总溶解无机氮、活性磷酸盐、活性硅酸盐,Ca 2+、Zn 2+、K +等进行调研,以及历年台风次数,强度等进行调研。
(2)混凝土质附着基制备:其形状为板状的附着基、波浪形附着基和圆筒形附着基中的一种;
(3)牡蛎苗的定量采集及养殖:当地海域的牡蛎浮游幼虫集中附着***期,将附着基放置到附近海域的采苗区,当牡蛎幼虫的附着量为15~25个/100cm 2停止采苗;然后将其移到饵料丰富的海域进行浮式养殖。
(4)石块表面处理:对岩石表面进行清洗,饱和面干时喷涂或涂刷一种用于海洋工程表面诱导固着生物的水泥基涂料;
(5)石块放置:在第二年当地海域的牡蛎浮游幼虫集中附着***期,采取分散放置方法,对体积超过1立方米的石块单个放置,每个石块用绳笼罩住;采用绳笼罩住多个体积小于1立方米的石块形成一个体积为1~5立方米的石头堆,内部空隙率为40%~60%;岩石及岩石堆之间采用绳等相连;
(6)牡蛎附着基现场放置:将(2)中的牡蛎的性腺发育分期为成熟期的牡蛎基运到构建防波堤的海区,每个单体石块或者石头堆上放置一块表面粗糙的轻质混凝土牡蛎附着基,并采用绳和石块或者石堆固定;并根据当地海域的浮游生物情况,必要时投放饵料或者放置饵料的营养盐。
(7)监测幼虫附着与管理:监测牡蛎幼虫在混凝土表面的附着情况,当30~40个/100cm 2时,移走牡蛎附着基,并长期监测防波堤的生态情况,并根据实际情况采用相应措施。
(2)中具体措施所述的表面粗糙的轻质混凝土牡蛎附着基,其材料组分为:胶凝材料、轻质粗骨料、轻质细骨料、水、深色颜料、生物钙粉、碳酸钙粉、微量元素、短切纤维和超塑化剂重量配比依次为:21.8%~34.5%、24.6%~37.5%、15.8%~29.6%、8.4%~16.4%、0.6~3.0%、0.4%~2.0%、0.4%~2.0%、0.2%~1.8%、0.15%~1.5%和0.03%~0.18%。
优选的,所述的深色颜料为:氧化铁黑、苯胺黑、炭黑、硫化锑、氧化铁红、有机颜料红中的一种或两种。
优选的,所述的深色颜料为:根据对混凝土的性能影响程度,进行这些颜料的改性,采用透明树脂、有机硅、二甲硅氧烷、超疏水材料中的一种进行改性处理。
优选的,所述的生物钙粉为:所述的生物钙粉为牛骨粉,生物碳酸钙粉包括牡蛎壳粉、鱼骨粉、鸡蛋壳粉、珊瑚粉中的一种或几种复合,其细度为100目~1000目。
优选的,所述的生物钙粉为:对100目到500目间的鸡蛋壳粉、珊瑚粉、牡蛎壳粉、鱼骨粉采用以下酸进行处理,包括乙酸、醋酸、硅酸、亚硫酸中的一种或两种;以及对100目到500目牛骨粉采用以下酸进行处理,包括稀释的磷酸、硫酸、盐酸和硝酸中的一种或两种。
优选的,所述的碳酸钙粉为:方解石、白垩、石灰岩、大理石、文石、石灰华粉末,以及经加工处理的轻质碳酸钙、活性碳酸钙、碳酸钙晶须和超细轻质碳酸钙中的一种或几种,且细度大于200目。
优选的,所述的微量元素锌、铁、钾和磷,其可以选择天然矿物、工业产品或者化工试剂,包括硫酸锌、磷酸钙、磷酸锌、硫酸钾、硝酸钾、硫酸铁、硝酸铵、磷酸钾、磷酸铵、磷酸铁中一种或多种,并对其进行改性,使之实现相应离子的缓释及减少或者消除对混凝土性能的不良影响。不过,对于富营养化的区域,不选择有氮、磷元素的物质。
优选的,所述的胶凝材料为掺加矿物掺合料的硅酸盐类水泥,硫铝酸盐水泥、碱激发胶凝材料中一种。其中掺加矿物掺合料的硅酸盐类水泥中的矿物掺合料包括硅灰、矿渣粉和粉煤灰中的一种或多种组合;硫铝酸盐水泥,包括快硬硫铝酸盐水泥、高强硫铝酸盐水泥、膨胀硫铝酸盐水泥中的一种或两种;碱激发胶凝材料包括碱激发矿渣、碱激发矿渣+粉煤灰中的一种。
优选的,所述的短切纤维为无机纤维(长12~20mm),包括玄武岩纤维、耐碱玻璃纤维、碳纤维中的一种或几种。
优选的,所述的轻质粗骨料为:最大粒径小于20mm破碎的轻质多孔的玄武岩、轻质的陶粒中的一种或两种。
优选的,所述的轻质细骨料为:破碎后的沸石、轻质陶砂中的一种或两种,其粒径为0.2mm~5mm。
一种表面粗糙的水泥混凝土质牡蛎附着基的制备方法,包括如下步骤:
S1:根据牡蛎幼虫的喜好附着粗糙表面的特点,设计不同的粗糙度,然后制造出不同粗糙度的成型模板;
S2:称量胶凝材料、轻质粗骨料、轻质细骨料、水、深色颜料、生物钙粉、碳酸钙粉、微量元素、短切纤维和超塑化剂;
S3:先将轻质粗骨料、轻质细骨料放入混凝土搅拌机中搅拌0.5~1分钟;然后加入胶凝材料、深色颜料和生物钙粉、碳酸钙粉和微量元素,再继续搅拌1~2分钟;然后加入短切纤维、水和超塑化剂搅拌2~6分钟;搅拌均匀后,进行浇筑、振捣。
S4:将拆模后的混凝土试件视情况放置于高浓度CO 2养护箱中养护0.5至5小时,降低水泥试件的碱度,随后进行标准养护28d或根据实际情况进行养护。
即可制得诱导效果佳的表面粗糙的水泥混凝土质牡蛎附着基。
(2)中具体措施所述的表面粗糙的轻质混凝土牡蛎附着基,其材料组分为:深色颜料、胶凝材料、轻质粗骨料、轻质细骨料、水和超塑化剂;其中,深色颜料、胶凝材料、轻质粗骨料、轻质细骨料、水和超塑化剂重量配比依次为:0.6~3.0%、21.8%~34.5%、24.6%~37.5%、15.8%~29.6%、8.4%~16.4%和0.03%~0.18%。
(2)中具体措施所述的表面粗糙的轻质混凝土牡蛎附着基,其材料组分为:碳酸钙粉、胶凝材料、轻质粗骨料、轻质细骨料、水和超塑化剂;其中,碳酸钙粉、胶凝材料、轻质粗骨料、轻质细骨料、水和超塑化剂重量配比依次为:0.4~2.35%、21.8%~34.5%、24.6%~37.5%、15.8%~29.6%、8.4%~16.4%和0.03%~0.18%。
(2)中具体措施所述的表面粗糙的轻质混凝土牡蛎附着基,其材料组分为:牛骨粉、胶凝材料、轻质粗骨料、轻质细骨料、水和超塑化剂;其中,牛骨粉、胶凝材料、轻质粗骨料、轻质细骨料、水和超塑化剂重量配比依次为:0.4~2.35%、21.8%~34.5%、24.6%~37.5%、15.8%~29.6%、8.4%~16.4%和0.03%~0.18%。
(2)中具体措施所述的表面粗糙的轻质混凝土牡蛎附着基,其材料组分为:改性深色颜料、碳酸钙粉、胶凝材料、轻质粗骨料、轻质细骨料、水和超塑化剂;其中,改性深色颜料、碳酸钙粉、胶凝材料、轻质粗骨料、轻质细骨料、水和超塑化剂重量配比依次为:0.6~3.0%、0.4~2.35%、21.8%~34.5%、24.6%~37.5%、15.8%~29.6%、8.4%~16.4%和0.03%~0.18%。
(2)中具体措施所述的表面粗糙的轻质混凝土附着基上在成型时预留直径3~5mm的圆孔。
(3)中具体措施所述的牡蛎浮游幼虫集中附着***期,北方一般为5~8月,南方一般为4~10月。
(4)中具体措施所述的一种用于海洋工程表面诱导固着生物的水泥基涂料。具体技术方案如下:
其材料组分为:胶凝材料、砂、水、深色颜料、生物钙粉、碳酸钙粉、微量元素、木质纤维素、可分散胶粉和超塑化剂重量比依次为:1:(0.35~0.7):(0.20~0.60):(0.02~0.10):(0.02~0.10):(0.02~0.10):(0.01~0.08):(0.04~0.12):(0.05~0.15):(0.001~0.010)。
优选的,所述的深色颜料为:氧化铁黑、苯胺黑、炭黑、硫化锑、氧化铁红、有机颜料红中的一种或两种。
优选的,所述的深色颜料为:根据对混凝土的性能影响程度,进行这些颜料的改性,采用透明树脂、有机硅、二甲硅氧烷、超疏水材料中的一种进行改性处理。
优选的,所述的生物钙粉为:所述的生物钙粉为牛骨粉,生物碳酸钙粉包括牡蛎壳粉、鱼骨粉、鸡蛋壳粉、珊瑚粉中的一种或几种复合,其细度为100目~1000目。
优选的,所述的生物钙粉为:对100目到500目间的鸡蛋壳粉、珊瑚粉、牡蛎壳粉、鱼骨粉采用以下酸进行处理,包括乙酸、醋酸、硅酸、亚硫酸中的一种或两种;以及对100目到500目牛骨粉采用以下酸进行处理,包括稀释的磷酸、硫酸、盐酸和硝酸中的一种或两种。
优选的,所述的碳酸钙粉为:方解石、白垩、石灰岩、大理石、文石、石灰华粉末,以及经加工处理的轻质碳酸钙、活性碳酸钙、碳酸钙晶须和超细轻质碳酸钙中的一种或几种,且细度大于200目。
优选的,所述的微量元素锌、铁、钾和磷,其可以选择天然矿物、工业产品或者化工试剂,包括硫酸锌、磷酸钙、磷酸锌、硫酸钾、硝酸钾、硫酸铁、硝酸铵、磷酸钾、磷酸铵、磷酸铁中一种或多种,并对其进行改性,使之实现相应离子的缓释及减少或者消除对混凝土性能的不良影响。不过,对于富营养化的区域,不选择有氮、磷元素的物质。
优选的,所述的胶凝材料为掺加矿物掺合料的硅酸盐类水泥,硫铝酸盐水泥、碱激发胶凝材料中一种。其中掺加矿物掺合料的硅酸盐类水泥中的矿物掺合料包括硅灰、矿渣粉和粉煤灰中的一种或多 种组合;硫铝酸盐水泥,包括快硬硫铝酸盐水泥、高强硫铝酸盐水泥、膨胀硫铝酸盐水泥中的一种或两种;碱激发胶凝材料包括碱激发矿渣、碱激发矿渣+粉煤灰中的一种。
优选的,所述的砂为粒径0.16mm~2.36mm的河砂、机制砂(母岩可为石灰岩、玄武岩或花岗岩),以及海砂中的一种或几种。
优选的、所述的超塑化剂,如聚羧酸、萘系中的一种。
一种用于海洋工程表面诱导固着生物的水泥基涂料及制备方法,包括如下步骤:
S1:称量胶凝材料、砂、水、深色颜料、生物钙粉、碳酸钙粉、微量元素、木质纤维素、可分散胶粉和超塑化剂;
S2:将胶凝材料、深色颜料和生物钙粉、碳酸钙粉、微量元素放入混料机,转速为1000-1500转/分,混合时间为2~5分钟,混合均匀;
S3:然后将砂、木质纤维素、可分散胶粉放入搅拌机,其转速为500-1000转/分,混合时间为5~10分钟;
S4:将粉状超塑化剂充分溶解于水中,然后同混好的物料一同放在高速搅拌机中,其转速为1000-1500转/分,搅拌5~10分钟。
即可制得一种诱导效果佳的用于海洋工程表面诱导固着生物的水泥涂料。
(5)中具体措施所述的绳为棕绳、玻璃纤维、玄武岩纤维绳中的一种。
本发明的目的是发明一种能直接在潮湿环境下进行涂刷和固化的涂料,可诱导固着生物快速、致密地附着在混凝土表面,利用牡蛎固着特性达到生物防腐蚀的效果,且固着生物的大量附着还能达到净化水体、修复生态的目的。解决海洋混凝土工程潮差区及水下区防腐蚀措施效果有限、服役时间短、造价高等问题,以及生态恶化亟需海洋生态修复的问题。
本发明的目的是这样实现的,本发明通过使用低碱度的胶凝材料、木质纤维素、可分散胶粉和超塑化剂,并在涂料中添加改性深色颜料、改性生物钙粉、碳酸钙粉、微量元素,使制备的水泥基涂料具有高诱导牡蛎幼虫附着、***的能力,实现了牡蛎附着致密、均匀的效果,利用牡蛎固着特性提高了混凝土结构的耐久性,并且对海洋环境不产生污染。
本发明还包括这样一些结构特征:
其材料组分为:胶凝材料、砂、水、深色颜料、生物钙粉、碳酸钙粉、微量元素、木质纤维素、可分散胶粉和超塑化剂重量比依次为:1:(0.35~0.7):(0.20~0.60):(0.02~0.10):(0.02~0.10):(0.02~0.10):(0.01~0.08):(0.04~0.12):(0.05~0.15):(0.001~0.010)。
优选的,所述的深色颜料为:氧化铁黑、苯胺黑、炭黑、硫化锑、氧化铁红、有机颜料红中的一种或两种。
优选的,所述的深色颜料为:根据对混凝土的性能影响程度,进行这些颜料的改性,采用透明树脂、有机硅、二甲硅氧烷、超疏水材料中的一种进行改性处理。
优选的,所述的生物钙粉为:所述的生物钙粉为牛骨粉,生物碳酸钙粉包括牡蛎壳粉、鱼骨粉、鸡蛋壳粉、珊瑚粉中的一种或几种复合,其细度为100目~1000目。
优选的,所述的生物钙粉为:对100目到500目间的鸡蛋壳粉、珊瑚粉、牡蛎壳粉、鱼骨粉采用以下酸进行处理,包括乙酸、醋酸、硅酸、亚硫酸中的一种或两种;以及对100目到500目牛骨粉采用以下酸进行处理,包括稀释的磷酸、硫酸、盐酸和硝酸中的一种或两种。
优选的,所述的碳酸钙粉为:方解石、白垩、石灰岩、大理石、文石、石灰华粉末,以及经加工处理的轻质碳酸钙、活性碳酸钙、碳酸钙晶须和超细轻质碳酸钙中的一种或几种,且细度大于200目。
优选的,所述的微量元素锌、铁、钾和磷,其可以选择天然矿物、工业产品或者化工试剂,包括 硫酸锌、磷酸钙、磷酸锌、硫酸钾、硝酸钾、硫酸铁、硝酸铵、磷酸钾、磷酸铵、磷酸铁中一种或多种,并对其进行改性,使之实现相应离子的缓释及减少或者消除对混凝土性能的不良影响。不过,对于富营养化的区域,不选择有氮、磷元素的物质。
优选的,所述的胶凝材料为掺加矿物掺合料的硅酸盐类水泥,硫铝酸盐水泥、碱激发胶凝材料中一种。其中掺加矿物掺合料的硅酸盐类水泥中的矿物掺合料包括硅灰、矿渣粉和粉煤灰中的一种或多种组合;硫铝酸盐水泥,包括快硬硫铝酸盐水泥、高强硫铝酸盐水泥、膨胀硫铝酸盐水泥中的一种或两种;碱激发胶凝材料包括碱激发矿渣、碱激发矿渣+粉煤灰中的一种。
优选的,所述的砂为粒径0.16mm~2.36mm的河砂、机制砂(母岩可为石灰岩、玄武岩或花岗岩),以及海砂中的一种或几种。
优选的、所述的超塑化剂,如聚羧酸、萘系中的一种。
一种用于海洋工程表面诱导固着生物的水泥基涂料及制备方法,其特征在于,包括如下步骤:
S1:准确称量胶凝材料、砂、水、深色颜料、生物钙粉、碳酸钙粉、微量元素、木质纤维素、可分散胶粉和超塑化剂;
S2:将胶凝材料、深色颜料和生物钙粉、碳酸钙粉、微量元素放入混料机,转速为1000-1500转/分,混合时间为2~5分钟,混合均匀;
S3:然后将砂、木质纤维素、可分散胶粉放入搅拌机,其转速为500-1000转/分,混合时间为5~10分钟;
S4:将粉状超塑化剂充分溶解于水中,然后同混好的物料一同放在高速搅拌机中,其转速为200-500转/分,搅拌5~10分钟。
即可制得一种诱导效果佳的用于海洋工程表面诱导固着生物的水泥基涂料。
与现有技术相比,本发明的有益效果是:
本发明将一种用于海洋工程表面诱导固着生物的水泥基涂料涂刷于天然石块表面,并在石堆上放置一种表面粗糙的水泥混凝土质牡蛎附着基,这样使牡蛎幼虫快速、致密地附着于石块表面,并在其附着、***、发育的过程中可以摄取到充足的营养物质。并运用合理的空间布局,使各个石堆(块)在海流荷载大的时候能有效消波,防波堤在平时两侧水体畅通交换。各个石堆(块)附着的牡蛎大量繁殖后,该生态防波堤还能净化水体及改善周围海域生态环境。这样就彻底解决了传统防波堤存在的阻挡两侧水体交换、改变局部海域的pH值甚至破坏生态环境的问题,并可以用于修复该海域的生态环境。
目前,不管是海洋混凝土耐久性,还是海洋混凝土工程生态化,都缺乏一种绿色、经济的方法。基于牡蛎作为海洋的“生态工程师”,具有使混凝土结构表面致密化和改善生态环境的功能等。本发明提出的一种诱导固着生物的水泥基涂料,既具有可快速诱导固着生物附着、***及促进长期生长的特点,还具有施工简单和易于涂刷的特点。可应用于新建的海洋工程、特别是海洋中大量正在服役的工程。其不仅可以提高钢筋混凝土结构的耐久性,且简单、经济地实现海洋生态环境的修复。这不仅大大地拓宽了海洋固着生物在已服役的钢筋混凝土结构中的防腐应用,还可广泛地应用于海洋生态环境修复工程。
附图说明
图1掺加10%牛骨粉的不同配合比的混凝土表面发霉情况;
图2掺加细度大于200目、改性的10%牛骨粉的不同配合比;
图3实海附着实验210d示意图;
图4实海附着实验300d示意图;
图5是混凝土牡蛎附着基示意图;
图6是混凝土牡蛎附着基示意图;
图7是混凝土牡蛎附着基示意图。
具体实施方式
下面通过实施例对本发明进行详细说明,这些实施例仅用来说明本发明,并不限制本发明的范围。
工程方案具体技术方案步骤如下:
实施例1:
(1)防波堤修建位置海区调查:调研该海区的牡蛎优势种属以及是否有牡蛎附着,并每季度进行15次测试并记录该海区的气温、海水温度、溶解氧、浮游生物、总溶解无机氮、活性磷酸盐、活性硅酸盐以及Ca 2+、Zn 2+、K +离子,同时对历年台风次数,强度进行调研;并查阅多年的海域气象和水文资料;分析生态抛石防波堤建造的可行方法及解决措施;
(2)混凝土质附着基制备:采用生态的混凝土,制作表面粗糙的轻质混凝土牡蛎附着基,附着基尺寸为10cm×10cm×2cm,拆模后,先立即进行10个大气压下1小时的CO 2养护,随后进行标准养护28d。
(3)牡蛎苗的定时定量采集及养殖:在7月,将轻质粗糙的混凝土质附着基放置到附近海域的采苗区,当牡蛎幼虫的附着量为20个/100cm 2停止采苗,然后将其移到饵料丰富的海域进行浮式养殖。
(4)石块表面处理:检查岩石表面,对存在杂物及化学污染物的岩石表面进行清洗,饱和面干时涂刷一种用于海洋工程表面诱导固着生物的水泥基涂料;
(5)石块放置:在第二年6月,采取分散放置方法,对体积超过1立方米的石块单个放置,每个石块用绳笼罩住;采用绳笼罩住多个体积小于1立方米的石块形成一个体积为1~5立方米的石头堆,内部空隙率为50%;岩石及岩石堆之间采用绳相连,且各个石块(堆)之间的距离保持在4米;
(6)牡蛎附着基现场放置:将混凝土表面牡蛎(性腺发育分期为成熟期)附着良好的牡蛎基运到构建防波堤的海区,每个单体石块(堆)上放置一块牡蛎附着基,并用绳与石块或者石堆固定;
(7)监测幼虫附着与管理:监测牡蛎幼虫在混凝土表面的附着密度达到35个/100cm 2,移走牡蛎附着基;同时监测该海域的浮游生物的种类和数量,决定是否继续投放饵料。
实施例2:
(1)防波堤修建位置海区调查:调研该海区的牡蛎优势种属以及是否有牡蛎附着,每季度进行15次测试并记录该海区的气温、海水温度、溶解氧、浮游生物、总溶解无机氮、活性磷酸盐、活性硅酸盐以及Ca 2+、Zn 2+、K +离子,同时对历年台风次数,强度进行调研;并查阅多年的海域气象和水文资料;分析生态抛石防波堤建造的可行方法及解决措施;
(2)混凝土质附着基制备:采用生态的混凝土,制作表面粗糙的轻质混凝土牡蛎附着基,附着基尺寸为10cm×10cm×3cm,拆模后,先立即进行10个大气压下1.5小时的CO 2养护,随后进行标准养护28d。
(3)牡蛎苗的定时定量采集及养殖:在8月,将轻质粗糙的混凝土质附着基放置到附近海域的采苗区,当牡蛎幼虫的附着量为25个/100cm 2停止采苗,然后将其移到饵料丰富的海域进行浮式养殖。
(4)石块表面处理:检查岩石表面,对存在杂物及化学污染物的岩石表面进行清洗,饱和面干时涂刷一种用于海洋工程表面诱导固着生物的水泥基涂料;
(5)石块放置:在第二年7月,采取分散放置方法,对体积超过1立方米的石块单个放置,每个石块用绳笼罩住;采用绳笼罩住多个体积小于1立方米的石块形成一个体积为1~5立方米的石头堆,内部空隙率为60%;岩石及岩石堆之间采用绳相连,且各个石块(堆)之间的距离保持在5米;
(6)牡蛎附着基现场放置:将混凝土表面牡蛎(性腺发育分期为成熟期)附着良好的牡蛎基运到构建防波堤的海区,每个单体石块(堆)上放置一块牡蛎附着基,并用绳将石块或者石堆固定。
(7)监测幼虫附着与管理:监测牡蛎幼虫在混凝土表面的附着密度达到40个/100cm 2,移走牡蛎附着基;同时监测该海域的浮游生物的种类和数量,决定是否继续投放饵料。
实施例1和实施例2中所述的牡蛎附着基和水泥基涂料的配合比例如下,混凝土牡蛎附着基形状设计具体见图5-7,:
一种表面粗糙的轻质混凝土牡蛎附着基(1~25)的混凝土配合比,一种用于海洋工程表面诱导固着生物的水泥基涂料(26~35)的配合比,
1:普通硅酸盐水泥混凝土配合比,普通硅酸盐水泥、轻质粗骨料、轻质细骨料、水和聚羧酸减水剂粉重量配比依次为:29.37%、33.53%、24.48%、12.59%、0.03%。
其中所述的轻质粗骨料为最大粒径小于20mm破碎的轻质多孔的玄武岩、轻质的陶粒中的一种或两种。所述的轻质细骨料为破碎后的沸石、轻质陶砂中的一种或两种,其粒径为0.2mm~5mm,且级配良好。所述的水应符合混凝土用水标准(JGJ63-2006),Cl -含量<1000mg/L,PH值>4.5,对水泥初凝时间差及终凝时间、强度及渗透性影响小。且1~25中所选以上材料相同。
2:基准混凝土配合比,普通硅酸盐水泥、硅灰、高炉矿渣粉、轻质粗骨料、轻质细骨料、水和聚羧酸减水剂粉重量配比依次为:17.62%、1.47%、10.28%、33.57%、24.48%、12.59%、0.03%。
3:未改性深色颜料、普通硅酸盐水泥、硅灰、高炉矿渣粉、轻质粗骨料、轻质细骨料、水和聚羧酸减水剂粉重量配比依次为:0.87%、17.62%、1.36%、9.52%、33.57%、24.48%、12.59%、0.03%。
4:未改性深色颜料、普通硅酸盐水泥、硅灰、高炉矿渣粉、轻质粗骨料、轻质细骨料、水和聚羧酸减水剂粉重量配比依次为:1.47%、17.62%、1.28%、8.99%、33.57%、24.48%、12.59%、0.03%。
5:未改性深色颜料、普通硅酸盐水泥、硅灰、高炉矿渣粉、轻质粗骨料、轻质细骨料、水和聚羧酸减水剂粉重量配比依次为:2.35%、17.62%、1.18%、8.23%、33.57%、24.48%、12.59%、0.03%。
6:改性深色颜料(氧化铁黑:苯胺黑混合物质量比=1:1)、普通硅酸盐水泥、硅灰、高炉矿渣粉、轻质粗骨料、轻质细骨料、水和聚羧酸减水剂粉重量配比依次为:0.87%、17.62%、1.36%、9.52%、33.57%、24.48%、12.59%、0.03%。
7:改性深色颜料(氧化铁黑:苯胺黑混合物质量比=1:1)、普通硅酸盐水泥、硅灰、高炉矿渣粉、轻质粗骨料、轻质细骨料、水和聚羧酸减水剂粉重量配比依次为:1.47%、17.62%、1.28%、8.99%、33.57%、24.48%、12.59%、0.03%。
8:改性深色颜料(氧化铁黑:苯胺黑混合物质量比=1:1)、普通硅酸盐水泥、硅灰、高炉矿渣粉、轻质粗骨料、轻质细骨料、水和聚羧酸减水剂粉重量配比依次为:2.35%、17.62%、1.18%、8.23%、33.57%、24.48%、12.59%、0.03%。
其中改性深色颜料采用196透明树脂,掺加3%的固化剂和1.5%促进剂同颜料混合,且颜料与树脂的体积比为:1:0.2;常温固化4h,60℃固化4h,然后敲碎,用振动磨研磨,细度大于400目即可。
9:碳酸钙粉、普通硅酸盐水泥、硅灰、高炉矿渣粉、轻质粗骨料、轻质细骨料、水和聚羧酸减水剂粉重量配比依次为:0.87%、17.62%、1.36%、9.52%、33.57%、24.48%、12.59%、0.03%。
10:碳酸钙粉、普通硅酸盐水泥、硅灰、高炉矿渣粉、轻质粗骨料、轻质细骨料、水和聚羧酸减水剂粉重量配比依次为:1.47%、17.62%、1.28%、8.99%、33.57%、24.48%、12.59%、0.03%。
11:碳酸钙粉、普通硅酸盐水泥、硅灰、高炉矿渣粉、轻质粗骨料、轻质细骨料、水和聚羧酸减水剂粉重量配比依次为:2.35%、17.62%、1.18%、8.23%、33.57%、24.48%、12.59%、0.03%。
12:改性深色颜料(氧化铁黑:苯胺黑混合物质量比=1:1)、碳酸钙粉、普通硅酸盐水泥、硅灰、 高炉矿渣粉、轻质粗骨料、轻质细骨料、水和聚羧酸减水剂粉重量配比依次为:1.47%、0.87%、17.62%、1.18%、8.23%、33.57%、24.48%、12.59%、0.03%。
13:改性深色颜料(氧化铁黑:苯胺黑混合物质量比=1:1)、碳酸钙粉、普通硅酸盐水泥、硅灰、高炉矿渣粉、轻质粗骨料、轻质细骨料、水和聚羧酸减水剂粉重量配比依次为:1.47%、1.47%、17.62%、1.10%、7.71%、33.57%、24.48%、12.59%、0.03%。
14:改性深色颜料(氧化铁黑:苯胺黑混合物质量比=1:1)、碳酸钙粉、普通硅酸盐水泥、硅灰、高炉矿渣粉、轻质粗骨料、轻质细骨料、水和聚羧酸减水剂粉重量配比依次为:1.47%、2.35%、17.62%、0.99%、6.94%、33.57%、24.48%、12.59%、0.03%。
15:未改性牛骨粉、普通硅酸盐水泥、硅灰、高炉矿渣粉、轻质粗骨料、轻质细骨料、水和聚羧酸减水剂粉重量配比依次为:0.87%、17.62%、1.36%、9.52%、33.57%、24.48%、12.59%、0.03%。
16:未改性牛骨粉、普通硅酸盐水泥、硅灰、高炉矿渣粉、轻质粗骨料、轻质细骨料、水和聚羧酸减水剂粉重量配比依次为:1.47%、17.62%、1.28%、8.99%、33.57%、24.48%、12.59%、0.03%。
17:未改性牛骨粉、普通硅酸盐水泥、硅灰、高炉矿渣粉、轻质粗骨料、轻质细骨料、水和聚羧酸减水剂粉重量配比依次为:2.35%、17.62%、1.18%、8.23%、33.57%、24.48%、12.59%、0.03%。
18:改性牛骨粉、普通硅酸盐水泥、硅灰、高炉矿渣粉、轻质粗骨料、轻质细骨料、水和聚羧酸减水剂粉重量配比依次为:0.87%、17.62%、1.36%、9.52%、33.57%、24.48%、12.59%、0.03%。
19:改性牛骨粉、普通硅酸盐水泥、硅灰、高炉矿渣粉、轻质粗骨料、轻质细骨料、水和聚羧酸减水剂粉重量配比依次为:1.47%、17.62%、1.28%、8.99%、33.57%、24.48%、12.59%、0.03%。
20:改性牛骨粉、普通硅酸盐水泥、硅灰、高炉矿渣粉、轻质粗骨料、轻质细骨料、水和聚羧酸减水剂粉重量配比依次为:2.35%、17.62%、1.18%、8.23%、33.57%、24.48%、12.59%、0.03%。
牛骨粉改性方法:将100目的牛骨粉加入到浓度2%的磷酸溶液,两者的重量比为1:3,温度为20~30℃,在转速为200~500转/分搅拌器内搅拌30分钟,采用3000~5000转/分的离心机离心3分钟,倒掉上清液,并用水清洗离心后的固体物质的固体物质2~3次,洗涤水不再显示酸性;将离心后的固体物质在40℃真空干燥,将干燥的牛骨粉与矿渣粉按质量1:4混合,用振动磨粉磨到细度大于200目,待用。
21:碳酸钙粉、硫酸锌、改性深色颜料(氧化铁黑:苯胺黑混合物质量比=1:1)、普通硅酸盐水泥、高炉矿渣粉、硅灰、轻质粗骨料、轻质细骨料、水和聚羧酸减水剂粉重量配比依次为:2.35%、0.5%、1.47%、17.62%、0.93%、6.50%、33.57%、24.48%、12.59%、0.03%。
22:碳酸钙粉、硫酸锌、改性深色颜料(氧化铁黑:苯胺黑混合物质量比=1:1)、普通硅酸盐水泥、高炉矿渣粉、硅灰、轻质粗骨料、轻质细骨料、水和聚羧酸减水剂粉重量配比依次为:2.35%、1.2%、1.47%、17.62%、0.84%、5.89%、33.57%、24.48%、12.59%、0.03%。
23:硫酸锌、改性深色颜料(氧化铁黑:苯胺黑混合物质量比=1:1)、改性生物钙粉(改性牛骨粉:牡蛎壳粉=2:1)、碳酸钙粉、普通硅酸盐水泥、硅灰、高炉矿渣粉、碎石、砂、水和聚羧酸减水剂粉重量配比依次为:0.5%、1.47%、1.47%、0.87%、17.62%、0.93%、6.50%、33.57%、24.48%、12.59%、0.03%。
24:硫酸锌、改性深色颜料(氧化铁黑:苯胺黑混合物质量比=1:1)、改性生物钙粉(改性牛骨粉:牡蛎壳粉=2:1)、碳酸钙粉、普通硅酸盐水泥、硅灰、高炉矿渣粉、碎石、砂、水和聚羧酸减水剂粉重量配比依次为:0.6%、1.47%、1.47%、0.87%、17.62%、0.84%、5.89%、33.57%、24.48%、12.59%、0.03%。
硫酸锌的改性方法:选取硅藻土SiO 2含量>90%,细度600目的硅藻土,在60℃的搅拌器内, 加入150g水,然后加入100g硫酸锌,搅拌到溶解完全,待用;然后将150g上述的硅藻土加热到60℃添加到溶液中,转速为200~500转/分的搅拌器内搅拌10分钟,然后在烘干温度为100℃的干燥箱中干燥,即可得到改性的硫酸锌。
25:硫酸锌、改性深色颜料、改性生物钙粉(改性牛骨粉:牡蛎壳粉=2:1)、碳酸钙粉、普通硅酸盐水泥、硅灰、高炉矿渣粉、碎石、砂、水、短切纤维和聚羧酸减水剂粉重量配比依次为:0.5%、1.47%、1.47%、0.87%、17.62%、0.93%、6.50%、33.07%、24.18%、12.59%、0.8%、0.03%。
26:胶凝材料、砂、水、改性深色颜料(氧化铁黑:苯胺黑混合物质量比=1:1)、改性生物钙粉(改性牛骨粉:牡蛎壳粉=2:1)、碳酸钙粉、硫酸锌、木质纤维素、可分散胶粉和超塑化剂重量比为1:0.5:0.4:0.03:0.03:0.03:0.02:0.06:0.06:0.005。
27:胶凝材料、砂、水、改性深色颜料(氧化铁黑:苯胺黑混合物质量比=1:1)、改性生物钙粉(改性牛骨粉:牡蛎壳粉=2:1)、碳酸钙粉、硫酸锌、木质纤维素、可分散胶粉和超塑化剂重量比依次为:1:0.5:0.4:0.05:0.05:0.05:0.02:0.06:0.06:0.005。
28:胶凝材料、砂、水、改性深色颜料(氧化铁黑:苯胺黑混合物质量比=1:1)、改性生物钙粉(改性牛骨粉:牡蛎壳粉=2:1)、碳酸钙粉、硫酸锌、木质纤维素、可分散胶粉和超塑化剂重量比依次为:1:0.5:0.4:0.05:0.05:0.05:0.04:0.08:0.09:0.005。
29:胶凝材料、砂、水、改性深色颜料(氧化铁黑:苯胺黑混合物质量比=1:1)、改性生物钙粉(改性牛骨粉:牡蛎壳粉=2:1)、碳酸钙粉、硫酸锌、木质纤维素、可分散胶粉和超塑化剂重量比依次为:1:0.5:0.4:0.08:0.08:0.08:0.04:0.08:0.09:0.005。
30:胶凝材料、砂、水、改性深色颜料(氧化铁黑:苯胺黑混合物质量比=1:1)、改性生物钙粉(改性牛骨粉:牡蛎壳粉=2:1)、碳酸钙粉、硫酸锌、木质纤维素、可分散胶粉和超塑化剂重量比依次为:1:0.5:0.4:0.08:0.08:0.08:0.06:0.10:0.12:0.005。
31:胶凝材料、砂、水、改性深色颜料(氧化铁黑:苯胺黑混合物质量比=1:1)、改性生物钙粉(改性牛骨粉:牡蛎壳粉=2:1)、碳酸钙粉、硫酸锌、木质纤维素、可分散胶粉和超塑化剂重量比为1:0.5:0.4:0.03:0.03:0.03:0.04:0.06:0.06:0.005。
32:胶凝材料、砂、水、改性深色颜料(氧化铁黑:苯胺黑混合物质量比=1:1)、改性生物钙粉(改性牛骨粉:牡蛎壳粉=2:1)、碳酸钙粉、硫酸锌、木质纤维素、可分散胶粉和超塑化剂重量比依次为:1:0.5:0.4:0.05:0.05:0.05:0.04:0.06:0.06:0.005。
33:胶凝材料、砂、水、改性深色颜料(氧化铁黑:苯胺黑混合物质量比=1:1)、改性生物钙粉(改性牛骨粉:牡蛎壳粉=2:1)、碳酸钙粉、硫酸锌、木质纤维素、可分散胶粉和超塑化剂重量比依次为:1:0.5:0.4:0.05:0.05:0.05:0.02:0.08:0.09:0.005。
34:胶凝材料、砂、水、改性深色颜料(氧化铁黑:苯胺黑混合物质量比=1:1)、改性生物钙粉(改性牛骨粉:牡蛎壳粉=2:1)、碳酸钙粉、硫酸锌、木质纤维素、可分散胶粉和超塑化剂重量比依次为:1:0.5:0.4:0.08:0.08:0.08:0.06:0.08:0.09:0.005。
35:胶凝材料、砂、水、改性深色颜料(氧化铁黑:苯胺黑混合物质量比=1:1)、改性生物钙粉(改性牛骨粉:牡蛎壳粉=2:1)、碳酸钙粉、硫酸锌、木质纤维素、可分散胶粉和超塑化剂重量比依次为:1:0.5:0.4:0.03:0.03:0.03:0.06:0.10:0.12:0.005。
深色颜料的改性方法:采用196透明树脂,掺加3%的固化剂和1.5%促进剂同颜料混合,且颜料与树脂的体积比为:1:0.2;常温固化4h,60℃固化4h,然后敲碎,用振动磨研磨,细度大于400目即可。
牛骨粉改性方法:将100目的牛骨粉加入到浓度2%的磷酸溶液,两者的重量比为1:3,温度为 20~30℃,在转速为200~500转/分搅拌器内搅拌30分钟,采用3000~5000转/分的离心机离心3分钟,倒掉上清液,并用水清洗离心后的固体物质的固体物质2~3次,洗涤水不再显示酸性;将离心后的固体物质在40℃真空干燥,将干燥的牛骨粉与矿渣粉按质量1:4混合,用振动磨粉磨到细度大于200目,待用。
硫酸锌的改性方法:选取硅藻土SiO 2含量>90%,细度600目的硅藻土,在60℃的搅拌器内,加入150g水,然后加入100g硫酸锌,搅拌到溶解完全,待用;然后将150g上述的硅藻土加热到60℃添加到溶液中,转速为200~500转/分的搅拌器内搅拌10分钟,然后在烘干温度为100℃的干燥箱中干燥,即可得到改性的硫酸锌。
对比文件1:有生命的防波堤_纽约沿海绿色基础设施_孙一鹤
对比文件1中进行了“有生命”的防波堤的建造,宏观设计、表面纹理及采用低碱水泥制作混凝土构件,增加海洋生物量,但是增大的包括海洋植物和海洋固着生物,且主要为海洋植物。本发明中除了对水泥进行低碱化外,还在混凝土中掺加了深色颜料、生物钙粉、碳酸钙粉和微量元素,进行牡蛎幼虫的诱导,其诱导具有快速、致密的特点,效果良好,可很大程度改善海域的生态环境。
与对比文件2(一种仿生混凝土人工鱼礁及其制备方法2015 CN104938384 A)相比,区别在于:
(1)本发明中的目的与对比文件2不同:对比文件2虽然在混凝土表面涂刷一层混合了磨碎牡蛎壳的水泥砂浆,但它的目的主要通过表面的仿生性来实现,集鱼、集微生物、藻类,增加微生物数量改善水体环境,未提及牡蛎。而本发明的水泥基涂料的目的是诱导牡蛎附着。
(2)对比文件2指出,在水泥砂浆中,掺水泥质量10%以下的生物碳酸钙粉(150~200目)对诱导附着不明显。但本发明在研究过程中采用改性的牛骨粉与生物碳酸钙粉混合水泥基涂料(细度:100~1000目),得到了牛骨粉和生物碳酸钙粉的最适掺量为胶凝材料的10%以内。
(3)通过对牛骨粉和生物碳酸钙粉的改性,具体为对100目到500目间的鸡蛋壳粉、珊瑚粉、牡蛎壳粉、鱼骨粉采用以下酸进行处理,包括乙酸、醋酸、硅酸、亚硫酸中的一种或两种;对100目到500目牛骨粉、采用以下酸处理,包括稀释的磷酸、硫酸、盐酸和硝酸中的一种或两种。
(4)对比文件在混凝土表面镶嵌牡蛎壳施工困难,也并不是每个工程表面都能采用这样的方法,可行性低。本发明在混凝土表面涂刷一层水泥基涂料就能达到很好的诱导固着生物的效果,不需要镶嵌牡蛎壳,不仅施工简单、还能大幅度增加牡蛎附着量。
(5)海洋环境下,近年来出现了多次的人工鱼礁腐蚀严重的现象,主要受厌氧微生物硫杆菌分泌的生物硫酸和其它细菌分泌的酸性物质等共同作用造成了严重的腐蚀。而碳酸钙抗酸腐蚀的能力很弱,因此,细度较大的碳酸钙含量过高会造成严重的酸腐蚀。
与对比文件3(范瑞良.基质类型对牡蛎附着、生长、种群建立及礁体发育的影响[D])相比,区别在于:
(1)对比文件3,使用了80目的牛骨粉、钙粉和石膏粉,分别单独掺加于混凝土中。本发明中所有的钙质材料的细度均大于100目,大于对比文件3中的材料细度。同样是掺加了牛骨粉,进行了改性,并考虑涂料和混凝土颗粒级配及其的诱导能力。
(2)常温条件下,用振动磨进行牛骨粉的粉磨,当细度大于80目后,由于牛骨粉含有大量的胶原蛋白,结团严重,无法继续粉磨。本发明中采用了稀酸改性技术,并与其它物质复合粉磨,得到了粒径小的牛骨粉,细度>200目的改性生物钙粉。所制备的生物钙粉,保留了生物钙的原有的物质,并增大了其诱导牡蛎幼虫附着物质的释放速率,并降低生物钙粉掺量,从而降低对涂料及混凝土性能的影响。
(3)由于牛骨粉中含有丰富的胶原蛋白等有机物质,这些物质的大量掺入会引起涂料和混凝土 强度和抗渗性下降,特别是超过5%后,增大掺量,涂料和混凝土强度迅速下降、抗渗性显著变差,以及标准养护条件下涂料、混凝土表面会长霉。图1是混凝土试件发霉的情况。图2为改性后混凝土的表面情况。
从图1中可以看出,混凝土表面的霉呈白色絮状,几乎覆盖了整个混凝土表面;相同的牛骨粉掺量、龄期、养护条件,图2中的混凝土表面则没有发霉。
本发明通过控制采用稀酸改性和复合粉磨技术,充分发挥牛骨粉的诱导能力,大幅度降低牛骨粉掺量,并进行防腐蚀处理及改性,实现了以牛骨粉为主的复合诱导剂,其掺量小,几乎不影响涂料和混凝土强度和渗透性,同时具有很强的牡蛎幼虫附着能力,且解决了涂料和混凝土的发霉问题,相对于不掺加诱导剂的混凝土,掺加诱导剂的混凝土牡蛎幼虫附着个数明显增加,具体见图3。。
对比文件及查阅到的文献资料表明:钙含量对牡蛎幼虫的附着至关重要,同样目前一些实验结果也证明在水泥基材料中掺加适量的碳酸钙质的物质可以促进牡蛎幼虫的附着及生长。但是水泥涂料和水泥混凝土中有大量的钙离子,孔溶液中的pH值一般大于12.5,饱和氢氧化钙溶液的pH值在常温约为12,所以混凝土孔溶液中的钙离子浓度约5mmol/L;而碳酸钙的溶解度很小,在25℃时只有9.5×10 -5mol/L(9.5×10 -2mmol/L)。目前认为诱导牡蛎附着的钙离子浓度最佳范围为10~25mmol/L,即使将牡蛎幼虫放置在饱和的碳酸钙溶液中,也没有足够的Ca 2+浓度为牡蛎附着提供适宜的离子浓度。进一步说,水泥涂料和混凝土内部的Ca(OH) 2可以较快的释放出来,而碳酸钙的溶解则需要较长的时间。因此,可以确定在涂料和混凝土中掺入碳酸钙质材料促进牡蛎幼虫的附着,Ca 2+不是起主导作用。牡蛎的早期附着、***与HCO 3 -有关,在***时和Ca 2+一起生成碳酸钙的次生壳。掺加碳酸钙后,由于碳酸钙与CO 2和水反应,生成Ca(HCO 3) 2后参与附着,是其对牡蛎幼虫附着促进的根本机理。
水泥基材料中碳酸钙掺量有一个最适掺量,可以从以下三方面进行解释:
1)对于等量取代水泥,随着碳酸钙掺量的增加,涂料和混凝土中的碱被稀释,总的碱度在降低,但是随着碳酸钙掺量的增加,涂料和混凝土中的碳酸钙溶解几率增大,其溶液中的HCO 3 -含量增加,所以促进牡蛎的附着与***;但是掺量过大时,涂料和混凝土的渗透性急剧增大,涂料和混凝土中的碱和碳酸根快速渗出,使得碱的负面效应凸显,而碳酸根的临界或者负面效应初显,所以表现为附着量降低;
2)对于等量取代骨料,其随着掺量的增加,涂料和混凝土的渗透性下降,会导致钙离子及OH -的渗出减少,但碳酸根离子的渗透速率会先渐增大,到达一定值时,表现为牡蛎附着达到最大值;而随着掺量继续增大,则钙离子下降幅度大,而碳酸根则也可能会降低,会出现钙离子浓度限制牡蛎幼虫的附着,表现为附着量降低;
3)对于等量取代矿物掺合料,同样随着掺量的增加,渗透性在增加,且由于碳酸钙的增加,使牡蛎附着要求所需的HCO 3 -浓度达到了一个合适范围,表现为牡蛎幼虫附着增加;随着矿物掺合料掺量继续增大,降低了矿物掺合料的掺量,从而渗出的碱量增加,碳酸根增加,但过多的碱及HCO 3 -离子会抑制牡蛎幼虫附着。
与对比文件4(李真真,公丕海,关长涛,et al.不同水泥类型混凝土人工鱼礁的生物附着效果[J].渔业科学进展,2017,38(5):57-63.)相比,区别在于:
对比文件4中使用了复合硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥和铝酸盐水泥:本发明中采用了普通硅酸盐水泥与矿物掺合料的复合掺加来实现低碱度水泥;其中硅灰是矿物掺合料中一种活性高,适宜掺量对海洋环境下钢筋混凝土耐久性提升效果明显,通过优化设计及实验,可以得到强度和耐久性均优的低碱度水泥。同时利用硅灰混凝土的高抗渗性特点,即使混凝土内部碱度较高,仍有大量的牡蛎幼虫附着、***及生长。以及采用低碱度的硫铝酸盐水泥的复 合,调控水泥混凝土的碱度,为牡蛎幼虫附着提供适宜的pH值。此外,海洋植物和牡蛎、藤壶等固着生物耐碱能力不同,且在附着期及后期需要的环境不同,如藤壶和牡蛎的附着、***及后期生长都需要大量的钙离子。
对比文件4中的混凝土用于富集海洋生物,其主要从附着生物量的大小和多样性出发,主要附着的生物为各种藻类等。本发明中研究目的则是诱导牡蛎附着,但是牡蛎和藤壶对碱度的耐受性要高于藻类,并且牡蛎的附着、***需要大量的钙离子,所以说两种混凝土看似一样,实则存在很大区别。图4和图5分别是对比文件3经过210d左右的实海附着实验和本发明经过300d的实海附着实验后生物附着的情况对比。
对比文件4中的混凝土用于富集海洋生物,其主要从附着生物量的大小和多样性出发,主要附着的生物为各种藻类等。本发明中研究目的则是诱导牡蛎附着,但是牡蛎和藤壶对碱度的耐受性要高于藻类,并且牡蛎的附着、***需要大量的钙离子,所以说两种混凝土看似一样,实则存在很大区别。
因此,由于这部分知识涉及到海洋固着生物、海洋植物与海洋混凝土工程学科的交叉,无论是混凝土及工程领域或者海洋生物领域的技术人员,无法通过对比文件3而获得本发明中的将混凝土碱度降低与钙离子浓度之间的平衡与海洋固着生物的附着紧密关联的技术特征。
另外,本发明中独有的特点及其具有的有益效果如下:
深色颜料
利用牡蛎眼点幼虫的避光特性,采用深色颜料(氧化铁黑、苯胺黑、炭黑、硫化锑、氧化铁红、有机颜料红中的一种或两种)掺入混凝土中,改变混凝土的颜色,使混凝土的颜色变深,让牡蛎幼虫认为就是黑暗环境,诱导牡蛎幼虫自行到达深色的混凝土表面,增加幼虫与混凝土表面的接触几率,实现牡蛎幼虫诱导附着率增加。具体为:
海洋生物研究人员,为了养殖增殖或者是为了消除不期望出现的种群等情况下,考虑了采用不同颜色的底质对海洋固着生物的附着的研究,属于海洋生物学科。和海洋混凝土工程或者混凝土材料学科相差较大,完全是两个大的学科。通过海洋固着生物与混凝土学科的交叉,得到了采用深色涂料和混凝土进行牡蛎幼虫的诱导附着。本发明中采用添加深色颜料,用加深涂料和混凝土的颜色来促进牡蛎幼虫的附着。涂料和混凝土中掺入其它的材料,都会对它们性能产生影响。本发明考虑到不同水泥的混凝土,其表面的颜色均有差异。因此,根据水泥的类型和掺量来确定深色物质的掺量。深色颜料也会影响涂料和混凝土的性能。最为重要的是,掺加深色颜料的同时,若不控制涂料和混凝土中的碱和Ca 2+等渗透速率,释放出的碱会影响固着生物幼虫的附着、***及生长,就会出现掺量大于一定值时,幼虫附着量有所降低。本发明中对混凝土的抗渗性进行了设计和控制,主要措施为:深色颜料类型的选取、掺加量的控制及进行改性。随着深色物质掺量的增加,幼虫附着率先增大,当掺量为胶凝材料的0.5%~6%时,幼虫的附着量最大,但之后小幅增加或者保持不变。
微量元素
根据牡蛎体内富集大量的锌,远远高于它所生存的海水,同时其体内还含有较多的Fe、P和K元素。同时,溶液中适宜的Zn 2+,K +浓度可以促进牡蛎幼虫的早期附着与***。因此,采用磷酸锌、磷酸钾、磷酸铵、硫酸锌、硫酸钾、硝酸钾、硫酸铁、硝酸铵、磷酸铁、磷酸钙作为微量元素掺入混凝土中,并通过对这些物质的改性,使混凝土的强度和抗渗性基本保持不变,实现牡蛎幼虫诱导附着率大幅度增加。具体为:
海洋生物研究人员,为了明晰牡蛎附着机理及养殖增殖的目的,研究不同的离子对海洋固着生物的附着、***研究,属于海洋生物学科。和海洋混凝土工程或者混凝土材料学科相差较大,完全是两个大的学科。通过海洋固着生物与混凝土学科的交叉,得到了采用涂料和混凝土中加入相应的物质, 来诱导牡蛎幼虫在混凝土表面的附着。因可溶性盐类对混凝土的性能影响很大,如影响早期的工作性、凝结时间以及后期的强度与抗渗性,本发明通过采用硅藻土为载体,把这些无机盐固定在硅藻土的内部,减小可溶性盐对涂料和混凝土的性能影响,同时利用硅藻土对涂料和混凝土性能提升的作用,实现在掺加这些诱导物质时,仍可以保持涂料和混凝土的良好性能。另外由于硅藻土作为载体具有缓释作用,使可溶性盐释放较缓慢,特别是经过海水浸泡超过一定时间后,释放速率维持在一个很小的速率。因此,同样这部分知识涉及到海洋固着生物、化学与海洋混凝土工程学科的交叉,无论是混凝土及工程领域或者海洋生物领域的技术人员,无法通过现有的背景而获得本发明中的将微量元素掺入涂料和混凝土,改变涂料和混凝土表面微量元素的离子含量和控制涂料和混凝土渗透性与具有高诱导牡蛎幼虫附着能力的涂料和混凝土紧密关联的技术特征。
涂料和混凝土渗透性
涂料和混凝土的强度和渗透性是涂料和混凝土最主要的两个性能。而在涂料和混凝土中掺加不同的诱导剂,都会对涂料和混凝土性能产生影响,因此,在考虑掺加不同物质促进牡蛎幼虫附着、***及后期生长时,首先一定要从整体控制其对涂料和混凝土的强度和渗透性不产生大的影响,然后再根据各种原材料的配伍性去选择原材料,当原材料性能不能满足实际要求时,则通过对原材料的改性后再加入,从而达到我们期望的功能。但实际上,前述的相关研究虽然考虑到了钙质的掺量对牡蛎幼虫附着的影响,但是不考虑混凝土本身的性能,不去考虑水灰比以及钙质的掺量以及养护等,而涂料和混凝土渗透性的变化会使涂料和混凝土内部碱和离子渗漏的速率改变,涂料和混凝土的抗渗性越差,其内部的碱和离子的渗漏速率越大,可能是指数形式的增长。因此,这些释放出来的碱和离子会对幼虫产生很大影响,可能出现从促进附着变为抑制附着的情况,特别水泥掺量大时,这种情况会更严重。因此,涂料和混凝土中掺加诱导剂,一定要保证涂料和混凝土的抗渗性的变化在可控的范围内,如变化不超过10%。这样才能对这些的诱导效果进行比较,否则的话,则无法评价单掺诱导剂或者诱导剂复合掺加对牡蛎幼虫诱导效果的影响。
只有掌握了海洋固着生物在附着、***及后期生长的所需的最适环境,并能从涂料和混凝土的抗渗性高度出发进行设计涂料和混凝土,而不是只考虑各种原材料的掺量而忽略由此带来的涂料和混凝土的抗渗性改变。因此,同样这部分知识涉及到海洋固着生物、化学与海洋混凝土工程学科的交叉,无论是混凝土及工程领域或者海洋生物领域的技术人员,无法通过现有的背景而获得本发明中的涂料和混凝土抗渗性的整体控制与诱导剂促进牡蛎高效诱导附着能力的紧密关联的技术特征。
因此,由于这部分知识涉及到海洋固着生物、海洋植物与海洋混凝土工程学科的交叉,无论是混凝土及工程领域或者海洋生物领域的技术人员,无法通过对比文件2-3而获得本发明中的深色颜料掺入混凝土中改变颜色、牛骨粉改性、粉磨技术和控制涂料和混凝土渗透性与具有高效诱导牡蛎附着能力和高耐久性的涂料和混凝土紧密关联的技术特征。且无法通过对比文件4而获得本发明中的将混凝土碱度降低与钙离子浓度之间的平衡与海洋固着生物的附着紧密关联的技术特征。
下面通过实施例A1-10对本发明进行详细说明,这些实施例A1-10具体实施方法与前文一种用于海洋工程表面诱导固着生物的水泥基涂料(26~35)的实施方法相同。
与对比文件2(一种仿生混凝土人工鱼礁及其制备方法2015 CN104938384 A)相比,区别在于:
(1)本发明中的目的与对比文件2不同:对比文件2虽然在混凝土表面涂刷一层混合了磨碎牡蛎壳的水泥砂浆,但它的目的主要通过表面的仿生性来实现,集鱼、集微生物、藻类,增加微生物数量改善水体环境,未提及牡蛎。而本发明的水泥基涂料的目的是诱导固着生物附着,主要为牡蛎,在潮差区钢筋混凝土防腐蚀时,考虑藤壶的附着。
(2)对比文件2指出,在水泥砂浆中,掺水泥质量10%以下的生物碳酸钙粉(150~200目)对 诱导附着不明显。但本发明在研究过程中采用改性的牛骨粉与生物碳酸钙粉混合水泥基涂料(细度:100~1000目),得到了牛骨粉和生物碳酸钙粉的最适掺量为胶凝材料的10%以内。
(3)通过对牛骨粉和生物碳酸钙粉的改性,具体为对100目到500目间的鸡蛋壳粉、珊瑚粉、牡蛎壳粉、鱼骨粉采用以下酸进行处理,包括乙酸、醋酸、硅酸、亚硫酸中的一种或两种;对100目到500目牛骨粉采用以下酸处理,包括稀释的磷酸、硫酸、盐酸和硝酸中的一种或两种。
(4)对比文件在混凝土表面镶嵌牡蛎壳施工困难,也并不是每个工程表面都能采用这样的方法,可行性低。本发明在混凝土表面涂刷一层水泥基涂料就能达到很好的诱导固着生物的效果,不需要镶嵌牡蛎壳,不仅施工简单、还能大幅度增加牡蛎附着量。
(5)海洋环境下,近年来出现了多次的人工鱼礁腐蚀严重的现象,主要受厌氧微生物硫杆菌分泌的生物硫酸和其它细菌分泌的酸性物质等共同作用造成了严重的腐蚀。而碳酸钙抗酸腐蚀的能力很弱,因此,细度较大的碳酸钙含量过高会造成严重的酸腐蚀。
与对比文件3(范瑞良.基质类型对牡蛎附着、生长、种群建立及礁体发育的影响[D])相比,区别在于:
(1)对比文件3,使用了80目的牛骨粉、钙粉和石膏粉,分别单独掺加于混凝土中。本发明中所有的钙质材料的细度均大于100目,大于对比文件3中的材料细度。且掺加了改性的牛骨粉,并考虑涂料中颗粒级配及其的诱导能力。
(2)常温条件下,用振动磨进行牛骨粉的粉磨,当细度大于80目后,由于牛骨粉含有大量的胶原蛋白,结团严重,无法继续粉磨。本发明中采用了稀酸改性技术,并与其它物质复合粉磨,得到了粒径小的牛骨粉,细度>200目的改性生物钙粉。所制备的生物钙粉,保留了生物钙的原有的物质,并增大了其诱导牡蛎幼虫附着物质的释放速率,并降低生物钙粉掺量,从而降低对涂料性能的影响。
(3)由于牛骨粉中含有丰富的胶原蛋白等有机物质,这些物质的大量掺入会引起涂料强度和抗渗性下降,特别是超过5%后,增大掺量,涂料的强度迅速下降、抗渗性显著变差,以及标准养护条件下其会长霉。
本发明通过控制采用稀酸改性和复合粉磨技术,充分发挥牛骨粉的诱导能力,大幅度降低牛骨粉掺量,并进行防腐蚀处理及改性,实现了以牛骨粉为主的复合诱导剂,其掺量小,几乎不影响涂料的性能,同时具有很强的牡蛎幼虫附着能力,且解决了涂料涂刷后发霉的问题。相对于不掺加诱导剂的涂料,掺加诱导剂的涂料涂抹后的混凝土上牡蛎幼虫附着个数明显增加。
对比文件及查阅到的文献资料表明:钙含量对牡蛎幼虫的附着至关重要,同样目前一些实验结果也证明在水泥基材料中掺加适量的碳酸钙质的物质可以促进牡蛎幼虫的附着及生长。但是水泥基涂料中有大量的钙离子,孔溶液中的pH值一般大于12.5,饱和氢氧化钙溶液的pH值在常温约为12,其孔溶液中的钙离子浓度约5mmol/L;而碳酸钙的溶解度很小,在25℃时只有9.5×10 -5mol/L(9.5×10 -2mmol/L)。目前认为诱导牡蛎附着的钙离子浓度最佳范围为10~25mmol/L,即使将牡蛎幼虫放置在饱和的碳酸钙溶液中,也没有足够的Ca 2+浓度为牡蛎附着提供适宜的离子浓度。进一步说,涂料内部的Ca(OH) 2可以较快的释放出来,而碳酸钙的溶解则需要较长的时间。因此,可以确定在涂料中掺入碳酸钙质材料促进牡蛎幼虫的附着,Ca 2+不是起主导作用。牡蛎的早期附着、***与HCO 3 -有关,在***时和Ca 2+一起生成碳酸钙的次生壳。掺加碳酸钙后,由于碳酸钙与CO 2和水反应,生成Ca(HCO 3) 2后参与附着,是其对牡蛎幼虫附着促进的根本机理。
水泥基材料中碳酸钙掺量有一个最适掺量,可以从以下三方面进行解释:
1)对于等量取代水泥,随着碳酸钙掺量的增加,水泥基材料中的碱被稀释,总的碱度在降低,但是随着碳酸钙掺量的增加,水泥基材料中的碳酸钙溶解几率增大,其溶液中的HCO 3 -含量增加,所 以促进牡蛎的附着与***;但是掺量过大时,水泥基材料的渗透性急剧增大,其中的碱和碳酸根快速渗出,使得碱的负面效应凸显,而碳酸根的临界或者负面效应初显,所以表现为附着量降低;
2)对于等量取代骨料,其随着掺量的增加,水泥基材料的渗透性下降,会导致钙离子及OH -的渗出减少,但碳酸根离子的渗透速率会先渐增大,到达一定值时,表现为牡蛎附着达到最大值;而随着掺量继续增大,则钙离子下降幅度大,而碳酸根则也可能会降低,会出现钙离子浓度限制牡蛎幼虫的附着,表现为附着量降低;
3)对于等量取代矿物掺合料,同样随着掺量的增加,渗透性在增加,且由于碳酸钙的增加,使牡蛎附着要求所需的HCO 3 -浓度达到了一个合适范围,表现为牡蛎幼虫附着增加;随着矿物掺合料掺量继续增大,降低了矿物掺合料的掺量,从而渗出的碱量增加,碳酸根增加,但过多的碱及HCO 3 -离子会抑制牡蛎幼虫附着。
与对比文件4(李真真,公丕海,关长涛,et al.不同水泥类型混凝土人工鱼礁的生物附着效果[J].渔业科学进展,2017,38(5):57-63.)相比,区别在于:
对比文件4中使用了复合硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥和铝酸盐水泥:本发明中采用了普通硅酸盐水泥与矿物掺合料的复合掺加来实现低碱度水泥;其中硅灰是矿物掺合料中一种活性高,适宜掺量对海洋环境下钢筋混凝土耐久性提升效果明显,通过优化设计及实验,可以得到强度和耐久性均优的低碱度水泥。同时利用硅灰混凝土的高抗渗性特点,即使混凝土内部碱度较高,仍有大量的牡蛎幼虫附着、***及生长。以及采用低碱度的硫铝酸盐水泥的复合,调控水泥基涂料的碱度,为牡蛎幼虫附着提供适宜的pH值。此外,海洋植物和牡蛎、藤壶等固着生物耐碱能力不同,且在附着期及后期需要的环境不同,如藤壶和牡蛎的附着、***及后期生长都需要大量的钙离子。
对比文件4中的混凝土用于富集海洋生物,其主要从附着生物量的大小和多样性出发,主要附着的生物为各种藻类等。本发明中研究目的则是诱导牡蛎附着,但是牡蛎和藤壶对碱度的耐受性要高于藻类,并且牡蛎的附着、***需要大量的钙离子,所以说两种水泥基材料看似一样,实则存在很大区别。
另外,本发明中独有的特点及其具有的有益效果如下:
深色颜料
利用牡蛎眼点幼虫的避光特性,采用深色颜料(氧化铁黑、苯胺黑、炭黑、硫化锑、氧化铁红、有机颜料红中的一种或两种)掺入到涂料中,改变涂料的颜色,使涂料的颜色变深,让牡蛎幼虫认为就是黑暗环境,诱导牡蛎幼虫自行到达深色的混凝土表面,增加幼虫与混凝土表面的接触几率,实现牡蛎幼虫诱导附着率增加。具体为:
海洋生物研究人员,为了养殖增殖或者是为了消除不期望出现的种群等情况下,考虑了采用不同颜色的底质对海洋固着生物的附着的研究,属于海洋生物学科。和海洋混凝土工程或者混凝土材料学科相差较大,完全是两个大的学科。通过海洋固着生物与混凝土学科的交叉,得到了采用深色涂料进行牡蛎幼虫的诱导附着。本发明中采用添加深色颜料,用加深涂料的颜色来促进牡蛎幼虫的附着。涂料中掺入其它的材料,都会对其性能产生影响。本发明考虑到不同水泥的涂料,其颜色均有差异。因此,根据水泥的类型和掺量来确定深色物质的掺量。深色颜料也会影响涂料的性能。最为重要的是,掺加深色颜料的同时,若不控制涂料中的碱和Ca 2+等渗透速率,释放出的碱会影响固着生物幼虫的附着、***及生长,就会出现掺量大于一定值时,幼虫附着量有所降低。本发明中对水泥基涂料的抗渗性进行了设计和控制,主要措施为:深色颜料类型的选取、掺加量的控制及进行改性。随着深色物质 掺量的增加,幼虫附着率先增大,当掺量为胶凝材料的0.5%~6%时,幼虫的附着量最大,但之后小幅增加或者保持不变。
微量元素
根据牡蛎体内富集大量的锌,远远高于它所生存的海水,同时其体内还含有较多的Fe、P和K元素。同时,溶液中适宜的Zn 2+,K +浓度可以促进牡蛎幼虫的早期附着与***。因此,采用硫酸锌、硫酸钾、硝酸钾、硫酸铁、磷酸锌、硝酸铵、磷酸钾、磷酸铵、磷酸铁、磷酸钙作为微量元素掺入涂料中,并通过对这些物质的改性,使涂料的强度和抗渗性基本保持不变,实现牡蛎幼虫诱导附着率大幅度增加。具体为:
海洋生物研究人员,为了明晰牡蛎附着机理及养殖增殖的目的,研究不同的离子对海洋固着生物的附着、***研究,属于海洋生物学科。和海洋混凝土工程或者混凝土材料学科相差较大,完全是两个大的学科。通过海洋固着生物与混凝土学科的交叉,得到了采用涂料中加入相应的物质,来诱导牡蛎幼虫在混凝土表面的附着。因可溶性盐类对涂料的性能影响很大,如影响早期的工作性、凝结时间以及后期的强度与抗渗性,本发明通过采用硅藻土为载体,把这些无机盐固定在硅藻土的内部,减小可溶性盐对涂料性能的影响,同时利用硅藻土对水泥基涂料性能提升的作用,实现在掺加这些诱导物质时,仍可以保持水泥基涂料良好的性能。另外由于硅藻土作为载体具有缓释作用,使可溶性盐释放较缓慢,特别是经过海水浸泡超过一定时间后,释放速率维持在一个很小的速率。因此,同样这部分知识涉及到海洋固着生物、化学与海洋混凝土工程学科的交叉,无论是混凝土及工程领域或者海洋生物领域的技术人员,无法通过现有的背景而获得本发明中的将微量元素掺入混凝土,改变涂料表面微量元素的离子含量和控制涂料渗透性与具有高诱导牡蛎幼虫附着能力的涂料紧密关联的技术特征。
混凝土渗透性
涂料的强度和渗透性至关重要。而在水泥基涂料中掺加不同的诱导剂,都会对涂料的性能产生影响,因此,在考虑掺加不同物质促进牡蛎幼虫附着、***及后期生长时,首先一定要从整体控制其对涂料的性能产生大的影响,然后再根据各种原材料的配伍性去选择原材料,当原材料性能不能满足实际要求时,则通过对原材料的改性后再加入,从而达到我们期望的功能。但实际上,前述的相关研究虽然考虑到了钙质的掺量对牡蛎幼虫附着的影响,但是不考虑涂料本身的性能,不去考虑水灰比以及钙质的掺量以及养护等,而涂料渗透性的变化会使其内部碱和离子渗漏的速率改变,涂料的抗渗性越差,其内部的碱和离子的渗漏速率越大,可能是指数形式的增长。因此,这些释放出来的碱和离子会对幼虫产生很大影响,可能出现从促进附着变为抑制附着的情况,特别水泥掺量大时,这种情况会更严重。因此,涂料中掺加诱导剂,一定要保证涂料的性能变化在可控的范围内,如变化不超过10%。这样才能对这些的诱导效果进行比较,否则的话,则无法评价单掺诱导剂或者诱导剂复合掺加对牡蛎幼虫诱导效果的影响。
只有掌握了海洋固着生物在附着、***及后期生长的所需的最适环境,并能从涂料的抗渗性高度出发进行设计涂料,而不是只考虑各种原材料的掺量而忽略由此带来的涂料的抗渗性改变。因此,同样这部分知识涉及到海洋固着生物、化学与海洋混凝土工程学科的交叉,无论是混凝土及工程领域或者海洋生物领域的技术人员,无法通过现有的背景而获得本发明中的涂料抗渗性的整体控制与诱导剂促进牡蛎高效诱导附着能力的紧密关联的技术特征。
因此,由于这部分知识涉及到海洋固着生物、海洋植物与海洋混凝土工程学科的交叉,无论是混凝土及工程领域或者海洋生物领域的技术人员,无法通过对比文件2-3而获得本发明中的深色颜料掺入涂料中改变颜色、牛骨粉改性、粉磨技术和控制涂料渗透性与具有高效诱导牡蛎附着能力和高耐久 性的涂料紧密关联的技术特征。且无法通过对比文件4而获得本发明中的将涂料碱度降低与钙离子浓度之间的平衡与海洋固着生物的附着紧密关联的技术特征。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (22)

  1. 一种生态抛石防波堤的建造方法,其特征是,包括如下步骤:
    (1)防波堤修建位置海区调查:调研该海区的牡蛎优势种属以及是否有牡蛎附着,并对该海区进行不同季节的气温、海水温度,溶解氧,浮游生物,总溶解无机氮、活性磷酸盐,活性硅酸盐,Ca 2+,Zn 2+,K +进行调研,以及历年台风次数,强度进行调研;
    (2)混凝土质附着基制备:制作表面粗糙的轻质混凝土牡蛎附着基,其形状为板状的附着基、波浪形附着基和圆筒形附着基中的一种;
    (3)牡蛎苗的定量采集及养殖:当地海域的牡蛎浮游幼虫集中附着***期,将附着基放置到附近海域的采苗区,当牡蛎幼虫的附着量为15~25个/100cm 2停止采苗;然后将其移到饵料丰富的海域进行浮式养殖;
    (4)石块表面处理:对岩石表面进行清洗,饱和面干时喷涂或涂刷一种用于海洋工程表面诱导固着生物的水泥基涂料;
    (5)石块放置:在第二年当地海域的牡蛎浮游幼虫集中附着***期,采取分散放置方法,对体积超过1立方米的石块单个放置,每个石块用绳笼罩住;采用绳笼罩住多个体积小于1立方米的石块形成一个体积为1~5立方米的石头堆,内部空隙率为40%~60%;岩石及岩石堆之间采用绳等相连;
    (6)牡蛎附着基现场放置:将(2)中的牡蛎的性腺发育分期为成熟期的牡蛎基运到构建防波堤的海区,每个单体石块或者石头堆上放置一块表面粗糙的轻质混凝土牡蛎附着基,并采用绳将石块或者石堆固定;并根据当地海域的浮游生物情况,必要时投放饵料或者放置饵料的营养盐;
    (7)监测幼虫附着与管理:监测牡蛎幼虫在混凝土表面的附着情况,当30~40个/100cm 2时,移走牡蛎附着基,并长期监测防波堤的生态情况,并根据实际情况采用相应措施。
  2. 根据权利要求1所述的一种生态抛石防波堤的建造方法,其特征是:牡蛎附着基,由胶凝材料、轻质粗骨料、轻质细骨料、水、深色颜料、生物钙粉、碳酸钙粉、微量元素、短切纤维和超塑化剂制成,胶凝材料、轻质粗骨料、轻质细骨料、水、深色颜料、生物钙粉、碳酸钙粉、微量元素、短切纤维和超塑化剂重量配比依次为:21.8%~34.5%、24.6%~37.5%、15.8%~29.6%、8.4%~16.4%、0.6~3.0%、0.4%~2.0%、0.4%~2.0%、0.2%~1.8%、0.15%~1.5%和0.03%~0.18%。
  3. 根据权利要求2所述的一种生态抛石防波堤的建造方法,其特征是:所述深色颜料为氧化铁黑、苯胺黑、炭黑、硫化锑、氧化铁红、有机颜料红中的一种或两种;根据对混凝土的性能影响程度,进行这些颜料的改性,采用透明树脂、有机硅、二甲硅氧烷、超疏水材料中的一种进行改性处理;
    所述的生物钙粉为牛骨粉,生物碳酸钙粉包括牡蛎壳粉、鱼骨粉、鸡蛋壳粉、珊瑚粉中的一种或几种复合,其细度为100目~1000目;对100目到500目间的鸡蛋壳粉、珊瑚粉、牡蛎壳粉、鱼骨粉采用以下酸进行处理,包括乙酸、醋酸、硅酸、亚硫酸中的一种或两种;以及对100目到500目牛骨粉采用以下酸处理,包括稀释的磷酸、硫酸、盐酸和硝酸中的一种或两种;
    所述的碳酸钙粉为:方解石、白垩、石灰岩、大理石、文石、石灰华粉末,以及经加工处理的轻质碳酸钙、活性碳酸钙、碳酸钙晶须和超细轻质碳酸钙中的一种或几种,且细度大于200目;
    所述的微量元素为:锌、铁、钾和磷,其可以选择天然矿物、工业产品或者化工试剂,包括硫酸锌、磷酸钙、磷酸锌、硫酸钾、硝酸钾、硫酸铁、硝酸铵、磷酸钾、磷酸铵、磷酸铁中一种或多种,并对其进行改性,使之实现相应离子的缓释及减少或者消除对混凝土性能的不良影响;不过,对于富营养化的区域,不选择有氮、磷元素的物质;
    所述的胶凝材料为:掺加矿物掺合料的硅酸盐类水泥,硫铝酸盐水泥、碱激发胶凝材料中一种;其中掺加矿物掺合料的硅酸盐类水泥中的矿物掺合料包括硅灰、矿渣粉和粉煤灰中的一种或多种组 合;硫铝酸盐水泥,包括快硬硫铝酸盐水泥、高强硫铝酸盐水泥、膨胀硫铝酸盐水泥中的一种或两种;碱激发胶凝材料为碱激发矿渣、碱激发矿渣+粉煤灰中的一种;
    所述的轻质粗骨料为最大粒径小于20mm破碎的轻质多孔的玄武岩、轻质的陶粒中的一种或两种;
    所述的轻质细骨料为破碎后的沸石、轻质陶砂中的一种或两种,其粒径为0.2mm~5mm;
    所述的短切纤维为无机纤维,如玄武岩纤维、耐碱玻璃纤维、碳纤维中的一种或几种;
    其制备方法包括如下步骤:
    S1:根据牡蛎幼虫的喜好附着粗糙表面的特点,设计不同的粗糙度,然后制造出不同粗糙度的成型模板;
    S2:称量胶凝材料、轻质粗骨料、轻质细骨料、水、深色颜料、生物钙粉、碳酸钙粉、微量元素、短切纤维和超塑化剂;
    S3:先将轻质粗骨料、轻质细骨料放入混凝土搅拌机中搅拌0.5~1分钟;然后加入胶凝材料、深色颜料和生物钙粉、碳酸钙粉和微量元素,再继续搅拌1~2分钟;然后加入短切纤维、水和超塑化剂搅拌2~6分钟;搅拌均匀后,进行浇筑、振捣;
    S4:将拆模后的混凝土试件立即放置于高浓度CO 2养护箱中养护0.5至5小时,降低水泥试件的碱度,随后进行标准养护28d或根据实际情况进行养护;
    即可制得诱导效果佳的表面粗糙的水泥混凝土质牡蛎附着基。
  4. 根据权利要求1所述的一种生态抛石防波堤的建造方法,其特征在于,所述的水泥基涂料,由胶凝材料、砂、水、深色颜料、生物钙粉、碳酸钙粉、微量元素、木质纤维素、可分散胶粉和超塑化剂制成,胶凝材料、砂、水、深色颜料、生物钙粉、碳酸钙粉、微量元素、木质纤维素、可分散胶粉和超塑化剂重量配比依次为:
    1:(0.35~0.7):(0.20~0.60):(0.02~0.10):(0.02~0.10):(0.02~0.10):(0.01~0.08):(0.04~0.12):(0.05~0.15):(0.001~0.010)。
  5. 根据权利要求1所述的一种生态抛石防波堤的建造方法,其特征在于,所述的深色颜料为:氧化铁黑、苯胺黑、炭黑、硫化锑、氧化铁红、有机颜料红中的一种或两种;并根据对混凝土的性能影响程度,进行这些颜料的改性,采用透明树脂、有机硅、二甲硅氧烷、超疏水材料中的一种进行改性处理;
    所述的生物钙粉为:牛骨粉,生物碳酸钙粉包括牡蛎壳粉、鱼骨粉、鸡蛋壳粉、珊瑚粉中的一种或几种复合,其细度为100目~1000目;
    所述的生物钙粉改性方法为:对100目到500目间的鸡蛋壳粉、珊瑚粉、牡蛎壳粉、鱼骨粉采用以下酸进行处理,包括乙酸、醋酸、硅酸、亚硫酸中的一种或两种;以及对100目到500目牛骨粉采用以下酸进行处理,包括稀释的磷酸、硫酸、盐酸和硝酸中的一种或两种;
    所述的碳酸钙粉为:方解石、白垩、石灰岩、大理石、文石、石灰华粉末,以及经加工处理的轻质碳酸钙、活性碳酸钙、碳酸钙晶须和超细轻质碳酸钙中的一种或几种,且细度大于200目;
    所述的微量元素为:锌、铁、钾和磷,其可以选择天然矿物、工业产品或者化工试剂,包括硫酸锌、磷酸钙、磷酸锌、硫酸钾、硝酸钾、硫酸铁、硝酸铵、磷酸钾、磷酸铵、磷酸铁中一种或多种,并对其进行改性,使之实现相应离子的缓释及减少或者消除对混凝土性能的不良影响;不过,对于富营养化的区域,不选择有氮、磷元素的物质;
    所述的砂为:河砂、机制砂或者淡化海砂中的一种或几种;
    所述的超塑化剂,如聚羧酸、萘系中的一种;
    水泥基涂料的制备方法,包括如下步骤:
    S1:称量胶凝材料、砂、水、深色颜料、生物钙粉、碳酸钙粉、微量元素、木质纤维素、可分散胶粉和超塑化剂;
    S2:将胶凝材料、深色颜料和生物钙粉、碳酸钙粉、微量元素放入混料机,转速为1000-1500转/分,混合时间为2~5分钟,混合均匀;
    S3:然后将砂、木质纤维素、可分散胶粉放入搅拌机,其转速为500-1000转/分,混合时间为5~10分钟;
    S4:将粉状超塑化剂充分溶解于水中,然后同混好的物料一同放在高速搅拌机中,其转速为1000-1500转/分,搅拌5~10分钟;
    即可制得一种诱导效果佳的用于海洋工程表面诱导固着生物的水泥涂料。
  6. 根据权利要求1所述的一种生态抛石防波堤的建造方法,其特征是:所述的牡蛎浮游幼虫集中附着***期。
  7. 根据权利要求1所述的一种生态抛石防波堤的建造方法,其特征是:所述的水泥基生态附着基上在成型时预留直径3~5mm的圆孔。
  8. 根据权利要求1所述的一种生态抛石防波堤的建造方法,其特征是:所述的绳为棕绳、玻璃纤维、玄武岩纤维绳中的一种。
  9. 根据权利要求1所述的一种生态抛石防波堤的建造方法,其特征是:牡蛎附着基,包括深色颜料、胶凝材料、轻质粗骨料、轻质细骨料、水和超塑化剂;其中,深色颜料、胶凝材料、轻质粗骨料、轻质细骨料、水和超塑化剂重量配比依次为:0.6~3.0%、21.8%~34.5%、24.6%~37.5%、15.8%~29.6%、8.4%~16.4%和0.03%~0.18%。
  10. 根据权利要求1所述的一种生态抛石防波堤的建造方法,其特征是:牡蛎附着基,包括碳酸钙粉、胶凝材料、轻质粗骨料、轻质细骨料、水和超塑化剂;其中,碳酸钙粉、胶凝材料、轻质粗骨料、轻质细骨料、水和超塑化剂重量配比依次为:0.4~2.35%、21.8%~34.5%、24.6%~37.5%、15.8%~29.6%、8.4%~16.4%和0.03%~0.18%。
  11. 根据权利要求1所述的一种生态抛石防波堤的建造方法,其特征是:牡蛎附着基,包括牛骨粉、胶凝材料、轻质粗骨料、轻质细骨料、水和超塑化剂;其中,牛骨粉、胶凝材料、轻质粗骨料、轻质细骨料、水和超塑化剂重量配比依次为:0.4~2.35%、21.8%~34.5%、24.6%~37.5%、15.8%~29.6%、8.4%~16.4%和0.03%~0.18%。
  12. 根据权利要求1所述的一种生态抛石防波堤的建造方法,其特征是:牡蛎附着基,包括改性深色颜料、碳酸钙粉、胶凝材料、轻质粗骨料、轻质细骨料、水和超塑化剂;其中,改性深色颜料、碳酸钙粉、胶凝材料、轻质粗骨料、轻质细骨料、水和超塑化剂重量配比依次为:0.6~3.0%、0.4~2.35%、21.8%~34.5%、24.6%~37.5%、15.8%~29.6%、8.4%~16.4%和0.03%~0.18%。
  13. 一种用于海洋工程表面诱导固着生物的水泥基涂料,其特征是:由胶凝材料、砂、水、深色颜料、生物钙粉、碳酸钙粉、微量元素、木质纤维素、可分散胶粉和超塑化剂制成,胶凝材料、砂、水、深色颜料、生物钙粉、碳酸钙粉、微量元素、木质纤维素、可分散胶粉和超塑化剂重量配比依次为:1:(0.35~0.7):(0.20~0.60):(0.02~0.10):(0.02~0.10):(0.02~0.10):(0.01~0.08):(0.04~0.12):(0.05~0.15):(0.001~0.010)。
  14. 根据权利要求13所述的一种用于海洋工程表面诱导固着生物的水泥基涂料,其特征是:所述深色颜料为:氧化铁黑、苯胺黑、炭黑、硫化锑、氧化铁红、有机颜料红中的一种或两种。
  15. 根据权利要求14所述的一种用于海洋工程表面诱导固着生物的水泥基涂料,其特征是:所述的深色颜料,根据对混凝土的性能影响程度,进行这些颜料的改性,采用透明树脂、有机硅、二甲硅氧烷、超疏水材料中的一种进行改性处理。
  16. 根据权利要求13所述的一种用于海洋工程表面诱导固着生物的水泥基涂料,其特征是:所述的生物钙粉为牛骨粉,生物碳酸钙粉包括牡蛎壳粉、鱼骨粉、鸡蛋壳粉、珊瑚粉中的一种或几种复合,其细度为100目~1000目。
  17. 根据权利要求16所述的一种用于海洋工程表面诱导固着生物的水泥基涂料,其特征是:所述的生物钙粉,对100目到500目间的鸡蛋壳粉、珊瑚粉、牡蛎壳粉、鱼骨粉采用以下酸进行处理,包括乙酸、醋酸、硅酸、亚硫酸中的一种或两种;以及对100目到500目牛骨粉采用以下酸处理,包括稀释的磷酸、硫酸、盐酸和硝酸中的一种或两种。
  18. 根据权利要求13所述的一种用于海洋工程表面诱导固着生物的水泥基涂料,其特征是:所述的碳酸钙粉为:方解石、白垩、石灰岩、大理石、文石、石灰华粉末,以及经加工处理的轻质碳酸钙、活性碳酸钙、碳酸钙晶须和超细轻质碳酸钙中的一种或几种,且细度大于200目。
  19. 根据权利要求13所述的一种用于海洋工程表面诱导固着生物的水泥基涂料,其特征是:所述的微量元素锌、铁、钾和磷,选择天然矿物、工业产品或者化工试剂,包括硫酸锌、磷酸钙、磷酸锌、硫酸钾、硝酸钾、硫酸铁、硝酸铵、磷酸钾、磷酸铵、磷酸铁中一种或多种,并对其进行改性,使之实现相应离子的缓释及减少或者消除对混凝土性能的不良影响;不过,对于富营养化的区域,不选择有氮、磷元素的物质;所述的胶凝材料为掺加矿物掺合料的硅酸盐类水泥,硫铝酸盐水泥、碱激发胶凝材料中一种;其中掺加矿物掺合料的硅酸盐类水泥中的矿物掺合料包括硅灰、矿渣粉和粉煤灰中的一种或多种组合;硫铝酸盐水泥,包括快硬硫铝酸盐水泥、高强硫铝酸盐水泥、膨胀硫铝酸盐水泥中的一种或两种;碱激发胶凝材料包括碱激发矿渣、碱激发矿渣+粉煤灰中的一种。
  20. 根据权利要求13所述的一种用于海洋工程表面诱导固着生物的水泥基涂料,其特征是:所述的砂为粒径0.16mm~2.36mm的河砂、机制砂以及海砂中的一种或几种。
  21. 根据权利要求13所述的一种用于海洋工程表面诱导固着生物的水泥基涂料,其特征是:所述的超塑化剂,如聚羧酸、萘系中的一种。
  22. 一种用于海洋工程表面诱导固着生物的水泥基涂料的制备方法,其特征在于,包括如下步骤:
    S1:称量胶凝材料、砂、水、深色颜料、生物钙粉、碳酸钙粉、微量元素、木质纤维素、可分散胶粉和超塑化剂;
    S2:将胶凝材料、深色颜料和生物钙粉、碳酸钙粉、微量元素放入混料机,转速为1000-1500转/分,混合时间为2~5分钟,混合均匀;
    S3:然后将砂、木质纤维素、可分散胶粉放入搅拌机,其转速为500-1000转/分,混合时间为5~10分钟;
    S4:将粉状超塑化剂充分溶解于水中,然后同混好的物料一同放在高速搅拌机中,其转速为200-500转/分,搅拌5~10分钟;即可制得一种诱导效果佳的用于海洋工程表面诱导固着生物的水泥涂料。
PCT/CN2020/133082 2019-12-02 2020-12-01 生态抛石防波堤建造方法、诱导型水泥基涂料及制备方法 WO2021109983A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022533424A JP2023517785A (ja) 2019-12-02 2020-12-01 生態学的な捨て石防波堤の建設方法、誘引型セメントベース塗料及びその製造方法
EP20895864.5A EP4071305A1 (en) 2019-12-02 2020-12-01 Construction method for ecological riprap breakwater, induced cement-based coating and preparation method therefor
KR1020227022564A KR20220144358A (ko) 2019-12-02 2020-12-01 생태 사석 방파제 구축방법, 유도형 시멘트계열 페인트 및 제조방법
US17/831,294 US20220307213A1 (en) 2019-12-02 2022-06-02 Construction method for ecological riprap breakwater, induced cement-based coating and preparation method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911210502.6A CN111270648B (zh) 2019-12-02 2019-12-02 一种生态抛石防波堤的建造方法
CN201911210502.6 2019-12-02
CN201911210521.9A CN111268960B (zh) 2019-12-02 2019-12-02 一种用于海洋工程表面诱导固着生物的水泥基涂料及制备方法
CN201911210521.9 2019-12-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/831,294 Continuation US20220307213A1 (en) 2019-12-02 2022-06-02 Construction method for ecological riprap breakwater, induced cement-based coating and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2021109983A1 true WO2021109983A1 (zh) 2021-06-10

Family

ID=76221464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133082 WO2021109983A1 (zh) 2019-12-02 2020-12-01 生态抛石防波堤建造方法、诱导型水泥基涂料及制备方法

Country Status (5)

Country Link
US (1) US20220307213A1 (zh)
EP (1) EP4071305A1 (zh)
JP (1) JP2023517785A (zh)
KR (1) KR20220144358A (zh)
WO (1) WO2021109983A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021109990A1 (zh) * 2019-12-02 2021-06-10 哈尔滨工程大学 硅酸盐水泥混凝土、轻质混凝土的牡蛎附着基及制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104938384A (zh) 2015-06-18 2015-09-30 广东工业大学 一种仿生混凝土人工鱼礁及其制备方法
CN105462305A (zh) * 2015-12-26 2016-04-06 铃鹿复合建材(上海)有限公司 一种无机质感涂料
CN107372242A (zh) * 2017-08-21 2017-11-24 宁德市鼎诚水产有限公司 一种牡蛎的附苗方法
US20180049410A1 (en) * 2015-03-06 2018-02-22 The University Of North Carolina At Chapel Hill Ephemeral Substrates for Oyster Aquaculture
CN111268960A (zh) * 2019-12-02 2020-06-12 哈尔滨工程大学 一种用于海洋工程表面诱导固着生物的水泥基涂料及制备方法
CN111270648A (zh) * 2019-12-02 2020-06-12 哈尔滨工程大学 一种生态抛石防波堤的建造方法
CN111320935A (zh) * 2019-12-02 2020-06-23 哈尔滨工程大学 一种乳化沥青-水泥基涂料及制备方法
CN111321699A (zh) * 2019-12-02 2020-06-23 哈尔滨工程大学 一种废弃混凝土的海洋生态工程建造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2867315B2 (ja) * 1994-01-24 1999-03-08 住友大阪セメント株式会社 貝殻含有吹付け材料、貝殻含有構造物、および貝殻含有構造物の製造方法
JP3392058B2 (ja) * 1998-07-24 2003-03-31 住友大阪セメント株式会社 漁礁用ブロックの製造方法、漁礁用ブロック、及び藻場増殖場
JP4030327B2 (ja) * 2002-03-13 2008-01-09 鹿島建設株式会社 動植物着生用ブロック基材およびこれを用いた動植物着生法
JP5531555B2 (ja) * 2009-10-28 2014-06-25 Jfeスチール株式会社 水中沈設用石材
CN104529286A (zh) * 2014-12-17 2015-04-22 广东石油化工学院 一种新型混凝土人工鱼礁及其制备方法
JP6802728B2 (ja) * 2017-02-16 2020-12-16 岡部株式会社 浮遊幼生の育成用装置
CN107805037B (zh) * 2017-10-27 2020-09-08 海南兆晟科技发展有限公司 一种海洋环境修复用仿珊瑚多孔结构材料及其制备方法
CN109467354B (zh) * 2018-09-25 2021-05-14 浙江大学宁波理工学院 一种海洋环境混凝土裂缝修补材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180049410A1 (en) * 2015-03-06 2018-02-22 The University Of North Carolina At Chapel Hill Ephemeral Substrates for Oyster Aquaculture
CN104938384A (zh) 2015-06-18 2015-09-30 广东工业大学 一种仿生混凝土人工鱼礁及其制备方法
CN105462305A (zh) * 2015-12-26 2016-04-06 铃鹿复合建材(上海)有限公司 一种无机质感涂料
CN107372242A (zh) * 2017-08-21 2017-11-24 宁德市鼎诚水产有限公司 一种牡蛎的附苗方法
CN111268960A (zh) * 2019-12-02 2020-06-12 哈尔滨工程大学 一种用于海洋工程表面诱导固着生物的水泥基涂料及制备方法
CN111270648A (zh) * 2019-12-02 2020-06-12 哈尔滨工程大学 一种生态抛石防波堤的建造方法
CN111320935A (zh) * 2019-12-02 2020-06-23 哈尔滨工程大学 一种乳化沥青-水泥基涂料及制备方法
CN111321699A (zh) * 2019-12-02 2020-06-23 哈尔滨工程大学 一种废弃混凝土的海洋生态工程建造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI ZHENZHENGONG PIHAIGUAN CHANGTAO ET AL.: "Study on the Organisms Attachment of Artificial Reefs Constructed with Five Different Cements [J", PROGRESS IN FISHERY SCIENCES, vol. 38, no. 5, 2017, pages 57 - 63

Also Published As

Publication number Publication date
EP4071305A1 (en) 2022-10-12
JP2023517785A (ja) 2023-04-27
KR20220144358A (ko) 2022-10-26
US20220307213A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
WO2021109994A1 (zh) 生态混凝土及制备方法、高耐久海洋混凝土结构建造方法
WO2021109986A1 (zh) 诱导固着生物附着砂浆及制备方法、服役防波堤修复方法
CN111302727B (zh) 一种服役的防波堤水下区生态化修复方法
WO2021109984A1 (zh) 混凝土质牡蛎附着基及制备方法、海洋生态工程建造方法
CN111270647B (zh) 一种服役的海洋防波堤生态化方法
CN111268961B (zh) 一种表面粗糙的水泥混凝土质牡蛎附着基及制备方法
WO2021109990A1 (zh) 硅酸盐水泥混凝土、轻质混凝土的牡蛎附着基及制备方法
CN111253125B (zh) 一种诱导海洋固着生物附着的绿色混凝土及制备方法
CN111268960B (zh) 一种用于海洋工程表面诱导固着生物的水泥基涂料及制备方法
CN111270648B (zh) 一种生态抛石防波堤的建造方法
CN111253124A (zh) 一种海洋环境下生态型高耐久混凝土结构建造方法
US20220354095A1 (en) Marine ecological engineering construction method, asphalt cement-based coating, and preparation method thereof
CN111321699B (zh) 一种废弃混凝土的海洋生态工程建造方法
CN111268957B (zh) 一种硅酸盐水泥混凝土的牡蛎附着基及制备方法
CN110984405B (zh) 一种服役的海洋钢筋混凝土工程生态型防腐蚀方法
CN111268958A (zh) 一种纤维增强生态混凝土及制备方法
CN111264427B (zh) 一种海洋生态工程建造方法
WO2021109983A1 (zh) 生态抛石防波堤建造方法、诱导型水泥基涂料及制备方法
CN111499290B (zh) 一种水下海洋工程表面用诱导固着生物的砂浆及制备方法
CN111268954B (zh) 一种轻质混凝土的牡蛎附着基及制备方法
CN111268959B (zh) 一种诱导海洋固着生物附着及促进生长的混凝土及制备方法
WO2021109982A1 (zh) 固着生物诱导及促进生长混凝土、牡蛎附着基及制备方法
CN111320935A (zh) 一种乳化沥青-水泥基涂料及制备方法
CN112125607B (zh) 一种水泥基缓释型诱导材料及制备方法
WO2021109989A1 (zh) 服役的防波堤生态化方法及混凝土工程生态型防腐蚀方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895864

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533424

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020895864

Country of ref document: EP

Effective date: 20220704