WO2021109248A1 - 天线阻抗匹配电路、天线***、印刷电路板和移动终端 - Google Patents

天线阻抗匹配电路、天线***、印刷电路板和移动终端 Download PDF

Info

Publication number
WO2021109248A1
WO2021109248A1 PCT/CN2019/126177 CN2019126177W WO2021109248A1 WO 2021109248 A1 WO2021109248 A1 WO 2021109248A1 CN 2019126177 W CN2019126177 W CN 2019126177W WO 2021109248 A1 WO2021109248 A1 WO 2021109248A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission line
antenna
line
circuit board
printed circuit
Prior art date
Application number
PCT/CN2019/126177
Other languages
English (en)
French (fr)
Inventor
陈卫
侯俊生
白松
Original Assignee
惠州Tcl移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州Tcl移动通信有限公司 filed Critical 惠州Tcl移动通信有限公司
Priority to US17/615,843 priority Critical patent/US20220336960A1/en
Publication of WO2021109248A1 publication Critical patent/WO2021109248A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0243Printed circuits associated with mounted high frequency components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/025Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10098Components for radio transmission, e.g. radio frequency identification [RFID] tag, printed or non-printed antennas

Definitions

  • This application relates to the field of communication technology, and in particular to an antenna impedance matching circuit, an antenna system, a printed circuit board and a mobile terminal.
  • the antenna is an important radio device that transmits and receives electromagnetic waves.
  • the radio frequency signal power output by the radio transmitter is transmitted to the antenna through the feeder (cable), and radiated by the antenna in the form of electromagnetic waves. After the electromagnetic wave arrives at the receiving site, it is followed by the antenna and sent to the radio receiver through the feeder.
  • the connection between the antenna and its feeder is called the input or feed point of the antenna.
  • the ratio of the voltage to the current at the input of the antenna is called the input impedance of the antenna.
  • the main purpose of studying antenna impedance is to achieve the matching between the antenna and the feeder.
  • the antenna is matched with the feeder, the power transmitted from the transmitter to the antenna or from the antenna to the receiver is the largest. At this time, no reflected wave will appear on the feeder, and the reflection coefficient is equal to zero.
  • the transmitting antenna if the matching is not good, the radiated power of the antenna will be reduced, the loss on the feeder will increase, and the power capacity of the feeder will also decrease. In severe cases, the transmitter frequency "pulling" phenomenon will occur. That is, the oscillation frequency changes.
  • the input impedance of the antenna should be equal to the characteristic impedance of the feeder.
  • the matching position of the antenna is adjusted with a capacitive inductance device, as shown in Figure 1, to make the overall antenna load closer to the characteristic impedance of the transmission line 50 ohm, so as to minimize the signal loss on the transmission and improve the antenna efficiency.
  • capacitive inductance devices usually also introduce a certain amount of loss, which causes a part of the passing signal to lose, resulting in the efficiency of the antenna system (antenna efficiency is the ratio of the total power radiated into the space to the total power at the input port) will decrease instead.
  • This application provides an antenna impedance matching circuit, an antenna system, a printed circuit board, and a mobile terminal to solve the signal loss problem caused by the antenna impedance matching circuit in the prior art.
  • an embodiment of the present application provides an antenna impedance matching circuit, including: a first transmission line, the first transmission line has a first specific length, so that the first transmission line is capacitive; the second transmission line, the second transmission line has a first transmission line Two specific lengths make the second transmission line inductive; wherein the first transmission line and the second transmission line are connected in parallel, and the terminals of the first transmission line and the second transmission line are open or short-circuited.
  • the width of the first transmission line and the second transmission line are both 0.2-0.3 mm.
  • the impedance of the first transmission line and the second transmission line are both 50 ohms.
  • an embodiment of the present application also provides an antenna system, including: an antenna and an antenna impedance matching circuit, the antenna impedance matching circuit includes: a first transmission line, the first transmission line has a first specific length, so that the first transmission line is Capacitive; The second transmission line, the second transmission line has a second specific length, making the second transmission line inductive; wherein the first transmission line and the second transmission line are connected in parallel, and the terminals of the first transmission line and the second transmission line are open or shorted.
  • the width of the first transmission line and the second transmission line are both 0.2-0.3 mm.
  • the impedance of the first transmission line and the second transmission line are both 50 ohms.
  • the embodiments of the present application also provide a printed circuit board for an antenna system.
  • the antenna system includes an antenna and an antenna impedance matching circuit.
  • the antenna impedance matching circuit includes a first transmission line, and the first transmission line has a first specific The length of the first transmission line makes the first transmission line capacitive; the second transmission line, the second transmission line has a second specific length, making the second transmission line inductive; wherein the first transmission line and the second transmission line are connected in parallel, and the first transmission line and the second transmission line
  • the terminal is open or short-circuited;
  • the printed circuit board includes: a first line, which is connected in parallel with the line accommodating the antenna feeder, for accommodating a transmission line with a first specific length; a second line, which is connected in parallel with the line accommodating the antenna feeder, for accommodating the Two transmission lines of a specific length, wherein the first line and the second line are in parallel relationship with the line containing the feeder, and the terminal of the first line is set to surround the terminal of the first transmission line, so that the first
  • the second layer of the printed circuit board has a clear space below the first circuit and the second circuit.
  • the distance between the first line and the second line and the ground is 0.1-0.2 mm.
  • the distance between the first circuit and the second circuit and the position of the antenna shrapnel on the printed circuit board is less than 5 mm.
  • the embodiments of the present application also provide a circuit board, including an antenna impedance matching circuit and a printed circuit board, wherein the antenna impedance matching circuit is mounted on the printed circuit board, the printed circuit board is applied to the antenna system, and the antenna system includes An antenna and an antenna impedance matching circuit; wherein the antenna impedance matching circuit includes: a first transmission line, the first transmission line has a first specific length, so that the first transmission line is capacitive; the second transmission line, the second transmission line has a second specific length, so that The second transmission line is inductive; the first transmission line and the second transmission line are connected in parallel, and the terminals of the first transmission line and the second transmission line are open or shorted; the printed circuit board includes: the first line, which is connected in parallel with the line containing the antenna feeder, for Accommodating a transmission line with a first specific length; a second line, in parallel with the line accommodating the antenna feeder, for accommodating a transmission line with a second specific length; wherein the terminal of the
  • the second layer of the printed circuit board has a clear space below the first circuit and the second circuit.
  • the distance between the first line and the second line and the ground is 0.1-0.2 mm.
  • the distance between the first circuit and the second circuit and the position of the antenna shrapnel on the printed circuit board is less than 5 mm.
  • the width of the first transmission line and the second transmission line are both 0.2-0.3 mm.
  • the impedance of the first transmission line and the second transmission line are both 50 ohms.
  • the embodiment of the present application also provides an antenna system, including an antenna and a circuit board, the circuit board includes an antenna impedance matching circuit and a printed circuit board, the antenna impedance matching circuit is mounted on the printed circuit board; wherein, the antenna The impedance matching circuit includes: a first transmission line, the first transmission line has a first specific length, making the first transmission line capacitive; a second transmission line, the second transmission line has a second specific length, making the second transmission line inductive; wherein the first transmission line It is connected in parallel with the second transmission line, and the terminals of the first transmission line and the second transmission line are open or shorted; the printed circuit board includes: a first line, which is connected in parallel with the line accommodating the antenna feeder line, for accommodating a transmission line having a first specific length; The second line is connected in parallel with the line that accommodates the antenna feeder and is used to accommodate a transmission line with a second specific length; wherein the terminal of the first line is set to surround the terminal of the first transmission line, so
  • the width of the first transmission line and the second transmission line are both 0.2-0.3 mm.
  • the embodiments of the present application also provide a mobile terminal, including the above-mentioned antenna system.
  • the antenna system includes an antenna and a circuit board.
  • the circuit board includes a printed circuit board and an antenna impedance matching circuit.
  • the antenna impedance matching circuit is mounted on the printed circuit board.
  • the antenna impedance matching circuit includes: a first transmission line, the first transmission line has a first specific length, so that the first transmission line is capacitive; the second transmission line, the second transmission line has a second specific length, so that the second transmission line It is inductive; wherein the first transmission line and the second transmission line are connected in parallel, and the terminals of the first transmission line and the second transmission line are open or shorted;
  • the printed circuit board includes: the first line, which is connected in parallel with the line containing the antenna feeder, and is used to accommodate the A transmission line of a specific length; the second line, connected in parallel with the line accommodating the antenna feeder, for accommodating a transmission line of a second specific length; wherein the terminal of the first line is set to surround the terminal of the first transmission line, so that the first transmission line Not connected to the ground, or set to open, so that the first transmission line is connected to the ground; the terminal of the second line is set to be able to surround the terminal of the second transmission line, so that the second transmission line is not connected to
  • the mobile terminal is one of the following: a mobile phone, a tablet, a notebook computer, a smart watch, a smart bracelet or a smart wearable device.
  • the beneficial effect of the present application is that, different from the prior art, the antenna impedance matching circuit provided in the present application reduces the signal loss caused by the antenna impedance matching circuit and improves the antenna efficiency.
  • Fig. 1 shows a schematic structural diagram of an antenna impedance matching circuit in the prior art.
  • Fig. 2 shows a schematic block diagram of an antenna impedance matching circuit according to the first embodiment of the present application.
  • Fig. 3 shows a graph of the antenna impedance matching circuit according to the first embodiment of the present application for improving the antenna radiation efficiency.
  • Fig. 4 shows a schematic diagram of a printed circuit board according to a third embodiment of the present application.
  • FIG. 5 shows a schematic diagram of the line terminal arrangement of the printed circuit board according to the third embodiment of the present application.
  • FIG. 6 shows a schematic diagram of the second layer of the printed circuit board according to the third embodiment of the present application.
  • Fig. 7 shows a schematic illustration of an antenna system according to this embodiment.
  • Fig. 8 shows a schematic structural diagram of a mobile terminal according to an embodiment of the present application.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • features defined with “first” and “second” may explicitly or implicitly include one or more features.
  • “multiple” means two or more than two, unless otherwise specifically defined.
  • the main purpose of studying antenna impedance is to achieve the matching between the antenna and the feeder.
  • the antenna is matched with the feeder, the power transmitted from the transmitter to the antenna or from the antenna to the receiver is the largest.
  • the input impedance of the antenna should be equal to the characteristic impedance of the feeder. The following describes the antenna impedance matching circuit constructed according to the embodiments of the present application.
  • an antenna impedance matching circuit is provided.
  • Figure 2 shows a schematic block diagram of the antenna matching impedance circuit.
  • the antenna impedance matching circuit includes: a first transmission line 210.
  • the terminal of the first transmission line 210 may be open or short-circuited.
  • the short-circuit state is exemplarily shown in FIG. 2 and should not be construed as a limitation of the application.
  • the first transmission line 210 has a first specific length, and the first specific length makes the first transmission line 210 capacitive to replace the chip capacitor of the traditional impedance matching circuit. As shown in FIG.
  • the antenna impedance matching circuit further includes a second transmission line 220, and the terminal of the second transmission line 220 is open or short-circuited, which is exemplarily shown in a short-circuit state in FIG.
  • the second transmission line 220 has a second specific length, and the second specific length makes the second transmission line 220 inductive to replace the chip inductance of the traditional impedance matching circuit.
  • first specific length and second specific length may be the same or different.
  • the specific value depends on the application scenarios of the first transmission line 210 and the second transmission line 220, including the wavelength of the transmitted signal, the impedance of the transmission line, and the desired capacitance, Inductance value.
  • the following takes a specific example to describe the length value.
  • the operating frequency is 3Ghz and the impedance is 50 ohms.
  • the required transmission line length is 13.24 mm.
  • Fig. 2 also shows a capacitive element connected between the feed source and the antenna.
  • the capacitive element is not necessary, but is used to show the usual matching model and is not a constituent element of the antenna matching circuit.
  • the antenna impedance matching circuit that is, the transmission line
  • the antenna impedance matching circuit formed is compared with the traditional form of chip capacitors and inductors. , Can reduce the loss, and further improve the antenna radiation efficiency.
  • Figure 3 shows a graph of antenna radiation efficiency.
  • the lower curve is the antenna radiation efficiency curve when the traditional antenna impedance matching circuit is used in the prior art
  • the upper curve is the antenna radiation efficiency curve brought by the antenna impedance matching circuit according to the first embodiment of the present application.
  • the horizontal axis represents the frequency
  • the vertical axis represents the antenna radiation efficiency. It can be seen from FIG. 3 that, at any frequency, the embodiment of the present application obtains a higher antenna radiation efficiency than the prior art.
  • the width of the first transmission line 210 and the second transmission line 220 can be kept consistent with the feeder.
  • the width of the first transmission line 210 and the second transmission line 220 may be 0.2-0.3 mm, specifically, it may be 0.3 mm. This value is not used to limit the application, but can be selected by those skilled in the art according to actual application conditions.
  • the impedance when the terminal of the first transmission line 210 is open, the operating frequency is 3Ghz and the impedance is 50 ohms. If a 2pf capacitor is to be formed, the required transmission line length is 13.24 mm. In fact, when selecting the impedance values of the first transmission line 210 and the second transmission line 220, the matching with the feeder should be considered.
  • the load impedance connected to the feeder terminal is equal to the characteristic impedance of the feeder, the feeder terminal is matched and connected.
  • the antenna impedance is also 50 ohms, then it matches the feeder impedance. When the antenna impedance is, for example, 80 ohms, it does not match the feeder impedance.
  • the feeder In the field of mobile phone communication, the feeder generally adopts an impedance value of 50 ohms.
  • the impedance of the first transmission line 210 and the second transmission line 220 may both be 50 ohms. This is to match the 50 ohm feeder.
  • the matching can ensure that the antenna obtains all signal power.
  • the 50-ohm feeder commonly used in the mobile phone communication field is taken as an example to illustrate the impedance settings that can be adopted by the first transmission line 210 and the second transmission line 220.
  • the feeder impedance is another value, such as 75 ohms
  • the transmission line of the antenna impedance matching circuit must also reach the impedance value that matches it. It should be understood that these numerical values are only used as examples to help understand the technical solutions of the embodiments of the present application, and are not used to limit the scope of the present application.
  • an antenna system which includes an antenna and the antenna impedance matching circuit described above.
  • the antenna may include at least one of the following: a patch antenna element, a dipole antenna element, a ceramic resonator, a stamped metal antenna, and a laser direct forming antenna.
  • the antenna system uses the antenna impedance matching circuit described above to obtain a better antenna radiation efficiency than the prior art, as shown in FIG. 3.
  • the above-mentioned antenna impedance matching circuit and feeder lines and other components can be mounted on a printed circuit board (PCB).
  • a printed circuit board is provided. After the printed circuit board, that is, a bare board, is prepared, it is used to install the above-mentioned antenna impedance matching circuit and other antenna elements. Due to the repeatability and consistency of the graphics on the printed circuit board, the design can be standardized, which is conducive to mechanized and automated production, improves labor productivity, and can reduce wiring and assembly errors at the same time.
  • the printed circuit board also has the advantages of small size, light weight, and miniaturization of electronic devices, and is especially suitable for small mobile devices.
  • Figure 4 shows a schematic illustration of the printed circuit board.
  • the printed circuit board includes: a first line 410 for accommodating the first transmission line 210 in the above-mentioned antenna impedance matching circuit; a second line 420 for accommodating the second transmission line in the above-mentioned antenna impedance matching circuit 220.
  • the first line 410 and the second line 420 are both connected in parallel with the line 430 containing the antenna feeder. Therefore, the first line 410 and the second line 420 are also connected in parallel, so that the first transmission line and the second transmission line to be installed thereon are connected in parallel.
  • the transmission lines are connected in parallel.
  • FIG. 5 shows an arrangement diagram of the terminals 440 of the first circuit 410 and the second circuit 420 of the printed circuit board.
  • the circuit on the printed circuit board may be as shown in the left figure of FIG. 5, with the terminal set to be able to surround the terminal of the first transmission line, so that the transmission line is open after being installed on the printed circuit board.
  • the circuit on the printed circuit board can also be set to open the terminal as shown in the right figure of Figure 5, so that the transmission line can be connected to GND after being installed on the printed circuit board, and then short-circuited.
  • the portion of the second layer of the printed circuit board below the first circuit 410 and the second circuit 420 is cleared, as shown in FIG. 6.
  • the advantage of the clearance setting is that it is easy to realize the impedance matching the first transmission line 210 installed in the first line 410 and the second transmission line 220 installed in the second line 420 to the feeder, as described above.
  • the distance between the first line 410 and the second line 420 and the ground is 0.1-0.2 mm, and the specific value can be set to, for example, 0.2 mm.
  • the distance between the first line 410 and the second line 420 and the position 450 of the antenna spring on the printed circuit board is less than 5 mm, which is convenient for the antenna impedance matching circuit to be connected to the antenna after being installed on the printed circuit board. Coupling/connection between.
  • the circuit occupies a small space and is easy to form on a printed circuit board, which facilitates the layout of other components on the printed circuit board, making the printed circuit board more suitable for mobile terminals such as smart phones.
  • the printed circuit board can be made of well-known materials such as FR-4 (glass fiber cloth base), metal-based copper clad laminate, etc., and those skilled in the art can also select appropriate materials and manufacturing methods according to the application.
  • the printed circuit board according to the second embodiment can mount antenna-related components and the antenna impedance matching circuit according to the first embodiment. Therefore, according to the third embodiment of the present application, a circuit board is provided, which includes the antenna according to the first embodiment Impedance matching circuit and the printed circuit board according to the second embodiment.
  • this embodiment provides a circuit board on which antenna-related components are mounted.
  • the circuit board uses different antenna impedance matching circuits, and the printed circuit board has different wiring configurations, so that the antenna system using the circuit board can obtain better transmission and reception efficiency, and the specific effects This can be seen in Figure 3.
  • circuit board can be connected to the antenna through the antenna spring sheet. Therefore, according to the fourth embodiment of the present application, an antenna system can also be provided, which includes the circuit board and the antenna element according to the third embodiment.
  • Fig. 7 shows a schematic illustration of an antenna system according to this embodiment.
  • the first transmission line and the second transmission line are installed in the first line and the second line, respectively, and connected in parallel with the feeder beside it.
  • the antenna shrapnel is installed at the end of the transmission line, and the antenna shrapnel is connected to the antenna.
  • the feeder transmits the signal power from the transmitter to the input end of the transmitting antenna with minimal loss, and the antenna radiates it out in the form of electromagnetic waves. Since the antenna impedance matching circuit adopted in the embodiment of the present application uses a transmission line of a specific length to replace the patch capacitance and inductance in the traditional technology, a higher antenna efficiency can be obtained, as shown in FIG. 3.
  • a mobile terminal which includes the antenna system according to the fourth embodiment.
  • Fig. 8 shows a schematic structural diagram of a mobile terminal according to an embodiment of the present application.
  • the mobile terminal includes the antenna system according to the above embodiments.
  • the mobile terminal can be one of the following: a mobile phone, a tablet, a notebook computer, a smart watch, a smart bracelet, or a smart wearable device. Take a mobile phone (such as a mobile phone) as an example, and its partial structure block diagram is shown in Figure 8.
  • the mobile phone includes a radio frequency circuit 810, a memory 820, an input unit 830, a display unit 840, a sensor 850, an audio circuit 860, a wireless module 870, a processor 880, and a power supply 890.
  • a radio frequency circuit 810 for example, a radio frequency circuit 810, a memory 820, an input unit 830, a display unit 840, a sensor 850, an audio circuit 860, a wireless module 870, a processor 880, and a power supply 890.
  • Those skilled in the art can understand that the structure of the mobile phone shown in FIG. 8 does not constitute a limitation on the mobile phone, and may include more or less components than those shown in the figure, or a combination of certain components, or different component arrangements.
  • the RF circuit 810 is used to receive and send electromagnetic waves, realize mutual conversion between electromagnetic waves and electrical signals, and communicate with a communication network or other devices.
  • the RF circuit 810 may include various existing circuit elements for performing these functions, for example, an antenna, a radio frequency transceiver, a digital signal processor, an encryption/decryption chip, a subscriber identity module (SIM) card, a memory, and so on.
  • the RF circuit 810 can communicate with various networks such as the Internet, an intranet, and a wireless network, or communicate with other devices through a wireless network.
  • the aforementioned wireless network may include a cellular telephone network, a wireless local area network, or a metropolitan area network.
  • the above-mentioned wireless networks can use various communication standards, protocols and technologies, including but not limited to the Global System for Mobile Communications (Global System for Mobile Communication, GSM for short), Enhanced Data GSM Environment (EDGE for short), and Wideband Code Division Multiple Access (Wideband Code) technology Division Multiple Access, referred to as WCDMA), code division multiple access technology (Code Division Access, referred to as CDMA), time division multiple access technology (Time Division Multiple Access, referred to as TDMA), wireless fidelity technology (Wireless Fidelity, abbreviated as Wi-Fi) (such as the American Institute of Electrical and Electronics Engineers standard IEEE 802.11a, IEEE 802.11b, IEEE802.11g and/or IEEE 802.11n), Voice over Internet Protocol (VoIP), Worldwide Microwave Interconnection Access (Worldwide Interoperability for Microwave Access, referred to as Wi-Max), other protocols used for mail, instant messaging and short messages, and any other suitable communication protocols, even those that have not yet been developed.
  • GSM Global System for Mobile Communication
  • the memory 820 may be used to store software programs and modules.
  • the processor 880 executes various functional applications and data processing by running the software programs and modules stored in the memory 820.
  • the memory 820 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 820 may further include a memory remotely provided with respect to the processor 880, and these remote memories may be connected to the mobile terminal through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input unit 830 can be used to receive inputted digital or character information, and generate keyboard, mouse, joystick, optical or trackball signal input related to user settings and function control.
  • the input unit 830 may include a touch-sensitive surface 831 and other input devices 832.
  • the touch-sensitive surface 831 also called a touch screen or a touchpad, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on or on the touch-sensitive surface 831. Operation near the touch-sensitive surface 831), and drive the corresponding connection device according to the preset program.
  • the touch-sensitive surface 831 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 880, and can receive and execute the commands sent by the processor 880.
  • the touch-sensitive surface 831 can be realized by various types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the input unit 830 may also include other input devices 832.
  • other input devices 832 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, joystick, and the like.
  • the display unit 840 may be used to display information input by the user or information provided to the user and various graphical user interfaces of the mobile terminal. These graphical user interfaces may be composed of graphics, text, icons, videos, and any combination thereof.
  • the display unit 840 may include a display panel 841, and optionally, a liquid crystal display (Liquid Crystal Display, referred to as LCD), organic light-emitting diode (Organic Light-Emitting Diode, referred to as OLED for short) and other forms to configure the display panel 841. Further, the touch-sensitive surface 831 may cover the display panel 841.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • the touch-sensitive surface 831 When the touch-sensitive surface 831 detects a touch operation on or near it, it is transmitted to the processor 880 to determine the type of the touch event, and then the processor 880 determines the type of the touch event.
  • the type provides corresponding visual output on the display panel 841.
  • the touch-sensitive surface 831 and the display panel 841 are used as two independent components to realize the input and output functions, in some embodiments, the touch-sensitive surface 831 and the display panel 841 can be integrated to realize the input and output functions. And output function.
  • the mobile terminal may also include at least one sensor 850, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 841 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 841 and the display panel 841 when the mobile terminal is moved to the ear. / Or backlight.
  • the gravity acceleration sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when it is stationary.
  • mobile phone posture applications such as horizontal and vertical screen switching, related Games, magnetometer posture calibration), vibration recognition related functions (such as pedometer, percussion), etc.; as for other sensors such as gyroscopes, barometers, hygrometers, thermometers, infrared sensors, etc. that can be configured on mobile terminals, we will not Go into details again.
  • the audio circuit 860, the speaker 861, and the microphone 862 can provide an audio interface between the user and the mobile terminal.
  • the audio circuit 860 can transmit the electric signal after the conversion of the received audio data to the speaker 861, and the speaker 861 converts it into a sound signal for output; on the other hand, the microphone 862 converts the collected sound signal into an electric signal, and the audio circuit 860 converts the collected sound signal into an electric signal. After being received, it is converted into audio data, and then processed by the audio data output processor 880, and sent to, for example, another terminal via the RF circuit 810, or the audio data is output to the memory 820 for further processing.
  • the audio circuit 860 may also include an earplug jack to provide communication between a peripheral earphone and the mobile terminal.
  • the mobile terminal can help users send and receive e-mails, browse webpages, and access streaming media through the transmission module 870 (such as a Wi-Fi module), and it provides users with wireless broadband Internet access.
  • the transmission module 870 such as a Wi-Fi module
  • FIG. 8 shows the transmission module 870, it is understandable that it is not a necessary component of the mobile terminal, and can be omitted as needed without changing the essence of the invention.
  • the processor 880 is the control center of the mobile terminal. It uses various interfaces and lines to connect various parts of the entire mobile phone. By running or executing software programs and/or modules stored in the memory 820, and calling data stored in the memory 820, Perform various functions of the mobile terminal and process data to monitor the mobile phone as a whole.
  • the processor 880 may include one or more processing cores; in some embodiments, the processor 880 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and For application programs, the modem processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 880.
  • the mobile terminal also includes a power supply 890 (such as a battery) for supplying power to various components.
  • the power supply can be logically connected to the processor 880 through a power management system, so that the power management system can manage charging, discharging, and power consumption management. And other functions.
  • the power supply 890 may also include any components such as one or more DC or AC power supplies, a recharging system, a power failure detection circuit, a power converter or inverter, and a power status indicator.
  • the mobile terminal may also include a camera (such as a front camera, a rear camera), a Bluetooth module, etc., which will not be repeated here.
  • the display unit of the mobile terminal is a touch screen display, and the mobile terminal further includes a memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Support Of Aerials (AREA)

Abstract

公开一种天线阻抗匹配电路、天线***、印刷电路板和终端。其中,天线阻抗匹配电路包括:第一传输线,第一传输线具有第一特定长度,使得第一传输线呈容性;第二传输线,第二传输线具有第二特定长度,使得第二传输线呈感性;其中第一传输线和第二传输线并联连接,且第一传输线和第二传输线的终端均开路或短路。

Description

天线阻抗匹配电路、天线***、印刷电路板和移动终端
本申请要求于2019年12月03日提交中国专利局、申请号为201911222771.4、发明名称为“天线阻抗匹配电路、天线***、印刷电路板和移动终端”的这个专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体涉及一种天线阻抗匹配电路、天线***、印刷电路板和移动终端。
背景技术
天线是发射和接收电磁波的一个重要的无线电设备。无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来,并通过馈线送到无线电接收机。
天线与其馈线的连接处称为天线的输入端或馈电点。天线输入端的电压与电流的比值称为天线的输入阻抗。研究天线阻抗的主要目的是为实现天线和馈线间的匹配。当天线与馈线匹配时,由发射机向天线或由天线向接收机传输的功率最大,这时在馈线上不会出现反射波,反射系数等于零。对于发射天线来说,如果匹配不好,则天线的辐射功率就会减小,馈线上的损耗会增大,馈线的功率容量也会下降,严重时还会出现发射机频率“牵引”现象,即振荡频率发生变化。
实际无线电应用中,为了将一个复杂负载(如天线)连到一个纯阻性源上,最常见的情形是在负载与源之间构造一个匹配网络。欲使发射天线与馈线相匹配,天线的输入阻抗应该等于馈线的特性阻抗。
常规设计中天线匹配位置用电容电感器件调整,如图1所示,使整体天线负载更靠近传输线特性阻抗50ohm,以尽量降低传输上的信号损耗,提高天线效率。但电容电感器件通常也会引入一定的损耗,使通过的信号损失一部分,导致天线***的效率(天线效率是辐射到空间的总功率与输入端口处的总功率之比)反而会降低。
技术问题
本申请提供了一种天线阻抗匹配电路、天线***、印刷电路板和移动终端,以解决现有技术中天线阻抗匹配电路带来的信号损耗问题。
技术解决方案
为了解决上述问题,本申请实施例提供了一种天线阻抗匹配电路,包括:第一传输线,第一传输线具有第一特定长度,使得第一传输线呈容性;第二传输线,第二传输线具有第二特定长度,使得第二传输线呈感性;其中第一传输线和第二传输线并联连接,且第一传输线和第二传输线的终端开路或短路。
其中,第一传输线和第二传输线的宽度均为0.2-0.3mm。
其中,第一传输线和第二传输线的阻抗均为50欧姆。
为了解决上述问题,本申请实施例还提供了一种天线***,包括:天线和天线阻抗匹配电路,天线阻抗匹配电路包括:第一传输线,第一传输线具有第一特定长度,使得第一传输线呈容性;第二传输线,第二传输线具有第二特定长度,使得第二传输线呈感性;其中第一传输线和第二传输线并联连接,且第一传输线和第二传输线的终端开路或短路。
其中,第一传输线和第二传输线的宽度均为0.2-0.3mm。
其中,第一传输线和第二传输线的阻抗均为50欧姆。
为了解决上述问题,本申请实施例还提供了一种用于天线***的印刷电路板,天线***包括天线和天线阻抗匹配电路,天线阻抗匹配电路包括:第一传输线,第一传输线具有第一特定长度,使得第一传输线呈容性;第二传输线,第二传输线具有第二特定长度,使得第二传输线呈感性;其中第一传输线和第二传输线并联连接,且第一传输线和第二传输线的终端开路或短路;印刷电路板包括:第一线路,与容纳天线馈线的线路并联,用于容纳具有第一特定长度的传输线;第二线路,与容纳天线馈线的线路并联,用于容纳具有第二特定长度的传输线,其中第一线路、第二线路分别与容纳馈线的线路呈并联关系,且第一线路的终端设置成能够包围第一传输线的终端,使第一传输线不与地接通,或设置成开通,使第一传输线与地接通,第二线路的终端设置成能够包围第二传输线的终端,使第二传输线不与地接通,或设置成开通,使第二传输线与地接通。
其中,印刷电路板第二层在第一线路和第二线路以下的部分净空。
其中,第一线路和第二线路与地的距离为0.1-0.2毫米。
其中,第一线路和第二线路与印刷电路板上天线弹片的位置之间的距离小于5毫米。
为了解决上述问题,本申请实施例还提供了一种电路板,包括天线阻抗匹配电路和印刷电路板,其中天线阻抗匹配电路安装在印刷电路板上,印刷电路板应用于天线***,天线***包括天线和天线阻抗匹配电路;其中,天线阻抗匹配电路包括:第一传输线,第一传输线具有第一特定长度,使得第一传输线呈容性;第二传输线,第二传输线具有第二特定长度,使得第二传输线呈感性;其中第一传输线和第二传输线并联连接,且第一传输线和第二传输线的终端开路或短路;印刷电路板包括:第一线路,与容纳天线馈线的线路并联,用于容纳具有第一特定长度的传输线;第二线路,与容纳天线馈线的线路并联,用于容纳具有第二特定长度的传输线;其中,第一线路的终端设置成能够包围第一传输线的终端,使第一传输线不与地接通,或设置成开通、使第一传输线与地接通;第二线路的终端设置成能够包围第二传输线的终端,使第二传输线不与地接通,或设置成开通、使第二传输线与地接通。
其中,印刷电路板第二层在第一线路和第二线路以下的部分净空。
其中,第一线路和第二线路与地的距离为0.1-0.2毫米。
其中,第一线路和第二线路与印刷电路板上天线弹片的位置之间的距离小于5毫米。
其中,第一传输线和第二传输线的宽度均为0.2-0.3mm。
其中,第一传输线和第二传输线的阻抗均为50欧姆。
为了解决上述问题,本申请实施例还提供了一种天线***,包括天线和电路板,该电路板包括天线阻抗匹配电路和印刷电路板,天线阻抗匹配电路安装在印刷电路板上;其中,天线阻抗匹配电路包括:第一传输线,第一传输线具有第一特定长度,使得第一传输线呈容性;第二传输线,第二传输线具有第二特定长度,使得第二传输线呈感性;其中第一传输线和第二传输线并联连接,且第一传输线和第二传输线的终端开路或短路;印刷电路板包括:第一线路,与容纳天线馈线的线路并联,用于容纳具有第一特定长度的传输线;第二线路,与容纳天线馈线的线路并联,用于容纳具有第二特定长度的传输线;其中,第一线路的终端设置成能够包围第一传输线的终端,使第一传输线不与地接通,或设置成开通、使第一传输线与地接通;第二线路的终端设置成能够包围第二传输线的终端,使第二传输线不与地接通,或设置成开通、使第二传输线与地接通。
其中,第一传输线和第二传输线的宽度均为0.2-0.3mm。
为了解决上述问题,本申请实施例还提供了一种移动终端,包括上述天线***,,天线***包括天线和电路板,电路板包括印刷电路板和天线阻抗匹配电路,天线阻抗匹配电路安装在印刷电路板上;其中,天线阻抗匹配电路包括:第一传输线,第一传输线具有第一特定长度,使得第一传输线呈容性;第二传输线,第二传输线具有第二特定长度,使得第二传输线呈感性;其中第一传输线和第二传输线并联连接,且第一传输线和第二传输线的终端开路或短路;印刷电路板包括:第一线路,与容纳天线馈线的线路并联,用于容纳具有第一特定长度的传输线;第二线路,与容纳天线馈线的线路并联,用于容纳具有第二特定长度的传输线;其中,第一线路的终端设置成能够包围第一传输线的终端,使第一传输线不与地接通,或设置成开通、使第一传输线与地接通;第二线路的终端设置成能够包围第二传输线的终端,使第二传输线不与地接通,或设置成开通、使第二传输线与地接通。
其中,移动终端是以下之一:移动电话、平板、笔记本电脑、智能手表、智能手环或智能穿戴设备。
有益效果
本申请的有益效果是:区别于现有技术,本申请提供的天线阻抗匹配电路,使得天线阻抗匹配电路导致的信号损耗降低,提高了天线效率。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
附图中的部件不是成比例绘制的,而只是为了示出本申请的原理。为了便于示出和描述本申请的一些部分,附图中对应部分可能被放大,即,使其相对于在依据本申请实际制造的示例性装置中的其它部件变得更大。在附图中,相同的或类似的技术特征或部件将采用相同或类似的附图标记来表示。
图1示出了现有技术的天线阻抗匹配电路的示意性结构图。
图2示出了根据本申请第一实施方式的天线阻抗匹配电路的示意性框图。
图3示出了根据本申请第一实施方式的天线阻抗匹配电路提升天线辐射效率的曲线图。
图4示出了根据本申请第三实施方式的印刷电路板的示意性图示。
图5示出了根据本申请第三实施方式的印刷电路板的线路终端设置的示意性图示。
图6示出了根据本申请第三实施方式的印刷电路板的第二层的示意性图示。
图7示出了根据本实施方式的天线***的示意性图示。
图8示出了根据本申请实施方式的移动终端的结构示意图。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,“示例性”一词用来表示“用作例子、例证或说明”。本申请中被描述为“示例性”的任何实施例不一定被解释为比其它实施例更优选或更具优势。为了使本领域任何技术人员能够实现和使用本申请,给出了以下描述。在以下描述中,为了解释的目的而列出了细节。应当明白的是,本领域普通技术人员可以认识到,在不使用这些特定细节的情况下也可以实现本申请。在其它实例中,不会对公知的结构和过程进行详细阐述,以避免不必要的细节使本申请的描述变得晦涩。因此,本申请并非旨在限于所示的实施例,而是与符合本申请所公开的原理和特征的最广范围相一致。
如上所述,研究天线阻抗的主要目的是为实现天线和馈线间的匹配。当天线与馈线匹配时,由发射机向天线或由天线向接收机传输的功率最大。欲使发射天线与馈线相匹配,天线的输入阻抗应该等于馈线的特性阻抗。下面描述根据本申请实施方式构建的天线阻抗匹配电路。
第一实施方式
根据本申请第一实施方式,提供一种天线阻抗匹配电路。图2示出了该天线匹配阻抗电路的示意性框图。如图2的虚线部分所示,该天线阻抗匹配电路包括:第一传输线210,第一传输线210的终端可以开路或短路,图2中示例性示为短路状态,不应理解为对本申请的限制。该第一传输线210具有第一特定长度,该第一特定长度使得第一传输线210呈容性,以代替传统阻抗匹配电路的贴片电容。如图2所示,该天线阻抗匹配电路还包括第二传输线220,第二传输线220的终端开路或短路,图2中示例性示为短路状态。该第二传输线220具有第二特定长度,该第二特定长度使第二传输线220呈感性,以代替传统阻抗匹配电路的贴片电感。
上述第一特定长度、第二特定长度可以相同,也可以不同,具体数值取决于第一传输线210和第二传输线220的应用场景,包括传送的信号的波长、传输线的阻抗以及希望形成的电容、电感值。下面以一个具体例子来描述长度取值,比如,第一传输线210在终端开路的情况下,工作频率为3Ghz,阻抗为50欧姆,欲形成2pf电容,那么所需的传输线长度为13.24毫米。本领域技术人员可以在理解本申请实施方式的方案基础上,根据实际需要设计出其他长度数值,本申请在此不受限制。
在图2中还示出了连接在馈源与天线之间的一个电容元件,该电容元件不是必需的,只是用于展示通常的匹配模型,且不属于天线匹配电路的构成元件。
在以上设计中,因为天线阻抗匹配电路的组成元件即传输线与馈线一样同为传输线,并且阻抗特性、信号传输特性等相同,故此形成的天线阻抗匹配电路与贴片电容电感这样的传统形式相比,可以降低损耗,进一步提高天线辐射效率。
图3示出了天线辐射效率的曲线图。如图3所示,下方曲线为现有技术里采用传统天线阻抗匹配电路时的天线辐射效率曲线,上方曲线为采用根据本申请第一实施方式的天线阻抗匹配电路带来的天线辐射效率曲线。其中,横轴表示频率,纵轴表示天线辐射效率。从图3中可见,在任何频率下,本申请实施方式都比现有技术获得更高的天线辐射效率。
为获得与馈线更接近的性能,从而进一步提高天线辐射效率,第一传输线210和第二传输线220的宽度可以与馈线保持一致。比如,在手机天线的场景下,第一传输线210和第二传输线220的宽度可以是0.2-0.3毫米,具体地,可以是0.3毫米。该数值不用于限制本申请,而是可以由本领域技术人员根据实际应用情况做其他选择的。
以上提到一个具体示例:第一传输线210在终端开路的情况下,工作频率为3Ghz,阻抗为50欧姆,欲形成2pf电容,那么所需的传输线长度为13.24毫米。实际上,在选择第一传输线210和第二传输线220的阻抗值时要考虑与馈线的匹配。馈线终端所接负载阻抗等于馈线特性阻抗时,则馈线终端是匹配连接的。当馈线阻抗为50欧姆时,天线阻抗也为50欧姆,那么与馈线阻抗是匹配的,当天线阻抗为比如80欧姆时,就与馈线阻抗不匹配。
在手机通信领域,馈线一般采用50欧姆的阻抗值。在这种情况下的,第一传输线210和第二传输线220的阻抗都可以是50欧姆。这是为了与50欧姆馈线匹配。匹配时,馈线上只存在传向终端负载的入射波,而没有由终端负载产生的反射波,因此,当天线作为终端负载时,匹配能保证天线取得全部信号功率。
以上以手机通信领域常用的50欧姆馈线为例说明了第一传输线210和第二传输线220可以采取的阻抗设置。在馈线阻抗为其他值比如75欧姆时,天线阻抗匹配电路的传输线也要达到与其匹配的阻抗值。应理解这些数值仅是用来举例说明,帮助理解本申请实施方式的技术方案,不用于限制本申请的范围。
根据本申请实施方式,还提供一种天线***,其包括天线,以及以上所述的天线阻抗匹配电路。天线可以包括以下至少之一:贴片天线元件、偶极天线元件、陶瓷谐振器、冲压金属天线、激光直接成型天线。该天线***使用根据以上描述的天线阻抗匹配电路,获得了相比于现有技术更优的天线辐射效率,如图3所示。
第二实施方式
在实际应用中,上述天线阻抗匹配电路以及馈线等元件可以安装在印刷电路板(PCB)上。根据本申请第三实施方式,提供一种印刷电路板。该印刷电路板即裸板制备出来之后,用于安装上述天线阻抗匹配电路,以及其他天线元件。由于印刷电路板上的图形具有重复性和一致性,设计上可以标准化,利于机械化、自动化生产,提高了劳动生产率,并同时能够减少布线和装配的差错。印刷电路板还具有体积小、重量轻、利于电子设备的小型化这一优点,尤其适用于小型移动设备中。
图4示出了该印刷电路板的示意性图示。如图4所示,该印刷电路板包括:第一线路410,用于容纳上述天线阻抗匹配电路中的第一传输线210;第二线路420,用于容纳上述天线阻抗匹配电路中的第二传输线220。其中,第一线路410和第二线路420均与容纳天线馈线的线路430并联,故此第一线路410与第二线路420之间也是并联关系,从而使得即将安装其上的第一传输线和第二传输线呈并联关系。
图5示出了该印刷电路板的第一线路410和第二线路420的终端440的设置图示。印刷电路板上的线路可以如图5左图所示那样,将终端设置成能够包围所述第一传输线的终端,使得传输线被安装在印刷电路板上之后开路。印刷电路板上的线路也可以如图5右图所示那样将终端设为开通,使得传输线被安装在印刷电路板上之后可以与GND连通,进而短路。
在一个可选实施方式中,印刷电路板第二层在第一线路410和第二线路420下方的部分被净空,如图6所示。净空设置的优势是容易实现安装在第一线路410中的第一传输线210与安装在第二线路420中的第二传输线220与馈线相匹配的阻抗,如上所述。
在一个可选实施方式中,第一线路410和第二线路420与地的距离为0.1-0.2毫米,具体数值可以设为比如0.2毫米。
在一个可选实施方式中,第一线路410和第二线路420与印刷电路板上天线弹片的位置450之间的距离小于5毫米,便于天线阻抗匹配电路安装在印刷电路板上之后与天线之间的耦合/连接。
线路所占空间小,易于在印刷电路板板上形成,便于印刷电路板上各其他元器件的布局,使得该印刷电路板更适用于智能手机等移动终端。印刷电路板可以采用比如FR-4(玻纤布基)、金属基覆铜板等公知的材料来制作,本领域技术人员还可以根据应用场合选取适当的材料以及制作方法。
第三实施方式
根据第二实施方式的印刷电路板可以安装天线相关元件以及根据第一实施方式的天线阻抗匹配电路,故此根据本申请第三实施方式,提供一种电路板,其包括根据第一实施方式的天线阻抗匹配电路和根据第二实施方式的印刷电路板。
也就是说,本实施方式提供一种安装上天线相关元器件的电路板。与常规电路板不同的是,该电路板采用了不同的天线阻抗匹配电路,且印刷电路板上有不同的布线配置,从而使得采用该电路板的天线***可获得更优的收发效率,具体效果可参见图3所示。
第四实施方式
上述电路板可通过天线弹片与天线连接,故此根据本申请第四实施方式,还可以提供一种天线***,其包括根据第三实施方式的电路板和天线元件。
图7示出了根据本实施方式的天线***的示意性图示。如图7所示,第一传输线和第二传输线分别被安装在第一线路和第二线路中,与旁边的馈线并联连接。天线弹片安装在传输线末端,天线弹片连接到天线。
在工作中,馈线将发射机发出的信号功率以最小的损耗传送到发射天线的输入端,由天线以电磁波形式辐射出去。由于本申请实施方式采用的天线阻抗匹配电路采用特定长度的传输线来代替传统技术里的贴片电容和电感,可以获得更高的天线效率,如图3所示。
第五实施方式
上述天线***可以被装配到移动终端中,为移动终端提供天线信号收发功能。故此根据本申请第五实施方式,还提供一种移动终端,其包括根据第四实施方式的天线***。
图8示出了根据本申请实施方式的移动终端的结构示意图。该移动终端包括根据以上实施方式所述的天线***。移动终端可以是以下之一:移动电话、平板、笔记本电脑、智能手表、智能手环或智能穿戴设备。以移动电话(比如手机)为例,其部分结构框图如图8所示。
该手机包括射频电路810、存储器820、输入单元830、显示单元840、传感器850、音频电路860、无线模块870、处理器880以及电源890等部分。本领域技术人员可以理解,图8中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
RF电路810用于接收以及发送电磁波,实现电磁波与电信号的相互转换,从而与通讯网络或者其他设备进行通讯。RF电路810可包括各种现有的用于执行这些功能的电路元件,例如,天线、射频收发器、数字信号处理器、加密/解密芯片、用户身份模块(SIM)卡、存储器等等。RF电路810可与各种网络如互联网、企业内部网、无线网络进行通讯或者通过无线网络与其他设备进行通讯。上述的无线网络可包括蜂窝式电话网、无线局域网或者城域网。上述的无线网络可以使用各种通信标准、协议及技术,包括但并不限于全球移动通信***(Global System for Mobile Communication,简称为GSM)、增强型移动通信技术(Enhanced Data GSM Environment,简称为EDGE),宽带码分多址技术(Wideband Code Division Multiple Access,简称为WCDMA),码分多址技术(Code Division Access,简称为CDMA)、时分多址技术(Time Division Multiple Access,简称为TDMA),无线保真技术(Wireless Fidelity,简称为Wi-Fi)(如美国电气和电子工程师协会标准IEEE 802.11a,IEEE 802.11b,IEEE802.11g和/或IEEE 802.11n)、网络电话(Voice over Internet Protocol,简称为VoIP)、全球微波互联接入(Worldwide Interoperability for Microwave Access,简称为Wi-Max)、其他用于邮件、即时通讯及短消息的协议,以及任何其他合适的通讯协议,甚至可包括那些当前仍未被开发出来的协议。
存储器820可用于存储软件程序以及模块,处理器880通过运行存储在存储器820内的软件程序以及模块,从而执行各种功能应用以及数据处理。存储器820可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器820可进一步包括相对于处理器880远程设置的存储器,这些远程存储器可以通过网络连接至移动终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入单元830可用于接收输入的数字或字符信息,以及产生与用户设置以及功能控制有关的键盘、鼠标、操作杆、光学或者轨迹球信号输入。具体地,输入单元830可包括触敏表面831以及其他输入设备832。触敏表面831,也称为触摸显示屏或者触控板,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触敏表面831上或在触敏表面831附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触敏表面831可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器880,并能接收处理器880发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触敏表面831。除了触敏表面831,输入单元830还可以包括其他输入设备832。具体地,其他输入设备832可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元840可用于显示由用户输入的信息或提供给用户的信息以及移动终端的各种图形用户接口,这些图形用户接口可以由图形、文本、图标、视频和其任意组合来构成。显示单元840可包括显示面板841,可选地,可以采用液晶显示器 (Liquid Crystal Display,简称为LCD)、有机发光二极管 (Organic Light-Emitting Diode,简称为OLED)等形式来配置显示面板841。进一步地,触敏表面831可覆盖显示面板841,当触敏表面831检测到在其上或附近的触摸操作后,传送给处理器880以确定触摸事件的类型,随后处理器880根据触摸事件的类型在显示面板841上提供相应的视觉输出。虽然在图8中,触敏表面831与显示面板841是作为两个独立的部件来实现输入和输出功能,但是在某些实施例中,可以将触敏表面831与显示面板841集成而实现输入和输出功能。
移动终端还可包括至少一种传感器850,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板841的亮度,接近传感器可在移动终端移动到耳边时,关闭显示面板841和/或背光。作为运动传感器的一种,重力加速度传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于移动终端还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路860、扬声器861,传声器862可提供用户与移动终端之间的音频接口。音频电路860可将接收到的音频数据转换后的电信号,传输到扬声器861,由扬声器861转换为声音信号输出;另一方面,传声器862将收集的声音信号转换为电信号,由音频电路860接收后转换为音频数据,再将音频数据输出处理器880处理后,经RF电路810以发送给比如另一终端,或者将音频数据输出至存储器820以便进一步处理。音频电路860还可能包括耳塞插孔,以提供外设耳机与移动终端的通信。
移动终端通过传输模块870(例如Wi-Fi模块)可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图8示出了传输模块870,但是可以理解的是,其并不属于移动终端的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器880是移动终端的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器820内的软件程序和/或模块,以及调用存储在存储器820内的数据,执行移动终端的各种功能和处理数据,从而对手机进行整体监控。可选地,处理器880可包括一个或多个处理核心;在一些实施例中,处理器880可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器880中。
移动终端还包括给各个部件供电的电源890(比如电池),在一些实施例中,电源可以通过电源管理***与处理器880逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。电源890还可以包括一个或一个以上的直流或交流电源、再充电***、电源故障检测电路、电源转换器或者逆变器、电源状态指示器等任意组件。
尽管未示出,移动终端还可以包括摄像头(如前置摄像头、后置摄像头)、蓝牙模块等,在此不再赘述。具体在本实施例中,移动终端的显示单元是触摸屏显示器,移动终端还包括有存储器。
在上面对本申请具体实施例的描述中,针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、要素、步骤或组件的存在,但并不排除一个或更多个其它特征、要素、步骤或组件的存在或附加。涉及序数的术语“第一”,“第二”等并不表示这些术语所限定的特征、要素、步骤或组件的实施顺序或者重要性程度,而仅仅是为了描述清楚起见而用于在这些特征、要素、步骤或组件之间进行标识。
虽然结合附图描述了本申请的实施例,但是本领域技术人员可以在不脱离本申请的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (20)

  1. 一种天线阻抗匹配电路,其包括:
    第一传输线,所述第一传输线具有第一特定长度,使得所述第一传输线呈容性;
    第二传输线,所述第二传输线具有第二特定长度,使得所述第二传输线呈感性;
    其中所述第一传输线和第二传输线并联连接,且所述第一传输线和第二传输线的终端开路或短路。
  2. 根据权利要求1所述的天线阻抗匹配电路,其中,所述第一传输线和第二传输线的宽度均为0.2-0.3mm。
  3. 根据权利要求1所述的天线阻抗匹配电路,其中,第一传输线和第二传输线的阻抗均为50欧姆。
  4. 一种天线***,其包括天线和天线阻抗匹配电路,所述天线阻抗匹配电路包括:
    第一传输线,所述第一传输线具有第一特定长度,使得所述第一传输线呈容性;
    第二传输线,所述第二传输线具有第二特定长度,使得所述第二传输线呈感性;
    其中所述第一传输线和第二传输线并联连接,且所述第一传输线和第二传输线的终端开路或短路。
  5. 根据权利要求4所述的天线***,其中,所述第一传输线和第二传输线的宽度均为0.2-0.3mm。
  6. 根据权利要求4所述的天线***,其中,第一传输线和第二传输线的阻抗均为50欧姆。
  7. 一种用于天线***的印刷电路板,其中,所述天线***包括天线和天线阻抗匹配电路,所述天线阻抗匹配电路包括:第一传输线,所述第一传输线具有第一特定长度,使得所述第一传输线呈容性;第二传输线,所述第二传输线具有第二特定长度,使得所述第二传输线呈感性;其中所述第一传输线和第二传输线并联连接,且所述第一传输线和第二传输线的终端开路或短路;
    所述印刷电路板包括:
    第一线路,与容纳天线馈线的线路并联,用于容纳具有第一特定长度的传输线;
    第二线路,与容纳天线馈线的线路并联,用于容纳具有第二特定长度的传输线,
    其中,所述第一线路的终端设置成能够包围所述第一传输线的终端,使所述第一传输线不与地接通,或设置成开通、使所述第一传输线与地接通,
    所述第二线路的终端设置成能够包围所述第二传输线的终端,使所述第二传输线不与地接通,或设置成开通、使所述第二传输线与地接通。
  8. 根据权利要求7所述的印刷电路板,其中,所述印刷电路板第二层在所述第一线路和所述第二线路以下的部分净空。
  9. 根据权利要求7所述的印刷电路板,其中,所述第一线路和第二线路与地的距离为0.1-0.2毫米。
  10. 根据权利要求7所述的印刷电路板,其中,所述第一线路和第二线路与所述印刷电路板上天线弹片的位置之间的距离小于5毫米。
  11. 一种电路板,其包括印刷电路板和天线阻抗匹配电路,所述天线阻抗匹配电路安装在所述印刷电路板上,所述印刷电路板应用于天线***,所述天线***包括天线和所述天线阻抗匹配电路;
    其中,所述天线阻抗匹配电路包括:第一传输线,所述第一传输线具有第一特定长度,使得所述第一传输线呈容性;第二传输线,所述第二传输线具有第二特定长度,使得所述第二传输线呈感性;其中所述第一传输线和第二传输线并联连接,且所述第一传输线和第二传输线的终端开路或短路;
    所述印刷电路板包括:第一线路,与容纳天线馈线的线路并联,用于容纳具有第一特定长度的传输线;第二线路,与容纳天线馈线的线路并联,用于容纳具有第二特定长度的传输线;
    其中,所述第一线路的终端设置成能够包围所述第一传输线的终端,使所述第一传输线不与地接通,或设置成开通、使所述第一传输线与地接通;所述第二线路的终端设置成能够包围所述第二传输线的终端,使所述第二传输线不与地接通,或设置成开通、使所述第二传输线与地接通。
  12. 根据权利要求11所述的电路板,其中,所述印刷电路板第二层在所述第一线路和所述第二线路以下的部分净空。
  13. 根据权利要求11所述的印刷电路板,其中,所述第一线路和第二线路与地的距离为0.1-0.2毫米。
  14. 根据权利要求11所述的印刷电路板,其中,所述第一线路和第二线路与所述印刷电路板上天线弹片的位置之间的距离小于5毫米。
  15. 根据权利要求11所述的电路板,其中,所述第一传输线和第二传输线的宽度均为0.2-0.3mm。
  16. 根据权利要求11所述的电路板,其中,第一传输线和第二传输线的阻抗均为50欧姆。
  17. 一种天线***,其包括天线和电路板,所述电路板包括印刷电路板和天线阻抗匹配电路,所述天线阻抗匹配电路安装在所述印刷电路板上;
    其中,所述天线阻抗匹配电路包括:第一传输线,所述第一传输线具有第一特定长度,使得所述第一传输线呈容性;第二传输线,所述第二传输线具有第二特定长度,使得所述第二传输线呈感性;其中所述第一传输线和第二传输线并联连接,且所述第一传输线和第二传输线的终端开路或短路;
    所述印刷电路板包括:第一线路,与容纳天线馈线的线路并联,用于容纳具有第一特定长度的传输线;第二线路,与容纳天线馈线的线路并联,用于容纳具有第二特定长度的传输线;
    其中,所述第一线路的终端设置成能够包围所述第一传输线的终端,使所述第一传输线不与地接通,或设置成开通、使所述第一传输线与地接通;所述第二线路的终端设置成能够包围所述第二传输线的终端,使所述第二传输线不与地接通,或设置成开通、使所述第二传输线与地接通。
  18. 根据权利要求17所述的天线***,其中,所述第一传输线和第二传输线的宽度均为0.2-0.3mm。
  19. 一种移动终端,其包括天线***,所述天线***包括天线和电路板,所述电路板包括印刷电路板和天线阻抗匹配电路,所述天线阻抗匹配电路安装在所述印刷电路板上;
    其中,所述天线阻抗匹配电路包括:第一传输线,所述第一传输线具有第一特定长度,使得所述第一传输线呈容性;第二传输线,所述第二传输线具有第二特定长度,使得所述第二传输线呈感性;其中所述第一传输线和第二传输线并联连接,且所述第一传输线和第二传输线的终端开路或短路;
    所述印刷电路板包括:第一线路,与容纳天线馈线的线路并联,用于容纳具有第一特定长度的传输线;第二线路,与容纳天线馈线的线路并联,用于容纳具有第二特定长度的传输线;
    其中,所述第一线路的终端设置成能够包围所述第一传输线的终端,使所述第一传输线不与地接通,或设置成开通、使所述第一传输线与地接通;所述第二线路的终端设置成能够包围所述第二传输线的终端,使所述第二传输线不与地接通,或设置成开通、使所述第二传输线与地接通。
  20. 根据权利要求19所述的移动终端,其中,所述移动终端是以下之一:移动电话、平板、笔记本电脑、智能手表、智能手环、智能穿戴设备。
PCT/CN2019/126177 2019-12-03 2019-12-18 天线阻抗匹配电路、天线***、印刷电路板和移动终端 WO2021109248A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/615,843 US20220336960A1 (en) 2019-12-03 2019-12-18 Antenna impedance matching circuit, antenna system and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911222771.4 2019-12-03
CN201911222771.4A CN110931974A (zh) 2019-12-03 2019-12-03 天线阻抗匹配电路、天线***、印刷电路板和移动终端

Publications (1)

Publication Number Publication Date
WO2021109248A1 true WO2021109248A1 (zh) 2021-06-10

Family

ID=69847324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126177 WO2021109248A1 (zh) 2019-12-03 2019-12-18 天线阻抗匹配电路、天线***、印刷电路板和移动终端

Country Status (3)

Country Link
US (1) US20220336960A1 (zh)
CN (1) CN110931974A (zh)
WO (1) WO2021109248A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7469978B2 (ja) * 2020-07-22 2024-04-17 株式会社日立製作所 プリント配線板及び情報処理装置
WO2022141307A1 (zh) * 2020-12-30 2022-07-07 华为技术有限公司 基站天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150116179A1 (en) * 2013-10-30 2015-04-30 Taiyo Yuden Co., Ltd. Chip antenna and communication circuit substrate for transmission and reception
US20150147980A1 (en) * 2013-11-27 2015-05-28 Nokia Corporation Multiband antenna arrangement
CN204407515U (zh) * 2015-03-13 2015-06-17 昆山睿翔讯通通信技术有限公司 基于并联谐振匹配电路的天线
US20150180132A1 (en) * 2013-12-23 2015-06-25 Saku Lahti Electrically tunable miniature antenna
CN107612572A (zh) * 2017-09-08 2018-01-19 上海斐讯数据通信技术有限公司 一种射频匹配模块、用于移动终端的射频***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4275366A (en) * 1979-08-22 1981-06-23 Rca Corporation Phase shifter
JPS5827402A (ja) * 1981-08-12 1983-02-18 Hitachi Ltd Shf受信機の前置増幅回路
JPH02152302A (ja) * 1988-12-02 1990-06-12 Fujitsu Ltd 2倍波阻止回路
US10193522B2 (en) * 2016-01-21 2019-01-29 Motorola Mobility Llc Single port wide band impedance matching circuit with narrow band harmonic bypass, wireless communication device, and method for providing antenna matching
CN107483073B (zh) * 2017-09-08 2021-04-23 台州市吉吉知识产权运营有限公司 一种射频匹配电路和射频***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150116179A1 (en) * 2013-10-30 2015-04-30 Taiyo Yuden Co., Ltd. Chip antenna and communication circuit substrate for transmission and reception
US20150147980A1 (en) * 2013-11-27 2015-05-28 Nokia Corporation Multiband antenna arrangement
US20150180132A1 (en) * 2013-12-23 2015-06-25 Saku Lahti Electrically tunable miniature antenna
CN204407515U (zh) * 2015-03-13 2015-06-17 昆山睿翔讯通通信技术有限公司 基于并联谐振匹配电路的天线
CN107612572A (zh) * 2017-09-08 2018-01-19 上海斐讯数据通信技术有限公司 一种射频匹配模块、用于移动终端的射频***

Also Published As

Publication number Publication date
US20220336960A1 (en) 2022-10-20
CN110931974A (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
US11570286B2 (en) Antenna and electronic device including the same
JP2015525048A (ja) アンテナ装置及びその製造方法
CN109150327A (zh) 一种天线检测方法、天线检测装置及移动终端
WO2020019835A1 (zh) 天线组件及电子设备
TWI664778B (zh) 導電蓋體、殼體元件和終端
CN110289885A (zh) 一种天线调谐方法及终端
WO2020238630A1 (zh) 移动终端
CN109244645A (zh) 天线组件和电子设备
WO2021128552A1 (zh) 一种 mimo 天线装置及移动终端
WO2023020467A1 (zh) 天线***和电子设备
WO2021109248A1 (zh) 天线阻抗匹配电路、天线***、印刷电路板和移动终端
CN108832297A (zh) 一种天线工作方法和移动终端
CN108833683A (zh) 动态天线调整实现方法及相关产品
WO2021142888A1 (zh) 天线结构及采用该天线结构的终端设备
CN108810261A (zh) 通话中天线切换方法及相关产品
CN111082205B (zh) 天线及电子设备
WO2018068344A1 (zh) 一种天线装置及移动终端
CN112531342B (zh) 天线模组及电子设备
CN213151017U (zh) 天线结构及电子设备
WO2023236120A1 (zh) 天线结构、天线阵列及终端设备
CN112332090B (zh) 天线结构及移动终端
CN219833028U (zh) Nfc天线、nfc装置及智能终端
WO2021128546A1 (zh) 天线结构及采用该天线结构的终端设备
CN112510348A (zh) 天线及电子设备
CN113764873A (zh) 天线***及移动终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954776

Country of ref document: EP

Kind code of ref document: A1