WO2021109041A1 - 随机接入的方法和终端设备 - Google Patents

随机接入的方法和终端设备 Download PDF

Info

Publication number
WO2021109041A1
WO2021109041A1 PCT/CN2019/123107 CN2019123107W WO2021109041A1 WO 2021109041 A1 WO2021109041 A1 WO 2021109041A1 CN 2019123107 W CN2019123107 W CN 2019123107W WO 2021109041 A1 WO2021109041 A1 WO 2021109041A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
symbol
uplink
send
random access
Prior art date
Application number
PCT/CN2019/123107
Other languages
English (en)
French (fr)
Inventor
徐伟杰
吴作敏
赵振山
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP19955148.2A priority Critical patent/EP4040904B1/en
Priority to CN201980093937.9A priority patent/CN113574955A/zh
Priority to JP2022532864A priority patent/JP7383819B2/ja
Priority to PCT/CN2019/123107 priority patent/WO2021109041A1/zh
Priority to KR1020227019606A priority patent/KR20220106147A/ko
Priority to CN202111432147.4A priority patent/CN114126076B/zh
Publication of WO2021109041A1 publication Critical patent/WO2021109041A1/zh
Priority to US17/731,121 priority patent/US20220256619A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to a method and terminal device for random access.
  • the first message includes a physical random access channel (Physical Random Access Channel, PRACH) and a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH).
  • PRACH Physical Random Access Channel
  • PUSCH Physical Uplink Shared Channel
  • This application provides a random access method and terminal equipment, which can realize effective transmission of Msg A in a 2-step random access process.
  • a random access method which includes: a terminal device determines, based on a predetermined rule, whether to send the uplink channel on the transmission opportunity corresponding to the uplink channel in the first message of the 2-step random access process.
  • Channel wherein the uplink channel includes a physical random access channel PRACH and a physical uplink shared channel PUSCH; if the terminal device determines not to send the PRACH, the terminal device does not send the PRACH, and does not send the PUSCH; if the terminal device determines not to send the PUSCH, the terminal device does not send the PUSCH, and sends or does not send the PRACH.
  • a random access device in a second aspect, can execute the foregoing first aspect or the method in any optional implementation manner of the first aspect.
  • the device includes a functional module for executing the above-mentioned first aspect or any possible implementation of the first aspect.
  • a random access device including a processor and a memory.
  • the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the above-mentioned first aspect or the method in any possible implementation of the first aspect.
  • a chip including a processor is provided.
  • the processor is used to call and run a computer program from the memory, so that the device installed with the chip executes the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute the above-mentioned first aspect or the method in any possible implementation of the first aspect.
  • a computer program product including computer program instructions that cause a computer to execute the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • a computer program which when running on a computer, causes the computer to execute the above-mentioned first aspect or the method in any possible implementation of the first aspect.
  • the terminal device determines not to send the PRACH in Msg A based on a preset rule, it will not send the PUSCH in Msg A; and when it determines not to send the PUSCH in Msg A , The PRACH in Msg A can be sent or not, thereby ensuring the effective transmission of PRACH and PUSCH.
  • Fig. 1 is a schematic diagram of a possible wireless communication system applied by an embodiment of the present application.
  • Figure 2 is a schematic diagram of a 4-step random access process.
  • Figure 3 is a schematic diagram of a 2-step random access process.
  • FIG. 4 to FIG. 6 are schematic diagrams of frame structure indication manners according to embodiments of the present application.
  • FIG. 7 is a schematic flowchart of a random access method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of PRACH and PUSCH transmission in an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a random access apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a random access device according to an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • Time Division Duplex Time Division Duplex
  • TDD time Division Duplex
  • LTE-A advanced long term evolution
  • NR New Radio
  • NR NR
  • LTE-based access to unlicensed on unlicensed frequency bands spectrum LTE-U
  • NR NR-based access to unlicensed spectrum, NR-U
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • 5G system also may be called New Radio (NR) system or other communication systems, etc.
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 includes a network device 110 and at least one terminal device 120 located within the coverage area of the network device 110.
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the terminal device 120 can communicate with the network device 110 through electromagnetic waves.
  • the network device 110 may be a base station defined by 3GPP, such as a base station (gNB) in a 5G mobile communication system.
  • the network device 110 may also be a non-3GPP (non-3GPP) access network device, such as an access gateway (Access Gateway, AG).
  • the network device 110 may also be a relay station, an access point, a vehicle-mounted device, a wearable device, and other types of devices.
  • the terminal device 120 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem, such as those provided by the 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP). Defined user equipment (User Equipment, UE), mobile station (Mobile Station, MS), soft terminal, home gateway, set-top box, etc.
  • 3rd Generation Partnership Project 3rd Generation Partnership Project
  • Fig. 1 exemplarily shows one network device and two terminal devices, but the present application is not limited to this.
  • the communication system 100 may include multiple network devices, and the coverage of each network device may include other numbers of terminal devices.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity.
  • the terminal device After the cell search process, the terminal device has achieved downlink synchronization with the cell, so the terminal device can receive downlink data. However, the terminal equipment can only perform uplink transmission if it has achieved uplink synchronization with the cell.
  • the terminal device can establish a connection with the cell and obtain uplink synchronization through a random access procedure (Random Access Procedure, RAR). That is to say, through random access, the terminal device can obtain uplink synchronization, and obtain the unique identifier assigned to it by the network device, that is, the Cell Radio Network Temporary Identity (C-RNTI).
  • RAR Random Access Procedure
  • the random access process may include a 4-step random access process and a 2-step random access process.
  • the 4-step random access process and the 2-step random access process are respectively introduced in conjunction with FIG. 2 and FIG. 3.
  • the 4-step random access process and the 2-step random access process can usually be triggered by one of the following six types of trigger events:
  • the terminal device enters the RRC connected state (RRC_CONNECTED) from the radio resource control (Radio Resource Control, RRC) idle state (RRC_IDLE state).
  • RRC Radio Resource Control
  • the terminal device needs to establish uplink synchronization with the new cell.
  • Radio Link Failure Radio Link Failure
  • the terminal device needs to reply with an Acknowledgement (ACK) message or a Negative Acknowledgement (NACK) message.
  • ACK Acknowledgement
  • NACK Negative Acknowledgement
  • the uplink In the RRC connection state, when uplink data arrives, the uplink is in an "out of synchronization" state or there is no available physical uplink control channel (PUCCH) resource for scheduling request (SR) message transmission.
  • PUCCH physical uplink control channel
  • uplink data When uplink data arrives, such as when it is necessary to report a measurement report or send user data, the uplink is in an "out of synchronization" state, or there is no available PUCCH resource for the transmission of SR messages (at this time, terminal equipment that is already in the uplink synchronization state is allowed to use it.
  • Random Access Channel Random Access Channel, RACH replaces the role of SR
  • the terminal device can initiate a random access process.
  • Timing Advance In the RRC connected state, in order to locate the terminal device, a timing advance (Timing Advance, TA) needs to be obtained.
  • the random access process may also be triggered due to the transition of the RRC active state (RRC_INACTIVE), requesting other system information (OSI), or beam failure recovery (beam failure recovery).
  • RRC_INACTIVE transition of the RRC active state
  • OSI system information
  • beam failure recovery beam failure recovery
  • the first message to the fourth message in the 4-step random access process are recorded as Msg 1, Msg 2, Msg 3, and Msg 4 respectively, and the first message in the 2-step random access process is marked as Msg 1, Msg 2, Msg 3, and Msg 4, respectively.
  • One message and the second message are denoted as Msg A and Msg B respectively.
  • FIG. 2 is a flow chart of 4-step random access. As shown in Figure 2, the 4-step random access process can include the following four steps:
  • Step 1 The terminal device sends Msg 1 to the network device.
  • Msg 1 carries a random access preamble (Random Access Preamble, RAP), or it is called a preamble, a random access preamble sequence, a preamble sequence, etc.
  • RAP Random Access Preamble
  • the preamble is carried on PRACH.
  • Msg 1 can also be used for network equipment to estimate the transmission delay between it and the terminal equipment and to calibrate the uplink time accordingly.
  • Step 2 The network device sends Msg 2 to the terminal device.
  • Msg 1 After the network device detects that a terminal device sends Msg 1, it sends Msg 2, which is a random access response (Random Access Response, RAR) message, to the terminal device to inform the terminal device of the information about the uplink resources that can be used to send Msg 3. , And assign a radio network temporary identity (RNTI) to the terminal device and provide a TA command (TA command) to the terminal device.
  • RAR Random Access Response
  • the terminal device monitors the Physical Downlink Control Channel (PDCCH) in the RAR window (RAR window) to receive the RAR message. If the terminal device does not detect the RAR message in the RAR window, the terminal device can perform PRACH retransmission. If the terminal device successfully detects the RAR message in the RAR window, the terminal device performs Msg 3 transmission according to the uplink resource indicated by the RAR message, that is, step 3 is performed.
  • PDCCH Physical Downlink Control Channel
  • Step 3 The terminal device sends Msg 3 to the network device.
  • This step allows hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, HARQ) retransmission.
  • Hybrid Automatic Repeat reQuest Hybrid Automatic Repeat reQuest, HARQ
  • Step 4 The network device sends Msg 4 to the terminal device.
  • Msg 4 includes contention resolution news. In addition, Msg 4 can allocate uplink transmission resources for terminal devices. This step allows HARQ retransmission.
  • the terminal device When the terminal device receives the Msg 4 sent by the network device, it will detect whether the Msg 4 includes part of the Msg 3 sent by it. If it is included, it indicates that the random access of the terminal device is successful; otherwise, it indicates that the random access of the terminal device has failed, and the terminal device needs to restart the random access process from the step.
  • the 4-step random access process has a large delay, so in NR, the terminal device can also initiate a 2-step random access process to adapt to low-latency and high-reliability services and reduce the delay of random access.
  • Msg 1 and Msg 3 in the 4-step random access process can be combined into Msg A in the 2-step random access process.
  • Msg2 and Msg4 are combined into MsgB in the 2-step random access process.
  • FIG. 3 is a flow chart of 2-step random access. As shown in Figure 3, the 2-step random access process can include the following two steps:
  • Step 1 The terminal device sends Msg A to the network device.
  • Msg A may include preamble and uplink data.
  • the preamble is carried on PRACH.
  • the uplink data is carried on the uplink channel, and may be PUSCH, for example.
  • the uplink data carries the identification information of the terminal device and the reason for the RRC request.
  • Msg A may include part or all of the information in Msg 1 and Msg 3 in the 4-step random access process.
  • Network equipment can configure periodic resources that can be used to send Msg A in the 2-step random access process, namely PRACH opportunity (PRACH Occasion) and PUSCH opportunity (PUSCH Occasion)
  • Step 2 The network device sends Msg B to the terminal device.
  • Msg B includes conflict resolution information, C-RNTI allocation information, TA information, etc.
  • Msg B may include part or all of the information in Msg2 and Msg4 in the 4-step random access process.
  • Msg A may include part or all of the information carried in Msg 1 and Msg 3, or may also include other information.
  • Msg B may include part or all of the information carried in Msg 2 and Msg 4, or may also include other information.
  • the NR has a flexible way of indicating the time slot structure, and the network equipment can indicate the time slot structure to the terminal equipment through different indicating ways.
  • the indication mode of the time slot structure in the NR will be described.
  • the NR supports a flexible uplink and downlink time slot structure, and each time slot can be configured with three types (or directions), namely, downlink (DL), uplink (Uplink, UL), and flexible.
  • DL time slots are used to transmit downlink channels or downlink signals
  • UL time slots are used to transmit uplink channels or uplink signals
  • flexible time slots can be used to transmit uplink channels or uplink signals, and can also be used to transmit downlink channels or downlink signals.
  • the symbols in each slot can also be configured into three types: DL, UL, and flexible.
  • Flexible time slots can be DL time slots or UL time slots through scheduling. Flexible symbols can become DL symbols or UL symbols through scheduling.
  • the network device can send a cell-specific uplink and downlink configuration (UL/DL configuration) message (Cell-specific UL/DL configuration) through a broadcast message.
  • the configuration message is used to configure the time slot structure within a period of, for example, 10 ms.
  • the terminal device can determine the time slot structure in the period according to the Cell-specific UL/DL configuration. As shown in Figure 4, suppose that the X time slots in the cycle are DL, and the first x symbols of the X+1th time slot are DL. The last Y symbols in the period are UL, and the last y symbols of the last Y+1 time slot are UL. The rest of the symbols in this period are flexible.
  • the network device may also send a UE-specific (UE-specific) uplink and downlink configuration (UL/DL configuration) message (UE-specific UL/DL configuration) through RRC dedicated signaling.
  • the configuration message is used to configure a cycle, that is, the time slot structure of the specified time slot in the Cell-specific UL/DL configuration configuration cycle, and it can only change the direction of the symbols configured as flexible by the Cell-specific UL/DL configuration.
  • the direction of the symbols configured as DL or UL by the Cell-specific UL/DL configuration cannot be changed.
  • m is the number of DL symbols in the slot
  • n is the number of UL symbols in the slot
  • the remaining symbols are still flexible symbols.
  • the network device may also indicate the time slot structure through downlink control information (Download Information, DCI).
  • DCI carries a slot format indicator (Slot Format Indicator, SFI) message.
  • SFI Slot Format Indicator
  • the SFI message is used to configure the slot structure.
  • the configuration period of the SFI may be different from the configuration period of the Cell-specific UL/DL configuration.
  • SFI can only change the direction of symbols configured as flexible by Cell-specific UL/DL configuration and UE-specific UL/DL configuration, but cannot change the direction of symbols that have been configured as DL or UL.
  • SFI is used to indicate the time slot structure of K time slots.
  • the terminal device needs to determine the transmission location of the uplink and downlink data based on the above method, and the data transmission needs to follow a preset rule.
  • the transmission also needs to follow these rules.
  • These rules can avoid problems such as resource conflicts, but they may also restrict the transmission of PRACH or PUSCH in Msg A of the 2-step random access process. Since PRACH and PUSCH have a certain association, PRACH and PUSCH transmission may affect each other, and PRACH and PUSCH may also affect downlink channel transmission.
  • a random access method is proposed in the embodiment of the present application, which can realize effective transmission of Msg A in a 2-step random access process.
  • FIG. 7 is a schematic flowchart of a random access method according to an embodiment of the present application.
  • the method shown in FIG. 7 can be executed by a terminal device.
  • the terminal device may be, for example, the terminal device 120 shown in FIG. 1.
  • the method includes some or all of the following steps.
  • the terminal device determines, based on a predetermined rule, whether to send the uplink channel on the transmission opportunity corresponding to the uplink channel in the first message of the 2-step random access process.
  • the uplink channel includes, for example, PRACH or PUSCH.
  • the transmission opportunity corresponding to the PRACH is a PRACH opportunity
  • the transmission opportunity corresponding to the PUSCH is a PUSCH opportunity.
  • the terminal device determines not to send the PRACH, the terminal device does not send the PRACH and does not send the PUSCH.
  • the terminal device determines not to send the PUSCH, the terminal device does not send the PUSCH, and sends or does not send the PRACH.
  • the terminal device When the terminal device performs uplink and downlink transmissions based on the time slot structure indicated in the foregoing manner, it needs to follow a preset rule.
  • the preset rule can be used, for example, to avoid conflicts between uplink transmission and downlink transmission, and between uplink signals and uplink channels. Conflicts, and regulate the channel monitoring behavior of terminal equipment.
  • the terminal device determines that it is not on the transmission opportunity corresponding to the uplink channel in the first message of the 2-step random access procedure based on the preset rule, and transmits the uplink channel, such as PRACH and/or PUSCH, then the terminal The device may determine whether to transmit PRACH and PUSCH according to 720 and 730.
  • the terminal device if the terminal device does not send the PRACH, then the corresponding PUSCH is also not sent. In 730, if the terminal device does not send the PUSCH, the terminal device can choose not to send the PRACH or to send the PRACH.
  • a complete Msg A includes two parts: PRACH and PUSCH.
  • the network device only knows that there is a PUSCH after detecting the preamble carried in the PRACH sent by the terminal device, and thus detects the corresponding PUSCH.
  • the network equipment needs to estimate the relevant channel information based on the detection of the PRACH, and use the channel information to assist in the demodulation of the PUSCH. If the network device detects PRACH but not PUSCH, it can only respond to the PRACH. At this time, Msg A can be used as Msg 1.
  • the terminal device determines not to send the PRACH, it does not send the PUSCH; and when the terminal device determines not to send the PUSCH, it can choose to send or not to send the PRACH.
  • the 2-step random access process can fall back to the 4-step random access process.
  • the terminal device cannot send the PRACH
  • the PUSCH cannot be sent; however, if the terminal device cannot send the PUSCH, the PRACH may or may not be sent.
  • the network device only receives the PRACH, it can fall back from the 2-step random access process to the 4-step random access process, so as to make full use of the PRACH sent by the terminal device.
  • the preset rule may include at least one of the following, for example:
  • the terminal determines not to send the uplink channel on the symbol set;
  • the uplink and downlink configuration common message (tdd-UL-DL-ConfigurationCommon) and the uplink and downlink configuration dedicated message (tdd-UL-DL-ConfigurationDedicated) are indicated as flexible symbols and carry time slot structure information
  • the first DCI indicated as a symbol set of flexible symbols if the terminal device does not detect the second DCI scheduling it to transmit the uplink channel, the terminal device determines not to send the uplink channel on the symbol set ;
  • the terminal device determines not to send the uplink channel after the time period T after the last symbol in the control resource set of the second DCI is detected;
  • the terminal device For the symbol set configured by the higher layer to transmit the uplink channel in the transmission opportunity, if the terminal device detects that the symbol in the symbol subset used to indicate the symbol set is a flexible symbol or a downlink symbol.
  • the first DCI of the time slot structure information, or the second DCI used to indicate that it receives the downlink channel in the symbol subset is detected, the terminal device determines that the first DCI and/or the second DCI are detected. 2.
  • the uplink channel is not sent;
  • the symbols in the symbol set are configured by the uplink and downlink configuration common message (tdd-UL-DL-ConfigurationCommon) and the uplink and downlink configuration are dedicated
  • the message (tdd-UL-DL-ConfigurationDedicated) is indicated as a flexible symbol, or the terminal device is not provided with a common uplink and downlink configuration message (tdd-UL-DL-ConfigurationCommon) and a dedicated uplink and downlink configuration message (tdd-UL-DL).
  • -ConfigurationDedicated and the terminal device does not detect the first DCI carrying time slot structure information, the terminal device determines the M after the last symbol in the control resource set used to detect the first first DCI After symbols, the uplink channel is not sent.
  • the terminal device determines not to transmit the uplink signal in the corresponding transmission opportunity based on the preset rules described in (1) to (5) above, for example, determines not to transmit the PRACH on the PRACH opportunity or not to transmit on the PUSCH opportunity PUSCH, the terminal device executes 720 or 730.
  • the duration T and M symbols are the channel processing time.
  • the channel processing time can be understood as referring to the processing time of the DCI by the terminal device. Taking rule (3) as an example, the terminal device needs the duration T to decode the DCI and other processing. If the terminal device does not complete the decoding of the DCI, it will not know that the DCI schedules downlink transmission. Therefore, the terminal device can still send the uplink channel within the duration T, but after the duration T, the terminal device will not send the uplink channel on the corresponding transmission opportunity.
  • the duration T and M symbols are preset as the PUSCH processing time, and the PUSCH processing time corresponds to the processing capability of the terminal device.
  • the terminal device prepares to send PRACH and PUSCH in the symbol set configured by higher layers to transmit the uplink channel shown in FIG. 8. If the terminal device receives the second DCI in the Control Resource Set (CORESET), and the second DCI instructs the terminal device to receive the downlink channel in the symbol subset in the symbol set. Then, taking the last symbol of the CORESET as the reference point, the terminal device does not cancel the prepared PRACH transmission on the symbols located between the duration T in the symbol subset, and the symbols located after the duration T in the symbol subset On the above, the terminal equipment cancels the transmission of PRACH. If PRACH is cancelled, PUSCH will not be transmitted.
  • CORESET Control Resource Set
  • the first DCI in the embodiment of the present application carries time slot structure information, for example, carries SFI indicator field (SFI-index field).
  • SFI-index field can be used to indicate the time slot format, including flexible, UL, and DL.
  • the format of the first DCI may be DCI format 2_0 (DCI format 2_0) or DCI format 2_X, etc.
  • the second DCI in the embodiment of the present application may also be referred to as scheduling information, including UL scheduling information and DL scheduling information, which are respectively used to instruct terminal equipment to send uplink data or receive downlink data on corresponding symbols or time slots.
  • the format of the second DCI may be DCI format 0_1, DCI format 1_0, DCI format 1_1, DCI format 2_3, DCI format 2_X, or RAR UL grant, etc.
  • the rules (1) to (5) described above may all cause the cancellation of PRACH and/or PUSCH, or the non-transmission of PRACH and/or PUSCH.
  • the preset rule may also include other rules. Below, the rules that the terminal device needs to follow in sending the PRACH and PUSCH in Msg A are listed in more detail.
  • the terminal equipment will not transmit PUSCH, PUCCH, PRACH in Msg1, PRACH in Msg A, and any of Msg A on these symbols.
  • PUSCH, and SRS are the symbols indicated as DL by tdd-UL-DL-ConfigurationCommon or tdd-UL-DL-ConfigurationDedicated.
  • a terminal device working on a time division duplex (Time Division Duplex, TDD) single carrier, on the set of symbols that the terminal device receives SSB, if there is any PUSCH, PUCCH, PRACH of Msg 1, PRACH of Msg A, or PUSCH of Msg A.
  • the symbol overlaps the symbol set, and the terminal device does not send PUSCH, PUCCH, PRACH of Msg 1, PRACH of Msg A, or PUSCH of Msg A on the symbol set, and the terminal device does not send sounding reference signals on the symbol set ( Sounding Reference Signal, SRS).
  • SRS Sounding Reference Signal
  • the terminal device does not send the PRACH of Msg A due to the above reasons, the terminal device does not send the PUSCH corresponding to the same Msg A; if the terminal device does not send the PUSCH of Msg A due to the above reasons, the terminal device can send or not send the PUSCH corresponding to the same Msg A. Msg A's PRACH.
  • the terminal device does not receive a PDCCH (Type 1-Common Search Space (Common Search Space, CSS) set (Type 1- PDCCH CCS set)), PDSCH or Channel State Information-Reference Signal (CSI-RS).
  • PDCCH Type 1-Common Search Space (Common Search Space, CSS) set (Type 1- PDCCH CCS set)
  • PDSCH or Channel State Information-Reference Signal (CSI-RS).
  • CSI-RS Channel State Information-Reference Signal
  • the terminal device does not expect the symbol set to be indicated as DL by tdd-UL-DL-ConfigurationCommon or tdd-UL-DL-ConfigurationDedicated.
  • the terminal device is not expected in the embodiment of the present application can be understood as meaning that the terminal device does not detect, does not receive, or discards after receiving.
  • the terminal device is not expected in the embodiment of the present application can be understood as meaning that the terminal device does not send.
  • the terminal device does not expect to be scheduled to transmit PUSCH, PUCCH, PRACH of Msg 1, PRACH of Msg A, PUSCH of Msg A, or PUSCH in the symbol set. SRS.
  • the terminal device does not expect to receive the DCI format 2_0 indicating the symbol set as DL.
  • the terminal device may be scheduled to transmit PUSCH, PUCCH, PRACH of Msg 1, PRACH of Msg A, PUSCH of Msg A, or SRS in the symbol set;
  • the terminal device does not receive DL scheduling information or UL scheduling information, the terminal device does not receive or send on the symbol set;
  • the terminal device transmits PUCCH, PUSCH, PRACH of Msg 1, and PRACH of Msg A or PUSCH of Msg A;
  • the terminal device does not send the PRACH of Msg A due to the above reasons, the terminal device does not send the PUSCH corresponding to the same Msg A; if the terminal device does not send the PUSCH of Msg A due to the above reasons, the terminal device can send or not send the PUSCH corresponding to the same Msg A. Msg A's PRACH.
  • a set of symbols configured by higher layers to receive CSI-RS or PDSCH if a subset of symbols in the symbol set is indicated as UL or flexible by DCI format 2_0, or at least one symbol in the symbol set is scheduled to transmit PUCCH, PUSCH , PRACH of Msg 1, PRACH of Msg A, PUSCH or SRS of Msg A, the terminal device cancels the reception of CSI-RS or PDSCH.
  • the terminal device may be scheduled to transmit PUSCH, PUCCH, PRACH in Msg 1, PRACH in Msg A, PUSCH in Msg A, or SRS in the symbol set.
  • the terminal device For a set of symbols configured by higher layers to transmit PUSCH, PUCCH, PRACH of Msg 1, PRACH of Msg A, PUSCH of Msg A, or SRS symbol set, if the terminal device detects the scheduling information, it indicates that it is in the If the symbol subset in the symbol set receives CSI-RS or PDSCH, the last symbol of the CORESET where the scheduling information is detected is the reference point. On the symbols in the symbol subset before the duration T, the terminal device does not expect to cancel the high-level configuration Transmission of PUSCH, PUCCH, PRACH of Msg 1, PRACH of Msg A, or PUSCH of Msg A.
  • the terminal device cancels transmission of PUSCH, PUCCH, PRACH of Msg 1, PRACH of Msg A, or PUSCH of Msg A in the remaining symbols of the symbol set, and cancels transmission of SRS in the remaining symbols of the symbol subset.
  • the terminal device does not send the PRACH of Msg A, the terminal device does not send the PUSCH corresponding to the same Msg A, regardless of whether the PUSCH transmission is located in the remaining symbols in the symbol subset; if the terminal device does not send the PUSCH of Msg A, the terminal The device can send or not send the PRACH corresponding to the same Msg A.
  • the terminal device For a set of symbols configured to transmit PUSCH, PUCCH, PRACH of Msg 1, PRACH of Msg A, PUSCH of Msg A, or SRS symbol set, if the terminal device detects DCI format 2_0, the DCI format 2_0 indicates the symbol in the symbol set If the subset is DL or flexible, or the terminal device detects that the scheduling information indicates that it receives CSI-RS or PDSCH in the symbol subset of the symbol set, it will detect the DCI format 2_0 or the last symbol of the CORESET of the scheduling information As a reference point, on the symbols in the symbol subset before the duration T, the terminal device does not expect to cancel the transmission of PUSCH, PUCCH, PRACH of Msg 1, PRACH of Msg A, PUSCH of Msg A, or SRS.
  • the terminal device cancels transmission of PUSCH, PUCCH, PRACH of Msg 1, PRACH of Msg A, or PUSCH of Msg A in the remaining symbols of the symbol set, and cancels transmission of SRS in the remaining symbols of the symbol subset.
  • the terminal device does not send the PRACH of Msg A, the terminal device does not send the PUSCH corresponding to the same Msg A, regardless of whether the PUSCH transmission is located in the remaining symbols in the symbol subset; if the terminal device does not send the PUSCH of Msg A, the terminal The device can send or not send the PRACH corresponding to the same Msg A.
  • the terminal device for the terminal device to monitor the flexible symbol in the CORESET of the PDCCH, if the terminal device does not detect the DCI format 2_0, it indicates that the flexible symbol is flexible or UL, and the terminal device does not detect the scheduling information indicating that it is in the If PUSCH, PUCCH, PRACH of Msg 1, PRACH of Msg A, PUSCH or SRS of Msg A are transmitted on a flexible symbol, the terminal device assumes that the flexible symbol is UL.
  • the terminal device is configured by the higher layer to receive PDCCH, PDSCH or CSI-RS in the symbol set. If the terminal device does not receive the scheduling information, it instructs it to send PUSCH on at least one symbol in the symbol set. , PUCCH, PRACH of Msg 1, PRACH of Msg A, PUSCH or SRS of Msg A, the terminal device receives the PDCCH, PDSCH or CSI-RS in the symbol set; otherwise, the terminal device does not receive the PDCCH in the symbol set , PDSCH or CSI-RS.
  • the terminal device If the terminal device is scheduled to transmit PUSCH, PUCCH, PRACH of Msg 1, PRACH of Msg A, PUSCH of Msg A, or SRS in the symbol set, the terminal device transmits PUSCH, PUCCH, PRACH of Msg 1, and PRACH of Msg A. , PUSCH or SRS of Msg A;
  • the terminal device If the terminal device is configured by higher layers to transmit PUSCH, PUCCH, PRACH of Msg 1, PRACH of Msg A, PUSCH or SRS of Msg A in the symbol set, it will be configured to listen to the last of the CORESET of the PDCCH carrying DCI format 2_0. One symbol is the reference point. In the time slot where the symbol set after M symbols is located, the terminal device does not transmit PUSCH, PUCCH, PRACH of Msg 1, PRACH of Msg A, or PUSCH of Msg A, and in M symbols SRS is not sent in the subsequent symbol set. The terminal device does not expect to cancel the transmission of PUSCH, PUCCH, PRACH of Msg 1, PRACH of Msg A, PUSCH of Msg A, or SRS in the symbol set before M symbols.
  • the terminal device does not send the PRACH of Msg A, the terminal device does not send the PUSCH corresponding to the same Msg A; if the terminal device does not send the PUSCH of Msg A, the terminal device may or not send the PRACH corresponding to the same Msg A.
  • the method in the embodiments of the present application can be applied to various random access procedures, not just the initial access procedures.
  • the method in the embodiments of the present application can be applied to a contention-based random access process (contention-based RACH) and a non-competition-based random access process (contention free RACH).
  • the size of the sequence number of each process does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not correspond to the implementation process of the embodiments of the present application. Constitute any limitation.
  • the random access method according to the embodiment of the present application is described in detail above.
  • the device for random access according to the embodiment of the present application will be described below with reference to FIG. 9.
  • the technical features described in the method embodiment are applicable to the following devices Examples.
  • the device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the device may be divided into functional units according to the foregoing method. For example, it may be divided into units according to each function, or two or more functions may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in this application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 9 is a schematic block diagram of an apparatus 900 for random access according to an embodiment of the present application.
  • the device 900 includes a processing unit 910 and a sending unit 920.
  • the processing unit 910 is configured to: based on a predetermined rule, determine whether to send the uplink channel on the transmission opportunity corresponding to the uplink channel in the first message of the 2-step random access process, where the uplink channel includes a physical random access Incoming channel PRACH and physical uplink shared channel PUSCH;
  • the sending unit 920 is configured to: if the processing unit determines not to send the PRACH, do not send the PRACH, and do not send the PUSCH; if the processing unit determines not to send the PUSCH, do not send the PUSCH , And send or not send the PRACH.
  • the device when the device determines not to send the PRACH in Msg A based on a preset rule, it will not send the PUSCH in Msg A; and when it determines not to send the PUSCH in Msg A, it can send Or the PRACH in Msg A is not sent, thereby ensuring effective transmission of PRACH and PUSCH.
  • the processing unit 910 is further configured to: if the sending unit does not send the PUSCH and sends the PRACH, determine to fall back from the 2-step random access process to the 4-step random access process.
  • the processing unit 910 is specifically configured to: on a single carrier of time division duplex TDD, if there is any symbol overlap between the transmission opportunity and the symbol set used to transmit the synchronization signal block, determine that it is in all The uplink channel is not transmitted on the symbol set.
  • the processing unit 910 is specifically configured to: for the first downlink control information DCI that is indicated as a flexible symbol by the uplink-downlink configuration common message and the uplink-downlink configuration dedicated message in the transmission opportunity and is carried time slot structure information The symbol set indicated as a flexible symbol, if the terminal device does not detect the second DCI scheduling it to transmit the uplink channel, then it is determined not to send the uplink channel on the symbol set.
  • the processing unit 910 is specifically configured to: on a single carrier of TDD, for the symbol set configured by a higher layer to transmit the uplink channel in the transmission opportunity, if the terminal device detects that it is used to indicate its presence If the second DCI of the downlink channel is received in the symbol subset of the symbol set, it is determined not to send the uplink channel after the time period T after the last symbol in the control resource set of the second DCI is detected.
  • the duration T is the channel processing time.
  • the processing unit 910 is specifically configured to: for a symbol set configured by a higher layer to transmit the uplink channel in the transmission opportunity, if the terminal device detects a symbol subset used to indicate the symbol set
  • the symbol of is a flexible symbol or the first DCI of a downlink symbol that carries slot structure information, or a second DCI used to indicate that it receives a downlink channel in the symbol subset is detected, then it is determined that the first DCI is detected And/or the uplink channel is not sent after the duration T after the last symbol in the control resource set of the second DCI, where the duration T is the channel processing time.
  • the processing unit 910 is specifically configured to: for a symbol set configured by a higher layer to transmit the uplink channel in the transmission opportunity, if the symbols in the symbol set are configured by the uplink-downlink configuration common message and the uplink-downlink configuration
  • the dedicated message is indicated as a flexible symbol, or the terminal device is not provided with the public uplink-downlink configuration message and the dedicated uplink-downlink configuration message, and the terminal device does not detect the first DCI carrying time slot structure information, then It is determined not to transmit the uplink channel after detecting M symbols after the last symbol in the control resource set of the first DCI, where the M symbols are channel processing time.
  • FIG. 10 shows a schematic structural diagram of a random access device provided in this application.
  • the dotted line in Figure 10 indicates that the unit or the module is optional.
  • the device 1000 may be used to implement the methods described in the foregoing method embodiments.
  • the device 1000 may be a terminal device or a network device or a chip.
  • the device 1000 includes one or more processors 1001, and the one or more processors 1001 can support the device 1000 to implement the methods in the method embodiments corresponding to FIGS. 2 to 8.
  • the processor 1001 may be a general-purpose processor or a special-purpose processor.
  • the processor 1001 may be a central processing unit (Central Processing Unit, CPU).
  • the CPU can be used to control the device 1000, execute a software program, and process data of the software program.
  • the device 1000 may also include a communication unit 1005 to implement signal input (reception) and output (transmission).
  • the device 1000 may be a chip
  • the communication unit 1005 may be an input and/or output circuit of the chip, or the communication unit 1005 may be a communication interface of the chip, and the chip may be used as a terminal device or a network device or other wireless communication device made of.
  • the device 1000 may be a terminal device or a network device
  • the communication unit 1005 may be a transceiver of the terminal device or the network device
  • the communication unit 1005 may be a transceiver circuit of the terminal device or the network device.
  • the device 1000 may include one or more memories 1002 with a program 1004 stored thereon.
  • the program 1004 can be run by the processor 1001 to generate instructions 1003 so that the processor 1001 executes the methods described in the foregoing method embodiments according to the instructions 1003.
  • the memory 1002 may also store data.
  • the processor 1001 may also read data stored in the memory 1002. The data may be stored at the same storage address as the program 1004, or the data may be stored at a different storage address from the program 1004.
  • the processor 1001 and the memory 1002 may be provided separately or integrated together, for example, integrated on a system-on-chip (SOC) of a terminal device.
  • SOC system-on-chip
  • the device 1000 may also include an antenna 1006.
  • the communication unit 1005 is used to implement the transceiver function of the device 1000 through the antenna 1006.
  • the processor 1001 may be a CPU, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices , Such as discrete gates, transistor logic devices, or discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • This application also provides a computer program product, which, when executed by the processor 1001, implements the method described in any method embodiment in this application.
  • the computer program product may be stored in the memory 1002, for example, a program 1004.
  • the program 1004 is finally converted into an executable object file that can be executed by the processor 1001 through processing processes such as preprocessing, compilation, assembly, and linking.
  • the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a computer, the method described in any method embodiment in the present application is implemented.
  • the computer program can be a high-level language program or an executable target program.
  • the computer-readable storage medium is, for example, the memory 1002.
  • the memory 1002 may be a volatile memory or a non-volatile memory, or the memory 1002 may include both a volatile memory and a non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the disclosed system, device, and method may be implemented in other ways. For example, some features of the method embodiments described above may be ignored or not implemented.
  • the device embodiments described above are merely illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods, and multiple units or components may be combined or integrated into another system.
  • the coupling between the units or the coupling between the components may be direct coupling or indirect coupling, and the foregoing coupling includes electrical, mechanical, or other forms of connection.
  • system and "network” in the embodiments of the present application are often used interchangeably.
  • the term “and/or” is only an association relationship that describes the associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B alone exists. This situation.
  • the character “/” generally means that the associated objects before and after are in an “or” relationship.
  • B corresponding (corresponding) to A means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean that B is determined only based on A, and B can also be determined based on A and/or other information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种确定随机接入的方法和终端设备,能够实现2步随机接入过程中的Msg A的有效传输。所述方法包括:终端设备基于预定规则,确定是否在2步随机接入过程的第一条消息中的上行信道对应的传输机会上,发送所述上行信道,其中,所述上行信道包括物理随机接入信道PRACH和物理上行共享信道PUSCH;若所述终端设备确定不发送所述PRACH,则所述终端设备不发送所述PRACH,且不发送所述PUSCH;若所述终端设备确定不发所述PUSCH,则所述终端设备不发送所述PUSCH,且发送或者不发送所述PRACH。

Description

随机接入的方法和终端设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及随机接入的方法和终端设备。
背景技术
在5G***或称新无线(New Radio,NR)***中,支持2步随机接入(2-step RA)。在2步随机接入过程中,第一条消息(Msg A)中包括物理随机接入信道(Physical Random Access Channel,PRACH)和物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。NR中灵活的时隙结构指示方式,对Msg A的传输带来了影响,因此,如何实现2步随机接入过程中的Msg A的有效传输,成为亟待解决的问题。
发明内容
本申请提供一种随机接入的方法和终端设备,能够实现2步随机接入过程中的Msg A的有效传输。
第一方面,提供了一种随机接入的方法,包括:终端设备基于预定规则,确定是否在2步随机接入过程的第一条消息中的上行信道对应的传输机会上,发送所述上行信道,其中,所述上行信道包括物理随机接入信道PRACH和物理上行共享信道PUSCH;若所述终端设备确定不发送所述PRACH,则所述终端设备不发送所述PRACH,且不发送所述PUSCH;若所述终端设备确定不发所述PUSCH,则所述终端设备不发送所述PUSCH,且发送或者不发送所述PRACH。
第二方面,提供了一种随机接入的装置,所述装置可以执行上述第一方面或第一方面的任意可选的实现方式中的方法。具体地,所述装置包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的功能模块。
第三方面,提供了一种随机接入的设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第四方面,提供了一种芯片,包括处理器。该处理器用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
基于上述技术方案,在2步随机接入过程中,终端设备基于预设规则确定不发送Msg A中的PRACH时,也不会发送Msg A中的PUSCH;而确定不发送Msg A中的PUSCH时,可以发送或者不发送Msg A中的PRACH,从而保证了PRACH和PUSCH的有效传输。
附图说明
图1是本申请实施例应用的一种可能的无线通信***的示意图。
图2是4步随机接入过程的示意图。
图3是2步随机接入过程的示意图。
图4至图6是本申请实施例的帧结构指示方式的示意图。
图7是本申请实施例的随机接入的方法的示意性流程图。
图8是本申请实施例的PRACH和PUSCH传输的示意图。
图9是本申请实施例的随机接入的装置的示意性框图。
图10是本申请实施例的随机接入的设备的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信***,例如:长期演进(Long Term Evolution,LTE)***、LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)***、先进的长期演进(Advanced long term evolution,LTE-A)***、新无线(New Radio,NR)***、NR***的演进***、非授权频段上的LTE(LTE-based access to unlicensed spectrum,LTE-U)***、非授权频段上的NR(NR-based access to unlicensed spectrum,NR-U)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、5G***(也可以称为新无线(New Radio,NR)***或其他通信***等。
通常,传统的通信***支持的连接数有限,也易于实现。然而,随着通信技术的发展,移动通信***不仅支持传统的通信,还将支持设备到设备(Device to Device,D2D)通信、机器到机器(Machine to Machine,M2M)通信、机器类型通信(Machine Type Communication,MTC)以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信***。
示例性的,本申请实施例应用的通信***100如图1所示。通信***100包括网络设备110、以及位于网络设备110覆盖范围内的至少一个终端设备120。网络设备110可以为特定地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。终端设备120可以通过电磁波与网络设备110之间进行通信。
网络设备110可以是3GPP所定义的基站,例如5G移动通信***中的基站(gNB)。网络设备110也可以是非3GPP(non-3GPP)的接入网设备,例如接入网关(Access Gateway,AG)。网络设备110还可以是中继站、接入点、车载设备、可穿戴设备以及其它类型的设备。
终端设备120可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,例如第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)所定义的用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、软终端、家庭网关、机顶盒等等。
图1示例性地示出了一个网络设备和两个终端设备,但本申请并不限于此。通信***100可以包括多个网络设备,并且每个网络设备的覆盖范围内可以包括其它数量的终端设备。此外,通信***100还可以包括网络控制器、移动性管理实体等其他网络实体。
在小区搜索过程之后,终端设备已经与小区取得了下行同步,因此终端设备能够接收下行数据。但终端设备只有与小区取得上行同步,才能进行上行传输。终端设备可以通过随机接入过程(Random Access Procedure,RAR)与小区建立连接并取得上行同步。也就是说,通过随机接入,终端设备可以获得上行同步,并且获得网络设备为其分配的唯一标识,即小区无线网络临时标识(Cell Radio Network Temporary Identity,C-RNTI)。
随机接入过程可以包括4步随机接入过程和2步随机接入过程。以下,结合图2和图3分别介绍4步随机接入过程和2步随机接入过程。
4步随机接入过程和2步随机接入过程通常可以由以下6类触发事件之一触发:
(1)初始接入(initial access)。
终端设备从无线资源控制(Radio Resource Control,RRC)空闲态(RRC_IDLE态)进入RRC连接态(RRC_CONNECTED)。
(2)切换(handover)。
此时,终端设备需要与新的小区建立上行同步。
(3)RRC连接重建(RRC Connection Re-establishment procedure)。
终端设备发生无线链路失败(Radio Link Failure,RLF)后,重新建立无线连接。
(4)RRC连接态下,下行数据到达,上行处于“不同步”状态。
其中,下行数据到达后终端设备需要回复应答(Acknowledgement,ACK)消息或者否定应答(Negative Acknowledgement,NACK)消息。
(5)RRC连接态下,上行数据到达,上行处于“不同步”状态或者没有可用的物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源用于调度请求(Scheduling Request,SR)消息的传输。
上行数据到达时,例如需要上报测量报告或发送用户数据时,上行处于“不同步”状态,或者,没有可用的PUCCH资源用于SR消息的传输(此时 允许已经处于上行同步状态的终端设备使用随机接入信道(Random Access Channel,RACH)来替代SR的作用),则终端设备可以发起随机接入过程。
(6)RRC连接态下,为了定位终端设备,需要获得时间提前量(Timing Advance,TA)。
此外,还可能由于RRC激活态(RRC_INACTIVE)过渡、请求其他***信息(Other System Information,OSI)、或者波束失败恢复(beam failure recovery)等原因触发随机接入过程。
本申请实施例中,将4步随机接入过程中的第一条消息至第四条消息分别记作Msg 1、Msg 2、Msg 3和Msg 4,并将2步随机接入过程中的第一条消息和第二条消息分别记作Msg A和Msg B。
图2是4步随机接入的流程交互图。如图2所示,4步随机接入的流程可以包括以下四个步骤:
步骤1,终端设备向网络设备发送Msg 1。
Msg 1中携带随机接入前导码(Random Access Preamble,RAP),或称为前导码、随机接入前导码序列、前导码序列等。该前导码承载于PRACH。此外,Msg 1还可以用于网络设备估计其与终端设备之间的传输时延并以此校准上行时间。
步骤2,网络设备向终端设备发送Msg 2。
网络设备检测到有终端设备发送Msg 1后,向该终端设备发送Msg 2,即随机接入响应(Random Access Response,RAR)消息,以告知该终端设备可以使用的发送Msg 3的上行资源的信息,并为该终端设备分配无线网络临时标识(Radio Network Temporary Identity,RNTI)以及向该终端设备提供TA命令(TA command)。
终端设备在RAR窗口(RAR window)内监听物理下行控制信道(Physical Downlink Control Channel,PDCCH),以接收该RAR消息。如果终端设备在RAR窗口内没有检测到RAR消息,则终端设备可以进行PRACH的重传。如果终端设备在RAR窗口内成功检测到RAR消息,则终端设备根据RAR消息指示的上行资源进行Msg 3的传输,即执行步骤3。
步骤3,终端设备向网络设备发送Msg 3。
该步骤允许进行混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)重传。
步骤4,网络设备向终端设备发送Msg 4。
Msg 4中包括竞争解决消息。并且,Msg 4可以为终端设备分配上行传输资源。该步骤允许进行HARQ重传。
终端设备接收到网络设备发送的Msg 4时,会检测Msg 4中是否包括其发送的Msg 3中的部分内容。若包括,则表明该终端设备随机接入成功;否则,表明该终端设备随机接入失败,终端设备需要从步骤请开始重新发起随机接入过程。
4步随机接入过程存在较大时延,因此在NR中,终端设备还可以发起2 步随机接入过程,以适应低延时高可靠性的业务,降低随机接入的时延。
简单地说,在2步随机接入过程中,可以将4步随机接入过程中的Msg 1和Msg 3合并为2步随机接入过程中的Msg A,将4步随机接入过程中的Msg2和Msg 4合并为2步随机接入过程中的Msg B。
图3是2步随机接入的流程交互图。如图3所示,2步随机接入的流程可以包括以下两个步骤:
步骤1,终端设备向网络设备发送Msg A。
即前导码和附加信息传输。其中,Msg A中可以包括前导码和上行数据。该前导码承载于PRACH。该上行数据承载于上行信道,例如可以为PUSCH。其中,该上行数据承载有终端设备的标识信息以及RRC请求的原因等。换句话说,Msg A中可以包括4步随机接入过程中的Msg 1和Msg 3中的部分或全部信息。
网络设备可以配置周期性的可用于发送2步随机接入过程中的Msg A的资源,即PRACH机会(PRACH Occasion)和PUSCH机会(PUSCH Occasion)
步骤2,网络设备向终端设备发送Msg B。
即RAR和冲突解决。其中,Msg B中包括冲突解决信息、C-RNTI分配信息、TA信息等。换句话说,Msg B中可以包括4步随机接入过程中的Msg2和Msg4中的部分或全部信息。
应理解,图2或图3仅仅为示例。其中,Msg A可以包括Msg 1和Msg 3中携带的部分或全部信息,或者还可能包括其他信息。Msg B可以包括Msg 2和Msg 4中携带的部分或全部信息,或者还可能包括其他信息。
由于2步随机接入过程还未进入标准化阶段,因此这里仅以图3为例进行介绍,对于其中涉及的各个随机接入消息的定义还存在其他可能性,而不限定对2步随机接入过程中的各个随机接入消息的其他定义。本申请实施例所述的方法适用于其他所有的2步随机接入过程。
NR中具有灵活的时隙结构的指示方式,网络设备可以通过不同的指示方式,向终端设备指示时隙结构。以下,结合图4至图6,对NR中的时隙结构的指示方式进行描述。
NR中支持灵活的上下行时隙结构,每一个时隙可以配置下行(Downlink,DL)、上行(Uplink,UL)、以及灵活(flexible)三种类型(或称为方向)。其中,DL时隙用于传输下行信道或下行信号;UL时隙用于传输上行信道或上行信号;flexible时隙可以用于传输上行信道或上行信号,也可以用于传输下行信道或下行信号。每个时隙中的各个符号也可以被配置为DL、UL、以及flexible三种类型。flexible时隙可以通过调度而成为DL时隙或为UL时隙。Flexible符号可以通过调度而成为DL符号或为UL符号。
网络设备可以通过广播消息,发送小区专有(cell-specific)的上下行配置(UL/DL configuration)消息(Cell-specific UL/DL configuration)。该配置消息用于配置一个周期例如10ms内的时隙结构。终端设备可以根据Cell-specific UL/DL configuration确定该周期内的时隙结构。如图4所示,假设该周期内的 X个时隙为DL,第X+1个时隙的前x个符号为DL。该周期内的最后Y个符号为UL,倒数第Y+1个时隙的最后y个符号为UL。该周期内其余符号为flexible。
进一步地,网络设备还可以通过RRC专用信令,发送UE专有(UE-specific)的上下行配置(UL/DL configuration)消息(UE-specific UL/DL configuration)。该配置消息用于配置一个周期,即Cell-specific UL/DL configuration配置周期内的指定时隙的时隙结构,并且其只能改变被Cell-specific UL/DL configuration配置为flexible的符号的方向,而不能改变被Cell-specific UL/DL configuration配置为DL或者UL的符号的方向。如图5所示,m为时隙内的DL符号的数量,n为时隙内UL符号的数量,其余符号仍为flexible符号。
更进一步地,网络设备还可以通过下行控制信息(Download Information,DCI)指示时隙结构。该DCI中携带时隙格式指示(Slot Format Indicator,SFI)消息,该SFI消息用于配置时隙结构,SFI的配置周期可以与Cell-specific UL/DL configuration的配置周期不同。并且,SFI只能改变被Cell-specific UL/DL configuration和UE-specific UL/DL configuration配置为flexible的符号的方向,而不能改变已经被配置为DL或者UL的符号的方向。如图6所示,SFI用于指示K个时隙的时隙结构。
终端设备需要基于上述方式确定上下行数据的传输位置,并且,数据传输需要遵循预设规则。对于2步随机接入过程的Msg A中的PRACH和PUSCH,其传输也需要遵循这些规则。这些规则可以实现避免资源冲突等问题,但也有可能对2步随机接入过程的Msg A中的PRACH或PUSCH的传输造成限制。由于PRACH和PUSCH之间具有一定的关联,可能导致PRACH和PUSCH传输彼此影响,并且PRACH和PUSCH也可能对下行信道的传输产生影响。
为此,本申请实施例中提出了一种随机接入的方法,能够实现2步随机接入过程中的Msg A的有效传输。
图7是本申请实施例的随机接入的方法的示意性流程图。图7所示的方法可以由终端设备执行。该终端设备例如可以是图1中所示的终端设备120。如图7所示,该方法包括以下步骤中的部分或全部。
在710中,终端设备基于预定规则,确定是否在2步随机接入过程的第一条消息中的上行信道对应的传输机会上,发送所述上行信道。
其中,所述上行信道例如包括PRACH或PUSCH。
所述PRACH对应的传输机会为PRACH机会,所述PUSCH对应的传输机会为PUSCH机会。
在720中,若终端设备确定不发送所述PRACH,则终端设备不发送所述PRACH,且不发送所述PUSCH。
在730中,若终端设备确定不发所述PUSCH,则终端设备不发送所述PUSCH,且发送或者不发送所述PRACH。
终端设备在基于前述方式所指示的时隙结构进行上下行传输时,需要遵循预设规则,该预设规则例如可以用来避免上行传输和下行传输之间的冲突 以及上行信号和上行信道之间的冲突,并规范终端设备的信道监听行为。在710中,如果终端设备基于该预设规则,确定不在2步随机接入过程的第一条消息中的上行信道对应的传输机会上,发送该上行信道,例如PRACH和/或PUSCH,那么终端设备可以根据720和730确定是否发送PRACH和PUSCH。
其中,在720中,如果终端设备不发送PRACH,那么也不发送对应的PUSCH。而在730中,如果终端设备不发送PUSCH,那么终端设备可以选择不发送PRACH或者发送PRACH。
一条完整的Msg A中包括PRACH和PUSCH两部分。通常,网络设备在检测到终端设备发送的承载于PRACH中的前导码后,才知道有PUSCH,从而检测相应的PUSCH。网络设备需要基于对PRACH的检测,估计得到相关的信道信息,并使用该信道信息辅助解调PUSCH。如果网络设备检测到PRACH,但是没有检测到PUSCH,可以仅响应该PRACH,这时,可以将Msg A作为Msg 1。
因此,终端设备在确定不发送PRACH时,也不发送PUSCH;而终端设备确定不发送PUSCH时,可以选择发送或者不发送PRACH。
并且,可选地,如果终端设备不发送PUSCH,但是发送了对应于相同Msg A中的PRACH,则2步随机接入过程可以回退至4步随机接入过程。
也就是说,如果终端设备无法发送PRACH,则PUSCH也不能发送;但是,如果终端设备不能发送PUSCH,PRACH可以发送也可以不发送。并且,网络设备在仅接收到PRACH时,可以从2步随机接入过程回退至4步随机接入过程,从而充分利用终端设备已发送的PRACH。
在710中,该预设规则例如可以包括以下中的至少一种:
(1)在TDD单载波上,若所述传输机会与用于传输同步信号块(Synchronizing Signal/PBCH Block,SSB或SS/PBCH Block)的符号集合之间有任一符号重叠,则所述终端设备确定在所述符号集合上不发送所述上行信道;
(2)对于所述传输机会中被上下行配置公共消息(tdd-UL-DL-ConfigurationCommon)和上下行配置专用消息(tdd-UL-DL-ConfigurationDedicated)指示为灵活符号且被携带时隙结构信息的第一DCI指示为灵活符号的符号集合,若所述终端设备没有检测到调度其传输所述上行信道的第二DCI,则所述终端设备确定在所述符号集合上不发送所述上行信道;
(3)在TDD单载波上,对于所述传输机会中被高层配置为传输所述上行信道的符号集合,若终端设备检测到用于指示其在所述符号集合的符号子集中接收下行信道的第二DCI,则所述终端设备确定在检测到所述第二DCI的控制资源集内的最后一个符号后的时长T之后,不发送所述上行信道;
(4)对于所述传输机会中被高层配置为传输所述上行信道的符号集合,若所述终端设备检测到用于指示所述符号集合的符号子集中的符号为灵活符号或下行符号的携带时隙结构信息的第一DCI,或者检测到用于指示其在所 述符号子集中接收下行信道的第二DCI,则所述终端设备确定在检测到所述第一DCI和/或所述第二DCI的控制资源集内的最后一个符号后的时长T之后,不发送所述上行信道;
(5)对于所述传输机会中被高层配置为传输所述上行信道的符号集合,若所述符号集合中的符号被上下行配置公共消息(tdd-UL-DL-ConfigurationCommon)和上下行配置专用消息(tdd-UL-DL-ConfigurationDedicated)指示为灵活符号,或者,没有为所述终端设备提供上下行配置公共消息(tdd-UL-DL-ConfigurationCommon)和上下行配置专用消息(tdd-UL-DL-ConfigurationDedicated)且所述终端设备没有检测到携带时隙结构信息的第一DCI,则所述终端设备确定在用于检测所述第一第一DCI的控制资源集内的最后一个符号后的M个符号之后,不发送所述上行信道。
在710中,如果终端设备基于上述(1)至(5)所述的预设规则,确定不在相应的传输机会中发送该上行信号,例如确定不在PRACH机会上发送PRACH,或者不在PUSCH机会上发送PUSCH,则终端设备执行720或者730。
对于规则(3)至规则(5),时长T和M个符号均为信道处理时间。信道处理时间可以理解为是指终端设备对DCI的处理时间。以规则(3)为例,终端设备需要时长T对DCI进行解码等处理,如果终端设备没有完成对DCI的解码,那么也不会知道该DCI调度了下行传输。因此,在时长T内终端设备仍可以发送该上行信道,而在时长T之后,终端设备不会在相应的传输机会上发送该上行信道。为了简化,这里将时长T和M个符号预设为PUSCH处理时间,PUSCH处理时间对应于终端设备的处理能力。
例如图8所示,终端设备准备在图8所示的被高层配置为传输该上行信道的符号集合中发送PRACH和PUSCH。如果终端设备在控制资源集合(Control Resourse Set,CORESET)中接收到第二DCI,并且该第二DCI指示终端设备在该符号集合中的符号子集中接收下行信道。那么,以该CORESET的最后一个符号为参考点,在该符号子集中位于时长T之间的符号上,终端设备不取消已准备的PRACH的传输,而在该符号子集中位于时长T之后的符号上,终端设备取消PRACH的传输。如果PRACH被取消,则PUSCH也不会被传输。
应理解,本申请实施例中的第一DCI携带时隙结构信息,例如携带SFI指示域(SFI-index field),SFI-index field的值可以用来指示时隙格式,包括flexible、UL和DL。第一DCI的格式可以是DCI格式2_0(DCI format 2_0)或DCI format 2_X等。
本申请实施例中的第二DCI也可以称为调度信息,包括UL调度信息和DL调度信息,分别用于指示终端设备在相应的符号或时隙上发送上行数据或者接收下行数据。第二DCI的格式可以是DCI格式0_1、DCI格式1_0、DCI格式1_1、DCI格式2_3、DCI格式2_X或RAR上行授权消息(RAR UL grant)等。
上面描述的规则(1)至规则(5)都可能导致PRACH和/或PUSCH的取消,或者说导致PRACH和/或PUSCH的不发送。此外,该预设规则还可以包括其他规则。以下,较为详细地列举终端设备在发送Msg A中的PRACH和PUSCH中需要遵循的规则。
规则0
被tdd-UL-DL-ConfigurationCommon或tdd-UL-DL-ConfigurationDedicated指示为DL的符号,终端设备不会在这些符号上发送PUSCH、PUCCH、Msg1中的PRACH、Msg A中的PRACH、Msg A中的PUSCH、以及SRS。
规则1
对于工作于时分双工(Time Division Duplex,TDD)单载波的终端设备,在终端设备接收SSB的符号集合上,如果PUSCH、PUCCH、Msg 1的PRACH、Msg A的PRACH或Msg A的PUSCH有任何符号与所述符号集合重叠,终端设备不在所述符号集合上发送PUSCH、PUCCH、Msg 1的PRACH、Msg A的PRACH或Msg A的PUSCH,并且终端设备不在所述符号集合上发送探测参考信号(Sounding Reference Signal,SRS)。
如果终端设备由于以上原因没有发送Msg A的PRACH,则终端设备不发送对应于相同Msg A的PUSCH;如果终端设备由于以上原因没有发送Msg A的PUSCH,则终端设备可以发送或者不发送对应于相同Msg A的PRACH。
规则2
在对应于一个有效(valid)的Msg 1的PRACH机会、一个有效的Msg A的PRACH机会或一个有效的Msg A的PUSCH机会,以及,在有效的Msg 1的PRACH机会、有效的Msg A的PRACH或有效的Msg A的PUSCH之前的N gap个符号的符号集合中,终端设备不接收与所述符号集合有重叠的PDCCH(类型1-公共搜索空间(Common Search Space,CSS)集合(Type 1-PDCCH CCS set))、PDSCH或信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)。
终端设备不期望所述符号集合被tdd-UL-DL-ConfigurationCommon或tdd-UL-DL-ConfigurationDedicated指示为DL。
应理解,本申请实施例中的“终端设备不期望”,可以理解为,终端设备不检测、不接收或者接收后丢弃。对应于网络设备而言,“终端设备不期望”可以理解为,网络设备不发送。
规则3
在规则3.1中,在被DCI格式2_0指示为DL的符号集合中,终端设备不期望被调度在所述符号集合中发送PUSCH、PUCCH、Msg 1的PRACH、Msg A的PRACH、Msg A的PUSCH或SRS。
在规则3.2中,在配置为发送Msg 1的PRACH、Msg A中的PRACH或Msg A中的PUSCH的符号集合中,终端设备不期望接收到将所述符号集合指示为DL的DCI格式2_0。
规则4
被tdd-UL-DL-ConfigurationCommon和tdd-UL-DL-ConfigurationDedicated指示为flexible的符号集合,或者没有提供tdd-UL-DL-ConfigurationCommon和tdd-UL-DL-ConfigurationDedicated,如果终端设备检测到DCI格式2_0,则:
对于被DCI格式2_0中指示为flexible的符号集合,终端设备可以被调度在所述符号集合中发送PUSCH、PUCCH、Msg 1的PRACH、Msg A的PRACH、Msg A的PUSCH或SRS;
对于被DCI格式2_0中指示为flexible的符号集合,如果终端设备没有接收到DL调度信息,也没有接收到UL调度信息,则终端设备在所述符号集合上不接收也不发送;
在被高层配置为发送PUCCH、PUSCH、Msg 1的PRACH、Msg A的PRACH或Msg A的PUSCH,且被DCI格式2_0指示为UL的符号集合中,终端设备发送PUCCH、PUSCH、Msg 1的PRACH、Msg A的PRACH或Msg A的PUSCH;
如果终端设备由于以上原因没有发送Msg A的PRACH,则终端设备不发送对应于相同Msg A的PUSCH;如果终端设备由于以上原因没有发送Msg A的PUSCH,则终端设备可以发送或者不发送对应于相同Msg A的PRACH。
规则5
被高层配置为接收CSI-RS或PDSCH的符号集合,如果所述符号集合中的符号子集被DCI格式2_0指示为UL或flexible,或者所述符号集合中的至少一个符号被调度传输PUCCH、PUSCH、Msg 1的PRACH、Msg A的PRACH、Msg A的PUSCH或SRS,则终端设备取消CSI-RS或PDSCH的接收。
规则6
被tdd-UL-DL-ConfigurationCommon或tdd-UL-DL-ConfigurationDedicated指示为flexible的符号集合中,或者没有提供tdd-UL-DL-ConfigurationCommon和tdd-UL-DL-ConfigurationDedicated,如果终端设备没有被配置监听承载DCI格式2_0的PDCCH,则终端设备可以在被调度在所述符号集合中发送PUSCH、PUCCH、Msg 1中的PRACH、Msg A中的PRACH、Msg A中的PUSCH或SRS。
规则7
在TDD单载波的场景下,对于被高层配置为传输PUSCH、PUCCH、Msg 1的PRACH、Msg A的PRACH、Msg A的PUSCH或SRS的符号集合,如果终端设备检测到调度信息指示其在所述符号集合中的符号子集中接收CSI-RS或PDSCH,则以检测到该调度信息的CORESET的最后一个符号为参考点,在时长T之前的符号子集中的符号上,终端设备不期望取消高层配置的PUSCH、PUCCH、Msg 1的PRACH、Msg A的PRACH或Msg A的PUSCH的传输。终端设备取消所述符号集合的剩余符号中的PUSCH、PUCCH、Msg 1的PRACH、Msg A的PRACH或Msg A的PUSCH的传输,并取消所述符号子集的剩余符号中的SRS的传输。
如果终端设备没有发送Msg A的PRACH,则终端设备不发送对应于相同Msg A的PUSCH,无论PUSCH的发送是否位于该符号子集中的剩余符号中;如果终端设备没有发送Msg A的PUSCH,则终端设备可以发送或者不发送对应于相同Msg A的PRACH。
对于被高层配置为传输PUSCH、PUCCH、Msg 1的PRACH、Msg A的PRACH、Msg A的PUSCH或SRS的符号集合,如果终端设备检测到DCI格式2_0,该DCI格式2_0指示该符号集合中的符号子集为DL或flexible,或者终端设备检测到调度信息指示其在所述符号集合中的符号子集中接收CSI-RS或PDSCH,则以检测到DCI格式2_0或该调度信息的CORESET的最后一个符号为参考点,在时长T之前的所述符号子集中的符号上,终端设备不期望取消高层配置的PUSCH、PUCCH、Msg 1的PRACH、Msg A的PRACH、Msg A的PUSCH或SRS的传输。终端设备取消所述符号集合的剩余符号中的PUSCH、PUCCH、Msg 1的PRACH、Msg A的PRACH或Msg A的PUSCH的传输,并取消所述符号子集的剩余符号中的SRS的传输。
如果终端设备没有发送Msg A的PRACH,则终端设备不发送对应于相同Msg A的PUSCH,无论PUSCH的发送是否位于该符号子集中的剩余符号中;如果终端设备没有发送Msg A的PUSCH,则终端设备可以发送或者不发送对应于相同Msg A的PRACH。
规则8
在TDD单载波的场景下,对于终端设备监听PDCCH的CORESET中的灵活符号,如果终端设备没有检测到DCI格式2_0指示该灵活符号为灵活或UL,且终端设备没有检测到调度信息指示其在该灵活符号上发送PUSCH、PUCCH、Msg 1的PRACH、Msg A的PRACH、Msg A的PUSCH或SRS,则终端设备假设该灵活符号为UL。
在TDD单载波的场景下,终端设备被高层配置为在符号集合中接收PDCCH、PDSCH或CSI-RS,如果终端设备没有接收到调度信息指示其在所述符号集合中的至少一个符号上发送PUSCH、PUCCH、Msg 1的PRACH、Msg A的PRACH、Msg A的PUSCH或SRS,则终端设备在所述符号集合中接收PDCCH、PDSCH或CSI-RS;否则,终端设备不在所述符号集合中接收PDCCH、PDSCH或CSI-RS。
规则9
被tdd-UL-DL-ConfigurationCommon和tdd-UL-DL-ConfigurationDedicated指示为flexible的符号集合中,或者没有提供tdd-UL-DL-ConfigurationCommon和tdd-UL-DL-ConfigurationDedicated,并且终端设备没有检测到DCI格式2_0,则:
如果终端设备被调度在所述符号集合中发送PUSCH、PUCCH、Msg 1的PRACH、Msg A的PRACH、Msg A的PUSCH或SRS,则终端设备发送PUSCH、PUCCH、Msg 1的PRACH、Msg A的PRACH、Msg A的PUSCH或SRS;
如果终端设备被高层配置为在所述符号集合中发送PUSCH、PUCCH、 Msg 1的PRACH、Msg A的PRACH、Msg A的PUSCH或SRS,则以被配置监听承载DCI格式2_0的PDCCH的CORESET的最后一个符号为参考点,在M个符号之后的所述符号集合所在的时隙中,终端设备不发送PUSCH、PUCCH、Msg 1的PRACH、Msg A的PRACH或Msg A的PUSCH,并且在M个符号之后的所述符号集合中不发送SRS。终端设备不期望取消在M个符号之前的所述符号集合中的PUSCH、PUCCH、Msg 1的PRACH、Msg A的PRACH、Msg A的PUSCH或SRS的传输。
如果终端设备没有发送Msg A的PRACH,则终端设备不发送对应于相同Msg A的PUSCH;如果终端设备没有发送Msg A的PUSCH,则终端设备可以发送或者不发送对应于相同Msg A的PRACH。
本申请实施例的方法可以应用于各种随机接入过程,而不仅仅是初始接入过程。并且,本申请实施例的方法可以应用于基于竞争的随机接入过程(contention based RACH)和基于非竞争的随机接入过程(contention free RACH)。
需要说明的是,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的随机接入的方法,下面将结合图9,描述根据本申请实施例的用于随机接入的装置,方法实施例所描述的技术特征适用于以下装置实施例。
可以理解,该装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请可以根据上述方法对该装置进行功能单元的划分,例如,可以按照各个功能将其划分为各个单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图9是根据本申请实施例的用于随机接入的装置900的示意性框图。如图9所示,装置900包括处理单元910和发送单元920。
处理单元910用于:基于预定规则,确定是否在2步随机接入过程的第一条消息中的上行信道对应的传输机会上,发送所述上行信道,其中,所述上 行信道包括物理随机接入信道PRACH和物理上行共享信道PUSCH;
发送单元920用于:若所述处理单元确定不发送所述PRACH,则不发送所述PRACH,且不发送所述PUSCH;若所述处理单元确定不发所述PUSCH,则不发送所述PUSCH,且发送或者不发送所述PRACH。
因此,在2步随机接入过程中,该装置基于预设规则确定不发送Msg A中的PRACH时,也不会发送Msg A中的PUSCH;而确定不发送Msg A中的PUSCH时,可以发送或者不发送Msg A中的PRACH,从而保证了PRACH和PUSCH的有效传输。
可选地,所述处理单元910还用于:若所述发送单元不发送所述PUSCH,且发送所述PRACH,则确定从2步随机接入过程回退至4步随机接入过程。
可选地,所述处理单元910具体用于:在时分双工TDD的单载波上,若所述传输机会与用于传输同步信号块的符号集合之间有任一符号重叠,则确定在所述符号集合上不发送所述上行信道。
可选地,所述处理单元910具体用于:对于所述传输机会中被上下行配置公共消息和上下行配置专用消息指示为灵活符号且被携带时隙结构信息的第一下行控制信息DCI指示为灵活符号的符号集合,若所述终端设备没有检测到调度其传输所述上行信道的第二DCI,则确定在所述符号集合上不发送所述上行信道。
可选地,所述处理单元910具体用于:在TDD的单载波上,对于所述传输机会中被高层配置为传输所述上行信道的符号集合,若终端设备检测到用于指示其在所述符号集合的符号子集中接收下行信道的第二DCI,则确定在检测到所述第二DCI的控制资源集内的最后一个符号后的时长T之后,不发送所述上行信道,其中,所述时长T为信道处理时间。
可选地,所述处理单元910具体用于:对于所述传输机会中被高层配置为传输所述上行信道的符号集合,若所述终端设备检测到用于指示所述符号集合的符号子集中的符号为灵活符号或下行符号的携带时隙结构信息的第一DCI,或者检测到用于指示其在所述符号子集中接收下行信道的第二DCI,则确定在检测到所述第一DCI和/或所述第二DCI的控制资源集内的最后一个符号后的时长T之后,不发送所述上行信道,其中,所述时长T为信道处理时间。
可选地,所述处理单元910具体用于:对于所述传输机会中被高层配置为传输所述上行信道的符号集合,若所述符号集合中的符号被上下行配置公共消息和上下行配置专用消息指示为灵活符号,或者,没有为所述终端设备提供所述上下行配置公共消息和所述上下行配置专用消息且所述终端设备没有检测到携带时隙结构信息的第一DCI,则确定在用于检测所述第一DCI的控制资源集内的最后一个符号后的M个符号之后,不发送所述上行信道,其中,所述M个符号为信道处理时间。
装置900执行随机接入的具体方式以及产生的有益效果可以参见方法实施例中的相关描述。
图10示出了本申请提供的一种随机接入的设备的结构示意图。图10中的虚线表示该单元或该模块为可选的。设备1000可用于实现上述方法实施例中描述的方法。设备1000可以是终端设备或网络设备或芯片。
设备1000包括一个或多个处理器1001,该一个或多个处理器1001可支持设备1000实现图2至图8所对应方法实施例中的方法。处理器1001可以是通用处理器或者专用处理器。例如,处理器1001可以是中央处理器(Central Processing Unit,CPU)。CPU可以用于对设备1000进行控制,执行软件程序,处理软件程序的数据。设备1000还可以包括通信单元1005,用以实现信号的输入(接收)和输出(发送)。
例如,设备1000可以是芯片,通信单元1005可以是该芯片的输入和/或输出电路,或者,通信单元1005可以是该芯片的通信接口,该芯片可以作为终端设备或网络设备或其它无线通信设备的组成部分。
又例如,设备1000可以是终端设备或网络设备,通信单元1005可以是该终端设备或该网络设备的收发器,或者,通信单元1005可以是该终端设备或该网络设备的收发电路。
设备1000中可以包括一个或多个存储器1002,其上存储有程序1004,程序1004可被处理器1001运行,生成指令1003,使得处理器1001根据指令1003执行上述方法实施例中描述的方法。可选地,存储器1002中还可以存储有数据。可选地,处理器1001还可以读取存储器1002中存储的数据,该数据可以与程序1004存储在相同的存储地址,该数据也可以与程序1004存储在不同的存储地址。
处理器1001和存储器1002可以单独设置,也可以集成在一起,例如集成在终端设备的***级芯片(System On Chip,SOC)上。
设备1000还可以包括天线1006。通信单元1005用于通过天线1006实现设备1000的收发功能。
处理器1001执行通信方法的具体方式可以参见方法实施例中的相关描述。
应理解,上述方法实施例的各步骤可以通过处理器1001中的硬件形式的逻辑电路或者软件形式的指令完成。处理器1001可以是CPU、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件,例如分立门、晶体管逻辑器件或分立硬件组件。
本申请还提供了一种计算机程序产品,该计算机程序产品被处理器1001执行时实现本申请中任一方法实施例所述的方法。
该计算机程序产品可以存储在存储器1002中,例如是程序1004,程序1004经过预处理、编译、汇编和链接等处理过程最终被转换为能够被处理器1001执行的可执行目标文件。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现本申请中任一方法实施例所述的方法。该计算机程序可以是高级语言程序,也可以是可执行目标程序。
该计算机可读存储介质例如是存储器1002。存储器1002可以是易失性存储器或非易失性存储器,或者,存储器1002可以同时包括易失性存储器和非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
本领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和设备的具体工作过程以及产生的技术效果,可以参考前述方法实施例中对应的过程和技术效果,在此不再赘述。
在本申请实施例中,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的方法实施例的一些特征可以忽略,或不执行。以上所描述的装置实施例仅仅是示意性的,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,多个单元或组件可以结合或者可以集成到另一个***。另外,各单元之间的耦合或各个组件之间的耦合可以是直接耦合,也可以是间接耦合,上述耦合包括电的、机械的或其它形式的连接。
另外,本申请实施例中的术语“***”和“网络”在常被可互换使用。术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请实施例中,“与A相应(对应)的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (19)

  1. 一种随机接入的方法,其特征在于,所述方法包括:
    终端设备基于预定规则,确定是否在2步随机接入过程的第一条消息中的上行信道对应的传输机会上,发送所述上行信道,其中,所述上行信道包括物理随机接入信道PRACH和物理上行共享信道PUSCH;
    若所述终端设备确定不发送所述PRACH,则所述终端设备不发送所述PRACH,且不发送所述PUSCH;
    若所述终端设备确定不发所述PUSCH,则所述终端设备不发送所述PUSCH,且发送或者不发送所述PRACH。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若所述终端设备不发送所述PUSCH,且发送所述PRACH,所述终端设备从2步随机接入过程回退至4步随机接入过程。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备基于预定规则,确定是否在2步随机接入过程的第一条消息中的上行信道对应的传输机会上,发送所述上行信道,包括:
    在时分双工TDD单载波上,若所述传输机会与用于传输同步信号块的符号集合之间有任一符号重叠,则所述终端设备确定在所述符号集合上不发送所述上行信道。
  4. 根据权利要求1或2所述的方法,其特征在于,所述终端设备基于预定规则,确定是否在2步随机接入过程的第一条消息中的上行信道对应的传输机会上,发送所述上行信道,包括:
    对于所述传输机会中被上下行配置公共消息和上下行配置专用消息指示为灵活符号且被携带时隙结构信息的第一下行控制信息DCI指示为灵活符号的符号集合,若所述终端设备没有检测到调度其传输所述上行信道的第二DCI,则所述终端设备确定在所述符号集合上不发送所述上行信道。
  5. 根据权利要求1或2所述的方法,其特征在于,所述终端设备基于预定规则,确定是否在2步随机接入过程的第一条消息中的上行信道对应的传输机会上,发送所述上行信道,包括:
    在TDD单载波上,对于所述传输机会中被高层配置为传输所述上行信道的符号集合,若终端设备检测到用于指示其在所述符号集合的符号子集中接收下行信道的第二DCI,则所述终端设备确定在检测到所述第二DCI的控制资源集内的最后一个符号后的时长T之后,不发送所述上行信道,其中,所述时长T为信道处理时间。
  6. 根据权利要求1或2所述的方法,其特征在于,所述终端设备基于预定规则,确定是否在2步随机接入过程的第一条消息中的上行信道对应的传输机会上,发送所述上行信道,包括:
    对于所述传输机会中被高层配置为传输所述上行信道的符号集合,若所述终端设备检测到用于指示所述符号集合的符号子集中的符号为灵活符号或下行符号的携带时隙结构信息的第一DCI,或者检测到用于指示其在所述符 号子集中接收下行信道的第二DCI,则所述终端设备确定在检测到所述第一DCI和/或所述第二DCI的控制资源集内的最后一个符号后的时长T之后,不发送所述上行信道,其中,所述时长T为信道处理时间。
  7. 根据权利要求1或2所述的方法,其特征在于,所述终端设备基于预定规则,确定是否在2步随机接入过程的第一条消息中的上行信道对应的传输机会上,发送所述上行信道,包括:
    对于所述传输机会中被高层配置为传输所述上行信道的符号集合,若所述符号集合中的符号被上下行配置公共消息和上下行配置专用消息指示为灵活符号,或者,没有为所述终端设备提供所述上下行配置公共消息和所述上下行配置专用消息且所述终端设备没有检测到携带时隙结构信息的第一DCI,则所述终端设备确定在用于检测所述第一DCI的控制资源集内的最后一个符号后的M个符号之后,不发送所述上行信道,其中,所述M个符号为信道处理时间。
  8. 一种随机接入的装置,其特征在于,所述装置包括:
    处理单元,用于基于预定规则,确定是否在2步随机接入过程的第一条消息中的上行信道对应的传输机会上,发送所述上行信道,其中,所述上行信道包括物理随机接入信道PRACH和物理上行共享信道PUSCH;
    发送单元,若所述处理单元确定不发送所述PRACH,则不发送所述PRACH,且不发送所述PUSCH;
    所述发送单元还用于,若所述处理单元确定不发所述PUSCH,则不发送所述PUSCH,且发送或者不发送所述PRACH。
  9. 根据权利要求8所述的装置,其特征在于,所述处理单元还用于:
    若所述发送单元不发送所述PUSCH,且发送所述PRACH,则确定从2步随机接入过程回退至4步随机接入过程。
  10. 根据权利要求8或9所述的装置,其特征在于,所述处理单元具体用于:
    在时分双工TDD的单载波上,若所述传输机会与用于传输同步信号块的符号集合之间有任一符号重叠,则确定在所述符号集合上不发送所述上行信道。
  11. 根据权利要求8或9所述的装置,其特征在于,所述处理单元具体用于:
    对于所述传输机会中被上下行配置公共消息和上下行配置专用消息指示为灵活符号且被携带时隙结构信息的第一下行控制信息DCI指示为灵活符号的符号集合,若所述终端设备没有检测到调度其传输所述上行信道的第二DCI,则确定在所述符号集合上不发送所述上行信道。
  12. 根据权利要求8或9所述的装置,其特征在于,所述处理单元具体用于:
    在TDD的单载波上,对于所述传输机会中被高层配置为传输所述上行信道的符号集合,若终端设备检测到用于指示其在所述符号集合的符号子集中 接收下行信道的第二DCI,则确定在检测到所述第二DCI的控制资源集内的最后一个符号后的时长T之后,不发送所述上行信道,其中,所述时长T为信道处理时间。
  13. 根据权利要求8或9所述的装置,其特征在于,所述处理单元具体用于:
    对于所述传输机会中被高层配置为传输所述上行信道的符号集合,若所述终端设备检测到用于指示所述符号集合的符号子集中的符号为灵活符号或下行符号的携带时隙结构信息的第一DCI,或者检测到用于指示其在所述符号子集中接收下行信道的第二DCI,则确定在检测到所述第一DCI和/或所述第二DCI的控制资源集内的最后一个符号后的时长T之后,不发送所述上行信道,其中,所述时长T为信道处理时间。
  14. 根据权利要求8或9所述的装置,其特征在于,所述处理单元具体用于:
    对于所述传输机会中被高层配置为传输所述上行信道的符号集合,若所述符号集合中的符号被上下行配置公共消息和上下行配置专用消息指示为灵活符号,或者,没有为所述终端设备提供所述上下行配置公共消息和所述上下行配置专用消息且所述终端设备没有检测到携带时隙结构信息的第一DCI,则确定在用于检测所述第一DCI的控制资源集内的最后一个符号后的M个符号之后,不发送所述上行信道,其中,所述M个符号为信道处理时间。
  15. 一种终端设备,其特征在于,所述终端设备包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求1至7中任一项所述的方法。
  16. 一种芯片,其特征在于,所述芯片包括处理器,所述处理器用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行权利要求1至7中任一项所述的方法。
  17. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行权利要求1至7中任一项所述的方法。
  18. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行权利要求1至7中任一项所述的方法。
  19. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行权利要求1至7中任一项所述的方法。
PCT/CN2019/123107 2019-12-04 2019-12-04 随机接入的方法和终端设备 WO2021109041A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP19955148.2A EP4040904B1 (en) 2019-12-04 2019-12-04 Random access method and terminal device
CN201980093937.9A CN113574955A (zh) 2019-12-04 2019-12-04 随机接入的方法和终端设备
JP2022532864A JP7383819B2 (ja) 2019-12-04 2019-12-04 ランダムアクセスの方法及び端末デバイス
PCT/CN2019/123107 WO2021109041A1 (zh) 2019-12-04 2019-12-04 随机接入的方法和终端设备
KR1020227019606A KR20220106147A (ko) 2019-12-04 2019-12-04 랜덤 액세스의 방법 및 단말기 디바이스
CN202111432147.4A CN114126076B (zh) 2019-12-04 2019-12-04 随机接入的方法和终端设备
US17/731,121 US20220256619A1 (en) 2019-12-04 2022-04-27 Random access method and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/123107 WO2021109041A1 (zh) 2019-12-04 2019-12-04 随机接入的方法和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/731,121 Continuation US20220256619A1 (en) 2019-12-04 2022-04-27 Random access method and terminal device

Publications (1)

Publication Number Publication Date
WO2021109041A1 true WO2021109041A1 (zh) 2021-06-10

Family

ID=76221261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123107 WO2021109041A1 (zh) 2019-12-04 2019-12-04 随机接入的方法和终端设备

Country Status (6)

Country Link
US (1) US20220256619A1 (zh)
EP (1) EP4040904B1 (zh)
JP (1) JP7383819B2 (zh)
KR (1) KR20220106147A (zh)
CN (2) CN114126076B (zh)
WO (1) WO2021109041A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117083973A (zh) * 2022-02-11 2023-11-17 北京小米移动软件有限公司 一种终端设备调度方法及其装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110324903A (zh) * 2018-03-28 2019-10-11 华硕电脑股份有限公司 无线通信***中用于时隙格式确定的方法和设备
US20190364599A1 (en) * 2018-05-23 2019-11-28 Qualcomm Incorporated Wireless communication including random access

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10819470B2 (en) * 2018-01-12 2020-10-27 Intel IP Corporation Behavior of user equipment (UE) in scenarios of conflicting resource assignments in new radio (NR) systems
CN111615209B (zh) * 2019-04-29 2022-03-15 维沃移动通信有限公司 随机接入方法及装置、用户设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110324903A (zh) * 2018-03-28 2019-10-11 华硕电脑股份有限公司 无线通信***中用于时隙格式确定的方法和设备
US20190364599A1 (en) * 2018-05-23 2019-11-28 Qualcomm Incorporated Wireless communication including random access

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OPPO: "On Channel Structure for 2-step RACH", 3GPP DRAFT; R1-1912650, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051823513 *
VIVO: "Discussion on 2-step RACH procedure", 3GPP DRAFT; R1-1906125_DISCUSSION ON PROCEDURE FOR 2-STEP RACH, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 1 May 2019 (2019-05-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 8, XP051708166 *

Also Published As

Publication number Publication date
CN114126076B (zh) 2023-09-26
EP4040904A4 (en) 2022-09-07
CN114126076A (zh) 2022-03-01
EP4040904B1 (en) 2024-07-03
EP4040904A1 (en) 2022-08-10
JP7383819B2 (ja) 2023-11-20
CN113574955A (zh) 2021-10-29
US20220256619A1 (en) 2022-08-11
KR20220106147A (ko) 2022-07-28
JP2023509579A (ja) 2023-03-09

Similar Documents

Publication Publication Date Title
JP6726767B2 (ja) ページング検出ウィンドウ
US20220046720A1 (en) Random access method, terminal device and network device
US11363644B2 (en) Methods and apparatus for indicating channel access
US20200137802A1 (en) Random access method and terminal device
US20220248461A1 (en) Method, device and apparatus for determining channel detection mechanism, and storage medium
CN113301660A (zh) 竞争解决定时器的确定
CN111972032B (zh) 随机接入的方法和设备
WO2021077343A1 (zh) 无线通信方法和终端设备
WO2020210963A1 (zh) 消息传输的方法和设备
CN113647182A (zh) 无线通信的方法和设备
WO2020124598A1 (zh) 随机接入的方法和设备
WO2020061945A1 (zh) 用于随机接入的方法、网络设备和终端设备
US20220256619A1 (en) Random access method and terminal device
EP4266596A1 (en) Procedures of synchronization signal generation and transmission for network controlled repeaters (ncr)
CN113812191B (zh) 发送或接收反馈信息的方法和装置
EP4271033A1 (en) Communication method and apparatus
WO2021068237A1 (zh) 接收或发送随机接入消息的方法和装置
KR20210065053A (ko) 랜덤 접속 절차 메시지를 포함하는 타이밍 충돌 처리
WO2020051767A1 (zh) 传输信息、接收信息的方法和通信设备
KR20210034009A (ko) 무작위 접속 방법, 단말 장치와 네트워크 장치
WO2023066335A1 (zh) 随机接入的方法和装置
US20210204327A1 (en) Method for controlling power ramp counter, and terminal device
WO2022041138A1 (zh) 一种通信的方法及装置
US20220117001A1 (en) Method of random access, terminal device, and non-transitory computer-readable storage medium
WO2019191964A1 (zh) 传输物理随机接入信道prach的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019955148

Country of ref document: EP

Effective date: 20220506

ENP Entry into the national phase

Ref document number: 2022532864

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227019606

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE