WO2021106149A1 - Propulsion control device and propulsion control method - Google Patents

Propulsion control device and propulsion control method Download PDF

Info

Publication number
WO2021106149A1
WO2021106149A1 PCT/JP2019/046589 JP2019046589W WO2021106149A1 WO 2021106149 A1 WO2021106149 A1 WO 2021106149A1 JP 2019046589 W JP2019046589 W JP 2019046589W WO 2021106149 A1 WO2021106149 A1 WO 2021106149A1
Authority
WO
WIPO (PCT)
Prior art keywords
motors
threshold value
conversion unit
power
power conversion
Prior art date
Application number
PCT/JP2019/046589
Other languages
French (fr)
Japanese (ja)
Inventor
綾乃 中川
遊 ▲高▼以来
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/046589 priority Critical patent/WO2021106149A1/en
Priority to DE112019007918.2T priority patent/DE112019007918T5/en
Priority to JP2021561072A priority patent/JP7038924B2/en
Publication of WO2021106149A1 publication Critical patent/WO2021106149A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/08Controlling based on slip frequency, e.g. adding slip frequency and speed proportional frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0081On-board diagnosis or maintenance

Definitions

  • the present invention relates to a propulsion control device and a propulsion control method mounted on a railway vehicle.
  • railroad vehicles run by rotating wheels using a plurality of motors. If there are motors with abnormal connections such as phase loss or disconnection of connectors between the inverters that supply AC power to a plurality of motors, the railroad vehicle cannot operate the motors with abnormal connections. In such a case, since the railway vehicle travels by using another motor having a normal connection, the other motors are more loaded than usual and cause a failure. Therefore, in railway vehicles, it is required to promptly detect a connection abnormality between an inverter and a motor.
  • Patent Document 1 when the PWM (Pulse Width Modulation) modulation factor obtained by dividing the current motor voltage by the maximum motor voltage of the vehicle control device is larger than a predetermined value, a connection abnormality occurs between the inverter and the motor. A technique for determining that the result has been made is disclosed.
  • PWM Pulse Width Modulation
  • the conventional vehicle control device can determine the occurrence of a connection abnormality in a low speed state until the rail vehicle reaches a certain speed, that is, the PWM modulation rate reaches 100%, but the rail vehicle exceeds a certain speed. That is, there is a problem that the occurrence of a connection abnormality cannot be determined in a high-speed state where the PWM modulation rate becomes 100%.
  • the present invention has been made in view of the above, and can detect a connection abnormality between a plurality of motors and a power conversion unit that supplies AC power to the plurality of motors regardless of the traveling speed of the railway vehicle.
  • the purpose is to obtain a propulsion control device.
  • the present invention is a propulsion control device mounted on a vehicle in order to solve the above-mentioned problems and achieve the object.
  • the propulsion control device consists of a power conversion unit that generates three-phase AC power supplied to a plurality of motors from DC power or AC power supplied from a power supply line, and a three-phase power conversion unit that supplies the power conversion unit to a plurality of motors.
  • the slip frequency is calculated from the current detector that detects the current value of AC power and the current value detected by the current detector, and the difference between the slip frequency and the slip frequency command value used to control multiple motors is calculated.
  • it is characterized by including a control unit that determines the connection state between the power conversion unit and the plurality of motors based on the difference.
  • the propulsion control device has an effect that it can detect a connection abnormality between a plurality of motors and a power conversion unit that supplies AC power to the plurality of motors regardless of the traveling speed of the railway vehicle. ..
  • the slip frequency command value acquired by the control unit when a connection abnormality occurs between the power conversion unit and the motor and the actual slip frequency calculated by the control unit.
  • Diagram showing an example of the difference between A flowchart showing the operation of the propulsion control device according to the first embodiment.
  • FIG. 1 The figure which shows the example of the case where the processing circuit included in the propulsion control device which concerns on Embodiment 1 is configured by a processor and a memory
  • FIG. 1 The figure which shows the example of the case where the processing circuit included in the propulsion control device which concerns on Embodiment 1 is configured by the dedicated hardware.
  • FIG. 1 is a diagram showing a configuration example of the propulsion control device 1 according to the first embodiment of the present invention.
  • the propulsion control device 1 is a device mounted on the train 6 and controls the speed of the train 6.
  • the propulsion control device 1 is connected to the overhead wire 2 via the pantograph 3. Further, the propulsion control device 1 is connected to the motor 5a via the connector 4a and is connected to the motor 5b via the connector 4b.
  • the train 6 may be referred to as a railroad vehicle or simply a vehicle.
  • the propulsion control device 1 is supplied with DC power or AC power from the overhead wire 2 via the pantograph 3. Actually, a circuit breaker or the like is provided between the pantograph 3 and the propulsion control device 1, but the description is omitted because it is a general configuration and does not affect the characteristics of the present embodiment. ..
  • the line for supplying electric power to the train 6 is the overhead line 2, but the present invention is not limited to this, and a method of supplying electric power to the train 6 by the third rail may be used.
  • the overhead wire 2 and the third rail may be collectively referred to as a power supply line.
  • the propulsion control device 1 converts the DC power or AC power supplied from the overhead wire 2 via the pantograph 3 into three-phase AC power, and supplies the three-phase AC power to the motors 5a and 5b.
  • the connector 4a is a connector to which the wiring between the propulsion control device 1 and the motor 5a can be attached and detached at the same time.
  • the connector 4b is a connector to which the wiring between the propulsion control device 1 and the motor 5b can be detached at the same time.
  • the motor 5a drives wheels and the like included in the train 6 by a three-phase AC voltage supplied from the propulsion control device 1 via the connector 4a.
  • the motor 5b drives wheels and the like included in the train 6 by a three-phase AC voltage supplied from the propulsion control device 1 via the connector 4b.
  • the motors 5a and 5b are, for example, three-phase induction motors. In the following description, when the connectors 4a and 4b are not distinguished, the connector 4 may be referred to, and when the motors 5a and 5b are not distinguished, the motor 5 may be referred to.
  • the propulsion control device 1 includes a power conversion unit 11, a current detection unit 12, and a control unit 13.
  • the power conversion unit 11 generates three-phase AC power to be supplied to a plurality of motors 5 from DC power or AC power supplied from the overhead wire 2.
  • the power conversion unit 11 has, for example, an inverter function when DC power is supplied from the overhead wire 2, and a converter and an inverter function when AC power is supplied from the overhead wire 2.
  • the power conversion unit 11 includes a switching element (not shown), and turns the switching element on and off under the control of the control unit 13 to generate three-phase AC power to be supplied to the motors 5a and 5b.
  • the switching element may be, for example, an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • the current detection unit 12 detects the current value of the three-phase AC power supplied from the power conversion unit 11 to the plurality of motors 5.
  • the current detection unit 12 detects the current values of the u-phase, v-phase, and w-phase of the three-phase AC power supplied from the power conversion unit 11 to the plurality of motors 5.
  • the current detection unit 12 may detect the current values of two of the u-phase, v-phase, and w-phase of the three-phase AC power supplied from the power conversion unit 11 to the plurality of motors 5. Since the current value of each phase becomes zero when added, if the current detection unit 12 detects the current value of two of the u phase, v phase, and w phase, the current value of the remaining one phase can be determined. It can be obtained by calculation.
  • the control unit 13 operates the power conversion unit 11 based on a command value for controlling the running of the train 6 acquired from a train information management system (not shown) or the like and a current value detected by the current detection unit 12. Specifically, it controls the on / off of the switching element included in the power conversion unit 11. Further, the control unit 13 calculates the slip frequency from the current value detected by the current detection unit 12. The control unit 13 calculates the difference between the slip frequency and the slip frequency command value used for controlling the plurality of motors 5, which is the above-mentioned command value. The control unit 13 determines the connection state between the propulsion control device 1, that is, the power conversion unit 11, and the plurality of motors 5 based on the calculated difference.
  • the control unit 13 determines the connection state between the power conversion unit 11 and the plurality of motors 5 will be described in detail.
  • the control unit 13 acquires a slip frequency command value as a command value for controlling the running of the train 6 from the outside such as a train information management system (not shown) as described above.
  • the control unit 13 controls the operation of the power conversion unit 11 so that the slip frequency calculated from the current value detected by the current detection unit 12 matches the slip frequency command value.
  • the slip frequency command value may be obtained by the control unit 13 by acquiring a notch command or the like from the outside and calculating based on the notch command or the like.
  • a case where the control unit 13 acquires the slip frequency command value from the outside will be described as an example.
  • the slip frequency command value is a command value for driving two motors 5a and 5b.
  • the control unit 13 controls the operation of the power conversion unit 11 based on the slip frequency command value, so that the power conversion unit 11 supplies three-phase AC power for driving the two motors 5a and 5b.
  • the control unit 13 calculates the actual slip frequency from the current value detected by the current detection unit 12.
  • the control unit 13 can grasp the frequency of the three-phase AC power supplied from the power conversion unit 11 to the motor 5 from the transition of the current value detected by the current detection unit 12.
  • the control unit 13 can calculate the slip frequency by using the frequency of the three-phase AC power supplied from the power conversion unit 11 to the motor 5, the number of poles of the motors 5a and 5b, and the like.
  • the control unit 13 controls the operation of the power conversion unit 11 so that the slip frequency obtained by calculation matches the slip frequency command value.
  • connection abnormalities include, for example, disconnection of the connector 4a between the propulsion control device 1 and the motor 5a, phase loss at one or more connection lines between the power conversion unit 11 and the motor 5a, and propulsion control device 1.
  • the connector of the connector 4b between the motor 5b and the motor 5b is disconnected, and the phase is open at one or more connecting lines between the power conversion unit 11 and the motor 5b.
  • FIG. 2 shows a slip frequency command value acquired by the control unit 13 when a connection abnormality occurs between the power conversion unit 11 and the motor 5a or the motor 5b in the propulsion control device 1 according to the first embodiment. It is a figure which shows the example of the difference from the actual slip frequency calculated by the control unit 13.
  • the horizontal axis represents the speed of the train 6, that is, the vehicle speed
  • the vertical axis represents the frequency.
  • the solid line indicates the slip frequency command value
  • the broken line indicates the slip frequency when a connection abnormality occurs.
  • the dotted line described in the vertical direction indicates the positional relationship with the vehicle speed when the PWM modulation rate reaches 100% in Patent Document 1 described in the background art.
  • the control unit 13 controls the operation of the power conversion unit 11 so that the slip frequency calculated from the current value detected by the current detection unit 12 matches the slip frequency command value. Therefore, when there is no connection abnormality between the power conversion unit 11 and the motor 5a and the motor 5b, the actual slip frequency changes so as to match the slip frequency command value. On the other hand, when a connection abnormality occurs between the power conversion unit 11 and the motor 5a or the motor 5b, the three-phase AC power supplied from the power conversion unit 11 is not the amount of power that drives the two motors 5. Therefore, the control unit 13 operates the power conversion unit 11 so that the slip frequency calculated from the current value detected by the current detection unit 12 matches the slip frequency command value for driving the two motors 5. I can't control it. As a result, when a connection abnormality occurs between the power conversion unit 11 and the motor 5a or the motor 5b, between the slip frequency calculated from the current value detected by the current detection unit 12 and the slip frequency command value. There is a difference.
  • the control unit 13 calculates the difference between the slip frequency calculated from the current value detected by the current detection unit 12 and the slip frequency command value, and if the difference is equal to or greater than the specified threshold value, power conversion is performed. It can be determined that a connection abnormality has occurred between the unit 11 and the motor 5a or the motor 5b.
  • the threshold value for comparison with the calculated difference is defined as the first threshold value.
  • the control unit 13 determines that the duration of the difference being equal to or greater than the first threshold value exceeds a specified period. It may be determined that a connection abnormality has occurred between the power conversion unit 11 and the motor 5a or the motor 5b.
  • the threshold value for comparison with the duration at which the difference is equal to or greater than the first threshold value is defined as the second threshold value.
  • FIG. 3 is a flowchart showing the operation of the propulsion control device 1 according to the first embodiment.
  • the power conversion unit 11 generates three-phase AC power to be supplied to the plurality of motors 5 from the DC power or AC power supplied from the overhead wire 2 under the control of the control unit 13 (step S1). ..
  • the current detection unit 12 detects the current value of the three-phase AC power supplied from the power conversion unit 11 to the plurality of motors 5 (step S2).
  • the control unit 13 determines the connection state between the power conversion unit 11 and the plurality of motors 5 by using the current value detected by the current detection unit 12 and the slip frequency command value (step S3).
  • FIG. 4 is a flowchart showing the operation of the control unit 13 included in the propulsion control device 1 according to the first embodiment.
  • the flowchart shown in FIG. 4 is a detailed operation of step S3 of the flowchart shown in FIG.
  • the control unit 13 acquires the current value detected by the current detection unit 12 from the current detection unit 12 (step S11).
  • the control unit 13 calculates the slip frequency from the current value detected by the current detection unit 12 (step S12).
  • the control unit 13 calculates the difference between the slip frequency obtained by calculation and the slip frequency command value used for the operation of the power conversion unit 11 (step S13).
  • the control unit 13 determines whether or not the calculated difference is equal to or greater than the first threshold value (step S14).
  • step S14: No When the calculated difference is less than the first threshold value (step S14: No), the control unit 13 returns to the operation of step S11.
  • step S14: Yes When the calculated difference is equal to or greater than the first threshold value (step S14: Yes), the control unit 13 determines whether or not the duration of the calculated difference equal to or greater than the first threshold value is equal to or greater than the second threshold value (step S15). ).
  • step S15: No When the calculated difference is equal to or greater than the first threshold value and the duration is less than the second threshold value (step S15: No), the control unit 13 returns to the operation of step S11.
  • step S15: Yes When the calculated difference is equal to or greater than the first threshold value and the duration is equal to or greater than the second threshold value (step S15: Yes), a connection abnormality occurs between the power conversion unit 11 and the motor 5a or the motor 5b. It is determined that this has been done (step S16).
  • the control unit 13 outputs a determination result of determining that a connection abnormality has occurred between the power conversion unit 11 and the motor 5a or the motor 5b (step S17).
  • control unit 13 may output the determination result to a driver's cab (not shown) of the train 6, or may output the determination result to a ground device (not shown).
  • the control unit 13 when the calculated difference is equal to or greater than the first threshold value and the duration of the calculated difference equal to or greater than the first threshold value is equal to or greater than the second threshold value, the control unit 13 powers. It is determined that there is an abnormality in the connection between the conversion unit 11 and at least one of the plurality of motors 5.
  • the control unit 13 determines whether or not a connection abnormality has occurred between the power conversion unit 11 and the motor 5a or the motor 5b when there are two motors 5 connected to the propulsion control device 1.
  • the operation has been described, but it is an example and is not limited to this.
  • the control unit 13 includes the power conversion unit 11 and the motors 5 up to N-1. It is possible to determine whether or not a connection abnormality has occurred between the two. Specifically, when the number of motors 5 connected to the propulsion control device 1 is 4, the control unit 13 is connected between the power conversion unit 11 and one, two, or three motors 5. It is possible to determine whether or not an abnormality has occurred.
  • the first threshold value is appropriately changed, specifically, one motor 5.
  • the first threshold value is made larger than that in the case where the connection abnormality of is not tolerated.
  • the control unit 13 can determine the connection abnormality according to the first threshold value. In this operation, the control unit 13 cannot detect the connection abnormality when a connection abnormality occurs between the power conversion unit 11 and all the motors 5 connected to the propulsion control device 1.
  • the power conversion unit 11 is an inverter, or a power conversion circuit having a converter and an inverter function, as described above.
  • the current detection unit 12 is a sensor capable of detecting the current value of the three-phase AC power.
  • the control unit 13 is realized by a processing circuit.
  • the processing circuit may be a processor and memory for executing a program stored in the memory, or may be dedicated hardware.
  • FIG. 5 is a diagram showing an example in which the processing circuit included in the propulsion control device 1 according to the first embodiment is configured by a processor and a memory.
  • the processing circuit is composed of the processor 91 and the memory 92, each function of the processing circuit of the propulsion control device 1 is realized by software, firmware, or a combination of software and firmware.
  • the software or firmware is written as a program and stored in the memory 92.
  • each function is realized by the processor 91 reading and executing the program stored in the memory 92. That is, the processing circuit includes a memory 92 for storing a program in which the processing of the propulsion control device 1 is eventually executed. It can also be said that these programs cause the computer to execute the procedure and method of the propulsion control device 1.
  • the processor 91 may be a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
  • the memory 92 includes, for example, non-volatile or volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), and EEPROM (registered trademark) (Electrically EPROM).
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory e.g., EPROM (Erasable Programmable ROM), and EEPROM (registered trademark) (Electrically EPROM).
  • Semiconductor memory magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), etc. are applicable.
  • FIG. 6 is a diagram showing an example in which the processing circuit included in the propulsion control device 1 according to the first embodiment is configured by dedicated hardware.
  • the processing circuit is composed of dedicated hardware
  • the processing circuit 93 shown in FIG. 6 includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), and the like. FPGA (Field Programmable Gate Array) or a combination of these is applicable.
  • Each function of the propulsion control device 1 may be realized by the processing circuit 93 for each function, or each function may be collectively realized by the processing circuit 93.
  • the functions of the propulsion control device 1 may be realized by dedicated hardware, and some may be realized by software or firmware.
  • the processing circuit can realize each of the above-mentioned functions by the dedicated hardware, software, firmware, or a combination thereof.
  • the control unit 13 calculates the slip frequency from the current value detected by the current detection unit 12.
  • the control unit 13 calculates the difference between the calculated slip frequency and the slip frequency command value for controlling the operation of the power conversion unit 11, which is a command value for controlling the driving of the motors 5a and 5b.
  • the control unit 13 connects the propulsion control device 1, that is, the power conversion unit 11, and the motor 5a or the motor 5b when the duration during which the calculated difference becomes the first threshold value or more becomes the second threshold value or more. It was decided that an abnormality had occurred.
  • the control unit 13 can detect a connection abnormality between the plurality of motors 5 and the power conversion unit 11 that supplies the three-phase AC power to the plurality of motors 5, regardless of the traveling speed of the train 6. ..
  • Patent Document 1 described in the background technique, it was possible to determine the occurrence of a connection abnormality only in the range of the speed or less reaching the PWM modulation rate of 100% shown in FIG.
  • the control unit 13 can determine the occurrence of a connection abnormality even when the speed of the train 6 exceeds the speed at which the PWM modulation rate reaches 100%.
  • the propulsion control device 1 is mounted on the train 6 which is a railroad vehicle, but the present invention is not limited to this.
  • the propulsion control device 1 can be applied to a device for driving a plurality of motors.
  • Embodiment 2 when the calculated difference is equal to or greater than the first threshold value and the duration is equal to or greater than the second threshold value, the control unit 13 includes the propulsion control device 1, that is, the power conversion unit 11 and the motor 5a or the motor 5b. It was determined that a connection error had occurred between the two.
  • the control unit 13 defines the number of times the calculated difference becomes equal to or greater than the first threshold value even when the duration during which the calculated difference becomes equal to or greater than the first threshold value is less than the second threshold value. When the number of times is reached, it is determined that a connection abnormality has occurred between the propulsion control device 1, that is, the power conversion unit 11, and the motor 5a or the motor 5b.
  • control unit 13 reaches the specified number of times the calculated difference becomes equal to or greater than the first threshold value even when the duration of the calculated difference becoming equal to or greater than the first threshold value is less than the second threshold value. If this is the case, it is determined that there is a sign that the connection between the propulsion control device 1, that is, the power conversion unit 11, and the motor 5a or the motor 5b becomes abnormal.
  • the configuration of the propulsion control device 1 is the same as the configuration of the propulsion control device 1 in the first embodiment shown in FIG.
  • FIG. 7 is a flowchart showing the operation of the control unit 13 included in the propulsion control device 1 according to the second embodiment.
  • the operations from step S21 to step S24 are the same as the operations from step S11 to step S14 of the flowchart shown in FIG. 4 of the first embodiment.
  • the control unit 13 determines whether or not the duration of the calculated difference equal to or greater than the first threshold value is equal to or greater than the second threshold value (step S25). ).
  • step S25 when the duration of the calculated difference equal to or greater than the first threshold value is less than the second threshold value (step S25: No), the number of times the calculated difference becomes equal to or greater than the first threshold value is the third threshold value. It is determined whether or not the above is achieved (step S26). When the number of times the calculated difference is equal to or greater than the first threshold value is not equal to or greater than the third threshold value (step S26: No), the control unit 13 returns to the operation of step S21.
  • step S26 When the number of times the calculated difference becomes equal to or greater than the first threshold value becomes equal to or greater than the third threshold value (step S26: Yes), the control unit 13 connects the power conversion unit 11 and the motor 5a or the motor 5b. It is determined that an abnormality has occurred, or it is determined that there is a sign that a connection abnormality has occurred between the power conversion unit 11 and the motor 5a or the motor 5b (step S27).
  • step S25 Yes
  • a connection abnormality occurs between the power conversion unit 11 and the motor 5a or the motor 5b. It is determined that this has been done (step S28).
  • the control unit 13 outputs the determination result of step S27 or step S28 (step S29).
  • the control unit 13 is the number of times that the calculated difference is equal to or greater than the first threshold value and the duration of the calculated difference being equal to or greater than the first threshold value is less than the second threshold value.
  • the third threshold value is reached, there is an abnormality in the connection between the power conversion unit 11 and at least one of the plurality of motors 5, or at least one of the power conversion unit 11 and the plurality of motors 5. It is determined that there is a sign that the connection with the two motors 5 becomes abnormal.
  • the control unit 13 calculates the slip frequency from the current value detected by the current detection unit 12.
  • the control unit 13 calculates the difference between the calculated slip frequency and the slip frequency command value for controlling the operation of the power conversion unit 11, which is a command value for controlling the driving of the motors 5a and 5b.
  • the control unit 13 determines that the number of times the calculated difference is equal to or greater than the first threshold reaches a specified number of times even when the duration of the calculated difference being equal to or greater than the first threshold is less than the second threshold.
  • the control unit 13 is a sign of a connection abnormality between the plurality of motors 5 and the power conversion unit 11 that supplies the three-phase AC power to the plurality of motors 5, even if the connection abnormality has not occurred at this time. That is, it is possible to detect a part that is expected to have a connection abnormality in the future.
  • the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • 1 propulsion control device 2 overhead wire, 3 pantograph, 4a, 4b connector, 5a, 5b motor, 6 train, 11 power conversion unit, 12 current detection unit, 13 control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

This propulsion control device (1) mounted in a vehicle comprises: a power conversion unit (11) that generates three-phase AC power supplied to a plurality of motors (5a, 5b) from DC power or AC power supplied from a power supply line; a current detection unit (12) that detects the current value of the three-phase AC power supplied from the power conversion unit (11) to the plurality of motors (5a, 5b); and a control unit (13) that calculates the slip frequency from the current value detected by the current detection unit (12), computes the difference between the slip frequency and the slip frequency command value used for control of the plurality of motors (5a, 5b), and judges the connection status of the power conversion unit (11) and the plurality of motors (5a, 5b) based on the difference.

Description

推進制御装置および推進制御方法Propulsion control device and propulsion control method
 本発明は、鉄道車両に搭載される推進制御装置および推進制御方法に関する。 The present invention relates to a propulsion control device and a propulsion control method mounted on a railway vehicle.
 従来、鉄道車両は、複数のモータを用いて車輪を回転させて走行している。複数のモータに交流電力を供給するインバータとの間で欠相、コネクタ外れなどの接続異常のモータがあると、鉄道車両は、接続異常のモータを動作させることができない。このような場合、鉄道車両は接続が正常な他のモータを用いて走行を行うため、他のモータでは、通常時よりも負荷がかかり故障の要因となる。そのため、鉄道車両では、インバータとモータとの間の接続異常を速やかに検知することが求められている。特許文献1には、車両用制御装置が、現在のモータ電圧をモータ最大電圧で除算したPWM(Pulse Width Modulation)変調率が所定値よりも大きい場合、インバータとモータとの間で接続異常が発生したと判定する技術が開示されている。 Conventionally, railroad vehicles run by rotating wheels using a plurality of motors. If there are motors with abnormal connections such as phase loss or disconnection of connectors between the inverters that supply AC power to a plurality of motors, the railroad vehicle cannot operate the motors with abnormal connections. In such a case, since the railway vehicle travels by using another motor having a normal connection, the other motors are more loaded than usual and cause a failure. Therefore, in railway vehicles, it is required to promptly detect a connection abnormality between an inverter and a motor. According to Patent Document 1, when the PWM (Pulse Width Modulation) modulation factor obtained by dividing the current motor voltage by the maximum motor voltage of the vehicle control device is larger than a predetermined value, a connection abnormality occurs between the inverter and the motor. A technique for determining that the result has been made is disclosed.
国際公開第2015/020009号International Publication No. 2015/020009
 一般的に、PWM変調率は、鉄道車両の速度がある速度以上の高速状態になると、100%になって変化しなくなる。そのため、上記従来の車両用制御装置は、鉄道車両がある速度に到達する、すなわちPWM変調率が100%になるまでの低速状態では接続異常の発生を判定できるが、鉄道車両がある速度以上になる、すなわちPWM変調率が100%になる高速状態では接続異常の発生を判定できない、という問題があった。 In general, the PWM modulation factor reaches 100% and does not change when the speed of the railway vehicle reaches a certain speed or higher. Therefore, the conventional vehicle control device can determine the occurrence of a connection abnormality in a low speed state until the rail vehicle reaches a certain speed, that is, the PWM modulation rate reaches 100%, but the rail vehicle exceeds a certain speed. That is, there is a problem that the occurrence of a connection abnormality cannot be determined in a high-speed state where the PWM modulation rate becomes 100%.
 本発明は、上記に鑑みてなされたものであって、鉄道車両の走行速度に係わらず、複数のモータと複数のモータに交流電力を供給する電力変換部との間の接続異常を検知可能な推進制御装置を得ることを目的とする。 The present invention has been made in view of the above, and can detect a connection abnormality between a plurality of motors and a power conversion unit that supplies AC power to the plurality of motors regardless of the traveling speed of the railway vehicle. The purpose is to obtain a propulsion control device.
 上述した課題を解決し、目的を達成するために、本発明は、車両に搭載される推進制御装置である。推進制御装置は、電力供給線から供給される直流電力または交流電力から、複数のモータに供給する三相交流電力を生成する電力変換部と、電力変換部から複数のモータに供給される三相交流電力の電流値を検知する電流検知部と、電流検知部で検知された電流値からすべり周波数を演算し、すべり周波数と複数のモータの制御に使用されるすべり周波数指令値との差分を算出し、差分に基づいて、電力変換部と複数のモータとの接続状態を判定する制御部と、を備えることを特徴とする。 The present invention is a propulsion control device mounted on a vehicle in order to solve the above-mentioned problems and achieve the object. The propulsion control device consists of a power conversion unit that generates three-phase AC power supplied to a plurality of motors from DC power or AC power supplied from a power supply line, and a three-phase power conversion unit that supplies the power conversion unit to a plurality of motors. The slip frequency is calculated from the current detector that detects the current value of AC power and the current value detected by the current detector, and the difference between the slip frequency and the slip frequency command value used to control multiple motors is calculated. However, it is characterized by including a control unit that determines the connection state between the power conversion unit and the plurality of motors based on the difference.
 本発明によれば、推進制御装置は、鉄道車両の走行速度に係わらず、複数のモータと複数のモータに交流電力を供給する電力変換部との間の接続異常を検知できる、という効果を奏する。 According to the present invention, the propulsion control device has an effect that it can detect a connection abnormality between a plurality of motors and a power conversion unit that supplies AC power to the plurality of motors regardless of the traveling speed of the railway vehicle. ..
実施の形態1に係る推進制御装置の構成例を示す図The figure which shows the structural example of the propulsion control device which concerns on Embodiment 1. 実施の形態1に係る推進制御装置において、電力変換部とモータとの間で接続異常が発生した場合の、制御部が取得するすべり周波数指令値と、制御部で演算される実際のすべり周波数との差異の例を示す図In the propulsion control device according to the first embodiment, the slip frequency command value acquired by the control unit when a connection abnormality occurs between the power conversion unit and the motor, and the actual slip frequency calculated by the control unit. Diagram showing an example of the difference between 実施の形態1に係る推進制御装置の動作を示すフローチャートA flowchart showing the operation of the propulsion control device according to the first embodiment. 実施の形態1に係る推進制御装置が備える制御部の動作を示すフローチャートA flowchart showing the operation of the control unit included in the propulsion control device according to the first embodiment. 実施の形態1に係る推進制御装置が備える処理回路をプロセッサおよびメモリで構成する場合の例を示す図The figure which shows the example of the case where the processing circuit included in the propulsion control device which concerns on Embodiment 1 is configured by a processor and a memory 実施の形態1に係る推進制御装置が備える処理回路を専用のハードウェアで構成する場合の例を示す図The figure which shows the example of the case where the processing circuit included in the propulsion control device which concerns on Embodiment 1 is configured by the dedicated hardware. 実施の形態2に係る推進制御装置が備える制御部の動作を示すフローチャートA flowchart showing the operation of the control unit included in the propulsion control device according to the second embodiment.
 以下に、本発明の実施の形態に係る推進制御装置および推進制御方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, the propulsion control device and the propulsion control method according to the embodiment of the present invention will be described in detail with reference to the drawings. The present invention is not limited to this embodiment.
実施の形態1.
 図1は、本発明の実施の形態1に係る推進制御装置1の構成例を示す図である。推進制御装置1は、電車6に搭載され、電車6の速度を制御する装置である。推進制御装置1は、パンタグラフ3を介して架線2に接続される。また、推進制御装置1は、コネクタ4aを介してモータ5aに接続され、コネクタ4bを介してモータ5bに接続される。以降の説明において、電車6のことを鉄道車両、または単に車両と称することがある。
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of the propulsion control device 1 according to the first embodiment of the present invention. The propulsion control device 1 is a device mounted on the train 6 and controls the speed of the train 6. The propulsion control device 1 is connected to the overhead wire 2 via the pantograph 3. Further, the propulsion control device 1 is connected to the motor 5a via the connector 4a and is connected to the motor 5b via the connector 4b. In the following description, the train 6 may be referred to as a railroad vehicle or simply a vehicle.
 推進制御装置1は、架線2からパンタグラフ3を介して直流電力または交流電力が供給される。実際には、パンタグラフ3と推進制御装置1との間には遮断器などが設けられているが、一般的な構成であり、本実施の形態の特徴に影響しないため、記載を省略している。なお、図1では、電車6に電力を供給する線を架線2としているが、これに限定されず、第三軌条によって電車6に電力を供給する方式であってもよい。以降の説明において、架線2および第三軌条をまとめて電力供給線と称することがある。推進制御装置1は、架線2からパンタグラフ3を介して供給される直流電力または交流電力を三相交流電力に変換し、三相交流電力をモータ5a,5bに供給する。 The propulsion control device 1 is supplied with DC power or AC power from the overhead wire 2 via the pantograph 3. Actually, a circuit breaker or the like is provided between the pantograph 3 and the propulsion control device 1, but the description is omitted because it is a general configuration and does not affect the characteristics of the present embodiment. .. In FIG. 1, the line for supplying electric power to the train 6 is the overhead line 2, but the present invention is not limited to this, and a method of supplying electric power to the train 6 by the third rail may be used. In the following description, the overhead wire 2 and the third rail may be collectively referred to as a power supply line. The propulsion control device 1 converts the DC power or AC power supplied from the overhead wire 2 via the pantograph 3 into three-phase AC power, and supplies the three-phase AC power to the motors 5a and 5b.
 コネクタ4aは、推進制御装置1とモータ5aとの間の配線を同時に脱着可能なコネクタである。コネクタ4bは、推進制御装置1とモータ5bとの間の配線を同時に脱着可能なコネクタである。モータ5aは、コネクタ4aを介して推進制御装置1から供給される三相交流電圧によって、電車6が備える図示しない車輪などを駆動する。モータ5bは、コネクタ4bを介して推進制御装置1から供給される三相交流電圧によって、電車6が備える図示しない車輪などを駆動する。モータ5a,5bは、例えば、三相誘導電動機である。以降の説明において、コネクタ4a,4bを区別しない場合はコネクタ4と称し、モータ5a,5bを区別しない場合はモータ5と称することがある。 The connector 4a is a connector to which the wiring between the propulsion control device 1 and the motor 5a can be attached and detached at the same time. The connector 4b is a connector to which the wiring between the propulsion control device 1 and the motor 5b can be detached at the same time. The motor 5a drives wheels and the like included in the train 6 by a three-phase AC voltage supplied from the propulsion control device 1 via the connector 4a. The motor 5b drives wheels and the like included in the train 6 by a three-phase AC voltage supplied from the propulsion control device 1 via the connector 4b. The motors 5a and 5b are, for example, three-phase induction motors. In the following description, when the connectors 4a and 4b are not distinguished, the connector 4 may be referred to, and when the motors 5a and 5b are not distinguished, the motor 5 may be referred to.
 推進制御装置1の構成について詳細に説明する。推進制御装置1は、電力変換部11と、電流検知部12と、制御部13と、を備える。 The configuration of the propulsion control device 1 will be described in detail. The propulsion control device 1 includes a power conversion unit 11, a current detection unit 12, and a control unit 13.
 電力変換部11は、架線2から供給される直流電力または交流電力から、複数のモータ5に供給する三相交流電力を生成する。電力変換部11は、例えば、架線2から直流電力が供給される場合はインバータの機能を有し、架線2から交流電力が供給される場合はコンバータおよびインバータの機能を有する。電力変換部11は、図示しないスイッチング素子を備え、制御部13の制御によってスイッチング素子をオンオフすることで、モータ5a,5bに供給する三相交流電力を生成する。スイッチング素子は、例えば、IGBT(Insulated Gate Bipolar Transistor)であってもよいし、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)であってもよい。 The power conversion unit 11 generates three-phase AC power to be supplied to a plurality of motors 5 from DC power or AC power supplied from the overhead wire 2. The power conversion unit 11 has, for example, an inverter function when DC power is supplied from the overhead wire 2, and a converter and an inverter function when AC power is supplied from the overhead wire 2. The power conversion unit 11 includes a switching element (not shown), and turns the switching element on and off under the control of the control unit 13 to generate three-phase AC power to be supplied to the motors 5a and 5b. The switching element may be, for example, an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
 電流検知部12は、電力変換部11から複数のモータ5に供給される三相交流電力の電流値を検知する。電流検知部12は、図1の例では、電力変換部11から複数のモータ5に供給される三相交流電力のu相、v相、およびw相の各相の電流値を検出しているが、これに限定されない。電流検知部12は、電力変換部11から複数のモータ5に供給される三相交流電力のu相、v相、およびw相のうちの2相の電流値を検知するようにしてもよい。各相の電流値を加算するとゼロになることから、電流検知部12は、u相、v相、およびw相のうち2相の電流値を検知すれば、残りの1相の電流値については演算によって求めることができる。 The current detection unit 12 detects the current value of the three-phase AC power supplied from the power conversion unit 11 to the plurality of motors 5. In the example of FIG. 1, the current detection unit 12 detects the current values of the u-phase, v-phase, and w-phase of the three-phase AC power supplied from the power conversion unit 11 to the plurality of motors 5. However, it is not limited to this. The current detection unit 12 may detect the current values of two of the u-phase, v-phase, and w-phase of the three-phase AC power supplied from the power conversion unit 11 to the plurality of motors 5. Since the current value of each phase becomes zero when added, if the current detection unit 12 detects the current value of two of the u phase, v phase, and w phase, the current value of the remaining one phase can be determined. It can be obtained by calculation.
 制御部13は、図示しない列車情報管理システムなどから取得した電車6の走行を制御するための指令値と、電流検知部12で検知された電流値と、に基づいて、電力変換部11の動作、具体的には電力変換部11が備えるスイッチング素子のオンオフを制御する。また、制御部13は、電流検知部12で検知された電流値からすべり周波数を演算する。制御部13は、すべり周波数と、前述の指令値である複数のモータ5の制御に使用されるすべり周波数指令値との差分を算出する。制御部13は、算出した差分に基づいて、推進制御装置1、すなわち電力変換部11と複数のモータ5との接続状態を判定する。 The control unit 13 operates the power conversion unit 11 based on a command value for controlling the running of the train 6 acquired from a train information management system (not shown) or the like and a current value detected by the current detection unit 12. Specifically, it controls the on / off of the switching element included in the power conversion unit 11. Further, the control unit 13 calculates the slip frequency from the current value detected by the current detection unit 12. The control unit 13 calculates the difference between the slip frequency and the slip frequency command value used for controlling the plurality of motors 5, which is the above-mentioned command value. The control unit 13 determines the connection state between the propulsion control device 1, that is, the power conversion unit 11, and the plurality of motors 5 based on the calculated difference.
 制御部13が電力変換部11と複数のモータ5との接続状態を判定する動作について、詳細に説明する。制御部13は、例えば、前述のように図示しない列車情報管理システムなどの外部から、電車6の走行を制御するための指令値として、すべり周波数指令値を取得する。制御部13は、電流検知部12で検知された電流値から演算されるすべり周波数がすべり周波数指令値に一致するように、電力変換部11の動作を制御する。なお、すべり周波数指令値については、制御部13が、外部からノッチ指令などを取得し、ノッチ指令などに基づいて演算によって求めてもよい。以降では、制御部13がすべり周波数指令値を外部から取得する場合を例にして説明する。 The operation in which the control unit 13 determines the connection state between the power conversion unit 11 and the plurality of motors 5 will be described in detail. The control unit 13 acquires a slip frequency command value as a command value for controlling the running of the train 6 from the outside such as a train information management system (not shown) as described above. The control unit 13 controls the operation of the power conversion unit 11 so that the slip frequency calculated from the current value detected by the current detection unit 12 matches the slip frequency command value. The slip frequency command value may be obtained by the control unit 13 by acquiring a notch command or the like from the outside and calculating based on the notch command or the like. Hereinafter, a case where the control unit 13 acquires the slip frequency command value from the outside will be described as an example.
 すべり周波数指令値は、図1の例では、2つのモータ5a,5bを駆動させるための指令値である。制御部13は、すべり周波数指令値に基づいて電力変換部11の動作を制御することで、電力変換部11から、2つのモータ5a,5bを駆動させるための三相交流電力を供給させる。制御部13は、電流検知部12で検知された電流値から、実際のすべり周波数を演算する。制御部13は、電流検知部12で検知された電流値の推移から、電力変換部11からモータ5に供給される三相交流電力の周波数を把握することができる。制御部13は、電力変換部11からモータ5に供給される三相交流電力の周波数、モータ5a,5bの極数などを用いて、すべり周波数を演算することができる。制御部13は、演算により求めたすべり周波数が、すべり周波数指令値に一致するように電力変換部11の動作を制御する。 In the example of FIG. 1, the slip frequency command value is a command value for driving two motors 5a and 5b. The control unit 13 controls the operation of the power conversion unit 11 based on the slip frequency command value, so that the power conversion unit 11 supplies three-phase AC power for driving the two motors 5a and 5b. The control unit 13 calculates the actual slip frequency from the current value detected by the current detection unit 12. The control unit 13 can grasp the frequency of the three-phase AC power supplied from the power conversion unit 11 to the motor 5 from the transition of the current value detected by the current detection unit 12. The control unit 13 can calculate the slip frequency by using the frequency of the three-phase AC power supplied from the power conversion unit 11 to the motor 5, the number of poles of the motors 5a and 5b, and the like. The control unit 13 controls the operation of the power conversion unit 11 so that the slip frequency obtained by calculation matches the slip frequency command value.
 ここで、電力変換部11とモータ5aまたはモータ5bとの間で接続異常があると、電力変換部11は、モータ5aまたはモータ5bに三相交流電力を供給できなくなる。接続異常とは、例えば、推進制御装置1とモータ5aとの間のコネクタ4aのコネクタ外れ、電力変換部11とモータ5aとの間の1つ以上の接続線での欠相、推進制御装置1とモータ5bとの間のコネクタ4bのコネクタ外れ、電力変換部11とモータ5bとの間の1つ以上の接続線での欠相などである。 Here, if there is a connection abnormality between the power conversion unit 11 and the motor 5a or the motor 5b, the power conversion unit 11 cannot supply the three-phase AC power to the motor 5a or the motor 5b. Connection abnormalities include, for example, disconnection of the connector 4a between the propulsion control device 1 and the motor 5a, phase loss at one or more connection lines between the power conversion unit 11 and the motor 5a, and propulsion control device 1. The connector of the connector 4b between the motor 5b and the motor 5b is disconnected, and the phase is open at one or more connecting lines between the power conversion unit 11 and the motor 5b.
 電力変換部11とモータ5aまたはモータ5bとの間で接続異常が発生すると、電流検知部12で検知された電流値から制御部13によって演算されるすべり周波数は、すべり周波数指令値よりも大きくなってしまう。図2は、実施の形態1に係る推進制御装置1において、電力変換部11とモータ5aまたはモータ5bとの間で接続異常が発生した場合の、制御部13が取得するすべり周波数指令値と、制御部13で演算される実際のすべり周波数との差異の例を示す図である。図2において、横軸は電車6の速度すなわち車両速度を示し、縦軸は周波数を示す。また、図2において、実線はすべり周波数指令値を示し、破線は接続異常発生時のすべり周波数を示している。また、図2において、縦方向に記載された点線は、背景技術で説明した特許文献1において、PWM変調率が100%になるときの車両速度との位置関係を示している。 When a connection abnormality occurs between the power conversion unit 11 and the motor 5a or the motor 5b, the slip frequency calculated by the control unit 13 from the current value detected by the current detection unit 12 becomes larger than the slip frequency command value. It ends up. FIG. 2 shows a slip frequency command value acquired by the control unit 13 when a connection abnormality occurs between the power conversion unit 11 and the motor 5a or the motor 5b in the propulsion control device 1 according to the first embodiment. It is a figure which shows the example of the difference from the actual slip frequency calculated by the control unit 13. In FIG. 2, the horizontal axis represents the speed of the train 6, that is, the vehicle speed, and the vertical axis represents the frequency. Further, in FIG. 2, the solid line indicates the slip frequency command value, and the broken line indicates the slip frequency when a connection abnormality occurs. Further, in FIG. 2, the dotted line described in the vertical direction indicates the positional relationship with the vehicle speed when the PWM modulation rate reaches 100% in Patent Document 1 described in the background art.
 制御部13は、前述のように、電流検知部12で検知された電流値から演算されるすべり周波数がすべり周波数指令値に一致するように電力変換部11の動作を制御している。そのため、電力変換部11とモータ5aおよびモータ5bとの間で接続異常がない場合、実際のすべり周波数は、すべり周波数指令値に一致するように推移する。一方、電力変換部11とモータ5aまたはモータ5bとの間で接続異常が発生した場合、電力変換部11から供給される三相交流電力は2つのモータ5を駆動させる電力量ではない。そのため、制御部13は、電流検知部12で検知された電流値から演算されるすべり周波数を、2つのモータ5を駆動するためのすべり周波数指令値に一致させるように電力変換部11の動作を制御することができない。この結果、電力変換部11とモータ5aまたはモータ5bとの間で接続異常が発生した場合、電流検知部12で検知された電流値から演算されるすべり周波数と、すべり周波数指令値との間に差異が発生する。 As described above, the control unit 13 controls the operation of the power conversion unit 11 so that the slip frequency calculated from the current value detected by the current detection unit 12 matches the slip frequency command value. Therefore, when there is no connection abnormality between the power conversion unit 11 and the motor 5a and the motor 5b, the actual slip frequency changes so as to match the slip frequency command value. On the other hand, when a connection abnormality occurs between the power conversion unit 11 and the motor 5a or the motor 5b, the three-phase AC power supplied from the power conversion unit 11 is not the amount of power that drives the two motors 5. Therefore, the control unit 13 operates the power conversion unit 11 so that the slip frequency calculated from the current value detected by the current detection unit 12 matches the slip frequency command value for driving the two motors 5. I can't control it. As a result, when a connection abnormality occurs between the power conversion unit 11 and the motor 5a or the motor 5b, between the slip frequency calculated from the current value detected by the current detection unit 12 and the slip frequency command value. There is a difference.
 そのため、制御部13は、電流検知部12で検知された電流値から演算されるすべり周波数と、すべり周波数指令値との間の差分を算出し、差分が規定された閾値以上の場合、電力変換部11とモータ5aまたはモータ5bとの間で接続異常が発生したと判定することができる。算出された差分と比較されるための閾値を、第1の閾値とする。なお、制御部13は、突発的に差分が第1の閾値以上になることによる誤判定を防止するため、差分が第1の閾値以上になる継続期間が規定された期間以上になった場合、電力変換部11とモータ5aまたはモータ5bとの間で接続異常が発生したと判定してもよい。差分が第1の閾値以上になる継続期間と比較されるための閾値を、第2の閾値とする。 Therefore, the control unit 13 calculates the difference between the slip frequency calculated from the current value detected by the current detection unit 12 and the slip frequency command value, and if the difference is equal to or greater than the specified threshold value, power conversion is performed. It can be determined that a connection abnormality has occurred between the unit 11 and the motor 5a or the motor 5b. The threshold value for comparison with the calculated difference is defined as the first threshold value. In addition, in order to prevent erroneous determination due to the difference suddenly becoming equal to or greater than the first threshold value, the control unit 13 determines that the duration of the difference being equal to or greater than the first threshold value exceeds a specified period. It may be determined that a connection abnormality has occurred between the power conversion unit 11 and the motor 5a or the motor 5b. The threshold value for comparison with the duration at which the difference is equal to or greater than the first threshold value is defined as the second threshold value.
 図3は、実施の形態1に係る推進制御装置1の動作を示すフローチャートである。推進制御装置1において、電力変換部11は、制御部13の制御によって、架線2から供給される直流電力または交流電力から、複数のモータ5に供給する三相交流電力を生成する(ステップS1)。電流検知部12は、電力変換部11から複数のモータ5に供給される三相交流電力の電流値を検知する(ステップS2)。制御部13は、電流検知部12で検知された電流値、およびすべり周波数指令値を用いて、電力変換部11と複数のモータ5との接続状態を判定する(ステップS3)。 FIG. 3 is a flowchart showing the operation of the propulsion control device 1 according to the first embodiment. In the propulsion control device 1, the power conversion unit 11 generates three-phase AC power to be supplied to the plurality of motors 5 from the DC power or AC power supplied from the overhead wire 2 under the control of the control unit 13 (step S1). .. The current detection unit 12 detects the current value of the three-phase AC power supplied from the power conversion unit 11 to the plurality of motors 5 (step S2). The control unit 13 determines the connection state between the power conversion unit 11 and the plurality of motors 5 by using the current value detected by the current detection unit 12 and the slip frequency command value (step S3).
 図4は、実施の形態1に係る推進制御装置1が備える制御部13の動作を示すフローチャートである。図4に示すフローチャートは、図3に示すフローチャートのステップS3の動作を詳細にしたものである。制御部13は、電流検知部12から、電流検知部12で検知された電流値を取得する(ステップS11)。制御部13は、電流検知部12で検知された電流値からすべり周波数を演算する(ステップS12)。制御部13は、演算により求めたすべり周波数と、電力変換部11の動作に使用されるすべり周波数指令値との差分を算出する(ステップS13)。制御部13は、算出した差分が第1の閾値以上か否かを判定する(ステップS14)。制御部13は、算出した差分が第1の閾値未満の場合(ステップS14:No)、ステップS11の動作に戻る。制御部13は、算出した差分が第1の閾値以上の場合(ステップS14:Yes)、算出した差分が第1の閾値以上の継続期間が第2の閾値以上か否かを判定する(ステップS15)。 FIG. 4 is a flowchart showing the operation of the control unit 13 included in the propulsion control device 1 according to the first embodiment. The flowchart shown in FIG. 4 is a detailed operation of step S3 of the flowchart shown in FIG. The control unit 13 acquires the current value detected by the current detection unit 12 from the current detection unit 12 (step S11). The control unit 13 calculates the slip frequency from the current value detected by the current detection unit 12 (step S12). The control unit 13 calculates the difference between the slip frequency obtained by calculation and the slip frequency command value used for the operation of the power conversion unit 11 (step S13). The control unit 13 determines whether or not the calculated difference is equal to or greater than the first threshold value (step S14). When the calculated difference is less than the first threshold value (step S14: No), the control unit 13 returns to the operation of step S11. When the calculated difference is equal to or greater than the first threshold value (step S14: Yes), the control unit 13 determines whether or not the duration of the calculated difference equal to or greater than the first threshold value is equal to or greater than the second threshold value (step S15). ).
 制御部13は、算出した差分が第1の閾値以上の継続期間が第2の閾値未満の場合(ステップS15:No)、ステップS11の動作に戻る。制御部13は、算出した差分が第1の閾値以上の継続期間が第2の閾値以上の場合(ステップS15:Yes)、電力変換部11とモータ5aまたはモータ5bとの間で接続異常が発生したと判定する(ステップS16)。制御部13は、電力変換部11とモータ5aまたはモータ5bとの間で接続異常が発生したと判定した判定結果を出力する(ステップS17)。制御部13は、例えば、電車6の図示しない運転台に判定結果を出力してもよいし、図示しない地上装置に判定結果を出力してもよい。このように、実施の形態1において、制御部13は、算出した差分が第1の閾値以上であって、算出した差分が第1の閾値以上の継続期間が第2の閾値以上の場合、電力変換部11と複数のモータ5のうち少なくとも1つのモータ5との間の接続に異常があると判定する。 When the calculated difference is equal to or greater than the first threshold value and the duration is less than the second threshold value (step S15: No), the control unit 13 returns to the operation of step S11. When the calculated difference is equal to or greater than the first threshold value and the duration is equal to or greater than the second threshold value (step S15: Yes), a connection abnormality occurs between the power conversion unit 11 and the motor 5a or the motor 5b. It is determined that this has been done (step S16). The control unit 13 outputs a determination result of determining that a connection abnormality has occurred between the power conversion unit 11 and the motor 5a or the motor 5b (step S17). For example, the control unit 13 may output the determination result to a driver's cab (not shown) of the train 6, or may output the determination result to a ground device (not shown). As described above, in the first embodiment, when the calculated difference is equal to or greater than the first threshold value and the duration of the calculated difference equal to or greater than the first threshold value is equal to or greater than the second threshold value, the control unit 13 powers. It is determined that there is an abnormality in the connection between the conversion unit 11 and at least one of the plurality of motors 5.
 図1では、制御部13が、推進制御装置1に接続されるモータ5が2つの場合において、電力変換部11とモータ5aまたはモータ5bとの間で接続異常が発生したか否かを判定する動作について説明したが、一例であり、これに限定されない。実際には、制御部13は、本実施の動作を行うことによって、推進制御装置1に接続されるモータ5の数がN個の場合、電力変換部11とN-1個までのモータ5との間で接続異常が発生したか否かを判定することができる。具体的には、推進制御装置1に接続されるモータ5の数が4個の場合、制御部13は、電力変換部11と、1個または2個または3個のモータ5との間で接続異常が発生したか否かを判定することができる。また、推進制御装置1に接続される複数のモータ5のうち、例えば、1つのモータ5の接続異常までは許容する場合、第1の閾値を適宜変更する、具体的には、1つのモータ5の接続異常も許容しない場合よりも第1の閾値を大きくする。これにより、制御部13は、第1の閾値に応じて接続異常の判定を行うことができる。なお、本実施の動作では、制御部13は、電力変換部11と、推進制御装置1に接続される全てのモータ5との間で接続異常が発生した場合には、接続異常を検知できない。 In FIG. 1, the control unit 13 determines whether or not a connection abnormality has occurred between the power conversion unit 11 and the motor 5a or the motor 5b when there are two motors 5 connected to the propulsion control device 1. The operation has been described, but it is an example and is not limited to this. Actually, when the number of motors 5 connected to the propulsion control device 1 is N by performing the operation of this execution, the control unit 13 includes the power conversion unit 11 and the motors 5 up to N-1. It is possible to determine whether or not a connection abnormality has occurred between the two. Specifically, when the number of motors 5 connected to the propulsion control device 1 is 4, the control unit 13 is connected between the power conversion unit 11 and one, two, or three motors 5. It is possible to determine whether or not an abnormality has occurred. Further, among the plurality of motors 5 connected to the propulsion control device 1, for example, when allowing a connection abnormality of one motor 5, the first threshold value is appropriately changed, specifically, one motor 5. The first threshold value is made larger than that in the case where the connection abnormality of is not tolerated. As a result, the control unit 13 can determine the connection abnormality according to the first threshold value. In this operation, the control unit 13 cannot detect the connection abnormality when a connection abnormality occurs between the power conversion unit 11 and all the motors 5 connected to the propulsion control device 1.
 つづいて、推進制御装置1のハードウェア構成について説明する。推進制御装置1において、電力変換部11は、前述のように、インバータ、またはコンバータおよびインバータの機能を有する電力変換回路である。電流検知部12は、三相交流電力の電流値を検出可能なセンサである。制御部13は処理回路により実現される。処理回路は、メモリに格納されるプログラムを実行するプロセッサおよびメモリであってもよいし、専用のハードウェアであってもよい。 Next, the hardware configuration of the propulsion control device 1 will be described. In the propulsion control device 1, the power conversion unit 11 is an inverter, or a power conversion circuit having a converter and an inverter function, as described above. The current detection unit 12 is a sensor capable of detecting the current value of the three-phase AC power. The control unit 13 is realized by a processing circuit. The processing circuit may be a processor and memory for executing a program stored in the memory, or may be dedicated hardware.
 図5は、実施の形態1に係る推進制御装置1が備える処理回路をプロセッサおよびメモリで構成する場合の例を示す図である。処理回路がプロセッサ91およびメモリ92で構成される場合、推進制御装置1の処理回路の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアまたはファームウェアはプログラムとして記述され、メモリ92に格納される。処理回路では、メモリ92に記憶されたプログラムをプロセッサ91が読み出して実行することにより、各機能を実現する。すなわち、処理回路は、推進制御装置1の処理が結果的に実行されることになるプログラムを格納するためのメモリ92を備える。また、これらのプログラムは、推進制御装置1の手順および方法をコンピュータに実行させるものであるともいえる。 FIG. 5 is a diagram showing an example in which the processing circuit included in the propulsion control device 1 according to the first embodiment is configured by a processor and a memory. When the processing circuit is composed of the processor 91 and the memory 92, each function of the processing circuit of the propulsion control device 1 is realized by software, firmware, or a combination of software and firmware. The software or firmware is written as a program and stored in the memory 92. In the processing circuit, each function is realized by the processor 91 reading and executing the program stored in the memory 92. That is, the processing circuit includes a memory 92 for storing a program in which the processing of the propulsion control device 1 is eventually executed. It can also be said that these programs cause the computer to execute the procedure and method of the propulsion control device 1.
 ここで、プロセッサ91は、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、またはDSP(Digital Signal Processor)などであってもよい。また、メモリ92には、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)などの、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、またはDVD(Digital Versatile Disc)などが該当する。 Here, the processor 91 may be a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like. Further, the memory 92 includes, for example, non-volatile or volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), and EEPROM (registered trademark) (Electrically EPROM). Semiconductor memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), etc. are applicable.
 図6は、実施の形態1に係る推進制御装置1が備える処理回路を専用のハードウェアで構成する場合の例を示す図である。処理回路が専用のハードウェアで構成される場合、図6に示す処理回路93は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。推進制御装置1の各機能を機能別に処理回路93で実現してもよいし、各機能をまとめて処理回路93で実現してもよい。 FIG. 6 is a diagram showing an example in which the processing circuit included in the propulsion control device 1 according to the first embodiment is configured by dedicated hardware. When the processing circuit is composed of dedicated hardware, the processing circuit 93 shown in FIG. 6 includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), and the like. FPGA (Field Programmable Gate Array) or a combination of these is applicable. Each function of the propulsion control device 1 may be realized by the processing circuit 93 for each function, or each function may be collectively realized by the processing circuit 93.
 なお、推進制御装置1の各機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。このように、処理回路は、専用のハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現することができる。 Note that some of the functions of the propulsion control device 1 may be realized by dedicated hardware, and some may be realized by software or firmware. As described above, the processing circuit can realize each of the above-mentioned functions by the dedicated hardware, software, firmware, or a combination thereof.
 以上説明したように、本実施の形態によれば、推進制御装置1では、制御部13は、電流検知部12で検出された電流値からすべり周波数を演算する。制御部13は、演算したすべり周波数と、モータ5a,5bの駆動を制御するための指令値であって電力変換部11の動作を制御するためのすべり周波数指令値との差分を算出する。制御部13は、算出した差分が第1の閾値以上になる継続期間が第2の閾値以上になった場合、推進制御装置1、すなわち電力変換部11とモータ5aまたはモータ5bとの間で接続異常が発生したと判定することとした。これにより、制御部13は、電車6の走行速度に係わらず、複数のモータ5と複数のモータ5に三相交流電力を供給する電力変換部11との間の接続異常を検知することができる。背景技術に記載した特許文献1では、図2に示すPWM変調率100%に至る速度以下の範囲でのみ、接続異常の発生を判定できた。これに対して、制御部13は、電車6の速度がPWM変調率100%に至る速度を超えた場合でも、接続異常の発生を判定することができる。 As described above, according to the present embodiment, in the propulsion control device 1, the control unit 13 calculates the slip frequency from the current value detected by the current detection unit 12. The control unit 13 calculates the difference between the calculated slip frequency and the slip frequency command value for controlling the operation of the power conversion unit 11, which is a command value for controlling the driving of the motors 5a and 5b. The control unit 13 connects the propulsion control device 1, that is, the power conversion unit 11, and the motor 5a or the motor 5b when the duration during which the calculated difference becomes the first threshold value or more becomes the second threshold value or more. It was decided that an abnormality had occurred. As a result, the control unit 13 can detect a connection abnormality between the plurality of motors 5 and the power conversion unit 11 that supplies the three-phase AC power to the plurality of motors 5, regardless of the traveling speed of the train 6. .. In Patent Document 1 described in the background technique, it was possible to determine the occurrence of a connection abnormality only in the range of the speed or less reaching the PWM modulation rate of 100% shown in FIG. On the other hand, the control unit 13 can determine the occurrence of a connection abnormality even when the speed of the train 6 exceeds the speed at which the PWM modulation rate reaches 100%.
 なお、本実施の形態では、推進制御装置1を鉄道車両である電車6に搭載する場合について説明したが、これに限定されない。推進制御装置1については、複数のモータを駆動する装置などに適用可能である。 In the present embodiment, the case where the propulsion control device 1 is mounted on the train 6 which is a railroad vehicle has been described, but the present invention is not limited to this. The propulsion control device 1 can be applied to a device for driving a plurality of motors.
実施の形態2.
 実施の形態1では、制御部13は、算出した差分が第1の閾値以上になる継続期間が第2の閾値以上の場合、推進制御装置1、すなわち電力変換部11とモータ5aまたはモータ5bとの間で接続異常が発生したと判定していた。実施の形態2では、制御部13は、算出した差分が第1の閾値以上になる継続期間が第2の閾値未満の場合でも、算出した差分が第1の閾値以上になった回数が規定された回数に達した場合、推進制御装置1、すなわち電力変換部11とモータ5aまたはモータ5bとの間で接続異常が発生したと判定する。または、制御部13は、算出した差分が第1の閾値以上になる継続期間が第2の閾値未満の場合でも、算出した差分が第1の閾値以上になった回数が規定された回数に達した場合、推進制御装置1、すなわち電力変換部11とモータ5aまたはモータ5bとの間で接続異常になる予兆があると判定する。
Embodiment 2.
In the first embodiment, when the calculated difference is equal to or greater than the first threshold value and the duration is equal to or greater than the second threshold value, the control unit 13 includes the propulsion control device 1, that is, the power conversion unit 11 and the motor 5a or the motor 5b. It was determined that a connection error had occurred between the two. In the second embodiment, the control unit 13 defines the number of times the calculated difference becomes equal to or greater than the first threshold value even when the duration during which the calculated difference becomes equal to or greater than the first threshold value is less than the second threshold value. When the number of times is reached, it is determined that a connection abnormality has occurred between the propulsion control device 1, that is, the power conversion unit 11, and the motor 5a or the motor 5b. Alternatively, the control unit 13 reaches the specified number of times the calculated difference becomes equal to or greater than the first threshold value even when the duration of the calculated difference becoming equal to or greater than the first threshold value is less than the second threshold value. If this is the case, it is determined that there is a sign that the connection between the propulsion control device 1, that is, the power conversion unit 11, and the motor 5a or the motor 5b becomes abnormal.
 実施の形態2において、推進制御装置1の構成は、図1に示す実施の形態1のときの推進制御装置1の構成と同様である。 In the second embodiment, the configuration of the propulsion control device 1 is the same as the configuration of the propulsion control device 1 in the first embodiment shown in FIG.
 図7は、実施の形態2に係る推進制御装置1が備える制御部13の動作を示すフローチャートである。図7に示すフローチャートにおいて、ステップS21からステップS24までの動作は、実施の形態1の図4に示すフローチャートのステップS11からステップS14までの動作と同様である。制御部13は、算出した差分が第1の閾値以上の場合(ステップS24:Yes)、算出した差分が第1の閾値以上の継続期間が第2の閾値以上か否かを判定する(ステップS25)。制御部13は、算出した差分が第1の閾値以上の継続期間が第2の閾値未満の場合(ステップS25:No)、算出した差分が第1の閾値以上になった回数が第3の閾値以上になったか否かを判定する(ステップS26)。制御部13は、算出した差分が第1の閾値以上になった回数が第3の閾値以上になっていない場合(ステップS26:No)、ステップS21の動作に戻る。 FIG. 7 is a flowchart showing the operation of the control unit 13 included in the propulsion control device 1 according to the second embodiment. In the flowchart shown in FIG. 7, the operations from step S21 to step S24 are the same as the operations from step S11 to step S14 of the flowchart shown in FIG. 4 of the first embodiment. When the calculated difference is equal to or greater than the first threshold value (step S24: Yes), the control unit 13 determines whether or not the duration of the calculated difference equal to or greater than the first threshold value is equal to or greater than the second threshold value (step S25). ). In the control unit 13, when the duration of the calculated difference equal to or greater than the first threshold value is less than the second threshold value (step S25: No), the number of times the calculated difference becomes equal to or greater than the first threshold value is the third threshold value. It is determined whether or not the above is achieved (step S26). When the number of times the calculated difference is equal to or greater than the first threshold value is not equal to or greater than the third threshold value (step S26: No), the control unit 13 returns to the operation of step S21.
 制御部13は、算出した差分が第1の閾値以上になった回数が第3の閾値以上になった場合(ステップS26:Yes)、電力変換部11とモータ5aまたはモータ5bとの間で接続異常が発生したと判定する、または電力変換部11とモータ5aまたはモータ5bとの間で接続異常になる予兆があると判定する(ステップS27)。制御部13は、算出した差分が第1の閾値以上の継続期間が第2の閾値以上の場合(ステップS25:Yes)、電力変換部11とモータ5aまたはモータ5bとの間で接続異常が発生したと判定する(ステップS28)。制御部13は、ステップS27またはステップS28の判定結果を出力する(ステップS29)。このように、実施の形態2において、制御部13は、算出した差分が第1の閾値以上であって、算出した差分が第1の閾値以上の継続期間が第2の閾値未満になった回数が第3の閾値に達した場合、電力変換部11と複数のモータ5のうち少なくとも1つのモータ5との間の接続に異常がある、または電力変換部11と複数のモータ5のうち少なくとも1つのモータ5との間で接続異常になる予兆があると判定する。 When the number of times the calculated difference becomes equal to or greater than the first threshold value becomes equal to or greater than the third threshold value (step S26: Yes), the control unit 13 connects the power conversion unit 11 and the motor 5a or the motor 5b. It is determined that an abnormality has occurred, or it is determined that there is a sign that a connection abnormality has occurred between the power conversion unit 11 and the motor 5a or the motor 5b (step S27). When the calculated difference is equal to or greater than the first threshold value and the duration is equal to or greater than the second threshold value (step S25: Yes), a connection abnormality occurs between the power conversion unit 11 and the motor 5a or the motor 5b. It is determined that this has been done (step S28). The control unit 13 outputs the determination result of step S27 or step S28 (step S29). As described above, in the second embodiment, the control unit 13 is the number of times that the calculated difference is equal to or greater than the first threshold value and the duration of the calculated difference being equal to or greater than the first threshold value is less than the second threshold value. When the third threshold value is reached, there is an abnormality in the connection between the power conversion unit 11 and at least one of the plurality of motors 5, or at least one of the power conversion unit 11 and the plurality of motors 5. It is determined that there is a sign that the connection with the two motors 5 becomes abnormal.
 以上説明したように、本実施の形態によれば、推進制御装置1では、制御部13は、電流検知部12で検出された電流値からすべり周波数を演算する。制御部13は、演算したすべり周波数と、モータ5a,5bの駆動を制御するための指令値であって電力変換部11の動作を制御するためのすべり周波数指令値との差分を算出する。制御部13は、算出した差分が第1の閾値以上になる継続期間が第2の閾値未満の場合でも、算出した差分が第1の閾値以上になった回数が規定された回数に達した場合、電力変換部11とモータ5aまたはモータ5bとの間で接続異常が発生した、または電力変換部11とモータ5aまたはモータ5bとの間で接続異常になる予兆があると判定することとした。これにより、制御部13は、複数のモータ5と複数のモータ5に三相交流電力を供給する電力変換部11との間において、現時点では接続異常に至っていなくても、接続異常の予兆、すなわち将来的に接続異常になることが予想される部分を検知することができる。 As described above, according to the present embodiment, in the propulsion control device 1, the control unit 13 calculates the slip frequency from the current value detected by the current detection unit 12. The control unit 13 calculates the difference between the calculated slip frequency and the slip frequency command value for controlling the operation of the power conversion unit 11, which is a command value for controlling the driving of the motors 5a and 5b. The control unit 13 determines that the number of times the calculated difference is equal to or greater than the first threshold reaches a specified number of times even when the duration of the calculated difference being equal to or greater than the first threshold is less than the second threshold. It is determined that there is a sign that a connection abnormality has occurred between the power conversion unit 11 and the motor 5a or the motor 5b, or that there is a sign that the connection abnormality has occurred between the power conversion unit 11 and the motor 5a or the motor 5b. As a result, the control unit 13 is a sign of a connection abnormality between the plurality of motors 5 and the power conversion unit 11 that supplies the three-phase AC power to the plurality of motors 5, even if the connection abnormality has not occurred at this time. That is, it is possible to detect a part that is expected to have a connection abnormality in the future.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 推進制御装置、2 架線、3 パンタグラフ、4a,4b コネクタ、5a,5b モータ、6 電車、11 電力変換部、12 電流検知部、13 制御部。 1 propulsion control device, 2 overhead wire, 3 pantograph, 4a, 4b connector, 5a, 5b motor, 6 train, 11 power conversion unit, 12 current detection unit, 13 control unit.

Claims (8)

  1.  車両に搭載される推進制御装置であって、
     電力供給線から供給される直流電力または交流電力から、複数のモータに供給する三相交流電力を生成する電力変換部と、
     前記電力変換部から前記複数のモータに供給される前記三相交流電力の電流値を検知する電流検知部と、
     前記電流検知部で検知された電流値からすべり周波数を演算し、前記すべり周波数と前記複数のモータの制御に使用されるすべり周波数指令値との差分を算出し、前記差分に基づいて、前記電力変換部と前記複数のモータとの接続状態を判定する制御部と、
     を備えることを特徴とする推進制御装置。
    A propulsion control device mounted on a vehicle
    A power converter that generates three-phase AC power supplied to multiple motors from DC power or AC power supplied from the power supply line, and
    A current detection unit that detects the current value of the three-phase AC power supplied from the power conversion unit to the plurality of motors, and a current detection unit.
    The slip frequency is calculated from the current value detected by the current detection unit, the difference between the slip frequency and the slip frequency command value used for controlling the plurality of motors is calculated, and the power is based on the difference. A control unit that determines the connection state between the conversion unit and the plurality of motors,
    A propulsion control device characterized by being provided with.
  2.  前記制御部は、前記差分が第1の閾値以上であって前記差分が前記第1の閾値以上の継続期間が第2の閾値以上の場合、前記電力変換部と前記複数のモータのうち少なくとも1つのモータとの間の接続に異常があると判定する、
     ことを特徴とする請求項1に記載の推進制御装置。
    When the difference is equal to or greater than the first threshold value and the duration of the difference equal to or greater than the first threshold value is equal to or greater than the second threshold value, the control unit is at least one of the power conversion unit and the plurality of motors. Judge that there is an abnormality in the connection between one motor,
    The propulsion control device according to claim 1.
  3.  前記制御部は、前記差分が第1の閾値以上であって前記差分が前記第1の閾値以上の継続期間が第2の閾値未満になった回数が第3の閾値に達した場合、前記電力変換部と前記複数のモータのうち少なくとも1つのモータとの間の接続に異常がある、または前記電力変換部と前記複数のモータのうち少なくとも1つのモータとの間で接続異常になる予兆があると判定する、
     ことを特徴とする請求項1に記載の推進制御装置。
    When the difference reaches the first threshold value or more and the number of times the duration of the difference equal to or greater than the first threshold value becomes less than the second threshold value, the control unit reaches the third threshold value. There is a sign that there is an abnormality in the connection between the conversion unit and at least one of the plurality of motors, or that there is an abnormality in the connection between the power conversion unit and at least one of the plurality of motors. Judge,
    The propulsion control device according to claim 1.
  4.  前記制御部は、判定結果を出力する、
     ことを特徴とする請求項2または3に記載の推進制御装置。
    The control unit outputs a determination result.
    The propulsion control device according to claim 2 or 3.
  5.  電力変換部が、車両に搭載される推進制御装置の推進制御方法であって、
     電力供給線から供給される直流電力または交流電力から、複数のモータに供給する三相交流電力を生成する第1のステップと、
     電流検知部が、前記電力変換部から前記複数のモータに供給される前記三相交流電力の電流値を検知する第2のステップと、
     制御部が、前記電流検知部で検知された電流値からすべり周波数を演算し、前記すべり周波数と前記複数のモータの制御に使用されるすべり周波数指令値との差分を算出し、前記差分に基づいて、前記電力変換部と前記複数のモータとの接続状態を判定する第3のステップと、
     を含むことを特徴とする推進制御方法。
    The power conversion unit is a propulsion control method for a propulsion control device mounted on a vehicle.
    The first step of generating three-phase AC power to be supplied to a plurality of motors from DC power or AC power supplied from a power supply line, and
    The second step in which the current detection unit detects the current value of the three-phase AC power supplied from the power conversion unit to the plurality of motors, and
    The control unit calculates the slip frequency from the current value detected by the current detection unit, calculates the difference between the slip frequency and the slip frequency command value used for controlling the plurality of motors, and based on the difference. The third step of determining the connection state between the power conversion unit and the plurality of motors, and
    A propulsion control method characterized by including.
  6.  前記第3のステップにおいて、前記制御部は、前記差分が第1の閾値以上であって前記差分が前記第1の閾値以上の継続期間が第2の閾値以上の場合、前記電力変換部と前記複数のモータのうち少なくとも1つのモータとの間の接続に異常があると判定する、
     ことを特徴とする請求項5に記載の推進制御方法。
    In the third step, when the difference is equal to or greater than the first threshold value and the duration of the difference equal to or greater than the first threshold value is equal to or greater than the second threshold value, the control unit and the power conversion unit. Judge that there is an abnormality in the connection with at least one of the plurality of motors.
    The propulsion control method according to claim 5, wherein the propulsion control method is characterized.
  7.  前記第3のステップにおいて、前記制御部は、前記差分が第1の閾値以上であって前記差分が前記第1の閾値以上の継続期間が第2の閾値未満になった回数が第3の閾値に達した場合、前記電力変換部と前記複数のモータのうち少なくとも1つのモータとの間の接続に異常がある、または前記電力変換部と前記複数のモータのうち少なくとも1つのモータとの間で接続異常になる予兆があると判定する、
     ことを特徴とする請求項5に記載の推進制御方法。
    In the third step, the control unit has a third threshold value in which the number of times the difference is equal to or greater than the first threshold value and the duration of the difference equal to or greater than the first threshold value is less than the second threshold value. When the value is reached, there is an abnormality in the connection between the power conversion unit and at least one of the plurality of motors, or between the power conversion unit and at least one of the plurality of motors. Judge that there is a sign of connection abnormality,
    The propulsion control method according to claim 5, wherein the propulsion control method is characterized.
  8.  前記第3のステップにおいて、前記制御部は、判定結果を出力する、
     ことを特徴とする請求項6または7に記載の推進制御方法。
    In the third step, the control unit outputs a determination result.
    The propulsion control method according to claim 6 or 7.
PCT/JP2019/046589 2019-11-28 2019-11-28 Propulsion control device and propulsion control method WO2021106149A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/046589 WO2021106149A1 (en) 2019-11-28 2019-11-28 Propulsion control device and propulsion control method
DE112019007918.2T DE112019007918T5 (en) 2019-11-28 2019-11-28 PROPULSION CONTROL DEVICE AND PROPULSION CONTROL METHOD
JP2021561072A JP7038924B2 (en) 2019-11-28 2019-11-28 Propulsion control device and propulsion control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/046589 WO2021106149A1 (en) 2019-11-28 2019-11-28 Propulsion control device and propulsion control method

Publications (1)

Publication Number Publication Date
WO2021106149A1 true WO2021106149A1 (en) 2021-06-03

Family

ID=76128884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046589 WO2021106149A1 (en) 2019-11-28 2019-11-28 Propulsion control device and propulsion control method

Country Status (3)

Country Link
JP (1) JP7038924B2 (en)
DE (1) DE112019007918T5 (en)
WO (1) WO2021106149A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023281700A1 (en) * 2021-07-08 2023-01-12 三菱電機株式会社 Control device, electrical railway vehicle, and control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06245301A (en) * 1993-02-17 1994-09-02 Hitachi Ltd Open-phase detection system in controller for electric vehicle
WO2006114817A1 (en) * 2005-04-01 2006-11-02 Mitsubishi Denki Kabushiki Kaisha Electric car control device
JP2011147317A (en) * 2010-01-18 2011-07-28 Toshiba Mitsubishi-Electric Industrial System Corp Monitoring device of ac motor
JP2017135790A (en) * 2016-01-26 2017-08-03 株式会社日立製作所 Power conversion device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105493395B (en) 2013-08-07 2018-04-13 株式会社东芝 Vehicle console device and rolling stock

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06245301A (en) * 1993-02-17 1994-09-02 Hitachi Ltd Open-phase detection system in controller for electric vehicle
WO2006114817A1 (en) * 2005-04-01 2006-11-02 Mitsubishi Denki Kabushiki Kaisha Electric car control device
JP2011147317A (en) * 2010-01-18 2011-07-28 Toshiba Mitsubishi-Electric Industrial System Corp Monitoring device of ac motor
JP2017135790A (en) * 2016-01-26 2017-08-03 株式会社日立製作所 Power conversion device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023281700A1 (en) * 2021-07-08 2023-01-12 三菱電機株式会社 Control device, electrical railway vehicle, and control method

Also Published As

Publication number Publication date
DE112019007918T5 (en) 2022-09-08
JP7038924B2 (en) 2022-03-18
JPWO2021106149A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
US8228008B2 (en) Motor controlling apparatus
JP5621598B2 (en) Motor control device and electric power steering device
JP4289458B2 (en) Electric power steering control device
US11387766B2 (en) Control circuit for electric power converter
US8878477B2 (en) Electric motor driving apparatus having failure detection circuit, and failure detection method for the electric motor driving apparatus having failure detection circuit
CN110417314B (en) Motor control device and electric power steering device
JPH07227086A (en) Failure detection system of inverter
JP4921883B2 (en) Electric vehicle control device
JP7038924B2 (en) Propulsion control device and propulsion control method
CN106961237B (en) Motor control device and electric power steering device including the same
JP6983305B2 (en) Vehicle control device
JP6851504B2 (en) Electric vehicle control device
CN114499353B (en) Control device for AC rotary electric machine, electric brake device for vehicle, and control method for AC rotary electric machine
JP6854925B2 (en) Electric vehicle control device
US11424705B2 (en) Electric-vehicle propulsion control system
JP2004096828A (en) Electric vehicle controller
TW201536601A (en) Electric vehicle control device
WO2024057708A1 (en) Electric power conversion device and drive device
JP7466778B2 (en) MOTOR CONTROL DEVICE, ELECTRIC POWER STEERING DEVICE, AND MOTOR CONTROL METHOD
JP2012065380A (en) Motor control apparatus
JP7047056B2 (en) Motor control device
US20240204710A1 (en) Power conversion device and drive device
JP4141654B2 (en) Control device for linear induction motor for railway vehicle drive
JP2020198765A (en) Motor speed detector and inverter device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954219

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561072

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19954219

Country of ref document: EP

Kind code of ref document: A1