WO2021100733A1 - Laminate and use thereof - Google Patents

Laminate and use thereof Download PDF

Info

Publication number
WO2021100733A1
WO2021100733A1 PCT/JP2020/042895 JP2020042895W WO2021100733A1 WO 2021100733 A1 WO2021100733 A1 WO 2021100733A1 JP 2020042895 W JP2020042895 W JP 2020042895W WO 2021100733 A1 WO2021100733 A1 WO 2021100733A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminate
layer
resin
base material
temperature
Prior art date
Application number
PCT/JP2020/042895
Other languages
French (fr)
Japanese (ja)
Inventor
康則 岡田
大倉 徹雄
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2021558410A priority Critical patent/JP7230237B2/en
Publication of WO2021100733A1 publication Critical patent/WO2021100733A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to a laminate containing a poly (3-hydroxybutyrate) resin and its use.
  • Patent Document 1 Various types of such biodegradable plastics are known (Patent Document 1), and among them, poly (3-hydroxybutyrate) -based resins are energy storage substances in the cells of many microbial species. It is a thermoplastic polyester that is produced and accumulated as a material, and since it is a material that can undergo biodegradation not only in soil but also in seawater, it is attracting attention as a material that solves the above problems.
  • the laminate produced by laminating a poly (3-hydroxybutyrate) resin to a biodegradable base material such as paper has excellent biodegradability in both the resin and the base material. Since it is a material, it is extremely promising from the viewpoint of environmental protection.
  • one aspect of the present invention solves the above-mentioned problems, that is, when a laminate containing a poly (3-hydroxybutyrate) resin is produced by extrusion lamination, the adhesiveness to the substrate is good. It is an object of the present invention to provide a laminate containing a poly (3-hydroxybutyrate) resin capable of improving neck-in characteristics and peelability of the laminate layer from a cooling roll, and a technique for utilizing the same.
  • the present inventors have produced a laminate by extrusion lamination by using a poly (3-hydroxybutyrate) resin having a specific melting point behavior and melt viscosity.
  • the adhesiveness to the substrate is kept good, the neck-in property is improved, and the peelability of the laminate layer from the cooling roll is improved (as a result, the surface condition of the laminate layer is good).
  • the present invention was completed.
  • one aspect of the present invention is a laminate including a substrate layer and a laminate layer laminated on at least one surface of the substrate layer, and the laminate layer is 130 in (A) differential scanning calorimetry.
  • the difference between the end temperature (Tm b) of the crystal melting curve is 10 ° C. or higher
  • (B) melt viscosity at 175 ° C. is 100 ⁇ 700 Pa
  • a laminate containing a poly (3-hydroxybutyrate) resin can be provided. Further, according to one aspect of the present invention, it is possible to provide a laminated body containing a poly (3-hydroxybutyrate) resin and having a good surface condition of the laminated layer.
  • the laminate containing the poly (3-hydroxybutyrate) resin according to the embodiment of the present invention is a laminate containing a base material layer and a laminate layer laminated on at least one surface of the base material layer.
  • the laminate layer is, the difference between the (a) differential scanning calorimetry, a top temperature of crystal melting curve in the range of 130 ⁇ 155 °C (Tm a) , the end temperature of the crystal melting curve (Tm b) 10 It is characterized by containing a poly (3-hydroxybutyrate) resin having a melt viscosity of 100 to 700 Pas at ° C. or higher and (B) 175 ° C.
  • poly (3-hydroxybutyrate) -based resin may be abbreviated as “P3HB-based resin”.
  • the poly (3-hydroxybutyrate) resin according to one embodiment of the present invention may be abbreviated as “the present P3HB resin”.
  • melt viscosity for the purpose of improving the adhesiveness to the base material, thinning the laminate layer, and speeding up molding.
  • a method for lowering the melt viscosity a method for raising the processing temperature to a relatively high temperature by lowering the molecular weight of the P3HB-based resin can be taken.
  • the P3HB-based resin has a property that the tension at the time of melting is greatly reduced as the molecular weight is lowered, and in addition, the P3HB resin is susceptible to thermal decomposition in processing at a high temperature and the molecular weight is lowered. It was found that there is a problem that the neck-in characteristics tend to deteriorate because it progresses remarkably. Further, the P3HB resin easily adheres to the cooling roll, and when a large force is applied when the P3HB resin is peeled off from the roll, fine irregularities are formed on the surface of the laminate layer, and further, cloudy unevenness occurs, and the appearance of the laminate is formed. It turns out that there is a problem that worsens. Further, it has been found that the P3HB-based resin has a problem that continuous laminating process for a long time becomes difficult because the peelability from the roll is poor.
  • poly (3-hydroxybutyrate) -based resin has a large decrease in melt tension due to low molecular weight, and neck-in characteristics tend to deteriorate
  • poly (3-hydroxybutyrate) -based resin Is easy to adhere to the cooling roll (also referred to as "blocking to the cooling roll"), and when a large force is applied when peeling from the roll, fine irregularities are formed on the surface of the laminate layer, and further, cloudy unevenness is formed. As a result, the appearance of the laminated body deteriorates, and (3) the poly (3-hydroxybutyrate) resin has poor peelability from the roll, which makes continuous laminating for a long period of time difficult. It turns out that there are multiple problems. As described above, the present inventors have recognized a new problem in producing a laminate containing a P3HB-based resin by extrusion lamination.
  • the present inventors have made a base material when producing a laminate by extrusion lamination by using a P3HB-based resin having a specific melting point behavior and melt viscosity.
  • a P3HB-based resin having a specific melting point behavior and melt viscosity.
  • a laminate containing a P3HB-based resin that maintains good adhesion to the base material, improves neck-in characteristics and peelability of the laminate layer from the cooling roll, and has a good surface condition of the laminate layer.
  • the present invention is extremely useful in various fields of use.
  • the configuration of the laminate containing the P3HB-based resin and its utilization technology will be described in detail.
  • the laminate according to the embodiment of the present invention (hereinafter, referred to as "the present laminate") is a laminate including a base material layer and a laminate layer laminated on at least one surface of the base material layer.
  • the laminated layer contains a poly (3-hydroxybutyrate) resin having a specific melting point behavior (parameter shown in (A)) and melt viscosity (parameter shown in (B)) described later. And.
  • This laminate is advantageous in various applications because the surface condition of the laminate layer is good.
  • the laminate layer may be laminated on only one side of the base material layer, or may be laminated on both sides.
  • the laminated layer may be laminated on the base material layer via another layer, or may be directly laminated on the base material layer without interposing another layer.
  • another laminated layer or the like may be laminated on the laminated layer.
  • Laminate layer The laminate layer in this laminate is composed of a resin composition described later.
  • the "laminate layer” can also be expressed as a "resin layer” from the viewpoint of the components constituting the layer.
  • the resin composition according to one embodiment of the present invention contains a specific poly (3-hydroxybutyrate) -based resin.
  • the present resin composition has a specific melting point behavior (parameter shown in (A)) and melt viscosity (parameter shown in (B)) described later. Since the resin composition has such a specific melting point behavior and melt viscosity, it keeps good adhesion to the substrate when producing a laminate by extrusion lamination, and from the neck-in characteristics and the cooling roll. It is possible to improve the peelability of the laminated layer and obtain a laminated body having a good surface condition of the laminated layer.
  • the present P3HB resin has the above-mentioned effects, it is preferably used for forming an extruded laminate layer, in other words, for forming a laminate layer on at least one surface of a base material layer by extrusion lamination. Can be used in applications.
  • the P3HB-based resin is an aliphatic polyester resin that can be produced from a microorganism and has 3-hydroxybutyrate as a repeating unit.
  • the P3HB-based resin may be a poly (3-hydroxybutyrate) having only 3-hydroxybutyrate as a repeating unit, or 3-hydroxybutyrate and other hydroxyalkanoates. It may be a copolymer with.
  • the P3HB-based resin may be a mixture of a homopolymer and one or more copolymers, or a mixture of two or more copolymers. Good.
  • the type of copolymerization is not particularly limited, and may be random copolymerization, alternate copolymerization, block copolymerization, graft copolymerization, or the like.
  • examples of the P3HB-based resin include poly (3-hydroxybutyrate) (P3HB), poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (P3HB3HH), and poly.
  • P3HB3HV poly (3-hydroxybutyrate-co-4-hydroxybutyrate)
  • P3HB4HB poly (3-hydroxybutyrate-co-3) -Hydroxyoctanoate)
  • P3HB3HO poly (3-hydroxybutyrate-co-3-hydroxyoctanoate)
  • P3HB3HOD poly (3-hydroxybutyrate-co-3-hydroxyoctanoate)
  • P3HB3HD poly (3-hydroxybutyrate-co-3-hydroxyvariate-co-3-hydroxyhexanoate
  • P3HB3HV3HH poly 3-hydroxybutyrate-co-3-hydroxyhexanoate
  • the melting point and crystallinity can be changed, and as a result, the physical properties such as Young's modulus and heat resistance can be changed, and the physical properties between polypropylene and polyethylene can be changed.
  • a copolymer of 3-hydroxybutyric acid and 3-hydroxyhexanoic acid from the viewpoint that it can be imparted and that it is a plastic that is industrially easy to produce and is physically useful as described above.
  • Certain P3HB3HH is more preferred. Further, P3HB3HH is preferable from the viewpoint that the melting point can be lowered and the molding process at a low temperature becomes possible.
  • P3HB3HV The melting point, Young's modulus, etc. of the above P3HB3HV change depending on the ratio of the 3-hydroxybutyrate component and the 3-hydroxyvalerate component, but the crystallinity is 50% or more because both components co-crystallize. high. Therefore, P3HB3HV is more flexible than P3HB, but the improvement of brittleness is insufficient.
  • Difference in one embodiment of the present invention in (A) differential scanning calorimetry, a top temperature of crystal melting curve in the range of 130 ⁇ 155 °C (Tm a) , the end temperature of the crystal melting curve (Tm b) (Hereinafter, it may be referred to as "difference in melting point temperature of (A)") is 10 ° C. or higher, preferably 15 ° C. or higher, more preferably 20 ° C. or higher, still more preferably. , 25 ° C or higher. This is because if it is within the above range, it becomes easy to melt the poly (3-hydroxybutyrate) resin and at the same time leave some crystals without melting.
  • the resin can be melted by applying sufficient preheating and adhered to the base material, and neck-in can be suppressed by the tension held by the remaining crystals. Further, by leaving a part of the crystals, the crystallization rate becomes high, and the peelability of the laminate layer from the cooling roll can be improved.
  • the upper limit is not particularly limited, but from the viewpoint of ease of production of the poly (3-hydroxybutyrate) resin, for example, it is 50 ° C. or lower, more preferably 40 ° C. or lower, and further preferably. Is 30 ° C. or lower.
  • top temperature of crystal melting curve in differential scanning calorimetry (Tm a)" and “End temperature of the crystal melting curve (Tm b)” is defined as follows.
  • An aluminum pan is filled with 4 to 10 mg of a resin sample, and the temperature is raised from 30 ° C. to 180 ° C. at a rate of 10 ° C./min under a nitrogen stream using a differential scanning calorimeter to melt the resin sample and absorb heat. Get a curve.
  • the melting point peak present in the range of 130 ⁇ 155 ° C., the top temperature of the melting peak endotherm is maximized and Tm a, the temperature of heat absorption was not recognized was Tm b.
  • Tm a top temperature of crystal melting curve
  • Tm b end temperature of crystal melting curve
  • the melting point of the P3HB-based resin When the melting point of the P3HB-based resin is within the above range, it becomes easy to process the P3HB-based resin to leave some crystals while sufficiently melting the resin in a temperature range not exceeding 180 ° C., which is the thermal decomposition temperature of the P3HB-based resin. It is possible to achieve both peelability from the resin and suppression of neck-in, and it is possible to reduce the mechanical strength of the laminated layer due to thermal decomposition and suppress the generation of odor. Particularly, if having a Tm c, the peelability and neck-suppression from the cooling roll, it is possible to obtain a higher improving effect.
  • the melt viscosity of (B) at 175 ° C. (hereinafter, may be referred to as “melt viscosity of (B)”) is 700 Pas or less, preferably 500 Pas or less. , More preferably 400 Pas or less, and even more preferably 300 Pas or less.
  • melt viscosity of (B) is 700 Pas or less, preferably 500 Pas or less. , More preferably 400 Pas or less, and even more preferably 300 Pas or less.
  • wetting to the base material during extrusion lamination is improved, and the adhesiveness can be improved.
  • shear heat generation in the extruder is suppressed, and deterioration of work environment such as deterioration of workability and generation of odor due to thermal decomposition of the resin during processing can be reduced.
  • the lower limit is not particularly limited as long as the effect of the present invention is exhibited, but is, for example, 100 Pas or more, preferably 130 Pas or more. If the viscosity is lower than the above range, the effect of improving neck-in may not be sufficiently obtained.
  • the P3HB-based resin satisfying the difference in the melting point temperature of (A) and the melt viscosity of (B) can be produced by, for example, a microorganism.
  • a single microorganism may be used to obtain a P3HB-based resin that satisfies (A) the difference in melting point temperature and (B) the melt viscosity, or (ii) can be obtained from a plurality of microorganisms.
  • the P3HB-based resin may be mixed to obtain a P3HB-based resin that satisfies the difference in the melting point temperature of (A) and the melt viscosity of (B).
  • the microorganism that produces the P3HB-based resin is not particularly limited as long as it is a microorganism that has the ability to produce the P3HB-based resin.
  • a P3HB-producing bacterium Bacillus megaterium discovered in 1925 is the first, and in addition, Cupriavidus necator (former classification: Alcaligenes eutrophos, Ralstonia eutropha) (Ralstonia eutropha) Examples include natural microorganisms such as Alcaligenes lattice. It is known that P3HB is accumulated in the cells of these microorganisms.
  • Examples of the bacterium that produces a copolymer of hydroxybutyrate and other hydroxyalkanoates include Aeromonas caviae, which is a P3HB3HV and P3HB3HH-producing bacterium, and Alcaligenes, which is a P3HB4HB-producing bacterium. It has been known.
  • P3HB3HH in order to increase the productivity of P3HB3HH, Alcaligenes utrophas AC32 strain (Alcaligenes europhos AC32, FERM BP-6038) (T. Fukui, Y. Doi, J. Baeri) into which a gene of the P3HA synthase group was introduced was introduced.
  • microbial cells in which P3HB3HH is accumulated in the cells by culturing these microorganisms under appropriate conditions are used.
  • a genetically modified microorganism into which various P3HB resin synthesis-related genes have been introduced may be used according to the P3HB resin to be produced, or the culture conditions including the type of substrate may be optimized. ..
  • P3HB3HH can also be produced, for example, by the method described in International Publication No. 2010/0134883.
  • Examples of commercially available products of P3HB3HH include Kaneka Corporation "Kaneka Biodegradable Polymer PHBH (registered trademark)".
  • the P3HB-based resins satisfying the difference in melting point temperature of (A) and the melt viscosity of (B) are, for example, KNK-631 strain (see International Publication No. 2009/145164) and KNK-. It is obtained by mixing a P3HB-based resin obtained from strain 005 (see US Pat. No. 7,384,766) (“resin pellet 1” in Examples described later). Further, in one embodiment of the present invention, the P3HB-based resin satisfying the difference in the melting point temperature of (A) and the melt viscosity of (B) is, for example, KNK-005 ⁇ phaZ :: Plac-phaC Re ⁇ phaZ2,6 strain (international publication). (No.
  • the P3HB-based resin obtained from the KNK-005 ⁇ phaZ :: Plac-phaC Re ⁇ phaZ2,6 strain is mixed with the P3HB-based resin obtained from another strain such as the KNK-005 strain to the extent that the effect of the present invention is exhibited. (“Resin pellet 4” in Examples described later).
  • the composition ratio of the repeating unit of P3HB3HH is such that the composition ratio of 3-hydroxybutyrate unit / 3-hydroxyhexanoate unit is 80/20 or more from the viewpoint of the balance between flexibility and strength. It is preferably 99/1 (mol / mol), more preferably 85/15 to 97/3 (mo1 / mo1).
  • the composition ratio of 3-hydroxybutyrate unit / 3-hydroxyhexanoate unit is 99/1 (mol / mol) or less, sufficient flexibility is obtained, and when it is 80/20 (mol / mol) or more. If there is, sufficient hardness can be obtained.
  • the weight average molecular weight of the P3HB-based resin (hereinafter, may be referred to as “Mw”) is not particularly limited, but is preferably 150,000 to 400,000, more preferably 200,000 to 350,000. 250,000 to 300,000 is more preferable.
  • Mw the weight average molecular weight of the P3HB-based resin
  • the weight average molecular weight is 150,000 or more, sufficient mechanical properties and the like can be obtained, and when it is 400,000 or less, the preferable melt viscosity described in paragraph [0035] can be achieved, which is sufficient for extrusion lamination. The fluidity is ensured and the thickness of the resin layer can be easily controlled.
  • the weight average molecular weight of the P3HB resin is determined by gel permeation chromatography (GPC) (“Shodex GPC-101” manufactured by Showa Denko Co., Ltd.), using polystyrene gel (“Shodex K-804” manufactured by Showa Denko Co., Ltd.) on the column, and chloroform. Is used as the mobile phase, and can be obtained as the molecular weight when converted to polystyrene.
  • GPC gel permeation chromatography
  • the present resin composition is a resin composition for an extruded laminate layer containing the above P3HB-based resin.
  • Form extrusion laminate layer is intended to be used as a layer for laminating to a base material layer by extrusion lamination. Extrusion laminating is a method known in the art.
  • the present resin composition may use one kind of P3HB-based resin alone or a combination of two or more kinds of P3HB-based resins.
  • P3HB-based resins for example, the resin described in the above section ⁇ Poly (3-hydroxybutyrate) -based resin> is used.
  • the present resin composition may contain one or more biodegradable resins other than the P3HB-based resin as long as the effects of the present invention are exhibited.
  • biodegradable resins include aliphatic polyester resins such as polybutylene succinate, polycaprolactone and polylactic acid, and aliphatic polyesters such as polybutylene adipate terephthalate, polybutylene succinate terephthalate and polybutylene succilate terephthalate.
  • Examples thereof include aromatic polyester-based resins, polybutylene succinate adipates, and polybutylene succinate adipate-based resins such as copolymers of polybutylene succinate adipate with lactic acid, terephthalic acid, malic acid, and sebacic acid.
  • the amount of these resins added is preferably 30 parts by weight or less with respect to 100 parts by weight of the P3HB-based resin in order to ensure the biodegradability of the present resin composition.
  • the present resin composition may contain additives usually used in the art as long as the effects of the present invention are exhibited.
  • additives include inorganic fillers such as talc, calcium carbonate, mica, silica, titanium oxide, and alumina, used paper such as fir tree, wood flour, and newspaper, and organic fillers such as various starches and cellulose.
  • Colorants such as pigments and dyes, odor absorbers such as activated charcoal and zeolite, fragrances such as vanillin and dextrin, plasticizers, antioxidants, antioxidants, weather resistance improvers, ultraviolet absorbers, crystal nucleating agents, lubricants, etc.
  • examples thereof include a mold release agent, a water repellent agent, an antibacterial agent, and a slidability improver.
  • the additive only one kind may be contained, or two or more kinds may be contained. The content of these additives can be appropriately set by those skilled in the art according to the purpose of use.
  • the laminate layer in the present laminate is formed by the present resin composition described in the above-mentioned (resin composition).
  • the laminate layer in the present laminate may contain components other than the above resin composition as long as the effects of the present invention are not impaired.
  • the content of these additives can be appropriately set by those skilled in the art according to the purpose of use.
  • the P3HB-based resin contained in the resin composition has a specific melting point behavior (parameter shown in (A)) and melt viscosity (parameter shown in (B)), so that the laminate is formed by extrusion lamination.
  • the adhesiveness to the base material can be kept good, and the neck-in characteristics and the peelability of the laminated layer from the cooling roll can be improved. Therefore, it is preferable that the laminate layer of the present laminate is an extruded laminate layer. In other words, it is preferable that the laminate layer is formed on at least one surface of the base material layer of the present laminate by extrusion lamination.
  • This laminate includes a base material layer.
  • the base material layer in the present laminate is not particularly limited as long as it is a layer on which the laminate layer can be laminated.
  • the base material layer is preferably a biodegradable layer. Since the base material layer is a biodegradable layer, the entire laminate including the laminated layer has biodegradability, which is more advantageous as a material for solving the problem of marine pollution.
  • the biodegradable base material layer is not particularly limited, but for example, paper (main component is cellulose), cellophane, cellulose ester; polyvinyl alcohol, polyamino acid, polyglycolic acid, purulan, or aluminum on these base materials. , The one obtained by depositing an inorganic substance such as silica. Of these, paper is preferable because it has excellent heat resistance and is inexpensive.
  • the type of paper is not particularly limited, and examples thereof include cup base paper, single gloss paper, kraft paper, high-quality paper, coated paper, thin leaf paper, glassin paper, and paperboard. The type of paper can be appropriately selected according to the use of the laminated body. If necessary, a water resistant agent, a water repellent agent, an inorganic substance, or the like may be added to the paper, or the paper may be surface-treated such as an oxygen barrier layer coating and a water vapor barrier coating.
  • the base material layer may be subjected to surface treatment such as corona treatment, frame treatment, and anchor coating treatment. These surface treatments may be performed alone or in combination with a plurality of surface treatments.
  • the adhesion strength between the P3HB resin and the base material layer can be increased by applying the corona treatment to the base material layer in the in-line of the lamination processing and laminating the laminate layer on the base material layer.
  • the method for producing the laminated body according to the embodiment of the present invention includes the following steps (i) to (iii): Step (i): A step of melt-extruding the resin for the laminate layer, Step (ii): The resin for the laminate layer after melt extrusion obtained in the step (i) and the base material for the base material layer separately fed out are brought into contact with each other to form the base material layer and the laminate layer.
  • the present laminate can be produced by heat-sealing the resin composition on one side or both sides of the base material layer by the extrusion lamination method including the above steps (i) to (iii).
  • temperature controllable means that the temperature control function is provided and the temperature can be adjusted to a desired level.
  • step (i) the resin for the laminate layer is melt-extruded from the T-type die.
  • step (ii) the resin after melt extrusion is brought into contact with the base material for the base material layer separately fed out from the base material feeding roll, so that the base material layer and the laminate layer form a layered structure.
  • Step (ii) the resin after melt extrusion is brought into contact with the base material for the base material layer separately fed out from the base material feeding roll, so that the base material layer and the laminate layer form a layered structure.
  • Step (ii) the base material layer constituting the laminate and the laminate layer are pressure-bonded.
  • the crimping at this time is preferably cooling crimping, and the roll is preferably a cooling roll.
  • the temperature-adjustable roll is in contact with the laminated layer of the laminated body.
  • the crimped laminate obtained in the step (iii) is peeled off from the roll and wound on the laminate take-up roll to be recovered.
  • the extrusion laminating method is continuous because the laminating layer containing the molten resin material is cold-bonded to the base material and immediately after that, the laminating layer is peeled off from the cooling roll. Will be implemented in. Therefore, in the conventional method, when a P3HB-based resin is used as the resin material, it is difficult for the laminate layer to be smoothly peeled off from the cooling roll, and a phenomenon that the laminate layer temporarily adheres to the cooling roll tends to occur. As a result, a force is applied when the adhered portion is peeled off from the roll, and the problem that cloudy unevenness (fine unevenness) occurs on the surface of the laminate layer at the portion is particularly remarkable. However, by applying the present P3HB-based resin, it is possible to improve the peelability from the cooling roll and produce a laminate having a good surface condition of the laminate layer.
  • the heating temperature in step (i), the temperature of the resin to be thermally fused is, it is preferable to adjust to less than Tm b so as to partially leave crystals, to Tm b -5 ° C. It is more preferable to adjust. By setting this temperature, the effect of improving the peelability from the neck-in and the roll in the present invention can be obtained.
  • the lower limit temperature is preferably 155 ° C. or higher, more preferably 158 ° C. or higher, from the viewpoint of ensuring adhesiveness to the base material.
  • the upper limit temperature is preferably a temperature that does not exceed 180 ° C., which is the thermal decomposition temperature of the P3HB resin, and specifically, 175 ° C. or lower is preferable.
  • the surface temperature of the cooling roll in the step (iii) is not particularly limited as long as it is a temperature at which the laminated layer can be cooled and pressure-bonded, and can be appropriately determined.
  • the surface temperature of the cooling roll is, for example, 35 to 70 ° C., preferably 40 to 60 ° C. Within the above range, crystallization of the P3HB-based resin is promoted, and as a result, adhesion to the cooling roll is reduced, and solidification in a short time can be achieved.
  • the thickness of the laminate layer (each laminate layer when the present laminate has two or more laminate layers) in the present laminate is not particularly limited, but is sufficiently flexible while preventing water absorption to the base material layer. From the viewpoint of ensuring the properties, 5 to 300 ⁇ m is preferable, and 10 to 200 ⁇ m is more preferable.
  • the thickness of the laminate layer may be 20 to 100 ⁇ m. It is preferably 30 to 70 ⁇ m, more preferably 30 to 70 ⁇ m. By setting the thickness within the above range, it is possible to maintain good secondary workability such as punching property and heat sealing property.
  • the thickness of the laminate layer Is preferably 20 to 50 ⁇ m, and more preferably 30 to 40 ⁇ m.
  • the molded body according to one embodiment of the present invention includes the present laminated body. Since this molded product is formed from a laminated body in which the surface condition of the laminated layer is good, it is advantageous in various applications.
  • the molded product is not particularly limited as long as it includes the laminate, but for example, paper, film, sheet, tube, plate, rod, container (for example, bottle container, cup (also referred to as “cup”), and the like. Tray), bags, parts, etc.
  • the molded product is preferably a bag or container (for example, a bottle container, a cup, a tray) from the viewpoint of measures against marine pollution.
  • the molded body may be the laminated body itself.
  • the present laminated body included in the present molded body may be a secondary processed product.
  • the molded product containing the laminate can be used as various packaging container materials such as shopping bags, various bag making materials, food / confectionery packaging materials, cups, trays, and cartons (in other words,). , Food, cosmetics, electronics, medicine, medicine, etc.), can be suitably used.
  • this laminate has containers for liquids, especially instant noodles, instant soups, food and drink cups such as coffee, side dishes, lunch boxes, microwave oven foods, etc. It is more preferable as a container for storing warm contents such as a tray used for.
  • the above-mentioned various secondary processes can be performed by using the same method as the conventional resin laminated paper, that is, using various bag making machines, filling and wrapping machines, and the like. Further, it can be processed by using an apparatus such as a paper cup molding machine, a punching machine, and a box machine. In these processing machines, known techniques can be used as the bonding method of the laminate, for example, the heat sealing method, the impulse sealing method, the ultrasonic sealing method, the high frequency sealing method, the hot air sealing method, the frame sealing method, and the like. Can be used.
  • the heat seal temperature of the laminated body or the molded body differs depending on the bonding method.
  • the heat-sealing temperature of the laminated body or the molded body is usually 250 ° C. or lower, preferably 200 ° C. or lower, and more preferably 180 ° C. or lower when a heating type heat-sealing tester having a seal bar is used.
  • the lower limit value is usually 130 ° C. or higher, preferably 140 ° C. or higher, and more preferably 150 ° C. or higher.
  • appropriate adhesion at the seal portion can be ensured.
  • the heat sealing pressure of the laminated body or the molded body differs depending on the bonding method.
  • the heat-sealing pressure of the laminated body or the molded product is usually 0.1 MPa or more, preferably 0.3 MPa or more when a heating type heat-sealing tester having a seal bar is used. Within the above range, appropriate adhesion at the seal portion can be ensured. Further, when a heating type heat seal tester having a seal bar is used, the upper limit value is usually 0.5 MPa or less, preferably 0.45 MPa or less. When it is within the above range, it is possible to avoid thinning the film thickness of the seal end portion and secure the seal strength.
  • the molded body for example, fiber, thread, rope, woven fabric, knitted fabric, non-woven fabric
  • a material different from the present molded body is used.
  • Paper, film, sheet, tube, board, rod, container, bag, part, foam, etc. are also preferably biodegradable.
  • one embodiment of the present invention is as follows.
  • a laminate including a base material layer and a laminate layer laminated on at least one surface of the base material layer.
  • the melt viscosity at 175 ° C. is 100 to 700 Pas.
  • ⁇ 2> The laminate according to ⁇ 1>, wherein the poly (3-hydroxybutyrate) resin is poly (3-hydroxybutyrate-co-3-hydroxyhexanoate).
  • the laminate layer is an extruded laminate layer.
  • the base material layer is a layer having biodegradability.
  • the base material layer is paper.
  • the method for producing a laminate according to any one of ⁇ 1> to ⁇ 5> which comprises the following steps (i) to (iii): (I) A step of melt-extruding the resin for the laminate layer, (Ii) The resin for the laminate layer after melt extrusion obtained in the step (i) and the base material for the base material layer separately fed out are brought into contact with each other to include the base material layer and the laminate layer.
  • the step of forming the laminate, and (iii) the laminate obtained in the step (ii) is sandwiched between two rolls at least one of which can control the temperature, and the base material layer constituting the laminate and the above.
  • a crimping process that crimps the laminate layer.
  • ⁇ 8> The method for producing a laminate according to ⁇ 7>, wherein in the step (i), the resin temperature at the time of extrusion is 155 to 175 ° C.
  • ⁇ 9> The method for producing a laminated body according to ⁇ 7> or ⁇ 8>, wherein the temperature-controllable roll is in contact with the laminated layer of the laminated body in the step (iii).
  • ⁇ 10> The method for producing a laminate according to any one of ⁇ 7> to ⁇ 9>, wherein the temperature of the roll whose temperature can be adjusted is 35 to 70 ° C. in the step (iii).
  • resin pellets 1 to contain a poly (3-hydroxybutyrate-co-3-hydroxyhexanoate-based resin) having a specific melting point characteristic and a specific melt viscosity shown in Table 1 below. 7 was used.
  • the resin pellets 1 to 4 were produced by the method described in the above paragraph [0041], and the resin pellets 5 and 6 were resin alone obtained from the KNK-005 strain.
  • the resin pellet 7 was produced by using a resin obtained from the KNK-005 ⁇ phaZ1 :: Plac-phaC Re ⁇ phaZ2,6 strain alone without adjusting the molecular weight.
  • melt viscosity An orifice with a diameter of 1 mm, a length of 10 mm, and an inflow angle of 90 ° is attached, a capillograph (cylinder diameter of 10 mm) heated to 175 ° C is filled with 15 g of a resin sample, preheated for 5 minutes, and then the piston is operated at a speed of 10 mm / min. Dropped. The melt viscosity at a shear rate of 122 / s was calculated from the stress applied to the piston when the molten resin was extruded from the orifice.
  • There is no item of ⁇ , and there are two or more ⁇ items. ⁇ : There is no item of ⁇ . ⁇ : There is one or more items of ⁇ .
  • Example 1 Using a single-screw extruder (“20C200” lab plast mill manufactured by Toyo Seiki Seisakusho Co., Ltd.) equipped with a T-shaped die with a width of 150 mm and a lip opening width of 0.25 mm, the resin pellet 1 has a cylinder temperature of 140 to 160 ° C. Using a laminator (roll diameter 100 mm) whose cooling roll is set to 170 ° C and the temperature of the cooling roll is adjusted to 60 ° C, the T-type die is laminated on one side of a cup base paper having a basis weight of 200 g / m 2 to a thickness of 30 ⁇ m. I got a body.
  • 20C200 lab plast mill manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • Example 2 Each evaluation item was evaluated in the same manner as in Example 1 except that the resin pellet 1 was changed to the resin pellet 2. The results are shown in Table 2.
  • Example 3 Each evaluation item was evaluated in the same manner as in Example 1 except that the resin pellet 1 was changed to the resin pellet 3. The results are shown in Table 2.
  • Example 4 Each evaluation item was evaluated in the same manner as in Example 1 except that the resin pellet 1 was changed to the resin pellet 4. The results are shown in Table 2.
  • the present laminate containing the P3HB resin can improve the neck-in characteristics and the peelability of the laminate layer from the cooling roll when the laminate is manufactured by extrusion lamination. Further, it was shown that when the present laminate contains the P3HB resin, the surface condition of the laminate layer is good and the adhesiveness between the base material and the laminate layer is good.
  • this laminate containing the P3HB resin can improve the neck-in characteristics and the peelability of the laminate layer from the cooling roll when the laminate is manufactured by extrusion lamination, and the surface condition of the laminate layer is improved. Since it is good, it can be suitably used in agriculture, fisheries, forestry, horticulture, medicine, sanitary goods, clothing, non-clothing, packaging, automobiles, building materials, and other fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

The purpose of the present invention is to provide: a laminate containing a poly(3-hydroxybutyrate)-based resin and capable of improving the neck-in characteristics and the peelability of a laminate layer from a cooling roll while maintaining good adhesion to a substrate; and a technology for using the same. The purpose is achieved by providing a laminate which comprises a substrate layer and a laminate layer laminated on at least one surface of the substrate layer and contains a poly(3-hydroxybutyrate)-based resin, wherein the laminate layer satisfies the following (A) and (B): (A) the difference between Tma and Tmb is at least 10°C; and (B) the melt viscosity is 100-700 Pa s.

Description

積層体およびその利用Laminates and their use
 本発明は、ポリ(3-ヒドロキシブチレート)系樹脂を含む積層体およびその利用に関する。 The present invention relates to a laminate containing a poly (3-hydroxybutyrate) resin and its use.
 近年、廃棄プラスチックによる環境問題がクローズアップされている。中でも、廃棄プラスチックによる海洋汚染は深刻であり、自然環境下で分解する生分解性プラスチックの普及が期待されている。 In recent years, environmental problems caused by waste plastic have been highlighted. In particular, marine pollution caused by waste plastics is serious, and biodegradable plastics that decompose in the natural environment are expected to become widespread.
 そのような生分解性プラスチックとしては、種々のものが知られているが(特許文献1)、中でも、ポリ(3-ヒドロキシブチレート)系樹脂は、多くの微生物種の細胞内にエネルギー貯蔵物質として生産、蓄積される熱可塑性ポリエステルであり、土中だけでなく、海水中でも生分解が進行しうる材料であるため、上記の問題を解決する素材として注目されている。 Various types of such biodegradable plastics are known (Patent Document 1), and among them, poly (3-hydroxybutyrate) -based resins are energy storage substances in the cells of many microbial species. It is a thermoplastic polyester that is produced and accumulated as a material, and since it is a material that can undergo biodegradation not only in soil but also in seawater, it is attracting attention as a material that solves the above problems.
 また、ポリ(3-ヒドロキシブチレート)系樹脂を、紙等の生分解性を有する基材にラミネート加工して製造される積層体は、樹脂と基材の双方が優れた生分解性を有する材料であるため、環境保護の観点から極めて有望である。 Further, the laminate produced by laminating a poly (3-hydroxybutyrate) resin to a biodegradable base material such as paper has excellent biodegradability in both the resin and the base material. Since it is a material, it is extremely promising from the viewpoint of environmental protection.
特開2010-200697号公報Japanese Unexamined Patent Publication No. 2010-200697
 このような中、本発明者らが検討したところ、ポリ(3-ヒドロキシブチレート)系樹脂を含む積層体を押出ラミネーションにより製造する際に、基材との接着性、ネックイン特性および冷却ロールからのラミネート層の剥離性の点で改善の余地があることがわかった。 Under these circumstances, as a result of studies by the present inventors, when a laminate containing a poly (3-hydroxybutyrate) resin is produced by extrusion lamination, adhesiveness to a base material, neck-in characteristics and a cooling roll are examined. It was found that there is room for improvement in terms of the peelability of the laminated layer from the above.
 そこで、本発明の一態様は、上記の課題が解決された、すなわち、ポリ(3-ヒドロキシブチレート)系樹脂を含む積層体を押出ラミネーションにより製造する際に、基材との接着性を良好に保つとともに、ネックイン特性および冷却ロールからのラミネート層の剥離性を改善できるポリ(3-ヒドロキシブチレート)系樹脂を含む積層体、およびその利用技術を提供することを目的とする。 Therefore, one aspect of the present invention solves the above-mentioned problems, that is, when a laminate containing a poly (3-hydroxybutyrate) resin is produced by extrusion lamination, the adhesiveness to the substrate is good. It is an object of the present invention to provide a laminate containing a poly (3-hydroxybutyrate) resin capable of improving neck-in characteristics and peelability of the laminate layer from a cooling roll, and a technique for utilizing the same.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、特定の融点挙動および溶融粘度を有するポリ(3-ヒドロキシブチレート)系樹脂を用いることにより、押出ラミネーションにより積層体を製造する際に、基材との接着性を良好に保つとともに、ネックイン特性が改善されること、および冷却ロールからのラミネート層の剥離性が改善されること(その結果としてラミネート層の表面状態が良好な積層体が得られること)、を初めて見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have produced a laminate by extrusion lamination by using a poly (3-hydroxybutyrate) resin having a specific melting point behavior and melt viscosity. In addition, the adhesiveness to the substrate is kept good, the neck-in property is improved, and the peelability of the laminate layer from the cooling roll is improved (as a result, the surface condition of the laminate layer is good). (To obtain a laminate) was discovered for the first time, and the present invention was completed.
 したがって、本発明の一態様は、基材層と、基材層の少なくとも片面に積層されたラミネート層と、を含む積層体であり、前記ラミネート層が、(A)示差走査熱量分析において、130~155℃の範囲にある結晶融解曲線のトップ温度(Tm)と、結晶融解曲線のエンド温度(Tm)との差が10℃以上、および(B)175℃における溶融粘度が100~700Pa sを満たす、ポリ(3-ヒドロキシブチレート)系樹脂を含む、積層体である。 Therefore, one aspect of the present invention is a laminate including a substrate layer and a laminate layer laminated on at least one surface of the substrate layer, and the laminate layer is 130 in (A) differential scanning calorimetry. ~ a top temperature of crystal melting curve (Tm a) in the range of 155 ° C., the difference between the end temperature (Tm b) of the crystal melting curve is 10 ° C. or higher, and (B) melt viscosity at 175 ° C. is 100 ~ 700 Pa It is a laminate containing a poly (3-hydroxybutyrate) resin that satisfies s.
 本発明の一態様によれば、押出ラミネーションにより積層体を製造する際に、基材との接着性を良好に保つとともに、ネックイン特性および冷却ロールからのラミネート層の剥離性が改善された、ポリ(3-ヒドロキシブチレート)系樹脂を含む積層体を提供することができる。また、本発明の一態様によれば、ポリ(3-ヒドロキシブチレート)系樹脂を含む、ラミネート層の表面状態が良好な積層体を提供することができる。 According to one aspect of the present invention, when a laminate is produced by extrusion lamination, the adhesiveness to the substrate is kept good, and the neck-in characteristics and the peelability of the laminate layer from the cooling roll are improved. A laminate containing a poly (3-hydroxybutyrate) resin can be provided. Further, according to one aspect of the present invention, it is possible to provide a laminated body containing a poly (3-hydroxybutyrate) resin and having a good surface condition of the laminated layer.
本発明の一実施形態に係る積層体の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the laminated body which concerns on one Embodiment of this invention. 実施例1および4における示差走査熱量計(DSC)チャートを示す模式図である。It is a schematic diagram which shows the differential scanning calorimetry (DSC) chart in Examples 1 and 4. 実施例2および3におけるDSCチャートを示す模式図である。It is a schematic diagram which shows the DSC chart in Examples 2 and 3. 比較例1および2におけるDSCチャートを示す模式図である。It is a schematic diagram which shows the DSC chart in Comparative Examples 1 and 2.
 本発明の実施の一形態について、以下に詳細に説明する。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。また、本明細書中に記載された文献の全てが、本明細書中において参考文献として援用される。 An embodiment of the present invention will be described in detail below. Unless otherwise specified in the present specification, "A to B" representing a numerical range means "A or more and B or less". In addition, all of the documents described herein are incorporated herein by reference.
 〔1.本発明の概要〕
 本発明の一実施形態に係るポリ(3-ヒドロキシブチレート)系樹脂を含む積層体は、基材層と、前記基材層の少なくとも片面に積層されたラミネート層と、を含む積層体であり、前記ラミネート層が、(A)示差走査熱量分析において、130~155℃の範囲にある結晶融解曲線のトップ温度(Tm)と、結晶融解曲線のエンド温度(Tm)との差が10℃以上、および(B)175℃における溶融粘度が100~700Pa sを満たすポリ(3-ヒドロキシブチレート)系樹脂を含む、ことを特徴とする。以下において、「ポリ(3-ヒドロキシブチレート)系樹脂」を「P3HB系樹脂」と略して言及する場合もある。また、以下において、「本発明の一実施形態に係るポリ(3-ヒドロキシブチレート)系樹脂」を「本P3HB系樹脂」と略して言及する場合もある。
[1. Outline of the present invention]
The laminate containing the poly (3-hydroxybutyrate) resin according to the embodiment of the present invention is a laminate containing a base material layer and a laminate layer laminated on at least one surface of the base material layer. the laminate layer is, the difference between the (a) differential scanning calorimetry, a top temperature of crystal melting curve in the range of 130 ~ 155 ℃ (Tm a) , the end temperature of the crystal melting curve (Tm b) 10 It is characterized by containing a poly (3-hydroxybutyrate) resin having a melt viscosity of 100 to 700 Pas at ° C. or higher and (B) 175 ° C. In the following, "poly (3-hydroxybutyrate) -based resin" may be abbreviated as "P3HB-based resin". Further, in the following, "the poly (3-hydroxybutyrate) resin according to one embodiment of the present invention" may be abbreviated as "the present P3HB resin".
 一般に、押出ラミネーションでは、基材への接着性向上や、ラミネート層の薄膜化と成形の高速化を目的に、溶融粘度を下げることが必要とされる。溶融粘度を下げる手法としては、P3HB系樹脂の分子量を下げることにより、加工温度を比較的高温にする手法がとり得る。 Generally, in extrusion lamination, it is necessary to reduce the melt viscosity for the purpose of improving the adhesiveness to the base material, thinning the laminate layer, and speeding up molding. As a method for lowering the melt viscosity, a method for raising the processing temperature to a relatively high temperature by lowering the molecular weight of the P3HB-based resin can be taken.
 しかしながら、本発明者らが検討したところ、P3HB系樹脂は、低分子量化に伴い溶融時の張力が大きく低下する性質があり、加えて、高温での加工では熱分解を受けやすく低分子量化が著しく進行するため、ネックイン特性が悪くなりやすい問題があることがわかった。また、P3HB系樹脂は冷却ロールに付着しやすく、ロールから剥離する際に大きな力がかかることにより、ラミネート層表面に微細な凹凸が形成され、さらには白濁したムラが生じて、積層体の外観が悪化する問題があることがわかった。さらに、P3HB系樹脂はロールからの剥離性が悪いために、長時間にわたる連続的なラミネート加工が難しくなる問題もあることがわかった。 However, as examined by the present inventors, the P3HB-based resin has a property that the tension at the time of melting is greatly reduced as the molecular weight is lowered, and in addition, the P3HB resin is susceptible to thermal decomposition in processing at a high temperature and the molecular weight is lowered. It was found that there is a problem that the neck-in characteristics tend to deteriorate because it progresses remarkably. Further, the P3HB resin easily adheres to the cooling roll, and when a large force is applied when the P3HB resin is peeled off from the roll, fine irregularities are formed on the surface of the laminate layer, and further, cloudy unevenness occurs, and the appearance of the laminate is formed. It turns out that there is a problem that worsens. Further, it has been found that the P3HB-based resin has a problem that continuous laminating process for a long time becomes difficult because the peelability from the roll is poor.
 つまり、(1)ポリ(3-ヒドロキシブチレート)系樹脂は、低分子量化による溶融張力の低下が大きく、ネックイン特性が悪くなりやすいこと、(2)ポリ(3-ヒドロキシブチレート)系樹脂は冷却ロールに付着しやすく(「冷却ロールへのブロッキング」ともいう。)、ロールから剥離する際に大きな力がかかることにより、ラミネート層表面に微細な凹凸が形成され、さらには白濁したムラが生じて、積層体の外観が悪化すること、および(3)ポリ(3-ヒドロキシブチレート)系樹脂はロールからの剥離性が悪いために、長時間にわたる連続的なラミネート加工が難しくなる等の複数の問題があることがわかった。このように、本発明者らは、押出ラミネーションによりP3HB系樹脂を含む積層体を製造する場合の新たな課題を認識した。 That is, (1) poly (3-hydroxybutyrate) -based resin has a large decrease in melt tension due to low molecular weight, and neck-in characteristics tend to deteriorate, and (2) poly (3-hydroxybutyrate) -based resin. Is easy to adhere to the cooling roll (also referred to as "blocking to the cooling roll"), and when a large force is applied when peeling from the roll, fine irregularities are formed on the surface of the laminate layer, and further, cloudy unevenness is formed. As a result, the appearance of the laminated body deteriorates, and (3) the poly (3-hydroxybutyrate) resin has poor peelability from the roll, which makes continuous laminating for a long period of time difficult. It turns out that there are multiple problems. As described above, the present inventors have recognized a new problem in producing a laminate containing a P3HB-based resin by extrusion lamination.
 そこで、本発明者らは、上述した課題を解決すべく鋭意検討した結果、特定の融点挙動および溶融粘度を有するP3HB系樹脂を用いることにより、押出ラミネーションにより積層体を製造する際に、基材との接着性を良好に保つとともに、ネックイン特性および冷却ロールからのラミネート層の剥離性が改善されること、およびラミネート層の表面状態が良好な積層体が得られること、という新規知見を見出した。さらに、冷却ロールからのラミネート層の剥離性が改善された結果として、長時間にわたる連続的なラミネート加工が可能となるという利点もあることがわかった。 Therefore, as a result of diligent studies to solve the above-mentioned problems, the present inventors have made a base material when producing a laminate by extrusion lamination by using a P3HB-based resin having a specific melting point behavior and melt viscosity. We have found new findings that the neck-in characteristics and the peelability of the laminated layer from the cooling roll are improved, and that a laminated body with a good surface condition of the laminated layer can be obtained while maintaining good adhesion to the laminated layer. It was. Furthermore, it was found that as a result of the improved peelability of the laminate layer from the cooling roll, there is an advantage that continuous laminating process can be performed for a long period of time.
 このように、基材との接着性を良好に保つとともに、ネックイン特性および冷却ロールからのラミネート層の剥離性が改善され、かつ、ラミネート層の表面状態が良好なP3HB系樹脂を含む積層体の開示は初めてであり、本発明は、種々の分野での利用において極めて有用である。以下、P3HB系樹脂を含む積層体の構成およびその利用技術について詳説する。 In this way, a laminate containing a P3HB-based resin that maintains good adhesion to the base material, improves neck-in characteristics and peelability of the laminate layer from the cooling roll, and has a good surface condition of the laminate layer. Is the first disclosure of the above, and the present invention is extremely useful in various fields of use. Hereinafter, the configuration of the laminate containing the P3HB-based resin and its utilization technology will be described in detail.
〔2.積層体〕
 (2-1.積層体の構成)
 本発明の一実施形態に係る積層体(以下、「本積層体」と称する。)は、基材層と、前記基材層の少なくとも片面に積層されたラミネート層と、を含む積層体であり、前記ラミネート層が、後述する特定の融点挙動((A)で示すパラメータ)および溶融粘度((B)で示すパラメータ)を有する、ポリ(3-ヒドロキシブチレート)系樹脂を含む、ことを特徴とする。本積層体は、ラミネート層の表面状態が良好であるため、種々の用途において有利である。
[2. Laminated body]
(2-1. Structure of laminated body)
The laminate according to the embodiment of the present invention (hereinafter, referred to as "the present laminate") is a laminate including a base material layer and a laminate layer laminated on at least one surface of the base material layer. , The laminated layer contains a poly (3-hydroxybutyrate) resin having a specific melting point behavior (parameter shown in (A)) and melt viscosity (parameter shown in (B)) described later. And. This laminate is advantageous in various applications because the surface condition of the laminate layer is good.
 本積層体において、ラミネート層は、基材層の片面にのみ積層されていてもよく、両面に積層されていてもよい。ラミネート層は、他の層を介して基材層に積層されていてもよいし、他の層を介さずに、直接、基材層に積層されていてもよい。 In this laminate, the laminate layer may be laminated on only one side of the base material layer, or may be laminated on both sides. The laminated layer may be laminated on the base material layer via another layer, or may be directly laminated on the base material layer without interposing another layer.
 本発明の一実施形態において、本積層体は、ラミネート層の上にさらに別のラミネート層等が積層されていてもよい。 In one embodiment of the present invention, in the present laminated body, another laminated layer or the like may be laminated on the laminated layer.
 (2-2.ラミネート層)
 本積層体におけるラミネート層は、後述する樹脂組成物により構成される。本明細書において「ラミネート層」は、当該層を構成する成分の観点から、「樹脂層」と表現することもできる。
(2-2. Laminate layer)
The laminate layer in this laminate is composed of a resin composition described later. In the present specification, the "laminate layer" can also be expressed as a "resin layer" from the viewpoint of the components constituting the layer.
 (樹脂組成物)
 本発明の一実施形態に係る樹脂組成物(以下、「本樹脂組成物」と称する。)は、特定のポリ(3-ヒドロキシブチレート)系樹脂を含む。
(Resin composition)
The resin composition according to one embodiment of the present invention (hereinafter, referred to as "the present resin composition") contains a specific poly (3-hydroxybutyrate) -based resin.
 <ポリ(3-ヒドロキシブチレート)系樹脂>
 本樹脂組成物は、後述する特定の融点挙動((A)で示すパラメータ)および溶融粘度((B)で示すパラメータ)を有する。本樹脂組成物がこのような特定の融点挙動および溶融粘度を有することにより、押出ラミネーションにより積層体を製造する際に、基材との接着性を良好に保つとともに、ネックイン特性および冷却ロールからのラミネート層の剥離性を改善し、ラミネート層の表面状態が良好な積層体を得ることができる。
<Poly (3-hydroxybutyrate) resin>
The present resin composition has a specific melting point behavior (parameter shown in (A)) and melt viscosity (parameter shown in (B)) described later. Since the resin composition has such a specific melting point behavior and melt viscosity, it keeps good adhesion to the substrate when producing a laminate by extrusion lamination, and from the neck-in characteristics and the cooling roll. It is possible to improve the peelability of the laminated layer and obtain a laminated body having a good surface condition of the laminated layer.
 本P3HB系樹脂は、上述のような効果を有するため、好ましくは、押出ラミネート層を形成するための用途で、換言すれば、基材層の少なくとも片面に押出ラミネーションによりラミネート層を形成するための用途で使用され得る。 Since the present P3HB resin has the above-mentioned effects, it is preferably used for forming an extruded laminate layer, in other words, for forming a laminate layer on at least one surface of a base material layer by extrusion lamination. Can be used in applications.
 本明細書において、P3HB系樹脂は、3-ヒドロキシブチレートを繰り返し単位とする、微生物から生産され得る脂肪族ポリエステル樹脂である。 In the present specification, the P3HB-based resin is an aliphatic polyester resin that can be produced from a microorganism and has 3-hydroxybutyrate as a repeating unit.
 本発明の一実施形態において、P3HB系樹脂は、3-ヒドロキシブチレートのみを繰り返し単位とするポリ(3-ヒドロキシブチレート)であってもよいし、3-ヒドロキシブチレートと他のヒドロキシアルカノエートとの共重合体であってもよい。 In one embodiment of the present invention, the P3HB-based resin may be a poly (3-hydroxybutyrate) having only 3-hydroxybutyrate as a repeating unit, or 3-hydroxybutyrate and other hydroxyalkanoates. It may be a copolymer with.
 本発明の一実施形態において、P3HB系樹脂は、単独重合体と1種または2種以上の共重合体との混合物であってもよいし、2種以上の共重合体の混合物であってもよい。共重合の形式は特に限定されず、ランダム共重合、交互共重合、ブロック共重合、グラフト共重合等であり得る。 In one embodiment of the present invention, the P3HB-based resin may be a mixture of a homopolymer and one or more copolymers, or a mixture of two or more copolymers. Good. The type of copolymerization is not particularly limited, and may be random copolymerization, alternate copolymerization, block copolymerization, graft copolymerization, or the like.
 本発明の一実施形態において、P3HB系樹脂としては、例えば、ポリ(3-ヒドロキシブチレート)(P3HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)(P3HB3HH)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバリレート)(P3HB3HV)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)(P3HB4HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)(P3HB3HO)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタデカノエート)(P3HB3HOD)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシデカノエート)(P3HB3HD)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバリレート-コ-3-ヒドロキシヘキサノエート)(P3HB3HV3HH)等が挙げられる。中でも、工業的に生産が容易であることから、P3HB、P3HB3HH、P3HB3HV、P3HB4HBが好ましい。 In one embodiment of the present invention, examples of the P3HB-based resin include poly (3-hydroxybutyrate) (P3HB), poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (P3HB3HH), and poly. (3-Hydroxybutyrate-co-3-hydroxyvariate) (P3HB3HV), poly (3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB), poly (3-hydroxybutyrate-co-3) -Hydroxyoctanoate) (P3HB3HO), poly (3-hydroxybutyrate-co-3-hydroxyoctanoate) (P3HB3HOD), poly (3-hydroxybutyrate-co-3-hydroxydecanoate) ( P3HB3HD), poly (3-hydroxybutyrate-co-3-hydroxyvariate-co-3-hydroxyhexanoate) (P3HB3HV3HH) and the like. Of these, P3HB, P3HB3HH, P3HB3HV, and P3HB4HB are preferable because they are industrially easy to produce.
 また、繰り返し単位の組成比を変えることで、融点、結晶化度を変化させ、結果として、ヤング率、耐熱性等の物性を変化させることができ、かつ、ポリプロピレンとポリエチレンとの間の物性を付与することが可能であること、および上記したように工業的に生産が容易であり、物性的に有用なプラスチックであるという観点から、3-ヒドロキシ酪酸と3-ヒドロキシヘキサン酸の共重合体であるP3HB3HHがより好ましい。また、P3HB3HHは、融点を低くすることができ、低温での成形加工が可能となる観点からも好ましい。 Further, by changing the composition ratio of the repeating unit, the melting point and crystallinity can be changed, and as a result, the physical properties such as Young's modulus and heat resistance can be changed, and the physical properties between polypropylene and polyethylene can be changed. A copolymer of 3-hydroxybutyric acid and 3-hydroxyhexanoic acid from the viewpoint that it can be imparted and that it is a plastic that is industrially easy to produce and is physically useful as described above. Certain P3HB3HH is more preferred. Further, P3HB3HH is preferable from the viewpoint that the melting point can be lowered and the molding process at a low temperature becomes possible.
 なお、上記P3HB3HVは、3-ヒドロキシブチレート成分と3-ヒドロキシバリレート成分との比率によって融点、ヤング率等が変化するが、両成分が共結晶化するために結晶化度は50%以上と高い。したがって、P3HB3HVは、P3HBに比べれば柔軟ではあるが、脆性の改良は不十分である。 The melting point, Young's modulus, etc. of the above P3HB3HV change depending on the ratio of the 3-hydroxybutyrate component and the 3-hydroxyvalerate component, but the crystallinity is 50% or more because both components co-crystallize. high. Therefore, P3HB3HV is more flexible than P3HB, but the improvement of brittleness is insufficient.
 本発明の一実施形態において、(A)示差走査熱量分析において、130~155℃の範囲にある結晶融解曲線のトップ温度(Tm)と、結晶融解曲線のエンド温度(Tm)との差(以下、「(A)の融点温度における差」と称する場合もある。)は、10℃以上であり、好ましくは、15℃以上であり、より好ましくは、20℃以上であり、さらに好ましくは、25℃以上である。上記の範囲内であると、ポリ(3-ヒドロキシブチレート)系樹脂を溶融させると同時に、一部の結晶を溶融させずに残存させることが容易になるためである。これにより、押出ラミネーションの際に、十分な予熱をかけて樹脂を溶融させて基材に接着することができ、残存する結晶により保持される張力によってネックインを抑制することができる。また、一部の結晶を残すことによって結晶化速度が速くなり、冷却ロールからのラミネート層の剥離性を良好なものとすることができる。また、上限については、特に限定されないが、ポリ(3-ヒドロキシブチレート)系樹脂の製造の容易さの観点から、例えば、50℃以下であり、より好ましくは、40℃以下であり、さらに好ましくは、30℃以下である。 Difference in one embodiment of the present invention, in (A) differential scanning calorimetry, a top temperature of crystal melting curve in the range of 130 ~ 155 ℃ (Tm a) , the end temperature of the crystal melting curve (Tm b) (Hereinafter, it may be referred to as "difference in melting point temperature of (A)") is 10 ° C. or higher, preferably 15 ° C. or higher, more preferably 20 ° C. or higher, still more preferably. , 25 ° C or higher. This is because if it is within the above range, it becomes easy to melt the poly (3-hydroxybutyrate) resin and at the same time leave some crystals without melting. As a result, during extrusion lamination, the resin can be melted by applying sufficient preheating and adhered to the base material, and neck-in can be suppressed by the tension held by the remaining crystals. Further, by leaving a part of the crystals, the crystallization rate becomes high, and the peelability of the laminate layer from the cooling roll can be improved. The upper limit is not particularly limited, but from the viewpoint of ease of production of the poly (3-hydroxybutyrate) resin, for example, it is 50 ° C. or lower, more preferably 40 ° C. or lower, and further preferably. Is 30 ° C. or lower.
 本明細書において、「示差走査熱量分析における結晶融解曲線のトップ温度(Tm)」および「結晶融解曲線のエンド温度(Tm)」は、以下の通り定義される。樹脂試料4~10mgをアルミパンに充填し、示差走査熱量分析器を用いて、窒素気流下、30℃から180℃まで10℃/分の速度で昇温して前記樹脂試料を融解して吸熱曲線を得る。得られた吸熱曲線において、130~155℃の範囲に存在する融点ピークについて、吸熱量が最大となった融点ピークのトップ温度をTmとし、吸熱が認められなくなった温度をTmとした。Tmより高温側に別の融点ピークがある場合は、その吸熱が認められなくなった温度をTmとした。例えば、実施例および比較例において、「示差走査熱量分析における結晶融解曲線のトップ温度(Tm)」および「結晶融解曲線のエンド温度(Tm)」、ならびに後述する「Tm」は、図2~4の模式的なDSCチャートで表されるそれぞれの位置を示す。 As used herein, "top temperature of crystal melting curve in differential scanning calorimetry (Tm a)" and "End temperature of the crystal melting curve (Tm b)" is defined as follows. An aluminum pan is filled with 4 to 10 mg of a resin sample, and the temperature is raised from 30 ° C. to 180 ° C. at a rate of 10 ° C./min under a nitrogen stream using a differential scanning calorimeter to melt the resin sample and absorb heat. Get a curve. In the obtained endothermic curve, the melting point peak present in the range of 130 ~ 155 ° C., the top temperature of the melting peak endotherm is maximized and Tm a, the temperature of heat absorption was not recognized was Tm b. If from Tm a there is another melting peak to the high temperature side was the temperature at which the endothermic was not recognized and Tm b. For example, in Examples and Comparative Examples, "top temperature of crystal melting curve (Tm a )" and "end temperature of crystal melting curve (Tm b ) in differential scanning calorimetry", and "Tm c " described later are shown in the figure. The respective positions represented by 2 to 4 schematic DSC charts are shown.
 本発明の一実施形態において、本P3HB系樹脂におけるTmとTmとしては、例えば、(i)Tm=130~155℃に対して、Tm=160~180℃であり、(ii)より好ましくはTm=140~145℃に対して、Tm=165~175℃であり、(iii)さらにTm=140~145℃、Tm=165~175℃であって、かつ、160℃<Tm<Tmの関係を満たす別の吸熱ピーク温度(Tm)を有することがさらに好ましい。本P3HB系樹脂の融点が上記範囲内であると、P3HB系樹脂の熱分解温度の180℃を超えない温度領域で、樹脂を十分溶融させながら一部の結晶を残す加工が容易となり、冷却ロールからの剥離性とネックイン抑制を両立できるとともに、熱分解によるラミネート層の機械強度を低下や臭気に発生を抑制することができる。特に、Tmを有する場合、冷却ロールからの剥離性とネックイン抑制について、より高い改良効果を得ることが可能になる。 In one embodiment of the present invention, the Tm a and Tm b in the P3HB-based resin include, for example, (i) with respect to Tm a = 130 ~ 155 ℃, a Tm b = 160 ~ 180 ℃, (ii) More preferably, Tm a = 140 to 145 ° C., Tm b = 165 to 175 ° C., and (iii) further, Tm a = 140 to 145 ° C., Tm b = 165 to 175 ° C., and 160. ° C. <it is further preferred to have another endothermic peak temperature satisfies the relationship Tm c <Tm b (Tm c ). When the melting point of the P3HB-based resin is within the above range, it becomes easy to process the P3HB-based resin to leave some crystals while sufficiently melting the resin in a temperature range not exceeding 180 ° C., which is the thermal decomposition temperature of the P3HB-based resin. It is possible to achieve both peelability from the resin and suppression of neck-in, and it is possible to reduce the mechanical strength of the laminated layer due to thermal decomposition and suppress the generation of odor. Particularly, if having a Tm c, the peelability and neck-suppression from the cooling roll, it is possible to obtain a higher improving effect.
 本発明の一実施形態において、(B)175℃における溶融粘度(以下、「(B)の溶融粘度」と称する場合もある。)は、700Pa s以下であり、好ましくは、500Pa s以下であり、より好ましくは、400Pa s以下であり、さらに好ましくは、300Pa s以下である。上記の範囲内であると、押出ラミネーションの際の基材への濡れが向上し、接着性を良好なものにすることができる。さらには、押出機中でのせん断発熱が抑制され、加工時の樹脂の熱分解による加工性の悪化、臭気発生等の作業環境の悪化を低減できる。また、下限については、本発明の効果を奏する限り特に限定されないが、例えば、100Pa s以上であり、好ましくは、130Pa s以上である。上記の範囲よりも低粘度になると、ネックインの改善効果を十分に得られない場合がある。 In one embodiment of the present invention, the melt viscosity of (B) at 175 ° C. (hereinafter, may be referred to as “melt viscosity of (B)”) is 700 Pas or less, preferably 500 Pas or less. , More preferably 400 Pas or less, and even more preferably 300 Pas or less. Within the above range, wetting to the base material during extrusion lamination is improved, and the adhesiveness can be improved. Furthermore, shear heat generation in the extruder is suppressed, and deterioration of work environment such as deterioration of workability and generation of odor due to thermal decomposition of the resin during processing can be reduced. The lower limit is not particularly limited as long as the effect of the present invention is exhibited, but is, for example, 100 Pas or more, preferably 130 Pas or more. If the viscosity is lower than the above range, the effect of improving neck-in may not be sufficiently obtained.
 なお、(A)示差走査熱量分析において、130~155℃の範囲にある結晶融解曲線のトップ温度(Tm)と、結晶融解曲線のエンド温度(Tm)との差、および(B)175℃における溶融粘度は、後述する実施例に記載の方法で測定される。 Note that in (A) differential scanning calorimetry, a top temperature of crystal melting curve in the range of 130 ~ 155 ℃ (Tm a) , the difference between the end temperature of the crystal melting curve (Tm b), and (B) 175 The melt viscosity at ° C. is measured by the method described in Examples described later.
 本発明の一実施形態において、(A)の融点温度における差および(B)の溶融粘度を満たすP3HB系樹脂は、例えば、微生物により産生され得る。この場合、(i)単一の微生物を用いて、(A)の融点温度における差および(B)の溶融粘度を満たすP3HB系樹脂を得てもよいし、(ii)複数の微生物から得られたP3HB系樹脂を混合して、(A)の融点温度における差および(B)の溶融粘度を満たすP3HB系樹脂を得てもよい。 In one embodiment of the present invention, the P3HB-based resin satisfying the difference in the melting point temperature of (A) and the melt viscosity of (B) can be produced by, for example, a microorganism. In this case, (i) a single microorganism may be used to obtain a P3HB-based resin that satisfies (A) the difference in melting point temperature and (B) the melt viscosity, or (ii) can be obtained from a plurality of microorganisms. The P3HB-based resin may be mixed to obtain a P3HB-based resin that satisfies the difference in the melting point temperature of (A) and the melt viscosity of (B).
 本P3HB系樹脂を生産する微生物としては、P3HB系樹脂の生産能を有する微生物であれば特に限定されない。例えば、P3HB生産菌としては、1925年に発見されたBacillus megateriumが最初で、他にもカプリアビダス・ネケイター(Cupriavidus necator)(旧分類:アルカリゲネス・ユートロファス(Alcaligenes eutrophus、ラルストニア・ユートロフア(Ralstonia eutropha))、アルカリゲネス・ラタス(Alcaligenes latus)等の天然微生物が挙げられる。これらの微生物ではP3HBが菌体内に蓄積されることが知られている。 The microorganism that produces the P3HB-based resin is not particularly limited as long as it is a microorganism that has the ability to produce the P3HB-based resin. For example, as a P3HB-producing bacterium, Bacillus megaterium discovered in 1925 is the first, and in addition, Cupriavidus necator (former classification: Alcaligenes eutrophos, Ralstonia eutropha) (Ralstonia eutropha) Examples include natural microorganisms such as Alcaligenes lattice. It is known that P3HB is accumulated in the cells of these microorganisms.
 また、ヒドロキシブチレートとその他のヒドロキシアルカノエートとの共重合体の生産菌としては、P3HB3HVおよびP3HB3HH生産菌であるアエロモナス・キヤビエ(Aeromonas caviae)、P3HB4HB生産菌であるアルカリゲネス・ユートロファス(Alcaligenes eutrophus)等が知られている。特に、P3HB3HHに関し、P3HB3HHの生産性を上げるために、P3HA合成酵素群の遺伝子を導入したアルカリゲネス・ユートロファス AC32株(Alcaligenes eutrophus AC32, FERM BP-6038)(T.Fukui,Y.Doi,J.Bateriol.,179,p4821-4830(1997))等がより好ましく、これらの微生物を適切な条件で培養して菌体内にP3HB3HHを蓄積させた微生物菌体が用いられる。また上記以外にも、生産したいP3HB系樹脂に合わせて、各種P3HB系樹脂合成関連遺伝子を導入した遺伝子組換え微生物を用いても良いし、基質の種類を含む培養条件の最適化をすればよい。 Examples of the bacterium that produces a copolymer of hydroxybutyrate and other hydroxyalkanoates include Aeromonas caviae, which is a P3HB3HV and P3HB3HH-producing bacterium, and Alcaligenes, which is a P3HB4HB-producing bacterium. It has been known. In particular, regarding P3HB3HH, in order to increase the productivity of P3HB3HH, Alcaligenes utrophas AC32 strain (Alcaligenes europhos AC32, FERM BP-6038) (T. Fukui, Y. Doi, J. Baeri) into which a gene of the P3HA synthase group was introduced was introduced. ., 179, p4821-4830 (1997)) and the like are more preferable, and microbial cells in which P3HB3HH is accumulated in the cells by culturing these microorganisms under appropriate conditions are used. In addition to the above, a genetically modified microorganism into which various P3HB resin synthesis-related genes have been introduced may be used according to the P3HB resin to be produced, or the culture conditions including the type of substrate may be optimized. ..
 また、P3HB3HHは、例えば、国際公開第2010/013483号公報に記載された方法によっても製造され得る。P3HB3HHの市販品としては、例えば、株式会社カネカ「カネカ生分解性ポリマーPHBH(登録商標)」等が挙げられる。 P3HB3HH can also be produced, for example, by the method described in International Publication No. 2010/0134883. Examples of commercially available products of P3HB3HH include Kaneka Corporation "Kaneka Biodegradable Polymer PHBH (registered trademark)".
 本発明の一実施形態において、(A)の融点温度における差および(B)の溶融粘度を満たすP3HB系樹脂は、例えば、KNK-631株(国際公開第2009/145164号参照)、およびKNK-005株(米国特許第7384766号明細書参照)から得られたP3HB系樹脂を混合することにより得られる(後述する実施例の「樹脂ペレット1」)。また、本発明の一実施形態において、(A)の融点温度における差および(B)の溶融粘度を満たすP3HB系樹脂は、例えば、KNK-005ΔphaZ1::Plac-phaCReΔphaZ2,6株(国際公開第2015/146195号)単独から得られた樹脂を分子量調整して得ることもできる(後述する実施例の「樹脂ペレット2」および「樹脂ペレット3」。KNK-005ΔphaZ1::Plac-phaCReΔphaZ2,6株から得られたP3HB系樹脂は、160~165℃の範囲に融点ピーク温度を有するため、より高温での加工においてもネックインの抑制および冷却ロールからの剥離性を向上させることができる。KNK-005ΔphaZ1::Plac-phaCReΔphaZ2,6株から得られたP3HB系樹脂は、本発明の効果を奏する範囲で、KNK-005株等の他の菌株から得られたP3HB系樹脂と混合して使用してもよい(後述する実施例の「樹脂ペレット4」)。 In one embodiment of the present invention, the P3HB-based resins satisfying the difference in melting point temperature of (A) and the melt viscosity of (B) are, for example, KNK-631 strain (see International Publication No. 2009/145164) and KNK-. It is obtained by mixing a P3HB-based resin obtained from strain 005 (see US Pat. No. 7,384,766) (“resin pellet 1” in Examples described later). Further, in one embodiment of the present invention, the P3HB-based resin satisfying the difference in the melting point temperature of (A) and the melt viscosity of (B) is, for example, KNK-005ΔphaZ :: Plac-phaC Re ΔphaZ2,6 strain (international publication). (No. 2015/146195) It is also possible to obtain the resin obtained by adjusting the molecular weight (“Resin Pellet 2” and “Resin Pellet 3” of Examples described later. KNK-005ΔphaZ1: Plac-phaC Re ΔphaZ2. Since the P3HB-based resin obtained from the 6 strains has a melting point peak temperature in the range of 160 to 165 ° C., it is possible to suppress neck-in and improve the peelability from the cooling roll even in processing at a higher temperature. The P3HB-based resin obtained from the KNK-005 ΔphaZ :: Plac-phaC Re ΔphaZ2,6 strain is mixed with the P3HB-based resin obtained from another strain such as the KNK-005 strain to the extent that the effect of the present invention is exhibited. (“Resin pellet 4” in Examples described later).
 本発明の一実施形態において、P3HB3HHの繰り返し単位の組成比は、柔軟性および強度のバランスの観点から、3-ヒドロキシブチレート単位/3-ヒドロキシヘキサノエート単位の組成比が、80/20~99/1(mol/mol)であることが好ましく、85/15~97/3(mo1/mo1)であることがより好ましい。3-ヒドロキシブチレート単位/3-ヒドロキシヘキサノエート単位の組成比が、99/1(mol/mol)以下であると、十分な柔軟性が得られ、80/20(mol/mol)以上であると、十分な硬度が得られる。 In one embodiment of the present invention, the composition ratio of the repeating unit of P3HB3HH is such that the composition ratio of 3-hydroxybutyrate unit / 3-hydroxyhexanoate unit is 80/20 or more from the viewpoint of the balance between flexibility and strength. It is preferably 99/1 (mol / mol), more preferably 85/15 to 97/3 (mo1 / mo1). When the composition ratio of 3-hydroxybutyrate unit / 3-hydroxyhexanoate unit is 99/1 (mol / mol) or less, sufficient flexibility is obtained, and when it is 80/20 (mol / mol) or more. If there is, sufficient hardness can be obtained.
 本発明の一実施形態において、P3HB系樹脂の重量平均分子量(以下、「Mw」と称する場合がある。)は、特に限定されないが、15~40万が好ましく、20~35万がより好ましく、25~30万がさらに好ましい。重量平均分子量が15万以上であると、十分な機械物性等が得られ、40万以下であると、段落〔0035〕に記載の好ましい溶融粘度が達成でき、押出ラミネーションの際に必要な十分な流動性が担保され、樹脂層の厚みの制御が容易となる。P3HB系樹脂の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)(昭和電工社製「Shodex GPC-101」)によって、カラムにポリスチレンゲル(昭和電工社製「Shodex K-804」)を用い、クロロホルムを移動相とし、ポリスチレン換算した場合の分子量として求めることができる。 In one embodiment of the present invention, the weight average molecular weight of the P3HB-based resin (hereinafter, may be referred to as “Mw”) is not particularly limited, but is preferably 150,000 to 400,000, more preferably 200,000 to 350,000. 250,000 to 300,000 is more preferable. When the weight average molecular weight is 150,000 or more, sufficient mechanical properties and the like can be obtained, and when it is 400,000 or less, the preferable melt viscosity described in paragraph [0035] can be achieved, which is sufficient for extrusion lamination. The fluidity is ensured and the thickness of the resin layer can be easily controlled. The weight average molecular weight of the P3HB resin is determined by gel permeation chromatography (GPC) (“Shodex GPC-101” manufactured by Showa Denko Co., Ltd.), using polystyrene gel (“Shodex K-804” manufactured by Showa Denko Co., Ltd.) on the column, and chloroform. Is used as the mobile phase, and can be obtained as the molecular weight when converted to polystyrene.
 <その他>
 本発明の一実施形態において、本樹脂組成物は、上記P3HB系樹脂を含む、押出ラミネート層用の樹脂組成物である。
<Others>
In one embodiment of the present invention, the present resin composition is a resin composition for an extruded laminate layer containing the above P3HB-based resin.
 「押出ラミネート層用」とは、押出ラミネートにより、基材層に対してラミネートするための層としての用途を意図する。なお、押出ラミネートは、当該技術分野において公知の方法である。 "For extrusion laminate layer" is intended to be used as a layer for laminating to a base material layer by extrusion lamination. Extrusion laminating is a method known in the art.
 本発明の一実施形態において、本樹脂組成物は、1種のP3HB系樹脂を単独で使用することもできるし、2種以上のP3HB系樹脂を組み合わせて使用することもできる。2種以上のP3HB系樹脂を組み合わせて使用する場合、例えば、上記<ポリ(3-ヒドロキシブチレート)系樹脂>の項で記載した樹脂が使用される。 In one embodiment of the present invention, the present resin composition may use one kind of P3HB-based resin alone or a combination of two or more kinds of P3HB-based resins. When two or more types of P3HB-based resins are used in combination, for example, the resin described in the above section <Poly (3-hydroxybutyrate) -based resin> is used.
 また、本発明の一実施形態において、本樹脂組成物は、本発明の効果を奏する範囲で、P3HB系樹脂以外の生分解性樹脂を1種または2種以上含んでいてもよい。そのような他の樹脂としては、例えば、ポリブチレンサクシネート、ポリカプロラクトン、ポリ乳酸等の脂肪族ポリエステル系樹脂や、ポリブチレンアジペートテレフタレート、ポリブチレンセバテートテレフタレート、ポリブチレンアゼレートテレフタレート等の脂肪族芳香族ポリエステル系樹脂、ポリブチレンサクシネートアジペート、ポリブチレンサクシネートアジペートと乳酸、テレフタル酸、リンゴ酸、セバシン酸との共重合体等のポリブチレンサクシネートアジペート系樹脂等が挙げられる。これらの樹脂の添加量は、本樹脂組成物の生分解性を担保するために、P3HB系樹脂100重量部に対して30重量部以下が好ましい。 Further, in one embodiment of the present invention, the present resin composition may contain one or more biodegradable resins other than the P3HB-based resin as long as the effects of the present invention are exhibited. Examples of such other resins include aliphatic polyester resins such as polybutylene succinate, polycaprolactone and polylactic acid, and aliphatic polyesters such as polybutylene adipate terephthalate, polybutylene succinate terephthalate and polybutylene succilate terephthalate. Examples thereof include aromatic polyester-based resins, polybutylene succinate adipates, and polybutylene succinate adipate-based resins such as copolymers of polybutylene succinate adipate with lactic acid, terephthalic acid, malic acid, and sebacic acid. The amount of these resins added is preferably 30 parts by weight or less with respect to 100 parts by weight of the P3HB-based resin in order to ensure the biodegradability of the present resin composition.
 また、本樹脂組成物は、本発明の効果を奏する範囲で、当該技術分野において通常用いられる添加剤を含んでいてもよい。そのような添加剤としては、例えば、タルク、炭酸カルシウム、マイカ、シリカ、酸化チタン、アルミナ等の無機充填剤、もみがら、木粉、新聞紙等の古紙、各種デンプン、セルロース等の有機充填剤、顔料、染料等の着色剤、活性炭、ゼオライト等の臭気吸収剤、バニリン、デキストリン等の香料、可塑剤、酸化防止剤、抗酸化剤、耐候性改良剤、紫外線吸収剤、結晶核剤、滑剤、離型剤、撥水剤、抗菌剤、摺動性改良剤等が挙げられる。添加剤としては、1種のみが含まれていてもよいし、2種以上が含まれていてもよい。これら添加剤の含有量は、その使用目的に応じて当業者が適宜設定可能である。 Further, the present resin composition may contain additives usually used in the art as long as the effects of the present invention are exhibited. Examples of such additives include inorganic fillers such as talc, calcium carbonate, mica, silica, titanium oxide, and alumina, used paper such as fir tree, wood flour, and newspaper, and organic fillers such as various starches and cellulose. Colorants such as pigments and dyes, odor absorbers such as activated charcoal and zeolite, fragrances such as vanillin and dextrin, plasticizers, antioxidants, antioxidants, weather resistance improvers, ultraviolet absorbers, crystal nucleating agents, lubricants, etc. Examples thereof include a mold release agent, a water repellent agent, an antibacterial agent, and a slidability improver. As the additive, only one kind may be contained, or two or more kinds may be contained. The content of these additives can be appropriately set by those skilled in the art according to the purpose of use.
 (ラミネート層)
 本積層体におけるラミネート層は、上述した(樹脂組成物)に記載の本樹脂組成物により形成される。本発明の一実施形態において、本積層体におけるラミネート層は、本発明の効果を損なわない範囲で、上記樹脂組成物以外の成分を含んでいてもよい。これら添加剤の含有量は、その使用目的に応じて当業者が適宜設定可能である。
(Laminate layer)
The laminate layer in the present laminate is formed by the present resin composition described in the above-mentioned (resin composition). In one embodiment of the present invention, the laminate layer in the present laminate may contain components other than the above resin composition as long as the effects of the present invention are not impaired. The content of these additives can be appropriately set by those skilled in the art according to the purpose of use.
 上述した通り、本樹脂組成物に含まれる本P3HB系樹脂が、特定の融点挙動((A)で示すパラメータ)および溶融粘度((B)で示すパラメータ)を有することにより、押出ラミネーションにより積層体を製造する際に、基材との接着性を良好に保つとともに、ネックイン特性および冷却ロールからのラミネート層の剥離性を改善できる。そのため、好ましくは、本積層体のラミネート層は押出ラミネート層であることが好ましい。換言すれば、本積層体の基材層の少なくとも片面に押出ラミネーションによりラミネート層が形成されていることが好ましい。 As described above, the P3HB-based resin contained in the resin composition has a specific melting point behavior (parameter shown in (A)) and melt viscosity (parameter shown in (B)), so that the laminate is formed by extrusion lamination. The adhesiveness to the base material can be kept good, and the neck-in characteristics and the peelability of the laminated layer from the cooling roll can be improved. Therefore, it is preferable that the laminate layer of the present laminate is an extruded laminate layer. In other words, it is preferable that the laminate layer is formed on at least one surface of the base material layer of the present laminate by extrusion lamination.
 (2-3.基材層)
 本積層体は、基材層を含む。本積層体における基材層は、ラミネート層を積層可能な層であれば特段限定されない。
(2-3. Base material layer)
This laminate includes a base material layer. The base material layer in the present laminate is not particularly limited as long as it is a layer on which the laminate layer can be laminated.
 本発明の一実施形態において、基材層は、生分解性を有する層であることが好ましい。基材層が生分解性を有する層であることにより、本積層体はラミネート層を含めた全体が生分解性を有することとなり、海洋汚染の問題を解決する素材としてより有利である。 In one embodiment of the present invention, the base material layer is preferably a biodegradable layer. Since the base material layer is a biodegradable layer, the entire laminate including the laminated layer has biodegradability, which is more advantageous as a material for solving the problem of marine pollution.
 生分解性を有する基材層としては、特に限定されないが、例えば、紙(主成分がセルロース)、セロハン、セルロースエステル;ポリビニルアルコール、ポリアミノ酸、ポリグリコール酸、プルラン、またはこれらの基材にアルミ、シリカ等の無機物を蒸着したもの等が挙げられる。中でも耐熱性に優れ、安価である点から、紙が好ましい。紙の種類は、特に限定されず、カップ原紙、片艶紙、クラフト紙、上質紙、コート紙、薄葉紙、グラシン紙、板紙等が挙げられる。紙の種類は、本積層体の用途に応じて適宜選択することができる。紙には、必要に応じて、耐水剤、撥水剤、無機物等を添加してもよく、酸素バリア層コーティング、水蒸気バリアコーティング等の表面処理が施されたものであってもよい。 The biodegradable base material layer is not particularly limited, but for example, paper (main component is cellulose), cellophane, cellulose ester; polyvinyl alcohol, polyamino acid, polyglycolic acid, purulan, or aluminum on these base materials. , The one obtained by depositing an inorganic substance such as silica. Of these, paper is preferable because it has excellent heat resistance and is inexpensive. The type of paper is not particularly limited, and examples thereof include cup base paper, single gloss paper, kraft paper, high-quality paper, coated paper, thin leaf paper, glassin paper, and paperboard. The type of paper can be appropriately selected according to the use of the laminated body. If necessary, a water resistant agent, a water repellent agent, an inorganic substance, or the like may be added to the paper, or the paper may be surface-treated such as an oxygen barrier layer coating and a water vapor barrier coating.
 本発明の一実施形態において、基材層には、コロナ処理、フレーム処理、アンカーコート処理等の表面処理を行ってもよい。これらの表面処理は、単独で行ってもよいし、複数の表面処理を併用してもよい。特に、ラミネーション加工のインラインで基材層にコロナ処理を施して、その基材層の上にラミネート層を積層することで、P3HB系樹脂と基材層との密着強度を上げることができる。 In one embodiment of the present invention, the base material layer may be subjected to surface treatment such as corona treatment, frame treatment, and anchor coating treatment. These surface treatments may be performed alone or in combination with a plurality of surface treatments. In particular, the adhesion strength between the P3HB resin and the base material layer can be increased by applying the corona treatment to the base material layer in the in-line of the lamination processing and laminating the laminate layer on the base material layer.
 〔3.積層体の製造方法〕
 本発明の一実施形態に係る本積層体の製造方法(以下、「本製造方法」と称する。)は、下記(i)~(iii)の工程を含む:
 工程(i):ラミネート層用の樹脂を溶融押出しする工程、
 工程(ii):前記工程(i)で得られた溶融押出し後のラミネート層用の樹脂と、別途繰り出した基材層用の基材とを接触させて、前記基材層と前記ラミネート層とを含む積層体を形成する工程、
 工程(iii):前記工程(ii)で得られた積層体を少なくとも1本が温調可能な2本のロールで挟み、前記積層体を構成する前記基材層と前記ラミネート層とを圧着する、圧着工程。
 本積層体は、上記(i)~(iii)の工程を含む押出ラミネート法により、基材層の片面または両面に、樹脂組成物を加熱融着させて製造することができる。本明細書中、「温調可能」とは、温度調節機能が備わっており、所望の温度に調節することが可能であることを意味する。
[3. Laminated body manufacturing method]
The method for producing the laminated body according to the embodiment of the present invention (hereinafter, referred to as "the present production method") includes the following steps (i) to (iii):
Step (i): A step of melt-extruding the resin for the laminate layer,
Step (ii): The resin for the laminate layer after melt extrusion obtained in the step (i) and the base material for the base material layer separately fed out are brought into contact with each other to form the base material layer and the laminate layer. The process of forming a laminate containing
Step (iii): The laminate obtained in the step (iii) is sandwiched between two rolls whose temperature can be controlled by at least one, and the base material layer constituting the laminate and the laminate layer are pressure-bonded. , Crimping process.
The present laminate can be produced by heat-sealing the resin composition on one side or both sides of the base material layer by the extrusion lamination method including the above steps (i) to (iii). In the present specification, "temperature controllable" means that the temperature control function is provided and the temperature can be adjusted to a desired level.
 本製造方法の一実施形態を図1に示す。本製造方法では、まず、T型ダイからラミネート層用の樹脂を溶融押出しする(工程(i))。次に、前記溶融押出し後の樹脂と、基材繰り出しロールから別途繰り出した基材層用の基材とを接触させて、基材層と、ラミネート層とが層構造をなすように、積層体を形成する(工程(ii))。その後、形成された積層体を少なくとも1本が温調可能な1対の圧着ロールで挟み、前記積層体を構成する前記基材層と前記ラミネート層とを圧着する。このときの圧着は冷却圧着であり、ロールは冷却ロールであることが好ましい。また、工程(iii)において、前記温調可能なロールは、積層体のラミネート層に接することが好ましい。工程(iii)により得られた圧着後の積層体は、ロールから剥離され、積層体巻取りロールに巻き取られることで回収される。 An embodiment of this manufacturing method is shown in FIG. In this manufacturing method, first, the resin for the laminate layer is melt-extruded from the T-type die (step (i)). Next, the resin after melt extrusion is brought into contact with the base material for the base material layer separately fed out from the base material feeding roll, so that the base material layer and the laminate layer form a layered structure. (Step (ii)). Then, at least one of the formed laminates is sandwiched between a pair of pressure-regulating rolls, and the base material layer constituting the laminate and the laminate layer are pressure-bonded. The crimping at this time is preferably cooling crimping, and the roll is preferably a cooling roll. Further, in the step (iii), it is preferable that the temperature-adjustable roll is in contact with the laminated layer of the laminated body. The crimped laminate obtained in the step (iii) is peeled off from the roll and wound on the laminate take-up roll to be recovered.
 本製造方法の一実施形態において、上記の押出ラミネート法は、溶融した樹脂材料を含むラミネート層を基材に冷却圧着し、その直後に冷却ロールからラミネート層を剥離するものであるため、連続的に実施される。そのため、従来法では、樹脂材料としてP3HB系樹脂を用いた場合、冷却ロールからラミネート層がスムーズに剥離しにくく、冷却ロールにラミネート層が一時的に付着したようになる現象が生じやすかった。その結果、その付着箇所がロールから剥離する際に力がかかり、当該箇所でラミネート層表面に白濁したムラ(微細な凹凸)が生じるという問題が特に顕著に発生していた。しかし、本P3HB系樹脂を適用することで、冷却ロールからの剥離性を改善して、ラミネート層の表面状態が良好な積層体を製造することができる。 In one embodiment of the present manufacturing method, the extrusion laminating method is continuous because the laminating layer containing the molten resin material is cold-bonded to the base material and immediately after that, the laminating layer is peeled off from the cooling roll. Will be implemented in. Therefore, in the conventional method, when a P3HB-based resin is used as the resin material, it is difficult for the laminate layer to be smoothly peeled off from the cooling roll, and a phenomenon that the laminate layer temporarily adheres to the cooling roll tends to occur. As a result, a force is applied when the adhered portion is peeled off from the roll, and the problem that cloudy unevenness (fine unevenness) occurs on the surface of the laminate layer at the portion is particularly remarkable. However, by applying the present P3HB-based resin, it is possible to improve the peelability from the cooling roll and produce a laminate having a good surface condition of the laminate layer.
 本発明の一実施形態において、工程(i)における加熱温度は、熱融着させる樹脂の温度が、結晶の一部が残るようにTm未満に調節することが好ましく、Tm-5℃に調節することがより好ましい。この温度とすることで、本発明におけるネックインおよびロールからの剥離性の改善効果が得られる。下限温度としては、基材との接着性を確保する観点から、155℃以上が好ましく、158℃以上がより好ましい。上限温度としては、P3HB系樹脂の熱分解温度である180℃を超えない温度がよく、具体的には175℃以下が好ましい。 In one embodiment of the present invention, the heating temperature in step (i), the temperature of the resin to be thermally fused is, it is preferable to adjust to less than Tm b so as to partially leave crystals, to Tm b -5 ° C. It is more preferable to adjust. By setting this temperature, the effect of improving the peelability from the neck-in and the roll in the present invention can be obtained. The lower limit temperature is preferably 155 ° C. or higher, more preferably 158 ° C. or higher, from the viewpoint of ensuring adhesiveness to the base material. The upper limit temperature is preferably a temperature that does not exceed 180 ° C., which is the thermal decomposition temperature of the P3HB resin, and specifically, 175 ° C. or lower is preferable.
 本発明の一実施形態において、工程(iii)における冷却ロールの表面温度は、ラミネート層を冷却圧着できる温度であれば特に限定されず、適宜決定することができる。冷却ロールの表面温度は、例えば、35~70℃であり、40~60℃であることが好ましい。上記範囲内であると、P3HB系樹脂の結晶化が促進され、その結果、冷却ロールへの粘着が減少し、短時間での固化を達成することができる。 In one embodiment of the present invention, the surface temperature of the cooling roll in the step (iii) is not particularly limited as long as it is a temperature at which the laminated layer can be cooled and pressure-bonded, and can be appropriately determined. The surface temperature of the cooling roll is, for example, 35 to 70 ° C., preferably 40 to 60 ° C. Within the above range, crystallization of the P3HB-based resin is promoted, and as a result, adhesion to the cooling roll is reduced, and solidification in a short time can be achieved.
 本積層体におけるラミネート層(本積層体が2層以上のラミネート層を有する場合には各ラミネート層)の厚さは、特に限定されないが、基材層への吸水を防止しながら、十分な柔軟性を確保する観点から、5~300μmが好ましく、10~200μmがより好ましい。 The thickness of the laminate layer (each laminate layer when the present laminate has two or more laminate layers) in the present laminate is not particularly limited, but is sufficiently flexible while preventing water absorption to the base material layer. From the viewpoint of ensuring the properties, 5 to 300 μm is preferable, and 10 to 200 μm is more preferable.
 本発明の一実施形態において、紙コップや食品トレイ向けに、基材層として、150~350g/mのカップ原紙を用いた場合には、ラミネート層の厚みは、20~100μmとすることが好ましく、30~70μmとすることがより好ましい。上記厚みの範囲とすることで、打ち抜き性、ヒートシール性等の2次加工性を良好に保つことができる。 In one embodiment of the present invention, when a cup base paper of 150 to 350 g / m 2 is used as a base material layer for a paper cup or a food tray, the thickness of the laminate layer may be 20 to 100 μm. It is preferably 30 to 70 μm, more preferably 30 to 70 μm. By setting the thickness within the above range, it is possible to maintain good secondary workability such as punching property and heat sealing property.
 本発明の他の一実施形態において、ピロー包装や梱包紙袋向けに、基材層として、50~150g/mの片艶紙、クラフト紙または上質紙を用いた場合には、ラミネート層の厚みは、20~50μmとすることが好ましく、30~40μmとすることがより好ましい。上記厚みの範囲とすることで、ヒートシール性を良好に保つことができるとともに、袋に成形した時の柔軟性を確保することができる。 In another embodiment of the present invention, when 50 to 150 g / m 2 of single-gloss paper, kraft paper or wood-free paper is used as the base material layer for pillow packaging or packing paper bags, the thickness of the laminate layer Is preferably 20 to 50 μm, and more preferably 30 to 40 μm. By setting the thickness within the above range, the heat-sealing property can be kept good, and the flexibility when molded into a bag can be ensured.
 〔4.成形体〕
 本発明の一実施形態に係る成形体(以下、「本成形体」と称する。)は、本積層体を含む。本成形体は、ラミネート層の表面状態が良好である積層体から形成されているため、種々の用途において有利である。
[4. Mold]
The molded body according to one embodiment of the present invention (hereinafter, referred to as "the present molded body") includes the present laminated body. Since this molded product is formed from a laminated body in which the surface condition of the laminated layer is good, it is advantageous in various applications.
 本成形体は、本積層体を含むものであれば特に限定されないが、例えば、紙、フィルム、シート、チューブ、板、棒、容器(例えば、ボトル容器、コップ(「カップ」ともいう。)、トレー)、袋、部品等が挙げられる。本成形体は、海洋汚染の対策の観点から、好ましくは、袋または容器(例えば、ボトル容器、コップ、トレー)である。 The molded product is not particularly limited as long as it includes the laminate, but for example, paper, film, sheet, tube, plate, rod, container (for example, bottle container, cup (also referred to as “cup”), and the like. Tray), bags, parts, etc. The molded product is preferably a bag or container (for example, a bottle container, a cup, a tray) from the viewpoint of measures against marine pollution.
 本発明の一実施形態において、本成形体は、本積層体それ自体であってもよい。 In one embodiment of the present invention, the molded body may be the laminated body itself.
 本発明の一実施形態において、本成形体に含まれる本積層体は、2次加工されたものであってもよい。 In one embodiment of the present invention, the present laminated body included in the present molded body may be a secondary processed product.
 本積層体が2次加工されていることにより、それを含む本成形体は、ショッピングバッグ、各種製袋、食品・菓子包装材、カップ、トレー、カートン等の各種包装容器資材として(換言すれば、食品、化粧品、電子、医療、薬品等の各種分野で)、好適に利用することができる。本積層体は、基材への高い接着性および良好な耐熱性を有するために、液体を入れる容器、特に、即席麺、即席スープ、コーヒー等の飲食品カップ、総菜、弁当、電子レンジ食品等に用いるトレー等、温かい内容物を入れる容器として、より好ましい。 Since the laminate is secondarily processed, the molded product containing the laminate can be used as various packaging container materials such as shopping bags, various bag making materials, food / confectionery packaging materials, cups, trays, and cartons (in other words,). , Food, cosmetics, electronics, medicine, medicine, etc.), can be suitably used. In order to have high adhesiveness to the base material and good heat resistance, this laminate has containers for liquids, especially instant noodles, instant soups, food and drink cups such as coffee, side dishes, lunch boxes, microwave oven foods, etc. It is more preferable as a container for storing warm contents such as a tray used for.
 上記の各種2次加工は、従来の樹脂ラミネート紙と同じ方法、すなわち、各種製袋機、充填包装機等を用いて行うことができる。また、紙カップ成型機、打抜き機、函機等の装置を用いて加工することもできる。これらの加工機において、積層体の接着方法は公知の技術を使用することができ、例えば、ヒートシール法、インパルスシール法、超音波シール法、高周波シール法、ホットエアシール法、フレームシール法等が使用できる。 The above-mentioned various secondary processes can be performed by using the same method as the conventional resin laminated paper, that is, using various bag making machines, filling and wrapping machines, and the like. Further, it can be processed by using an apparatus such as a paper cup molding machine, a punching machine, and a box machine. In these processing machines, known techniques can be used as the bonding method of the laminate, for example, the heat sealing method, the impulse sealing method, the ultrasonic sealing method, the high frequency sealing method, the hot air sealing method, the frame sealing method, and the like. Can be used.
 本積層体または本成形体のヒートシール温度は、接着法により異なる。本積層体または本成形体のヒートシール温度は、シールバーを有する加熱式ヒートシール試験機を使用した場合、通常は250℃以下、好ましくは200℃以下、より好ましくは180℃以下である。上記範囲内であると、シール部近傍の樹脂の溶け出しを回避し、適当な樹脂層の膜厚の確保およびシール強度の確保を行うことができる。また、シールバーを有する加熱式ヒートシール試験機を使用した場合の下限値は、通常は130℃以上、好ましくは140℃以上、より好ましくは150℃以上である。上記範囲内であると、シール部における適当な接着を確保することができる。 The heat seal temperature of the laminated body or the molded body differs depending on the bonding method. The heat-sealing temperature of the laminated body or the molded body is usually 250 ° C. or lower, preferably 200 ° C. or lower, and more preferably 180 ° C. or lower when a heating type heat-sealing tester having a seal bar is used. Within the above range, it is possible to prevent the resin from leaching out in the vicinity of the seal portion, secure an appropriate film thickness of the resin layer, and secure the seal strength. Further, when a heating type heat seal tester having a seal bar is used, the lower limit value is usually 130 ° C. or higher, preferably 140 ° C. or higher, and more preferably 150 ° C. or higher. Within the above range, appropriate adhesion at the seal portion can be ensured.
 本積層体または本成形体のヒートシール圧力は、接着法により異なる。本積層体または本成形体のヒートシール圧力は、シールバーを有する加熱式ヒートシール試験機を使用した場合、通常は0.1MPa以上、好ましくは0.3MPa以上である。上記範囲内であると、シール部における適当な接着を確保することができる。また、シールバーを有する加熱式ヒートシール試験機を使用した場合の上限値は、通常は0.5MPa以下、好ましくは0.45MPa以下である。上記範囲内であると、シール端部の膜厚の薄肉化を回避し、シール強度を確保することができる。 The heat sealing pressure of the laminated body or the molded body differs depending on the bonding method. The heat-sealing pressure of the laminated body or the molded product is usually 0.1 MPa or more, preferably 0.3 MPa or more when a heating type heat-sealing tester having a seal bar is used. Within the above range, appropriate adhesion at the seal portion can be ensured. Further, when a heating type heat seal tester having a seal bar is used, the upper limit value is usually 0.5 MPa or less, preferably 0.45 MPa or less. When it is within the above range, it is possible to avoid thinning the film thickness of the seal end portion and secure the seal strength.
 また、本発明の一実施形態において、本成形体は、その物性を改善するために、本成形体とは異なる材料から構成される成形体(例えば、繊維、糸、ロープ、織物、編物、不織布、紙、フィルム、シート、チューブ、板、棒、容器、袋、部品、発泡体等)と複合化することもできる。これらの材料も、生分解性であることが好ましい。 Further, in one embodiment of the present invention, in order to improve the physical properties of the molded body, the molded body (for example, fiber, thread, rope, woven fabric, knitted fabric, non-woven fabric) made of a material different from the present molded body is used. , Paper, film, sheet, tube, board, rod, container, bag, part, foam, etc.). These materials are also preferably biodegradable.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
 すなわち、本発明の一実施形態は、以下である。
<1>基材層と、前記基材層の少なくとも片面に積層されたラミネート層と、を含む積層体であり、
 前記ラミネート層が、以下の(A)および(B)を満たす、ポリ(3-ヒドロキシブチレート)系樹脂を含む、積層体:
 (A)示差走査熱量分析において、130~155℃の範囲にある結晶融解曲線のトップ温度(Tm)と、結晶融解曲線のエンド温度(Tm)との差が10℃以上、
 (B)175℃における溶融粘度が100~700Pa s。
<2>前記ポリ(3-ヒドロキシブチレート)系樹脂が、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)である、<1>に記載の積層体。
<3>前記ラミネート層が、押出ラミネート層である、<1>または<2>に記載の積層体。
<4>前記基材層が、生分解性を有する層である、<1>~<3>のいずれかに記載の積層体。
<5>前記基材層が紙である、<1>~<4>のいずれかに記載の積層体。
<6><1>~<5>のいずれかに記載の積層体を含む、成形体。
<7>下記(i)~(iii)の工程を含む、<1>~<5>のいずれかに記載の、積層体の製造方法:
 (i)ラミネート層用の樹脂を溶融押出しする工程、
 (ii)前記工程(i)で得られた溶融押出し後のラミネート層用の樹脂と、別途繰り出した基材層用の基材とを接触させて、前記基材層と前記ラミネート層とを含む積層体を形成する工程、および
 (iii)前記工程(ii)で得られた積層体を少なくとも1本が温調可能な2本のロールで挟み、前記積層体を構成する前記基材層と前記ラミネート層とを圧着する、圧着工程。
<8>前記工程(i)において、押出時の樹脂温度が155~175℃である、<7>に記載の積層体の製造方法。
<9>前記工程(iii)において、温調可能なロールが前記積層体のラミネート層に接する、<7>または<8>に記載の積層体の製造方法。
<10>前記工程(iii)において、温調可能なロールの温度が35~70℃である、<7>~<9>のいずれかに記載の積層体の製造方法。
That is, one embodiment of the present invention is as follows.
<1> A laminate including a base material layer and a laminate layer laminated on at least one surface of the base material layer.
A laminate containing a poly (3-hydroxybutyrate) resin in which the laminate layer satisfies the following (A) and (B):
(A) in differential scanning calorimetry, a top temperature of crystal melting curve in the range of 130 ~ 155 ℃ (Tm a) , the difference between the end temperature of the crystal melting curve (Tm b) is 10 ° C. or higher,
(B) The melt viscosity at 175 ° C. is 100 to 700 Pas.
<2> The laminate according to <1>, wherein the poly (3-hydroxybutyrate) resin is poly (3-hydroxybutyrate-co-3-hydroxyhexanoate).
<3> The laminate according to <1> or <2>, wherein the laminate layer is an extruded laminate layer.
<4> The laminate according to any one of <1> to <3>, wherein the base material layer is a layer having biodegradability.
<5> The laminate according to any one of <1> to <4>, wherein the base material layer is paper.
<6> A molded product containing the laminate according to any one of <1> to <5>.
<7> The method for producing a laminate according to any one of <1> to <5>, which comprises the following steps (i) to (iii):
(I) A step of melt-extruding the resin for the laminate layer,
(Ii) The resin for the laminate layer after melt extrusion obtained in the step (i) and the base material for the base material layer separately fed out are brought into contact with each other to include the base material layer and the laminate layer. The step of forming the laminate, and (iii) the laminate obtained in the step (ii) is sandwiched between two rolls at least one of which can control the temperature, and the base material layer constituting the laminate and the above. A crimping process that crimps the laminate layer.
<8> The method for producing a laminate according to <7>, wherein in the step (i), the resin temperature at the time of extrusion is 155 to 175 ° C.
<9> The method for producing a laminated body according to <7> or <8>, wherein the temperature-controllable roll is in contact with the laminated layer of the laminated body in the step (iii).
<10> The method for producing a laminate according to any one of <7> to <9>, wherein the temperature of the roll whose temperature can be adjusted is 35 to 70 ° C. in the step (iii).
 以下、本発明を実施例に基づいてより詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to these Examples.
 〔材料〕
 実施例および比較例において、以下の表1に記載の、特定の融点特性および特定の溶融粘度を有するポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート系樹脂を含む樹脂ペレット1~7を使用した。なお、前記樹脂ペレット1~4は、上述の段落〔0041〕に記載の方法により製造した。また、前記樹脂ペレット5、6は、前記KNK-005株から得られた樹脂単独を用いて製造した。前記樹脂ペレット7は、前記KNK-005ΔphaZ1::Plac-phaCReΔphaZ2,6株単独から得られた樹脂を分子量調整することなく用いて製造した。
〔material〕
In Examples and Comparative Examples, resin pellets 1 to contain a poly (3-hydroxybutyrate-co-3-hydroxyhexanoate-based resin) having a specific melting point characteristic and a specific melt viscosity shown in Table 1 below. 7 was used. The resin pellets 1 to 4 were produced by the method described in the above paragraph [0041], and the resin pellets 5 and 6 were resin alone obtained from the KNK-005 strain. The resin pellet 7 was produced by using a resin obtained from the KNK-005ΔphaZ1 :: Plac-phaC Re ΔphaZ2,6 strain alone without adjusting the molecular weight.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 〔測定および評価方法〕
 実施例および比較例における評価を、以下の方法で行った。
[Measurement and evaluation method]
Evaluation in Examples and Comparative Examples was carried out by the following method.
 (示差走査熱量分析評価)
 樹脂試料4~10mgをアルミパンに充填し、示差走査熱量分析器を用いて、窒素気流下、30℃から180℃まで10℃/分の速度で昇温して樹脂試料が融解した時に得られる吸熱曲線を得た。130~155℃の範囲に存在する融点ピークについて、吸熱量が最大となった融点ピークのトップ温度をTmとし、吸熱が認められなくなった温度をTmとした。Tmより高温側に別の融点ピークがある場合は、その吸熱が認められなくなった温度をTmとした。
(Differential scanning calorimetry evaluation)
It is obtained when 4 to 10 mg of a resin sample is filled in an aluminum pan and the temperature is raised from 30 ° C. to 180 ° C. at a rate of 10 ° C./min under a nitrogen stream using a differential scanning calorimeter to melt the resin sample. An endothermic curve was obtained. For melting peak present in the range of 130 ~ 155 ° C., the top temperature of the melting peak endotherm is maximized and Tm a, the temperature of heat absorption was not recognized was Tm b. If from Tm a there is another melting peak to the high temperature side was the temperature at which the endothermic was not recognized and Tm b.
 (溶融粘度の測定方法)
 口径1mm、長さ10mm、流入角90°のオリフィスを装着し、175℃に加熱したキャピログラフ(シリンダー径10mm)に樹脂試料15gを充填し、5分間予熱した後に、ピストンを10mm/minの速度で降下させた。前記オリフィスから溶融樹脂を押出す際の、ピストンにかかる応力から、剪断速度122/sでの溶融粘度を算出した。
(Measurement method of melt viscosity)
An orifice with a diameter of 1 mm, a length of 10 mm, and an inflow angle of 90 ° is attached, a capillograph (cylinder diameter of 10 mm) heated to 175 ° C is filled with 15 g of a resin sample, preheated for 5 minutes, and then the piston is operated at a speed of 10 mm / min. Dropped. The melt viscosity at a shear rate of 122 / s was calculated from the stress applied to the piston when the molten resin was extruded from the orifice.
 (冷却ロールからの剥離性)
 冷却ロールへのラミネート層の張り付き具合を観測した。評価基準は下記の通りとした。
(Removability from cooling roll)
The degree of adhesion of the laminated layer to the cooling roll was observed. The evaluation criteria are as follows.
 <評価>
 ◎:4.0m/minで成形した場合、ラミネート表面に凹凸がなく、連続運転できる状態
 〇:4.0m/minで成形した場合、冷却ロールから離れにくく白濁したムラがあるが、2.0m/minで成形した場合、ラミネート面に凹凸がなく連続運転はできる状態
 ×:2.0m/min未満での成形した場合でも、積層体が冷却ロールから離れにくくなっており、手で剥離の補助をしないと連続運転ができない状態
 (ネックイン特性)
 T型ダイスの横幅に対するラミネート層の横幅の割合を測定した。評価基準は下記の通りとした。
<評価>
 ◎:65%以上
 〇:60%以上
 ×:60%未満。
<Evaluation>
⊚: When molded at 4.0 m / min, there is no unevenness on the laminated surface and continuous operation is possible. 〇: When molded at 4.0 m / min, it is difficult to separate from the cooling roll and there is unevenness that becomes cloudy, but 2.0 m. When molded at / min, the laminated surface is not uneven and continuous operation is possible. ×: Even when molded at less than 2.0 m / min, the laminate is difficult to separate from the cooling roll, and peeling is assisted by hand. Continuous operation is not possible without
The ratio of the width of the laminated layer to the width of the T-shaped die was measured. The evaluation criteria are as follows.
<Evaluation>
⊚: 65% or more 〇: 60% or more ×: Less than 60%.
 (基材(紙)とラミネート層間の接着性)
 ラミネート層にカッターナイフで、長さ30mmのクロスカットを入れた。続いて、ラミネート層のカット面に積水化学オリエンテープ No.380を貼り付け、手で剥離して、紙の剥離の様子を観察した。評価基準は下記の通りとした。
(Adhesion between base material (paper) and laminate layers)
A 30 mm long crosscut was made into the laminate layer with a utility knife. Subsequently, Sekisui Chemical Orient Tape No. 380 was pasted and peeled off by hand, and the state of peeling of the paper was observed. The evaluation criteria are as follows.
 <評価>
 ◎:界面剥離せず、紙の凝集破壊が観察された。
<Evaluation>
⊚: Paper coagulation fracture was observed without interfacial peeling.
 ○:主に紙の凝集破壊が起こったが、一部界面剥離する部分が観察された。 ◯: Although the paper was mainly coagulated and broken, a part where the interface was peeled off was observed.
 ×:紙の凝集破壊が起こらず、界面剥離の状態が観察された。 X: No cohesive fracture of the paper occurred, and the state of interfacial peeling was observed.
 (成形性の総合評価)
 冷却ロールからの剥離性、ネックイン特性、および基材とラミネート層間の接着性を基に総合的に評価した。評価基準は下記の通りとした。
(Comprehensive evaluation of moldability)
Comprehensive evaluation was made based on the peelability from the cooling roll, the neck-in property, and the adhesiveness between the base material and the laminate layer. The evaluation criteria are as follows.
 ◎:×の項目がなく、◎が2つ以上
 ○:×の項目がない
 ×:×の項目が1つ以上ある。
⊚: There is no item of ×, and there are two or more ◎ items. ○: There is no item of ×. ×: There is one or more items of ×.
 〔実施例1〕
 樹脂ペレット1を横幅:150mm、リップ開口幅:0.25mmのT型ダイスを装着した単軸押出機(東洋精機製作所製 「20C200型」ラボプラストミル)を用いて、シリンダー温度140~160℃、T型ダイ170℃に設定して、冷却ロールを60℃に温調したラミネーター(ロール径100mm)を用いて、坪量200g/mのカップ原紙の片面に厚さ30μmでラミネートして、積層体を得た。冷却ロールの速度が4.0m/minでは冷却ロールへの張り付きが起こり、連続運転が困難であったため、2.0m/minに速度を落として成形した(この場合、冷却ロールからの剥離性を○と評価した。)。続いて、得られた積層体を用いて、ネックイン特性および基材(紙)とラミネート層間の接着性を評価した。結果を表2に示す。
[Example 1]
Using a single-screw extruder (“20C200” lab plast mill manufactured by Toyo Seiki Seisakusho Co., Ltd.) equipped with a T-shaped die with a width of 150 mm and a lip opening width of 0.25 mm, the resin pellet 1 has a cylinder temperature of 140 to 160 ° C. Using a laminator (roll diameter 100 mm) whose cooling roll is set to 170 ° C and the temperature of the cooling roll is adjusted to 60 ° C, the T-type die is laminated on one side of a cup base paper having a basis weight of 200 g / m 2 to a thickness of 30 μm. I got a body. When the speed of the cooling roll was 4.0 m / min, sticking to the cooling roll occurred and continuous operation was difficult. Therefore, the speed was reduced to 2.0 m / min for molding (in this case, the peelability from the cooling roll was improved. It was evaluated as ○.) Subsequently, using the obtained laminate, the neck-in characteristics and the adhesiveness between the base material (paper) and the laminate layers were evaluated. The results are shown in Table 2.
 〔実施例2〕
 樹脂ペレット1を樹脂ペレット2に変更した以外は、実施例1と同様にして、各評価項目を評価した。結果を表2に示す。
[Example 2]
Each evaluation item was evaluated in the same manner as in Example 1 except that the resin pellet 1 was changed to the resin pellet 2. The results are shown in Table 2.
 〔実施例3〕
 樹脂ペレット1を樹脂ペレット3に変更した以外は、実施例1と同様にして、各評価項目を評価した。結果を表2に示す。
[Example 3]
Each evaluation item was evaluated in the same manner as in Example 1 except that the resin pellet 1 was changed to the resin pellet 3. The results are shown in Table 2.
 〔実施例4〕
 樹脂ペレット1を樹脂ペレット4に変更した以外は、実施例1と同様にして、各評価項目を評価した。結果を表2に示す。
[Example 4]
Each evaluation item was evaluated in the same manner as in Example 1 except that the resin pellet 1 was changed to the resin pellet 4. The results are shown in Table 2.
 〔比較例1〕
 樹脂ペレット1を樹脂ペレット5に変更した以外は、実施例1と同様にして、各評価項目を評価した。結果を表2に示す。
[Comparative Example 1]
Each evaluation item was evaluated in the same manner as in Example 1 except that the resin pellet 1 was changed to the resin pellet 5. The results are shown in Table 2.
 〔比較例2〕
 樹脂ペレット1を樹脂ペレット6に変更した以外は、実施例1と同様にして、各評価項目を評価した。結果を表2に示す。
[Comparative Example 2]
Each evaluation item was evaluated in the same manner as in Example 1 except that the resin pellet 1 was changed to the resin pellet 6. The results are shown in Table 2.
 〔比較例3〕
 樹脂ペレット1を樹脂ペレット7に変更した以外は、実施例1と同様にして、各評価項目を評価した。結果を表2に示す。
[Comparative Example 3]
Each evaluation item was evaluated in the same manner as in Example 1 except that the resin pellet 1 was changed to the resin pellet 7. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 〔結果〕
 表2より、実施例では、冷却ロールへのブロッキング、ネックイン特性、および基材との接着性のすべての評価項目について、良好な結果であった。
〔result〕
From Table 2, in the examples, good results were obtained for all the evaluation items of blocking to the cooling roll, neck-in characteristics, and adhesion to the substrate.
 一方、比較例では、上記評価項目のすべてが良好な結果であったものはなく、上記評価項目のうち少なくとも1つの評価項目は、不良であった。 On the other hand, in the comparative example, none of the above evaluation items had good results, and at least one of the above evaluation items was poor.
 したがって、P3HB系樹脂を含む本積層体は、前記積層体を押出ラミネーションにより製造する際に、ネックイン特性および冷却ロールからのラミネート層の剥離性を改善できることが示された。また、本積層体が上記P3HB系樹脂を含むことにより、ラミネート層の表面状態が良好で、かつ、基材とラミネート層との接着性が良好となることが示された。 Therefore, it was shown that the present laminate containing the P3HB resin can improve the neck-in characteristics and the peelability of the laminate layer from the cooling roll when the laminate is manufactured by extrusion lamination. Further, it was shown that when the present laminate contains the P3HB resin, the surface condition of the laminate layer is good and the adhesiveness between the base material and the laminate layer is good.
 上述の通り、P3HB系樹脂を含む本積層体は、前記積層体を押出ラミネーションにより製造する際に、ネックイン特性および冷却ロールからのラミネート層の剥離性を改善できるうえ、ラミネート層の表面状態が良好であることから、農業、漁業、林業、園芸、医学、衛生品、衣料、非衣料、包装、自動車、建材、その他の分野に好適に利用することができる。 As described above, this laminate containing the P3HB resin can improve the neck-in characteristics and the peelability of the laminate layer from the cooling roll when the laminate is manufactured by extrusion lamination, and the surface condition of the laminate layer is improved. Since it is good, it can be suitably used in agriculture, fisheries, forestry, horticulture, medicine, sanitary goods, clothing, non-clothing, packaging, automobiles, building materials, and other fields.

Claims (10)

  1.  基材層と、前記基材層の少なくとも片面に積層されたラミネート層と、を含む積層体であり、
     前記ラミネート層が、以下の(A)および(B)を満たす、ポリ(3-ヒドロキシブチレート)系樹脂を含む、積層体:
     (A)示差走査熱量分析において、130~155℃の範囲にある結晶融解曲線のトップ温度(Tm)と、結晶融解曲線のエンド温度(Tm)との差が10℃以上、
     (B)175℃における溶融粘度が100~700Pa s。
    A laminate including a base material layer and a laminate layer laminated on at least one surface of the base material layer.
    A laminate containing a poly (3-hydroxybutyrate) resin in which the laminate layer satisfies the following (A) and (B):
    (A) in differential scanning calorimetry, a top temperature of crystal melting curve in the range of 130 ~ 155 ℃ (Tm a) , the difference between the end temperature of the crystal melting curve (Tm b) is 10 ° C. or higher,
    (B) The melt viscosity at 175 ° C. is 100 to 700 Pas.
  2.  前記ポリ(3-ヒドロキシブチレート)系樹脂が、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the poly (3-hydroxybutyrate) resin is poly (3-hydroxybutyrate-co-3-hydroxyhexanoate).
  3.  前記ラミネート層が、押出ラミネート層である、請求項1または2に記載の積層体。 The laminate according to claim 1 or 2, wherein the laminate layer is an extruded laminate layer.
  4.  前記基材層が、生分解性を有する層である、請求項1~3のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the base material layer is a layer having biodegradability.
  5.  前記基材層が紙である、請求項1~4のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the base material layer is paper.
  6.  請求項1~5のいずれか1項に記載の積層体を含む、成形体。 A molded product containing the laminate according to any one of claims 1 to 5.
  7.  下記(i)~(iii)の工程を含む、請求項1~5のいずれか1項に記載の、積層体の製造方法:
     (i)ラミネート層用の樹脂を溶融押出しする工程、
     (ii)前記工程(i)で得られた溶融押出し後のラミネート層用の樹脂と、別途繰り出した基材層用の基材とを接触させて、前記基材層と前記ラミネート層とを含む積層体を形成する工程、および
     (iii)前記工程(ii)で得られた積層体を少なくとも1本が温調可能な2本のロールで挟み、前記積層体を構成する前記基材層と前記ラミネート層とを圧着する、圧着工程。
    The method for producing a laminate according to any one of claims 1 to 5, which comprises the following steps (i) to (iii):
    (I) A step of melt-extruding the resin for the laminate layer,
    (Ii) The resin for the laminate layer after melt extrusion obtained in the step (i) and the base material for the base material layer separately fed out are brought into contact with each other to include the base material layer and the laminate layer. The step of forming the laminate, and (iii) the laminate obtained in the step (ii) is sandwiched between two rolls at least one of which can control the temperature, and the base material layer constituting the laminate and the above. A crimping process that crimps the laminate layer.
  8.  前記工程(i)において、押出時の樹脂温度が155~175℃である、請求項7に記載の積層体の製造方法。 The method for producing a laminate according to claim 7, wherein in the step (i), the resin temperature at the time of extrusion is 155 to 175 ° C.
  9.  前記工程(iii)において、温調可能なロールが前記積層体のラミネート層に接する、請求項7または8に記載の積層体の製造方法。 The method for producing a laminate according to claim 7 or 8, wherein in the step (iii), a temperature-controllable roll comes into contact with the laminate layer of the laminate.
  10.  前記工程(iii)において、温調可能なロールの温度が35~70℃である、請求項7~9のいずれか1項に記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 7 to 9, wherein in the step (iii), the temperature of the roll whose temperature can be adjusted is 35 to 70 ° C.
PCT/JP2020/042895 2019-11-21 2020-11-18 Laminate and use thereof WO2021100733A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021558410A JP7230237B2 (en) 2019-11-21 2020-11-18 Laminate and its use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-210520 2019-11-21
JP2019210520 2019-11-21

Publications (1)

Publication Number Publication Date
WO2021100733A1 true WO2021100733A1 (en) 2021-05-27

Family

ID=75980548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042895 WO2021100733A1 (en) 2019-11-21 2020-11-18 Laminate and use thereof

Country Status (2)

Country Link
JP (1) JP7230237B2 (en)
WO (1) WO2021100733A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023068056A1 (en) * 2021-10-20 2023-04-27 株式会社カネカ Layered body, method for producing same, and molded article
WO2023085375A1 (en) * 2021-11-12 2023-05-19 株式会社カネカ Multilayer body and use of same
WO2023243309A1 (en) * 2022-06-14 2023-12-21 株式会社カネカ Laminate, molded body, and method for producing laminate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245996A (en) * 1991-09-27 1993-09-24 Toppan Printing Co Ltd Laminate and production thereof
JP2003327816A (en) * 2002-05-13 2003-11-19 Kanegafuchi Chem Ind Co Ltd Modified biodegradable polyester resin composition
JP2010059215A (en) * 2006-12-29 2010-03-18 Tokyo Institute Of Technology Biodegradable resin sheet
JP2017101256A (en) * 2012-08-03 2017-06-08 株式会社カネカ Polyester resin composition and molded body containing the resin composition
JP2018188574A (en) * 2017-05-10 2018-11-29 三国紙工株式会社 Aliphatic polyester resin composition and packaging material using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245996A (en) * 1991-09-27 1993-09-24 Toppan Printing Co Ltd Laminate and production thereof
JP2003327816A (en) * 2002-05-13 2003-11-19 Kanegafuchi Chem Ind Co Ltd Modified biodegradable polyester resin composition
JP2010059215A (en) * 2006-12-29 2010-03-18 Tokyo Institute Of Technology Biodegradable resin sheet
JP2017101256A (en) * 2012-08-03 2017-06-08 株式会社カネカ Polyester resin composition and molded body containing the resin composition
JP2018188574A (en) * 2017-05-10 2018-11-29 三国紙工株式会社 Aliphatic polyester resin composition and packaging material using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023068056A1 (en) * 2021-10-20 2023-04-27 株式会社カネカ Layered body, method for producing same, and molded article
WO2023085375A1 (en) * 2021-11-12 2023-05-19 株式会社カネカ Multilayer body and use of same
WO2023243309A1 (en) * 2022-06-14 2023-12-21 株式会社カネカ Laminate, molded body, and method for producing laminate

Also Published As

Publication number Publication date
JP7230237B2 (en) 2023-02-28
JPWO2021100733A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
WO2021100733A1 (en) Laminate and use thereof
EP2064288B1 (en) Toughened poly(hydroxyalkanoic acid) compositions
AU2007297645B2 (en) Toughened poly(hydroxyalkanoic acid) compositions
CN1972801B (en) Mulilayer sheet made of polyglycolic acid resin
TWI304426B (en)
AU2013336508B2 (en) A method for manufacturing biodegradable packaging material, biodegradable packaging material and a package or a container made thereof
WO2021100732A1 (en) Multilayer body and use of same
WO2023068056A1 (en) Layered body, method for producing same, and molded article
WO2022059592A1 (en) Laminate and molded body
CN100402281C (en) Multilayer stretched product
JP2013103438A (en) Sheet and container using the same
WO2023085375A1 (en) Multilayer body and use of same
WO2022244712A1 (en) Laminate, packaging material, and container
JP2022182524A (en) Method for manufacturing laminate, and laminate
JP2007030350A (en) Polylactic acid-based laminated biaxially stretched film for pillow packaging
WO2022075233A1 (en) Multilayer film and packaging material
WO2023153277A1 (en) Biodegradable laminated body, method for producing same, and molded body
JP2019177488A (en) Package for food container
WO2024038797A1 (en) Method for manufacturing laminate
WO2022264944A1 (en) Biodegradable laminate and method for manufacturing same
JP2024000453A (en) Method for manufacturing molded article, and molded article
WO2023228736A1 (en) Layered body, method for producing same, and molded article
CN118076445A (en) Method for producing laminated body
JP2024005053A (en) Biodegradable laminate, method for manufacturing the same, and molding
CN117183526A (en) Biodegradable composite sheet and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889785

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558410

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889785

Country of ref document: EP

Kind code of ref document: A1