WO2021098830A1 - 一种双边反馈控制方法、双边反馈装置和双边反馈架构 - Google Patents

一种双边反馈控制方法、双边反馈装置和双边反馈架构 Download PDF

Info

Publication number
WO2021098830A1
WO2021098830A1 PCT/CN2020/130490 CN2020130490W WO2021098830A1 WO 2021098830 A1 WO2021098830 A1 WO 2021098830A1 CN 2020130490 W CN2020130490 W CN 2020130490W WO 2021098830 A1 WO2021098830 A1 WO 2021098830A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
feedback
primary
circuit
voltage
Prior art date
Application number
PCT/CN2020/130490
Other languages
English (en)
French (fr)
Inventor
严宗周
Original Assignee
深圳原能电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911141468.1A external-priority patent/CN110768537B/zh
Priority claimed from CN202011289451.3A external-priority patent/CN112104235B/zh
Application filed by 深圳原能电器有限公司 filed Critical 深圳原能电器有限公司
Publication of WO2021098830A1 publication Critical patent/WO2021098830A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • This application relates to the field of power supply technology, and in particular to a bilateral feedback control method, a bilateral feedback device, and a bilateral feedback architecture.
  • the secondary voltage transformation can only be monitored when the secondary is demagnetized, so it needs to be lightly turned on every preset time (usually 0.5ms ⁇ 5ms) in the no-load state .
  • preset time usually 0.5ms ⁇ 5ms
  • the secondary dummy load needs to be used to discharge, which will increase the no-load power consumption of the entire circuit.
  • the no-load suddenly becomes full, it needs to wait until the next cycle to feed back to the primary circuit, causing the output voltage of the secondary circuit to drop rapidly, which means that the dynamic response of the circuit is poor.
  • the feedback end is composed of optocouplers, 431 and voltage divider resistors, it not only takes up space, and the existing secondary side feedback architecture cannot perform constant current and constant power switching, that is, only Work in constant current mode or work in constant power mode.
  • the fast charge with power of 18W adopts constant current mode
  • the output voltage is boosted from 5V to 12V
  • the power will exceed 18W
  • the main control and transformers will blow up due to overload.
  • the constant power mode when the voltage becomes smaller, the output current will increase accordingly, and the synchronous switch tube in the secondary circuit will be burned out due to the excessive current.
  • the SSR architecture requires real-time feedback of the optocoupler, especially in the power adapter PD, the current limiting resistance of the optocoupler cannot be too large, otherwise it will not work stably. If it is too small, there will be problems such as high no-load power consumption.
  • the purpose of this application is to overcome the deficiencies in the prior art and provide a bilateral feedback control method, a bilateral feedback device and a bilateral feedback architecture.
  • the embodiment of the present application provides a bilateral feedback control method, which is applied to a bilateral feedback architecture.
  • the bilateral feedback architecture includes a transformer, a primary circuit and a secondary circuit located on both sides of the transformer, and the primary circuit includes a primary controller and a primary winding of the transformer.
  • the main switch tube is connected to the primary feedback terminal in the primary circuit.
  • the secondary circuit includes a secondary controller, a synchronous switch tube connected to the secondary winding of the transformer, and a secondary feedback terminal in the secondary circuit.
  • the voltage change signal of the secondary circuit caused by the switch tube being turned off or on is fed back to the primary feedback terminal of the primary circuit through winding electromagnetic induction; the method includes:
  • the primary controller judges the timing stage of the circuit according to the voltage change on the transformer winding; among them, the transformer has corresponding voltage change waveforms in different timing stages;
  • the primary controller controls the main switch tube according to the current timing stage when the feedback signal is detected and the voltage change signal of the secondary circuit fed back.
  • the bilateral feedback control method before the primary feedback terminal detects the feedback signal of the secondary circuit, the bilateral feedback control method further includes:
  • the primary controller controls the bilateral feedback architecture to enter the primary-side feedback control mode to establish the initial operating voltage required by the secondary circuit;
  • the secondary controller judges the timing stage of the circuit according to the voltage change on the transformer winding, and obtains the output state of the secondary circuit in real time through the secondary feedback terminal;
  • the secondary controller controls the synchronous switch tube according to the determined timing stage and output state
  • the timing stage of the circuit includes stages T0 to T6, T0 is the stage when the main switch is turned on, stage T1 is the stage when the transformer enters the leakage inductance resonance to the stage when the leakage inductance resonance stops, and the T2 stage is the leakage inductance resonance state. Stop to the stage of demagnetization high-level holding state, T3 stage is the stage from the end of the demagnetization high-level holding state to the stage to enter the resonance state, T4 stage is the stage from entering the resonance state to the resonant state stop, and the T5 stage is the residual energy resonance of the winding After the release is completed, in the low-level holding state, the T6 stage is the low-level holding state after exceeding the preset time threshold.
  • the output state of the secondary circuit includes the output voltage or current of the secondary circuit
  • the secondary controller controlling the synchronous switch tube according to the determined timing stage and output state includes:
  • the secondary controller maintains the off state of the synchronous switch; if the current stage is T1, the secondary controller maintains the on state of the synchronous switch; if the current stage is T2, the secondary controller After exceeding the preset minimum demagnetization delay time, the on or off state of the synchronous switch is controlled according to the output voltage or current of the secondary circuit; if it is currently in the T3 stage, the secondary controller controls the synchronous switch according to the preset conditions Turn off; if the current stage is T4 or T5, the secondary controller controls the synchronous switch to turn on for a predetermined time before turning off.
  • the voltage change signal of the secondary circuit includes the output voltage change of the secondary circuit and the length of time from the specified state of the transformer to the reception of the feedback signal, and the primary controller is based on the current timing stage and the time when the feedback signal is detected.
  • the voltage change signal of the secondary circuit fed back to control the main switch tube includes:
  • the primary controller maintains the on state of the main switch to wait for the T1 stage; if the current stage is T1, the primary controller maintains the off state of the main switch to wait to enter the T2 stage;
  • the primary controller determines that the secondary circuit has a preset severity of undervoltage or undercurrent, if the system has a continuous operating mode, it will control the main switch to turn on to re-enter the T0 stage and reach Turn off at the first preset peak current; if it is determined that the secondary circuit has overvoltage or overcurrent, or the system is in discontinuous operation mode, maintain the off state of the main switch to wait to enter the T3 stage;
  • the primary controller determines that the synchronous switch has completed the premature turn-off operation based on the change in the output voltage of the secondary circuit, it controls the main switch to turn on to re-enter the T0 stage and reach the first preset peak current Turn off at time, otherwise maintain the off state of the main switch to wait to enter the T4 stage;
  • the primary controller judges that the synchronous switch tube has completed a turn-on and turn-off operation based on the time from the specified state of the transformer to the time it receives the feedback signal, it controls the main switch tube to turn on to re-enter the T0 stage. Turn off when the first preset peak current or the second preset peak current is reached; if no feedback signal of under-voltage or under-current is detected, maintain the off state of the main switch to wait to enter the T5 stage;
  • the primary controller determines that the synchronous switch tube has completed a turn-on and turn-off operation, it controls the main switch tube to turn on to re-enter the T0 stage and reach the first preset peak current and the second preset Turn off at peak current or the third preset peak current; if no feedback signal of undervoltage or undercurrent is detected, maintain the off state of the main switch to wait to enter the T6 stage;
  • the primary controller controls the main switch to turn on once and turn off when the first preset peak current, the second preset peak current, the third preset peak current, or the fourth preset peak current is reached.
  • the magnitude relationship of each peak current is: first preset peak current>second preset peak current>third preset peak current>fourth preset peak current.
  • the primary controller controls the main switch tube according to the current timing stage when the feedback signal is detected and the voltage change signal of the feedback secondary circuit, including:
  • the primary controller establishes and updates the primary reference voltage required by the secondary circuit in real time according to the feedback voltage change signal of the secondary circuit and the current timing stage when the feedback signal is detected, and then based on the real-time updated primary reference voltage and the current timing stage where the circuit is located
  • the timing stage controls the main switch tube.
  • the bilateral feedback control method further includes:
  • the primary controller can control the main switch tube to work in any one of continuous mode, critical mode and discontinuous mode or switch between different modes;
  • the primary controller determines that the synchronous switching tube has completed the pre-turn-off or pre-turn-off operation, it controls the main switching tube to exit the continuous mode;
  • the primary controller controls the main switch tube to exit the continuous mode after a preset number of cycles of continuous mode
  • the primary controller determines that the voltage value of the feedback signal reaches the preset reference value of the primary feedback terminal and exits the continuous mode.
  • the bilateral feedback control method further includes:
  • the primary controller first determines whether the voltage of the secondary circuit is greater than a preset value before determining that the synchronous switch completes a turn-on and turn-off operation;
  • control the main switch tube If it is greater than the preset value, control the main switch tube to turn on and turn off when the first preset peak current is reached; if it is less than or equal to the preset value, when it is determined that the synchronous switch tube completes a turn-on and turn-off operation, then The main switch is controlled to be turned on and turned off when the second preset peak current or the third preset peak current is reached.
  • the primary controller controls the main switch to turn on, it controls the main switch at the first or subsequent valley moments of the latest resonant waveform generated after the synchronous switch is turned off.
  • the tube is turned on.
  • the primary feedback terminal includes a first feedback terminal and a second feedback terminal for detecting a voltage change signal fed back by the secondary circuit, wherein the priority of the second feedback terminal is higher than the priority of the first feedback terminal;
  • Methods also include:
  • the primary controller determines that the voltage detected by the second feedback terminal reaches the preset mode switching voltage threshold, the primary controller controls the main switch tube to switch from the current constant current mode to the constant power mode.
  • the bilateral feedback control method further includes:
  • the bilateral feedback device switches from the bilateral feedback control mode to the primary-side feedback control mode.
  • the embodiment of the present application also provides a bilateral feedback device, including: a transformer, a primary circuit and a secondary circuit located on both sides of the transformer, the primary circuit includes a primary controller, a main switch tube connected to the primary winding of the transformer, and a primary circuit The primary feedback terminal in the circuit, the secondary circuit includes a secondary controller, a synchronous switch tube connected to the secondary winding of the transformer, and a secondary feedback terminal located in the secondary circuit, where the synchronous switch tube is turned off or on.
  • the resulting voltage change signal of the secondary circuit is fed back to the primary feedback end of the primary circuit through winding electromagnetic induction, and the bilateral feedback device adopts the above-mentioned bilateral feedback control method to perform circuit logic control.
  • the embodiment of the present application also provides a bilateral feedback architecture.
  • the bilateral feedback architecture includes a transformer, a primary circuit and a secondary circuit respectively located on both sides of the transformer;
  • the primary circuit includes a primary controller, a main switch tube connected to the primary winding of the transformer, and a primary feedback terminal located in the loop of the primary circuit;
  • the secondary circuit includes a secondary controller, a synchronous switch tube connected to the secondary winding of the transformer, and The secondary feedback terminal located in the loop of the secondary circuit, wherein the primary feedback terminal includes a first feedback terminal and a second feedback terminal, and the auxiliary winding of the transformer is connected to a voltage divider resistor to the first feedback terminal and the second feedback terminal.
  • the bilateral feedback architecture switches to the primary-side feedback control mode for secondary output voltage detection and control; when the second feedback terminal is connected to the divided voltage When the resistance or short-circuit connection with the first feedback terminal, the priority of the second feedback terminal is higher than the priority of the first feedback terminal; the second feedback terminal is used to perform constant current mode and constant power mode when the bilateral feedback architecture reaches the threshold. Switch control.
  • the synchronous switch tube is integrated inside the secondary controller, and the secondary controller is also provided with a fast charge protocol module and an output protection MOS tube, wherein the fast charge protocol module has a built-in upper and lower bias resistor and also It is used to feed back to the secondary controller through the secondary feedback terminal according to the external load, so that the secondary controller is used to control the closing or half-off of the synchronous switch during the demagnetization phase according to the received feedback signal, so as to change the conduction of the synchronous switch.
  • the fast charge protocol module has a built-in upper and lower bias resistor and also It is used to feed back to the secondary controller through the secondary feedback terminal according to the external load, so that the secondary controller is used to control the closing or half-off of the synchronous switch during the demagnetization phase according to the received feedback signal, so as to change the conduction of the synchronous switch.
  • the secondary controller Through internal resistance, an envelope voltage is formed.
  • the embodiment of the present application also provides a readable storage medium storing a computer program, and when the computer program is executed, the above-mentioned bilateral feedback control method is implemented.
  • the bilateral feedback control method of the present application controls the bilateral feedback architecture based on timing judgment, wherein the voltage signal change on the transformer winding is obtained for the timing judgment of the circuit, and when the primary feedback terminal detects the feedback signal of the secondary circuit,
  • the primary controller controls the main switch based on the current timing stage when the feedback signal is detected and the feedback voltage change signal of the secondary circuit.
  • This method is based on timing judgment and control. It can not only solve the problem of poor dynamic response in the primary-side feedback architecture, and the problem of the inability to switch between constant current mode and constant power mode in the secondary-side feedback architecture, in addition, it can also reduce air loss. Load power consumption, reduce the power consumption of the main switch tube when it is turned on, improve EMI and improve dynamic response, reduce secondary output ripple, and quickly realize variable voltage output.
  • Figure 1 shows an overall schematic diagram of a bilateral feedback architecture of an embodiment of the present application
  • Figure 2 shows a schematic structural diagram of a bilateral feedback architecture of an embodiment of the present application
  • FIG. 3 shows another schematic structural diagram of the bilateral feedback architecture of an embodiment of the present application
  • FIG. 4 shows a schematic structural diagram of a secondary controller of a bilateral feedback architecture according to an embodiment of the present application
  • FIG. 5 shows the first schematic flow chart of the bilateral feedback control method according to the embodiment of the present application
  • Fig. 6 shows a schematic diagram of stages T0 to T6 of the bilateral feedback control method according to an embodiment of the present application
  • FIG. 7 shows a T2 waveform test diagram of the bilateral feedback control method according to an embodiment of the present application.
  • FIG. 8 shows a T3 waveform test diagram of the bilateral feedback control method according to an embodiment of the present application.
  • FIG. 9 shows a T4 waveform test chart of the bilateral feedback control method according to an embodiment of the present application.
  • FIG. 10 shows a T5 waveform test diagram of the bilateral feedback control method according to an embodiment of the present application.
  • FIG. 11 shows a T6 waveform test diagram of the bilateral feedback control method according to an embodiment of the present application.
  • Figure 12 shows a schematic diagram of the waveforms of the entire timing phase
  • FIG. 13 shows a schematic diagram of a second flow of a bilateral feedback control method according to an embodiment of the present application
  • FIG. 14 shows the setting interval of the primary/secondary reference voltage of the bilateral feedback control method of the embodiment of the present application.
  • this application will propose a bilateral feedback architecture DSR, which includes primary-side feedback and secondary-side feedback.
  • DSR bilateral feedback architecture
  • PSR primary-side feedback
  • SSR secondary side feedback architecture
  • the bilateral feedback architecture DSR includes a transformer, a primary circuit and a secondary circuit located on both sides of the transformer, wherein the primary circuit includes a primary controller and a main switch connected to the primary winding of the transformer.
  • the tube Q1 and the primary feedback terminal located in the primary circuit loop, and the secondary circuit includes a secondary controller, a synchronous switch tube Q7 connected to the secondary winding of the transformer, and a secondary feedback terminal located in the secondary circuit loop .
  • the primary controller is mainly used to monitor the primary circuit and control the main switch Q1.
  • the primary controller and the main switch Q1 can be integrated into one chip, or a separate connection mode can be used.
  • the main switching tube Q1 is separately connected to the transformer and the primary control chip.
  • the feedback circuit corresponding to the primary feedback terminal can be set inside the integrated chip.
  • the transformer includes a primary main winding and a primary auxiliary winding, as shown in FIG. 2, the primary feedback terminal may be connected to the primary auxiliary winding or the like. Or, as shown in Fig.
  • the feedback circuit can also be provided outside the chip. It can be understood that the existence of the main switch tube, the primary control chip and the feedback circuit in the primary circuit is not limited here. Generally, for occasions that require high power, a separate design can be used, as shown in Figure 2, while for small power occasions, an integrated design can be used to reduce the volume. In addition, the position of the primary feedback terminal in the primary circuit loop is not limited, and can be specifically designed according to actual requirements.
  • the primary feedback terminal includes two feedback terminals for detecting the voltage change signal fed back by the secondary circuit, namely the first feedback terminal FB1 and the first feedback terminal FB1 and FB1.
  • the second feedback terminal FB2 In actual application, it can be decided whether to connect the second feedback terminal FB2 to the circuit at the same time according to the demand. If only the first feedback terminal FB1 is connected, the circuit will become the primary feedback structure, and it will pass the first feedback structure at this time.
  • a feedback terminal FB1 detects the secondary output voltage to control the main switch Q1 and input over-voltage and under-voltage protection.
  • two feedback terminals can also be connected at the same time, which is not limited here.
  • one end of the first feedback terminal FB1 and the second feedback terminal FB2 are short-circuited, that is, combined into one pin, which can save peripheral components and the like. If the connection shown in Figure 1 is taken as an example, the short-circuit connection ends of the two feedback ends will be connected to the primary auxiliary winding, and the auxiliary winding of the transformer is connected to a voltage divider resistor to provide the first feedback end and the second feedback end. A working voltage is required, and the other ends of the two feedback terminals are respectively connected to different terminals of the primary controller.
  • the bilateral feedback architecture when the second feedback terminal is disconnected, the bilateral feedback architecture is switched to the primary-side feedback control mode for secondary output voltage detection and control; and when the second feedback terminal is connected to a voltage divider resistor or connected to the first feedback
  • the priority of the second feedback terminal is higher than that of the first feedback terminal; at this time, the second feedback terminal is mainly used to switch between constant current mode and constant power mode when the bilateral feedback architecture reaches the threshold. Wait.
  • the priority here means that the primary controller usually compares the obtained feedback signal of the secondary circuit with the feedback reference voltage of the second feedback terminal FB2, until the voltage of the feedback signal exceeds the voltage of the second feedback terminal FB2. The scope of action is compared with the first feedback terminal FB1.
  • the primary controller mainly compares the voltage of the first feedback terminal FB1 with a preset minimum voltage threshold, thereby judging the load state of the secondary circuit and controlling the main switch Tube Q1 performs corresponding control and so on.
  • the secondary controller is mainly used to monitor the output of the secondary circuit, and control to close or half-close the synchronous switch tube in the demagnetization stage according to the received feedback signal, so as to change the conduction internal resistance of the synchronous switch tube, and then Form the envelope voltage.
  • the secondary controller detects through the secondary feedback terminal that the output voltage of the secondary circuit changes from no-load to full-load, it will perform a light drive on the synchronous switch to form a package Network voltage.
  • the secondary controller and the synchronous switch tube Q7 can be integrated into one chip, or a separate connection method can be used.
  • the synchronous switch tube and the secondary control chip are connected separately, and the figure The secondary integrated chip shown in 3 includes major components such as a secondary controller and a synchronous switch tube Q7.
  • the secondary circuit may include a secondary controller and a fast charging protocol module, etc., as shown in FIG. 3.
  • the secondary controller may be an integrated chip composed of a secondary control chip, a fast charge protocol module, a synchronous switch tube, an output protection MOS tube, and other devices, as shown in FIG. 4.
  • the fast charge protocol module has built-in upper and lower bias resistors and is used to feed back to the secondary controller through the secondary feedback terminal according to the external load needs.
  • the secondary controller detects through the secondary feedback terminal that the output voltage of the secondary circuit changes from no-load to full-load, it will perform a light drive on the synchronous switch tube. , To form an envelope voltage.
  • this application will adopt timing judgment control for the bilateral feedback architecture.
  • it can also reduce the switch on the main switch. Time consumption, reduce no-load power consumption, improve EMI, and dynamic response, reduce secondary output ripple, etc.
  • the following describes the bilateral feedback control method in detail in conjunction with the DSR architecture.
  • this embodiment proposes a bilateral feedback logic control method, which can be applied to the above-mentioned bilateral feedback architecture DSR, and the method includes:
  • S110 The primary controller judges the timing stage of the circuit according to the voltage change on the transformer winding.
  • the primary controller can acquire the voltage change of the transformer by collecting the voltage signal on the winding on the primary side of the transformer in real time. Furthermore, the primary controller performs circuit timing judgment according to the voltage change signal, thereby knowing which stage the transformer timing is currently in.
  • the waveform change of the voltage signal on the transformer winding is divided into multiple timing stages, so that the switch tube can be controlled differently in different timing stages.
  • the transformer has its own corresponding voltage change waveform in each sequence stage. It can be understood that the current timing stage of the circuit can be determined according to the voltage change waveform of each timing stage and the voltage change collected in real time.
  • the present embodiment is divided into stages T0 to T6, in which stage T0 is the stage when the main switch is turned on; stage T1 is the stage when the transformer enters the leakage inductance resonance to the leakage inductance resonance stops; T2 The stage is the stage from the leakage inductance resonance state stops to the demagnetization high level holding state; the T3 stage is the stage from the end of the demagnetization high level holding state to the stage to enter the resonance state; the T4 stage is the stage from entering the resonance state to the resonance state stopping; T5 The stage is the stage from when the resonance state is stopped until the winding energy is released to the low-level holding state; the T6 stage is the stage where the low-level holding state remains after the preset time threshold is exceeded.
  • the preset time threshold can be greater than or equal to 0.5 ms, etc., which can be specifically set according to actual requirements. It is worth noting that these different time periods can be divided and adjusted according to actual conditions, and the duration of each time period is not strictly limited.
  • each switch tube may execute these stages in chronological order, or it may cycle in one or several stages according to the actual load demand. For example, if the bilateral feedback device has been In the continuous loading state, it will not enter the T6 stage. In addition, it can also jump directly from one stage to another stage. For example, according to the output power demand, the control circuit can jump from stage T4 to stage T0, T1 or T2 immediately.
  • the working mode in which the switch tube circulates from stage T0 to stage T2 is called continuous mode (CCM mode).
  • CCM mode continuous mode
  • the switch tube enters the conducting state again after the transformer energy is not released; in the period from stage T0 to stage T3
  • the working mode that circulates in between is called the critical mode (BCM mode); the cycle jumps between the T0 stage and the T4 stage, between the T0 stage and the T5 stage, between the T0 stage and the T6 stage, or between the above stages.
  • the working mode is called discontinuous mode (DCM mode).
  • the method further includes: after power-on, the primary controller controls the bilateral feedback structure to enter the primary-side feedback control mode to establish the initial operating voltage required by the secondary circuit. After the secondary circuit can work normally, step S120 is executed.
  • the primary controller controls the main switch tube according to the current timing stage when the feedback signal is detected and the voltage change signal of the secondary circuit fed back.
  • the secondary circuit and the primary circuit are connected through a transformer, based on the principle of electromagnetic induction, the voltage change signal in the secondary circuit caused by the synchronous switch Q7 when it is turned off or on will be fed back to the primary circuit through the electromagnetic induction of the winding of the transformer.
  • the primary feedback end Since the secondary circuit and the primary circuit are connected through a transformer, based on the principle of electromagnetic induction, the voltage change signal in the secondary circuit caused by the synchronous switch Q7 when it is turned off or on will be fed back to the primary circuit through the electromagnetic induction of the winding of the transformer. The primary feedback end.
  • the primary controller can detect the voltage change signal fed back by the secondary circuit through the primary feedback terminal. Therefore, when the feedback signal of the secondary circuit is detected, the primary controller will control the main switch Q1 based on the current timing stage when the feedback signal is detected and the voltage change signal of the secondary circuit fed back. Among them, when controlling the main switching tube Q1 to conduct, it will determine whether the main switching tube Q1 needs to be turned on according to one or more of the current timing stage and the output voltage change of the secondary circuit, and when it is turned on Turn off when the required peak current is reached. Exemplarily, the following situations can be included:
  • Case 1 If the current stage is T0, the primary controller will control the main switching tube Q1 to turn on and ensure the minimum on-time of the main switching tube Q1. After that, after the main switch Q1 is turned off, the circuit will automatically enter the T1 stage.
  • the primary controller will maintain the off state of the main switch Q1 and wait for the circuit to enter the T2 stage. Since the synchronous switch tube will be turned on at this time, in order to prevent the two switching tubes from blowing up in common, the main switching tube Q1 will not be actuated in this stage.
  • Case 3 If the current stage is T2, the primary controller will determine whether there is an undervoltage or undercurrent with a preset severity in the secondary circuit. If there is an undervoltage or undercurrent with a preset severity, and the system has preset a continuous mode , The main switching tube Q1 is controlled to be turned on (ie, jumping back to the T0 stage) to enter the continuous mode, and the main switching tube Q1 is turned off when the current in the primary circuit reaches the first preset peak current.
  • the primary controller can directly determine whether the above-mentioned undervoltage or undercurrent phenomenon occurs in the previous cycle, so that it does not need to wait for the feedback signal of the secondary circuit to start conducting. For example, the primary controller can determine whether there is an undervoltage or undercurrent, and the severity of the undervoltage or undercurrent according to the voltage change of the secondary circuit during the previous period. The preset severity can be determined according to actual needs. set up. Of course, the primary controller can also perform under-voltage or under-current judgment in the current cycle to determine whether to turn on the main switch Q1. As shown in FIG. 7, if it is detected that the synchronous switch tube Q7 is turned off in advance, the main switch tube Q1 is controlled to be turned on. Of course, if it is determined that the secondary circuit has overvoltage or overcurrent, or the system is in a discontinuous mode, the main switch tube is maintained in the off state, and the circuit is waited for to enter the T3 stage.
  • the main switch Q1 can be controlled to enter one of the CCM mode, the BCM mode and the DCM mode according to actual needs, and of course, it is also possible to switch between these three modes.
  • the primary controller can determine whether the main switch Q1 needs to enter the CCM mode by combining the peak current when the main switch Q1 is turned on and the demagnetization time required for the secondary voltage.
  • the secondary circuit needs to output high power, it can enter the CCM mode.
  • the main switch Q1 can quickly enter the CCM mode.
  • the primary controller can determine whether the corresponding exit conditions are met to exit the CCM mode, so as to avoid excessive current and burn out the device.
  • the primary controller can determine whether the synchronous switch has a pre-turn-off operation according to the change in the output voltage of the secondary circuit, And when it is judged that the synchronous switch tube has performed a pre-shutdown operation, the main switch tube is made to exit the CCM mode.
  • the above-mentioned pre-shutdown operation of the synchronous switch Q7 refers to shutting off the synchronous switch Q7 at a voltage less than when it is completely shut off. For example, when it is completely shut off, a 5V drive is required. At this time, the pre-shutdown can be used The voltage is less than 4.5V to turn off.
  • the voltage rise formed by the secondary synchronous shutdown is used as the judgment basis for the secondary overvoltage and overcurrent. If the signal that the secondary switch closes the synchronous switch in the T2 stage in advance is received, it is judged that the secondary output is not deeply loaded Or overvoltage or overcurrent has occurred, and CCM mode will be exited at this time.
  • the primary controller can add a non-continuous mode to exit the continuous mode after the preset number of continuous mode cycles have elapsed. It is used to receive the feedback signal of the secondary circuit in this non-connected working mode, so as to prevent the occurrence of overvoltage when the output of the secondary circuit needs to change voltage.
  • the main switch Q1 when the main switch Q1 enters the CCM mode, as the main switch Q1 turns on, for example, when the primary feedback terminal detects the voltage value When gradually increasing to the preset feedback reference voltage, the main switch Q1 can be controlled to exit the CCM mode and so on.
  • Case 4 If the current stage is T3, the primary controller will determine that the synchronous switch Q7 has completed the shutdown operation based on the change in the output voltage of the secondary circuit, and then jump back to stage T0 after the transformer demagnetization is completed, that is, re-control the main switch.
  • Q1 turns on and turns off when the first preset peak current is reached, as shown in Figure 8. If the premature shutdown operation is not detected, the main switch tube is maintained in the closed state, and the circuit enters the T4 phase.
  • the primary controller can determine whether the main switch Q1 needs to enter the CCM mode according to the voltage of the synchronous switch Q7 that is turned off during the demagnetization phase. For example, in the T3 stage, if the primary controller determines that the synchronous switch has completed the premature shutdown operation, it will make the main switch enter the CCM mode.
  • Case 5 If the current stage is T4 or T5, if the primary controller determines that the synchronous switch Q7 has completed a turn-on and turn-off operation, it controls the main switch Q1 to turn on and reach the first preset peak current or Turn off at the second preset peak current, as shown in Figure 9.
  • Case 6 if the current stage is T5, if the primary controller determines that the synchronous switch Q7 has completed a turn-on and turn-off operation, it controls the main switch Q1 to be turned on and reaches the first preset peak current and the second preset peak current. Set the peak current or the third preset peak current to turn off, as shown in Figure 10.
  • the one-time turn-on and turn-off operation can be judged according to the time from the designated state of the transformer to the time the feedback signal is received, where the designated state can be the state when the transformer starts to demagnetize, or the state when the demagnetization is completed, etc. .
  • the specific peak current can be determined according to actual requirements. For example, due to the secondary output requirement, when the primary controller determines that the voltage of the secondary circuit is greater than a preset value, it means that the secondary circuit needs to enter the CCM mode at this time.
  • the main switch Q1 will be controlled from the current T4
  • the phase or T5 phase immediately enters the T0 phase, and will work with the first preset peak current when it is turned on.
  • the primary controller can control the main switch Q1 to turn on according to the second or third preset peak current.
  • the above-mentioned preset value can be set according to the output voltage and the feedback voltage divider circuit. For example, if the output voltage is 5V, according to the specific feedback voltage divider circuit, it is known that the feedback should be performed only when 1.9V is detected in theory. If the voltage detected during actual feedback is greater than the 1.9V, the main switch Q1 will be controlled to be turned on immediately.
  • the primary controller can also determine the depth of the secondary load based on the time from the start of demagnetization or after the completion of the demagnetization to when the feedback signal is received by the primary feedback terminal, such as whether it is no-load, full-load, etc. , In order to further optimize the value of the preset peak current, so as to adjust the circuit as far as possible to the highest efficiency, best performance, good dynamic response, low ripple, etc.
  • Case 7 If the current stage is T6, that is, when the secondary circuit exceeds the preset time threshold without feedback, as shown in Figure 11, the primary controller can control the main switch Q1 to use the first preset peak current and the second preset The peak current, the third preset peak current, or the fourth preset peak current control the main switch Q1 to conduct once, for example, it can conduct itself once at the minimum peak current threshold, so that the secondary circuit can be detected by electromagnetic mutual inductance.
  • the output voltage If the current stage is T6, that is, when the secondary circuit exceeds the preset time threshold without feedback, as shown in Figure 11, the primary controller can control the main switch Q1 to use the first preset peak current and the second preset The peak current, the third preset peak current, or the fourth preset peak current control the main switch Q1 to conduct once, for example, it can conduct itself once at the minimum peak current threshold, so that the secondary circuit can be detected by electromagnetic mutual inductance.
  • the output voltage If the current stage is T6, that is, when the secondary circuit exceeds the preset time threshold without
  • the magnitude relationship of each preset peak current mentioned above is: the first preset peak current>the second preset peak current>the third preset peak current>the fourth preset peak current.
  • the first preset peak current may be less than or equal to the maximum peak current threshold, where the maximum peak current threshold refers to the maximum peak current in a period, that is, the Ipk current.
  • the fourth preset peak current may be a minimum peak current threshold.
  • the primary circuit can receive the voltage change signal fed back by the secondary circuit.
  • the information feedback and information synchronization of the primary circuit and the secondary circuit on both sides of the transformer are carried out by combining timing judgment and the principle of winding mutual inductance, and then controlling the main switch tube to dynamically adjust the peak current in time, so as to realize the whole
  • the control of the bilateral feedback device not only has better dynamic response, but also optimizes the conversion efficiency of the circuit.
  • the bilateral feedback control method may also include:
  • the secondary controller judges the timing stage of the circuit according to the voltage change of the transformer, and obtains the output state of the secondary circuit in real time through the secondary feedback terminal; the secondary controller controls the synchronous switch tube according to the judged timing stage and the output state. Take control.
  • the secondary controller can collect the voltage signal of the transformer from the output terminal of the secondary winding of the transformer, and then make a timing judgment according to the change state of the voltage signal, so as to know which timing stage the circuit is currently in in order to synchronize the switch Tube Q7 performs corresponding control.
  • the secondary feedback terminal is connected to the signal output terminal of the secondary circuit, and is mainly used to detect the voltage or current at the output terminal of the secondary circuit and feed it back to the secondary controller for the secondary controller to determine the current Loaded state.
  • the secondary controller can judge whether the output is undervoltage or undercurrent, overvoltage or overcurrent, or in a variable voltage state, or in a light load, no load or full load state, etc. through the feedback value of the secondary feedback terminal. .
  • the output state of the secondary circuit includes the magnitude of the output voltage or current of the secondary circuit, and so on.
  • the following situations may be included:
  • the secondary controller will maintain the on-state of the synchronous switch Q7 to ensure the minimum on time of the synchronous switch Q7. As the synchronous switch tube Q7 is turned on, the circuit will enter the T2 stage.
  • the secondary controller will control the on or off state of the synchronous switch according to the output voltage or current of the secondary circuit after the preset minimum demagnetization delay time is exceeded. For example, when it is detected that the output voltage signal of the secondary circuit is less than the preset voltage threshold (such as the CCM mode voltage threshold of the synchronous switch Q7, etc.), as shown in FIG. 7, the synchronous switch will be controlled to turn off early.
  • the preset voltage threshold such as the CCM mode voltage threshold of the synchronous switch Q7, etc.
  • the circuit will enter the T3 phase. Of course, it can also be maintained for multiple cycles in the T0 to T2 phases according to actual load requirements. It can be understood that after the synchronous switch Q7 is pre-turned off, the primary controller can detect the voltage change signal caused by the pre-turn off operation in the secondary circuit and respond accordingly.
  • the minimum demagnetization delay time is mainly the minimum demagnetization time t 0 required by the transformer, and generally, t 0 ⁇ 0.1 us. Since the secondary feedback terminal is provided with a corresponding threshold voltage (also referred to as a feedback voltage reference), the voltage output state of the secondary circuit can be judged by comparing with the threshold voltage.
  • the secondary controller will turn off the synchronous switch Q7 according to the preset condition, which can be a normal turn-off or an early turn-off.
  • the preset condition may be when the voltage difference between the drain and the source of the synchronous switch Q7 and the preset voltage drop threshold are within a preset range.
  • the preset voltage drop threshold may be the voltage difference Vds between the drain and the source of the synchronous switch Q7.
  • the predetermined time can be set according to actual needs, which is not limited here.
  • the predetermined time may be less than or equal to a few microseconds or tens of microseconds.
  • the bilateral feedback control method also includes:
  • the primary controller controls the main switch Q1 to turn on, it controls the main switch to turn on at the first valley moment or subsequent valley moments of the latest resonant waveform generated after the synchronous switch is turned off.
  • the primary controller can control to turn on the main switch Q1 at the moment of the first valley of the new resonance waveform, as shown in FIG. 9, thereby reducing the loss when the main switch Q1 is turned on.
  • the first valley is not captured, it can also be turned on at the subsequent second or third other valleys, which can also achieve the purpose of reducing loss.
  • the extremely short-time conduction of the synchronous switch tube Q7 in the T4 phase or the T5 phase is the self-conduction control added by the secondary controller based on the timing judgment, and the valley of the resonance waveform caused by this can also be called New valley bottom.
  • the main switch Q1 is controlled to be turned on at the time corresponding to the new valley bottom (referred to as the new valley turn-on technology), which can greatly reduce power consumption and improve EMI problems.
  • the bilateral feedback control method also includes:
  • the secondary controller will In the T4 or T5 stage, the synchronous switch tube Q7 is controlled to turn on once and re-feedback in time. It can be understood that the above re-feedback method can prevent the main switching tube Q1 of the primary circuit from failing to respond in time when signals such as undervoltage and undercurrent feedback from the secondary circuit are not received by the primary circuit.
  • the bilateral feedback architecture of this embodiment combines the bilateral feedback method, and performs information feedback and information synchronization of the primary circuit and the secondary circuit on both sides of the transformer by combining timing judgment and using the principle of winding mutual inductance, thereby realizing the control of the entire bilateral feedback device.
  • This method can not only solve the problem of poor dynamic response and inability to change voltage feedback in the primary side feedback architecture, as well as the inability to switch the constant current and constant power mode in the secondary side feedback architecture, and high no-load power consumption in PD fast charging
  • the efficiency of the architecture can be optimized by adding timing judgment to the control of each switch tube, and conducting it according to the required peak current when it needs to be turned on.
  • the main switch tube is controlled to be turned on at the new valley bottom when it is turned on. This can reduce the power consumption of the main switch tube when it is turned on, and reduce the secondary output ripple.
  • this embodiment also proposes a bilateral feedback logic control method, which is applied to the above-mentioned bilateral feedback architecture.
  • the difference from Embodiment 1 is that the bilateral feedback control method of this embodiment is mainly based on The voltage change signal of the secondary circuit adjusts the primary reference voltage (the reference voltage of FB1/FB2) in the primary circuit loop, so as to realize the control of the main switch tube.
  • This method can achieve variable voltage output, especially in fast charging and other technologies to achieve rapid response.
  • the primary controller controls the bilateral feedback architecture to enter the primary-side feedback control mode to establish the initial operating voltage required by the circuit, and after the initial operating voltage is established, the secondary controller passes through the secondary feedback terminal Obtain the output state of the secondary circuit in real time and feed it back to the primary feedback terminal, and then the primary controller establishes and updates the secondary circuit in real time according to the feedback voltage change signal of the secondary circuit and the current timing stage when the feedback signal is detected.
  • the primary reference voltage and then based on the real-time updated primary reference voltage and the timing stage of the circuit to control the main switch.
  • Embodiment 1 which includes stages T0 to T6.
  • the above-mentioned primary reference voltage can be established by the following method:
  • Method 1 In the discontinuous mode, in the T3 stage, the secondary undervoltage and undercurrent signal is fed back by turning off the synchronization in advance, until the T3 stage is no longer closed in advance, but the synchronization is normally turned off; or there is no undervoltage or undercurrent signal in the T2 stage. If there is an undervoltage or undercurrent signal in the T4-T5 stage, the reference voltage detected by the primary in this cycle is the reference voltage required by the secondary.
  • Method two the next cycle after feedback at the T4 and T5 stages is used as the reference voltage required by the secondary.
  • Method 3 After receiving the secondary under-voltage or under-current signal, control the main switch to turn on to enter the continuous mode, and then exit the continuous mode until the secondary over-voltage or over-current signal is received.
  • One cycle of the reference voltage is used as the reference voltage required by the secondary; or interspersed with several discontinuous modes during the process of entering the continuous mode, if the discontinuous mode does not have an undervoltage or undercurrent signal in the T3 phase, or the undercurrent is received after exiting the continuous mode
  • the main switch is turned on again to transfer energy.
  • the secondary synchronous switch of T2 and T3 will not be turned off in advance, so the reference voltage for this cycle of demagnetization is the secondary required Reference low voltage.
  • the primary controller after establishing the primary reference voltage required by the secondary, the primary controller takes the lead to control the loop operation of the entire circuit.
  • the primary controller updates the current primary reference voltage according to the current timing stage when the feedback signal is detected and the voltage change signal of the feedback secondary circuit. For example, if the output requires variable voltage.
  • the output requires variable voltage.
  • under-voltage and under-current such as boosting in fast charge
  • over-voltage and over-current such as step-down in fast charging.
  • the secondary capacitor energy can also be turned on and discharged to the transformer synchronously, until the lower limit of the secondary voltage reference is reached, and then the synchronous switch Q7 is turned off, so that it can discharge quickly and without loss ( Normal fast charge, for example, when 20V is reduced to 5V, it needs to be discharged within a specified time, such as 50MS or so.), reduce the output voltage to meet the needs of secondary fast charging, and determine the voltage reference required by the new feedback secondary in the next demagnetization. .
  • the adjustment of the feedback reference voltage in the primary circuit loop by the primary controller includes:
  • the main switching tube Q1 is turned on, the synchronous switching tube Q7 is turned off, and the transformer stores energy.
  • the main switching tube Q1 is turned off, and the system will automatically enter the T1 stage.
  • the primary controller will maintain the main switch Q1 in the off state.
  • the secondary is synchronized to the on state to transfer energy, and the system will automatically enter the T2 stage.
  • the primary feedback terminal (FB1 or FB2) will capture the reference voltage of the current cycle to determine the secondary load condition.
  • the exit condition may be: for example, the primary reference voltage is greater than or equal to the value of V5 or is designed to be fixed for several continuous mode periods, then a non-continuous mode period is interspersed to feed back the secondary voltage and current signals for the subsequent phases of synchronous entry.
  • the various voltages shown in FIG. 14 are reference voltages set for different situations. Among them, the above-mentioned V0-V2 are fixed voltages, and the V3-V7 voltages are due to the adjustment and change of the reference voltage, and for the updated reference voltage. Voltage comparison voltage.
  • the synchronous controller will normally close the synchronous switch Q7 and automatically enter the T4 stage.
  • the synchronous switch Q7 will be turned off in advance for feedback, turned on according to the new valley turn-on technique in the above-mentioned embodiment 1, and enters the T0 stage again.
  • the primary master controller detects that the secondary is under light load or no load during the T2 and T3 stages, and the secondary does not feedback an undervoltage or undercurrent signal. Then it automatically enters the T5 stage. If the primary main control detects that the secondary is in the load phase during the T2 and T3 phases; or after the demagnetization is completed and the preset time is started, if the FB3 voltage is higher than or equal to V7, it is a step-down signal, and then Q7 is turned on to discharge energy Until the voltage of FB3 is lower than the voltage of V5 and then turn off Q7, after turning off Q7, resonance occurs, Q1 turns on at the bottom of the resonance valley, and enters the T0 stage.
  • the current stage is T5
  • the voltage of the secondary feedback terminal FB3 is between V4-V6 or less than or equal to the value of V2
  • no action is taken on the synchronous switch Q7 and automatically enters the T6 stage.
  • the synchronous switch Q7 will be turned on for a short time to feedback the undervoltage and undercurrent conditions of the secondary; if the voltage of FB3 is higher than or equal to the value of V7, it means that it is a step-down signal at this time.
  • the synchronous switch tube Q7 is turned on for discharging energy, and the synchronous switch tube Q7 is turned off until the voltage of FB3 is lower than V5.
  • the transformer will resonate, so the main controller will control the main switching tube Q1 to conduct at the bottom of the resonance valley after detecting it, and re-enter the T0 stage.
  • the energy of the transformer is released at this time. If the feedback voltage is not detected when the maximum Toff is exceeded (for example, 10Ms or more), it is judged as no-load or a step-down voltage is required, or it may be a secondary short circuit. It is abnormal and unable to feedback. At this time, regardless of the voltage of FB3, the synchronous switch tube Q7 will be controlled to keep the closed state to prevent the formation of commonality with the main switch tube Q1 and blow up.
  • the primary controller controls the main switch Q1 to conduct a turn-on to enter the T0 stage and turn off when the minimum preset peak current is reached.
  • this embodiment proposes a bilateral feedback device.
  • the bilateral feedback device can use the method of the above-mentioned embodiment 1 or 2 to perform circuit logic control.
  • the bilateral feedback device further includes a fast charging circuit connected to the secondary output.
  • the secondary circuit needs to meet the variable voltage output function.
  • the fast charging circuit will support the fast charging protocol. If the fast charging mode is required, the secondary controller of the secondary circuit can change the voltage to meet the voltage or current required for the fast charging; if the non-fast charging mode is adopted , Then the secondary circuit can also step down to a normal charging mode.
  • the fast charging circuit can be integrated in the same chip with the primary controller and the synchronous switch Q7, as shown in FIG. 4.
  • a separate connection form can also be used, as shown in FIG. 3, which is not limited here.
  • An embodiment of the present application also proposes a readable storage medium that stores a computer program, and when the computer program is executed, it implements the bilateral feedback control method in the above-mentioned embodiment 1 or 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种双边反馈控制方法、双边反馈装置和双边反馈架构,该双边反馈控制方法应用于双边反馈架构,该方法包括:根据变压器绕组上的电压变化判断电路所处的时序阶段(S110),当检测到次级电路的反馈信号时,初级控制器根据检测到反馈信号时的当前时序阶段和反馈的次级电路的电压变化信号对主开关管进行控制(S120)。通过对双边反馈架构采用双边反馈的逻辑控制方法,可以降低次级输出纹波改善动态响应和空载功耗、降低主开关管在开启时的功耗、改善EMI;还可以实现变电压输出。

Description

一种双边反馈控制方法、双边反馈装置和双边反馈架构
相关申请的交叉引用
本申请要求于2019年11月20日提交中国专利局的申请号为CN201911141468.1、名称为“一种双边反馈和控制DSR架构”的中国专利申请的优先权,以及2020年11月18日提交中国专利局的申请号为CN202011289451.3、名称为“一种双边反馈控制方法和双边反馈装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本申请涉及电源技术领域,尤其涉及一种双边反馈控制方法、双边反馈装置和双边反馈架构。
背景技术
在原边反馈架构(PSR)中,只有次级退磁的时候才能监测到次级电压的变压情况,故在空载状态时需每隔预设时间(通常为0.5ms~5ms)进行一次轻开启,对于频繁地开启传递的能量需要利用次级假负载进行泄放,导致将增加整个电路的空载功耗。不仅如此,当空载突然变成满载时,还需要等到下一周期才能反馈到初级电路,导致次级电路的输出电压快速下降,这意味着电路的动态响应较差。而在副边反馈架构(SSR)中,由于反馈端利用光耦、431及分压电阻等器件构成,不仅占用空间,且现有的副边反馈架构无法进行恒流恒功率的切换,即只有在恒流模式下工作或者在恒功率模式下工作。例如,当功率18W的快充采用恒流模式时,若输出电压由5V升压至12V,功率将超过18W,那么,主控和变压器等器件将会因超负荷工作而发生炸机。当采用恒功率模式时,当电压变小时,相应地输出电流将增大,那么,将会因电流过大而烧坏次级电路中的同步开关管等。另外,由于SSR架构需要光耦实时反馈,特别在电源适配器PD中,光耦限流电阻不能太大,否则无法稳定工作,若太小,又存在空载功耗高等问题。
发明内容
有鉴于此,本申请的目的是为了克服现有技术中的不足,提供一种双边反馈控制方法、双边反馈装置和双边反馈架构。
本申请的实施例提供一种双边反馈控制方法,应用于双边反馈架构,双边反馈架构包括变压器、分别位于变压器两侧的初级电路和次级电路,初级电路包括初级控制器、与变压器的初级绕组连接的主开关管和位于初级电路中的初级反馈端,次级电路包括次级控制器、与变压器的次级绕组连接的同步开关管和位于次级电路中的次级反馈端,其中,同步开关管在关断或开启时引起的次级电路的电压变化信号通过绕组电磁感应反馈至初级电路的初级反馈端;该方法包括:
初级控制器根据变压器绕组上的电压变化判断电路所处的时序阶段;其中,变压 器在不同的时序阶段具有对应的电压变化波形;
当通过初级反馈端检测到次级电路的反馈信号时,初级控制器根据检测到反馈信号时的当前时序阶段和反馈的次级电路的电压变化信号对主开关管进行控制。
在一种实施例中,初级反馈端检测到次级电路的反馈信号之前,该双边反馈控制方法还包括:
上电后,初级控制器控制该双边反馈架构进入原边反馈控制模式,以建立次级电路所需的初始工作电压;
次级控制器根据变压器绕组上的电压变化判断电路所处的时序阶段,并通过次级反馈端实时获取次级电路的输出状态;
次级控制器根据判断出的时序阶段和输出状态对同步开关管进行控制;
在一种实施例中,电路的时序阶段包括T0~T6阶段,T0为主开关管导通的阶段,T1阶段为变压器进入漏感谐振到漏感谐振停止的阶段,T2阶段为漏感谐振状态停止到退磁高电平保持状态的阶段,T3阶段为退磁高电平保持状态即将结束到待进入谐振状态的阶段,T4阶段为进入谐振状态到谐振状态停止的阶段,T5阶段为绕组剩余能量谐振释放完后在低电平保持状态的阶段,T6阶段为超过预设时间阈值后仍为低电平保持状态的阶段。
在一种实施例中,次级电路的输出状态包括次级电路的输出电压或电流的大小,次级控制器根据判断出的时序阶段和输出状态对同步开关管进行控制包括:
若当前为T0阶段或T6阶段,次级控制器维持同步开关管的关闭状态;若当前为T1阶段,次级控制器维持同步开关管的导通状态;若当前为T2阶段,次级控制器在超过预设的最小退磁延迟时间后根据次级电路的输出电压或电流的大小控制同步开关管的导通或关闭状态;若当前为T3阶段,次级控制器按照预设条件控制同步开关管进行关断;若当前为T4阶段或T5阶段,次级控制器控制同步开关管导通预定时间后再关断。
在一种实施例中,次级电路的电压变化信号包括次级电路的输出电压变化和自变压器的指定状态到接收到反馈信号的时长,初级控制器根据检测到反馈信号时的当前时序阶段和反馈的次级电路的电压变化信号对主开关管进行控制包括:
若当前为T0阶段,初级控制器维持主开关管的导通状态以等待进入T1阶段;若当前为T1阶段,初级控制器维持主开关管的关闭状态以等待进入T2阶段;
若当前为T2阶段,初级控制器若判断出次级电路出现预设严重程度的欠压或欠流,若***带有连续工作模式,则控制主开关管导通以重新进入T0阶段并在达到第一预设峰值电流时关闭;若判断出次级电路出现过压或过流,或***为非连续工作模式,则维持主开关管的关闭状态以等待进入T3阶段;
若当前为T3阶段,初级控制器若根据次级电路的输出电压变化判断出同步开关管完成提前关断操作,则控制主开关管导通以重新进入T0阶段并在达到第一预设峰值电流时关闭,否则维持主开关管的关闭状态以等待进入T4阶段;
若当前为T4阶段,初级控制器若根据从变压器的指定状态到接收反馈信号的时长 判断出同步开关管完成一次导通及关断操作,则控制主开关管导通以重新进入T0阶段并在达到第一预设峰值电流或第二预设峰值电流时关闭;若没有检测到欠压或欠流的反馈信号,则维持主开关管的关闭状态以等待进入T5阶段;
若当前为T5阶段,初级控制器若判断出同步开关管完成一次导通及关断操作,则控制主开关管导通以重新进入T0阶段并在达到第一预设峰值电流、第二预设峰值电流或第三预设峰值电流时关闭;若没有检测到欠压或欠流的反馈信号,则维持主开关管的关闭状态以等待进入T6阶段;
若当前为T6阶段,初级控制器控制主开关管导通一次并在达到第一预设峰值电流、第二预设峰值电流、第三预设峰值电流或第四预设峰值电流时关闭。
在上述实施例中,各峰值电流的大小关系为:第一预设峰值电流>第二预设峰值电流>第三预设峰值电流>第四预设峰值电流。
在一种实施例中,初级控制器根据检测到反馈信号时的当前时序阶段和反馈的次级电路的电压变化信号对主开关管进行控制,包括:
初级控制器根据反馈的次级电路的电压变化信号和检测到反馈信号时的当前时序阶段建立并实时更新次级电路所需的初级基准电压,然后基于实时更新的初级基准电压和电路所处的时序阶段对主开关管进行控制。
在一种实施例中,该双边反馈控制方法还包括:
T2阶段中,初级控制器能够控制主开关管工作在连续模式、临界模式和断续模式中的任意一种或在不同模式之间进行切换;
当主开关管为连续模式时,初级控制器若判断出同步开关管完成预关断或提前关断操作,则控制主开关管退出连续模式;
或者,当主开关管为连续模式时,初级控制器控制主开关管在经过预设个数周期的连续模式后退出连续模式;
或者,当主开关管处于连续模式时,初级控制器判断出反馈信号的电压值达到初级反馈端的预设基准值后退出连续模式。
在一种实施例中,该双边反馈控制方法还包括:
T4阶段或T5阶段中,初级控制器在判断同步开关管完成一次导通及关断操作之前,先判断次级电路的电压是否大于预设值;
若大于预设值,则控制主开关管导通且在达到第一预设峰值电流时关闭;若小于等于预设值,则在判断出同步开关管完成一次导通及关断操作时,则控制主开关管导通且在达到第二预设峰值电流或第三预设峰值电流时关闭。
在一种实施例中,T4阶段或T5阶段中,初级控制器控制主开关管导通时,在同步开关管关闭后产生的最新谐振波形的第一个谷底时刻或后续的谷底时刻控制主开关管导通。
在一种实施例中,初级反馈端包括用于检测次级电路反馈的电压变化信号的第一反馈端和第二反馈端,其中,第二反馈端的优先级高于第一反馈端的优先级;方法还包 括:
当初级控制器判断出第二反馈端检测到的电压达到预设模式切换电压阈值时,初级控制器控制主开关管由当前的恒流模式切换至恒功率模式。
在上述实施例中,该双边反馈控制方法还包括:
当初级控制器判断出第一反馈端检测到的电压下降至预设最低电压阈值时,则双边反馈装置由双边反馈控制模式切换为原边反馈控制模式。
本申请的实施例还提供一种双边反馈装置,包括:变压器、分别位于变压器两侧的初级电路和次级电路,初级电路包括初级控制器、与变压器的初级绕组连接的主开关管和位于初级电路中的初级反馈端,次级电路包括次级控制器、与变压器的次级绕组连接的同步开关管和位于次级电路中的次级反馈端,其中,同步开关管在关断或开启时引起的次级电路的电压变化信号通过绕组电磁感应反馈至初级电路的初级反馈端,双边反馈装置采用上述的双边反馈控制方法进行电路逻辑控制。
本申请的实施例还提供一种双边反馈架构,双边反馈架构包括变压器、分别位于变压器两侧的初级电路和次级电路;
初级电路包括初级控制器、与变压器的初级绕组连接的主开关管和位于初级电路环路中的初级反馈端;次级电路包括次级控制器、与变压器的次级绕组连接的同步开关管和位于次级电路环路中的次级反馈端,其中,初级反馈端包括第一反馈端和第二反馈端,变压器的辅助绕组连接分压电阻对所述第一反馈端和所述第二反馈端提供所需工作电压,其中,当第二反馈端断开,则该双边反馈架构切换为原边反馈控制模式,以用于进行次级输出电压检测及控制;当第二反馈端连接分压电阻或与第一反馈端短路连接时,则第二反馈端的优先级高于第一反馈端的优先级;第二反馈端用于在该双边反馈架构达到阈值时进行恒流模式与恒功率模式的切换控制。
在一种实施例中,同步开关管集成在次级控制器的内部,次级控制器还设有快充协议模块和输出保护MOS管,其中,快充协议模块内置有上下偏置电阻并且还用于根据外接负载需要通过次级反馈端反馈到次级控制器,以使得次级控制器用于根据接收到的反馈信号在退磁阶段控制关闭或半关闭同步开关管,以改变同步开关管的导通内阻,进而形成包络电压。
本申请的实施例还提供一种可读存储介质,存储有计算机程序,计算机程序被执行时,实施上述的双边反馈控制方法。
本申请的实施例具有如下优点:
本申请的双边反馈控制方法通过将对双边反馈架构基于时序判断控制,其中,获取变压器绕组上的电压信号变化以用于电路的时序判断,当初级反馈端检测到次级电路的反馈信号时,初级控制器基于检测到反馈信号时的当前时序阶段和反馈的次级电路的电压变化信号对主开关管进行控制。该方法基于时序判断及控制,不仅可以很好地解决原边反馈架构存在的动态响应差问题、以及副边反馈架构存在的恒流模式与恒功率模式无法切换的问题,此外,还可以降低空载功耗,降低主开关管在开启时的功耗,改善EMI 和提升动态响应,减少次级输出纹波,还可以快速实现变电压输出等。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出了本申请实施例的双边反馈架构的整体示意图;
图2示出了本申请实施例的双边反馈架构的一种结构示意图;
图3示出了本申请实施例的双边反馈架构的另一种结构示意图;
图4示出了本申请实施例的双边反馈架构的次级控制器的结构示意图;
图5示出了本申请实施例的双边反馈控制方法的第一种流程示意图;
图6示出了本申请实施例的双边反馈控制方法的T0~T6阶段示意图;
图7示出了本申请实施例的双边反馈控制方法的T2波形测试图;
图8示出了本申请实施例的双边反馈控制方法的T3波形测试图;
图9示出了本申请实施例的双边反馈控制方法的T4波形测试图;
图10示出了本申请实施例的双边反馈控制方法的T5波形测试图;
图11示出了本申请实施例的双边反馈控制方法的T6波形测试图;
图12示出了整个时序阶段的波形示意图;
图13示出了本申请实施例的双边反馈控制方法的第二种流程示意图;
图14示出了本申请实施例的双边反馈控制方法的初级/次级基准电压的设置区间。
具体实施方式
下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
为此,本申请中将提出一种双边反馈架构DSR,其包括原边反馈和副边反馈,通过利用双边反馈来控制,不仅可以解决单纯的原边反馈架构PSR的动态响应差问题,还可以解决副边反馈架构SSR的无法进行恒流模式和恒功率模式的切换问题等。
示范性地,如图1所示,该双边反馈架构DSR包括变压器、分别位于变压器两侧的初级电路和次级电路,其中,初级电路包括有初级控制器、与变压器的初级绕组连接的主开关管Q1和位于初级电路环路中的初级反馈端,而次级电路包括有次级控制器、与变压器的次级绕组连接的同步开关管Q7和位于次级电路环路中的次级反馈端。
其中,该初级控制器主要用于对初级电路进行监测及对主开关管Q1的控制等。在 初级电路中,初级控制器与主开关管Q1可集成到一个芯片中,也可以采用分离式的连接方式。如图2所示,主开关管Q1分别与变压器和初级控制芯片分离式连接,当然也可以采用如图3所示的集成到同一芯片的方式来实现,具体可根据实际需求来确定。另外,关于初级反馈端对应的反馈电路,如图2所示,可以设置在集成芯片的内部。进一步地,若该变压器包括初级主绕组和初级辅助绕组,如图2所示,该初级反馈端可以连接到初级辅助绕组等。或者,如图3所示,反馈电路也可以设置在芯片的外部等。可以理解,关于初级电路中的主开关管、初级控制芯片与反馈电路等器件的存在方式,在此并不作限定。通常地,对于需要大功率的场合,可采用分离式的设计,如图2所示,而对于小功率的场合,则可采用集成式设计,减少体积等。另外,该初级反馈端在初级电路环路中的位置并不作限定,具体可根据实际需求来设计。
对于该双边反馈架构DSR,在一种实施方式中,如图1所示,该初级反馈端包括用于检测次级电路反馈的电压变化信号的两个反馈端,分别为第一反馈端FB1和第二反馈端FB2。在实际运用中,可根据需求决定是否将第二反馈端FB2同时接入至电路中,若仅接入了第一反馈端FB1,则该电路将成为原边反馈架构,此时将通过该第一反馈端FB1进行次级输出电压的检测以用于控制主开关管Q1以及输入过压、欠压保护等。可选地,也可以同时接入两个反馈端,在此并不作限定。
在一种实施方式中,该第一反馈端FB1和第二反馈端FB2的一端短路连接,即合并为一个引脚,可节省***元件等。若以图1所示的连接方式为例,两个反馈端的短路连接端将连接至初级辅助绕组,变压器的辅助绕组连接分压电阻对所述第一反馈端和所述第二反馈端提供所需工作电压,而两个反馈端各自的另一端则分别连接至该初级控制器的不同端。其中,当第二反馈端断开,则该双边反馈架构切换为原边反馈控制模式,以用于进行次级输出电压检测及控制;而当第二反馈端连接分压电阻或与第一反馈端短路连接时,则第二反馈端的优先级高于第一反馈端的优先级;此时的第二反馈端主要用于在该双边反馈架构达到阈值时进行恒流模式与恒功率模式的切换控制等。可以理解,这里的优先级是指初级控制器通常是将得到的次级电路的反馈信号先与第二反馈端FB2的反馈基准电压比较,直到反馈信号的电压超出了第二反馈端FB2的电压作用范围,再与第一反馈端FB1进行比较,通过对设置不同的反馈电压基准并在满足不同的反馈电压基准下实现不同的功能,从而可以丰富该双边反馈架构的功能等。
以上述为例,当第一反馈端FB1与第二反馈端FB2短路时,故当次级电路反馈的电压高于第二反馈端FB2设置的预设模式切换电压阈值时,电路由恒流模式切换至恒功率模式。而当次级电路反馈的电压下降至低于第一反馈端FB1设置的最低电压阈值时,此时双边反馈装置将由双边反馈控制模式自动切换为原边反馈控制模式。可以理解,在原边反馈控制模式下,该初级控制器主要是根据该第一反馈端FB1的电压大小与预设的最低电压阈值进行比较,从而判断该次级电路的带载状态并对主开关管Q1进行相应控制等。
其中,该次级控制器主要用于对次级电路的输出进行监测,以及根据接收到的反馈 信号在退磁阶段控制关闭或半关闭同步开关管,以改变同步开关管的导通内阻,进而形成包络电压。例如,当为谐振后空载阶段,若次级控制器通过次级反馈端检测到次级电路的输出电压由空载变为满载状态,则对同步开关管进行一次轻驱动,以形成一个包络电压。
在次级电路中,次级控制器与同步开关管Q7可集成到一个芯片中,也可以采用分离连接方式,例如,图2中,同步开关管与次级控制芯片为分离式连接,而图3所示的次级集成芯片中包括次级控制器和同步开关管Q7等主要器件。可选地,若该双边反馈架构用于实现快充,则该次级电路可以包括次级控制器及快充协议模块等,如图3所示。而在另一种实施方式中,该次级控制器可由次级控制芯片、快充协议模块、同步开关管和输出保护MOS管等器件构成的集成芯片,如图4所示。其中,快充协议模块内置上下偏置电阻并且用于根据外接负载需要通过次级反馈端反馈到次级控制器。在一种实施例中,当为谐振后空载阶段,若次级控制器通过次级反馈端检测到次级电路的输出电压由空载变为满载状态,则对同步开关管进行一次轻驱动,以形成一个包络电压。
基于上述的双边反馈架构DSR,本申请将对该双边反馈架构采用时序判断控制,可以在实现动态响应好、恒流模式和恒功率模式之间的切换之外,还可以降低主开关管在开启时的功耗,降低空载功耗,改善EMI,和动态响应,减少次级输出纹波等。下面结合DSR架构对该双边反馈控制方法进行详细说明。
实施例1
请参照图5,本实施例提出一种双边反馈的逻辑控制方法,可应用于上述的双边反馈架构DSR中,该方法包括:
S110,初级控制器根据变压器绕组上的电压变化判断电路所处的时序阶段。
示范性地,以图1所示的双边反馈架构为例,初级控制器可通过实时采集该变压器初级侧的绕组上的电压信号来获取该变压器的电压变化。进而,初级控制器根据该电压变化信号进行电路时序判断,从而得知变压器时序当前处于哪个阶段。
可以理解,无论是主开关管Q1还是同步开关管Q7,只要开关管发生开启或关断的状态变化,相应地,该变压器两侧均会产生磁感应变化,且在同一时刻,初级控制器与次级控制器两者分别采集到的电压信号的波形变化是相同的,只是信号幅值将根据初级绕组与次级绕组的匝数比的不同而进行同比增加或者同比减少。
由于开关管的控制过程通常呈周期性变化,本实施例中,将根据变压器绕组上的电压信号的波形变化划分为多个时序阶段,以便在不同的时序阶段对开关管进行不同的控制。其中,变压器在每个时序阶段具有各自对应的电压变化波形。可以理解,根据每个时序阶段的电压变化波形及实时采集到的电压变化即可判断出电路当前所处的时序阶段。
示范性地,如图6所示,本实施例划为T0~T6阶段,其中,T0阶段为主开关管导通的阶段;T1阶段为变压器进入漏感谐振到漏感谐振停止的阶段;T2阶段为漏感谐振状态停止到退磁高电平保持状态的阶段;T3阶段为退磁高电平保持状态即将结束到待 进入谐振状态的阶段;T4阶段为进入谐振状态到谐振状态停止的阶段;T5阶段为谐振状态停止到绕组能量释放完低电平保持状态的阶段;T6阶段为超过预设时间阈值后仍为低电平保持状态的阶段。例如,该预设时间阈值可为大于或等于0.5ms等,具体可根据实际需求来设定。值得注意的是,这些不同的时段可以根据实际情况来划分调整,每个时段的时长并不作严格的限定。
可以理解,各开关管的控制时序可能是按照时间顺序依次执行这几个阶段,也可能是根据实际负载需求而在其中某个阶段或某几个阶段中循环,例如,若该双边反馈装置一直处于持续带载状态,则将不会进入T6阶段。此外,还可以是由其中一阶段直接跳转至另一个阶段,例如,可根据输出功率的需求,控制电路由T4阶段立即跳转到T0、T1或T2阶段等。
其中,开关管在T0阶段至T2阶段之间进行循环的工作模式称为连续模式(CCM模式),此时变压器能量没有释放完毕后开关管又重新进入导通状态;在T0阶段至T3阶段之间进行循环的工作模式称为临界模式(BCM模式);在T0阶段至T4阶段之间、T0阶段至T5阶段之间、T0阶段至T6阶段之间、或者以上各阶段之间跳转循环的工作模式称为断续模式(DCM模式)。
其中,在步骤S110之前或之后,该方法还包括:上电后,初级控制器控制该双边反馈架构进入原边反馈控制模式,以建立次级电路所需的初始工作电压。待次级电路能够正常工作之后,则执行步骤S120。
S120,当通过初级反馈端检测到次级电路的反馈信号时,初级控制器根据检测到反馈信号时的当前时序阶段和反馈的次级电路的电压变化信号对主开关管进行控制。
由于次级电路与初级电路是通过变压器连接的,基于电磁感应原理,同步开关管Q7在关断或开启时所引起的次级电路中的电压变化信号将通过变压器的绕组电磁感应反馈至初级电路的初级反馈端。
示范性地,在同步开关管Q7进行相应开启或关断后,初级控制器能够通过初级反馈端检测到次级电路反馈的电压变化信号。于是,当检测到次级电路的反馈信号时,初级控制器将基于检测到反馈信号时的当前时序阶段和反馈的次级电路的电压变化信号对主开关管Q1进行控制。其中,在控制主开关管Q1进行导通时,将根据当前时序阶段和次级电路的输出电压变化等中的一种或多种来确定主开关管Q1是否需要导通,以及在导通时达到所需的峰值电流时关闭。示范性地,可包括以下几种情况:
情况一,若当前为T0阶段,初级控制器将控制主开关管Q1导通,并保证主开关管Q1的最小导通时间。之后,待主开关管Q1关闭后,电路将自动进入T1阶段。
情况二,若当前为T1阶段,初级控制器将维持主开关管Q1的关闭状态,等待电路进入T2阶段。由于此时的同步开关管将导通,为防止两个开关管共通而炸机,该阶段中将不对主开关管Q1动作。
情况三,若当前为T2阶段,初级控制器将判断次级电路是否出现预设严重程度的欠压或欠流,若出现预设严重程度的欠压或欠流,且***预先设置了连续模式,则控制 主开关管Q1导通(即跳回T0阶段)以进入连续模式,并当初级电路中的电流达到第一预设峰值电流后关闭主开关管Q1。
示范性地,初级控制器可以直接判断上一周期内是否上述的欠压或欠流现象,这样无须等到次级电路的反馈信号才开始导通。例如,初级控制器可根据上一周期内次级电路的电压大小变化来判断是否出现欠压或欠流,以及欠压或欠流的严重程度,其中,该预设严重程度可根据实际需求来设定。当然,初级控制器也可以在当前周期内进行欠压或欠流判断,进而确定是否开启主开关管Q1。如图7所示,若检测到同步开关管Q7进行了提前关断,则控制主开关管Q1导通。当然,若判断出次级电路出现过压或过流,或者***为非连续模式,则维持主开关管的关闭状态,等待电路进入T3阶段。
可选地,在T2阶段,可以根据实际需要来控制主开关管Q1进入CCM模式、BCM模式和DCM模式中的一种,当然也可以在这三种模式之间进行切换。例如,初级控制器可结合上一次主开关管Q1导通时的峰值电流以及次级电压所需的退磁时间判断出该主开关管Q1是否需要进入CCM模式。又例如,当次级电路需要输出大功率时,可进入CCM模式。通常地,以第一预设峰值电流可以使主开关管Q1快速进入CCM模式。
进一步地,在T2阶段,当主开关管Q1进入CCM模式后,初级控制器可判断是否满足相应的退出条件来退出该CCM模式,以避免出现电流过大而烧坏器件等。
对于该退出条件,示范性地,在T2阶段,且主开关管Q1已进入CCM模式后,例如,初级控制器可根据该次级电路的输出电压变化判断同步开关管是否出现预关断操作,并在判断出同步开关管进行了预关断操作时,使主开关管退出CCM模式。其中,上述的同步开关管Q7的预关断操作是指,对同步开关管Q7以小于完全关断时的电压进行关断,例如,完全关断时需要5V驱动,此时预关断可采用小于4.5V的电压进行关断。
又例如,将次级同步关闭形成的电压上升当作次级过压过流的判断依据,若收到次级在T2阶段提前关闭同步开关管的信号,则判断出次级输出未深度带载或者已经出现过压或过流,此时将退出CCM模式。
又或者,当主开关管Q1经过了预设数量的CCM作模式周期时,此时初级控制器可按照预设的经过预设个数的连续模式周期后加入一个非连续模式以退出连续模式,以用于在该非连接工作模式下接收次级电路的反馈信号,这样可以防止在次级电路的输出需要变电压时而出现过压现象等。
此外,若该双边反馈架构切换到原边反馈工作模式,在T2阶段时,当主开关管Q1进入CCM模式后,随着主开关管Q1的导通,例如,当初级反馈端检测到的电压值逐渐增大到预设的反馈基准电压时,可控制主开关管Q1退出CCM模式等。
情况四,若当前为T3阶段,初级控制器将根据次级电路的输出电压变化判断出同步开关管Q7完成关断操作时,则在变压器退磁完成后跳回T0阶段,即重新控制主开关管Q1导通并在达到第一预设峰值电流时关闭,如图8所示。若没有检测到提前关断操作,则维持主开关管的关闭状态,等待电路进入T4阶段。
可选地,初级控制器可根据退磁阶段关闭同步开关管Q7的电压大小判断主开关管Q1是否需要进入CCM模式。例如,在T3阶段,若初级控制器判断出同步开关管完成提前关断操作时,将使主开关管进入CCM模式。
情况五,若当前为T4阶段或T5阶段,初级控制器若判断出同步开关管Q7完成一次导通及关断操作时,则控制主开关管Q1导通且在达到第一预设峰值电流或第二预设峰值电流时关闭,如图9所示。
情况六,若当前为T5阶段,初级控制器若判断出同步开关管Q7完成一次导通及关断操作时,则控制主开关管Q1导通且在达到第一预设峰值电流、第二预设峰值电流或第三预设峰值电流时关闭,如图10所示。
示范性地,该一次导通及关断操作可根据从变压器的指定状态到接收反馈信号的时长来判断,其中,该指定状态可以是变压器开始退磁时的状态、或者是退磁完成时的状态等。应当理解,在该T4阶段或T5阶段时,具体的峰值电流可根据实际需求来确定。例如,由于次级输出需要,当初级控制器判断出次级电路的电压大于一预设值时,则说明次级电路此时需要进入CCM模式,此时将控制主开关管Q1由当前的T4阶段或T5阶段立即进入T0阶段,并在导通时将以第一预设峰值电流来工作。而当小于等于该预设值时,初级控制器可按照第二或第三预设峰值电流控制主开关管Q1导通。其中,上述的该预设值可根据输出电压与反馈分压电路来相应设定,例如,若输出电压为5V,根据具体的反馈分压电路已知理论上应当在检测到1.9V才进行反馈,若实际反馈时检测到的电压大于该1.9V,则将立即控制主开关管Q1导通。
进一步地,在T4阶段或T5阶段中,初级控制器还可以根据从退磁开始或者退磁完成后到初级反馈端接收到反馈信号的时长来判断次级负载的深度,如是否为空载、满载等,以进一步优化预设峰值电流的取值,从而尽可能地使电路调整到效率最高、性能最佳的状态,动态响应好、纹波低等。
情况七,若当前为T6阶段,即次级电路超过预设时间阈值未反馈时,如图11所示,该初级控制器可控制主开关管Q1以第一预设峰值电流、第二预设峰值电流、第三预设峰值电流或第四预设峰值电流控制主开关管Q1导通一次,例如,可以以最小峰值电流阈值自导通一次,这样可通过电磁互感方式检测到次级电路的输出电压。
其中,上述的各预设峰值电流的大小关系为:第一预设峰值电流>第二预设峰值电流>第三预设峰值电流>第四预设峰值电流。本实施例中,该第一预设峰值电流可取值为小于或等于最大峰值电流阈值,其中,该最大峰值电流阈值是指一个周期内最大的峰值电流,即Ipk电流。通常地,越到后面的时序阶段,其所对应的峰值电流往往取值越小。例如,该第四预设峰值电流可取值为最小峰值电流阈值等。
由于两侧绕组之间的磁感应效应,故初级电路能够接收到次级电路反馈的电压变化信号。本实施例中,通过结合时序判断以及利用绕组互感原理来进行变压器两侧的初级电路及次级电路的信息反馈及信息同步,进而对主开关管进行控制,及时动态调整峰值电流,从而实现整个双边反馈装置的控制,不仅具有更好的动态响应,还可使电路的转 换效率达到最佳等。
由于同步开关管Q7在关断或开启时引起的次级电路中的电压变化信号将通过绕组电磁感应反馈至初级电路,在一种实施例中,在初级反馈端检测到次级电路的反馈信号之前,该双边反馈控制方法还可包括:
次级控制器根据变压器的电压变化判断电路所处的时序阶段,并通过次级反馈端实时获取次级电路的输出状态;次级控制器根据判断出的时序阶段和该输出状态对同步开关管进行控制。
示范性地,次级控制器可通过从变压器的次级绕组的输出端采集变压器的电压信号,进而根据电压信号的变化状态进行时序判断,从而可得知电路当前处于哪个时序阶段以便对同步开关管Q7进行相应控制。
其中,次级反馈端与次级电路的信号输出端连接,主要用于检测该次级电路输出端的电压或电流并反馈至次级控制器,以供次级控制器根据该反馈值判断当前的带载状态。例如,次级控制器可通过该次级反馈端反馈的值判断出输出是否欠压或欠流,过压或过流,或处于变电压状态,又或者处于轻载、空载或满载状态等。
示范性地,次级电路的输出状态包括次级电路的输出电压或电流的大小等。在一种实施方式中,对于根据该输出信号及电路当前所处的时序阶段来控制同步开关管Q7的导通或关断,可包括以下几种情况:
情况一,若当前为T0阶段,次级控制器维持同步开关管Q7的关闭状态,以防止与主开关管Q1共通炸机。
情况二,若当前为T1阶段,次级控制器将维持同步开关管Q7的导通状态,以保证同步开关管Q7的最小导通时间。随着同步开关管Q7的导通,电路将进入T2阶段。
情况三,若当前为T2阶段,次级控制器将在超过预设的最小退磁延迟时间后根据次级电路的输出电压或电流的大小控制同步开关管的导通或关闭状态。例如,当检测到次级电路的输出电压信号小于预设电压阈值(如同步开关管Q7的CCM模式电压阈值等)时,如图7所示,将控制同步开关管进行提前关断等。
通常地,当T2阶段结束后,电路将进入T3阶段,当然有时也可以根据实际负载需求而在该T0至T2阶段维持多个周期。可以理解,当同步开关管Q7进行预关断后,相应地,初级控制器可检测到次级电路中该预关断操作引起的电压变化信号并进行响应。其中,该最小退磁延迟时间主要是变压器所需的最小退磁时间t 0,通常地,t 0≥0.1us。由于该次级反馈端设置有对应的阈值电压(也称为反馈电压基准),通过与该阈值电压的大小比较可判断次级电路的电压输出状态。
情况四,若当前为T3阶段,次级控制器将按照预设条件对同步开关管Q7进行关断,可以是正常关断或提前关断。
示范性地,该预设条件可以是当同步开关管Q7的漏极-源极之间的电压差值与预设压降阈值之差在预设范围内。通常地,该预设压降阈值可为同步开关管Q7的漏极-源极之间的电压差Vds。通常地,若次级控制器检测到负载出现严重欠压等情况,此时可进 行提前关断,如图8所示。若不需要提前关断,则对同步开关管Q7进行正常关断。
情况五,若当前为T4阶段或T5阶段,如图9或图10所示,则次级控制器将对同步开关管Q7进行导通预定时间后再关断。
可以理解,通过对同步开关管Q7的导通极短时间后再关断的这一操作,将形成一包络电压,让次级电路的输出电容对变压器的次级绕组进行充电,进而反馈到初级控制器。其中,该预定时间可根据实际需求来设定,在此并不作限定。例如,该预定时间可取值为小于等于几微秒或几十微秒等。
情况六,若当前为T6阶段,如图11所示,次级控制器将维持对同步开关管Q7的关闭状态。此时的同步开关管Q7不动作,以方便判断次级电路是否出现短路,防止与主开关管Q1同时导通而出现共通炸机现象。
可以理解,上述的几种情况主要是根据不同的时序判断来对同步开关管Q7进行相应控制。由于同步开关管Q7进行关断或开启后,开关管的内阻Rds将相应增加或减少,这将导致副边绕组上的电压上升或降低。此时,通过绕组电磁感应原理可将次级电路中的电压变化信号反馈至初级电路的初级反馈端。进而,由初级控制器将按照上述的T0-T6阶段的控制方式对主开关管Q1进行控制。图12示出了两个开关管的整体控制情况。
考虑到基于时序判断来控制主开关管Q1的导通,不仅可以提高转换效率,还可以提高电路的动态响应等,为进一步降低主开关管Q1在导通时的功耗,在一种实施方式中,该双边反馈控制方法还包括:
在T4阶段或T5阶段,初级控制器在控制主开关管Q1导通时,在同步开关管关闭后产生的最新谐振波形的第一个谷底时刻或后续的谷底时刻控制主开关管导通。
示范性地,在T4阶段或T5阶段期间,若同步开关管Q7完成极短时间的导通后再立即关闭操作,此时电路将产生一个新的谐振波形。于是,初级控制器可在该新的谐振波形的第一个谷底时刻来控制打开主开关管Q1,如图9所示,从而降低主开关管Q1导通时的损耗。当然,若是没有捕捉到第一个谷底,也可以在后续的第二个或第三个等其他谷底进行导通,亦可达到降低损耗的目的。
可以理解,T4阶段或T5阶段内的同步开关管Q7的极短时间的导通是次级控制器基于时序判断而加入的自导通控制,而由此引起的谐振波形的谷底也可称为新型谷底。本实施例中,在T4阶段或T5阶段期间,控制主开关管Q1在新型谷底对应的时刻导通(称为新型谷底导通技术),这样可大大降低功耗和改善EMI问题等。
可选地,考虑到若是次级电路反馈的欠压或欠流信号丢失或传输失败时,初级控制器将无法接收到该反馈信号,进而也无法进行响应。为避免出现这类无响应情况,该双边反馈控制方法还包括:
若次级电路在T2~T5阶段期间内向初级电路反馈有次级电路出现欠压或欠流等信号,而超过预设反馈时间仍未检测到主开关管Q1的开启,则次级控制器将在T4或T5阶段控制同步开关管Q7自导通一次以及时进行重新反馈。可以理解,通过上述的重新反馈的方式,可以防止当次级电路反馈的欠压欠流等信号未被初级电路接收到时,初级 电路的主开关管Q1不能及时响应的现象。
本实施例的双边反馈架构结合双边反馈的方式,通过结合时序判断以及利用绕组互感原理来进行变压器两侧的初级电路及次级电路的信息反馈及信息同步,从而实现整个双边反馈装置的控制。该方法不仅可以解决原边反馈架构存在的动态响应差、无法变电压反馈的问题,以及副边反馈架构存在的无法进行恒流恒功率模式的切换问题、在PD快充中空载功耗高、体积大、成本高等问题之外,通过对各开关管的控制加入时序判断,并在需要导通的时候按照所需的峰值电流进行导通,可以使架构的效率达到最佳。另外,在T4阶段或T5阶段控制主开关管导通时在新型谷底进行导通,这样可以降低主开关管在开启时的功耗,减少次级输出纹波等。
实施例2
请参照图13和图14,本实施例还提出一种双边反馈的逻辑控制方法,应用于上述的双边反馈架构,与实施例1的不同之处在于,本实施例的双边反馈控制方法主要基于次级电路的电压变化信号对初级电路环路中的初级基准电压(FB1/FB2的基准电压)进行调整,从而用于实现对主开关管进行控制。该方法能够实现变电压输出,尤其在快充等技术中实现快速响应。
示范性地,上电后,初级控制器控制该双边反馈架构进入原边反馈控制模式,以建立电路所需的初始工作电压,并在初始工作电压建立后,次级控制器通过次级反馈端实时获取次级电路的输出状态并反馈到初级反馈端中,进而初级控制器根据反馈的次级电路的电压变化信号和检测到反馈信号时的当前时序阶段建立并实时更新次级电路所需的初级基准电压,然后基于实时更新的初级基准电压和电路所处的时序阶段对主开关管进行控制。本实施例的时序划分可参见上述实施例1,即包括T0~T6阶段。
其中,建立初始工作电压后,可通过以下方法建立上述的初级基准电压:
方法一、在非连续模式下,在T3阶段通过提前关闭同步反馈次级欠压欠流信号,直到T3阶段不再提前关闭,而是正常关闭同步;或者T2阶段无欠压欠流信号,在T4-T5阶段有欠压欠流信号,则此周期的初级检测到的基准电压为次级需要的基准电压。
方法二、在T4、T5阶段反馈后的下一周期作为次级需要的基准电压。
方法三,收到次级的欠压或欠流信号后,控制主开关管导通以进入连续模式,直到收到次级的过压或过流信号再退出该连续模式,此时将其上一周期的基准电压作为次级所需要的基准电压;或者在进入连续模式过程中穿插几个非连续模式,若非连续模式在T3阶段没有欠压或欠流信号,或者退出连续模式后收到欠压或欠流信号后重新导通主开关管以传递能量,在退磁过程中T2、T3阶段次级的同步开关管都不会提前关闭,则此本周期退磁的基准电压为次级所需的基准低电压。
其中,在建立次级所需要的初级基准电压之后,由初级控制器来主导控制整个电路的环路运行。示范性地,初级控制器根据检测到反馈信号时的当前时序阶段和反馈的次级电路的电压变化信号对当前的初级基准电压进行更新。例如,若输出需要变电压。此时分为两种情况,一种为欠压欠流,比如快充里需要升压;另一种为过压过流,比如快 充里的降压。
针对欠压欠流情况,可以参考上述的建立满足次级输出需求的初级基准电压(FB1或FB2基准电压)的三种方法对该初级基准电压进行升压。
针对过压或过流情况,可以在T2阶段在初级反馈在退磁后第一次取样(通常在1-3US时候)电压后,提前关闭同步,绕组电压升高,初级反馈收到升压信号退出连续模式,同时在T4或则T5阶段还可以导通同步对次级电容能量进行泄放到变压器,直到达到次级电压基准的下限,再关闭同步开关管Q7,这样既可以快速无损耗放电(正常快充,比如20V降到5V需要在规定时间比如50MS左右进行有损耗才能放电),降低输出电压达到满足次级快充需求,又可以在下次退磁中确定新的反馈次级所需要电压基准。
示范性地,初级控制器对初级电路环路中的反馈基准电压的调整,包括:
若当前为T0阶段,主开关管Q1导通,同步开关管Q7关闭,变压器存储能量。当通过主开关管Q1达到预设峰值电流后,关闭主开关管Q1,***将自动进入T1阶段。
若当前为T1阶段,初级控制器将维持主开关管Q1为关闭状态,此时,次级同步为导通状态以传递能量,***将自动进入T2阶段。
若当前为T2阶段,初级反馈端(FB1或FB2)将捕捉当前周期的基准电压以用于判断次级带载情况。当为非连续模式,则自动进入T3阶段;若为连续模式,当初级基准电压低于V3值,则返回T0阶段。若收到退出连续模式的信号则自动进入T3阶段。其中,该退出条件可以是:比如初级基准电压大于等于V5值或者设计为固定几个连续模式周期后,穿插一个非连续模式周期,用来给同步进入后面阶段反馈次级电压电流信号。可以理解,图14所示的各个电压是针对不同的情况下设定的基准电压,其中,上述的V0-V2为固定电压,V3-V7电压是由于基准电压的调整变化,而针对更新的基准电压的比较电压。
若当前为T3阶段,当次级反馈端FB3的电压大于≥V4,则同步控制器将正常关闭同步开关管Q7,自动进入T4阶段。当基准电压低于V4,则同步开关管Q7将进行提前关闭以进行反馈,按照上述实施例1中的新型谷底导通技术导通并重新进入T0阶段。
若当前为T4阶段,若初级主控在T2、T3阶段检测到次级属于轻载或空载以及次级没有反馈欠压欠流信号。则自动进入T5阶段。若初级主控在T2、T3阶段检测到次级属于带载阶段;或在退磁完成开始预设置时间后,若FB3电压高于等于V7则为降压信号,则对Q7导通进行泄放能量直到FB3电压低于V5电压再关闭Q7则,关闭Q7后产生谐振,Q1在谐振谷底导通,进入T0阶段。
若当前为T5阶段,若次级反馈端FB3的电压在V4-V6之间或小于等于V2值,则对同步开关管Q7不做动作,自动进入T6阶段。当FB3的电压达到V3值,同步开关管Q7将短暂导通一次以进行反馈次级的欠压、欠流情况;若FB3的电压高于等于V7值,即表明此时为降压信号,则对同步开关管Q7导通以用于泄放能量且直到FB3的电压低于V5时再关闭同步开关管Q7。关闭同步开关管Q7后,变压器将产生谐振,于是主控 制器在检测到后将控制主开关管Q1在谐振谷底导通,重新进入T0阶段。
若当前为T6阶段,此时变压器的能量释放完毕,若超过设置的最长Toff时(比如10Ms以上)未检测到反馈电压,则判断为空载或者需要降压电压,或者可能为次级短路异常而无法反馈,此时无论FB3的电压大小,将控制同步开关管Q7保持关闭状态,以防止与主开关管Q1形成共通而炸机。而初级控制器则控制主开关管Q1进行一次导通以进入T0阶段且在达到最小预设峰值电流时关闭。
实施例3
请参照图1,本实施例提出一种双边反馈装置,示范性地,如图2所示,该双边反馈装置可采用如上述实施例1或2的方法进行电路逻辑控制。可选地,如图3所示,该双边反馈装置还包括与次级输出连接的快充电路,此时,该次级电路需要满足变电压输出功能。其中,该快充电路将支持快充协议,若需要采用快充模式时,该次级电路的次级控制器能够进行电压变化以满足快充所需的电压或电流;若采用非快充模式,则该次级电路同样能够降压至普通的充电模式等。在一种实施方式中,该快充电路可与初级控制器及同步开关管Q7等器件进行集成在同一芯片中,如图4所示。当然,也可以采用分离连接的形式,如图3所示,在此并不作限定。具体可参见上述实施例1前面的内容描述,故在此不再重复描述。
本申请实施例还提出一种可读存储介质,其存储有计算机程序,计算机程序被执行时,实施上述实施例1或2中的双边反馈控制方法。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,也可以通过其它的方式实现。另外,在本申请各个实施例中的各功能模块或单元可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或更多个模块集成形成一个独立的部分。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (13)

  1. 一种双边反馈控制方法,其特征在于,应用于双边反馈架构,所述双边反馈架构包括变压器、分别位于所述变压器两侧的初级电路和次级电路,所述初级电路包括初级控制器、与所述变压器的初级绕组连接的主开关管和位于初级电路中的初级反馈端,所述次级电路包括次级控制器、与所述变压器的次级绕组连接的同步开关管和位于次级电路中的次级反馈端,其中,所述同步开关管在关断或开启时引起的所述次级电路的电压变化信号通过绕组电磁感应反馈至所述初级电路的所述初级反馈端;所述方法包括:所述初级控制器根据所述变压器绕组上的电压变化判断电路所处的时序阶段;其中,所述变压器在不同的时序阶段具有对应的电压变化波形;
    当通过所述初级反馈端检测到所述次级电路的反馈信号时,所述初级控制器根据检测到所述反馈信号时的当前时序阶段和反馈的所述次级电路的电压变化信号对所述主开关管进行控制。
  2. 根据权利要求1所述的双边反馈控制方法,其特征在于,所述初级反馈端检测到所述次级电路的反馈信号之前,所述方法还包括:
    上电后,所述初级控制器控制该双边反馈架构进入原边反馈控制模式,以建立次级电路所需的初始工作电压;
    所述次级控制器根据所述变压器绕组上的电压变化判断电路所处的时序阶段,并通过所述次级反馈端实时获取所述次级电路的输出状态;
    所述次级控制器根据判断出的所述时序阶段和所述输出状态对所述同步开关管进行控制;
    其中,所述电路的时序阶段包括T0~T6阶段,T0为主开关管导通的阶段,T1阶段为所述变压器进入漏感谐振到漏感谐振停止的阶段,T2阶段为漏感谐振状态停止到退磁高电平保持状态的阶段,T3阶段为退磁高电平保持状态即将结束到待进入谐振状态的阶段,T4阶段为进入谐振状态到谐振状态停止的阶段,T5阶段为绕组剩余能量谐振释放完后在低电平保持状态的阶段,T6阶段为超过预设时间阈值后仍为低电平保持状态的阶段。
  3. 根据权利要求2所述的双边反馈控制方法,其特征在于,所述次级电路的输出状态包括所述次级电路的输出电压或电流的大小,所述次级控制器根据判断出的所述时序阶段和所述输出状态对所述同步开关管进行控制包括:
    若当前为T0阶段或T6阶段,所述次级控制器维持所述同步开关管的关闭状态;
    若当前为T1阶段,所述次级控制器维持所述同步开关管的导通状态;
    若当前为T2阶段,所述次级控制器在超过预设的最小退磁延迟时间后根据所述次级电路的输出电压或电流的大小控制所述同步开关管的导通或关闭状态;
    若当前为T3阶段,所述次级控制器按照预设条件控制所述同步开关管进行关断;
    若当前为T4阶段或T5阶段,所述次级控制器控制所述同步开关管导通预定时间后再关断。
  4. 根据权利要求2所述的双边反馈控制方法,其特征在于,所述次级电路的电压变化信号包括所述次级电路的输出电压变化和自所述变压器的指定状态到接收到所述反馈信号的时长,所述初级控制器根据检测到所述反馈信号时的当前时序阶段和反馈的所述次级电路的电压变化信号对所述主开关管进行控制包括:
    若当前为T0阶段,所述初级控制器维持所述主开关管的导通状态以等待进入T1阶段;
    若当前为T1阶段,所述初级控制器维持所述主开关管的关闭状态以等待进入T2阶段;
    若当前为T2阶段,所述初级控制器若判断出所述次级电路达到预设欠压或欠流条件且***带有连续模式,则控制所述主开关管导通以重新进入T0阶段并在达到第一预设峰值电流时关闭;若判断出所述次级电路达到预设过压或过流条件或者***为非连续模式,则维持所述主开关管的关闭状态以等待进入T3阶段;
    若当前为T3阶段,所述初级控制器若根据所述次级电路的输出电压变化判断出所述同步开关管进行提前关断操作,则控制所述主开关管导通以重新进入T0阶段并在达到所述第一预设峰值电流时关闭,否则维持所述主开关管的关闭状态以等待进入T4阶段;
    若当前为T4阶段,所述初级控制器若根据从所述变压器的指定状态到接收所述反馈信号的时长判断出所述同步开关管完成一次导通及关断操作,则控制所述主开关管导通以重新进入T0阶段并在达到所述第一预设峰值电流或第二预设峰值电流时关闭;若没有检测到欠压或欠流的反馈信号,则维持所述主开关管的关闭状态以等待进入T5阶段;
    若当前为T5阶段,所述初级控制器若判断出所述同步开关管完成一次导通及关断操作,则控制所述主开关管导通以重新进入T0阶段并在达到所述第一预设峰值电流、所述第二预设峰值电流或第三预设峰值电流时关闭;若没有检测到欠压或欠流的反馈信号,则维持所述主开关管的关闭状态以等待进入T6阶段;
    若当前为T6阶段,所述初级控制器控制所述主开关管导通一次并在达到所述第一预设峰值电流、所述第二预设峰值电流、所述第三预设峰值电流或第四预设峰值电流时关闭。
  5. 根据权利要求2所述的双边反馈控制方法,其特征在于,所述初级控制器根据检测到所述反馈信号时的当前时序阶段和反馈的所述次级电路的电压变化信号对所述主开关管进行控制,还包括:
    所述初级控制器根据反馈的所述次级电路的电压变化信号和检测到反馈信号时的当前时序阶段建立并实时更新次级电路所需的初级基准电压,然后基于所述实时更新的初级基准电压和电路所处的时序阶段对所述主开关管进行控制。
  6. 根据权利要求3至5中任一项所述的双边反馈控制方法,其特征在于,还包括:
    T2阶段中,所述初级控制器能够控制所述主开关管工作在连续模式、临界模式和 断续模式中的任意一种或不同模式之间进行切换;
    当所述主开关管为连续模式时,所述初级控制器若判断出所述同步开关管完成预关断或提前关断操作,则控制所述主开关管退出连续模式;或者,所述初级控制器控制所述主开关管在经过预设个数的连续模式周期后退出连续模式;或者,所述初级控制器判断出所述反馈信号的电压值达到所述初级反馈端的预设基准值后退出连续模式。
  7. 根据权利要求4所述的双边反馈控制方法,其特征在于,还包括:
    T4阶段或T5阶段中,所述初级控制器在判断所述同步开关管完成一次导通及关断操作之前,先判断所述次级电路的电压是否大于预设值;
    若大于所述预设值,则控制所述主开关管导通且在达到所述第一预设峰值电流时关闭;若小于等于所述预设值,则在判断出所述同步开关管完成一次导通及关断操作时,则控制所述主开关管导通且在达到所述预设峰值电流时关闭。
  8. 根据权利要求4或5所述的双边反馈控制方法,其特征在于,还包括:
    T4阶段或T5阶段中,所述初级控制器控制所述主开关管导通时,在所述同步开关管关闭后产生的最新谐振波形的第一个谷底时刻或后续的谷底时刻控制所述主开关管导通。
  9. 根据权利要求1所述的双边反馈控制方法,其特征在于,所述初级反馈端包括用于检测所述次级电路反馈的电压变化信号的第一反馈端和第二反馈端,其中,所述第二反馈端的优先级高于所述第一反馈端的优先级;所述方法还包括:
    当所述初级控制器判断出所述第二反馈端检测到的电压达到预设模式切换电压阈值时,所述初级控制器控制所述主开关管由当前的恒流模式切换至恒功率模式。
  10. 根据权利要求9所述的双边反馈控制方法,其特征在于,当所述初级控制器判断出所述第一反馈端检测到的电压下降至预设最低电压阈值时,则由双边反馈控制模式切换为原边反馈控制模式。
  11. 一种双边反馈装置,其特征在于,包括:变压器、分别位于所述变压器两侧的初级电路和次级电路,所述初级电路包括初级控制器、与所述变压器的初级绕组连接的主开关管和位于初级电路中的初级反馈端,所述次级电路包括次级控制器、与所述变压器的次级绕组连接的同步开关管和位于次级电路中的次级反馈端,其中,所述同步开关管在关断或开启时引起的所述次级电路的电压变化信号通过绕组电磁感应反馈至所述初级电路的所述初级反馈端,所述双边反馈装置采用如权利要求1至10中任一项所述的方法进行电路逻辑控制。
  12. 一种双边反馈架构,其特征在于,包括变压器、分别位于变压器两侧的初级电路和次级电路;所述初级电路包括初级控制器、与变压器的初级绕组连接的主开关管和位于初级电路环路中的初级反馈端;所述次级电路包括次级控制器、与变压器的次级绕组连接的同步开关管和位于次级电路环路中的次级反馈端;其中,所述初级反馈端包括第一反馈端和第二反馈端,所述变压器的辅助绕组连接分压电阻对所述第一反馈端和所述第二反馈端提供工作电压
    当所述第二反馈端断开,则该双边反馈架构切换为原边反馈控制模式,以用于进行次级输出电压检测及控制;当所述第二反馈端连接分压电阻或与第一反馈端短路连接时,则所述第二反馈端的优先级高于所述第一反馈端的优先级;第二反馈端用于在该双边反馈架构达到阈值时进行恒流模式与恒功率模式的切换控制。
  13. 根据权利要求12所述的双边反馈架构,其特征在于,所述同步开关管集成在所述次级控制器的内部,所述次级控制器还设有快充协议模块和输出保护MOS管,其中,所述快充协议模块内置有上下偏置电阻并且还用于根据外接负载需要通过所述次级反馈端反馈到所述次级控制器。
PCT/CN2020/130490 2019-11-20 2020-11-20 一种双边反馈控制方法、双边反馈装置和双边反馈架构 WO2021098830A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911141468.1 2019-11-20
CN201911141468.1A CN110768537B (zh) 2019-11-20 2019-11-20 一种双边反馈和控制dsr架构
CN202011289451.3A CN112104235B (zh) 2020-11-18 2020-11-18 一种双边反馈控制方法和双边反馈装置
CN202011289451.3 2020-11-18

Publications (1)

Publication Number Publication Date
WO2021098830A1 true WO2021098830A1 (zh) 2021-05-27

Family

ID=75980314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130490 WO2021098830A1 (zh) 2019-11-20 2020-11-20 一种双边反馈控制方法、双边反馈装置和双边反馈架构

Country Status (1)

Country Link
WO (1) WO2021098830A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1685596A (zh) * 2002-09-26 2005-10-19 皇家飞利浦电子股份有限公司 双向回扫转换器的调整
US20090267583A1 (en) * 2008-04-23 2009-10-29 Te-Hsien Hsu Switching power supply apparatus with current output limit
CN101674017A (zh) * 2008-09-11 2010-03-17 绿达光电股份有限公司 用于一电源转换器的初级侧反馈控制装置及其相关方法
CN103780098A (zh) * 2014-02-26 2014-05-07 矽力杰半导体技术(杭州)有限公司 输出电压反馈电路、隔离式变换器和用于其的集成电路
CN104052290A (zh) * 2013-03-13 2014-09-17 戴乐格半导体公司 具有次级到初级消息传送的开关功率变换器
CN110768537A (zh) * 2019-11-20 2020-02-07 深圳原能电器有限公司 一种双边反馈和控制dsr架构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1685596A (zh) * 2002-09-26 2005-10-19 皇家飞利浦电子股份有限公司 双向回扫转换器的调整
US20090267583A1 (en) * 2008-04-23 2009-10-29 Te-Hsien Hsu Switching power supply apparatus with current output limit
CN101674017A (zh) * 2008-09-11 2010-03-17 绿达光电股份有限公司 用于一电源转换器的初级侧反馈控制装置及其相关方法
CN104052290A (zh) * 2013-03-13 2014-09-17 戴乐格半导体公司 具有次级到初级消息传送的开关功率变换器
CN103780098A (zh) * 2014-02-26 2014-05-07 矽力杰半导体技术(杭州)有限公司 输出电压反馈电路、隔离式变换器和用于其的集成电路
CN110768537A (zh) * 2019-11-20 2020-02-07 深圳原能电器有限公司 一种双边反馈和控制dsr架构

Similar Documents

Publication Publication Date Title
TWI656709B (zh) 充電系統、充電時的保護方法以及電源適配器
RU2480884C2 (ru) Система преобразователя мощности, которая эффективно работает во всем диапазоне режимов нагрузки
KR101121300B1 (ko) 회로 조정기 및 그의 동기 타이밍 펄스 발생 회로
CN110768537B (zh) 一种双边反馈和控制dsr架构
CN102237802A (zh) 谐振变换器中的谐振电容器箝位电路
CN114900050B (zh) 反激电源***及变压器初次级耦合反馈稳压方法
US11799379B2 (en) Control circuit, system and method for switched-mode power supply
US20220376629A1 (en) Flyback converter and control method thereof
WO2023020168A1 (zh) 级联变换器及其控制方法
EP4047804B1 (en) Converter and power adapter
WO2023207956A1 (zh) 开关电源的供电电路及其供电方法
GB2511994A (en) Switching power supply device
US11201546B2 (en) Power converter and control circuit thereof
CN111130332A (zh) 尖峰电压抑制电路和开关电源
CN112104235B (zh) 一种双边反馈控制方法和双边反馈装置
WO2021098830A1 (zh) 一种双边反馈控制方法、双边反馈装置和双边反馈架构
KR20180077965A (ko) 양방향 dc-dc 컨버터, 및 이를 포함하는 에너지 저장 시스템
WO2013135111A1 (zh) 二次电源***和二次电源***中电压瞬变的抑制方法
TWI609551B (zh) 充電裝置及其控制方法
CN211531005U (zh) 尖峰电压抑制电路和开关电源
KR101067923B1 (ko) 소프트 스타트 및 과부하 보호 기능을 갖는 스위칭 모드 파워 서플라이
WO2022253105A1 (zh) 供电模组及电子设备
TWI792175B (zh) 電源供應裝置及其控制方法
TWI788184B (zh) 具有選擇性的功因校正之電源供應器與相關之控制方法
CN220775397U (zh) 反激电源电路、电路板及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891292

Country of ref document: EP

Kind code of ref document: A1