WO2021098599A1 - 风扇 - Google Patents

风扇 Download PDF

Info

Publication number
WO2021098599A1
WO2021098599A1 PCT/CN2020/128630 CN2020128630W WO2021098599A1 WO 2021098599 A1 WO2021098599 A1 WO 2021098599A1 CN 2020128630 W CN2020128630 W CN 2020128630W WO 2021098599 A1 WO2021098599 A1 WO 2021098599A1
Authority
WO
WIPO (PCT)
Prior art keywords
air outlet
air
fan
nozzle
flow
Prior art date
Application number
PCT/CN2020/128630
Other languages
English (en)
French (fr)
Inventor
应辉
Original Assignee
应辉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201921992588.8U external-priority patent/CN210949304U/zh
Priority claimed from CN201911130114.7A external-priority patent/CN110792640A/zh
Application filed by 应辉 filed Critical 应辉
Priority to EP20890355.9A priority Critical patent/EP4063667A4/en
Priority to US17/756,145 priority patent/US11920614B2/en
Publication of WO2021098599A1 publication Critical patent/WO2021098599A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/06Helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/4246Fan casings comprising more than one outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/703Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps specially for fans, e.g. fan guards

Definitions

  • the invention relates to the field of air conditioning equipment, in particular to fans.
  • Air purifiers are small household appliances used to purify indoor air, mainly to solve indoor air pollution problems caused by decoration or other reasons. Because the release of pollutants in indoor air is persistent and uncertain, the use of air purifiers to purify indoor air is an internationally recognized method to improve indoor air quality. There are many different technologies and media in air purifiers, which enable it to provide users with clean and safe air. Commonly used air purification technologies include: low-temperature asymmetric plasma air purification technology, adsorption technology, negative ion technology, negative oxygen ion technology, molecular complex technology, nano-TiO2 technology, HEPA high efficiency filtration technology, electrostatic dust collection technology, active oxygen technology, etc. ; Material technology mainly includes: photocatalyst, activated carbon, synthetic fiber, HEPA high-efficiency materials, etc. The cost of high-quality filter will account for 20% to 30% of the total cost of air purifiers.
  • FIG. 1 is a cross-sectional view of a vaneless fan in the prior art. As shown in FIG. 1, most of them have an annular nozzle 901, a housing 903, a base 904, a filter screen 905, a fan motor 906 and a mesh inner container 907. Wherein, the housing 903 with the air inlet mesh is set on the base 904, the housing 903 is provided with a filter screen 905, the filter screen 905 is provided with a mesh liner 907, and the mesh liner 907 is provided with the first fan motor 906.
  • An air inlet and the annular nozzle 901 are all arranged above the direction of gravity of the fan motor 906, and the air outlet of the fan motor 906 is connected to the nozzle 901.
  • the indoor air is filtered by the mesh of the housing 903 and the filter 905 in turn, and then enters the mesh liner 907.
  • the air inlet of the fan motor 906 sucks air in the anti-gravity direction and then continues to be delivered to the annular nozzle 901 in the anti-gravity direction (vertical upward). Then, after the air spreads around the ring nozzle 901, it is sprayed out.
  • the shell of this type of bladeless fan is a structure in which two shells are aligned horizontally, and each shell is provided with a filter screen.
  • the filter screen is sealed between the three-dimensional sealing tape arranged downstream and the mesh inner liner.
  • the cost of the three-dimensional sealing tape is extremely high, and the sealing effect is poor after long-term use.
  • the purpose of the present invention is to provide a fan, which overcomes the difficulties of the prior art, can change the movement direction of the air flow in the fan, reduce the overall height of the fan, reduce the overall volume, and extend the filter.
  • the service life of the net reduces the use cost.
  • An embodiment of the present invention provides a fan, including:
  • the body includes an air inlet, an air outlet, and a fan motor assembly for generating air flow.
  • the fan motor assembly includes an impeller, a motor, and an air outlet three-way seat;
  • a nozzle connected to the air outlet for receiving and emitting the air flow from the body, the nozzle having a half-frame-shaped nozzle body;
  • the air outlet three-way seat includes an air inlet provided on the air outlet side of the impeller, a first air outlet and a second air outlet respectively communicating with the nozzle, and the air flow passing through the air inlet is divided into each
  • the split wall is guided to the first air outlet and the second air outlet, and two ends of the nozzle body are respectively connected to the first air outlet and the second air outlet.
  • the air inlet is located on the first side of the air outlet tee seat
  • the split wall is located at the center of the second side of the air outlet tee seat
  • the first air outlet and The second air outlets are respectively located at two ends of the second side of the air outlet three-way seat.
  • the first air outlet and the second air outlet are respectively exposed on both sides of the body, and the air outlet direction of the first air outlet and the air outlet direction of the second air outlet are coaxial, And they are all perpendicular to the air inlet direction of the air inlet.
  • the flow dividing wall is set based on the central axis of the air inlet, and evenly divides the flow area of the air inlet.
  • a first guide slope and a second guide slope are formed on both sides of the dividing wall respectively, and the first guide slope guides part of the air flow passing through the air inlet to the first air outlet The second guide slope guides part of the air flow passing through the air inlet to the second air outlet.
  • the inner wall of the air outlet three-way seat is provided with baffles extending from the air inlet to the first air outlet or the second air outlet, respectively.
  • the inner wall of the air outlet tee seat is provided with baffles extending from the air inlet to the second side of the air outlet tee seat, respectively.
  • the inner wall of the air outlet three-way seat is provided with a sunken diversion step extending from the first guide slope to the first air outlet. The closer to the first air outlet, the lower The greater the sinking distance of sunken diversion steps;
  • the inner wall of the air outlet three-way seat is provided with a sunken diversion step extending from the second guide slope to the second air outlet. The closer to the second air outlet, the sunken diversion step The greater the sinking distance.
  • the protrusions at both ends of the flow dividing wall in the second direction respectively extend to the air inlet along the second direction to jointly form a U-shaped plate-shaped flow dividing wall.
  • the air flow sequentially passes through the air intake cover and the fan motor assembly along the first direction, and enters the nozzle along with the air flow, and the air flow is based at least on the first direction opposite to the first direction.
  • the nozzle is emitted after moving in two directions, the first direction is the direction of gravity, the second direction is the direction of anti-gravity, the air inlet is located at the upper part of the body along the direction of gravity, and the air outlet Located at the lower part of the body in the direction of gravity, the fan motor assembly is located in the area between the air inlet and the air outlet.
  • the fan of the present invention can change the movement direction of the air flow in the fan, reduce the overall volume, and reduce the use cost.
  • Fig. 1 is a cross-sectional view of a vaneless fan in the prior art.
  • Fig. 2 is a schematic diagram of an internal air duct of a fan according to an embodiment of the present invention.
  • Fig. 3 is a cross-sectional view taken along the line A-A in Fig. 2.
  • Fig. 4 is a schematic diagram of a fan connection function module according to an embodiment of the present invention.
  • Fig. 5 is a perspective view of a fan according to an embodiment of the present invention.
  • Fig. 6 is a cross-sectional view taken along the line B-B in Fig. 5.
  • Fig. 7 is a cross-sectional view taken along the line C-C in Fig. 5.
  • Fig. 8 is an exploded view of a fan according to an embodiment of the present invention.
  • Fig. 9 is a partial exploded view of an embodiment of a fan according to an embodiment of the present invention.
  • Fig. 10 is a perspective view of an air inlet in a fan according to an embodiment of the present invention.
  • Fig. 11 is a schematic diagram of an air inlet in a fan according to an embodiment of the present invention.
  • Fig. 12 is a cross-sectional view taken along the line D-D in Fig. 11.
  • Fig. 13 is a perspective view of a fan motor assembly in a fan according to an embodiment of the present invention.
  • Fig. 14 is a cross-sectional view taken along the line E-E in Fig. 13.
  • Fig. 15 is an exploded view of a fan motor assembly in a fan according to an embodiment of the present invention.
  • Fig. 16 is a perspective view of a three-way seat for the air outlet in a fan motor assembly of a fan according to an embodiment of the present invention. as well as
  • 17 to 20 are schematic diagrams of the installation process of the fan according to an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of the internal air duct of the fan of the present invention.
  • Fig. 3 is a cross-sectional view taken along the line A-A in Fig. 2.
  • the fan of the present invention includes a body 10 for generating an air flow and a nozzle 7 for spraying the air flow.
  • the body 10 at least includes a top cover 11, a filter 2, an air intake cover 3 for providing an air inlet, a fan motor assembly 5 for generating air flow, a housing 8 for providing an air outlet, and a nozzle 7.
  • the first side 8A of the housing 8 (see FIG.
  • the filter 17 is provided with an air inlet 81, and the filter 2 is arranged at a corresponding position inside the air inlet 81 in the housing 8.
  • the filter 2 is arranged upstream of the air intake cover 3, and the filter 2 surrounds the air intake cover 3.
  • the air intake cover 3 is arranged at the air inlet of the fan motor assembly 5.
  • the fan motor assembly 5 causes the air flow to pass through the body 10 in a first direction W, which is the direction of gravity.
  • the nozzle 7 is connected to the air outlet, and is used to receive the air flow from the body 10 and emit the air flow.
  • the air flow enters the nozzle 7 with the air flow.
  • the air flow is emitted out of the nozzle after moving at least in a second direction X opposite to the first direction W. 7.
  • the second direction X is the anti-gravity direction.
  • the air inlet is provided in the air intake cover 3, and the air intake cover 3 is located at the upper part of the body 10 in the direction of gravity.
  • the air outlet is located at the lower part of the second side 8B (see FIG. 17) of the housing 8 of the body 10 in the direction of gravity, and the fan motor assembly 5 is located in the area between the air inlet and the air outlet.
  • the nozzle 7 has at least one output air channel, the extension direction of the output air channel is parallel to the first direction W, and the air flow passes through the output air channel in the second direction X.
  • the fan of the present invention adopts a completely different air duct design from the prior art, inverts the suction direction of the fan motor assembly 5, takes high air suction from the upper part of the body 10, and the air flows from top to bottom after passing through the fan motor assembly 5.
  • the exhaust gas enters the nozzle 7 from the lower part of the body 10, and the air flow flows from the nozzle 7 from bottom to top, and can be ejected from the air outlets 71 of different heights of the nozzle 7.
  • the present invention overlaps the position layout of the fan motor assembly 5 and the position layout of the nozzle 7 in the first direction, further reduces the overall height, and makes full use of the idle space in the center of the nozzle 7.
  • the present invention can realize a larger nozzle 7 and enhance the air blowing capacity.
  • the nozzle 7 may be a tubular member arranged on one side of the body 10 and extending in a vertical direction, and the lower section of the tubular member is rotatably connected to the opening of the body 10.
  • the nozzle 7 and the fan motor assembly 5 in the present invention can be arranged in parallel along the first direction W (or the second direction X), and the nozzle 7 and the fan motor assembly 5 are at least partially overlapped based on projections of the same vertical plane. This allows the air outlet 71 of the nozzle 7 to be set at the same level as the fan motor assembly 5 or even lower than the level of the fan motor assembly 5.
  • the present invention divides the long-distance air flow stroke of the prior art through the fan motor assembly and the nozzle in a single direction into at least two short-distance air flow strokes in opposite directions, and two short-distance air flow strokes.
  • the air flow strokes can be parallel to each other, which breaks through the industry technical barriers that fan motor components and nozzles must be arranged in order in the height direction, so that the overall height of the fan can be greatly reduced, the center of gravity of the product is also lowered, and the standing posture of the product is improved.
  • the stability In addition, the air inlet located at the upper position will not suck in dust on the ground when inhaling air, which reduces the use load of the filter screen, does not need to replace the filter screen frequently, and greatly reduces the use cost of the leafless fan filter screen.
  • the air outlet of the fan motor assembly 5 is connected to two guide air passages.
  • the guide air passages are respectively connected to the openings on both sides of the body 10.
  • the nozzle 7 has a half-frame nozzle body 70, and the nozzle body 70 spans the body 10 toward the first The first side surface in the direction W, and the two ends of the nozzle body 70 are respectively connected to the opening.
  • the body 10 has at least one guiding air passage for changing the flow direction of the air flow.
  • the guiding air passage extends in a third direction Y perpendicular to the first direction W, and communicates with the air outlet of the fan motor assembly 5 and the nozzle 7 respectively.
  • the fan motor assembly 5, the guide air passage and the nozzle 7 jointly form at least one U-shaped combined air passage, but it is not limited thereto.
  • the shape of the nozzle body 70 is an inverted U shape, and the nozzle body 70 can rotate at a certain angle relative to the body 10 based on the axis of the opening of the body 10 as a rotation axis, so as to blow air in different directions. After the rotation, although the air flow flowing along the nozzle body 70 flows obliquely (based on the vertical plane), as the air flow enters the depth of the nozzle body 70, the air flow will still generate in the second direction X (anti-gravity Direction).
  • the nozzle body 70 is provided with at least one air outlet 71 opening along the fourth direction Z, and the fourth direction Z is perpendicular to the plane formed by the first direction W and the third direction Y.
  • the air outlet 71 of the nozzle body 70 is combined to form an inverted U-shaped air duct, and the air inlet of the body 10 is located within the range of the inverted U-shaped air duct.
  • the nozzle body 70 has a first state of straddling the first side surface of the body 10 facing the first direction, and after rotating based on the opening, the nozzle body 70 avoids the first projection area of the filter 2 based on the second direction.
  • the filter 2 has a lifting stroke that avoids the nozzle body 70 in the second direction to enter and exit the body 10 based on the second state of the nozzle body 70.
  • the projection of the lift stroke of the filter 2 based on the second direction and the projection of the second state of the nozzle body 70 based on the second direction do not overlap, so that the filter 2 can be detached in the second direction X and the body 10 can be removed.
  • the accommodating space 75 has two replacement channels for the filter 2 to enter and exit the accommodating space 75 (the U-shaped nozzle body 70 naturally has two large openings that communicate with the internal accommodating space 75).
  • the extension direction is perpendicular to the second direction, and the filter 2 has a first stroke from the body 10 in and out of the accommodating space 75 along the second direction, and a second stroke from the replacement channel in and out of the accommodating space 75.
  • the height of the accommodating space 75 and the height J of the replacement channel are both greater than the height K of the filter 2, and the width of the accommodating space 75 and the width of the replacement channel are both greater than the width of the filter 2.
  • Fig. 4 is a schematic diagram of the fan connection function module of the present invention.
  • the body 10 in the present invention, not only the body 10 can be arranged in the central area of the nozzle body 70 as a whole, but also the different structural layouts of this area can be fully developed, the expansion function of the fan can be strengthened, and a module with expanded functions can be provided.
  • the body 10 and the body 10 are arranged in the central area of the nozzle body 70 together.
  • the fan of the present invention forms an accommodating space 75 between the first side surface facing the first direction W and the first side surface of the nozzle body 70, and the accommodating space 75 is provided with a first connection terminal 112.
  • the fan of the present invention further includes at least one function extension component 9 arranged in the accommodating space 75, and the second contact terminal 91 of the function extension component 9 is connected to the first connection terminal 112.
  • the first side surface of the body 10 is provided with a first connection terminal 112, and the first side surface of the body 10 supports the lower surface of the function extension member 9.
  • the second contact terminal 91 is provided on the lower surface of the function extension component 9, and the second contact terminal 91 and the first connection terminal 112 are connected and connected along the second direction X.
  • the second contact terminal 91 is connected to the power supply circuit board of the fan base through a wire, but it is not limited to this.
  • the function extension 9 is one of the following: an electronic humidifier; an electronic aroma diffuser, an LED lamp, an electronic mosquito repellent, an electronic display, a charging stand for charging mobile terminals, but not limited to this .
  • the function extension 9 may be an injection component, the exhaust port of the injection component is exposed in the accommodating space 75, and the air stream sprayed by the nozzle 7 passes through the exhaust port of the injection component, but it is not limited to this.
  • the air outlets distributed along the nozzles are all provided with a Coanda surface, and a Coanda surface is formed from the first side of the nozzle body 70 through the accommodating space 75 in the nozzle body 70 to reach the nozzle body.
  • the air duct on the second side of 70 which drives part of the air on the side of the nozzle body 70 to move to the side where the air is discharged from the nozzle body 70.
  • the exhaust port of the spray component is arranged in the range of the air duct formed by the air outlet and passes through the nozzle. This part of the air in the main body 70 flows through the exhaust port of the injection component, and the functional gas discharged from the injection component is mixed into the air stream ejected by the fan.
  • the function extension 9 is an electronic humidifier, and the air stream sprayed from the nozzle 7 passes through the exhaust port of the electronic humidifier.
  • the inner circumference of the nozzle 7 is provided with an air outlet opening to the same side, and the air outlet is provided with a Coanda surface, which drives part of the air on the side of the nozzle body 70 to move to the side where the air is discharged from the nozzle body 70 and pass through this part of the nozzle body 70
  • the air flows through the exhaust port of the electronic humidifier, which makes the air flow ejected by the fan more humid as a whole, which realizes the functional combination of the electronic humidifier and the fan, and enhances the humidification effect of the fan.
  • the function extension 9 may also be an electronic aroma diffuser, and the air stream sprayed from the nozzle 7 passes through the exhaust port of the electronic aroma diffuser.
  • the air outlet with Coanda surface can also be used to combine the functions of the electronic aroma diffuser and the fan to enhance the effect of the fan in improving the smell of the room, which will not be repeated here.
  • the shape of the nozzle body 70 of the present invention can not only provide a channel for replacing the filter screen without moving the nozzle body 70; but also help to use the continuous Coanda surface composed of circularly arranged air outlets to remove the spray components. The more functional gas is mixed into the air flow ejected by the fan to realize the combination of functions.
  • Fig. 5 is a perspective view of the fan of the present invention.
  • Fig. 6 is a cross-sectional view taken along the line B-B in Fig. 5.
  • Fig. 7 is a cross-sectional view taken along the line C-C in Fig. 5.
  • Fig. 8 is an exploded view of the fan of the present invention.
  • the body of the fan of the present invention includes a base 6 arranged from bottom to top along the second direction X, a fan motor assembly 5 for generating air flow, The air intake bracket 14, the air intake cover 3 that provides the air inlet, the filter 2 and the top cover 11.
  • the base 6 includes a power box upper cover 61, a power board 62, a rotating synchronous motor 63, a rotating bracket 64, a base 65, and a base cover 66.
  • the upper part supported by the power box upper cover 61 is rotated by the rotating synchronous motor 63
  • the components, the fan motor assembly 5, the air intake cover 3, the nozzle 7, etc. can rotate horizontally in place.
  • the present invention makes full use of the free central area of the nozzle 7 in the prior art, and the body 10 is arranged in the central area of the nozzle 7 as a whole, and the air inlet of the body 10 is located in the range of the inverted U-shaped air duct, so that the product The volume is greatly reduced, which reduces the cost of product transportation and product storage.
  • Two mutually aligning inner shells 4 are engaged with both sides of the fan motor assembly 5 and the base 6, and the inner shells 4 are screwed together to limit the fan motor assembly 5 above the base 6, and the two ends of each inner shell 4
  • the side wall is provided with a first buckle 43, a screw hole 42 and a semi-circular limiting groove 41 exposing the opening.
  • an annular groove is formed.
  • the inner sides of the two ends of the nozzle body 70 are respectively provided with a first air inlet 72 and a second air inlet 73, and the first air inlet 72 and the second air inlet 73 respectively communicate with an opening.
  • Two mutually aligned shells 8 are clamped on the outer periphery of the inner shell 4, the shell 8 covers the air intake cover 3 and the fan motor assembly 5, and the area of each shell 8 corresponding to the air intake cover 3 is provided with a mesh ⁇ 81 ⁇ The air inlet 81.
  • the side walls at both ends of the housing 8 are provided with a second buckle 84, a semicircular joint portion 82 and a screw hole 83.
  • the second buckles 84 of the outer shell 8 are respectively engaged with the first buckles 43 of the inner shell 4.
  • the lower surfaces of the two side support frames 13 are connected to the air intake bracket 14, and the upper surface of the side support frame 13 and the screw hole 83 at the upper end of the housing 8 after the docking are connected together by a screw hole 122 of the annular connection frame 12.
  • a positioning slot 121 is provided on the inner side of the annular connecting frame 12.
  • the height of the casing 8 is greater than the height of the fan motor assembly 5, and a space for accommodating the filter 2 and the air intake cover 3 is provided between the upper two side support frames 13 of the casing 8 after being enclosed.
  • the lower surface of the air intake bracket 14 is provided with a connecting post 141, the outer periphery of the fan motor assembly 5 is provided with a connecting groove 523, the connecting post 141 is inserted into the connecting groove 523, and the air intake cover 3 is connected to the upper surface of the air intake bracket 14, so that The air intake cover 3 can be connected to the air inlet of the fan motor assembly 5 through the air intake bracket 14.
  • the filter 2 surrounds the air intake cover 3, and the filter 2 is arranged upstream of the air inlet of the air intake cover 3.
  • the filter 2 is a tubular air filter 23 (see FIG. 20).
  • the first side of the tubular air filter 23 is provided with a first annular support frame 22 (see FIG. 20) for fixing the first annular seal 21 (see FIG. 20).
  • the lower surface of the top cover 11 is provided with a slot, and the slot 56 of the top cover 11 is detachably engaged with the first annular support frame 22.
  • the lower surface of the top cover 11 is provided with a positioning buckle 111 that is detachably engaged with the positioning groove 121 of the ring-shaped connecting frame 12 by rotating.
  • the second side of the tubular air filter 23 is provided with a second annular support frame 24 (see FIG. 20) for fixing the second annular seal 25 (see FIG. 20).
  • the second annular support frame 24 is connected to the air intake bracket 14.
  • the first side of the tubular air filter 23 is sealed with the top cover 11 by a first annular seal 21, and the second side of the tubular air filter 53 is sealed with the intake bracket 14 by a second annular seal 25.
  • the material of the first ring seal 21 and the second ring seal 25 is preferably a slow rebound sponge.
  • the medium of the tubular air filter 23 can be an existing air filter material or an air filter material invented in the future, and is not limited thereto.
  • Fig. 9 is a partial exploded view of an embodiment of the fan of the present invention.
  • Fig. 10 is a perspective view of an air inlet in the fan of the present invention.
  • Fig. 11 is a schematic diagram of an air inlet in the fan of the present invention.
  • Fig. 12 is a cross-sectional view taken along the line D-D in Fig. 11.
  • the body 10 of the fan of the present invention is provided with an air intake cover 3 having an air inlet.
  • the air intake cover 3 is arranged downstream of the filter 2, and the air intake cover 3 is arranged in the annular area defined by the filter 2, and the air flow filtered by the filter 2 enters the fan motor assembly 5 through the air intake cover 3.
  • the air intake cover 3 is arranged upstream of the air inlet of the fan motor assembly 5, and the air intake cover 3 can turbulence and silence the air flow entering the fan motor assembly 5.
  • the air intake cover 3 is provided with a plurality of circumferentially distributed and spaced wave spoilers 32 along the outer circumference of the first direction W.
  • the wave spoilers 32 extend from the center of the outer circumference of the air intake cover 3, and adjacent wave spoilers
  • the gap between the fins 32 forms a vortex-arranged intake passage 33.
  • the wave-shaped spoiler 32 can divide the inhaled air flow into multiple air streams for the first time, thereby achieving the effect of noise reduction and noise reduction.
  • the inside of the intake cover 3 is hollow to form a scroll passage 34
  • the first end of the scroll passage 34 is respectively connected to the intake passage 33 along a circumferential direction perpendicular to the first direction W
  • the second end of the scroll passage 34 The air inlet of the fan motor assembly 5 is connected in the second direction X to further reduce noise.
  • two ends of the intake passage 33 are respectively provided with an intake port 31 exposed on the outer periphery of the intake cover 3 and a slit communicating with the scroll passage 34, so as to further reduce noise.
  • the closer to the scroll passage 34 the smaller the flow area of the intake passage 33; the closer to the intake port 31, the larger the flow area of the intake passage 33. In order to further reduce noise.
  • the fan motor assembly 5 is provided with a rotating impeller 53.
  • the convex direction of each wave-shaped spoiler 32 is consistent with the direction of rotation of the impeller 53, and each intake passage 33 enters the vortex passage 34. The angles are different to further reduce noise.
  • each wave-shaped spoiler 32 facing the air inlet of the fan motor assembly 5 is provided with a concave arc-shaped notch 35, so as to lengthen the distance between the sucked air and the impeller. The effect of noise reduction and noise reduction, thereby further reducing noise.
  • Fig. 13 is a perspective view of the fan motor assembly in the fan of the present invention.
  • Fig. 14 is a cross-sectional view taken along the line E-E in Fig. 13.
  • Fig. 15 is an exploded view of the fan motor assembly in the fan of the present invention.
  • Fig. 16 is a perspective view of the three-way seat of the air outlet in the fan motor assembly of the fan of the present invention.
  • the fan motor assembly 5 in the fan of the present invention includes: an air guide mask 51, an air guide 52, an impeller 53, a motor bracket 54, a motor 56, and a motor cover combined in sequence along the first direction W 58 and air outlet three-way seat 50.
  • the air guide mask 51 seals and communicates with the scroll passage 34 of the air intake cover 3 and the air guide 52.
  • a plurality of first positioning seats 501 and a plurality of first screw lugs 508 are provided around the outer circumference of the air outlet three-way seat 50.
  • a motor 56 is arranged between the upper surface of the motor bracket 54 and the air outlet three-way seat 50, a plurality of second positioning seats 541 are arranged around the outer circumference of the motor bracket 54, and the motor bracket 54 is provided with a through hole for the rotation shaft of the motor 56 to pass through.
  • a rotating impeller 53 is provided between the lower surface of the motor bracket 54 and the wind deflector 52. The impeller 53 and the motor 56 are connected by a rotating shaft.
  • a plurality of third positioning seats 521 and a plurality of second positions are provided around the outer circumference of the wind deflector 52.
  • the air outlet three-way seat 50 is screwed to the air deflector 52.
  • each second positioning seat 541 of the motor bracket 54 is connected to the first positioning seat 501 and the third positioning seat 521 through a flexible connection member, it is clamped and limited at Between the first positioning seat 501 and the third positioning seat 521, the motor bracket 54 in this embodiment is not fixed, but the motor bracket 54 is limited to the air deflector 52 and the air deflector based on the flexible connection of the same horizontal plane. Between 50 air outlet three-way seats. This is equivalent to the motor bracket 54 being suspended between the wind deflector 52 and the air outlet three-way seat 50.
  • the flexible connector and each positioning seat together constitute a shock absorber to ensure that when the fan motor assembly 5 is working, the motor bracket 54 will not come into contact with the wind deflector 52 and the air outlet three-way seat 50 when the fan motor assembly 5 is working. It is all transmitted by the shock absorber, which greatly reduces the noise and keeps the fan stable.
  • the top surface of the positioning damping pad 55 may be composed of a plane, and its purpose is to convert the upward vibration into a plane motion when the power system vibrates, so as to balance the vibration.
  • the lower part of the positioning damping pad 55 may be composed of a cone, and the contact surface with it is all convex contact, the purpose of which is to reduce the contact area to achieve a damping effect.
  • the middle of the positioning damping pad 55 is composed of a hollow blind hole.
  • the purpose is to use the middle blind hole to generate elastic deformation by the shock absorber when the power system vibrates, so that it can achieve a shock absorption effect, and the hole is assembled with the upper support
  • the purpose of forming a closed hollow hole is to lock the air in the blind hole to the elastic deformation due to the action of air pressure during vibration.
  • the first positioning seat 501, the second positioning seat 541, and the third positioning seat 521 are respectively provided with coaxial through holes
  • the flexible connecting member is a nail-shaped positioning damping pad 55, positioning and damping
  • the pad 55 passes through and holds the through holes of the first positioning seat 501, the second positioning seat 541 and the third positioning seat 521.
  • the positioning damping pad 55 includes a rod part and an externally expanded frustum and an externally expanded shoulder respectively located at both ends of the rod. The maximum diameter of the externally expanded frustum and the maximum diameter of the externally expanded shoulder are both greater than the diameter of the rod.
  • the positioning damping pad 55 is provided with a hollow blind hole in the axial direction along the first direction W, and the hollow blind hole extends at least from the outer flared cone to the rod. Or the hollow blind hole extends at least from the outer expanding frustum to the outer expanding frustum.
  • a ring-shaped motor silencing cotton 57 is provided around the outer periphery of the motor 56.
  • the air outlet three-way seat 50 includes an air inlet 507 arranged on the air outlet side of the impeller, a first air outlet 504 and a second air outlet 505 respectively communicating with the nozzle 7, and the air flow passing through the air inlet 507 After the flow is divided, the flow dividing wall 502 is respectively guided to the first air outlet 504 and the second air outlet 505, and both ends of the nozzle body 70 are connected to the first air outlet 504 and the second air outlet 505, respectively.
  • the air inlet 507 is located on the first side of the air outlet tee base 50, the split wall 502 is located at the center of the second side of the air outlet tee base 50, and the first air outlet 504 and the second air outlet 505 are respectively located on the air outlet tee Both ends of the second side of the seat 50.
  • the first air outlet 504 and the second air outlet 505 are respectively exposed on both sides of the body 10, the air outlet direction of the first air outlet 504 and the air outlet direction of the second air outlet 505 are coaxial, and both are perpendicular to the air inlet 507 The direction of the wind.
  • a symmetrical first guide slope and a second guide slope are formed on both sides of the divider wall 502.
  • the first guide slope guides part of the air flow passing through the air inlet 507 to the first air outlet 504, and the second guide slope guides part of the air flow passing through the inlet
  • the air flow of the air outlet 507 is guided to the second air outlet 505.
  • the two ends of the diversion wall 502 in the second direction X respectively extend along the second direction X to the air inlet 507 to form a U-shaped plate-shaped diversion wall so that it will pass through the air inlet 507 under the premise of reducing noise.
  • the air stream diverges.
  • the flow dividing wall 502 is set based on the central axis of the air inlet 507, and evenly divides the flow area of the air inlet 507.
  • the inner wall of the air outlet tee seat 50 is provided with guide vanes 506 extending from the air inlet 507 to the second side of the air outlet tee seat 50, but not limited to this.
  • the inner wall of the air outlet three-way seat 50 is provided with a sunken diversion step extending from the first guide slope to the first air outlet 504. The closer to the first air outlet 504, the greater the sinking distance of the sunken diversion step ;
  • the inner wall of the air outlet three-way seat 50 is provided with a sunken diversion step extending from the second guide slope to the second air outlet 505.
  • the air outlet three-way seat 50 in the present invention integrates the flow diversion and flow division, which greatly reduces the height of the fan motor assembly 5, so that the overall height and volume of the fan machine are further reduced.
  • the inner wall of the air outlet three-way seat 50 is provided with baffles extending from the air inlet 507 to the first air outlet 504 or the second air outlet 505, but not limited to this.
  • the air inlet 507 is an annular nozzle, and the distance from the nozzle of the annular nozzle to the first air outlet 504 or the second air outlet 505 in the first direction W is d, and the diameter of the first air outlet 504 and the second air outlet 505 Is h, and the ratio of d to h ranges from 2.0 to 3.5.
  • the air flow generated from the impeller 53 enters the air inlet 507 of the outlet three-way seat 50, the air flow needs to rotate the flow direction at least 90° within a short distance. If the ratio of d to h is too small, reduce the air flow If the ratio of d to h is too large, the vortex will be negative, and the turbulence will produce a lot of noise.
  • the ratio of d to h ranges from 2.1 to 3.4; 2.2 to 3.3; 2.3 to 3.2; 2.4 to 3.1; 2.5 to 3.0; 2.6 to 2.9; 2.7 to 2.8.
  • the ratio of d to h is 2.7.
  • FIGS. 17 to 20 are schematic diagrams of the installation process of the fan of the present invention.
  • the installation process of the fan of the present invention is as follows: First, the air intake cover 3, the air intake bracket 14, the fan motor assembly 5, and the base 6 are connected through the first inner shell 4.
  • the nozzles 7 with annular shoulders 74 at both ends are inserted into the semicircular limit groove 41 exposed by the inner shell 4 in the horizontal direction, so that the first air inlet 72 and the second air inlet 73 of the annular shoulder 74 are respectively connected to the fan
  • the first air outlet 504 and the second air outlet 505 of the air outlet three-way seat 50 of the motor assembly 5 are sealed by a sealing ring 59.
  • the second inner shell 4 and the first inner shell 4 are buckled and screwed through the screw hole 42, and the annular shoulder 74 is snapped into the annular groove formed by the combination of the two semicircular limit grooves, so that The nozzle 7 can be rotated based on the annular groove.
  • two outer shells 8 are buckled on the outer periphery of the inner shell 4, the side support frame 13 is installed, and the upper end of the side support frame 13 and the upper end of the outer shell 8 are screwed together through the annular connecting frame 12.
  • the filter 2 is put into the space between the inner wall of the housing 8 and the outer periphery of the air inlet hood 3, and the filter 2 is sealed and clamped between the top cover 11 and the top cover 11 and the outer periphery of the air inlet hood 3. Between the intake bracket 14.
  • the installation method of the present invention changes the prior art method of sleeve-fitting the nozzle 7 on the body in the vertical direction, which is more conducive to the sealing of the air duct and reduces the installation difficulty.
  • the object of the present invention is to provide a fan, which can change the direction of movement of the air flow in the fan, reduce the overall volume, and reduce the use cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种无叶风扇,包括:体部(10),体部(10)包括空气入口、空气出口,和用于产生空气流的风扇电机组件(5),风扇电机组件(5)包括:叶轮(53)、电机(56)以及出风三通座(50);以及喷嘴(7),其连接空气出口,用于接收来自体部(10)的空气流并发射空气流,喷嘴(7)具有一半框型的喷嘴本体(70);出风三通座(50)包括设于叶轮(53)的出风侧的进风口、分别联通喷嘴(7)的第一出风口(504)和第二出风口(505),以及将经过进风口的空气流分流后各自引导到第一出风口(504)和第二出风口(505)的分流墙体,喷嘴本体(70)的两端分别连通第一出风口(504)和第二出风口(505)。该无叶风扇能够改变风扇内空气流的运动方向,降低风扇的整体高度,缩小整体体积,延长滤网使用寿命,降低使用成本。

Description

风扇 技术领域
本发明涉及空气调节设备领域,具体地说,涉及风扇。
背景技术
随着生活和科技水平的不断提高,人民对生活品质的要求日益提高,室内空气质量成为人们关心的重要问题。尤其是近几年的雾霾、PM2.5问题的出现,人们对空气净化器的需求量也越来越大。
空气净化器是用来净化室内空气的小型家电产品,主要解决由于装修或者其他原因导致的室内空气污染问题。由于室内空气中污染物的释放有持久性和不确定性的特点,因此使用空气净化器净化室内空气是国际公认的改善室内空气质量的方法。空气净化器中有多种不同的技术和介质,使它能够向用户提供清洁和安全的空气。常用的空气净化技术有:低温非对称等离子体空气净化技术、吸附技术、负离子技术、负氧离子技术、分子络合技术、纳米TiO2技术、HEPA高效过滤技术、静电集尘技术、活性氧技术等;材料技术主要有:光触媒、活性炭、合成纤维、HEPA高效材料等,高质量的滤网成本会占到空气净化器总成本的20%到30%。
目前,已经出现了较多的带有空气滤网的无叶风扇。图1为现有技术的无叶风扇的剖面图。如图1所示,其中大部分的具有环形喷嘴901、外壳903、底座904、滤网905、风扇电机906以及网孔内胆907。其中,具有进风网孔的外壳903设置在底座904上,外壳903内设有滤网905,滤网905内设有网孔内胆907,网孔内胆907中设有风扇电机906的第一空气入口,环形喷嘴901都设置于风扇电机906的重力方向的上方,风扇电机906的出风口连通喷嘴901。室内空气依次经过外壳903的网孔、滤网905的过滤后进入网孔内胆907,风扇电机906的进风口沿反重力方向吸入空气后继续沿反重力方向(垂直向上)输送到环形喷嘴901的一端,然后空气散布到环形喷嘴901的各处后,被喷射出去。
在该结构中至少存在以下技术问题有待改进:
(1)由于无叶风扇总体积最大的环形喷嘴和风扇电机都必须排列于重力方向的不同高度位置,造成了无叶风扇的整体高度难以降低,大大限制了无叶风扇的使 用场景。
(2)环形喷嘴的中间是中空的,该区域没有被充分利用,造成了风扇整体体积的浪费,以及对于产品运输和产品仓储的成本增加。
(3)由于风扇电机的进风口位置较低,会更容易在吸气时将地面的灰尘吸入,加大了滤网的使用负荷,需要更频繁地更换滤网,明显增大了无叶风扇的使用成本。
(4)这类无叶风扇的外壳是两个壳体水平对合的结构,每个壳体内各设有一片滤网。滤网通过设置在下游的立体密封胶条与网孔内胆之间进行密封,立体密封胶条的成本极高,而且长时间使用后密封效果差。
(5)在更换滤网时,就需要分别拆卸出两个壳体各自更换滤网后再安装回去,过程繁琐,人性化体验较差。
(6)产品难以增加其他功能模块,扩展性差。
发明内容
针对现有技术中的问题,本发明的目的在于提供风扇,克服了现有技术的困难,能够改变了风扇内空气流的运动方向,降低了风扇的整体高度,缩小了整体体积,延长了滤网使用寿命,降低了使用成本。
本发明的实施例提供一种风扇,包括:
体部,包括空气入口、空气出口,和用于产生空气流的风扇电机组件,所述风扇电机组件包括:叶轮、电机以及出风三通座;以及
喷嘴,连接所述空气出口,用于接收来自体部的空气流并发射所述空气流,所述喷嘴具有一半框型的喷嘴本体;
所述出风三通座包括设于所述叶轮的出风侧的进风口、分别联通所述喷嘴的第一出风口和第二出风口,以及将经过所述进风口的空气流分流后各自引导到所述第一出风口和第二出风口的分流墙体,所述喷嘴本体的两端分别连通所述第一出风口和第二出风口。
在一些实施例中,所述进风口位于所述出风三通座的第一侧,所述分流墙***于所述出风三通座的第二侧的中央,所述第一出风口和第二出风口分别位于所述出风三通座的第二侧的两端。
在一些实施例中,所述第一出风口和第二出风口分别露出于所述体部的两侧,所述第一出风口的出风方向和第二出风口的出风方向同轴,且均垂直于所述进风口 的进风方向。
在一些实施例中,所述分流墙体基于所述进风口的中轴线设置,均分所述进风口流通面积。
在一些实施例中,所述分流墙体的两侧分别形成对称的第一引导斜坡和第二引导斜坡,所述第一引导斜坡将部分经过所述进风口的空气流引导至第一出风口,所述第二引导斜坡将部分经过所述进风口的空气流引导至第二出风口。
在一些实施例中,所述出风三通座的内壁设有自所述进风口分别向第一出风口或者第二出风口延展的导流片。
在一些实施例中,所述出风三通座的内壁设有自所述进风口分别向所述出风三通座的第二侧延展的导流片。
在一些实施例中,所述出风三通座的内壁设有自所述第一引导斜坡向第一出风口延展的下沉式导流台阶,越靠近所述第一出风口,所述下沉式导流台阶的下沉距离越大;
所述出风三通座的内壁设有自所述第二引导斜坡向第二出风口延展的下沉式导流台阶,越靠近所述第二出风口,所述下沉式导流台阶的下沉距离越大。
在一些实施例中,所述分流墙体的第二方向的两端凸起分别沿第二方向延展至所述进风口,共同形成U型板状分流壁。
在一些实施例中,所述空气流沿第一方向依次通过进气罩和风扇电机组件,随所述空气流进入所述喷嘴,所述空气流至少基于与所述第一方向反向的第二方向运动后被发射出所述喷嘴,所述第一方向为重力方向,所述第二方向为反重力方向,所述空气入口位于所述体部的沿重力方向的上部,所述空气出口位于所述体部的沿重力方向的下部,所述风扇电机组件位于所述空气入口与所述空气出口位之间的区域。
本发明的风扇,能够改变了风扇内空气流的运动方向,缩小了整体体积,降低了使用成本。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显。
图1为现有技术的无叶风扇的剖面图。
图2为本发明一实施例的风扇的内部风道示意图。
图3是图2中A-A向的剖视图。
图4为本发明一实施例的风扇连接功能模块的示意图。
图5为本发明一实施例的风扇的立体图。
图6是图5中B-B向的剖视图。
图7是图5中C-C向的剖视图。
图8为本发明一实施例的风扇的分解图。
图9为本发明一实施例的风扇的一种实施例的局部分解图。
图10为本发明一实施例的风扇中一种进气口的立体图。
图11为本发明一实施例的风扇中一种进气口的示意图。
图12是图11中D-D向的剖视图。
图13为本发明一实施例的风扇中的风扇电机组件的立体图。
图14是图13中E-E向的剖视图。
图15为本发明一实施例的风扇中的风扇电机组件的分解图。
图16为本发明一实施例的风扇的风扇电机组件中出风三通座的立体图。以及
图17至20为本发明一实施例的风扇的安装过程示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式。相反,提供这些实施方式使得本发明将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。
图2为本发明的风扇的内部风道示意图。图3是图2中A-A向的剖视图。如图2和3所示,本发明的风扇,包括用于产生空气流的体部10和喷射空气流的喷嘴7。其中,体部10至少包括了顶盖11、过滤器2、提供空气入口的进气罩3、用于产生空气流的风扇电机组件5、提供空气出口的外壳8以及喷嘴7。外壳8的第一侧8A(参见图17)设有进气孔81,过滤器2设置于外壳8中进气孔81内侧的对应位置。过滤器2设置于进气罩3的上游,过滤器2环绕进气罩3。进气罩3设置于风扇电机组件5的进风口。风扇电机组件5使得空气流沿第一方向W通过体 部10,第一方向W为重力方向。喷嘴7连接空气出口,用于接收来自体部10的空气流并发射空气流,随空气流进入喷嘴7,空气流至少基于与第一方向W反向的第二方向X运动后被发射出喷嘴7,第二方向X为反重力方向。空气入口设置于进气罩3,进气罩3位于体部10的沿重力方向的上部。空气出口位于体部10的外壳8的第二侧8B(参见图17)的沿重力方向的下部,风扇电机组件5位于空气入口与空气出口位之间的区域。喷嘴7具有至少一输出气道,输出气道的延展方向与第一方向W平行,空气流沿第二方向X通过输出气道。本发明的风扇通过与现有技术完全不同的风道设计,将风扇电机组件5的吸气方向倒置,从体部10的上部进行高吸气,空气流自上而下经过风扇电机组件5后,从体部10的下部排气进入到喷嘴7,空气流再由喷嘴7自下而上流动后,可以从喷嘴7的不同高度的出风口71喷射出去。本发明将风扇电机组件5的位置布局与喷嘴7的位置布局在第一方向上重叠,进一步减小了整体高度,并充分利用喷嘴7中央的闲置空间。并且,在相等高度的前提下,本发明能够实现更大的喷嘴7,加强送风能力。
在一个变形例中,喷嘴7可以是设置于体部10一侧的沿垂直方向延展的管状件,管状件的下段可转动地连接体部10的开口。
本发明中的喷嘴7和风扇电机组件5可以沿第一方向W(或第二方向X)平行排列,并且,喷嘴7和风扇电机组件5各自基于同一铅垂面的投影至少部分重叠。这使得喷嘴7的出风口71可以设置在与风扇电机组件5同水平的高度,甚至是低于风扇电机组件5的水平的高度。本发明通过对风道的改进,将现有技术中空气流沿单一方向先后经过风扇电机组件和喷嘴的长距离空气流行程分为了至少两段方向相反的短距离空气流行程,两段短距离空气流行程可以相互平行,从而突破了在高度方向上风扇电机组件和喷嘴必须依次排列的行业技术壁垒,使得风扇的整体高度能够大大地减小,也降低了产品的重心,提高了产品站立姿态的稳定性。并且位于上方位置的进风口在吸气时不会将地面的灰尘吸入,减小了滤网的使用负荷,无需频繁地更换滤网,大大减小了无叶风扇滤网的使用成本。
风扇电机组件5的出风口连接两引导气道,引导气道分别连通到体部10两侧的开口,喷嘴7具有一半框型的喷嘴本体70,喷嘴本体70跨接于体部10朝向第一方向W的第一侧面,且喷嘴本体70的两端分别连通开口。体部10具有至少一改变空气流的流向的引导气道,引导气道沿垂直于第一方向W的第三方向Y延展, 分别联通风扇电机组件5的出风口和喷嘴7。本实施例中,风扇电机组件5、引导气道与喷嘴7共同形成至少一U型组合气道,但不以此为限。
喷嘴本体70的形状为倒U型,且喷嘴本体70可以基于体部10的开口的轴线为旋转轴,相对于体部10进行一定角度的旋转,以便向不同方向吹风。在旋转后,虽然沿喷嘴本体70流动的空气流是斜向流动(基于铅垂面),但是随着空气流向喷嘴本体70的深处进入,空气流依然会产生向第二方向X(反重力方向)的位移。喷嘴本体70设有至少一沿第四方向Z开口的出风孔71,第四方向Z垂直于第一方向W与第三方向Y共同构成的平面。喷嘴本体70的出风孔71组合形成倒U型风道,体部10的空气入口位于倒U型风道的范围内。
在一个优选例中,喷嘴本体70具有跨接于体部10朝向第一方向的第一侧面的第一状态,以及基于开口转动后,喷嘴本体70回避过滤器2基于第二方向投影区域的第二状态,过滤器2具有基于喷嘴本体70的第二状态沿第二方向避开喷嘴本体70以进出体部10的升降行程。过滤器2的升降行程基于第二方向的投影与喷嘴本体70的第二状态基于第二方向的投影不重叠,以便能够将过滤器2沿第二方向X拆卸后移除体部10。
在一个优选例中,容置空间75具有两个供过滤器2进出容置空间75的更换通道(U型的喷嘴本体70天然具有两个联通内部容置空间75的超大开口),更换通道的延展方向垂直于第二方向,过滤器2具有沿第二方向自体部10进出容置空间75的第一行程,以及自更换通道进出容置空间75的第二行程。容置空间75的高度与更换通道的高度J均大于过滤器2的高度K,容置空间75的宽度与更换通道的宽度均大于过滤器2的宽度。
图4为本发明的风扇连接功能模块的示意图。如图4所示,本发明中不但可以将体部10整体设置于喷嘴本体70的中央区域中,还可以更充分开发这个区域的不同结构布局,加强风扇的扩展功能,将具有功能扩展的模块和体部10共同设置于喷嘴本体70的中央区域中。本发明的风扇朝向第一方向W的第一侧面与喷嘴本体70的第一侧面之间合围形成一容置空间75,容置空间75设有第一接线端子112。本发明的风扇还包括至少一功能扩展件9,设置于容置空间75内,且功能扩展件9的第二接点端子91与第一接线端子112导通。例如,体部10的第一侧面设有第一 接线端子112,体部10的第一侧面支撑功能扩展件9的下表面。第二接点端子91设置于功能扩展件9的下表面,第二接点端子91与第一接线端子112沿第二方向X对接导通。在一个优选例中,第二接点端子91通过导线被连接到风扇底座的供电电路板,但不以此为限。
本实施例中,功能扩展件9是以下中的一种:电子加湿器;电子香薰机、LED灯、电子驱蚊器、电子显示屏、供移动终端充电的充电座,但不以此为限。功能扩展件9可以是喷射部件,喷射部件的排气口露出于容置空间75中,喷嘴7喷出的空气流经过喷射部件的排气口,但不以此为限。在一个优选方案中,沿喷嘴的分布的出风口都设有柯恩达表面,通过柯恩达表面形成一个自喷嘴本体70的第一侧穿过喷嘴本体70内的容置空间75到达喷嘴本体70的第二侧的风道,该风道带动喷嘴本体70一侧的部分空气向喷嘴本体70出气的一侧运动,喷射部件的排气口设置于出风口形成的风道范围内,经过喷嘴本体70的这部分空气流过喷射部件的排气口,将喷射部件排出的功能气体混入到风扇喷射出的空气流中。例如:功能扩展件9是电子加湿器,喷嘴7喷出的空气流经过电子加湿器的排气口。喷嘴7的内周设有向同一侧开口的出风口,出风口设有柯恩达表面,带动喷嘴本体70一侧的部分空气向喷嘴本体70出气的一侧运动,通过喷嘴本体70的这部分空气流过电子加湿器的排气口,使得风扇喷射出的空气流整体上更加湿润,实现了电子加湿器与风扇的功能组合,增强风扇的加湿效果。同理,功能扩展件9也可以是电子香薰机,喷嘴7喷出的空气流经过电子香薰机的排气口。同样可以使用具有柯恩达表面的出风口,使得电子香薰机与风扇进行功能组合,增强风扇的改善房间气味的效果,此处不再赘述。本发明中的喷嘴本体70的形状不但可以在不移动喷嘴本体70的前提下提供更换滤网的通道;而且也有助于借助环向排列的出风口组成的连续的柯恩达表面,将喷射部件的更多的功能气体混入到风扇喷射出的空气流,实现功能的组合。
图5为本发明的风扇的立体图。图6是图5中B-B向的剖视图。图7是图5中C-C向的剖视图。图8为本发明的风扇的分解图。如图5至8所示,本发明的一个优选实施例中,本发明的风扇的体部包括沿第二方向X自下而上设置的底座6、用于产生空气流的风扇电机组件5、进气支架14、提供空气入口的进气罩3、过滤器2以及顶盖11。其中,底座6包括、电源盒上盖61、电源板62、旋转同步电机 63、旋转支架64、底座65以及底座盖66,通过旋转同步电机63的转动来使得被电源盒上盖61支撑的上部各组件,风扇电机组件5、进气罩3喷嘴7等能够原地水平旋转。本发明通过充分利用现有技术中空闲的喷嘴7的中央区域,将体部10整体设置于喷嘴7的中央区域中,体部10的空气入口位于倒U型风道的范围内,使得产品的体积大大减小,降低了产品运输和产品仓储的成本。
两个能够相互对合的内壳4卡合风扇电机组件5和底座6的两侧,内壳4对合螺接后将风扇电机组件5限位于底座6上方,且每个内壳4两端的侧壁设有第一卡扣43、螺孔42和露出开口的半圆形限位槽41,两内壳4对合后形成一环形槽。喷嘴本体70两端的内侧分别设置第一进风口72和第二进风口73,第一进风口72和第二进风口73各自联通一个开口。
两个能够相互对合的外壳8卡合于内壳4的外周,外壳8罩盖进气罩3和风扇电机组件5,每个外壳8的对应进气罩3的区域设有网孔状的进气孔81。外壳8的两端的侧壁设有第二卡扣84、半圆拼合部82以及螺孔83。外壳8的第二卡扣84分别卡合内壳4的第一卡扣43。
两片侧支撑架13的下表面连接于进气支架14,侧支撑架13的上表面以及对接后的外壳8的上端的螺孔83通过一个环形连接架12的螺孔122连接在一起。环形连接架12的内侧设有定位卡槽121。外壳8的高度大于风扇电机组件5的高度,合围后的外壳8的上部两片侧支撑架13之间提了容置过滤器2和进气罩3的空间。进气支架14的下表面设有连接柱141,风扇电机组件5的外周设有连接槽523,连接柱141插接于连接槽523,进气罩3连接于进气支架14的上表面,使得进气罩3可以通过进气支架14连接于风扇电机组件5的进风口处。
过滤器2环绕进气罩3,过滤器2设置于进气罩3的空气入口的上游。过滤器2为一管状空气滤网23(参见图20),管状空气滤网23的第一侧设有固定第一环形密封件21(参见图20)的第一环形支撑架22(参见图20),顶盖11的下表面设有插槽,顶盖11的插槽56与第一环形支撑架22可拆卸地卡合。
顶盖11的下表面设有与环形连接架12的定位卡槽121通过旋转的方式可拆卸地卡合的定位卡扣111。当顶盖11卡合于环形连接架12中时,顶盖11与进气支架14夹持过滤器2的上端面和下端面。管状空气滤网23的第二侧设有固定第二环形密封件25(参见图20)的第二环形支撑架24(参见图20)。第二环形支撑架24 连接于进气支架14。管状空气滤网23的第一侧通过第一环形密封件21与顶盖11密封,管状空气滤网53的第二侧通过第二环形密封件25与进气支架14密封。第一环形密封件21和第二环形密封件25的材料优选为慢回弹海绵。管状空气滤网23的介质可以是现有的空气过滤材料或是未来发明的空气过滤材料,不以此为限。
图9为本发明的风扇的一种实施例的局部分解图。图10为本发明的风扇中一种进气口的立体图。图11为本发明的风扇中一种进气口的示意图。图12是图11中D-D向的剖视图。如图9至12所示,本发明的风扇的体部10设有具有空气入口的进气罩3。进气罩3设置于过滤器2的下游,进气罩3设置于过滤器2限定的环形区域中,将经过过滤器2过滤后的空气流通过进气罩3进入到风扇电机组件5。对于风扇电机组件5而言,进气罩3设置于风扇电机组件5的进风口的上游,进气罩3能够对进入风扇电机组件5的空气流进行扰流消音。进气罩3沿第一方向W的外周设有多个周向分布且间隔排列的波形扰流片32,波形扰流片32自进气罩3的外周向中心延展,相邻的波形扰流片32之间的间隙形成涡旋排列的进气通道33,波形扰流片32可以将吸入的空气流第一次分割为多股气流,从而达到消音降噪的功效。本实施例中,进气罩3内部中空形成涡旋通道34,涡旋通道34的第一端沿垂直于第一方向W的周向分别联通进气通道33,涡旋通道34的第二端沿第二方向X联通风扇电机组件5的进风口,以便进一步减小噪音。沿进气通道33的联通方向,进气通道33的两端分别设有外露于进气罩3的外周的进气口31以及联通涡旋通道34的窄缝,以便进一步减小噪音。
在一个优选实施例中,沿进气通道33的联通方向,越接近涡旋通道34,进气通道33的流通面积越小;越接近进气口31,进气通道33的流通面积越大,以便进一步减小噪音。
在一个优选实施例中,风扇电机组件5内设有旋转的叶轮53,每片波形扰流片32的波形凸起方向与叶轮53的旋转方向一致,每条进气通道33进入涡旋通道34的角度各不相同,以便进一步减小噪音。
在一个优选实施例中,每片波形扰流片32的朝向风扇电机组件5的进风口的一侧设有凹弧形缺口35,以便将吸进来的空气与叶轮的距离拉长,同样具有辅佐消音降噪的功效,从而进一步减小噪音。
图13为本发明的风扇中的风扇电机组件的立体图。图14是图13中E-E向的剖视图。图15为本发明的风扇中的风扇电机组件的分解图。图16为本发明的风扇的风扇电机组件中出风三通座的立体图。如图13至16所示,本发明的风扇中的风扇电机组件5包括:沿第一方向W依次组合的导风口罩51、导风罩52、叶轮53、马达支架54、马达56、马达罩58以及出风三通座50。导风口罩51密封连通进气罩3的涡旋通道34和导风罩52。
其中,环绕出风三通座50的外周设有多个第一定位座501和多个第一螺接耳508。马达支架54的上表面与出风三通座50之间设置马达56,环绕马达支架54的外周设有多个第二定位座541,马达支架54设有供马达56的转轴通过的一通孔。马达支架54的下表面与导风罩52之间设置旋转的叶轮53,叶轮53与马达56通过转轴传动连接,环绕导风罩52的外周设有多个第三定位座521和多个第二螺接耳522。出风三通座50与导风罩52螺接,马达支架54的每个第二定位座541通过挠性连接件与第一定位座501和第三定位座521连接后,被夹持限位于第一定位座501和第三定位座521之间,使得本实施例中的马达支架54并不是被固定住的,而是马达支架54基于同一水平面的挠性连接件限位于导风罩52与出风三通座50之间。这相当于马达支架54被悬浮在导风罩52与出风三通座50之间。挠性连接件与各个定位座共同构成减震器,保证风扇电机组件5在工作时,马达支架54在产生震动时不会与导风罩52与出风三通座50发生接触,其接触点全部由减震器传递,大大降低了噪音,更能保持风扇的稳定。
本实施例中,定位减振垫55的顶面可以由平面组成,其目的为在使动力***产生震动时向上的震动转化为平面运动,使之平衡震动。定位减振垫55的下部可以由锥形体组成,且与其所接触的面均为凸点接触,其目的是减少接触面积达到减震效果。定位减振垫55的中间由空心盲孔组成,其目的是在动力***产生震动时由减震器利用中间盲孔产生弹性变形,使之达到减震效果,且该孔在组装后与上支撑形成封闭的空心孔,其目的就是将盲孔内的空气锁住在震动时由于气压作用使之迅速恢复弹性形变。
在一个优选方案中,第一定位座501、第二定位座541和第三定位座521分别设有同轴的通孔,挠性连接件为一钉子状的定位减振垫55,定位减振垫55穿过并 加持第一定位座501、第二定位座541和第三定位座521的通孔。定位减振垫55包括杆部以及分别位于杆部的两端的外扩锥台和外扩肩台,外扩锥台的最大直径以及外扩肩台的最大直径均大于杆部的直径,杆部穿过第一定位座501、第二定位座541和第三定位座521的通孔,将第一定位座501、第二定位座541和第三定位座521夹持与自外扩锥台至外扩肩台之间。定位减振垫55的沿第一方向W的轴向设有空心盲孔,空心盲孔至少自外扩锥台延展到杆部。或者空心盲孔至少自外扩锥台延展到外扩锥台。
在一个优选例中,在马达支架54和出风三通座50之间,环绕马达56的外周设有一环形的马达消音棉57,通过上述结构,进一步减小了马达和叶轮高速旋转造成的噪音。
本实施例中,出风三通座50包括设于叶轮的出风侧的进风口507、分别联通喷嘴7的第一出风口504和第二出风口505,以及将经过进风口507的空气流分流后各自引导到第一出风口504和第二出风口505的分流墙体502,喷嘴本体70的两端分别连通第一出风口504和第二出风口505。进风口507位于出风三通座50的第一侧,分流墙体502位于出风三通座50的第二侧的中央,第一出风口504和第二出风口505分别位于出风三通座50的第二侧的两端。第一出风口504和第二出风口505分别露出于体部10的两侧,第一出风口504的出风方向和第二出风口505的出风方向同轴,且均垂直于进风口507的进风方向。分流墙体502的两侧分别形成对称的第一引导斜坡和第二引导斜坡,第一引导斜坡将部分经过进风口507的空气流引导至第一出风口504,第二引导斜坡将部分经过进风口507的空气流引导至第二出风口505。分流墙体502的第二方向X的两端凸起分别沿第二方向X延展至进风口507,共同形成U型板状分流壁,以便能在降低噪音的前提下,将将经过进风口507的空气流分流。本实施例中,分流墙体502基于进风口507的中轴线设置,均分进风口507流通面积。出风三通座50的内壁设有自进风口507分别向出风三通座50的第二侧延展的导流片506,但不以此为限。出风三通座50的内壁设有自第一引导斜坡向第一出风口504延展的下沉式导流台阶,越靠近第一出风口504,下沉式导流台阶的下沉距离越大;出风三通座50的内壁设有自第二引导斜坡向第二出风口505延展的下沉式导流台阶,越靠近第二出风口505,下沉式导流台阶的下沉距离越大,以便减小空气流转向是的噪音,并为底座6提供空间,但不以此为限。 本发明中的出风三通座50将导流与分流和一体化,大大降低了风扇电机组件5的高度,使得风扇整机的总高度和体积也进一步减小。
在一个优选方案中,出风三通座50的内壁设有自进风口507分别向第一出风口504或者第二出风口505延展的导流片,但不以此为限。
进风口507为一环形管口,环形管口的管口沿第一方向W到第一出风口504或第二出风口505的距离为d,第一出风口504和第二出风口505的直径为h,d与h的比值范围是2.0至3.5。自叶轮53产生的空气流进入出风三通座50的进风口507后,空气流会在很短的距离内将流动方向需要至少旋转90°,如果d与h的比值过小,降低空气流的风压,减小出风量,影响送风距离;反之,如果d与h的比值过大,则会形成涡流负,形成扰流则会生产很大的噪音。
在一个优选方案中,d与h的比值范围是以下中的一种:2.1至3.4;2.2至3.3;2.3至3.2;2.4至3.1;2.5至3.0;2.6至2.9;2.7至2.8。
在一个优选方案中,d与h的比值是2.7。
图17至20为本发明的风扇的安装过程示意图。如图17至20所示,本发明的风扇的安装过程如下:首先通过第一个内壳4将进风罩3、进气支架14、风扇电机组件5、底座6连接好。将两端具有环形肩台74的喷嘴7沿水平方向***到内壳4露出的半圆形限位槽41中,使得环形肩台74的第一进风口72和第二进风口73各自联通风扇电机组件5的出风三通座50的第一出风口504和第二出风口505,并通过密封圈59密封。接着,将第二个内壳4与第一个内壳4对扣并通过螺孔42螺接,将环形肩台74卡合于两个半圆形限位槽组合形成的环形槽内,使得喷嘴7能够基于环形槽旋转。然后,在内壳4的外周扣上两个外壳8,安装侧支撑架13,再通过环形连接架12将侧支撑架13的上端和外壳8的上端螺接在一起。最后,将过滤器2放入到外壳8的内壁与进风罩3的外周之间的空间,通过顶盖11与环形连接架12的旋转锁定,将过滤器2密封夹持于顶盖11和进气支架14之间。
本发明的安装方法改变了现有技术中将喷嘴7沿垂直方向套接在体部上的做法,更有利于风道的密封,降低了安装难度。
综上,本发明的目的在于提供风扇,能够改变了风扇内空气流的运动方向,缩小了整体体积,降低了使用成本。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种风扇,其特征在于,包括:
    体部,包括空气入口、空气出口,和用于产生空气流的风扇电机组件,所述风扇电机组件包括:叶轮、电机以及出风三通座;以及
    喷嘴,连接所述空气出口,用于接收来自体部的空气流并发射所述空气流,所述喷嘴具有一半框型的喷嘴本体;
    所述出风三通座包括设于所述叶轮的出风侧的进风口、分别联通所述喷嘴的第一出风口和第二出风口,以及将经过所述进风口的空气流分流后各自引导到所述第一出风口和第二出风口的分流墙体,所述喷嘴本体的两端分别连通所述第一出风口和第二出风口。
  2. 如权利要求1所述的风扇,其特征在于,所述进风口位于所述出风三通座的第一侧,所述分流墙***于所述出风三通座的第二侧的中央,所述第一出风口和第二出风口分别位于所述出风三通座的第二侧的两端。
  3. 如权利要求1所述的风扇,其特征在于,所述第一出风口和第二出风口分别露出于所述体部的两侧,所述第一出风口的出风方向和第二出风口的出风方向同轴,且均垂直于所述进风口的进风方向。
  4. 如权利要求1所述的风扇,其特征在于,所述分流墙体基于所述进风口的中轴线设置,均分所述进风口流通面积。
  5. 如权利要求1所述的风扇,其特征在于,所述分流墙体的两侧分别形成对称的第一引导斜坡和第二引导斜坡,所述第一引导斜坡将部分经过所述进风口的空气流引导至第一出风口,所述第二引导斜坡将部分经过所述进风口的空气流引导至第二出风口。
  6. 如权利要求5所述的风扇,其特征在于,所述出风三通座的内壁设有自所述进风口分别向第一出风口或者第二出风口延展的导流片。
  7. 如权利要求5所述的风扇,其特征在于,所述出风三通座的内壁设有自所述进风口分别向所述出风三通座的第二侧延展的导流片。
  8. 如权利要求5所述的风扇,其特征在于,所述出风三通座的内壁设有自所述第一引导斜坡向第一出风口延展的下沉式导流台阶,越靠近所述第一出风口,所述下沉式导流台阶的下沉距离越大;
    所述出风三通座的内壁设有自所述第二引导斜坡向第二出风口延展的下沉式导流台阶,越靠近所述第二出风口,所述下沉式导流台阶的下沉距离越大。
  9. 如权利要求1所述的风扇,其特征在于,所述分流墙体的第二方向的两端凸起分别沿第二方向延展至所述进风口,共同形成U型板状分流壁。
  10. 如权利要求1至9中任意一项所述的风扇,其特征在于,所述空气流沿第一方向依次通过进气罩和风扇电机组件,随所述空气流进入所述喷嘴,所述空气流至少基于与所述第一方向反向的第二方向运动后被发射出所述喷嘴,所述第一方向为重力方向,所述第二方向为反重力方向,所述空气入口位于所述体部的沿重力方向的上部,所述空气出口位于所述体部的沿重力方向的下部,所述风扇电机组件位于所述空气入口与所述空气出口位之间的区域。
PCT/CN2020/128630 2019-11-18 2020-11-13 风扇 WO2021098599A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20890355.9A EP4063667A4 (en) 2019-11-18 2020-11-13 FAN
US17/756,145 US11920614B2 (en) 2019-11-18 2020-11-13 Fan

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201921992588.8 2019-11-18
CN201921992588.8U CN210949304U (zh) 2019-11-18 2019-11-18 风扇
CN201911130114.7A CN110792640A (zh) 2019-11-18 2019-11-18 风扇
CN201911130114.7 2019-11-18

Publications (1)

Publication Number Publication Date
WO2021098599A1 true WO2021098599A1 (zh) 2021-05-27

Family

ID=75980836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128630 WO2021098599A1 (zh) 2019-11-18 2020-11-13 风扇

Country Status (3)

Country Link
US (1) US11920614B2 (zh)
EP (1) EP4063667A4 (zh)
WO (1) WO2021098599A1 (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202091268U (zh) * 2011-04-29 2011-12-28 李德正 可折叠式无叶片风扇
TWM419831U (en) * 2011-06-16 2012-01-01 Kable Entpr Co Ltd Bladeless fan
CN202937528U (zh) * 2012-12-07 2013-05-15 应辉 一种无叶风扇的导风结构
CN106762755A (zh) * 2017-02-20 2017-05-31 卢碧莲 智能空气处理装置
CN208651295U (zh) * 2018-07-17 2019-03-26 中山市创为电子科技有限公司 一种具有显示功能的无叶风扇
CN208749619U (zh) * 2018-08-30 2019-04-16 高永� 无叶风扇及其无叶扇头
KR101988169B1 (ko) * 2018-04-13 2019-06-11 박수성 휴대용 선풍기
CN110219814A (zh) * 2019-06-12 2019-09-10 珠海格力电器股份有限公司 一种造风机构及无叶风扇
CN110762061A (zh) * 2019-11-18 2020-02-07 应辉 风扇
CN110762060A (zh) * 2019-11-18 2020-02-07 应辉 风扇
CN110792639A (zh) * 2019-11-18 2020-02-14 应辉 风扇以及风扇更换过滤器的方法
CN110792640A (zh) * 2019-11-18 2020-02-14 应辉 风扇
CN210949304U (zh) * 2019-11-18 2020-07-07 应辉 风扇

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2464736A (en) * 2008-10-25 2010-04-28 Dyson Technology Ltd Fan with a filter
GB2476172B (en) * 2009-03-04 2011-11-16 Dyson Technology Ltd Tilting fan stand
GB2468323A (en) * 2009-03-04 2010-09-08 Dyson Technology Ltd Fan assembly
CN203035626U (zh) * 2012-11-16 2013-07-03 杜芳敏 折叠式风扇的导风装置
CN203670312U (zh) 2014-01-22 2014-06-25 应辉 一种可枢转折叠式无叶风扇
CN205478589U (zh) 2016-02-01 2016-08-17 广东美的环境电器制造有限公司 无叶风扇和无叶风扇的俯仰结构
CN105650743B (zh) 2016-03-28 2019-03-12 广东美的制冷设备有限公司 空调室内机
CN106870422B (zh) * 2017-04-28 2023-09-08 广东美的环境电器制造有限公司 无叶风扇
CN109236703B (zh) 2018-11-19 2020-04-07 浙江工商大学 一种可调节角度的无叶风扇结构

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202091268U (zh) * 2011-04-29 2011-12-28 李德正 可折叠式无叶片风扇
TWM419831U (en) * 2011-06-16 2012-01-01 Kable Entpr Co Ltd Bladeless fan
CN202937528U (zh) * 2012-12-07 2013-05-15 应辉 一种无叶风扇的导风结构
CN106762755A (zh) * 2017-02-20 2017-05-31 卢碧莲 智能空气处理装置
KR101988169B1 (ko) * 2018-04-13 2019-06-11 박수성 휴대용 선풍기
CN208651295U (zh) * 2018-07-17 2019-03-26 中山市创为电子科技有限公司 一种具有显示功能的无叶风扇
CN208749619U (zh) * 2018-08-30 2019-04-16 高永� 无叶风扇及其无叶扇头
CN110219814A (zh) * 2019-06-12 2019-09-10 珠海格力电器股份有限公司 一种造风机构及无叶风扇
CN110762061A (zh) * 2019-11-18 2020-02-07 应辉 风扇
CN110762060A (zh) * 2019-11-18 2020-02-07 应辉 风扇
CN110792639A (zh) * 2019-11-18 2020-02-14 应辉 风扇以及风扇更换过滤器的方法
CN110792640A (zh) * 2019-11-18 2020-02-14 应辉 风扇
CN210949304U (zh) * 2019-11-18 2020-07-07 应辉 风扇

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4063667A4 *

Also Published As

Publication number Publication date
US20220397125A1 (en) 2022-12-15
EP4063667A4 (en) 2022-12-21
US11920614B2 (en) 2024-03-05
EP4063667A1 (en) 2022-09-28

Similar Documents

Publication Publication Date Title
CN110792639B (zh) 风扇以及风扇更换过滤器的方法
CN105091123B (zh) 一种空气净化器
CN110762060A (zh) 风扇
CN110762061A (zh) 风扇
CN105091125B (zh) 一种空气净化器及其送风组件
CN110762063A (zh) 风扇
CN111306082A (zh) 风扇
CN105091124B (zh) 一种空气净化器及其风道结构
CN110792640A (zh) 风扇
CN111219346A (zh) 风扇
CN210949306U (zh) 风扇
CN110762062B (zh) 风扇以及风扇更换过滤器的方法
WO2021164567A1 (zh) 风扇
CN110685941A (zh) 净化空气的无叶风扇
CN210949216U (zh) 风扇
CN210949305U (zh) 风扇
CN211501114U (zh) 风扇
CN211501019U (zh) 风扇
CN105091122B (zh) 一种空气净化器及其空气净化模块
CN210919598U (zh) 风扇
CN105098545B (zh) 一种空气净化器、空气净化模块及其中心连接器
CN210949304U (zh) 风扇
CN210949303U (zh) 风扇
CN210919599U (zh) 风扇
CN210949302U (zh) 风扇

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020890355

Country of ref document: EP

Effective date: 20220620