WO2021097707A1 - 屏下指纹识别装置及***、背光模组和液晶显示屏 - Google Patents

屏下指纹识别装置及***、背光模组和液晶显示屏 Download PDF

Info

Publication number
WO2021097707A1
WO2021097707A1 PCT/CN2019/119697 CN2019119697W WO2021097707A1 WO 2021097707 A1 WO2021097707 A1 WO 2021097707A1 CN 2019119697 W CN2019119697 W CN 2019119697W WO 2021097707 A1 WO2021097707 A1 WO 2021097707A1
Authority
WO
WIPO (PCT)
Prior art keywords
light guide
backlight module
microstructures
under
diffusion film
Prior art date
Application number
PCT/CN2019/119697
Other languages
English (en)
French (fr)
Inventor
李顺展
李家成
青小刚
曾红林
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2019/119697 priority Critical patent/WO2021097707A1/zh
Priority to CN201980004393.4A priority patent/CN111108512A/zh
Publication of WO2021097707A1 publication Critical patent/WO2021097707A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side

Definitions

  • This application relates to the field of fingerprint identification technology, and in particular to an under-screen fingerprint identification device and system, a backlight module and a liquid crystal display.
  • Fingerprint recognition and unlocking has become a function that most mobile terminals such as mobile phones and tablet computers are equipped with. Because the liquid crystal display (LCD) screen has the advantages of thin thickness, low point and no radiation, the mobile terminal adopts LCD screen. The fingerprint recognition technology under the optical screen is being commercialized.
  • LCD liquid crystal display
  • the LCD screens usually include a backlight module and a display module located above the backlight module.
  • the optical film of the backlight module includes a reflective film that is arranged between the backplane and the display panel and is laminated from bottom to top.
  • Light guide plate, diffusion film and brightness enhancement film each layer of film has different functions.
  • the backlight module provides visible light through the backlight. After the visible light is processed by each layer of the optical film of the backlight module, a uniformly distributed surface light source is formed to uniformly illuminate the display module of the LCD screen, thereby displaying images through the display module.
  • each layer of optical film in the backlight module of the LCD screen is relatively thin, and there are air gaps between adjacent optical films, and the thinner optical film is prone to deformation, which will result in uneven air. Gap, which will cause the optical path difference of the light to propagate between the various layers of optical films, which is prone to film interference. Since the fingerprint sensor receives the interference pattern generated by the film interference, it will cause serious interference to the imaging effect of fingerprint recognition.
  • the present application provides an under-screen fingerprint identification device and system, a backlight module and a liquid crystal display, which can eliminate or reduce the film interference phenomenon generated by the backlight module and ensure the fingerprint imaging effect.
  • the present application provides an under-screen fingerprint identification device, which is suitable for electronic equipment with a liquid crystal display, and the fingerprint detection area of the under-screen fingerprint identification device is at least partially located in the display area of the liquid crystal display;
  • the under-screen fingerprint identification device includes a fingerprint identification module located below the backlight module of the liquid crystal display.
  • the fingerprint identification module is used to receive the fingerprint detection light that is formed by the reflection of the finger above the fingerprint detection area and passes through the liquid crystal display. Obtain the fingerprint image of the finger;
  • the backlight module includes a diffusion film and a light guide plate adjacently arranged below the diffusion film.
  • the surface of the diffusion film surface of the light guide plate has a plurality of microstructures distributed at intervals. The microstructures are used to increase the gap between the diffusion film and the light guide plate. Spacing, to avoid the phenomenon of thin film interference when the fingerprint detection light passes through the diffusion film and the light guide plate.
  • the microstructure is a convex structure formed on the surface of the diffusion film.
  • the microstructure is a hemispherical convex structure.
  • the diameter of the microstructure is between 120-170 ⁇ m, and the height of the microstructure is between 1-3 ⁇ m.
  • a plurality of microstructures are arranged at even intervals on the surface of the diffusion film.
  • a plurality of microstructures are arranged at even intervals along the length direction and the width direction of the diffusion film.
  • the distance between every two adjacent rows of microstructures is equal to the distance between every two adjacent columns of microstructures.
  • a plurality of microstructures are arranged at even intervals along the length direction of the diffusion film, the spacing between each two adjacent rows of microstructures is equal, and the microstructures between two adjacent rows Stagger each other.
  • the distance between the microstructures and the two microstructures in adjacent rows that are staggered before and after the microstructure is equal.
  • the distance between two adjacent microstructures in two adjacent rows is equal to the distance between two adjacent microstructures in the same row.
  • the distance between two adjacent rows of microstructures is between 200-450 ⁇ m.
  • the surface of the light guide plate facing the diffusion film has a plurality of raised light guide strips, the light guide strips extend along the width direction of the light guide plate, and the plurality of light guide strips extend along the light guide plate. Arranged at even intervals along the length.
  • the light guide strip extends from one side to the other side in the width direction of the light guide plate.
  • the cross section of the light guide strip is arc-shaped.
  • the radius of curvature of the cross section of the light guide strip is between 30-150 ⁇ m, and the height of the light guide strip is between 1-5 ⁇ m.
  • the distance between the center lines of two adjacent light guide strips is between 40-150 ⁇ m.
  • the surface of the light guide plate facing away from the diffusion film has a plurality of light guide particles distributed at intervals, and the light guide particles are supported between the light guide plate and the reflective film of the backlight module.
  • the height of the light guide particles is between 3-5 ⁇ m.
  • the density of light guide particles in different regions of the surface of the light guide plate facing away from the diffusion film is different.
  • the backlight module further includes a brightness enhancement film arranged adjacently above the diffusion film, and the surface of the brightness enhancement film facing the diffusion film has a plurality of brightness enhancement particles distributed at intervals.
  • the brightness enhancing particles are microsphere structures embedded in the brightness enhancing film, and the diameter of the brightness enhancing particles is between 4-10 ⁇ m.
  • the brightness enhancement particles are uniformly distributed on the surface of the brightness enhancement film.
  • the under-screen fingerprint identification device further includes a detection light source, which is used to emit detection light, and the detection light is irradiated to the finger above the fingerprint detection area through the liquid crystal display, and is reflected by the finger to form a carry Fingerprint detection light with fingerprint information.
  • a detection light source which is used to emit detection light, and the detection light is irradiated to the finger above the fingerprint detection area through the liquid crystal display, and is reflected by the finger to form a carry Fingerprint detection light with fingerprint information.
  • the wavelength of the detection light and the backlight provided by the backlight module for displaying the image are different.
  • the detection light is infrared light
  • the backlight provided by the backlight module is visible light
  • the present application provides a backlight module suitable for liquid crystal display screens supporting under-screen fingerprint recognition.
  • the backlight module includes a diffuser film and a light guide plate adjacently arranged below the diffuser film.
  • the diffuser film faces the light guide plate.
  • the surface has a plurality of microstructures distributed at intervals, and the microstructures are used to increase the distance between the diffusion film and the light guide plate to avoid light interference when the fingerprint detection light passes through the diffusion film and the light guide plate.
  • the microstructure is a convex structure formed on the surface of the diffusion film.
  • the microstructure is a hemispherical convex structure.
  • the radius of curvature of the microstructure is between 120-170 ⁇ m, and the height of the microstructure is between 1-3 ⁇ m.
  • a plurality of microstructures are arranged at even intervals on the surface of the diffusion film.
  • a plurality of microstructures are arranged at even intervals along the length direction and the width direction of the diffusion film.
  • the distance between every two adjacent rows of microstructures is equal to the distance between every two adjacent columns of microstructures.
  • a plurality of microstructures are arranged at even intervals along the length direction of the diffusion film, the spacing between each two adjacent rows of microstructures is equal, and the microstructures between two adjacent rows Stagger each other.
  • the distance between the microstructures and the two microstructures in adjacent rows that are staggered before and after the microstructure is equal.
  • the distance between two adjacent microstructures in two adjacent rows is equal to the distance between two adjacent microstructures in the same row.
  • the distance between two adjacent rows of microstructures is between 200-450 ⁇ m.
  • the surface of the light guide plate facing the diffusion film has a plurality of raised light guide strips, the light guide strips extend along the width direction of the light guide plate, and the plurality of light guide strips extend along the light guide plate. Arranged at even intervals along the length.
  • the light guide strip extends from one side to the other side in the width direction of the light guide plate.
  • the cross section of the light guide strip is arc-shaped.
  • the radius of curvature of the cross section of the light guide strip is between 30-150 ⁇ m, and the height of the light guide strip is between 1-5 ⁇ m.
  • the distance between the center lines of two adjacent light guide strips is between 40-150 ⁇ m.
  • the surface of the light guide plate facing away from the diffusion film has a plurality of light guide particles distributed at intervals, and the light guide particles are supported between the light guide plate and the reflective film of the backlight module.
  • the height of the light guide particles is between 3-5 ⁇ m.
  • the density of light guide particles in different regions of the surface of the light guide plate facing away from the diffusion film is different.
  • the backlight module further includes a brightness enhancement film arranged adjacently above the diffusion film, and the surface of the brightness enhancement film facing the diffusion film has a plurality of brightness enhancement particles distributed at intervals.
  • the brightness enhancing particles are microsphere structures embedded in the brightness enhancing film, and the diameter of the brightness enhancing particles is between 4-10 ⁇ m.
  • the brightness enhancement particles are uniformly distributed on the surface of the brightness enhancement film.
  • the present application provides an under-screen fingerprint identification system, which includes a liquid crystal display and the under-screen fingerprint identification device as described in any one of the above, and the liquid crystal display includes a display module and the backlight module as described in any one of the preceding items. Group, wherein the backlight module is located under the display module.
  • the present application provides a liquid crystal display that supports an under-screen fingerprint identification function.
  • the under-screen fingerprint identification device as described in any one of the above is arranged under the liquid crystal display, and the liquid crystal display includes a display module and any one of the above
  • the backlight module is located below the display module and is used to provide backlight for the display module and transmit the fingerprint detection light formed by the finger above the liquid crystal display to the fingerprint sensor below the backlight module.
  • the under-screen fingerprint identification device and system, backlight module and liquid crystal display provided by this application are suitable for electronic equipment with liquid crystal displays, and the fingerprint detection area of the under-screen fingerprint identification device is at least partially located on the liquid crystal display
  • the display area of the screen; the fingerprint identification device under the screen includes a fingerprint identification module, which is located under the backlight module of the LCD screen, and the fingerprint detection light reflected by the finger above the fingerprint detection area carries fingerprint information through the LCD screen It is transmitted to the fingerprint sensor, and the fingerprint image is received and recognized by the fingerprint sensor.
  • the backlight module includes a laminated diffusion film and a light guide plate, the light guide plate is located below the diffusion film, by arranging a plurality of spaced apart microstructures on the surface of the diffusion film facing the light guide plate, the plurality of microstructures are supported on Between the diffusion film and the light guide plate, the microstructure can increase the distance between the diffusion film and the light guide plate, thereby increasing the air gap between the diffusion film and the light guide plate, and can make the air gap in each part more uniform. Furthermore, it can avoid the film interference phenomenon when the fingerprint detection light passes through the diffusion film and the light guide plate, and can eliminate the interference of the interference light generated by the film interference phenomenon on the fingerprint imaging, and ensure the fingerprint imaging effect, so that the fingerprint sensor can obtain a clear Fingerprint image.
  • Figure 1 is a schematic diagram of the structure of an under-screen fingerprint identification system
  • Figure 2 is a schematic diagram of a partial deformation of the backlight module
  • FIG. 3 is a film interference pattern produced by the backlight module of FIG. 2;
  • FIG. 4 is a schematic structural diagram of a backlight module provided in Embodiment 1 of the application.
  • Fig. 5 is a side view of the diffusion film provided in the first embodiment of the application.
  • FIG. 6 is a front view of a diffusion film provided in Embodiment 1 of the application.
  • FIG. 7 is a front view of another diffusion film provided in Embodiment 1 of the application.
  • FIG. 8 is a schematic structural diagram of a light guide plate provided in Embodiment 1 of the application.
  • 1-Fingerprint recognition device under the screen 11-Fingerprint recognition module; 111-Optical path guide structure; 112-Fingerprint sensor; 12-Detection light source; 2-Liquid crystal display; 21-Display module; 211-Transparent protective cover; 212-liquid crystal panel; 22-backlight module; 221-brightness enhancement film; 2211-brightness enhancement particles; 222-diffusion film; 2221, 2221a, 2221b, 2221c-microstructure; 223-light guide plate; 2231-light guide strip; 2232-light guide particles; 224-reflective film; 225-back plate; 3-Newton's ring.
  • FIG. 1 is a schematic structural diagram of an under-screen fingerprint recognition system
  • Fig. 2 is a partial deformation schematic diagram of a backlight module
  • Fig. 3 is a thin film interference pattern generated by the backlight module of Fig. 2
  • Fig. 4 is provided in the first embodiment of the application
  • the structure diagram of the backlight module
  • FIG. 5 is a side view of the diffusion film provided in the first embodiment of the application
  • FIG. 6 is a front view of the diffusion film provided in the first embodiment of the application
  • FIG. 7 is provided in the first embodiment of the application The front view of another diffusion film
  • FIG. 8 is a schematic diagram of the structure of the light guide plate provided in the first embodiment of the application.
  • this embodiment provides an under-screen fingerprint identification device 1, which is suitable for electronic equipment with a liquid crystal display 2.
  • the fingerprint detection area of the under-screen fingerprint identification device 1 is at least partially located in the display area of the liquid crystal display 2.
  • the under-screen fingerprint identification device 1 provided in this embodiment can be applied to a liquid crystal display (LCD) 2.
  • the under-screen fingerprint identification device 1 is an under-screen optical fingerprint identification device, which can be applied to smart phones, tablet computers, and others. On a mobile terminal or electronic device using the LCD screen 2.
  • the under-screen fingerprint identification device 1 may be arranged in a partial area under the liquid crystal display 2 and cooperate with the liquid crystal display 2 to form an under-screen fingerprint identification system.
  • the fingerprint detection area of the fingerprint identification device 1 under the screen may be specifically located in at least a part of the display area of the liquid crystal display 2. For example, by placing a finger above the corresponding fingerprint detection area in the display area of the liquid crystal display 2, so that the fingerprint identification device 1 under the screen acquires and recognizes the fingerprint image of the finger.
  • the liquid crystal display 2 generally includes a liquid crystal panel 212 and a backlight module 22.
  • the backlight module 22 is arranged under the liquid crystal panel 212 to provide a backlight source for the liquid crystal panel 212 so that the liquid crystal panel 212 can display images. The user watches.
  • the under-screen fingerprint identification device 1 may include a fingerprint identification module 11 located below the backlight module 22 of the liquid crystal display 2, and the fingerprint identification module 11 is used to receive the fingerprint identification module 11 formed by the reflection of the finger above the fingerprint detection area and pass through The fingerprint detection light of the liquid crystal display 2 is used to obtain the fingerprint image of the finger.
  • the under-screen fingerprint recognition device 1 includes a fingerprint recognition module 11, the fingerprint recognition module 11 may include a fingerprint sensor 112, the fingerprint sensor 112 may be an optical fingerprint sensor 112, and the fingerprint sensor 112 may include multiple sensing units.
  • the sensing area of the optical sensing array may correspond to the fingerprint recognition area of the fingerprint sensor 112.
  • the fingerprint sensor 112 may be located under the fingerprint detection area of the liquid crystal display 2.
  • the fingerprint sensor 112 is located under the backlight module 22 directly opposite the fingerprint detection area of the liquid crystal display 2.
  • the fingerprint detection light carrying fingerprint information formed by the reflection of the finger is transmitted to the fingerprint sensor 112 through the backlight module 22, and the fingerprint image is acquired and recognized through the fingerprint recognition area of the fingerprint sensor 112.
  • the fingerprint detection area corresponding to the under-screen fingerprint recognition device 1 can be located in the display area of the liquid crystal display 2, the user needs to perform fingerprint unlocking or other other operations on the mobile terminal or electronic device using the under-screen fingerprint recognition device 1 During fingerprint verification, it only needs to press a finger on the fingerprint detection area of the liquid crystal display 2 to realize fingerprint input. Therefore, the display area of the liquid crystal display 2 can be expanded to cover the entire front of the mobile terminal or electronic device. Meet the full screen requirements of high screen-to-body ratio.
  • the optical sensing array and other circuits of the fingerprint sensor 112 can be fabricated on a chip (Die) through a semiconductor process, where the optical sensing array is specifically a photodetector (Photodetector) array, which includes Multiple photodetectors distributed in an array, the photodetectors can be used as optical sensing units.
  • the optical sensing array is specifically a photodetector (Photodetector) array, which includes Multiple photodetectors distributed in an array, the photodetectors can be used as optical sensing units.
  • Photodetector Photodetector
  • the fingerprint identification module 11 may also include an optical path guiding structure 111 and other optical components.
  • the optical path guiding structure 111 and other optical components may be arranged below the fingerprint detection area of the liquid crystal display 2; wherein the optical path guiding structure 111 is mainly used to When a finger is pressed on the fingerprint detection area, it is generated and guided through the fingerprint detection light of the liquid crystal display 2 to the optical sensing array of the fingerprint sensor 112 for optical detection; the above-mentioned other optical components may include a filter, which may It is arranged between the optical path guiding structure 111 and the fingerprint sensor 112 to filter out the interference light passing through the optical path guiding structure 111 to prevent the interference light from being received by the optical sensor array and affecting the fingerprint recognition effect.
  • the fingerprint sensor 112 the light path guiding structure 111, and the filter layer may be packaged in the same optical component to form the fingerprint identification module 11.
  • the light path guiding structure 111 can adopt various implementations.
  • the light path guiding structure 111 may be an optical lens (Lens) layer, which has one or more lens units, such as a lens group composed of one or more aspheric lenses.
  • the optical lens layer can be used to converge the fingerprint detection light formed from the finger and transmitted through the liquid crystal display 2 to the optical sensor array of the fingerprint sensor 112 below it, so that the optical sensor array can perform optical imaging based on the fingerprint detection light, Thus, the fingerprint image of the finger is obtained.
  • the optical lens layer may also be formed with a pinhole or aperture stop in the optical path of the one or more lens units, and the pinhole or aperture stop may cooperate with the optical lens layer to expand the under-screen fingerprint identification device 1 Filed of View (FOV) to improve the fingerprint imaging effect of the fingerprint device under the screen.
  • FOV Filed of View
  • the light path guiding structure 111 may specifically be a collimator (Collimator) layer fabricated on a semiconductor silicon wafer or other substrate, which has a plurality of collimator units, and the collimator unit may be specifically Collimation through hole with a certain aspect ratio; when the user performs fingerprint recognition on the liquid crystal display 2, in the fingerprint detection light formed by the finger above the liquid crystal display 2 and transmitted through the liquid crystal display 2, the incident angle is consistent with the alignment
  • the fingerprint detection light whose extending direction of the straight unit is basically the same can pass through the collimating unit and be received by the sensing unit below it, while the fingerprint detection light with an excessively large incident angle is attenuated by multiple reflections inside the collimating unit, so
  • Each sensor unit can basically only receive the fingerprint detection light formed by the fingerprint lines directly above it, so that the optical sensor array uses the fingerprint detection light detected by each detection unit to obtain the fingerprint image of the finger.
  • the light path guiding structure 111 may also specifically include a micro-lens (Micro-Lens) layer and an optical film layer.
  • the micro-lens layer includes a micro-lens array formed by a plurality of micro-lenses, which may be obtained through a semiconductor growth process or Other processes are formed above the optical sensing array of the fingerprint sensor 112, and each microlens may correspond to one or more sensing units of the optical sensing array.
  • the optical film layer may be formed between the micro lens layer and the optical sensor unit, and it may include at least one light blocking layer with micro holes and a medium layer formed between the light blocking layer and the micro lens layer and the optical sensor array, A passivation layer or a buffer layer, etc., in which at least one light-blocking layer with micro-holes adopts a specific optical design to make the micro-holes formed between the corresponding micro-lens and the sensing unit, thereby limiting the receiving light path of the sensing unit.
  • the light-blocking layer can block the optical interference between the adjacent microlens and the sensing unit, and the microlens condenses the received light into the microhole at a vertical or oblique specific angle and transmits it to the microhole through the microhole.
  • Sensor unit for optical fingerprint imaging can block the optical interference between the adjacent microlens and the sensing unit, and the microlens condenses the received light into the microhole at a vertical or oblique specific angle and transmits it to the microhole through the microhole.
  • the liquid crystal display 2 may also include a transparent protective cover 211, such as a glass cover or a sapphire cover, which is specifically located above the liquid crystal panel 212 of the liquid crystal display 2 and covers the liquid crystal panel 212 Of the front. Therefore, in this embodiment, the so-called finger pressing on the liquid crystal display 2 can actually refer to the transparent protective cover 211 pressed on the liquid crystal panel 212 or the protective layer (such as tempered steel) that covers the surface of the transparent protective cover 211. Film or other protective film).
  • a transparent protective cover 211 such as a glass cover or a sapphire cover
  • the under-screen fingerprint identification device 1 may further include a detection light source 12, which is used to emit detection light, and the detection light passes through the liquid crystal display 2 and illuminates the finger above the fingerprint identification area. The reflection forms the fingerprint detection light that carries fingerprint information.
  • a detection light source 12 which is used to emit detection light, and the detection light passes through the liquid crystal display 2 and illuminates the finger above the fingerprint identification area. The reflection forms the fingerprint detection light that carries fingerprint information.
  • the under-screen fingerprint identification device 1 in addition to the fingerprint recognition module 11, also includes a detection light source 12.
  • the detection light source 12 emits detection light, and the detection light can be irradiated through the liquid crystal display 2
  • the finger above the fingerprint detection area the detection light is irradiated to the finger and reflected by the finger to form fingerprint detection light.
  • the formed fingerprint detection light is transmitted through the liquid crystal display 2 to the fingerprint identification module 11 under the backlight module 22, which carries fingerprint information.
  • the fingerprint detection light forms a fingerprint image on the fingerprint sensor 112, and fingerprint recognition is performed by the fingerprint sensor 112.
  • the wavelengths of the detection light and the backlight provided by the backlight module 22 for displaying images may be different.
  • the backlight module 22 may include a backlight source, which provides a backlight for illuminating the liquid crystal display 2, and the backlight provided by the backlight module 22 enables the liquid crystal display 2 to display images.
  • the detection light emitted by the detection light source 12 of the under-screen fingerprint identification device 1 and the backlight provided by the backlight module 22 have different wavelengths, so that the mutual influence between the detection light and the backlight can be avoided.
  • the emitted backlight can be used to illuminate the screen to ensure the brightness of the liquid crystal display 2; and the detection light emitted by the detection light source 12 is mainly used to illuminate the finger above the fingerprint detection area, so that the finger is directed to the fingerprint recognition module 11 reflects enough light to ensure that the fingerprint sensor 112 obtains a fingerprint image with better clarity.
  • the detection light may be infrared light
  • the backlight provided by the backlight module 22 may be visible light
  • the under-screen fingerprint recognition device 1 may use a non-visible light source with a specific wavelength as the fingerprint excitation light source to realize optical fingerprint recognition.
  • the detection light emitted by the detection light source 12 may be infrared light, that is, the detection light source 12 is infrared.
  • the light source for example, the infrared light source may be an infrared LED light source, an infrared vertical cavity surface emitting laser (Vertical Cavity Surface Emitting Laser, VCSEL for short), or an infrared laser diode (Laser Diode).
  • the infrared light emitted by the detection light source 12 can be irradiated to the finger above the fingerprint detection area of the liquid crystal display 2 through the liquid crystal panel 212 or the transparent protective cover 211, and the infrared light can be emitted on the surface of the finger or transmitted from the surface of the finger to form an infrared fingerprint
  • the infrared fingerprint detection light carries the fingerprint information of the finger, which can pass through the liquid crystal panel 212 of the liquid crystal display 2 and the backlight module 22, and is transmitted to the fingerprint recognition module 11 under the backlight module 22, fingerprint recognition
  • the module 11 guides the fingerprint detection light to the optical sensor array of the fingerprint sensor 112 through the optical path guiding structure 111.
  • the optical sensor array can receive the fingerprint detection light and further obtain fingerprint information of the finger according to the fingerprint detection light.
  • the backlight provided by the backlight source in the backlight module 22 can be visible light.
  • the visible light illuminates the liquid crystal display 2 so that the liquid crystal display 2 displays images; in this way, the detection light source 12 of the fingerprint identification device 1 under the screen is infrared light.
  • all the visible light emitted by the backlight source is used to illuminate the liquid crystal display screen 2, and the infrared light emitted by the detection light source 12 is all used to illuminate the finger to form Fingerprint detection light.
  • the backlight module 22 of the liquid crystal display 2 may include a diffusion film 222 and a light guide plate 223 adjacently disposed under the diffusion film 222.
  • the surface of the diffusion film 222 facing the light guide plate 223 has a plurality of microstructures distributed at intervals. 2221.
  • the microstructure 2221 is used to increase the distance between the diffusion film 222 and the light guide plate 223, so as to avoid the phenomenon of thin film interference when the fingerprint detection light passes through the diffusion film 222 and the light guide plate 223.
  • the backlight module 22 at least includes a diffusion film 222 and a light guide plate 223 that are sequentially stacked under the liquid crystal panel 212.
  • the light guide plate 223 can be It is arranged adjacently below the diffusion film 222.
  • the backlight is usually arranged on the side of the light guide plate 223.
  • the light guide plate 223 is used to convert the linear light source emitted by the backlight into a surface light source and radiate it toward the backlight module.
  • the liquid crystal panel 212 above the group 22 and the diffusion film 222 are used to further homogenize the surface light source passing through the light guide plate 223 to form a uniform surface light source.
  • the backlight module 22 also includes other optical films laminated above the diffusion film 222 or below the light guide plate 223, which will not be repeated here.
  • a back plate 225 is usually arranged under the light guide plate 223, and the back plate 225 is used to support the optical film in the backlight module 22, and the fingerprint recognition module 11 may be arranged under the back plate 225.
  • the back plate 225 can usually be supported by a metal material with good strength and rigidity.
  • the back plate 225 can be a steel plate, and a through hole is opened on the back plate 225 corresponding to the fingerprint recognition module 11 to make fingerprints reflected by the finger. After passing through each layer of optical film, the detection light passes through the through hole on the back plate 225 and irradiates to the fingerprint identification module 11, so that the fingerprint identification module 11 can receive the fingerprint detection light.
  • each layer of the optical film has different degrees of recession to the through hole of the back plate 225, which will cause the optical film of each layer
  • An uneven air gap is formed between the sheets, and the uneven air gap will cause the optical path difference in light propagation.
  • the fingerprint detection area Since the fingerprint detection area is located directly above the area, the fingerprint detection light reflected by the finger above the fingerprint detection area will pass through the corresponding layers of optical films in the area, and the fingerprint detection light will pass through the unevenness between the various layers of optical films.
  • there will be film interference between the fingerprint detection light transmitted and reflected by the optical film which will then make the fingerprint detection light form a "Newton ring 3", which will make the image received by the fingerprint sensor 112 form a clear “Newton” Ring 3" and “Newton Ring 3" will even cover the fingerprint image, which will reduce the clarity of the fingerprint image received by the fingerprint sensor 112, and even the fingerprint sensor 112 cannot receive a valid fingerprint image, which will seriously interfere with fingerprint imaging and cause The fingerprint sensor 112 cannot effectively receive and recognize fingerprint images.
  • the fingerprint sensor 112 In order to enable the fingerprint sensor 112 to obtain a clear fingerprint image, to ensure that the fingerprint sensor 112 can effectively identify the fingerprint image, avoid the phenomenon of film interference caused by the fingerprint detection light in the process of passing through the backlight module 22, and avoid the interference between the optical films. A "Newton ring 3" is generated. In this embodiment, by changing the air gap between the optical films in the backlight module 22, the problem of film interference generated when the fingerprint detection light passes through the backlight module 22 is solved.
  • the surface of the 222 facing the light guide plate 223 is provided with a plurality of microstructures 2221, and the plurality of microstructures 2221 are distributed on the surface of the diffusion film 222 at intervals, so that the plurality of microstructures 2221 are supported between the diffusion film 222 and the light guide plate 223 ,
  • the microstructure 2221 can increase the gap between the diffusion film 222 and the light guide plate 223, thereby increasing the air gap between the diffusion film 222 and the light guide plate 223, and prevent fingerprint detection light from passing between the diffusion film 222 and the light guide plate 223
  • the phenomenon of thin film interference occurs at the time, which can reduce or even prevent the fingerprint detection light from forming a "Newton ring 3" on the fingerprint sensor 112 to ensure the fingerprint imaging effect and enable the fingerprint sensor 112 to obtain
  • a plurality of microstructures 2221 are distributed at intervals and cover the entire surface of the diffusion film 222, which can increase the air gap between the diffusion film 222 and the light guide plate 223 as a whole, and can increase the distance between the diffusion film 222 and the light guide plate 223.
  • the uniformity of the size of the gap between the different parts makes the diffusion film 222 and the light guide plate 223 have a relatively uniform air gap, so that the film interference phenomenon generated between the diffusion film 222 and the light guide plate 223 can be better eliminated.
  • the microstructure 2221 on the surface of the diffuser film 222 facing the light guide plate 223 may be a convex structure formed on the surface of the diffuser film 222.
  • the microstructure 2221 on the surface of the diffusion film 222 is a protruding structure formed on the surface of the light guide plate 223.
  • the protruding structure is supported between the diffusion film 222 and the light guide plate 223, and the top end of the protruding structure is connected to the light guide plate 223.
  • the light plate 223 abuts, and the height of the convex structure is the gap between the diffusion film 222 and the light guide plate 223.
  • the air between the diffusion film 222 and the light guide plate 223 can be increased.
  • the gap avoids the phenomenon of thin film interference when the fingerprint detection light passes between the diffusion film 222 and the light guide plate 223.
  • the microstructure 2221 may be a hemispherical convex structure.
  • the microstructure 2221 is convex on the surface of the diffusion film 222 in a hemispherical structure, so that the contact area between the microstructure 2221 and the diffusion film 222 is larger, which is convenient for the diffusion film
  • the microstructure 2221 is formed on the surface of 222, and the connection strength between the microstructure 2221 and the diffusion film 222 is greater; in addition, the spherical vertex of the microstructure 2221 is in contact with the light guide plate 223, and the microstructure 2221 is in point contact with the light guide plate 223.
  • the light guide performance of the light guide is small, and the gap between the adjacent microstructures 2221 is large, which can ensure that there is a large air gap between the diffusion film 222 and the light guide plate 223, where the height of the hemispherical surface is the diffusion film The size of the distance between 222 and the light guide plate 223.
  • the diameter of the microstructure 2221 may be between 120-170 ⁇ m, and the height of the microstructure 2221 may be between 1-3 ⁇ m.
  • the hemispherical protrusion as the microstructure 2221 has a larger volume, while the height of the hemispherical protrusion is controlled between 1-3 ⁇ m, thus forming
  • the contact area between the hemispherical protrusions and the diffusion film 222 is large, and the surface of the hemispherical protrusions is relatively smooth, which can ensure that the microstructure 2221 can increase the distance between the diffusion film 222 and the light guide plate 223, and at the same time can avoid
  • the surface of the hemispherical protrusion as the microstructure 2221 is too steep. When the hemispherical protrusion with the steep surface is in contact with the light guide plate 223, the surface of the light guide plate 223 may be scratched or damaged, thereby affecting the light guide effect
  • the height of the microstructure 2221 is 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m or 3 ⁇ m.
  • the height of the microstructure 2221 can be 2.3 ⁇ m, so as to diffuse
  • the gap between the film 222 and the light guide plate 223 can effectively solve the problem of film interference between the diffusion film 222 and the light guide plate 223; at the same time, the height of the microstructure 2221 is within a proper range, and the diameter of the microstructure 2221 is controlled at 120- Within a larger radius range between 170 ⁇ m, for example, the diameter of the microstructure 2221 can be 130 ⁇ m, 138 ⁇ m, 142 ⁇ m, 153 ⁇ m or 160 ⁇ m.
  • the diameter of the microstructure 2221 can be 150 ⁇ m, so that the microstructure 2221 can be formed The gentle hemispherical convexity, in this way, the microstructure 2221 will not have a great influence on the uniform light performance of the diffusion film 222, and will not affect the display effect of the liquid crystal display screen 2.
  • the gap between the diffusion film 222 and the light guide plate 223 is increased.
  • the gap effectively solves the film interference phenomenon between the diffusion film 222 and the light guide plate 223, and improves the fingerprint imaging effect; at the same time, the microstructure 2221 is a gentle hemispherical convex structure, which will not affect the uniform light effect of the diffusion film 222. It will not damage the surface of the light guide plate 223 either.
  • a plurality of microstructures 2221 may be arranged at even intervals on the surface of the diffusion film 222.
  • the microstructure 2221 on the surface of the diffusion film 222 is a hemispherical convex structure with a large volume and a gentle surface, and the multiple microstructures 2221 are in contact with the light guide plate 223, so that multiple microstructures can be
  • the structures 2221 are evenly spaced on the surface of the diffusion film 222, so that each area of the diffusion film 222 is distributed with microstructures 2221, the gap between the diffusion film 222 and each area of the light guide plate 223 is relatively uniform, and the microstructures 2221 pair the diffusion film 222 It has a better supporting effect with the light guide plate 223, and can improve the effect of the microstructure 2221 to improve the thin film interference between the diffusion film 222 and the light guide plate 223.
  • microstructures 2221 are uniformly distributed, it is convenient to form the microstructures 2221 on the surface of the diffusion film 222, and the flatness of the diffusion film 222 and the light guide plate 223 can be improved, and the optical effects of the diffusion film 222 and the light guide plate 223 can be improved.
  • the plurality of microstructures 2221 may be evenly spaced along the length direction and the width direction of the diffusion film 222 arrangement.
  • a plurality of microstructures 2221 can be formed in a row arrangement parallel to the length direction of the diffusion film 222 and a column arrangement parallel to the width direction of the diffusion film 222.
  • the rows and columns of microstructures 2221 are interwoven to form a uniformly distributed rectangular distribution form.
  • the distance between every two adjacent rows of microstructures 2221 and the distance between every two adjacent columns of microstructures 2221 may be equal.
  • the spacing between two adjacent rows of microstructures 2221 is equal to the spacing between two adjacent columns of microstructures 2221, that is, the row spacing and column spacing of the rectangular distribution form of microstructures 2221 are the same, so that each row
  • the distance between adjacent microstructures 2221 is equal to the distance between adjacent microstructures 2221 in two adjacent rows, and a square structure is formed between four adjacent microstructures 2221 in two adjacent rows.
  • a plurality of microstructures 2221 can be arranged at even intervals along the length direction of the diffusion film 222, and the spacing between every two adjacent rows of microstructures 2221 is equal and adjacent to each other.
  • the microstructures 2221 between the two rows are staggered.
  • the microstructures 2221 can also be arranged at even intervals along the length direction of the diffusion film 222, and two adjacent ones are arranged. The spacing between the rows is equal, but the microstructures 2221 between two adjacent rows are staggered in a uniform arrangement.
  • the microstructures 2221 are arranged in rows, the spacing between adjacent microstructures 2221 in each row is equal, and the row spacing between adjacent rows is equal, the microstructures 2221 can still be formed on the surface of the diffusion film 222 in a uniform array arrangement
  • the microstructures 2221 between adjacent rows are staggered, that is, the adjacent microstructures 2221 of adjacent rows are not on the same column.
  • the distance between the microstructure 2221 and the two microstructures 2221 that are offset from the front and back of the adjacent row may be equal.
  • FIG. 7 taking a certain microstructure 2221a in a row as an example, there are two microstructures 2221 adjacent to the microstructure 2221a in an adjacent row, which are the microstructures 2221 located on the left side of the microstructure 2221 respectively.
  • the projection of the row is located at the midpoint of the line between the microstructure 2221b and the microstructure 2221c.
  • the two adjacent microstructures 2221 in the middle row and the two microstructures 2221 in the middle row in the two rows on both sides are connected to the two microstructures 2221 on the vertical line.
  • a diamond structure can be formed between.
  • the microstructure 2221a, the microstructure 2221b, the microstructure 2221c, and the microstructure 2221d form a separate structure.
  • the spacing between two adjacent microstructures 2221 located in two adjacent rows may be equal to the spacing between two adjacent microstructures 2221 located in the same row.
  • the distance between two adjacent microstructures 2221 in two adjacent rows is equal to the distance between adjacent Hangge microstructures 2221 in the same row.
  • the distance between microstructures 2221a and microstructures 2221b is equal to
  • the spacing between the microstructure 2221b and the microstructure 2221c is equal, so that the spacing between the microstructure 2221a and the microstructure 2221b, between the microstructure 2221b and the microstructure 2221c, and between the microstructure 2221a and the microstructure 2221c are equal.
  • Three adjacent microstructures 2221 in two rows form an equilateral triangle structure, and the microstructures 2221 are more evenly distributed on the surface of the diffusion film 222.
  • the spacing between two adjacent rows of microstructures 2221 can be 200-450 ⁇ m. between.
  • the distance between the diffusion film 222 and the light guide plate 223 can be controlled within a proper range
  • the microstructure 2221 has a relatively moderate density on the surface of the diffusion film 222, which has no significant influence on the diffusion modulus uniformity effect.
  • the spacing between two adjacent rows of microstructures 2221 may be 250 ⁇ m, 300 ⁇ m, 350 ⁇ m, 400 ⁇ m, or 450 ⁇ m.
  • the spacing between two adjacent rows of microstructures 2221 is equal to the spacing between two adjacent microstructures 2221 in the same row , It can be 320 ⁇ m; for the microstructures 2221 arranged in rows and the adjacent rows are staggered to form a structure with a diamond-shaped distribution as a whole, preferably, the spacing between two adjacent rows of microstructures 2221 is 320 ⁇ m, and the phase in the same row The distance between two adjacent microstructures 2221 is 370 ⁇ m, so that the connecting lines between three adjacent microstructures 2221 in two adjacent rows form an equilateral triangle.
  • the surface of the light guide plate 223 facing the diffusion film 222 may have a plurality of raised light guide strips 2231, and the light guide strips 2231 may extend along the width direction of the light guide plate 223 And the plurality of light guide strips 2231 can be arranged at even intervals along the length direction of the light guide plate 223.
  • the surface of the light guide plate 223 facing the diffusion film 222 has a plurality of raised light guide strips 2231.
  • the light guide strips 2231 can enhance the light guide function of the light guide plate 223, so that the light guide plate 223 is located on one side of the light guide plate 223.
  • the backlight emitted by the backlight is better transmitted to the other side of the light guide plate 223, so that the surface light source emitted from the front of the light guide plate 223 has a more uniform brightness.
  • the light guide strip 2231 extends along the width direction of the light guide plate 223, and a plurality of light guide strips 2231 are arranged at intervals in the length direction of the light guide plate 223, so that the light guide function of the light guide strip 2231 can be enhanced.
  • the backlight sequentially passes through different light guide strips 2231 to the other side of the light guide plate 223.
  • the multiple light guide strips 2231 and the microstructure 2221 of the diffusion film 222 are jointly supported between the diffusion film 222 and the light guide plate 223, which can further increase the distance between the diffusion film 222 and the light guide plate 223, and effectively solve the problem of the diffusion film 222.
  • the microstructures 2221 can be better corresponded to the light guide strip 2231.
  • the two microstructures 2221 are in contact with different parts of the different light guide strips 2231, so that the gap between the diffusion film 222 and the light guide plate 223 is relatively uniform as a whole, and the distance between the diffusion film 222 and the light guide plate 223 is determined by the microstructure 2221 and the light guide plate 223.
  • Light bar 2231 is jointly decided.
  • the light guide strip 2231 may extend from one side of the light guide plate 223 in the width direction to the other side.
  • the light guide bar 2231 extending from one side to the other side in the width direction of the light guide plate 223, the light incident on each part and angle of the light guide plate 223 can be transmitted to the light guide bar 2231, and the light guide bar 2231 can be matched It conducts light guide, which can improve the light guide effect of the light guide bar 2231.
  • the cross section of the light guide bar 2231 may be a circular arc shape.
  • the circular arc-shaped light guide strip 2231 has a certain light-gathering effect, and plays a role in enhancing the light guide of the light guide plate 223.
  • the provision of the light guide bar 2231 can also increase the brightness of the light emitted from the light guide plate 223 to enhance the display effect of the liquid crystal display 2.
  • the light guide strip 2231 in the shape of a circular arc column, since the microstructure 2221 of the diffusion film 222 is a hemispherical protrusion, the light guide strip 2231 and the microstructure 2221 are in circular arc contact form. The smooth contact between the light guide strip 2231 and the microstructure 2221 will not cause damage, and the strength of the two can be improved.
  • the microstructure 2221 of the diffusion film 222 when the microstructure 2221 of the diffusion film 222 is in contact with the light guide strip 2231, it can be that the apex of the microstructure 2221 is in contact with the top end of the light guide strip 2231, or it can be other spherical surfaces of the microstructure 2221.
  • the part is in contact with other parts of the light guide strip 2231, no matter which part of the microstructure 2221 is in contact with the light guide strip 2231, it can ensure that there is a large gap between the diffusion film 222 and the light guide plate 223, so as to effectively avoid the diffusion film 222 and the light guide plate 223.
  • a film interference phenomenon occurs between the light guide plates 223.
  • the radius of curvature of the cross section of the light guide bar 2231 may be between 30-150 ⁇ m, and the height of the light guide bar 2231 may be between 1-5 ⁇ m.
  • the light guide strip 2231 is formed on the surface of the light guide plate 223 relatively smoothly.
  • the light guide strip 2231 can improve the light guide effect of the light guide plate 223.
  • the light guide strip 2231 and the microstructure 2221 of the diffusion film 222 have better stability when they are in contact with each other.
  • the radius of curvature of the cross section of the light guide strip 2231 may be 30 ⁇ m, 50 ⁇ m, 70 ⁇ m, 90 ⁇ m, 110 ⁇ m, 130 ⁇ m, etc.
  • the radius of curvature of the cross section of the light guide strip 2231 is 40 ⁇ m.
  • the overall height of the light guide strip 2231 and the microstructure 2221 of the diffusion film 222 can be greater than 5 ⁇ m, which can fully satisfy the gap between the diffusion film 222 and the light guide plate 223.
  • the conditions for avoiding the phenomenon of film interference can effectively solve the problem of "Newton's ring 3" between the diffusion film 222 and the light guide plate 223, so as to ensure the fingerprint imaging effect.
  • the height of the light guide bar 2231 may be 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, 4.5 ⁇ m, or 5 ⁇ m.
  • the height of the light guide bar 2231 may be 3 ⁇ m.
  • the distance between the center lines of two adjacent light guide bars 2231 may be between 40-150 ⁇ m.
  • the light guide strip 2231 can be made The light guide strip 2231 can cover the entire light guide plate 223 to improve the light guide effect of the light guide strip 2231; and the degree of correspondence between the light guide strip 2231 and the microstructure 2221 of the diffusion film 222 is relatively high. Yes, the gap between the light guide plate 223 and the diffusion film 222 can be better controlled.
  • the distance between the center lines of two adjacent light guide bars 2231 may be 50 ⁇ m, 70 ⁇ m, 90 ⁇ m, 110 ⁇ m or 130 ⁇ m.
  • the distance between the center lines of two adjacent light guide bars 2231 may be It is 80 ⁇ m.
  • the surface of the light guide plate 223 facing away from the diffusion film 222 may have a plurality of light guide particles 2232 distributed at intervals, and the light guide particles 2232 are supported on the light guide plate 223 and the backlight module 22. ⁇ reflective film 224.
  • a reflective film 224 is further provided under the light guide plate 223.
  • the reflective film 224 is located between the light guide plate 223 and the back plate 225.
  • the reflective film 224 is used to reflect all the light emitted by the backlight to the light guide plate 223 , So that the light guide plate 223 emits all the light from its front surface.
  • the surface of the light guide plate 223 facing away from the diffusion film 222 that is, the surface of the light guide plate 223 facing the reflective film 224 is formed with a plurality of light guide particles 2232, and the plurality of light guide particles 2232 are distributed on the surface of the light guide plate 223 at intervals.
  • the light guide particles 2232 When the emitted light hits the light guide particles 2232, the light guide particles 2232 will diffuse the reflected light to various angles, and then will destroy the reflection condition and exit from the front of the light guide plate 223.
  • the light guide particles 2232 at different positions can make the light guide plate 223 emit light uniformly.
  • the light guide particles 2232 are also supported between the light guide plate 223 and the reflective film 224.
  • the gap between the light guide plate 223 and the reflective film 224 can be controlled within a reasonable range. In order to eliminate the film interference phenomenon between the light guide plate 223 and the reflective film 224.
  • the light guide strip 2231 and the light guide particles 2232 can be made of the same material as the light guide plate 223.
  • the light guide strip 2231 and the light guide particles 2232 can be formed on the surface of the light guide plate 223 by etching or the like, so that the light guide plate 223 and the light guide particles 2232 can be formed on the surface of the light guide plate 223.
  • the light bar 2231 and the light guide particles 2232 are integrally formed.
  • the height of the light guide particles 2232 may be between 3-5 ⁇ m.
  • the distance between the light guide plate 223 and the reflective film 224 can be controlled between 3-5 ⁇ m, which can effectively solve the problem between the light guide plate 223 and the reflective film 224.
  • the problem of thin film interference avoids the occurrence of "Newton's ring 3" when the fingerprint detection light passes between the light guide plate 223 and the reflective film 224, and improves the fingerprint imaging effect.
  • the height of the light guide particles 2232 may be 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, 4.5 ⁇ m, or 5 ⁇ m.
  • the height of the light guide particles 2232 may be 4.6 ⁇ m.
  • the density of the light guide particles 2232 in different regions of the surface of the light guide plate 223 facing away from the diffusion film 222 may be different.
  • the light guide particles 2232 may be distributed in a non-uniform manner on the surface of the light guide plate 223 facing the reflective film 224, wherein, since the backlight source of the backlight module 22 is arranged on one side of the light guide plate 223, the guide The part of the light plate 223 closer to the backlight has stronger light, while the part farther from the backlight has weaker light.
  • the density of the light guide particles 2232 in the part closer to the backlight on the light guide plate 223 may be less than
  • the density of the light guide particles 2232 in the parts far away from the backlight is such that the light guide particles 2232 of different densities make each part of the light guide plate 223 have a relatively uniform light intensity.
  • the backlight module 22 may further include a brightness enhancement film 221 disposed adjacently above the diffusion film 222, and the surface of the brightness enhancement film 221 facing the diffusion film 222 may have multiple Brightening particles 2211 distributed at intervals.
  • the backlight module 22 also includes a brightness enhancement film 221, which is adjacently arranged above the diffusion film 222.
  • the brightness enhancement film 221 is used to enhance the brightness of the light.
  • the diffusion film 222 uniforms the light and shoots it towards the brightness enhancement film 221.
  • the brightness of the light is further increased by the brightness enhancement film 221 to increase the brightness of the liquid crystal display 2.
  • the surface of the brightness enhancement film 221 facing the diffusion film 222 is formed with a plurality of brightness enhancement particles 2211, the plurality of brightness enhancement particles 2211 are distributed at intervals, and the brightness enhancement particles 2211 are supported between the brightness enhancement film 221 and the diffusion film 222,
  • the film interference phenomenon when the fingerprint detection light passes between the brightness enhancement film 221 and the diffusion film 222 is avoided, so as to improve the fingerprint imaging effect.
  • the brightness enhancement particles 2211 may be a microsphere structure embedded in the brightness enhancement film 221, and the diameter of the brightness enhancement particles 2211 is between 4-10 ⁇ m.
  • the brightness enhancing particles 2211 can further enhance the brightness of the liquid crystal display screen 2.
  • the diameter of the brightening particles 2211 to be between 4-10 ⁇ m, the height of the brightening particles 2211 exposed on the surface of the brightening film 221 can still be maintained on the basis that a part of the brightening particles 2211 is embedded in the brightness enhancing film 221. It is ensured that no thin film interference phenomenon occurs between the brightness enhancement film 221 and the diffusion film 222.
  • the diameter of the brightening particles 2211 may be 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, or 8 ⁇ m.
  • the diameter of the brightening particles 2211 may be 5 ⁇ m.
  • the brightness enhancement particles 2211 may be uniformly distributed on the surface of the brightness enhancement film 221.
  • the main function of the brightness enhancement particles 2211 is to increase the gap between the brightness enhancement film 221 and the diffusion film 222, and since the diameter of the brightness enhancement particles 2211 is small, the brightness enhancement particles 2211 can be etched or printed. It is formed on the surface of the brightness enhancement film 221, and the brightness enhancement particles 2211 can be randomly distributed on the surface of the brightness enhancement film 221, so that the smaller and denser brightness enhancement particles 2211 are more uniform on the surface of the brightness enhancement film 221 as a whole.
  • the under-screen fingerprint identification device provided in this embodiment is suitable for electronic equipment with a liquid crystal display, and the fingerprint detection area of the under-screen fingerprint identification device is at least partially located in the display area of the liquid crystal display; the under-screen fingerprint identification device includes a fingerprint identification module The fingerprint identification module is located under the backlight module of the liquid crystal display, and the fingerprint detection light reflected by the finger above the fingerprint detection area and carrying fingerprint information is transmitted to the fingerprint sensor through the liquid crystal display, and the fingerprint image is received and recognized by the fingerprint sensor.
  • the backlight module includes a laminated diffusion film and a light guide plate, the light guide plate is located below the diffusion film, by arranging a plurality of spaced apart microstructures on the surface of the diffusion film facing the light guide plate, the plurality of microstructures are supported on Between the diffusion film and the light guide plate, the microstructure can increase the distance between the diffusion film and the light guide plate, thereby increasing the air gap between the diffusion film and the light guide plate, and can make the air gap in each part more uniform. Furthermore, it can avoid the film interference phenomenon when the fingerprint detection light passes through the diffusion film and the light guide plate, and can eliminate the interference of the interference light generated by the film interference phenomenon on the fingerprint imaging, and ensure the fingerprint imaging effect, so that the fingerprint sensor can obtain a clear Fingerprint image.
  • the under-screen fingerprint identification system includes a liquid crystal display 2 and the under-screen fingerprint identification device 1 described in the first embodiment. 2 includes a display module 21 and a backlight module 22, wherein the backlight module 22 is located under the display module 21.
  • this embodiment can refer to the description of the under-screen fingerprint identification device 1 and the backlight module 22 in the first embodiment.
  • the under-screen fingerprint identification device 1 and the backlight module 22 will not be further elaborated. .
  • the liquid crystal display 2 usually includes a display module 21 and a backlight module 22 located under the display module 21.
  • the display module 21 may include a transparent protective cover 211 and a liquid crystal panel 212 located under the transparent protective cover 211, a fingerprint recognition module
  • the group 11 is located under the backlight module 22.
  • the backlight module 22 is formed with a light-transmitting area for transmitting the fingerprint detection light.
  • the light-transmitting area may refer to the transmission of the relevant optical film of the backlight module 22 in the fingerprint detection light.
  • the path forms a light-transmitting area with respect to the wavelength band of the fingerprint detection light, and the fingerprint identification module 11 is located under the light-transmitting area of the backlight module 22 so that the fingerprint detection light is transmitted to the fingerprint identification module 11 through the backlight module 22.
  • the light-transmitting area may be the area corresponding to the transmission path of the fingerprint detection light in the liquid crystal display screen 2, and the transmission waveband of the detection light covers the reflection waveband of the detection light, so that the detection light and its The fingerprint detection light formed by the finger can penetrate the light-transmitting area of the backlight module 22.
  • the relative position between the detection light source 12, the light transmission area of the backlight module 22, and the fingerprint recognition module 11 can be adjusted as needed, but the adjusted detection light source 12, backlight
  • the light-transmitting area of the module 22 and the relative position between the fingerprint recognition module 11 need to satisfy that the detection light emitted by the detection light source 12 can illuminate the finger above the fingerprint detection area, and the fingerprint detection light formed by the reflection or transmission of the finger It can enter the fingerprint identification module 11 through the light-transmitting area of the backlight module 22.
  • the under-screen fingerprint identification system includes a liquid crystal display and an under-screen fingerprint identification device.
  • the fingerprint detection area of the under-screen fingerprint identification device is at least partially located in the display area of the liquid crystal display; the under-screen fingerprint identification device includes a fingerprint identification module.
  • the fingerprint identification module is located under the backlight module of the liquid crystal display, and the fingerprint detection light reflected by the finger above the fingerprint detection area and carrying fingerprint information is transmitted to the fingerprint sensor through the liquid crystal display, and the fingerprint image is received and recognized by the fingerprint sensor.
  • the backlight module includes a laminated diffusion film and a light guide plate, the light guide plate is located below the diffusion film, by arranging a plurality of spaced apart microstructures on the surface of the diffusion film facing the light guide plate, the plurality of microstructures are supported on Between the diffusion film and the light guide plate, the microstructure can increase the distance between the diffusion film and the light guide plate, thereby increasing the air gap between the diffusion film and the light guide plate, and can make the air gap in each part more uniform. Furthermore, it can avoid the film interference phenomenon when the fingerprint detection light passes through the diffusion film and the light guide plate, and can eliminate the interference of the interference light generated by the film interference phenomenon on the fingerprint imaging, and ensure the fingerprint imaging effect, so that the fingerprint sensor can obtain a clear Fingerprint image.
  • this embodiment provides a liquid crystal display screen 2 that supports an under-screen fingerprint identification function.
  • the under-screen fingerprint identification device 1 described in the first embodiment is arranged under the liquid crystal display screen 2, and the liquid crystal display
  • the display screen 2 includes a display module 21 and a backlight module 22.
  • the backlight module 22 is located below the display module 21 and is used to provide backlight for the display module 21 and transmit the fingerprint detection light formed by the finger above the liquid crystal display 2 To the fingerprint sensor 112 under the backlight module 22.
  • the under-screen fingerprint recognition device 1 includes a detection light source 12 and a fingerprint recognition module 11.
  • the detection light source 12 is used to emit detection light to the finger above the fingerprint detection area.
  • the detection light illuminates the finger above the fingerprint detection area and is reflected by the finger. Or after transmission, a fingerprint detection light carrying fingerprint information is formed, and the fingerprint identification module 11 is used to receive the fingerprint detection light carrying the fingerprint information through the liquid crystal display 2 to obtain the fingerprint image of the finger.
  • the liquid crystal display includes a display module and a backlight module located under the display module.
  • the backlight module includes a laminated diffusion film and a light guide plate
  • the light guide plate is located below the diffusion film, by arranging a plurality of spaced apart microstructures on the surface of the diffusion film facing the light guide plate, the plurality of microstructures are supported on Between the diffusion film and the light guide plate, the microstructure can increase the distance between the diffusion film and the light guide plate, thereby increasing the air gap between the diffusion film and the light guide plate, and can make the air gap in each part more uniform.
  • the fingerprint detection light passes through the diffusion film and the light guide plate, and can eliminate the interference of the interference light generated by the film interference phenomenon on the fingerprint imaging, and ensure the fingerprint imaging effect, so that the fingerprint sensor can obtain a clear Fingerprint image.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Image Input (AREA)

Abstract

一种屏下指纹识别装置(1)及***、背光模组(22)和液晶显示屏(2)。屏下指纹识别装置(1)适用于具有液晶显示屏(2)的电子设备,屏下指纹识别装置(1)包括位于液晶显示屏(2)的背光模组(22)下方的指纹识别模组(11),背光模组(22)包括扩散膜(222)和相邻设置在扩散膜(222)下方的导光板(223),扩散膜(222)面向导光板(223)的表面具有多个间隔分布的微结构(2221),微结构(2221)用于增大扩散膜(222)和导光板(223)之间的间距,避免指纹检测光在透过扩散膜(222)和导光板(223)之间时产生薄膜干涉现象。屏下指纹识别装置(1)能够消除或减轻背光模组(22)产生的薄膜干涉现象,保证指纹成像效果。

Description

屏下指纹识别装置及***、背光模组和液晶显示屏 技术领域
本申请涉及指纹识别技术领域,尤其涉及一种屏下指纹识别装置及***、背光模组和液晶显示屏。
背景技术
指纹识别解锁已经成为大部分手机、平板电脑等移动终端都配备的功能,由于液晶显示器(Liquid Crystal Display,LCD)屏幕具有厚度薄、省点和无辐射等优点,因而采用LCD屏幕的移动终端的光学屏下指纹识别技术正在向商用化推进。
LCD屏幕通常包括背光模组和位于背光模组上方的显示模组,一般情况下,背光模组的光学膜片包括设置在背板和显示面板之间的、自下而上依次层叠的反射膜、导光板、扩散膜和增亮膜,各层膜片的作用不同。背光模组通过背光灯提供可见光,可见光经过背光模组的各层光学膜片的处理后,形成均匀分布的面光源,以均匀照亮LCD屏幕的显示模组,从而通过显示模组显示画面。
然而,LCD屏幕的背光模组中的各层光学膜片的厚度均较薄,且相邻光学膜片之间存在空气间隙,较薄的光学膜片容易产生形变,进而会形成不均匀的空气间隙,这会导致光线在各层光学膜片之间传播存在光程差,容易产生薄膜干涉现象。由于指纹传感器会接收到薄膜干涉产生的干涉纹路,因而会对指纹识别的成像效果造成严重干扰。
发明内容
本申请提供一种屏下指纹识别装置及***、背光模组和液晶显示屏,能够消除或减轻背光模组产生的薄膜干涉现象,保证指纹成像效果。
第一方面,本申请提供一种屏下指纹识别装置,适用于具有液晶显示屏的电子设备,屏下指纹识别装置的指纹检测区域至少部分位于液晶显示屏的显示区域;
屏下指纹识别装置包括位于液晶显示屏的背光模组下方的指纹识别模组,指纹识别模组用于接收经指纹检测区域上方的手指反射形成的并透过液晶显示屏的指纹检测光,以获取手指的指纹图像;
其中,背光模组包括扩散膜和相邻设置在扩散膜下方的导光板,扩散膜面向导光板的表面具有多个间隔分布的微结构,微结构用于增大扩散膜和导光板之间的间距,避免指纹检测光在透过扩散膜和导光板之间时产生薄膜干涉现象。
在本申请的一种具体实施方式中,微结构为扩散膜的表面形成的凸起结构。
在本申请的一种具体实施方式中,微结构为半球形凸起结构。
在本申请的一种具体实施方式中,微结构的直径在120-170μm之间,微结构的高度在1-3μm之间。
在本申请的一种具体实施方式中,多个微结构在扩散膜的表面均匀间隔排列。
在本申请的一种具体实施方式中,多个微结构沿扩散膜的长度方向和宽度方向均匀间隔排列。
在本申请的一种具体实施方式中,每相邻两行微结构之间的间距与每相邻两列微结构之间的间距相等。
在本申请的一种具体实施方式中,多个微结构沿扩散膜的长度方向均匀间隔排列,每相邻两行微结构之间的间距相等,且相邻两行之间的微结构之间相互错开。
在本申请的一种具体实施方式中,微结构与相邻行的与其前后错开的两个微结构之间的间距相等。
在本申请的一种具体实施方式中,位于相邻两行中相邻的两个微结构之间的间距与位于同一行的相邻两个微结构之间的间距相等。
在本申请的一种具体实施方式中,相邻两行微结构之间的间距在200-450μm之间。
在本申请的一种具体实施方式中,导光板的面向扩散膜的表面具有多个凸起的导光条,导光条沿导光板的宽度方向延伸,且多个导光条沿导光板的长度方向均匀间隔排列。
在本申请的一种具体实施方式中,导光条由导光板的宽度方向上的一侧延伸至另一侧。
在本申请的一种具体实施方式中,导光条的横截面为圆弧形。
在本申请的一种具体实施方式中,导光条的横截面的曲率半径在30-150μm之间,导光条的高度在1-5μm之间。
在本申请的一种具体实施方式中,相邻两个导光条的中心线之间的间距在40-150μm之间。
在本申请的一种具体实施方式中,导光板背离扩散膜的表面具有多个间隔分布的导光颗粒,导光颗粒支撑在导光板和背光模组的反射膜之间。
在本申请的一种具体实施方式中,导光颗粒的高度在3-5μm之间。
在本申请的一种具体实施方式中,导光板背离扩散膜的表面的不同区域的导光颗粒的密度不同。
在本申请的一种具体实施方式中,背光模组还包括相邻设置在扩散膜上方的增亮膜,增亮膜面向扩散膜的表面具有多个间隔分布的增亮颗粒。
在本申请的一种具体实施方式中,增亮颗粒为嵌入增亮膜的微球结构,且增亮颗粒的直径在4-10μm之间。
在本申请的一种具体实施方式中,增亮颗粒在增亮膜表面均匀分布。
在本申请的一种具体实施方式中,屏下指纹识别装置还包括检测光源,检测光源用于发射探测光,探测光透过液晶显示屏照射到指纹检测区域上方的手指,经手指反射形成携带有指纹信息的指纹检测光。
在本申请的一种具体实施方式中,探测光与背光模组提供的用于显示画面的背光的波长不同。
在本申请的一种具体实施方式中,探测光为红外光,背光模组提供的背光为可见光。
第二方面,本申请提供一种背光模组,适用于支持屏下指纹识别功能的液晶显示屏,背光模组包括扩散膜和相邻设置在扩散膜下方的导光板,扩散膜面向导光板的表面具有多个间隔分布的微结构,微结构用于增大扩散膜和导光板之间的间距,避免指纹检测光在透过扩散膜和导光板之间时产生光干涉。
在本申请的一种具体实施方式中,微结构为扩散膜的表面形成的凸起结 构。
在本申请的一种具体实施方式中,微结构为半球形凸起结构。
在本申请的一种具体实施方式中,微结构的曲率半径在120-170μm之间,微结构的高度在1-3μm之间。
在本申请的一种具体实施方式中,多个微结构在扩散膜的表面均匀间隔排列。
在本申请的一种具体实施方式中,多个微结构沿扩散膜的长度方向和宽度方向均匀间隔排列。
在本申请的一种具体实施方式中,每相邻两行微结构之间的间距与每相邻两列微结构之间的间距相等。
在本申请的一种具体实施方式中,多个微结构沿扩散膜的长度方向均匀间隔排列,每相邻两行微结构之间的间距相等,且相邻两行之间的微结构之间相互错开。
在本申请的一种具体实施方式中,微结构与相邻行的与其前后错开的两个微结构之间的间距相等。
在本申请的一种具体实施方式中,位于相邻两行中相邻的两个微结构之间的间距与位于同一行的相邻两个微结构之间的间距相等。
在本申请的一种具体实施方式中,相邻两行微结构之间的间距在200-450μm之间。
在本申请的一种具体实施方式中,导光板的面向扩散膜的表面具有多个凸起的导光条,导光条沿导光板的宽度方向延伸,且多个导光条沿导光板的长度方向均匀间隔排列。
在本申请的一种具体实施方式中,导光条由导光板的宽度方向上的一侧延伸至另一侧。
在本申请的一种具体实施方式中,导光条的横截面为圆弧形。
在本申请的一种具体实施方式中,导光条的横截面的曲率半径在30-150μm之间,导光条的高度在1-5μm之间。
在本申请的一种具体实施方式中,相邻两个导光条的中心线之间的间距在40-150μm之间。
在本申请的一种具体实施方式中,导光板背离扩散膜的表面具有多个间 隔分布的导光颗粒,导光颗粒支撑在导光板和背光模组的反射膜之间。
在本申请的一种具体实施方式中,导光颗粒的高度在3-5μm之间。
在本申请的一种具体实施方式中,导光板背离扩散膜的表面的不同区域的导光颗粒的密度不同。
在本申请的一种具体实施方式中,背光模组还包括相邻设置在扩散膜上方的增亮膜,增亮膜面向扩散膜的表面具有多个间隔分布的增亮颗粒。
在本申请的一种具体实施方式中,增亮颗粒为嵌入增亮膜的微球结构,且增亮颗粒的直径在4-10μm之间。
在本申请的一种具体实施方式中,增亮颗粒在增亮膜表面均匀分布。
第三方面,本申请提供一种屏下指纹识别***,包括液晶显示屏和如上任一项所述的屏下指纹识别装置,液晶显示屏包括显示模组和如上任一项所述的背光模组,其中,背光模组位于显示模组下方。
第四方面,本申请提供一种支持屏下指纹识别功能的液晶显示屏,液晶显示屏的下方设置有如上任一项所述的屏下指纹识别装置,液晶显示屏包括显示模组和如上任一项所述的背光模组,背光模组位于显示模组下方,用于为显示模组提供背光,并将液晶显示屏上方的手指形成的指纹检测光传输至背光模组下方的指纹传感器。
本申请提供的屏下指纹识别装置及***、背光模组和液晶显示屏,屏下指纹识别装置适用于具有液晶显示屏的电子设备,且屏下指纹识别装置的指纹检测区域至少部分位于液晶显示屏的显示区域;屏下指纹识别装置包括指纹识别模组,指纹识别模组位于液晶显示屏的背光模组下方,指纹检测区域上方的手指反射的携带指纹信息的指纹检测光透过液晶显示屏传输至指纹传感器,通过指纹传感器接收并识别指纹图像。其中,背光模组包括层叠设置的扩散膜和导光板,导光板位于扩散膜下方,通过在扩散膜的面向导光板一侧的表面上设置多个间隔分布的微结构,多个微结构支撑在扩散膜和导光板之间,微结构可增大扩散膜和导光板之间的间距,进而增大了扩散膜和导光板之间的空气间隙,且可使各部位的空气间隙更为均匀,进而可避免指纹检测光在透过扩散膜和导光板之间时产生薄膜干涉现象,可以消除由薄膜干涉现象产生的干涉光对指纹成像的干扰,保证指纹成像效果,以使指纹传感器获得清晰的指纹图像。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单介绍,显而易见地,下面描述中的附图是本申请的一些实施例。对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一种屏下指纹识别***的结构示意图;
图2为背光模组的局部变形示意图;
图3为图2的背光模组产生的薄膜干涉图样;
图4为本申请实施例一提供的背光模组的结构示意图;
图5为本申请实施例一提供的扩散膜的侧视图;
图6为本申请实施例一提供的一种扩散膜的主视图;
图7为本申请实施例一提供的另一种扩散膜的主视图;
图8为本申请实施例一提供的导光板的结构示意图。
附图标记说明:
1-屏下指纹识别装置;11-指纹识别模组;111-光路引导结构;112-指纹传感器;12-检测光源;2-液晶显示屏;21-显示模组;211-透明保护盖板;212-液晶面板;22-背光模组;221-增亮膜;2211-增亮颗粒;222-扩散膜;2221、2221a、2221b、2221c-微结构;223-导光板;2231-导光条;2232-导光颗粒;224-反射膜;225-背板;3-牛顿环。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例一
图1为一种屏下指纹识别***的结构示意图;图2为背光模组的局部变 形示意图;图3为图2的背光模组产生的薄膜干涉图样;图4为本申请实施例一提供的背光模组的结构示意图;图5为本申请实施例一提供的扩散膜的侧视图;图6为本申请实施例一提供的一种扩散膜的主视图;图7为本申请实施例一提供的另一种扩散膜的主视图;图8为本申请实施例一提供的导光板的结构示意图。
如图1所示,本实施例提供一种屏下指纹识别装置1,适用于具有液晶显示屏2的电子设备,屏下指纹识别装置1的指纹检测区域至少部分位于液晶显示屏2的显示区域。具体的,本实施例提供的屏下指纹识别装置1可以适用于液晶显示屏(LCD)2,该屏下指纹识别装置1为屏下光学指纹识别装置,可以应用在智能手机、平板电脑以及其它采用液晶显示屏2的移动终端或者电子设备上。
更具体的,在上述移动终端或电子设备中,该屏下指纹识别装置1可以设置在液晶显示屏2下方的局部区域,并与液晶显示屏2配合形成屏下指纹识别***。其中,该屏下指纹识别装置1的指纹检测区域可以具***于液晶显示屏2的至少部分显示区域之中。例如,通过将手指放置在液晶显示屏2的显示区域中对应的指纹检测区域上方,以使屏下指纹识别装置1获取并识别手指的指纹图像。
如图1所示,液晶显示屏2一般包括液晶面板212和背光模组22,背光模组22设置在液晶面板212下方,用于为液晶面板212提供背光源,以使液晶面板212显示画面供用户观看。
具体的,屏下指纹识别装置1可以包括位于液晶显示屏2的背光模组22下方的指纹识别模组11,指纹识别模组11用于接收经指纹检测区域上方的手指反射形成的并透过液晶显示屏2的指纹检测光,以获取手指的指纹图像。
如图1所示,屏下指纹识别装置1包括指纹识别模组11,指纹识别模组11可以包括指纹传感器112,指纹传感器112可以为光学指纹传感器112,指纹传感器112可以包括具有多个感应单元的光学感应阵列以及与该光学感应阵列电性连接的读取电路及其他辅助电路。该光学感应阵列的感应区域可以对应指纹传感器112的指纹识别区域。
其中,指纹传感器112可以位于液晶显示屏2的指纹检测区域下方,例如,指纹传感器112位于液晶显示屏2的指纹检测区域正对的背光模组22下 方,通过将手指放置在液晶显示屏2的指纹检测区域上方,手指反射形成的携带指纹信息的指纹检测光透过背光模组22传输至指纹传感器112,通过指纹传感器112的指纹识别区域获取和识别指纹图像。
另外,由于屏下指纹识别装置1对应的指纹检测区域可以位于液晶显示屏2的显示区域之中,在使用者需要对采用上述屏下指纹识别装置1的移动终端或者电子设备进行指纹解锁或者其他指纹验证的时候,其只需将手指按压在该液晶显示屏2的指纹检测区域便可以实现指纹输入,因此,该液晶显示屏2的显示区域可以扩展至覆盖整个移动终端或者电子设备的正面,满足高屏占比的全面屏需求。
在一种可能的实施方式中,指纹传感器112的光学感应阵列以及其他电路可以通过半导体工艺制作在一个芯片(Die)上,其中,光学感应阵列具体为光探测器(Photo detector)阵列,其包括多个呈阵列式分布的光探测器,光探测器可以作为光学感应单元。
另外,指纹识别模组11还可以包括光路引导结构111以及其他光学组件,光路引导结构111和其他光学组件可以设置在液晶显示屏2的指纹检测区域下方;其中,光路引导结构111主要用于将手指按压在指纹检测区域时产生并透过液晶显示屏2的指纹检测光引导至指纹传感器112的光学感应阵列进行光学检测;上述其他光学组件可以包括滤光层(Filter),该滤光层可以设置在光路引导结构111和指纹传感器112之间,用于滤除通过光路引导结构111的干扰光,以避免上述干扰光被光学感应阵列接收而影响指纹识别效果。
其中,本实施例提供的屏下指纹识别装置1中,指纹传感器112、光路引导结构111和滤光层可以封装在同一个光学部件以形成指纹识别模组11。
光路引导结构111可以采用多种实施方案。在一种可能的实施方式中,光路引导结构111可以为光学透镜(Lens)层,其具有一个或多个透镜单元,比如一个或多个非球面透镜组成的透镜组。光学透镜层可以用于将从手指形成并透过液晶显示屏2的指纹检测光汇聚到其下方的指纹传感器112的光学感应阵列,以使得该光学感应阵列可以基于该指纹检测光进行光学成像,从而得到该手指的指纹图像。
可选地,光学透镜层在该一个或多个透镜单元的光路中还可以形成有针孔或者孔径光阑,该针孔或者孔径光阑可以配合该光学透镜层扩大该屏下指 纹识别装置1的视场(Filed of View,简称:FOV),以提高该屏下指纹装置的指纹成像效果。
在另一种可能的实施方式中,光路引导结构111可以具体为在半导体硅片或者其他基底制作而成的准直器(Collimator)层,其具有多个准直单元,准直单元可以具体为具有一定长宽比的准直通孔;使用者在液晶显示屏2进行指纹识别时,在液晶显示屏2上方的手指形成的并透过液晶显示屏2的指纹检测光中,入射角度与该准直单元的延伸方向基本一致的指纹检测光可以穿过准直单元并被其下方的感应单元接收,而入射角度过大的指纹检测光在该准直单元内部经过多次反射被衰减掉,因此每一个感应单元基本只能接收到其正上方的指纹纹路形成的指纹检测光,从而使得光学感应阵列分别利用各个检测单元检测到的指纹检测光来获取到手指的指纹图像。
在其他实施方式中,光路引导结构111还可以具体包括微透镜(Micro-Lens)层和光学膜层,该微透镜层包括由多个微透镜形成的微透镜阵列,其可以通过半导体生长工艺或者其他工艺形成在该指纹传感器112的光学感应阵列上方,并且每一个微透镜可以分别对应于该光学感应阵列的一个或者多个感应单元。光学膜层可以形成在该微透镜层和该光学感应单元之间,其可以包括至少一个具有微孔的挡光层以及形成在挡光层和微透镜层及光学感应阵列之间的介质层、钝化层或缓冲层等,其中至少一个具有微孔的挡光层采用特定光学设计来使微孔形成在其对应的微透镜和感应单元之间,从而限定感应单元的接收光路。
其中,该挡光层可以阻挡相邻微透镜和感应单元之间的光学干扰,并且微透镜将接收到的光线以垂直或者倾斜的特定角度汇聚到该微孔内部并经由该微孔传输到该感应单元以进行光学指纹成像。
可以理解的是,在实际应用中,液晶显示屏2还可以包括透明保护盖板211,比如玻璃盖板或者蓝宝石盖板,其具***于液晶显示屏2的液晶面板212的上方并覆盖液晶面板212的正面。因此,本实施例中,所谓的手指按压在液晶显示屏2上,实际上可以具体是指按压在液晶面板212上方的透明保护盖板211或者覆盖透明保护盖板211表面的保护层(比如钢化膜或者其他保护膜)。
在一种可能的实施方式中,屏下指纹识别装置1还可以包括检测光源12, 检测光源12用于发射探测光,探测光透过液晶显示屏2照射到指纹识别区域上方的手指,经手指反射形成携带有指纹信息的指纹检测光。
如图1所示,本实施例中,屏下指纹识别装置1除了包括指纹识别模组11外,还包括检测光源12,检测光源12发射探测光,探测光可以透过液晶显示屏2照射到指纹监测区域上方的手指,探测光照射至手指后被手指反射形成指纹检测光,形成的指纹检测光透过液晶显示屏2传输至背光模组22下方的指纹识别模组11,携带指纹信息的指纹检测光在指纹传感器112上形成指纹图像,通过指纹传感器112进行指纹识别。
为了避免指纹检测光与背光模组22提供的背光相互影响,如图1所示,在一种可能的实施方式中,探测光与背光模组22提供的用于显示画面的背光的波长可以不同。在实际应用中,背光模组22中可以包括背光源,背光源提供用于照亮液晶显示屏2的背光,通过背光模组22提供的背光以使液晶显示屏2显示画面。
本实施例中,屏下指纹识别装置1的检测光源12发射的探测光与背光模组22提供的背光的波长不同,这样可以避免探测光和背光之间相互影响,背光模组22的背光源发出的背光可以被全部用来照亮屏幕,以保证液晶显示屏2的亮度;而检测光源12发出的探测光则主要用来照射向指纹检测区域上方的手指,以使手指向指纹识别模组11反射足够的光线,进而可以确保指纹传感器112获取到清晰度较好的指纹图像。
在一种具体实施方式中,探测光可以为红外光,背光模组22提供的背光可以为可见光。本实施例中,屏下指纹识别装置1可以采用特定波长的非可见光源来作为指纹激励光源从而实现光学指纹识别,例如,检测光源12发出的探测光可以为红外光,即检测光源12为红外光源,示例性的,红外光源可以为红外LED光源、红外垂直腔面发射激光器(Vertical Cavity Surface Emitting Laser,简称:VCSEL)或者红外激光二极管(Laser Diode)。
检测光源12发出的红外光可以透过液晶面板212或者透明保护盖板211照射至液晶显示屏2的指纹检测区域上方的手指,并且红外光可在手指表面发生发射或者从手指表面透射形成红外指纹检测光,该红外指纹检测光携带有手指的指纹信息,其可以透过液晶显示屏2的液晶面板212和背光模组22,并传输到背光模组22下方的指纹识别模组11,指纹识别模组11通过光路引 导结构111将指纹检测光引导至指纹传感器112的光学感应阵列,光学感应阵列可以接受指纹检测光并进一步根据指纹检测光获取手指的指纹信息。
背光模组22中的背光源提供的背光可以为可见光,通过可见光照亮液晶显示屏2,以使液晶显示屏2显示画面;这样屏下指纹识别装置1的检测光源12为红外光,红外光区别于背光的可见光,以避免检测光源12和背光源之间相互影响,使背光源发出的可见光全部用于照亮液晶显示屏2,检测光源12发出的红外光全部用于照射至手指以形成指纹检测光。
本实施例中,液晶显示屏2的背光模组22可以包括扩散膜222和相邻设置在扩散膜222下方的导光板223,扩散膜222面向导光板223的表面具有多个间隔分布的微结构2221,微结构2221用于增大扩散膜222和导光板223之间的间距,避免指纹检测光在透过扩散膜222和导光板223之间时产生薄膜干涉现象。
由于经手指反射的指纹检测光需要透过背光模组22传输至指纹识别模组11,背光模组22至少包括位于液晶面板212下方的依次层叠的扩散膜222和导光板223,导光板223可以相邻设置在扩散膜222下方,对于侧入式背光模组22,背光源通常设置在导光板223侧方,导光板223用于将背光源发射的线光源转换为面光源并射向背光模组22上方的液晶面板212,扩散膜222用于对通过导光板223的面光源进行进一步均匀化处理,以形成均匀的面光源。
应当理解的是,除了扩散膜222和导光板223外,背光模组22还包括层叠在扩散膜222上方或者导光板223下方的其他光学膜片,在此不再赘述。在导光板223下方通常还设置有背板225,背板225用于支撑背光模组22中的光学膜片,而指纹识别模组11可以设置在背板225下方。背板225通常可以由强度和刚度较好的金属材料支撑,例如,背板225可以为钢板,通过在背板225上与指纹识别模组11对应的部位开设通孔,以使手指反射的指纹检测光在透过各层光学膜片后,穿过背板225上的通孔照射至指纹识别模组11,以使指纹识别模组11可以接收到指纹检测光。
如图2和图3所示,各层上下叠设的光学膜片之间不可避免的存在空气间隙,尤其对于光学膜片的对应背板225的通孔的区域,由于该区域没有背板225的支撑,加上光学膜片自身的重力,在对应背板225的通孔的区域, 各层光学膜片均有不同程度的向背板225的通孔凹陷的现象,这会导致各层光学膜片之间形成不均匀的空气间隙,不均匀的空气间隙会导致光线传播存在光程差。
由于指纹检测区域位于该区域的正上方,因而指纹检测区域上方的手指反射的指纹检测光会经过该区域对应的各层光学膜片,指纹检测光通过各层光学膜片之间的不均匀的空气间隙时,光学膜片透射和反射的指纹检测光之间会产生薄膜干涉现象,进而会使指纹检测光形成“牛顿环3”,这会使指纹传感器112接收到的图像形成清晰的“牛顿环3”,“牛顿环3”甚至会覆盖指纹图像,进而会降低指纹传感器112接收到的指纹图像的清晰度,甚至指纹传感器112无法接收到有效的指纹图像,这会严重干扰指纹成像,导致指纹传感器112无法有效接收和识别指纹图像。
为了使指纹传感器112能够获取到清晰的指纹图像,以确保指纹传感器112可有效识别指纹图像,避免指纹检测光在透过背光模组22的过程中产生薄膜干涉现象,避免各光学膜片之间产生“牛顿环3”,本实施例中,通过改变背光模组22中各光学膜片之间的空气间隙,解决指纹检测光透过背光模组22时产生的薄膜干涉的问题。
具体的,如图4至图7所示,对于背光模组22中的扩散膜222和导光板223之间在对应背板225的通孔的区域产生的不均匀的空气间隙,通过在扩散膜222的面向导光板223一侧的表面设置多个微结构2221,多个微结构2221间隔分布在扩散膜222的表面上,这样通过多个微结构2221支撑在扩散膜222和导光板223之间,微结构2221可以增大扩散膜222和导光板223之间的间隙,从而增大扩散膜222和导光板223之间的空气间隙,避免指纹检测光在通过扩散膜222和导光板223之间时产生薄膜干涉现象,进而可以减弱甚至避免指纹检测光在指纹传感器112上形成“牛顿环3”,以确保指纹成像效果,使指纹传感器112获取到清晰的指纹图像。
可以理解的是,多个微结构2221间隔分布并覆盖扩散膜222的整个表面,这样可以整体增大扩散膜222和导光板223之间的空气间隙,且可以提高扩散膜222和导光板223之间不同部位的间隙大小的均匀程度,使扩散膜222和导光板223之间具有较为均匀的空气间隙,从而可以更好的消除扩散膜222和导光板223之间产生的薄膜干涉现象。
如图5所示,在一种可能的实施方式中,扩散膜222面向导光板223的表面的微结构2221可以为扩散膜222的表面形成的凸起结构。具体的,扩散膜222的表面的微结构2221为其表面形成的向导光板223凸出的凸起结构,该凸起结构支撑在扩散膜222和导光板223之间,凸起结构的顶端与导光板223抵接,凸起结构的高度即为扩散膜222和导光板223之间的间隙,如此通过将微结构2221设置为凸起结构,可以增大扩散膜222和导光板223之间的空气间隙,避免指纹检测光在通过扩散膜222和导光板223之间时产生薄膜干涉现象。
具体的,如图5所示,微结构2221可以为半球形凸起结构。通过将微结构2221设置为半球形凸起结构,微结构2221以半球形的结构凸起在扩散膜222的表面,这样微结构2221与扩散膜222之间的接触面积较大,便于在扩散膜222表面形成微结构2221,且微结构2221与扩散膜222的连接强度较大;另外,微结构2221的球面顶点与导光板223接触,微结构2221与导光板223为点接触,对导光板223的导光性能影响较小,且相邻的微结构2221之间的间隙较大,可以保证扩散膜222和导光板223之间具有较大的空气间隙,其中,半球面的高度即为扩散膜222和导光板223之间的间距大小。
在一种具体实施方式中,微结构2221的直径可以在120-170μm之间,微结构2221的高度可以在1-3μm之间。通过将微结构2221的直径设置在120-170μm之间,使作为微结构2221的半球形凸起具有较大的体积,同时将半球形凸起的高度控制在1-3μm之间,这样形成的半球形凸起与扩散膜222的接触面积大,且半球形凸起的表面较为平缓,这样可以在保证微结构2221能够起到增大扩散膜222与导光板223之间的间距,同时可以避免作为微结构2221的半球形凸起的表面过于陡峭,表面陡峭的半球形凸起与导光板223接触时,可以会划伤或损坏导光板223表面,从而会影响导光板223的导光效果。
通过将微结构2221的高度控制在1-3μm之间,例如,微结构2221的高度为1μm、1.5μm、2μm、2.5μm或3μm,优选的,微结构2221的高度可以为2.3μm,这样扩散膜222和导光板223之间的间隙可以有效解决扩散膜222与导光板223之间的薄膜干涉问题;同时,微结构2221的高度在合适的范围内,且微结构2221的直径控制在120-170μm之间的较大的半径范围 内,例如,微结构2221的直径可以为130μm、138μm、142μm、153μm或160μm,优选的,微结构2221的直径可以为150μm,这样可以使微结构2221形成了平缓的半球形凸起,这样微结构2221对扩散膜222的匀光性能不会产生较大影响,不影响液晶显示屏2的显示效果。
本实施例通过将扩散膜222表面的微结构2221设置为直径在120-170μm之间、高度在1-3μm之间的半球形凸起结构,增大了扩散膜222与导光板223之间的间隙,有效解决了扩散膜222与导光板223之间的薄膜干涉现象,改善了指纹成像效果;同时,微结构2221为平缓的半球形凸起结构,不会影响扩散膜222的匀光效果,也不会对导光板223表面造成损伤。
如图6和图7所示,在一种可能的实施方式中,多个微结构2221可以在扩散膜222的表面均匀间隔排列。如前所述,本实施例中,扩散膜222表面的微结构2221为体积较大且表面平缓的半球形凸起结构,且多个微结构2221与导光板223接触,因而可以使多个微结构2221在扩散膜222表面均匀间隔排布,这样扩散膜222的各区域均分布有微结构2221,扩散膜222与导光板223各区域之间的间隙较为均匀,且微结构2221对扩散膜222和导光板223有较好的支撑作用,可以提升微结构2221改善扩散膜222和导光板223之间薄膜干涉的效果。
另外,由于微结构2221分布均匀,因而便于在扩散膜222表面形成微结构2221,且可以提高扩散膜222和导光板223的平整度,进而可以改善扩散膜222和导光板223的光学效果。
对于多个微结构2221在扩散膜222表面均匀间隔排列的情况,如图6所示,在一种可能的实施方式中,多个微结构2221可以沿扩散膜222的长度方向和宽度方向均匀间隔排列。通过微结构2221沿扩散膜222的长度方向和宽度方向排列,多个微结构2221可以形成与扩散膜222的长度方向平行的行排列形式和与扩散膜222的宽度方向平行的列排列形式,多行和多列微结构2221交织形成分布均匀的矩形分布形式。
具体的,每相邻两行微结构2221之间的间距与每相邻两列微结构2221之间的间距可以相等。本实施例中,相邻两行微结构2221之间的间距与相邻两列微结构2221之间的间距相等,即矩形分布形式的微结构2221的行间距和列间距相同,这样每行中相邻的微结构2221之间的间距与相邻两行中相邻 的微结构2221之间的间距相等,相邻两行中相邻的四个微结构2221之间形成正方形结构。
如图7所示,在另一种可能的实施方式中,多个微结构2221可以沿扩散膜222的长度方向均匀间隔排列,每相邻两行微结构2221之间的间距相等,且相邻两行之间的微结构2221之间相互错开。
多个微结构2221除了沿扩散膜222的长度方向和宽度方向排列,形成行对行、列对列的形式外,微结构2221也可以形成沿扩散膜222的长度方向均匀间隔排列,相邻两行之间的间距相等,但相邻两行之间的微结构2221相互错开的均匀排列的结构形式。这样微结构2221为行排列形式,每行中相邻微结构2221之间的间距均相等,且相邻行之间的行间距相等,微结构2221仍然可形成在扩散膜222表面均匀阵列排布的结构,但相邻行之间的微结构2221相互错开,即相邻行的相邻的微结构2221不在同一列上。
具体的,微结构2221与相邻行的与其前后错开的两个微结构2221之间的间距可以相等。如图7所示,以位于某一行中的某一微结构2221a为例,相邻行的与该微结构2221a相邻的微结构2221有两个,分别是位于该微结构2221左侧的微结构2221b和位于该微结构2221a右侧的微结构2221c,通过使该微结构2221a与相邻行的这两个微结构2221b和微结构2221c之间的间距相等,即微结构2221a在其相邻行的投影位于微结构2221b和微结构2221c之间连线的中点。这样每三行微结构2221中,中间行的相邻的两个微结构2221与两侧的两行中的位于中间行的两个微结构2221连线的中垂线上的两个微结构2221之间可以形成菱形结构。例如,微结构2221a、微结构2221b、微结构2221c和微结构2221d形成另行结构。
在一种具体实施方式中,位于相邻两行中相邻的两个微结构2221之间的间距可以与位于同一行的相邻两个微结构2221之间的间距相等。通过相邻两行中相邻的两个微结构2221之间的间距与位于同一行的相邻航哥微结构2221之间的间距相等,例如,微结构2221a和微结构2221b之间的间距与微结构2221b和微结构2221c之间的间距相等,这样微结构2221a和微结构2221b之间、微结构2221b和微结构2221c之间、微结构2221a和微结构2221c之间的间距均相等,相邻两行的相邻的三个微结构2221之间形成正三角形结构,微结构2221在扩散膜222的表面分布更均匀。
不论多个微结构2221在扩散膜222表面是以整体为矩形分布的形式,还是以整体为菱形分布的形式,可选的,相邻两行微结构2221之间的间距均可以在200-450μm之间。通过将微结构2221的行间距设置在200-450μm之间,这样微结构2221的间距与导光板223表面的结构较为匹配,可以将扩散膜222和导光板223之间的间距控制在合适的范围内,且微结构2221在扩散膜222表面具有较为适中的密度,对扩散莫得匀光作用无显著影响。例如,相邻两行微结构2221之间的间距可以为250μm、300μm、350μm、400μm或450μm。
其中,对于微结构2221以行和列排列形成整体为矩形分布的结构形式,优选的,相邻两行微结构2221之间的间距与同一行中相邻两个微结构2221之间的间距相等,可以为320μm;对于微结构2221为行排列且相邻行之间相互错开形成整体为菱形分布的结构形式,优选的,相邻两行微结构2221之间的间距为320μm、同一行中相邻两个微结构2221之间的间距为370μm,这样相邻两行的三个相邻的微结构2221之间的连线形成正三角形。
如图8所示,在一种可能的实施方式中,导光板223的面向扩散膜222的表面可以具有多个凸起的导光条2231,导光条2231可以沿导光板223的宽度方向延伸,且多个导光条2231可以沿导光板223的长度方向均匀间隔排列。
本实施例中,导光板223的面向扩散膜222的表面具有多个凸起的导光条2231,导光条2231可以增强导光板223的导光作用,以使位于导光板223的一侧的背光源发出的背光更好的传输至导光板223的另一侧,使从导光板223的正面出射的面光源具有较为均匀的亮度。
具体的,导光条2231沿导光板223的宽度方向延伸,且多个导光条2231在导光板223的长度方向上间隔排列,这样可以增强导光条2231的导光作用,背光源发出的背光依次通过不同的导光条2231到达导光板223的另一侧。另外,多个导光条2231和扩散膜222的微结构2221共同支撑在扩散膜222和导光板223之间,可以进一步增大扩散膜222和导光板223之间的间距,有效解决扩散膜222与导光板223之间的薄膜干涉的问题。
需要说明的是,如前所述,本实施例中,通过将扩散膜222表面的微结构2221设置为均匀间隔排布的形式,可以使微结构2221更好的与导光条2231 对应,多个微结构2221和不同导光条2231的不同部位接触,这样扩散膜222和导光板223之间的间隙在整体上较为均匀,扩散膜222与导光板223之间的间距由微结构2221和导光条2231共同决定。
如图8所示,可选的,导光条2231可以由导光板223的宽度方向上的一侧延伸至另一侧。通过导光条2231由导光板223的宽度方向的一侧延伸至另一侧,入射至导光板223的各部位和各角度的光线均可传输至导光条2231,导光条2231均可对其进行导光,这样可以提升导光条2231的导光效果。
具体的,导光条2231的横截面可以为圆弧形。如图8所示,通过将导光条2231的横截面设置为圆弧形,一方面,圆弧形的导光条2231具有一定的聚光作用,在起到增强导光板223的导光作用的同时,设置导光条2231还可以增加从导光板223出射的光线的亮度,以增强液晶显示屏2的显示效果。
另一方面,通过将导光条2231设置为圆弧柱形状,由于扩散膜222的微结构2221为半球形凸起,因而导光条2231和微结构2221为圆弧形接触形式,两者之间圆滑接触,因而不会对导光条2231和微结构2221产生损伤,可以提高两者的强度。
更重要的是,如图8所示,扩散膜222的微结构2221和导光条2231接触时,可以是微结构2221的顶点和导光条2231的顶端接触,或者是微结构2221球面的其他部位与导光条2231的其他部位接触,不论是微结构2221和导光条2231的那个部位接触,均可确保扩散膜222和导光板223之间具有较大间隙,以有效避免扩散膜222和导光板223之间产生薄膜干涉现象。
在一种具体实施方式中,导光条2231的横截面的曲率半径可以在30-150μm之间,导光条2231的高度可以在1-5μm之间。通过将导光条2231的横截面的曲率半径控制在30-150μm之间,并且将导光条2231的高度控制在1-5μm之间,这样导光条2231在导光板223的表面形成较为平缓的圆弧柱状结构,导光条2231可以提高导光板223的导光效果,同时,导光条2231和扩散膜222的微结构2221接触时的稳定性较好。例如,导光条2231的横截面的曲率半径可以为30μm、50μm、70μm、90μm、110μm或130μm等,优选的,导光条2231的横截面的曲率半径为40μm。
其中,通过将导光条2231的高度设置在1-5μm之间,导光条2231和扩散膜222的微结构2221的整体高度可以大于5μm,这样完全可以满足扩散 膜222和导光板223之间避免发生薄膜干涉现象的条件,能够有效解决扩散膜222和导光板223之间产生“牛顿环3”的问题,以保证指纹成像效果。示例性的,导光条2231的高度可以为1μm、1.5μm、2μm、2.5μm、3μm、3.5μm、4μm、4.5μm或5μm,优选的,导光条2231的高度可以为3μm。
可选的,相邻两个导光条2231的中心线之间的间距可以在40-150μm之间。通过将相邻两个导光条2231的中心线之间的间距控制在40-150μm之间,结合导光条2231的横截面的曲率半径以及导光条2231的高度,可以使导光条2231之间具有较为合适的间隔,导光条2231可以覆盖导光板223整体,以提高导光条2231的导光效果;并且,导光条2231和扩散膜222的微结构2221之间的对应程度较好,可以较好的控制导光板223和扩散膜222之间的间隙。示例性的,相邻两个导光条2231的中心线之间的间距可以为50μm、70μm、90μm、110μm或130μm,优选的,相邻两个导光条2231的中心线之间的间距可以为80μm。
如图8所示,在一种可能的实施方式中,导光板223背离扩散膜222的表面可以具有多个间隔分布的导光颗粒2232,导光颗粒2232支撑在导光板223和背光模组22的反射膜224之间。
背光模组22中,在导光板223的下方还设置有反射膜224,反射膜224位于导光板223和背板225之间,反射膜224用于将背光源射出的光线全都反射至导光板223,以使导光板223将光线全部由其正面射出。其中,导光板223的背离扩散膜222的表面,也就是导光板223面向反射膜224的表面形成有多个导光颗粒2232,多个导光颗粒2232间隔分布在导光板223表面,当背光源射出的光线射到各导光颗粒2232时,导光颗粒2232会将反射光向各个角度扩散,然后会破坏反射条件由导光板223正面射出。通过不同部位的导光颗粒2232,可以使导光板223均匀发光。
另外,导光颗粒2232还支撑在导光板223和反射膜224之间,通过对导光颗粒2232设置合理的尺寸大小,可以将导光板223和反射膜224之间的间隙控制在合理范围内,以消除导光板223和反射膜224之间的薄膜干涉现象。
可以理解的是,导光条2231和导光颗粒2232可以与导光板223的材质相同,可以通过蚀刻等方式在导光板223表面形成导光条2231和导光颗粒2232,使导光板223、导光条2231及导光颗粒2232为一体成型结构。
具体的,导光颗粒2232的高度可以在3-5μm之间。通过将导光颗粒2232的高度设置在3-5μm之间,可以将导光板223和反射膜224之间的间距控制在3-5μm之间,这样可以有效解决导光板223和反射膜224之间的薄膜干涉问题,避免指纹检测光通过导光板223和反射膜224之间时产生“牛顿环3”,提升指纹成像效果。示例性的,导光颗粒2232的高度可以为3μm、3.5μm、4μm、4.5μm或5μm,优选的,导光颗粒2232的高度可以为4.6μm。
在一种具体实施方式中,导光板223背离扩散膜222的表面的不同区域的导光颗粒2232的密度可以不同。本实施例中,导光颗粒2232可以是以非均匀的形式分布在导光板223面向反射膜224的表面上,其中,由于背光模组22的背光源设置在导光板223的一侧,因而导光板223中的离背光源较近的部位的光线较强,而离背光源较远的部位的光线较弱,因而导光板223上离背光源较近的部位的导光颗粒2232的密度可以小于离背光源较远的部位的导光颗粒2232的密度,以通过不同密度的导光颗粒2232使导光板223各部位具有较为均匀的光强度。
如图4所示,在一种可能的实施方式中,背光模组22还可以包括相邻设置在扩散膜222上方的增亮膜221,增亮膜221面向扩散膜222的表面可以具有多个间隔分布的增亮颗粒2211。背光模组22中还包括增亮膜221,增亮膜221相邻设置在扩散膜222上方,增亮膜221用于增强光线亮度,扩散膜222将光线均匀化后射向增亮膜221,通过增亮膜221进一步增大光线的亮度,以提高液晶显示屏2的亮度。
本实施例中,增亮膜221面向扩散膜222的表面形成有多个增亮颗粒2211,多个增亮颗粒2211间隔分布,增亮颗粒2211支撑在增亮膜221和扩散膜222之间,以增大增亮膜221和扩散膜222之间的间隙,避免指纹检测光通过增亮膜221和扩散膜222之间时产生薄膜干涉现象,以提高指纹成像效果。
如图4所示,具体的,增亮颗粒2211可以为嵌入增亮膜221的微球结构,且增亮颗粒2211的直径在4-10μm之间。通过将增亮颗粒2211设置为微球结构,增亮颗粒2211可以进一步增强光亮度,可以进一步提高液晶显示屏2的亮度。并且,通过将增亮颗粒2211的直径控制在4-10μm之间,在增亮颗粒2211有一部分嵌入增亮膜221的基础上,暴露在增亮膜221表面的增亮颗粒2211的高度仍然可以保证增亮膜221和扩散膜222之间不会产生薄膜干涉 现象。
示例性的,增亮颗粒2211的直径可以为4μm、5μm、6μm、7μm或8μm,优选的,增亮颗粒2211的直径可以为5μm。
在一种具体实施方式中,增亮颗粒2211可以在增亮膜221表面均匀分布。本实施例中,增亮颗粒2211的主要作用是增大增亮膜221和扩散膜222之间的间隙,并且由于增亮颗粒2211的直径较小,因而增亮颗粒2211可以采用蚀刻或印刷等方式形成在增亮膜221表面,增亮颗粒2211可以随机分布在增亮膜221表面,这样较小和较密的增亮颗粒2211在增亮膜221表面整体较为均匀。
本实施例提供的屏下指纹识别装置适用于具有液晶显示屏的电子设备,且屏下指纹识别装置的指纹检测区域至少部分位于液晶显示屏的显示区域;屏下指纹识别装置包括指纹识别模组,指纹识别模组位于液晶显示屏的背光模组下方,指纹检测区域上方的手指反射的携带指纹信息的指纹检测光透过液晶显示屏传输至指纹传感器,通过指纹传感器接收并识别指纹图像。其中,背光模组包括层叠设置的扩散膜和导光板,导光板位于扩散膜下方,通过在扩散膜的面向导光板一侧的表面上设置多个间隔分布的微结构,多个微结构支撑在扩散膜和导光板之间,微结构可增大扩散膜和导光板之间的间距,进而增大了扩散膜和导光板之间的空气间隙,且可使各部位的空气间隙更为均匀,进而可避免指纹检测光在透过扩散膜和导光板之间时产生薄膜干涉现象,可以消除由薄膜干涉现象产生的干涉光对指纹成像的干扰,保证指纹成像效果,以使指纹传感器获得清晰的指纹图像。
实施例二
在上述实施例一的基础上,本实施例提供一种屏下指纹识别***,该屏下指纹识别***包括液晶显示屏2和实施例一中所述的屏下指纹识别装置1,液晶显示屏2包括显示模组21和背光模组22,其中,背光模组22位于显示模组21下方。
具体的,本实施例可以参考实施例一中对于屏下指纹识别装置1和背光模组22的描述,在本实施例中,不再对屏下指纹识别装置1和背光模组22作进一步阐述。
液晶显示屏2通常包括显示模组21和位于显示模组21下方的背光模组22,显示模组21可以包括透明保护盖板211和位于透明保护盖板211下方的液晶面板212,指纹识别模组11位于背光模组22之下,背光模组22上形成有用于使指纹检测光透过的透光区域,透光区域可以是指背光模组22的相关光学膜片在指纹检测光的传输路径形成关于指纹检测光的波段是透光的区域,指纹识别模组11位于背光模组22的透光区域之下,以使指纹检测光透过背光模组22传输到指纹识别模组11。
具体的,本实施例中,透光区域可以为指纹检测光在液晶显示屏2幕的传输路径所对应的区域,且探测光的透射波段覆盖探测光的反射波段,以使探测光及其在手指形成的指纹检测光可以穿透背光模组22的透光区域。
需要说明的是,在实际应用中,可以根据需要对检测光源12、背光模组22的透光区域、以及指纹识别模组11之间的相对位置进行调整,但是调整后的检测光源12、背光模组22的透光区域、以及指纹识别模组11之间的相对位置,需满足检测光源12发射的探测光能够照射到指纹检测区域上方的手指,且经手指反射或透射形成的指纹检测光能够透过背光模组22的透光区域进入指纹识别模组11。
本实施例提供的屏下指纹识别***,包括液晶显示屏和屏下指纹识别装置,屏下指纹识别装置的指纹检测区域至少部分位于液晶显示屏的显示区域;屏下指纹识别装置包括指纹识别模组,指纹识别模组位于液晶显示屏的背光模组下方,指纹检测区域上方的手指反射的携带指纹信息的指纹检测光透过液晶显示屏传输至指纹传感器,通过指纹传感器接收并识别指纹图像。其中,背光模组包括层叠设置的扩散膜和导光板,导光板位于扩散膜下方,通过在扩散膜的面向导光板一侧的表面上设置多个间隔分布的微结构,多个微结构支撑在扩散膜和导光板之间,微结构可增大扩散膜和导光板之间的间距,进而增大了扩散膜和导光板之间的空气间隙,且可使各部位的空气间隙更为均匀,进而可避免指纹检测光在透过扩散膜和导光板之间时产生薄膜干涉现象,可以消除由薄膜干涉现象产生的干涉光对指纹成像的干扰,保证指纹成像效果,以使指纹传感器获得清晰的指纹图像。
实施例三
在上述实施例一的基础上,本实施例提供一种支持屏下指纹识别功能的液晶显示屏2,该液晶显示屏2的下方设置有实施例一所述的屏下指纹识别装置1,液晶显示屏2包括显示模组21和背光模组22,背光模组22位于显示模组21下方,用于为显示模组21提供背光,并将液晶显示屏2上方的手指形成的指纹检测光传输至背光模组22下方的指纹传感器112。
屏下指纹识别装置1包括检测光源12和指纹识别模组11,其中,检测光源12用于向位于指纹检测区域上方的手指发射探测光,探测光照射到指纹检测区域上方的手指,经手指反射或者透射之后形成携带有指纹信息的指纹检测光,指纹识别模组11用于接收透过液晶显示屏2的并携带有指纹信息的指纹检测光,以获取手指的指纹图像。
其中,本实施例可以参考实施例一中对于背光模组22的描述,在本实施例中,不再对背光模组22作进一步阐述。
本实施例提供的液晶显示屏的下方设置有屏下指纹识别装置,液晶显示屏包括显示模组和位于显示模组下方的背光模组。其中,背光模组包括层叠设置的扩散膜和导光板,导光板位于扩散膜下方,通过在扩散膜的面向导光板一侧的表面上设置多个间隔分布的微结构,多个微结构支撑在扩散膜和导光板之间,微结构可增大扩散膜和导光板之间的间距,进而增大了扩散膜和导光板之间的空气间隙,且可使各部位的空气间隙更为均匀,进而可避免指纹检测光在透过扩散膜和导光板之间时产生薄膜干涉现象,可以消除由薄膜干涉现象产生的干涉光对指纹成像的干扰,保证指纹成像效果,以使指纹传感器获得清晰的指纹图像。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (49)

  1. 一种屏下指纹识别装置,适用于具有液晶显示屏的电子设备,其特征在于,所述屏下指纹识别装置的指纹检测区域至少部分位于所述液晶显示屏的显示区域;
    所述屏下指纹识别装置包括位于所述液晶显示屏的背光模组下方的指纹识别模组,所述指纹识别模组用于接收经所述指纹检测区域上方的手指反射形成的并透过所述液晶显示屏的指纹检测光,以获取所述手指的指纹图像;
    其中,所述背光模组包括扩散膜和相邻设置在所述扩散膜下方的导光板,所述扩散膜面向所述导光板的表面具有多个间隔分布的微结构,所述微结构用于增大所述扩散膜和所述导光板之间的间距,避免所述指纹检测光在透过所述扩散膜和所述导光板之间时产生薄膜干涉现象。
  2. 根据权利要求1所述的屏下指纹识别装置,其特征在于,所述微结构为所述扩散膜的表面形成的凸起结构。
  3. 根据权利要求2所述的屏下指纹识别装置,其特征在于,所述微结构为半球形凸起结构。
  4. 根据权利要求3所述的屏下指纹识别装置,其特征在于,所述微结构的曲率半径在120-170μm之间,所述微结构的高度在1-3μm之间。
  5. 根据权利要求2-4任一项所述的屏下指纹识别装置,其特征在于,多个所述微结构在所述扩散膜的表面均匀间隔排列。
  6. 根据权利要求5所述的屏下指纹识别装置,其特征在于,多个所述微结构沿所述扩散膜的长度方向和宽度方向均匀间隔排列。
  7. 根据权利要求6所述的屏下指纹识别装置,其特征在于,每相邻两行所述微结构之间的间距与每相邻两列所述微结构之间的间距相等。
  8. 根据权利要求5所述的屏下指纹识别装置,其特征在于,多个所述微结构沿所述扩散膜的长度方向均匀间隔排列,每相邻两行所述微结构之间的间距相等,且相邻两行之间的所述微结构之间相互错开。
  9. 根据权利要求8所述的屏下指纹识别装置,其特征在于,所述微结构与相邻行的与其前后错开的两个微结构之间的间距相等。
  10. 根据权利要求9所述的屏下指纹识别装置,其特征在于,位于相邻两行中相邻的两个所述微结构之间的间距与位于同一行的相邻两个所述微结构 之间的间距相等。
  11. 根据权利要求6或8所述的屏下指纹识别装置,其特征在于,相邻两列所述微结构之间的间距在200-450μm之间。
  12. 根据权利要求5-11任一项所述的屏下指纹识别装置,其特征在于,所述导光板的面向所述扩散膜的表面具有多个凸起的导光条,所述导光条沿所述导光板的宽度方向延伸,且多个所述导光条沿所述导光板的长度方向均匀间隔排列。
  13. 根据权利要求12所述的屏下指纹识别装置,其特征在于,所述导光条由所述导光板的宽度方向上的一侧延伸至另一侧。
  14. 根据权利要求13所述的屏下指纹识别装置,其特征在于,所述导光条的横截面为圆弧形。
  15. 根据权利要求14所述的屏下指纹识别装置,其特征在于,所述导光条的横截面的曲率半径在30-150μm之间,所述导光条的高度在1-5μm之间。
  16. 根据权利要求15所述的屏下指纹识别装置,其特征在于,相邻两个所述导光条的中心线之间的间距在40-150μm之间。
  17. 根据权利要求12所述的屏下指纹识别装置,其特征在于,所述导光板背离所述扩散膜的表面具有多个间隔分布的导光颗粒,所述导光颗粒支撑在所述导光板和所述背光模组的反射膜之间。
  18. 根据权利要求17所述的屏下指纹识别装置,其特征在于,所述导光颗粒的高度在3-5μm之间。
  19. 根据权利要求17所述的屏下指纹识别装置,其特征在于,所述导光板背离所述扩散膜的表面的不同区域的所述导光颗粒的密度不同。
  20. 根据权利要求5-19任一项所述的屏下指纹识别装置,其特征在于,所述背光模组还包括相邻设置在所述扩散膜上方的增亮膜,所述增亮膜面向所述扩散膜的表面具有多个间隔分布的增亮颗粒。
  21. 根据权利要求20所述的屏下指纹识别装置,其特征在于,所述增亮颗粒为嵌入所述增亮膜的微球结构,且所述增亮颗粒的直径在4-10μm之间。
  22. 根据权利要求21所述的屏下指纹识别装置,其特征在于,所述增亮颗粒在所述增亮膜表面均匀分布。
  23. 根据权利要求1-22任一项所述的屏下指纹识别装置,其特征在于, 还包括检测光源,所述检测光源用于发射探测光,所述探测光透过所述液晶显示屏照射到所述指纹识别区域上方的手指,经手指反射形成携带有指纹信息的所述指纹检测光。
  24. 根据权利要求23所述的屏下指纹识别装置,其特征在于,所述探测光与所述背光模组提供的用于显示画面的背光的波长不同。
  25. 根据权利要求24所述的屏下指纹识别装置,其特征在于,所述探测光为红外光,所述背光模组提供的所述背光为可见光。
  26. 一种背光模组,适用于支持屏下指纹识别功能的液晶显示屏,其特征在于,包括扩散膜和相邻设置在所述扩散膜下方的导光板,所述扩散膜面向所述导光板的表面具有多个间隔分布的微结构,所述微结构用于增大所述扩散膜和所述导光板之间的间距,避免所述指纹检测光在透过所述扩散膜和所述导光板之间时产生光干涉。
  27. 根据权利要求26所述的背光模组,其特征在于,所述微结构为所述扩散膜的表面形成的凸起结构。
  28. 根据权利要求27所述的背光模组,其特征在于,所述微结构为半球形凸起结构。
  29. 根据权利要求28所述的背光模组,其特征在于,所述微结构的曲率半径在120-170μm之间,所述微结构的高度在1-3μm之间。
  30. 根据权利要求27-29任一项所述的背光模组,其特征在于,多个所述微结构在所述扩散膜的表面均匀间隔排列。
  31. 根据权利要求30所述的背光模组,其特征在于,多个所述微结构沿所述扩散膜的长度方向和宽度方向均匀间隔排列。
  32. 根据权利要求31所述的背光模组,其特征在于,每相邻两行所述微结构之间的间距与每相邻两列所述微结构之间的间距相等。
  33. 根据权利要求30所述的背光模组,其特征在于,多个所述微结构沿所述扩散膜的长度方向均匀间隔排列,每相邻两行所述微结构之间的间距相等,且相邻两行之间的所述微结构之间相互错开。
  34. 根据权利要求33所述的背光模组,其特征在于,所述微结构与相邻行的与其前后错开的两个微结构之间的间距相等。
  35. 根据权利要求34所述的背光模组,其特征在于,位于相邻两行中相 邻的两个所述微结构之间的间距与位于同一行的相邻两个所述微结构之间的间距相等。
  36. 根据权利要求31或33所述的背光模组,其特征在于,相邻两列所述微结构之间的间距在200-450μm之间。
  37. 根据权利要求30-36任一项所述的背光模组,其特征在于,所述导光板的面向所述扩散膜的表面具有多个凸起的导光条,所述导光条沿所述导光板的宽度方向延伸,且多个所述导光条沿所述导光板的长度方向均匀间隔排列。
  38. 根据权利要求37所述的背光模组,其特征在于,所述导光条由所述导光板的宽度方向上的一侧延伸至另一侧。
  39. 根据权利要求38所述的背光模组,其特征在于,所述导光条的横截面为圆弧形。
  40. 根据权利要求39所述的背光模组,其特征在于,所述导光条的横截面的曲率半径在30-150μm之间,所述导光条的高度在1-5μm之间。
  41. 根据权利要求40所述的背光模组,其特征在于,相邻两个所述导光条的中心线之间的间距在40-150μm之间。
  42. 根据权利要求37所述的背光模组,其特征在于,所述导光板背离所述扩散膜的表面具有多个间隔分布的导光颗粒,所述导光颗粒支撑在所述导光板和所述背光模组的反射膜之间。
  43. 根据权利要求42所述的背光模组,其特征在于,所述导光颗粒的高度在3-5μm之间。
  44. 根据权利要求42所述的背光模组,其特征在于,所述导光板背离所述扩散膜的表面的不同区域的所述导光颗粒的密度不同。
  45. 根据权利要求30-44任一项所述的背光模组,其特征在于,所述背光模组还包括相邻设置在所述扩散膜上方的增亮膜,所述增亮膜面向所述扩散膜的表面具有多个间隔分布的增亮颗粒。
  46. 根据权利要求45所述的背光模组,其特征在于,所述增亮颗粒为嵌入所述增亮膜的微球结构,且所述增亮颗粒的直径在4-10μm之间。
  47. 根据权利要求46所述的背光模组,其特征在于,所述增亮颗粒在所述增亮膜表面均匀分布。
  48. 一种屏下指纹识别***,其特征在于,包括液晶显示屏和权利要求1-25任一项所述的屏下指纹识别装置,所述液晶显示屏包括显示模组和权利要求26-47任一项所述的背光模组,其中,所述背光模组位于所述显示模组下方。
  49. 一种支持屏下指纹识别功能的液晶显示屏,所述液晶显示屏的下方设置有权利要求1-25任一项所述的屏下指纹识别装置,其特征在于,包括显示模组和权利要求26-47任一项所述的背光模组,所述背光模组位于所述显示模组下方,用于为所述显示模组提供背光,并将所述液晶显示屏上方的手指形成的指纹检测光传输至所述背光模组下方的指纹传感器。
PCT/CN2019/119697 2019-11-20 2019-11-20 屏下指纹识别装置及***、背光模组和液晶显示屏 WO2021097707A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/119697 WO2021097707A1 (zh) 2019-11-20 2019-11-20 屏下指纹识别装置及***、背光模组和液晶显示屏
CN201980004393.4A CN111108512A (zh) 2019-11-20 2019-11-20 屏下指纹识别装置及***、背光模组和液晶显示屏

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/119697 WO2021097707A1 (zh) 2019-11-20 2019-11-20 屏下指纹识别装置及***、背光模组和液晶显示屏

Publications (1)

Publication Number Publication Date
WO2021097707A1 true WO2021097707A1 (zh) 2021-05-27

Family

ID=70427381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119697 WO2021097707A1 (zh) 2019-11-20 2019-11-20 屏下指纹识别装置及***、背光模组和液晶显示屏

Country Status (2)

Country Link
CN (1) CN111108512A (zh)
WO (1) WO2021097707A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI780436B (zh) * 2020-05-19 2022-10-11 英屬開曼群島商敦泰電子有限公司 屏下指紋辨識裝置
CN111650780B (zh) * 2020-06-23 2022-06-21 厦门天马微电子有限公司 背光模组和显示装置
CN111738192B (zh) * 2020-06-29 2022-07-12 厦门天马微电子有限公司 显示模组及显示装置
CN111965897B (zh) * 2020-08-26 2022-07-12 厦门天马微电子有限公司 一种背光模组和显示装置
CN111999935B (zh) * 2020-08-27 2022-07-12 厦门天马微电子有限公司 显示模组及显示装置
SE544317C2 (en) * 2020-09-10 2022-04-05 Fingerprint Cards Anacatum Ip Ab Fingerprint sensor arrangement with different measurement circuitry configurations
CN112163482A (zh) * 2020-09-16 2021-01-01 瑞芯微电子股份有限公司 一种光学准直器、指纹识别模组及电子设备
CN115598886A (zh) * 2022-10-31 2023-01-13 江西联创致光科技有限公司(Cn) 一种增强红外光透过率和降低异物遮蔽性的背光源

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1453596A (zh) * 2002-03-26 2003-11-05 惠和股份有限公司 光扩散膜及相关背光模块
CN101285961A (zh) * 2007-04-13 2008-10-15 株式会社常宝 使用光扩散剂的多功能光学多层膜
US20120032920A1 (en) * 2010-08-05 2012-02-09 Chih-Wei Chien Optical plate structure for a touch panel, and touch display panel and touch liquid crystal display panel including the same
CN107590421A (zh) * 2016-07-08 2018-01-16 上海箩箕技术有限公司 光学指纹传感器模组
CN109716352A (zh) * 2018-12-17 2019-05-03 深圳市汇顶科技股份有限公司 液晶显示指纹模组、屏下指纹识别***及电子设备
CN110161751A (zh) * 2019-05-23 2019-08-23 京东方科技集团股份有限公司 背光模组及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080101091A1 (en) * 2006-11-01 2008-05-01 Yu-Sheng Teng Diffusion film, manufacturing method thereof and a backlight module with the diffusion film
JP6706033B2 (ja) * 2014-07-09 2020-06-03 恵和株式会社 光学シート及びエッジライト型のバックライトユニット
CN106597584A (zh) * 2016-12-15 2017-04-26 张家港康得新光电材料有限公司 一种抗吸附扩散膜
CN211087261U (zh) * 2019-11-20 2020-07-24 深圳市汇顶科技股份有限公司 屏下指纹识别装置及***、背光模组和液晶显示屏

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1453596A (zh) * 2002-03-26 2003-11-05 惠和股份有限公司 光扩散膜及相关背光模块
CN101285961A (zh) * 2007-04-13 2008-10-15 株式会社常宝 使用光扩散剂的多功能光学多层膜
US20120032920A1 (en) * 2010-08-05 2012-02-09 Chih-Wei Chien Optical plate structure for a touch panel, and touch display panel and touch liquid crystal display panel including the same
CN107590421A (zh) * 2016-07-08 2018-01-16 上海箩箕技术有限公司 光学指纹传感器模组
CN109716352A (zh) * 2018-12-17 2019-05-03 深圳市汇顶科技股份有限公司 液晶显示指纹模组、屏下指纹识别***及电子设备
CN110161751A (zh) * 2019-05-23 2019-08-23 京东方科技集团股份有限公司 背光模组及显示装置

Also Published As

Publication number Publication date
CN111108512A (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
WO2021097707A1 (zh) 屏下指纹识别装置及***、背光模组和液晶显示屏
CN110751128B (zh) 显示模组及显示装置
KR101326579B1 (ko) 액정표시장치
CN211529178U (zh) 屏下指纹识别装置、背光模组、液晶显示屏和电子设备
KR102172907B1 (ko) 직하형 백라이트 유닛들을 갖는 디스플레이들
US10914976B2 (en) Electronic device
CN111801677A (zh) 一种背光模组、屏下光学指纹***、显示模组及电子装置
US11022840B2 (en) Displays with direct-lit backlight units
US11906847B2 (en) Optical film and back light unit including the same
US11227138B2 (en) Liquid crystal display device having fingerprint sensor
TW201416946A (zh) 觸控顯示裝置
US11663800B2 (en) Texture recognition device and display device
US9091798B2 (en) Display apparatus and backlight assembly
CN111095290B (zh) 屏下光学指纹识别装置及***、反射膜和液晶显示屏
US20110019435A1 (en) Brightness enhancement film and backlight module
CN108594354B (zh) 光学模组及显示装置
CN211087261U (zh) 屏下指纹识别装置及***、背光模组和液晶显示屏
KR102332577B1 (ko) 백라이트 유닛 및 이를 포함하는 표시 장치
TW201512742A (zh) 背光模組
CN211087267U (zh) 指纹识别装置、背光模组、显示屏和电子设备
CN110199222B (zh) 照明装置及显示装置
KR101530773B1 (ko) 광학 시트 및 이를 포함하는 백라이트 유닛
US11288486B2 (en) Fingerprint recognition optical film, and backlight unit and liquid crystal display device comprising the film optical
WO2021196034A1 (zh) 屏下指纹识别装置、背光模组、液晶显示屏和电子设备
KR20180018883A (ko) 백라이트 유닛 및 이를 포함하는 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953502

Country of ref document: EP

Kind code of ref document: A1