WO2021097678A1 - 一种接入回传控制方法及装置 - Google Patents

一种接入回传控制方法及装置 Download PDF

Info

Publication number
WO2021097678A1
WO2021097678A1 PCT/CN2019/119502 CN2019119502W WO2021097678A1 WO 2021097678 A1 WO2021097678 A1 WO 2021097678A1 CN 2019119502 W CN2019119502 W CN 2019119502W WO 2021097678 A1 WO2021097678 A1 WO 2021097678A1
Authority
WO
WIPO (PCT)
Prior art keywords
iab
node
iab node
message
information
Prior art date
Application number
PCT/CN2019/119502
Other languages
English (en)
French (fr)
Inventor
郝金平
晋英豪
马川
刘琼
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980102002.2A priority Critical patent/CN114642076A/zh
Priority to PCT/CN2019/119502 priority patent/WO2021097678A1/zh
Publication of WO2021097678A1 publication Critical patent/WO2021097678A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for access backhaul control.
  • Integrated access and backhaul means that both the access link and the backhaul link of the base station are transmitted wirelessly.
  • the access link refers to the communication link between the base station A and the terminal equipment it serves
  • the backhaul link refers to the base station A and its superior node (such as the parent node of base station A or Host node, etc.).
  • This technology can replace traditional optical fiber backhaul links, thereby avoiding a large number of optical fiber deployments, so it can improve the flexibility of network deployment and reduce the cost of network deployment.
  • IAB Donor IAB Donor
  • IAB-node IAB Donor
  • the IAB host is directly connected to the core network, which can provide access services for the UE, and can also provide the IAB-node with a backhaul exit to the core network.
  • the IAB-node is not directly connected to the core network, but is connected to the IAB host through (single-hop or multi-hop) wireless backhaul, and the IAB host returns to the core network.
  • the IAB-node can provide access services for the UE, and can also provide backhaul links for other IAB-nodes.
  • the affiliation between the IAB node and the IAB host is fixed, and an IAB node can only access one fixed IAB host, and each IAB host independently controls the IAB node that it accesses. Therefore, when the communication link between the IAB node and the parent node or host node of the IAB node is congested or interrupted, the IAB node cannot realize effective data transmission, which makes it difficult to satisfy the service quality of the terminal service.
  • the embodiments of the present application provide a method and device for access backhaul control, which are used to solve the problem that when the communication link between the IAB node and the parent node or host node of the IAB node is congested or interrupted in the prior art, the IAB node cannot
  • the realization of effective data transmission causes the problem that the service quality of the terminal business is difficult to be satisfied.
  • an access backhaul control method includes: a first IAB node receives a first message sent by a control node, and the control node is configured to perform a control on multiple IAB hosts under the coverage of multiple IAB hosts.
  • the IAB node performs access control.
  • the first message contains the identity of at least one first cell, where the at least one first cell is determined by the control node according to the synchronization signal block measurement information reported by the first IAB node, and the synchronization signal block measurement information includes at least one of the following information:
  • the first IAB node obtains the measured measurement value of the synchronization signal block sent by at least one second IAB node, the first IAB node obtains the measured measurement value of the synchronization signal block sent by multiple IAB hosts, where the first IAB node And the second IAB node are any two IAB nodes of the multiple IAB nodes.
  • the first IAB node initiates random access to all or part of the at least one first cell.
  • the control node can cover the range covered by multiple IAB hosts, and perform access control on multiple IAB nodes covered by the multiple IAB hosts, so that when the IAB node and the parent node of the IAB node or When the communication link between the host nodes is congested or interrupted, the IAB node can access the IAB system for data transmission under the instruction of the control node, thereby improving the service quality of the terminal service. And since the control node can perform access control on the IAB nodes covered by the multiple IAB hosts, and the control node instructs the IAB nodes to access the IAB system, the network topology can be reasonably planned.
  • the first IAB node may send the synchronization signal block measurement information to the control node before the first IAB node sends the synchronization signal block measurement information to the control node.
  • the control node can cover the range covered by multiple IAB hosts, and schedule access to multiple IAB nodes covered by multiple IAB hosts. Through the above design, the control node can be based on the synchronization signal reported by the first IAB node.
  • the block measurement information determines the cell of the candidate parent node of the first IAB node, so that the first IAB node can select a better parent node for access.
  • the synchronization signal block may be a synchronization signal/physical broadcast channel block (SS/PBCH block, SSB), or a channel state information reference signal (CSI-RS).
  • SS/PBCH block synchronization signal/physical broadcast channel block
  • CSI-RS channel state information reference signal
  • the measured value may be a reference signal received power (RSRP) value, or a reference signal received quality (RSRQ) value.
  • RSRP reference signal received power
  • RSSQ reference signal received quality
  • the synchronization signal block measurement information may also include the identity of the cell corresponding to each measurement value.
  • the first message may also include an identifier of an IAB host, and the IAB host is an IAB host that specifies that the first IAB node should access.
  • the control node can also designate a host node for the first IAB node. Since the control node can perform access control on multiple IAB nodes covered by the multiple IAB hosts, the control node instructs the first IAB node to access The host node allows the first IAB node to select one IAB host for access among multiple IAB hosts, so that the network topology can be optimized.
  • the first IAB node may also receive configuration information sent by the control node, and the configuration information includes at least one of the following information: returning adaptation protocol configuration information, routing table configuration information, and wireless link control Configuration information.
  • the first IAB node can be configured according to the configuration information sent by the control node.
  • the first IAB node may also send indication information for indicating the failure of the wireless link to the control node when the wireless link with the parent node fails.
  • the control node can send the first message to the first IAB node after receiving the indication information, so that the first IAB node can access the appropriate parent node in time when the radio link fails.
  • the first IAB node may also send indication information for indicating the channel quality change to the control node when the channel quality of the channel between the first IAB node and the parent node changes.
  • the control node can send the first message to the first IAB node after receiving the indication information, so that the first IAB node can access the appropriate parent node in time when the channel quality changes.
  • the first IAB node may also receive a second message sent by the control node, and the second message is used to request the first IAB node to send synchronization Signal block measurement information.
  • the control node can control the first IAB node to report the first message through the second message.
  • the second message may also include indication information for instructing the first IAB node to periodically or aperiodically send the synchronization signal block measurement information.
  • the first IAB node can determine the manner of reporting the first message under the instruction of the second message.
  • the second message may also be used to request the first IAB node to send at least one of the following information: the DU identifier of the first IAB node, the MT identifier of the first IAB node, and the actual The information of the accessed parent node and the information of the IAB host to which the first IAB node is actually connected.
  • the control node can obtain the DU identifier of the first IAB node, the MT identifier of the first IAB node, the information of the parent node that the first IAB node actually accesses, the information of the IAB host to which the first IAB node is actually connected, etc., Therefore, the DU identifier of the first IAB node, the MT identifier of the first IAB node, the information of the parent node that the first IAB node actually accesses, the information of the IAB host that the first IAB node actually connects to, etc. can be used to determine the Configuration information.
  • an access backhaul control method includes: the control node determines at least one cell according to the synchronization signal block measurement information reported by the first IAB node, and the synchronization signal block measurement information includes the following information At least one item in: a measurement value obtained by the first IAB node measuring synchronization signal blocks sent by at least one second IAB node, and a measurement value obtained by the first IAB node measuring synchronization signal blocks sent by multiple IAB hosts, where , The first IAB node and the second IAB node are respectively any two IAB nodes among the multiple IAB nodes; the control node sends a first message to the first IAB node, and the first message contains information about at least one cell Identification, the first message is used to indicate the cell of the candidate parent node of the first IAB node.
  • the control node can cover a range covered by multiple IAB hosts, and perform access control on multiple IAB nodes covered by the multiple IAB hosts, so that when the first IAB node and the first IAB node When the communication link between the parent node or the host node is congested or interrupted, the first IAB node can access the IAB system for data transmission under the instruction of the control node, thereby improving the service quality of the terminal service. And because the control node can perform access control on multiple IAB nodes covered by the multiple IAB hosts, and the control node instructs the first IAB node to access the IAB system, the network topology can be reasonably planned.
  • the synchronization signal block can be SSB or CSI-RS.
  • the measured value can be the RSRP value or the RSRQ value.
  • the control node may receive the synchronization signal block measurement information sent by the first IAB node.
  • the control node can cover the range covered by multiple IAB hosts, and schedule access to multiple IAB nodes covered by multiple IAB hosts.
  • the control node can be based on the synchronization signal reported by the first IAB node.
  • the block measurement information determines the cell of the candidate parent node of the first IAB node, so that the first IAB node can select a better parent node for access.
  • the synchronization signal block measurement information may also include the identity of the cell corresponding to each measurement value.
  • the first message may also include an identifier of an IAB host, and the IAB host is an IAB host that specifies that the first IAB node should access.
  • the control node can also designate a host node for the first IAB node. Since the control node can perform access control on multiple IAB nodes covered by the multiple IAB hosts, the control node instructs the first IAB node to access The host node allows the first IAB node to select one IAB host for access among multiple IAB hosts, so that the network topology can be optimized.
  • the control node may send configuration information to the first IAB node, and the configuration information includes at least one of the following information: backhaul adaptation protocol configuration information, routing table configuration information, and radio link control configuration information .
  • the first IAB node can be configured according to the configuration information sent by the control node.
  • the control node may receive the indication information sent by the first IAB node for indicating the failure of the wireless link.
  • the control node can send the first message to the first IAB node after receiving the indication information, so that the first IAB node can access the appropriate parent node in time when the radio link fails.
  • control node may receive the indication information sent by the first IAB node and used to indicate the channel quality change.
  • the control node can send the first message to the first IAB node after receiving the indication information, so that the first IAB node can access the appropriate parent node in time when the channel quality changes.
  • the control node may also send a second message to the first IAB node, and the second message is used to request the first IAB node to send a synchronization signal block. Measurement information.
  • the control node can control the first IAB node to report the first message through the second message.
  • the second message may also include indication information for instructing the IAB node to periodically or aperiodically send the synchronization signal block measurement information.
  • the first IAB node can determine the manner of reporting the first message under the instruction of the second message.
  • the second message may also be used to request the first IAB node to send at least one of the following information: the DU identifier of the first IAB node, the MT identifier of the first IAB node, and the actual The information of the accessed parent node and the information of the IAB host to which the first IAB node is actually connected.
  • the control node can obtain the DU identifier of the first IAB node, the MT identifier of the first IAB node, the information of the parent node that the first IAB node actually accesses, the information of the IAB host to which the first IAB node is actually connected, etc., Therefore, the DU identifier of the first IAB node, the MT identifier of the first IAB node, the information of the parent node that the first IAB node actually accesses, the information of the IAB host that the first IAB node actually connects to, etc. can be used to determine the Configuration information.
  • an access backhaul control method includes: an IAB node receives a first message sent by a control node, and the control node is used to communicate to multiple IAB nodes covered by multiple IAB hosts For load balancing, the IAB node is any one of the multiple IAB nodes within the coverage of the control node.
  • the first message is used to control the routing scheduling of the IAB node.
  • the IAB node transmits data based on the first message.
  • one control node can cover the range covered by multiple IAB hosts, so that multiple IAB nodes under the coverage of multiple IAB hosts can be controlled, so that when the IAB node is the parent node of the IAB node Or when the communication link between the host nodes is congested or interrupted, the IAB node can select the route at the instruction of the control node. Since the control node can control multiple IAB nodes under the coverage of the multiple IAB hosts, the control node controls The routing of the IAB node can realize centralized routing control, load balancing, etc., thereby improving resource utilization, balancing load, and improving the reliability of the entire network.
  • the first message may contain at least one of the following information: update information of the routing table; indication information used to instruct the IAB node to switch from the first IAB host to the second IAB host, for example, the indication
  • the information can be the internet protocol (IP) address of the second IAB host, or the identifier of the second IAB host, etc.; it is used to instruct the IAB node to connect the user plane to the first user plane (CU- UP) Instruction information for switching to the second CU-UP of the first IAB host.
  • the instruction information may be the transport network layer (TNL) address of the user plane data; the configuration information of the routing table.
  • TNL transport network layer
  • the update information of the routing table may include at least one of the following information: update information of the next hop of the IAB node, update information of the priority of the routing path of the IAB node, and information of the newly added routing path , Delete routing path information.
  • the routing control of the IAB node can be realized by specifically updating the routing table of the IAB node.
  • the IAB node may send a second message to the control node.
  • the second message contains at least one of the load information and capacity capability information of the IAB node.
  • the load information may be indication information used to indicate load overload; or, the load information may be indication information used to indicate that the data in the buffer exceeds a threshold; or, the load information may be indication information used to indicate a load level .
  • the above design can save signaling overhead through indication information such as overload.
  • the capacity capability information includes at least one of the following information: the capacity capability of the IAB node for uplink communication, and the capacity capability of the IAB node for downlink communication.
  • the IAB node may receive a third message sent by the control node, and the third message is used to request the IAB node to send the second message.
  • the control node can control the IAB node to report the second message.
  • the third message further includes indication information for instructing the IAB node to periodically or non-periodically send the second message.
  • the IAB node can determine the manner of reporting the second message according to the third message.
  • the third message may also be used to request the IAB node to send at least one of the following information: the DU identifier of the IAB node, the MT identifier of the IAB node, the information of the parent node that the IAB node actually accesses, Information about the IAB host to which the IAB node is actually connected.
  • the control node can obtain the DU identifier of the IAB node of the IAB node, the MT identifier of the IAB node, the information of the parent node that the IAB node actually accesses, the information of the IAB host that the IAB node is actually connected to, etc., thereby combining the IAB node
  • an access backhaul control method includes: a control node determines routing update information of an IAB node, and the control node is used to perform processing on multiple IAB nodes covered by multiple IAB hosts.
  • the IAB node is any IAB node within the coverage of the control node.
  • the control node sends a first message to the IAB node, and the first message is used to control the routing scheduling of the IAB node.
  • one control node can cover the range covered by multiple IAB hosts, so that multiple IAB nodes under the coverage of multiple IAB hosts can be controlled, so that when the IAB node is the parent node of the IAB node Or when the communication link between the host nodes is congested or interrupted, the IAB node can select a route at the instruction of the control node. Since the control node can control the IAB nodes covered by the multiple IAB hosts, the control node controls the IAB node The routing can achieve centralized routing control, load balancing, etc., thereby improving resource utilization, balancing load, and improving the reliability of the entire network.
  • the first message may contain at least one of the following information: update information of the routing table; indication information used to instruct the IAB node to switch from the first IAB host to the second IAB host, for example, the indication
  • the information can be the IP address of the second IAB host, or the identifier of the second IAB host, etc.; it is used to instruct the IAB node to switch the user plane connection from the first CU-UP of the first IAB host to the second IAB host.
  • the indication information of the CU-UP for example, the indication information may be the TNL address of the second CU-UP; the configuration information of the routing table.
  • the control node can adjust the routing path of the IAB node through the first message, so that the load balance of the entire network can be realized, and the reliability of the entire network can be improved.
  • the update information of the routing table may include at least one of the following information: update information of the next hop of the IAB node, update information of the priority of the routing path of the IAB node, and information of the newly added routing path , Delete routing path information.
  • the routing control of the IAB node can be realized by specifically updating the routing table of the IAB node.
  • the control node may receive a second message sent by the IAB node, and the second message contains at least one of load information and capacity capability information of the IAB node .
  • the control node can control the routing of the IAB node according to the load information and capacity capability information of the IAB node, so that the load balance of the entire network can be realized, and the reliability of the entire network can be improved.
  • the load information may be indication information used to indicate load overload; or, the load information may be indication information used to indicate that the data in the buffer exceeds a threshold; or, the load information may be indication information used to indicate a load level .
  • the above design can save signaling overhead through indication information such as overload.
  • the capacity capability information includes at least one of the following information: the capacity capability of the IAB node for uplink communication, and the capacity capability of the IAB node for downlink communication.
  • the control node may send a third message to the IAB node, and the third message is used to request the IAB node to send the second message.
  • the third message further includes indication information for instructing the IAB node to periodically or non-periodically send the second message.
  • the IAB node can determine the manner of reporting the second message according to the third message.
  • the third message may also be used to request the IAB node to send at least one of the following information: the DU identifier of the IAB node, the MT identifier of the IAB node, the information of the parent node that the IAB node actually accesses, Information about the IAB host to which the IAB node is actually connected.
  • the control node can obtain the DU identifier of the IAB node of the IAB node, the MT identifier of the IAB node, the information of the parent node that the IAB node actually accesses, the information of the IAB host that the IAB node is actually connected to, etc., thereby combining the IAB node
  • the control node may determine that the IAB node accesses the network.
  • this application provides an access backhaul control device.
  • the device may be a network device, or a chip or chipset in the network device.
  • the network device may be a control node or an IAB node.
  • the device may include a processing unit and a transceiving unit.
  • the processing unit may be a processor, and the transceiving unit may be a transceiver; the device may also include a storage unit, and the storage unit may be a memory; the storage unit is used to store instructions, and the processing unit Execute the instructions stored in the storage unit, so that the IAB node executes the corresponding function in the first aspect or the design in the first aspect, or the third aspect or any design in the third aspect, or the processing unit executes
  • the instructions stored in the storage unit enable the control node to execute the corresponding function in any design in the second aspect or the second aspect, or the fourth aspect or any design in the fourth aspect.
  • the processing unit can be a processor, and the transceiver unit can be an input/output interface, a pin or a circuit, etc.; the processing unit executes the instructions stored in the storage unit to Make the IAB node execute the corresponding function in the design described in the first aspect or the first aspect, or the design in the third aspect or the third aspect, or the processing unit executes the storage unit stored Instructions to make the control node execute any of the above-mentioned second aspect or the second aspect of the design, or the fourth aspect or any of the fourth aspect of the design, the storage unit may be a storage in the chip or chipset
  • the unit for example, a register, a cache, etc.
  • this application provides an access backhaul control device, including a processor, a communication interface, and a memory.
  • the communication interface is used to transmit information, and/or messages, and/or data between the device and other devices.
  • the memory is used to store computer-executable instructions.
  • the processor executes the computer-executable instructions stored in the memory, so that the device executes the interface described in the first aspect or any one of the first aspects.
  • Incoming backhaul control method or the access backhaul control method according to any one of the above-mentioned second aspect or the second aspect, or the access backhaul control according to any one of the above-mentioned third aspect or the third aspect Method, or the access backhaul control method according to any one of the above-mentioned fourth aspect or the fourth aspect design.
  • a computer storage medium provided by an embodiment of the present application.
  • the computer storage medium stores program instructions.
  • the program instructions When the program instructions are executed on a communication device, the communication device executes the first aspect of the embodiments of the present application and any one thereof. Possible designs, the second aspect and any possible design, the third aspect and any possible design, the fourth aspect and any possible design method.
  • a computer program product provided by an embodiment of the present application, when the computer program product runs on a communication device, makes the communication device the first aspect and any possible design, the second aspect and the second aspect of the embodiment of the present application when the computer program product runs on a communication device. Any possible design, the third aspect and any possible design, the fourth aspect and any possible design method.
  • the ninth aspect is a chip provided by an embodiment of the present application, which is coupled with a memory, and executes the first aspect and any possible design, the second aspect and any possible design, and the third aspect of the embodiments of the present application. Aspect and any possible design, the fourth aspect and any possible design method.
  • an embodiment of the present application provides an IAB system, which includes a control node, at least one IAB host, and at least one IAB node, where the control node can implement the first aspect of the embodiments of the present application and any possible design , Or the method described in the third aspect and any of its possible designs.
  • the IAB node can implement the method described in the second aspect and any possible design, or the fourth aspect and any possible design of the embodiments of the present application.
  • control node can be deployed independently.
  • control node can also be centrally deployed with the IAB host.
  • control node can be centrally deployed with the control unit (CU) of the IAB host.
  • control node can be centrally deployed with the control plane (CU-CP) of the IAB host.
  • Coupled in the embodiments of the present application means that two components are directly or indirectly combined with each other.
  • FIG. 1 is an architecture diagram of an IAB system provided by an embodiment of this application.
  • FIG. 2 is a specific example diagram of an IAB system provided by an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of a gNB provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of another gNB provided by an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of an IAB node provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of the connection of an IAB system provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of an IAB node transceiver unit provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of a multi-cell IAB node provided by an embodiment of this application.
  • FIG. 9A is a schematic diagram of a user plane protocol stack of a terminal device according to an embodiment of this application.
  • FIG. 9B is a schematic diagram of a user plane protocol stack of an MT of an IAB node according to an embodiment of the application.
  • 10A is a schematic diagram of a control plane protocol stack of a terminal device according to an embodiment of this application.
  • FIG. 10B is a schematic diagram of a control plane protocol stack of an MT of an IAB node according to an embodiment of the application;
  • FIG. 11 is a schematic diagram of the connection between the MT and DU of the IAB node and the IAB system according to an embodiment of the application;
  • FIG. 12 is a schematic diagram of the architecture of an IAB system provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of independent deployment of control nodes according to an embodiment of the application.
  • FIG. 14 is a schematic diagram of centralized deployment of control nodes according to an embodiment of the application.
  • FIG. 16 is a schematic diagram of a first IAB node sending a first message to a control node according to an embodiment of the application;
  • FIG. 17 is an example diagram of an IAB system provided by an embodiment of this application.
  • FIG. 18 is an example diagram of an IAB system after an IAB node 7 accesses the network according to an embodiment of the application;
  • FIG. 19 is an example diagram of an IAB system after the IAB node 4 reconnects to the network according to an embodiment of the application;
  • FIG. 20 is a flowchart of another access backhaul control method provided by an embodiment of this application.
  • FIG. 21 is a schematic flowchart of an IAB node sending a first message to a control node according to an embodiment of the application;
  • FIG. 22 is a schematic flowchart of another IAB node sending a first message to a control node according to an embodiment of this application;
  • FIG. 23 is a schematic structural diagram of an access backhaul control apparatus provided by an embodiment of this application.
  • FIG. 24 is a schematic structural diagram of another access backhaul control device provided by an embodiment of the application.
  • the communication systems mentioned in the embodiments of this application include, but are not limited to: narrowband-internet of things (NB-IoT) systems, wireless local access network (WLAN) systems, long term evolution, LTE) systems, fifth generation mobile networks (5th generation wireless systems, 5G) or post 5G communication systems, such as new radio (NR) systems, device to device (D2D) Communication system, etc.
  • NB-IoT narrowband-internet of things
  • WLAN wireless local access network
  • LTE long term evolution
  • 5G fifth generation mobile networks
  • 5G fifth generation wireless systems
  • post 5G communication systems such as new radio (NR) systems, device to device (D2D) Communication system, etc.
  • An IAB system suitable for the technical solution of the present application includes at least multiple IAB hosts, and one or more terminal devices served by the IAB hosts, one or more relay nodes (ie, IAB nodes), and medium One or more terminal devices served by the relay node.
  • FIG. 1 shows an architecture diagram of an IAB system suitable for the technical solution of the present application.
  • an IAB system includes at least two base stations, namely base station 100 and base station 120.
  • the IAB system may also include a terminal device (terminal) 101 served by the base station 100, an IAB node 110, and a terminal device 111 served by the IAB node 110, where the IAB node 110 is connected to the base station 100 through a wireless backhaul link 113.
  • the IAB system may also include a terminal device 201 served by the base station 200, an IAB node 210, and a terminal device 211 served by the IAB node 210, where the IAB node 210 is connected to the base station 200 through a wireless backhaul link 213.
  • the base station 100 and the base station 200 are referred to as IAB hosts.
  • the IAB host is also referred to as a donor (donor) base station, a donor node, etc. in this application.
  • the IAB system may also include multiple other IAB nodes, for example, the IAB node 120, the IAB node 130, and the IAB node 220.
  • the IAB node 120 is connected to the IAB node 110 through a wireless backhaul link 123 to access the base station 100.
  • the IAB node 130 is connected to the IAB node 110 through a wireless backhaul link 133 to access the base station 100.
  • the IAB node 220 is connected to the IAB node 210 through a wireless backhaul link 223 to access the base station 200.
  • the IAB node 220 may also be connected to the IAB node 130 through a wireless backhaul link 231 to access the base station 100.
  • the IAB node 120 serves one or more terminal devices 121
  • the IAB node 130 serves one or more terminal devices 131
  • the IAB node 220 serves one or more terminal devices 221.
  • the wireless backhaul links are all viewed from the perspective of the relay node.
  • the wireless backhaul link 113 is the backhaul link of the IAB node 110
  • the wireless backhaul link 123 is the IAB node 120.
  • Backhaul link As shown in Figure 1, an IAB node, such as 120, can be connected to another IAB node 110 via a wireless backhaul link, such as 123, to connect to the network.
  • the relay node can be connected to the network via a multi-level wireless relay node.
  • FIG. 1 is only an exemplary illustration, the IAB system may include multiple IAB hosts, and the embodiments of this application do not specifically limit the number of IAB hosts, the number of IAB nodes, and the number of UEs included in the IAB system. .
  • IAB nodes can generally refer to any node or device with a relay function.
  • the use of IAB nodes and relay nodes in this application should be understood to have similar meanings.
  • the base station 100 includes but is not limited to: evolved node B (evolved node base, eNB), radio network controller (RNC), node B (node B, NB), base station controller (base station controller, BSC) , Base transceiver station (base transceiver station, BTS), home base station (home evolved NodeB, or home node B, HNB), baseband unit (baseband Unit, BBU), evolved (evolved LTE, eLTE) base station, NR base station (next generation node B (gNB), next generation eNodeB (ng-eNB), etc.
  • eNB evolved node B
  • RNC radio network controller
  • node B node B
  • base station controller base station controller
  • BSC base station controller
  • Base transceiver station base transceiver station
  • BTS home base station
  • home evolved NodeB home evolved NodeB, or home node B, HNB
  • baseband unit baseband Unit
  • evolved LTE, eLTE base
  • Terminal equipment includes but is not limited to: user equipment (UE), mobile station, access terminal, user unit, user station, mobile station, remote station, remote terminal, mobile equipment, terminal, wireless communication equipment, user agent, Station (ST), cell phone, cordless phone, session initiation protocol (SIP) phone, wireless local loop (wireless local loop, WLL) station in wireless local area network (wireless local access network, WLAN), cell phone, cordless phone, Personal digital assistant (PDA), handheld devices with wireless communication functions, computing devices, other processing devices connected to wireless modems, in-vehicle devices, wearable devices, mobile stations in the future 5G network, and public Any of the terminal devices in the public land mobile network (PLMN) network.
  • UE user equipment
  • PLMN public land mobile network
  • the IAB node is a specific name of a relay node, and does not limit the solution of the application. It may be one of the above-mentioned base stations or terminal devices with a forwarding function, or it may be an independent device form.
  • the IAB node of the present application may also be referred to as a relay node (RN), a transmission and reception point (transmission and reception point), a relay transmission and reception point (relaying TRP), and so on.
  • Access link The link between the IAB node and the terminal device directly served by the wireless link or the link between the IAB host and the terminal directly served by the wireless link.
  • the access link includes an uplink access link and a downlink access link.
  • the uplink access link is also referred to as the uplink transmission of the access link, and the downlink access link is also referred to as the downlink transmission of the access link.
  • Backhaul link the link between an IAB node and its superior node (ie, IAB parent node).
  • the IAB node serves as a subordinate node (ie, IAB child node) of its IAB parent node.
  • the IAB parent node may be an IAB node or an IAB host.
  • Data transmission from the IAB node to the IAB parent node is called uplink transmission on the backhaul link.
  • the IAB node receiving the data transmission of the IAB parent node is called the downlink transmission of the backhaul link.
  • an IAB node in the integrated access and backhaul system shown in FIG. 1, an IAB node is connected to an upper-level node.
  • an IAB node such as 120
  • the IAB node 130 in Figure 1 also It may be connected to the IAB node 120 through the backhaul link 134, that is, both the IAB node 110 and the IAB node 120 are regarded as the upper node of the IAB node 130.
  • the names of the IAB nodes 110, 120, and 130 do not limit the scenarios or networks in which they are deployed, and may be any other names such as relay and RN. The use of the IAB node in this application is only for the convenience of description.
  • the wireless links 102, 112, 122, 132, 113, 123, 133, 134, 202, 213, 222, 223, 231 can be bidirectional links, including uplink and downlink transmission links.
  • the wireless backhaul link 113, 123, 133, 134, 213, 223, 231 can be used by the upper node to provide services for the lower node, such as the upper node 100.
  • the lower-level node 110 provides a wireless backhaul service.
  • the node is not limited to whether it is a network node or a terminal device.
  • the terminal device can act as a relay node to serve other terminal devices.
  • the wireless backhaul link can be an access link in some scenarios.
  • the backhaul link 123 can also be regarded as an access link for the node 110, and the backhaul link 113 is also the access link of the node 100. link.
  • the above-mentioned upper-level node may be a base station or a relay node
  • the lower-level node may be a relay node or a terminal device with a relay function.
  • the lower-level node may also be a terminal device.
  • Figure 2 is a specific example of the IAB system.
  • the IAB system shown in FIG. 2 it includes a donor base station, IAB node 1, IAB node 2, UE1 and UE2.
  • the link between the donor base station and the IAB node 1 and the link between the IAB node 1 and the IAB node 2 are backhaul links.
  • the link between UE1 and the donor base station and the link between UE2 and IAB node 1 are access links.
  • the IAB host in the embodiment of the present application may be divided into a centralized unit (central unit, CU) and at least one distributed unit (DU).
  • the CU as a logical node in the 5G gNB, can be used to manage or control at least one DU, and it can also be referred to as a CU connected to at least one DU.
  • This structure can split the protocol layer of the wireless access network equipment in the communication system, in which part of the protocol layer functions are placed in the CU, and the remaining part of the protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the protocol layer of gNB includes the radio resource control (radio resource control, RRC) layer, the service data adaptation protocol (SDAP) layer, and the packet data aggregation protocol (packet data).
  • the convergence protocol (PDCP) layer the radio link control (RLC) layer, the media access control sublayer (media access control, MAC) layer, and the physical layer.
  • the CU may be used to implement the functions of the RRC layer, the SDAP layer, and the PDCP layer
  • the DU may be used to implement the functions of the RLC layer, the MAC layer, and the physical layer.
  • the embodiment of the present application does not specifically limit the protocol stack included in the CU and DU.
  • CU and DU can be defined and connected by the F1AP interface protocol.
  • the structure of gNB may be as shown in FIG. 3.
  • the CU in the embodiment of the present application may be further divided into a control plane (CU-control plane, CU-CP) network element and at least one user plane (CU-user plane, CU-UP) network element.
  • CU-CP can be used for control plane management
  • CU-UP can be used for user plane data transmission.
  • the application protocol layer (application protocol, AP) interface between the CU-CP and the CU-UP may be an E1 port.
  • the application protocol layer interface between CU-CP and DU can be F1-C, which is used for the transmission of control plane signaling.
  • the application protocol layer interface between CU-UP and DU can be F1-U, which is used for user plane data transmission.
  • CU-UP and CU-UP can communicate through the application protocol layer Xn-U interface for user plane data transmission.
  • the structure of gNB may be as shown in FIG. 4.
  • the IAB node can be configured as a DU
  • the IAB host can be configured as a CU.
  • FIG. 5 is a schematic diagram of the structure of an IAB node.
  • the IAB node is composed of two parts: a mobile terminal (mobile termination, MT) and a DU.
  • the MT function can be understood as a logical module similar to the UE.
  • the MT is called a function (or module) that resides on the IAB node. Since the MT is similar to the function of an ordinary UE, it can be considered that the IAB node accesses the upper node or the IAB host through the MT.
  • the DU function is the same as the DU of an ordinary base station, and can be understood as a logic module similar to the base station.
  • the DU is called a function (or module) that resides on the IAB node. Since the DU is similar to the function or part of the function of an ordinary base station, it can be considered that the IAB node can allow the access of lower-level nodes and terminal equipment through the DU.
  • the application protocol layer interface between the IAB host CU and the IAB node DU is the F1 interface
  • the air interface between the IAB host DU or the IAB node DU and the downstream IAB node MT is the Uu interface, as shown in FIG. 6. It should be understood that the backhaul link communication between the IAB node and the IAB host is based on the Uu interface to realize the F1 interface communication at the application protocol layer.
  • Both the MT and DU of the IAB node have a complete transceiver unit, and there is an interface between the two.
  • MT and DU are logical modules. In practice, they can share some sub-modules, for example, they can share transceiver antennas, baseband processing units, etc., as shown in Figure 7.
  • the DU may have multiple sub-modules.
  • the DU may have multiple cells, as shown in FIG. 8, where antenna panel 0 can correspond to cell 1, antenna panel 1 can correspond to cell 1, and antenna panel 2 can Corresponding to cell 2.
  • the user plane protocol stack of the terminal device may be as shown in FIG. 9A
  • the user plane protocol stack of the MT of the IAB node may be as shown in FIG. 9B
  • the control plane protocol stack of the terminal device may be as shown in FIG. 10A
  • the IAB node The control plane protocol stack of the MT can be as shown in Figure 10B.
  • IAB node 1 is the parent node of IAB node 2.
  • the backhaul adaptation protocol (BAP) layer is a unique protocol layer of the IAB system, which is responsible for mapping data bearers to RLC channels and selecting the next hop according to the local routing table.
  • the subordination relationship between the IAB node and the IAB host is fixed.
  • the MT of an IAB node establishes a Uu connection with multiple IAB hosts, but the DU of an IAB node can only establish an F1 connection with a fixed IAB host, for example
  • IAB node 2 can establish Uu connections with IAB node 1 and IAB node 3 through MT, so that it can communicate with IAB host 1 through IAB node 1, and communicate with IAB host 2 through IAB node 3.
  • the DU of the node 2 establishes an F1 connection with the IAB host 1, and the IAB node 2 can also communicate with the CU of the IAB host 1 through the DU.
  • Each IAB host independently controls the subsidiary IAB node.
  • the IAB host 1 independently controls the IAB node 1 and the IAB node 2
  • the IAB host 2 independently controls the IAB node 3. Therefore, when the communication link between the IAB node and the parent node or the IAB host is congested or interrupted, the IAB node cannot realize effective data transmission, which makes it difficult to satisfy the service quality of the terminal service. In addition, when the communication link between the IAB node and the parent node or the IAB host is congested or interrupted, how the IAB node selects a route to meet the service quality of the terminal service, there is currently no better solution.
  • the embodiments of the present application provide a method and device for access backhaul control.
  • the method and the device are based on the same technical idea. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • FIG. 1 is only an exemplary illustration, and does not describe the terminal equipment, IAB nodes, and IAB nodes included in the communication system.
  • the number of IAB hosts is specifically limited.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • the following at least one (item) or similar expressions refers to any combination of these items, including any combination of single item (item) or plural items (item).
  • at least one of a, b, or c can mean: a, b, c, a and b, a and c, b and c, or a, b and c, where a, b, c It can be single or multiple.
  • a controller is introduced, wherein the wireless coverage area of a control node is larger than the coverage area of an IAB host.
  • the control node can use higher power to transmit or work at a lower frequency to cover the coverage of multiple IAB hosts. Therefore, one control node can cover multiple IAB nodes under the coverage of multiple IAB hosts.
  • the control node can centrally control multiple IAB nodes covered by the multiple IAB hosts, for example, can implement at least one of the following functions: controlling access of IAB nodes, routing between IAB nodes, load balancing, and so on.
  • the IAB system may be as shown in FIG.
  • control node 1 can cover the IAB nodes connected to the IAB host 1 and the IAB host 2, that is, the IAB nodes 1 to 6 can be centrally controlled.
  • the control node 2 can cover the IAB nodes connected to the IAB host 3 and the IAB host 4, that is, it can centrally control the IAB nodes 7-11.
  • FIG. 12 is only an exemplary illustration, and does not specifically limit the number, connection relationship, deployment location, etc. of IAB nodes, IAB hosts, and control nodes in the IAB system.
  • control node can implement all control functions.
  • Controlling IAB node access, routing between IAB nodes, load balancing and other functions can also be implemented by different control nodes, that is, one control node can implement part of the control function, for example, control node 1 can implement IAB node access control Function, the control node 2 can implement routing and load balancing functions between IAB nodes, the control node 3 can implement other control functions, and so on.
  • the control node can be deployed independently or centrally deployed with other devices in the IAB system.
  • the control node can be centrally deployed with the IAB host.
  • the IAB host can implement the function of the control node.
  • the IAB host with the control node function is regarded as the control node involved in this application.
  • the control node can be centrally deployed with the CU hosted by the IAB, and it can also be understood that the CU hosted by the IAB can implement the function of the control node.
  • the control node can be deployed centrally with the CU-CP of the IAB host, and it can also be understood that the CU-CP of the IAB host can realize the function of the control node.
  • the control node can also be deployed in other locations or centrally deployed with other devices.
  • the deployment method of the control node is not specifically limited here.
  • FIG. 13 shows a possible connection mode between the IAB node, the IAB host, and the control node when the control node is deployed independently.
  • the control node can be a base station architecture with no separate protocol stack, or a CU-DU architecture. In one implementation, only the CU-CP may be included in the CU. In this example, the control node can cover multiple IAB hosts through the DU of the control node.
  • Fig. 14 shows a possible connection mode between the IAB node, the IAB host and the control node when the control node and the CU-CP of the IAB host are centrally deployed.
  • the control node can cover multiple IAB hosts through DU1
  • the DU1 of the control node can cover multiple IAB hosts through low frequency.
  • DU1 and DU2 can also be the same DU, that is, the DU can include at least two sets of transceiver units, where one set of transceiver units can implement the transceiver function of DU2, and the other set of transceiver units can implement the transceiver function of DU1.
  • control node can at least implement the access control function for IAB nodes under multiple IAB hosts, and the method includes:
  • the IAB node (for the convenience of description, the IAB node is referred to as the first IAB node below) sends a first message to the control node.
  • the first message contains the following information: The measured value obtained by measuring the synchronization signal block sent by the IAB node, IAB host, etc.).
  • the control node receives the first message sent by the first IAB node.
  • the first IAB node may be any IAB node within the coverage of the control node.
  • the first message may also include the identification (ID) of the cell corresponding to each measurement value.
  • the synchronization signal block may be SSB, CSI-RS, or other signals, which will not be listed here.
  • the measured value can be the RSRP value, the RSRQ value, or the measured value of other parameters, which will not be listed here.
  • the following description takes the synchronization signal block as the SSB and the measured value as the RSRP value as an example.
  • the control node can be deployed independently or centrally with the IAB host. If the control node is deployed independently, for example, as shown in FIG. 13, the first IAB node may send the first message to the control node through the Uu interface. Wherein, if the control node is a network device with a CU-DU structure, the first IAB node may send the first message to the CU of the control node through the DU of the control node. In one implementation, the CU of the control node may only include the CU-CP. In this implementation, the first IAB node may send the first message to the CU-CP of the control node through the DU of the control node. Further, the MT of the first IAB node may send the first message to the control node.
  • the first IAB node can send the first message to the IAB host through the F1 interface, and further, it can be The DU of the first IAB node sends the first message to the IAB host through the F1 interface.
  • the first IAB node may also send the first message to the IAB host through the Uu interface, and further, the MT of the first IAB node may send the first message to the IAB host through the Uu interface.
  • the IAB host is a network device with a CU-DU structure, and the control node and the CU of the IAB host are centrally deployed (that is, the CU of the IAB host can realize the function of the control node), the first IAB node can send to the CU of the IAB host The first news.
  • the CU of the IAB host is further divided into CU-CP and CU-UP, and the control node and the CU-CP of the IAB host are centrally deployed (that is, the CU-CP of the IAB host can realize the function of the control node)
  • the first IAB node can Send the first message to the CU-CP hosted by the IAB.
  • the control node sends a second message to the first IAB node, where the second message contains candidate parent node information, where the parent node information may include one or more cell IDs, and the cells corresponding to the one or more cell IDs may Correspond to one or more candidate parent nodes.
  • the first IAB node receives the second message sent by the control node.
  • the at least one candidate parent node can be the parent node that the first IAB node should access, or can be understood as the second IAB node that the control node instructs the MT of the first IAB node to establish a Uu connection, so that the first IAB node After receiving the second message, the node can access at least one cell indicated by the second message.
  • the IAB host is the parent node of the first IAB node
  • the IAB host is the second IAB node.
  • the at least one candidate parent node can also be the parent node that the first IAB node can access, or it can be understood as the control node instructing the MT of the first IAB node to establish the second IAB node of the Uu connection, so that the first IAB node can establish a Uu connection.
  • the IAB node may select all or part of the at least one cell indicated by the second message for access.
  • the IAB host is the parent node of the first IAB node
  • the IAB host is the second IAB node.
  • the second message may also include an indication information , Indicating that the candidate parent node corresponds to the parent node that should be accessed or the parent node that should be accessed; or, it can also be indicated in other ways, which is not specifically limited in this application.
  • the second message may also include the identifier of the IAB host, where the identifier of the IAB host may include information of the IAB host, such as the ID of the IAB host, specifically the CU ID of the IAB host, and so on.
  • the IAB host may be the IAB host designated by the control node for the first IAB node, or it may be understood as the IAB host designated by the control node to establish the F1 connection with the DU of the first IAB node.
  • the second message may contain parent node information and IAB host information; in the case where the specified IAB host is the parent node of the first IAB node, The second message contains parent node information (ie, IAB host information).
  • the control node may also instruct the first IAB node to access the first cell, where the IAB node corresponding to the first cell is the IAB node that accesses the IAB host among the at least one candidate parent node
  • the number of the first cell may be one or multiple, which is not specifically limited here.
  • the second message includes the identities of cells 1 to 5, where cells 1 to 5 correspond to IAB nodes 1 to 5, respectively, where IAB nodes 1 to 3 are connected to IAB host 1, and IAB nodes 4 and 5 are connected to IAB host 2.
  • the control node may instruct the first IAB node to access cell 4, or the control node may instruct the first IAB node to access cell 5, or the control node may instruct the first IAB The node accesses cells 4 and 5, or the control node may instruct the first IAB node to access at least one of the cells 4 or 5.
  • control node may indicate the first cell through the second message, or may also use other messages, which is not specifically limited here.
  • control node may determine one or more candidate parent nodes based on at least one of the following information: the measured value contained in the first message, the load of the IAB node covered by the control node, and the control node covered The load of the IAB host, the capacity capacity of the IAB node covered by the control node, the capacity capacity of the IAB host covered by the control node, the network topology of the IAB node covered by the control node, and the IAB covered by the control node The host's network topology and so on.
  • control node may also determine one or more cells in other ways, which is not specifically limited here.
  • control node may also determine the designated IAB host according to at least one of the following information: the measured value contained in the first message, the load of the IAB host covered by the control node, and the control node The capacity of the covered IAB host, the network topology of the candidate parent node covered by the control node, and so on.
  • the control node can be deployed independently or centrally with the IAB host. If the control node is deployed independently, for example, as shown in FIG. 13, the control node may send the second message to the first IAB node through the Uu interface. Wherein, if the control node is a network device with a CU-DU structure, the DU of the control node may send the second message to the first IAB node. In one implementation, the CU of the control node can be further divided into CU-CP and CU-UP. Further, the control node may send a second message to the MT of the first IAB node.
  • the IAB host can send a second message to the first IAB node through the F1 interface, and further, it can be an IAB The host sends a second message to the DU of the first IAB node through the F1 interface.
  • the IAB host may also send the second message to the first IAB node through the Uu interface. Further, the IAB host may send the second message to the MT of the first IAB node through the Uu interface.
  • the IAB host is a network device with a CU-DU structure, and the control node is centrally deployed with the CU of the IAB host (that is, the CU of the IAB host can realize the function of the control node), the CU of the IAB host can send to the first IAB node The second message.
  • the CU of the IAB host is further divided into CU-CP and CU-UP, and the control node and the CU-CP of the IAB host are deployed centrally (that is, the CU-CP of the IAB host can realize the function of the control node), the CU-CP of the IAB host The CP may send the second message to the first IAB node.
  • step S1501 may or may not be executed.
  • the control node may only send the second message, that is, in the case of not receiving the first message sent by the first IAB node, it may also send the second message to the first IAB node .
  • the first IAB node can send the first message to the control node in three cases: the first case is that the control node configures the first IAB node to perform measurement, and the first IAB node performs measurement The second case is that the control node requests the first IAB node to report; the third case is that the first IAB node actively reports to the control node when initially accessing the IAB system.
  • the control node may configure the first IAB node to send periodically, or the control node may configure the first IAB node to send triggered by a trigger event.
  • the trigger event may be other measurements measured by the first IAB node.
  • the RSRP value of the SSB signal of the cell is higher than the RSRP value of the SSB signal of the currently connected cell, etc.
  • the control node may configure the manner in which the first IAB node actively reports the first message by sending a configuration message to the first IAB node.
  • the control node may send a third message to the first IAB node, and the third message is used to request the first IAB node to send the first message periodically or non-periodically, such as Shown in Figure 16.
  • sending the first message periodically may be understood as sending the first message multiple times.
  • the third message may instruct the first IAB node to send the first message periodically within a period of time after receiving the third message.
  • Sending the first message aperiodically can be understood as sending the first message once.
  • the third message may instruct the first IAB node to send the first message once after receiving the third message.
  • Sending the first message triggered by a trigger event can be understood as sending the first message when the trigger event occurs.
  • the third message can indicate that the first IAB node is measuring the RSRP value of the SSB signal of other cells higher than that of the currently connected cell. The first message is sent when the RSRP value of the SSB signal.
  • the third message can also be used to request the first IAB node to report at least one of the following information: the DU identifier of the first IAB node, and the MT of the first IAB node.
  • the DU identifier of the first IAB node may be operation administration and maintenance (OAM) or the DU ID allocated by the first IAB node such as the CU of the first IAB node.
  • OAM operation administration and maintenance
  • the MT identifier of the first IAB node may be a cell radio network temporary identifier (C-RNTI).
  • C-RNTI cell radio network temporary identifier
  • the information of the parent node that the first IAB node actually accesses may include at least one of the cell ID of the parent node that the first IAB node actually accesses and the ID of the parent node that the first IAB node actually accesses.
  • the IAB host information of the first IAB node may include the CU ID of the IAB host to which the DU of the first IAB node is actually connected, the IP address of the CU of the IAB host to which the DU of the first IAB node is actually connected, and the IP address of the CU of the IAB host to which the DU of the first IAB node is actually connected.
  • the first IAB node initiates random access to at least one cell.
  • the at least one cell may be all or part of the one or more cells indicated by the second message, that is, the at least one cell may be a subset of the one or more cells indicated by the second message.
  • the cell where the first IAB node initiates random access is not necessarily the cell that the first IAB node actually accesses.
  • the cell that the first IAB node successfully accesses after the first IAB node initiates random access is the actual access cell of the first IAB node.
  • the first IAB node may send the indication information for indicating the unsuccessful access to the cell A to the control node.
  • the first IAB node may execute the above steps S1501 to S1503 again.
  • the first IAB node can access at least one cell indicated by the second message after receiving the second message.
  • the first IAB node may select the at least one cell indicated by the second message after receiving the second message. Select all or part of it for access. It can also be understood that the first IAB node selects all cells for access from one or more cells indicated by the second message, or selects some cells for access from one or more cells indicated by the second message.
  • the first IAB node can access the first cell under the instruction of the control node, where the IAB node corresponding to the first cell is the at least one candidate parent node that accesses the IAB
  • the number of the first cell may be one or more, which is not specifically limited here.
  • the second message includes the identities of cells 1 to 5, where cells 1 to 5 correspond to IAB nodes 1 to 5, respectively, where IAB nodes 1 to 3 are connected to IAB host 1, and IAB nodes 4 and 5 are connected to IAB host 2.
  • the control node can instruct the first IAB node to select cell 4, so that the first IAB node accesses cell 4, and selects all or some of the cells among cells 1 to 3 and 5. Access.
  • random access can be based on contention or non-competition.
  • the first IAB node may select an appropriate preamble for the at least one cell to initiate random access.
  • the control node may also send auxiliary access information to the first IAB node, such as the preamble used for non-contention access, the C-RNTI of the first IAB node, etc. It can be used to assist the first IAB node to access the at least one cell without contention.
  • the MT of the first IAB node may initiate random access to at least one cell.
  • the IAB node corresponding to the at least one cell may be understood as the parent node of the first IAB node.
  • one control node can cover the range covered by multiple IAB hosts, so that the entire network can be scheduled to access the range covered by multiple IAB hosts, so that when the IAB node and the parent node of the IAB node Or when the communication link between the host nodes is congested or interrupted, the IAB node can access the IAB system for data transmission under the instruction of the control node, thereby improving the service quality of the terminal service. And through the control node instructs the IAB node to access the IAB system, the network topology can be planned reasonably.
  • the control node designates the IAB host to which the IAB node accesses the IAB node through the entire network plan, thereby optimizing the network topology and improving the service quality of terminal services. For example, referring to Figure 11, when the communication link between the IAB node 2 and the IAB node 1 is congested, the data transmission between the IAB node 1 and the host node (ie, the IAB host 1) will have a larger delay.
  • the IAB node 2 can access the IAB node 3 and then the IAB host 2 under the instruction of the control node, thereby improving the communication link between the IAB node 2 and the host node.
  • the quality makes the transmission delay of the data of the IAB node 2 to the host node smaller, and the host node can process the data of the IAB node 2 in a timely manner, thereby improving the service quality of the terminal service.
  • control node may also send configuration information to the first IAB node, and the configuration information may include at least one of the following information: BAP configuration information, routing table configuration information, and RLC channel configuration information.
  • the BAP configuration information may include the BAP ID, the mapping relationship between the data radio bearer (DRB) and the RLC channel, and so on.
  • DRB data radio bearer
  • the routing table configuration information may include at least one piece of path information, where the path information may include the destination address, next hop address, and path ID of the path.
  • the first IAB node may configure the routing table according to the routing table configuration information.
  • the routing table configured by the first IAB node according to the routing table configuration information may be as shown in Table 1.
  • the BAP address (BAP address) may refer to the destination address of the path
  • the egress link (egress link) may refer to the next hop address.
  • the BAP routing ID (BAP Routing ID) is used to identify routing information in the routing table
  • the BAP path ID (BAP path ID) is used for a destination address to identify each path information corresponding to the destination address.
  • the first IAB node when the first IAB node sends message 1 to node A, according to the routing table shown in Table 1, the three paths whose BAP address is node A (that is, Path_1, Path_2, and Path_3) can be selected with a higher priority Path_1 (ie, BAP Routing 1), according to BAP Routing 1, the first IAB node can send message 1 to node A through node X.
  • Path_1, Path_2, and Path_3 a higher priority Path_1 (ie, BAP Routing 1)
  • the RLC channel configuration information may include the configuration of the RLC channel, such as RLC mode (RLC mode) and so on.
  • the control node may first determine at least one of the parent node that the first IAB node actually accesses and the IAB host that the first IAB node actually accesses.
  • the control node may determine at least one of the parent node actually accessed by the first IAB node and the IAB host actually accessed by the first IAB node according to the second message sent to the first IAB node, for example, the first IAB node
  • the actually accessed parent node may be the candidate parent node indicated by the control node through the second message, and the IAB host that the first IAB node actually accesses may also be the IAB host specified by the control node through the second message.
  • the control node may send the configuration information through the second message.
  • the control node can send configuration information through other messages, which are not specifically limited here.
  • control node may also obtain the information of the parent node actually accessed by the first IAB node after the first IAB node accesses the parent node.
  • the control node may also obtain the IAB host information accessed by the first IAB node after the first IAB node actually accesses the IAB host. For example, when the control node and the IAB host are deployed centrally (that is, the IAB host can realize the function of the control node), the control node can determine the parent node and IAB actually accessed by the first IAB node when the first IAB node accesses the IAB host At least one of the hosts can also be obtained from other IAB hosts through the Xn interface.
  • control node when the control node is deployed independently, the control node may obtain from the IAB host at least one of the parent node information actually accessed by the first IAB node and the IAB host information, such as obtaining the first IAB from the IAB host through the Xn interface At least one of parent node information and IAB host information that the node actually accesses.
  • the first IAB node may send a first notification message to the control node after actually accessing the parent node, so as to notify the control node of the parent node that the first IAB node actually accesses.
  • the first IAB node may also determine the IAB host that should be accessed and then send a second notification message to the control node to notify the control node of the IAB host that the first IAB node actually accesses.
  • the first notification message and the second notification message may be sent through one message, or may be sent separately through two messages.
  • the first notification message can be sent before the first IAB node accesses the parent node, or can be sent after the first IAB node accesses the parent node.
  • the second notification message can be sent when the first IAB node accesses the IAB. It is sent before the host, or it can be sent after the first IAB node accesses the IAB host, and there is no specific limitation here.
  • the process for the first IAB node to access the network after receiving the second message may be as follows:
  • the first IAB node may initiate random access to the IAB node corresponding to the at least one cell to establish a Uu connection, where the IAB node corresponding to the at least one cell may be an IAB node or an IAB host. Further, the MT of the first IAB node may initiate random access to the IAB node corresponding to the at least one cell.
  • random access can be based on contention or non-competition.
  • the first IAB node may select an appropriate preamble for the at least one cell to initiate random access.
  • the control node may also send auxiliary access information to the first IAB node, such as the preamble used for non-contention access and/or the C-RNTI of the first IAB node, etc., This information can be used to assist the first IAB node to access the at least one cell without contention.
  • the first IAB node can establish an RRC connection with the IAB host connected to the IAB node, and establish a NAS connection with the core network, where, if If the IAB node is an IAB node, the IAB host connected to the IAB node may refer to the IAB host connected to the IAB node through F1. If the IAB node is an IAB host, then the IAB host connected to the IAB node may refer to the IAB node. Further, the MT of the first IAB node may establish an RRC connection with the IAB host connected to the IAB node, and establish a NAS connection with the core network.
  • the MT of the first IAB node can establish an RRC connection with the CU of the IAB host through the DU of the IAB host connected to the IAB node.
  • the CU of the IAB host connected to the IAB node can be further divided into CU-CP and CU-UP.
  • the MT of the first IAB node can communicate with the DU of the IAB host connected to the IAB node.
  • the CU-CP of the IAB host establishes an RRC connection.
  • the first IAB node can configure the RLC, BAP layer, etc. of the first IAB node MT based on the configuration information sent by the control node.
  • the first IAB node can establish an F1 connection with the IAB host designated by the control node. Further, the F1 connection may be established by the DU of the first IAB node and the IAB host designated by the control node.
  • the IAB host designated by the control node may have a CU-DU structure.
  • the DU of the first IAB node may establish an F1 connection with the CU of the IAB host.
  • the CU of the IAB host designated by the control node can be further divided into one CU-CP and multiple CU-UPs.
  • the DU of the first IAB node can be the same as the CU of the IAB host.
  • the CP establishes an F1 connection.
  • control node performs network-wide scheduled access in the range covered by multiple IAB hosts in combination with specific scenarios.
  • the first IAB node does not access the parent node. Or, the first IAB node has been connected to the control node, and has access to the parent node but not the IAB host.
  • the first IAB node may be connected to the control node through a Uu interface
  • the control node is centrally deployed with the CU-CP of the IAB host
  • the first IAB node may be connected to the control node (That is, the CU-CP of the IAB host) is connected through an F1 interface or a Uu interface.
  • IAB node 7 is connected to the control node 1 and does not have access to the parent node.
  • the access process of IAB node 7 can be as follows:
  • the IAB node 7 sends a first message to the control node 1.
  • the first message may include: the RSRP measurement value of the IAB node 7 on the SSB signals of the surrounding nodes and the cell information of the corresponding node.
  • the first message may include the IAB node 2. ⁇ 4 and the RSRP measurement value of the SSB signal of IAB host 2.
  • the control node 1 can be deployed independently or centrally deployed with the IAB host 1. If the control node 1 is deployed independently, for example, as shown in FIG. 13, the IAB node 7 can send the first message to the control node 1 through the Uu interface. Wherein, if the control node 1 is a network device with a CU-DU structure, the IAB node 7 may send the first message to the CU of the control node 1 through the DU of the control node 1. In one implementation, the CU of the control node 1 may only include the CU-CP. In this implementation, the IAB node 7 may send the first message to the CU-CP of the control node 1 through the DU of the control node 1. Further, the MT of the IAB node 7 may send the first message to the control node 1.
  • the IAB node 7 can send the first message to the IAB host 1 through the F1 interface, and further It may be that the DU of the IAB node 7 sends the first message to the IAB host 1 through the F1 interface.
  • the IAB node 7 may also send the first message to the IAB host 1 through the Uu interface, and further, the MT of the IAB node 7 may send the first message to the IAB host 1 through the Uu interface.
  • the IAB node 7 can send a message to the IAB The CU of the host 1 sends the first message. If the CU of IAB host 1 is further divided into CU-CP and CU-UP, and the CU-CP of control node 1 and IAB host 1 are centrally deployed (that is, the CU of IAB host 1 can realize the function of controlling node 1), the IAB node 7 can send the first message to the CU-CP of the IAB host 1.
  • the control node 1 sends a second message to the IAB node 7.
  • the second message may include candidate parent node information; further, the second message may also include designated IAB host information.
  • the candidate parent node information may include one or more cell IDs of each candidate parent node among the one or more candidate parent nodes.
  • the candidate parent node information may include the cell ID of the IAB node 2 and the cell ID of the IAB node 4, and the specified IAB host information may include the cell ID of the IAB host 2.
  • the specified IAB host information may also include at least one of the CU ID of the IAB host 2 and the CU IP address of the IAB host 2.
  • the second message may also indicate that the IAB node should access the cell of IAB node 2.
  • the second message may include the cell IDs of the IAB nodes 2, 3, and 4, and the second message indicates that the IAB node 7 should access the cell of the IAB node 2.
  • the second message may also include configuration information.
  • the control node 1 can be deployed independently or centrally deployed with the IAB host 1. If the control node 1 is deployed independently, for example, as shown in FIG. 13, the control node 1 can send the second message to the IAB node 7 through the Uu interface. Wherein, if the control node 1 is a network device with a CU-DU structure, the CU of the control node 1 may send the second message to the IAB node 7 through the DU of the control node 1. In one implementation, the CU of the control node 1 may only include the CU-CP. In this implementation manner, the CU-CP of the control node 1 may send the second message to the IAB node 7 through the DU of the control node 1. Further, the control node 1 may send a second message to the MT of the IAB node 7.
  • the IAB host 1 can send a second message to the IAB node 7 through the F1 interface or the Uu interface .
  • the IAB host 1 is a network device with a CU-DU structure, and the control node 1 and the CU of the IAB host 1 are centrally deployed (that is, the CU of the IAB host 1 can realize the function of the control node 1), the CU of the IAB host 1 can The second message is sent to the IAB node 7.
  • the CU-CP of the IAB host 1 may send a second message to the IAB node 7. Further, the control node 1 may send the second message to the DU or MT of the IAB node 7.
  • the control node 1 may determine one or more candidate parent nodes based on at least one of the following information: the measured value contained in the first message, the load of the IAB node covered by the control node, the load of the IAB host covered by the control node, and the control node coverage The capacity capability of the IAB node, the capacity capability of the IAB host covered by the control node, the network topology of the IAB node covered by the control node, and the network topology of the IAB host covered by the control node, etc.
  • the IAB node 7 can initiate random access to the IAB node 2 and the subset of candidate parent nodes (assumed to be the IAB node 4) indicated by the second message to establish a Uu interface.
  • the MT of the IAB node 7 may initiate random access to the DU of the IAB node 2 and the DU of the IAB node 4.
  • random access can be based on contention or non-competition.
  • the IAB node 7 can select an appropriate preamble for the IAB node 2 and the IAB node 4 to initiate random access.
  • the control node 1 may also send auxiliary access information to the IAB node 7, such as the preamble used for non-contention access and/or the C-RNTI of the first IAB node, etc. This information can be used to assist the IAB node 7 in non-competitively accessing the IAB node 2 and the IAB node 4.
  • the IAB node 7 can connect to the IAB host connected to the DU of the IAB node 2, that is, IAB host 2, and the DU connected to the IAB node 4
  • the IAB host that is, IAB host 1, establishes an RRC connection and establishes a connection with the NAS of the core network.
  • the MT of the IAB node 7 may establish an RRC connection with the IAB host 2 and the IAB host 1, and establish a NAS connection with the core network.
  • the MT of the IAB node 7 establishes an RRC connection with the CU of the IAB host 2 and the CU of the IAB host 1.
  • the CUs of IAB host 2 and IAB host 1 can be further divided into CU-CP and CU-UP. Further, the MT of the IAB node 7 establishes an RRC connection with the CU-CP of the IAB host 2 and the CU-CP of the IAB host 1.
  • the IAB node 7 can configure the RLC, BAP layer, etc. of the MT of the IAB node 7 based on the configuration information sent by the control node 1.
  • the IAB node 7 can establish an F1 connection with the IAB host designated by the control node 1, that is, the IAB host 2. Further, the F1 connection may be established by the DU of the IAB node and the IAB host designated by the control node.
  • the IAB host 1 may have a CU-DU structure.
  • the DU of the IAB node 7 may establish an F1 connection with the CU of the IAB host 2.
  • the CU of the IAB host 2 can be further divided into one CU-CP and multiple CU-UPs.
  • the DU of the IAB node 7 can be established with the CU-CP of the IAB host 2. F1 connection.
  • the IAB system may be as shown in FIG. 18.
  • Scenario 2 The first IAB node has accessed the parent node or the IAB host.
  • control node 1 can reschedule and access the IAB node 4 as follows:
  • the IAB node 4 sends indication information to the control node 1.
  • the indication information can be used to indicate radio link failure (RLF) indication information, or it can also be used to indicate a change in channel quality, or it can be Indicate overload, or it can also indicate that the data in the buffer is too long, or it can also indicate the load level.
  • RLF radio link failure
  • the IAB node 4 may send indication information for indicating the RLF when a link disconnection occurs with the parent node, that is, the IAB node 3, or when RLF occurs.
  • the IAB node 4 may send channel quality change indication information when it perceives a change in channel quality, for example, when a channel quality indicator (CQI) is lower than a threshold, or when the CQI is lower than a threshold and exceeds a preset duration.
  • CQI channel quality indicator
  • the IAB node 4 may send indication information indicating that the load is overloaded or indicating that the data in the buffer is too long when it senses that the load is large.
  • the control node 1 can be deployed independently or centrally deployed with the IAB host 1.
  • the way in which the IAB node 4 sends the instruction information to the control node 1 is similar to the way in which the IAB node 7 sends the first message to the control node 1 in scenario 1.
  • the difference is that the first message is sent in step B1.
  • Message, C1 sends an indication message.
  • step B1 in scenario 1. Similarities will not be repeated.
  • the control node 1 sends a second message to the IAB node 4, where the second message may include candidate parent node information; further, the second message may also include designated IAB host information.
  • the parent node information may include the identities of the cells of one or more candidate parent nodes.
  • the control node 1 may send a second message to the MT of the IAB node 4.
  • the second message may also contain configuration information. Among them, the method for the control node 1 to send the second message to the IAB node 4 can refer to step B2 in the scenario 1, which will not be repeated here.
  • the control node 1 may determine one or more candidate parent nodes based on at least one of the following information: the first message sent by the IAB node 4, the load of the IAB node covered by the control node, the load of the IAB host covered by the control node, and the control node The capacity capability of the covered IAB node, the capacity capability of the IAB host covered by the control node, the network topology of the IAB node covered by the control node, the network topology of the IAB host covered by the control node, the indication information, and so on.
  • the first message may be sent by the IAB node 4 before sending the instruction information. Alternatively, the first message may be sent by the IAB node 4 to the control node 1 when accessing the network.
  • the first message may be sent by the IAB node 4 after sending the instruction information.
  • the first message may be sent when the IAB node 4 sends the instruction information, for example, the instruction information is included in the first message and sent to the control node 1.
  • the first message may include: the RSRP measurement value of the IAB node 4 on the SSB signal of the surrounding node, and the cell information of the corresponding node.
  • the first message may include the SSB signal of the IAB node 3, 5, 7 and the IAB host 1. RSRP measurement value.
  • the parent node information contained in the second message may include the cell ID of the IAB node 5, and the specified IAB host information may include the cell ID of the IAB host 1. Further, if the IAB host 1 is an IAB host establishing an F1 connection, the specified IAB host information may also include at least one of the CU ID of the IAB host 1 or the CU IP address of the IAB host 1.
  • the IAB node 4 initiates random access to the IAB node 5 to establish a Uu connection, configures the MT of the IAB node 4, and establishes an F1 connection with the IAB host 1.
  • the process is similar to the process of IAB node 7 initiating random access to IAB node 2 and IAB node 4 in scenario 1, to establish Uu connection, configure the MT of IAB node 7, and establish F1 connection with IAB host 2.
  • the IAB system may be as shown in FIG. 19.
  • control node can at least implement a load balancing function for IAB nodes under multiple IAB hosts.
  • the method includes:
  • the control node sends a fourth message to the IAB node, where the fourth message is used to control the routing scheduling of the IAB node.
  • the IAB node can receive the fourth message sent by the control node.
  • the fourth message may include, but is not limited to, at least one of the following information: update information of the routing table; indication information used to instruct the IAB node to switch from the first IAB host to the second IAB host.
  • the indication information can be the IP address of the second IAB host, or the host ID of the second IAB host, etc.; it is used to instruct the IAB node to switch the user plane connection from the first CU-UP of the first IAB host to that of the first IAB host.
  • the indication information of the second CU-UP for example, the indication information may be the TNL address of the second CU-UP; configuration information of the routing table.
  • the TNL address of the second CU-UP may refer to the tunnel endpoint identifier (TEID) of the second CU-UP.
  • the update information of the routing table may include at least one of the following information: update information of the next hop of the IAB node, update information of the priority of the routing path of the IAB node, information of the newly added routing path, and information of the deletion of the routing path .
  • step S1502 The process of the control node sending the fourth message to the IAB node in different deployment modes is similar to step S1502 in the first embodiment, except that the first message is sent in step S1502, and the fourth message is sent in step S2001.
  • the sending method is the same. You can refer to the related description of step S1502, and the similarities will not be repeated.
  • the IAB node may update the locally stored routing table based on the fourth message after receiving the fourth message. For example, if the fourth message contains the update information of the next hop of the IAB node, the IAB node updates the routing table based on the update information.
  • the routing table described in Table 1 as an example, suppose the fourth message indicates that the BAP Routing ID is The next hop of 3 is X, the IAB node updates the routing table based on the fourth message, and the updated routing table can be as shown in Table 2.
  • BAP Routing ID BAP address BAP path ID Egress link priority 1 A Path_1 X 1 2 A Path_2 Y 2 3 A Path_3 X 3 4 B Path_1 Y 2 5 B Path_2 X 1 ... ... ... ... ... ...
  • the IAB node updates the routing table based on the update information.
  • the routing table described in Table 1 as an example, suppose the fourth message indicates BAPRouting The ID of 4 has a priority of 4, and the IAB node updates the routing table based on the fourth message.
  • the updated routing table may be as shown in Table 3.
  • the IAB node updates the routing table based on the updated information.
  • the routing table described in Table 3 as an example, suppose the fourth message indicates to add the BAP Routing ID to 6. If the BAP address of the path is B, the BAP path ID is Path_3, the Egress link is Z, and the priority is 3, the IAB node updates the routing table based on the fourth message.
  • the updated routing table may be as shown in Table 4.
  • BAP Routing ID BAP address BAP path ID Egress link priority 1 A Path_1 X 1 2 A Path_2 Y 2 3 A Path_3 Z 3 4 B Path_1 Y 4 5 B Path_2 X 1 6 B Path_3 Z 3 ... ... ... ... ... ...
  • the IAB node updates the routing table based on the updated information.
  • the routing table described in Table 5 as an example, suppose the fourth message indicates to delete the BAP Routing ID of 3. Path, the IAB node updates the routing table based on the fourth message, and the updated routing table may be as shown in Table 5.
  • BAP Routing ID BAP address BAP path ID Egress link priority 1 A Path_1 X 1 2 A Path_2 Y 2 4 B Path_1 Y 4 5 B Path_2 X 1 6 B Path_3 Z 3 ... ... ... ... ... ...
  • the IAB node may configure the routing table based on the fourth message after receiving the fourth message.
  • the specific process please refer to the related description of the routing table configuration in the first embodiment, which will not be repeated here.
  • the IAB node may be hosted by the first IAB host Switch the connection to the second IAB host, and update the IP address of the user plane data in the routing table from the IP address of the first IAB host to the address of the second IAB host.
  • the IAB node can switch the user plane connection from the first CU-UP hosted by the first IAB to the second CU-UP hosted by the first IAB, and transfer the TNL address of the user plane data from the first CU-UP to the first CU-UP hosted by the first IAB.
  • the address of UP is updated to the address of the second CU-UP.
  • the IAB node transmits data based on the updated routing table.
  • the embodiment of the application introduces a control node, which can cover (for example, by low-frequency coverage, etc.) multiple IAB hosts, so that centralized control of IAB nodes across multiple IAB host coverage areas can be achieved to achieve centralized routing control , Load balancing, etc., which can improve resource utilization, balance load, and improve the reliability of the entire network.
  • the control node may first determine at least one of the parent node that the IAB node actually accesses and the IAB host. Specifically, for the process of the control node determining at least one of the parent node and the IAB host that the IAB node actually accesses, reference may be made to the relevant description in the foregoing embodiment for details, and details are not repeated here.
  • the IAB node can access the network by referring to the method described in the first embodiment above, or can also access the network by other methods, which is not specifically limited here.
  • the control node may determine the new routing information of the IAB node, such as routing table update information, routing table configuration information, communication connection, and new user plane data. IP address, user plane connection and new TNL address for user plane data, etc.
  • the IAB node may also send a fifth message to the control node, where the fifth message contains the status information of the IAB node, and the status information may It is at least one of load information, capacity capability information, link break information, link release information, etc., as shown in FIG. 21. Therefore, the control node can determine the new routing information of the IAB node according to the fifth message.
  • the load information may be indication information used to indicate load overload; or, the load information may also be indication information used to indicate that the data in the buffer exceeds a threshold. Alternatively, the load information may also be an indication for indicating the load level.
  • the capacity capability information may include at least one of the following information: the capacity capability of the IAB node for uplink communication, and the capacity capability of the IAB node for downlink communication.
  • the fifth message may be actively reported by the IAB node, or the control node may request the IAB node to report.
  • the control node may configure the first IAB node to send the fifth message periodically, or the control node may configure the first IAB node to send the fifth message triggered by a trigger event.
  • the trigger event may be that the load exceeds a threshold, or it may be It is the time that the load exceeds the threshold for more than the preset time, or the amount of data in the buffer is greater than the threshold, or the time that the amount of data in the buffer is greater than the threshold exceeds the preset time, and so on.
  • control node may configure the manner in which the first IAB node actively reports the fifth message by sending a configuration message to the first IAB node.
  • control node may send a sixth message to the IAB node, and the sixth message is used to request the IAB node to send the fifth message, as shown in FIG. 22.
  • the sixth message may also include indication information for instructing the IAB node to periodically or aperiodically send or send the fifth message triggered by an event.
  • sending the fourth message periodically can be understood as sending the fifth message multiple times.
  • the sixth message may instruct the IAB node to send the fifth message periodically within a period of time after receiving the sixth message.
  • Sending the fifth message aperiodically can be understood as sending the fifth message once.
  • the sixth message may instruct the IAB node to send the fifth message once after receiving the sixth message.
  • the sending of the fifth message triggered by the event can be understood as sending the fifth message when a preset event occurs.
  • the sixth message may instruct the IAB node to send the fourth message when the load of the IAB node is overloaded, and so on.
  • the event that triggers the sending of the fifth message in the second embodiment of the present application may be that the load exceeds the threshold, or the time that the load exceeds the threshold exceeds the preset duration, or the amount of data in the buffer is greater than the threshold, or It can be that the time period for which the amount of data in the buffer is greater than the threshold exceeds the preset time period, and so on.
  • the sixth message can also be used to request the IAB node to report at least one of the following information: the DU identifier of the IAB node, the MT identifier of the IAB node, and the actual access of the IAB node.
  • the DU identifier of the IAB node may be the DU ID allocated by the OAM or the CU of the IAB node for the IAB node.
  • the MT identifier of the IAB node may be C-RNTI.
  • the parent node information of the IAB node may include, but is not limited to, the cell ID of the parent node that the IAB node actually accesses.
  • the IAB host information of the IAB node may include, but is not limited to, the CU ID of the IAB host to which the DU of the IAB node is actually connected, the IP address of the CU of the IAB host to which the DU of the IAB node is actually connected, and the IAB to which the DU of the IAB node is actually connected.
  • the embodiment of the present application provides an access backhaul control device.
  • the structure of the access backhaul control device may be as shown in FIG. 23, including a transceiver unit 2301 and a processing unit 2302.
  • the access backhaul control device can be specifically used to implement the method executed by the IAB node in the embodiments of FIGS. 15-19.
  • the device can be the IAB node itself, or the chip or chip in the IAB node. A part of a group or chip used to perform related method functions.
  • the transceiver unit 2301 is configured to receive a first message sent by a control node, the control node is configured to perform access control on multiple IAB nodes under multiple IAB hosts, and the first message includes at least one identity of the first cell, where , The identification of at least one first cell is determined by the control node according to the synchronization signal block measurement information reported by the first IAB, the first IAB node is any one of the multiple IAB nodes, and the synchronization signal block measurement information includes the following information At least one item: a measurement value obtained by a first IAB node measuring a synchronization signal block sent by at least one second IAB node, and a measurement value obtained by a first IAB node measuring a synchronization signal block sent by at least one IAB host.
  • the processing unit 2302 is configured to initiate random access to at least one second cell, and the at least one second cell is all or part of the at least one first cell.
  • the transceiver unit 2301 may also be used to send synchronization signal block measurement information to the control node before receiving the first message sent by the control node.
  • the synchronization signal block measurement information may further include the identity of the cell corresponding to each of the measurement values.
  • the first message may also include an identifier of an IAB host, and the IAB host is an IAB host designated to access by the first IAB node.
  • the transceiver unit 2301 may also be used to receive configuration information sent by the control node, where the configuration information includes at least one of the following information: returning adaptation protocol configuration information, routing table configuration information, and radio link control configuration information.
  • the transceiver unit 2301 may also be used to send indication information for indicating the failure of the wireless link to the control node when the wireless link with the parent node fails.
  • the transceiver unit 2301 may also be used to: when the channel quality of the channel with the parent node changes, send indication information for indicating the channel quality change to the control node.
  • the transceiving unit 2301 may also be configured to: before receiving the first message sent by the control node, receive a second message sent by the control node, where the second message is used to request the device to send synchronization signal block measurement information.
  • the second message may also include indication information used to instruct the first IAB node to periodically or aperiodically send the synchronization signal block measurement information.
  • the second message may also be used to request the first IAB node to send at least one of the following information: the DU identifier of the first IAB node, the MT identifier of the first IAB node, the parent node information of the first IAB node, and the first IAB node Information about the connected IAB host.
  • the access backhaul control device can be specifically used to implement the method executed by the control node in the embodiments of FIGS. 15-19.
  • the device can be the control node itself, or the chip or chip in the control node. A chip set or part of a chip used to perform related method functions.
  • the processing unit 2302 is configured to determine at least one cell according to the synchronization signal block measurement information reported by the first IAB node.
  • the synchronization signal block measurement information includes at least one of the following information: The measurement value obtained by sending the synchronization signal block and the measurement value obtained by the first IAB node measuring the synchronization signal block sent by at least one IAB host.
  • the transceiver unit 2301 is configured to send a first message to a first IAB node, where the first message includes an identifier of at least one cell, and the first message is used to indicate a candidate parent node of the first IAB node.
  • the transceiver unit 2301 may also be used to receive the synchronization signal block measurement information sent by the first IAB node before the processing unit 2302 determines at least one cell according to the synchronization signal block measurement information reported by the first IAB node.
  • the synchronization signal block measurement information may further include the identity of the cell corresponding to each of the measurement values.
  • the first message may also include an identifier of the IAB host, and the IAB host is an IAB host designated to access by the first IAB node.
  • the transceiver unit 2301 may also be used to send configuration information to the first IAB node, where the configuration information includes at least one of the following information: returning adaptation protocol configuration information, routing table configuration information, and radio link control configuration information.
  • the transceiver unit 2301 may be further configured to: before the processor 2302 determines at least one cell according to the synchronization signal block measurement information reported by the first IAB node, receive the indication information sent by the first IAB node for indicating radio link failure.
  • the transceiver unit 2301 may also be used to: receive the indication information sent by the first IAB node and used to indicate the channel quality change.
  • the transceiver unit 2301 may also be used to send a second message to the first IAB node before receiving the first message sent by the first IAB node, and the second message is used to request the first IAB node to send synchronization signal block measurement information.
  • the second message may also include indication information used to instruct the IAB node to periodically or non-periodically send the synchronization signal block measurement information.
  • the second message may also be used to request the first IAB node to send at least one of the following information: the DU identifier of the first IAB node, the MT identifier of the first IAB node, the parent node information of the first IAB node, and the first IAB node Information about the connected IAB host.
  • the access backhaul control device may be specifically used to implement the method executed by the IAB node in the embodiments of FIGS. 20-22.
  • the device may be the IAB node itself, or the chip or chip in the IAB node. A chip set or part of a chip used to perform related method functions.
  • the transceiver unit 2301 is configured to receive the first message sent by the control node, and the control node is configured to load balance multiple IAB nodes under multiple IAB hosts, and the IAB nodes are multiple IAB nodes within the coverage of the control node. Any IAB node in.
  • the first message is used to control the routing scheduling of the IAB node.
  • the processing unit 2302 is configured to transmit data through the transceiver unit 2301 based on the first message.
  • the first message may include at least one of the following information: update information of the routing table; indication information used to instruct the IAB node to switch from the first IAB host to the second IAB host.
  • the indication information may It is the IP address of the second IAB host, or the host ID of the second IAB host, etc.; used to instruct the IAB node to switch the user plane connection from the first CU-UP of the first IAB host to the second CU of the first IAB host -UP indication information, for example, the indication information may be the TNL address of the second CU-UP; configuration information of the routing table.
  • the update information of the routing table may include at least one of the following information: update information of the next hop of the IAB node, update information of the priority of the routing path of the IAB node, information of the newly added routing path, and deletion of the routing path Information.
  • the transceiver unit 2301 may also be used to send a second message to the control node before receiving the first message sent by the control node, the second message containing at least one of the load information and capacity information of the IAB node One item.
  • the load information may be indication information used to indicate load overload; or, the load information may also be indication information used to indicate that the data in the cache exceeds a threshold; or, the load information may also be indication information used to indicate a load level .
  • the capacity capability information may include at least one of the following information: the capacity capability of the IAB node for uplink communication, and the capacity capability of the IAB node for downlink communication.
  • the transceiver unit 2301 may be further configured to: before sending the second message to the control node, receive a third message sent by the control node, where the third message is used to request the device to send the second message.
  • the third message may also include indication information for instructing the IAB node to periodically or aperiodically send the second message.
  • the third message may also be used to request the IAB node to send at least one of the following information: the DU identifier of the IAB node, the MT identifier of the IAB node, the parent node information of the IAB node, and the information of the IAB host to which the IAB node is connected.
  • the access backhaul control device can be specifically used to implement the method executed by the control node in the embodiments of FIGS. 20-22.
  • the device can be the control node itself, or the chip or chip in the control node.
  • the chip set or a part of the chip used to perform related method functions, and the device is used to load balance multiple IAB nodes under multiple IAB hosts.
  • the processing unit 2302 is configured to determine routing update information of an IAB node, and the IAB node is any IAB node within the coverage of the control node.
  • the transceiver unit 2301 is configured to send a first message to the IAB node, and the first message is used to control routing scheduling of the IAB node.
  • the first message may include at least one of the following information: update information of the routing table; indication information used to instruct the IAB node to switch from the first IAB host to the second IAB host.
  • the indication information may It is the IP address of the second IAB host, or the host ID of the second IAB host, etc.; used to instruct the IAB node to switch the user plane connection from the first CU-UP of the first IAB host to the second CU of the first IAB host -UP indication information, for example, the indication information may be the TNL address of the second CU-UP; configuration information of the routing table.
  • the update information of the routing table may include at least one of the following information: update information of the next hop of the IAB node, update information of the priority of the routing path of the IAB node, information of the newly added routing path, and deletion of the routing path Information.
  • the transceiver unit 2301 may also be used to: before sending the first message to the IAB node, receive a second message sent by the IAB node, where the second message contains at least one of the load information and capacity capability information of the IAB node.
  • the second message contains at least one of the load information and capacity capability information of the IAB node.
  • the load information may be indication information used to indicate load overload; or, the load information may also be indication information used to indicate that the data in the cache exceeds a threshold; or, the load information may also be indication information used to indicate a load level .
  • the capacity capability information may include at least one of the following information: the capacity capability of the IAB node for uplink communication, and the capacity capability of the IAB node for downlink communication.
  • the transceiver unit 2301 may be further configured to send a third message to the IAB node before receiving the second message sent by the IAB node, and the third message is used to request the IAB node to send the second message.
  • the third message may also include indication information for instructing the IAB node to periodically or aperiodically send the second message.
  • the third message can also be used to request the IAB node to send at least one of the following information: the ID of the distribution unit DU of the IAB node, the ID of the mobile terminal MT of the IAB node, the parent node information of the IAB node, and the information of the IAB host to which the IAB node is connected. information.
  • the processing unit 2302 may be further configured to: before the transceiver unit 2301 sends the first message to the IAB node, determine that the IAB node is connected to the network.
  • the division of modules in the embodiments of this application is illustrative, and it is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of this application can be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It can be understood that, for the function or implementation of each module in the embodiment of the present application, reference may be made to the related description of the method embodiment.
  • the access backhaul control device may be as shown in FIG. 24, and the device may be a network device or a chip in a network device, where the network device can control a node or an IAB node.
  • the device may include a processor 2401, a communication interface 2402, and a memory 2403.
  • the processing unit 2302 may be a processor 2401.
  • the transceiver unit 2301 may be a communication interface 2402.
  • the processor 2401 may be a central processing unit (central processing unit, CPU), or a digital processing unit, and so on.
  • the communication interface 2402 may be a transceiver, an interface circuit such as a transceiver circuit, etc., or a transceiver chip, and so on.
  • the device also includes a memory 2403, which is used to store programs executed by the processor 2402.
  • the memory 2403 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., and may also be a volatile memory, such as random access memory (random access memory). -access memory, RAM).
  • the memory 2403 is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the processor 2401 is configured to execute the program code stored in the memory 2403, and is specifically configured to execute the actions of the above-mentioned processing unit 2302, which will not be repeated in this application.
  • the communication interface 2402 is specifically used to perform the actions of the above-mentioned transceiver unit 2301, which will not be repeated here in this application.
  • connection medium between the aforementioned communication interface 2401, processor 2402, and memory 2403 is not limited in the embodiment of the present application.
  • the memory 2403, the processor 2402, and the communication interface 2401 are connected by a bus 2404.
  • the bus is represented by a thick line in FIG. 24.
  • the connection mode between other components is only for schematic illustration. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of presentation, only one thick line is used to represent in FIG. 24, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the present invention also provides a computer-readable storage medium for storing computer software instructions required to be executed to execute the foregoing processor, which contains a program required to execute the foregoing processor.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种接入回传控制方法及装置,可以实现IAB节点快速接入。该方法中控制节点可以实现对多个IAB宿主覆盖下的多个IAB节点进行接入控制。针对该多个IAB节点中任一IAB节点,控制节点根据IAB节点上报的同步信号块测量信息确定至少一个小区,并向IAB节点发送包含该至少一个小区的标识的第一消息,从而IAB节点向至少一个小区的全部或部分小区发起随机接入。其中,同步信号块测量信息包括如下信息中至少一项:IAB节点对至少一个其他IAB节点所发送同步信号块进行测量得到的测量值、IAB节点对至少一个IAB宿主所发送同步信号块进行测量得到的测量值。

Description

一种接入回传控制方法及装置 技术领域
本申请涉及通信技术领域,特别涉及一种接入回传控制方法及装置。
背景技术
接入回传一体化(integrated access and backhaul,IAB),是指基站的接入链路和回传链路均采用无线方式进行传输。其中,对基站A而言,接入链路指该基站A与其所服务的终端设备之间的通信链路,回传链路指该基站A与它的上级节点(如基站A的父节点或者宿主节点等)之间的通信链路。该技术可以取代传统的光纤回传链路,从而避免大量的光纤部署,因此可以提升网络部署的灵活性、降低网络部署成本。
IAB网络中存在两种类型的节点:IAB宿主(IAB Donor)和IAB节点(IAB-node)。其中,IAB宿主直接连接到核心网,可以为UE提供接入服务,还可以为IAB-node提供到核心网的回传出口。IAB-node不直接连接到核心网,而是通过(单跳或者多跳)无线回传连接到IAB宿主,由IAB宿主回传至核心网。IAB-node可以为UE提供接入服务,还可以为其他IAB-node提供回传链路。
现有IAB架构里中IAB节点与IAB宿主间的从属关系固定,一个IAB节点只能接入一个固定的IAB宿主,各IAB宿主独立控制接入的IAB节点。因此当IAB节点与该IAB节点的父节点或者宿主节点之间的通信链路拥塞或者中断时,IAB节点无法实现有效的数据传输,造成终端业务的服务质量难以得到满足。
发明内容
本申请实施例提供了一种接入回传控制方法及装置,用于解决现有技术中当IAB节点与该IAB节点的父节点或者宿主节点之间的通信链路拥塞或者中断时IAB节点无法实现有效的数据传输,造成终端业务的服务质量难以得到满足的问题。
第一方面,本申请实施例提供的一种接入回传控制方法,该方法包括:第一IAB节点接收控制节点发送的第一消息,控制节点用于对多个IAB宿主覆盖下的多个IAB节点进行接入控制。第一消息包含至少一个第一小区的标识,其中,至少一个第一小区为控制节点根据第一IAB节点上报的同步信号块测量信息确定的,同步信号块测量信息包括如下信息中至少一项:第一IAB节点对至少一个第二IAB节点所发送同步信号块进行得到测量的测量值、第一IAB节点对多个IAB宿主所发送同步信号块进行得到测量的测量值,其中,第一IAB节点和第二IAB节点分别为所述多个IAB节点中的任意两个IAB节点。第一IAB节点向至少一个第一小区的全部或部分小区发起随机接入。本申请实施例中,控制节点可以覆盖到多个IAB宿主所覆盖的范围,对该多个IAB宿主覆盖下的多个IAB节点进行接入控制,从而当IAB节点与该IAB节点的父节点或者宿主节点之间的通信链路拥塞或者中断时,IAB节点可以在控制节点的指示下接入IAB***进行数据传输,进而可以提高终端业务的服务质量。并且由于控制节点可以对该多个IAB宿主覆盖下的IAB节点进行接入控制,通过控制节点指示IAB节点接入IAB***,可以合理的规划网络拓扑。
在一种可能的设计中,在第一IAB节点向控制节点发送同步信号块测量信息之前,第 一IAB节点可以向控制节点发送同步信号块测量信息。控制节点可以覆盖到多个IAB宿主所覆盖的范围,对多个IAB宿主所覆盖的多个IAB节点进行全网调度接入,通过上述设计,使得控制节点可以根据第一IAB节点上报的同步信号块测量信息确定该第一IAB节点的候选父节点的小区,从而使得第一IAB节点可以选择较佳的父节点进行接入。
在一种可能的设计中,同步信号块可以为同步信号/物理广播信道块(SS/PBCH block,SSB),也可以是信道状态信息参考信号(channel state information reference signal,CSI-RS)。
在一种可能的设计中,测量值可以参考信号接收功率(reference signal received power,RSRP)值,也可以是参考信号接收质量(reference signal received quality,RSRQ)值。
在一种可能的设计中,同步信号块测量信息还可以包括每个测量值分别对应的小区的标识。通过上述设计,控制节点可以准确的区分不同小区的测量值。
在一种可能的设计中,第一消息还可以包含IAB宿主的标识,该IAB宿主为指定所述第一IAB节点应接入的IAB宿主。通过上述设计,控制节点还可以为第一IAB节点指定宿主节点,由于控制节点可以对该多个IAB宿主覆盖下的多个IAB节点进行接入控制,通过控制节点指示第一IAB节点应接入的宿主节点,使得第一IAB节点可以在多个IAB宿主间选择一个IAB宿主进行接入,从而可以优化网络拓扑。
在一种可能的设计中,第一IAB节点还可以接收控制节点发送的配置信息,配置信息包括如下信息中的至少一项:回传适配协议配置信息、路由表配置信息、无线链路控制配置信息。通过上述设计,第一IAB节点可以根据控制节点发送的配置信息进行配置。
在一种可能的设计中,第一IAB节点还可以在与父节点之间的无线链路失败时,向控制节点发送用于指示无线链路失败的指示信息。通过上述设计,控制节点可以接收到该指示信息后向第一IAB节点发送第一消息,从而第一IAB节点可以在无线链路失败时可以及时接入合适的父节点。
在一种可能的设计中,第一IAB节点还可以在与父节点之间信道的信道质量变化时,向控制节点发送用于指示信道质量变化的指示信息。通过上述设计,控制节点可以接收到该指示信息后向第一IAB节点发送第一消息,从而第一IAB节点可以在信道质量变化时可以及时接入合适的父节点。
在一种可能的设计中,在第一IAB节点接收控制节点发送的第一消息之前,第一IAB节点还可以接收控制节点发送的第二消息,第二消息用于请求第一IAB节点发送同步信号块测量信息。通过上述设计,控制节点可以通过第二消息控制第一IAB节点上报第一消息。
在一种可能的设计中,第二消息还可以包含用于指示第一IAB节点周期性或者非周期性发送同步信号块测量信息的指示信息。通过上述方式,第一IAB节点可以在第二消息的指示下确定上报第一消息的方式。
在一种可能的设计中,第二消息还可以用于请求第一IAB节点发送如下信息中的至少一项:第一IAB节点的DU标识、第一IAB节点的MT标识、第一IAB节点实际接入的父节点的信息、第一IAB节点实际连接的IAB宿主的信息。通过上述方式,控制节点可以获取第一IAB节点的DU标识、第一IAB节点的MT标识、第一IAB节点实际接入的父节点的信息、第一IAB节点实际连接的IAB宿主的信息等,从而可以结合第一IAB节点的DU标识、第一IAB节点的MT标识、第一IAB节点实际接入的父节点的信息、第一IAB节点实际连接的IAB宿主的信息等确定第一IAB节点的配置信息。
第二方面,本申请实施例提供的一种接入回传控制方法,该方法包括:控制节点根据 第一IAB节点上报的同步信号块测量信息确定至少一个小区,同步信号块测量信息包括如下信息中至少一项:第一IAB节点对至少一个第二IAB节点所发送同步信号块进行测量得到的测量值、第一IAB节点对多个IAB宿主所发送同步信号块进行测量得到的测量值,其中,所述第一IAB节点和所述第二IAB节点分别为所述多个IAB节点中的任意两个IAB节点;控制节点向第一IAB节点发送第一消息,第一消息包含至少一个小区的标识,所述第一消息用于指示所述第一IAB节点的候选父节点的小区。本申请实施例中,控制节点可以覆盖到多个IAB宿主所覆盖的范围,对该多个IAB宿主覆盖下的多个IAB节点进行接入控制,从而当第一IAB节点与该第一IAB节点的父节点或者宿主节点之间的通信链路拥塞或者中断时,第一IAB节点可以在控制节点的指示下接入IAB***进行数据传输,进而可以提高终端业务的服务质量。并且由于控制节点可以对该多个IAB宿主覆盖下的多个IAB节点进行接入控制,通过控制节点指示第一IAB节点接入IAB***,可以合理的规划网络拓扑。
在一种可能的设计中,同步信号块可以为SSB,也可以是CSI-RS。
在一种可能的设计中,测量值可以为RSRP值,也可以是RSRQ值。
在一种可能的设计中,在控制节点基于第一IAB节点上报的同步信号块测量信息确定一个或多个小区之前,控制节点可以接收第一IAB节点发送的同步信号块测量信息。控制节点可以覆盖到多个IAB宿主所覆盖的范围,对多个IAB宿主所覆盖的多个IAB节点进行全网调度接入,通过上述设计,使得控制节点可以根据第一IAB节点上报的同步信号块测量信息确定该第一IAB节点的候选父节点的小区,从而使得第一IAB节点可以选择较佳的父节点进行接入。
在一种可能的设计中,同步信号块测量信息还可以包括各个测量值分别对应的小区的标识。通过上述设计,控制节点可以准确的区分不同小区的测量值。
在一种可能的设计中,第一消息还可以包含IAB宿主的标识,该IAB宿主为指定所述第一IAB节点应接入的IAB宿主。通过上述设计,控制节点还可以为第一IAB节点指定宿主节点,由于控制节点可以对该多个IAB宿主覆盖下的多个IAB节点进行接入控制,通过控制节点指示第一IAB节点接入的宿主节点,使得第一IAB节点可以在多个IAB宿主间选择一个IAB宿主进行接入,从而可以优化网络拓扑。
在一种可能的设计中,控制节点可以向第一IAB节点发送配置信息,配置信息包括如下信息中的至少一项:回传适配协议配置信息、路由表配置信息、无线链路控制配置信息。通过上述设计,第一IAB节点可以根据控制节点发送的配置信息进行配置。
在一种可能的设计中,控制节点可以接收第一IAB节点发送的用于指示无线链路失败的指示信息。通过上述设计,控制节点可以接收到该指示信息后向第一IAB节点发送第一消息,从而第一IAB节点可以在无线链路失败时可以及时接入合适的父节点。
在一种可能的设计中,控制节点可以接收第一IAB节点发送的用于指示信道质量变化的指示信息。通过上述设计,控制节点可以接收到该指示信息后向第一IAB节点发送第一消息,从而第一IAB节点可以在信道质量变化时可以及时接入合适的父节点。
在一种可能的设计中,在控制节点向第一IAB节点发送第一消息之前,控制节点还可以向第一IAB节点发送第二消息,第二消息用于请求第一IAB节点发送同步信号块测量信息。通过上述设计,控制节点可以通过第二消息控制第一IAB节点上报第一消息。
在一种可能的设计中,第二消息还可以包含用于指示IAB节点周期性或者非周期性发 送同步信号块测量信息的指示信息。通过上述方式,第一IAB节点可以在第二消息的指示下确定上报第一消息的方式。
在一种可能的设计中,第二消息还可以用于请求第一IAB节点发送如下信息中的至少一项:第一IAB节点的DU标识、第一IAB节点的MT标识、第一IAB节点实际接入的父节点的信息、第一IAB节点实际连接的IAB宿主的信息。通过上述方式,控制节点可以获取第一IAB节点的DU标识、第一IAB节点的MT标识、第一IAB节点实际接入的父节点的信息、第一IAB节点实际连接的IAB宿主的信息等,从而可以结合第一IAB节点的DU标识、第一IAB节点的MT标识、第一IAB节点实际接入的父节点的信息、第一IAB节点实际连接的IAB宿主的信息等确定第一IAB节点的配置信息。
第三方面,本申请实施例提供的一种接入回传控制方法,该方法包括:IAB节点接收控制节点发送的第一消息,控制节点用于对多个IAB宿主覆盖下的多个IAB节点进行负载均衡,该IAB节点为控制节点覆盖范围内的多个IAB节点中的任一IAB节点。第一消息用于控制IAB节点的路由调度。IAB节点基于第一消息传输数据。本申请实施例中,一个控制节点可以覆盖到多个IAB宿主所覆盖的范围,从而可以实现对多个IAB宿主覆盖下的多个IAB节点进行控制,从而当IAB节点与该IAB节点的父节点或者宿主节点之间的通信链路拥塞或者中断时,IAB节点可以在控制节点的指示选择路由,由于控制节点可以对该多个IAB宿主覆盖下的多个IAB节点进行控制,因此通过控制节点控制IAB节点的路由,可以实现集中路由控制、负载均衡等,进而可以提高资源利用率,平衡负载,提高整网的可靠性。
在一种可能的设计中,第一消息可以包含如下信息中至少一项:路由表的更新信息;用于指示IAB节点由第一IAB宿主切换到第二IAB宿主的指示信息,例如,该指示信息可以为第二IAB宿主的网络协议(internet protocol,IP)地址,或者第二IAB宿主的标识等等;用于指示IAB节点将用户面连接由第一IAB宿主的第一用户面(CU-UP)切换到第一IAB宿主的第二CU-UP的指示信息,例如,该指示信息可以是用户面数据的传输网络层(transport network layer,TNL)地址;路由表的配置信息。上述设计中,控制节点可以通过第一消息调整IAB节点的路由路径,从而可以实现全网的负载均衡,进而可以提高整网的可靠性。
在一种可能的设计中,路由表的更新信息可以包括如下信息中的至少一项:IAB节点的下一跳的更新信息、IAB节点的路由路径优先级的更新信息、新增路由路径的信息、删除路由路径的信息。上述设计中,具体通过更新IAB节点的路由表,可以实现对IAB节点的路由控制。
在一种可能的设计中,在IAB节点接收控制节点发送的第一消息之前,IAB节点可以向控制节点发送第二消息,第二消息包含IAB节点的负载信息以及容量能力信息中的至少一项。通过上述设计,控制节点可以根据IAB节点的负载信息以及容量能力信息等控制IAB节点的路由,从而可以实现全网的负载均衡,进而可以提高整网的可靠性。
在一种可能的设计中,负载信息可以为用于指示负载过载的指示信息;或者,负载信息为用于指示缓存中数据超过阈值的指示信息;或者,负载信息为用于指示负载等级的指示。上述设计通过过载等指示信息可以节省信令开销。
在一种可能的设计中,容量能力信息包括如下信息中的至少一项:IAB节点的用于上行通信的容量能力、IAB节点的用于下行通信的容量能力。
在一种可能的设计中,在IAB节点向控制节点发送第二消息之前,IAB节点可以接收控制节点发送的第三消息,第三消息用于请求IAB节点发送第二消息。通过上述设计,控制节点可以控制IAB节点上报第二消息。
在一种可能的设计中,第三消息还包含用于指示IAB节点周期性或者非周期性发送第二消息的指示信息。通过上述设计,IAB节点可以根据第三消息确定上报第二消息的方式。
在一种可能的设计中,第三消息还可以用于请求IAB节点发送如下信息中的至少一项:IAB节点的DU标识、IAB节点的MT标识、IAB节点实际接入的父节点的信息、IAB节点实际连接的IAB宿主的信息。通过上述方式,控制节点可以获取IAB节点的IAB节点的DU标识、IAB节点的MT标识、IAB节点实际接入的父节点的信息、IAB节点实际连接的IAB宿主的信息等,从而可以结合IAB节点的DU标识、IAB节点的MT标识、IAB节点实际接入的父节点的信息、IAB节点实际连接的IAB宿主的信息等实现对IAB节点的路由控制。
第四方面,本申请实施例提供的一种接入回传控制方法,该方法包括:控制节点确定IAB节点的路由更新信息,控制节点用于对多个IAB宿主覆盖下的多个IAB节点进行负载均衡,该IAB节点为控制节点覆盖范围内的任一IAB节点。控制节点向IAB节点发送第一消息,第一消息用于控制IAB节点的路由调度。
本申请实施例中,一个控制节点可以覆盖到多个IAB宿主所覆盖的范围,从而可以实现对多个IAB宿主覆盖下的多个IAB节点进行控制,从而当IAB节点与该IAB节点的父节点或者宿主节点之间的通信链路拥塞或者中断时,IAB节点可以在控制节点的指示选择路由,由于控制节点可以对该多个IAB宿主覆盖下的IAB节点进行控制,因此通过控制节点控制IAB节点的路由,可以实现集中路由控制、负载均衡等,进而可以提高资源利用率,平衡负载,提高整网的可靠性。
在一种可能的设计中,第一消息可以包含如下信息中至少一项:路由表的更新信息;用于指示IAB节点由第一IAB宿主切换到第二IAB宿主的指示信息,例如,该指示信息可以为第二IAB宿主的IP地址,或者第二IAB宿主的标识等等;用于指示IAB节点将用户面连接由第一IAB宿主的第一CU-UP切换到第一IAB宿主的第二CU-UP的指示信息,示例性的,该指示信息可以是第二CU-UP的TNL地址;路由表的配置信息。上述设计中,控制节点可以通过第一消息调整IAB节点的路由路径,从而可以实现全网的负载均衡,进而可以提高整网的可靠性。
在一种可能的设计中,路由表的更新信息可以包括如下信息中的至少一项:IAB节点的下一跳的更新信息、IAB节点的路由路径优先级的更新信息、新增路由路径的信息、删除路由路径的信息。上述设计中,具体通过更新IAB节点的路由表,可以实现对IAB节点的路由控制。
在一种可能的设计中,在控制节点向IAB节点发送第一消息之前,控制节点可以接收IAB节点发送的第二消息,第二消息包含IAB节点的负载信息以及容量能力信息中的至少一项。通过上述设计,控制节点可以根据IAB节点的负载信息以及容量能力信息等控制IAB节点的路由,从而可以实现全网的负载均衡,进而可以提高整网的可靠性。
在一种可能的设计中,负载信息可以为用于指示负载过载的指示信息;或者,负载信息为用于指示缓存中数据超过阈值的指示信息;或者,负载信息为用于指示负载等级的指示。上述设计通过过载等指示信息可以节省信令开销。
在一种可能的设计中,容量能力信息包括如下信息中的至少一项:IAB节点的用于上行通信的容量能力、IAB节点的用于下行通信的容量能力。
在一种可能的设计中,在控制节点接收IAB节点发送的第二消息之前,控制节点可以向IAB节点发送第三消息,第三消息用于请求IAB节点发送第二消息。
在一种可能的设计中,第三消息还包含用于指示IAB节点周期性或者非周期性发送第二消息的指示信息。通过上述设计,IAB节点可以根据第三消息确定上报第二消息的方式。
在一种可能的设计中,第三消息还可以用于请求IAB节点发送如下信息中的至少一项:IAB节点的DU标识、IAB节点的MT标识、IAB节点实际接入的父节点的信息、IAB节点实际连接的IAB宿主的信息。通过上述方式,控制节点可以获取IAB节点的IAB节点的DU标识、IAB节点的MT标识、IAB节点实际接入的父节点的信息、IAB节点实际连接的IAB宿主的信息等,从而可以结合IAB节点的DU标识、IAB节点的MT标识、IAB节点实际接入的父节点的信息、IAB节点实际连接的IAB宿主的信息等实现对IAB节点的路由控制。
在一种可能的设计中,在控制节点向IAB节点发送第一消息之前,控制节点可以确定IAB节点接入网络。
第五方面,本申请提供一种接入回传控制装置,该装置可以是网络设备,也可以是网络设备内的芯片或芯片组,其中,网络设备可以是控制节点,也可以是IAB节点。该装置可以包括处理单元和收发单元。当该装置是网络设备时,该处理单元可以是处理器,该收发单元可以是收发器;该装置还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使IAB节点执行上述第一方面或第一方面中任一设计、或第三方面或第三方面中任一设计中相应的功能,或者,该处理单元执行该存储单元所存储的指令,以使控制节点执行上述第二方面或第二方面中任一设计、或第四方面或第四方面中任一设计中相应的功能。当该装置是网络设备内的芯片或芯片组时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使IAB节点执行上述第一方面或第一方面中任一所述设计、或第三方面或第三方面中任一所述设计中相应的功能,或者,该处理单元执行该存储单元所存储的指令,以使控制节点执行上述第二方面或第二方面中任一设计、或第四方面或第四方面中任一设计中相应的功能,该存储单元可以是该芯片或芯片组内的存储单元(例如,寄存器、缓存等),也可以是该终端设备内的位于该芯片或芯片组外部的存储单元(例如,只读存储器、随机存取存储器等)。
第六方面,本申请提供了一种接入回传控制装置,包括:处理器、通信接口和存储器。通信接口用于该装置与其他装置之间传输信息、和/或消息、和/或数据。该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行如上述第一方面或第一方面中任一设计所述的接入回传控制方法、或者上述第二方面或第二方面中任一设计所述的接入回传控制方法、或者上述第三方面或第三方面中任一设计所述的接入回传控制方法、或者上述第四方面或第四方面中任一设计所述的接入回传控制方法。
第七方面,本申请实施例提供的一种计算机存储介质,该计算机存储介质存储有程序指令,当程序指令在通信设备上运行时,使得通信设备执行本申请实施例第一方面及其任一可能的设计、第二方面及其任一可能的设计、第三方面及其任一可能的设计、第四方面 及其任一可能的设计的方法。
第八方面,本申请实施例提供的一种计算机程序产品,当计算机程序产品在通信设备上运行时,使得通信设备本申请实施例第一方面及其任一可能的设计、第二方面及其任一可能的设计、第三方面及其任一可能的设计、第四方面及其任一可能的设计的方法。
第九方面,本申请实施例提供的一种芯片,所述芯片与存储器耦合,执行本申请实施例第一方面及其任一可能的设计、第二方面及其任一可能的设计、第三方面及其任一可能的设计、第四方面及其任一可能的设计的方法。
第十方面,本申请实施例提供一种IAB***,该***包括控制节点、至少一个IAB宿主和至少一个IAB节点,其中,控制节点可以实现本申请实施例第一方面及其任一可能的设计、或第三方面及其任一可能的设计所述的方法。IAB节点可以实现本申请实施例第二方面及其任一可能的设计、或第四方面及其任一可能的设计所述的方法。
在一种可能的设计中,控制节点可以独立部署。
在一种可能的设计中,控制节点也可以与IAB宿主集中部署。
在一种可能的设计中,控制节点可以与IAB宿主的控制单元(CU)集中部署。
在一种可能的设计中,控制节点可以与IAB宿主的控制面(CU-CP)集中部署。
需要说明的是,本申请实施例中“耦合”是指两个部件彼此直接或间接地结合。
附图说明
图1为本申请实施例提供的一种IAB***的架构图;
图2为本申请实施例提供的一个IAB***的具体示例图;
图3为本申请实施例提供的一种gNB的结构示意图;
图4为本申请实施例提供的另一种gNB的结构示意图;
图5为本申请实施例提供的一种IAB节点的结构示意图;
图6为本申请实施例提供的一种IAB***的连接示意图;
图7为本申请实施例提供的一种IAB节点收发单元的示意图;
图8为本申请实施例提供的一种多小区IAB节点的示意图;
图9A为本申请实施例提供的一种终端设备的用户面协议栈示意图;
图9B为本申请实施例提供的一种IAB节点的MT的用户面协议栈示意图;
图10A为本申请实施例提供的一种终端设备的控制面协议栈示意图;
图10B为本申请实施例提供的一种IAB节点的MT的控制面协议栈示意图;
图11为本申请实施例提供的一种IAB节点的MT、DU与IAB***的连接示意图;
图12为本申请实施例提供的一种IAB***的架构示意图;
图13为本申请实施例提供的一种控制节点独立部署的示意图;
图14为本申请实施例提供的一种控制节点集中部署的示意图;
图15为本申请实施例提供的一种接入回传控制方法的流程图;
图16为本申请实施例提供的一种第一IAB节点向控制节点发送第一消息的示意图;
图17为本申请实施例提供的一种IAB***的示例图;
图18为本申请实施例提供的一种IAB节点7接入网络后IAB***的示例图;
图19为本申请实施例提供的一种IAB节点4重新接入网络后IAB***的示例图;
图20为本申请实施例提供的另一种接入回传控制方法的流程图;
图21为本申请实施例提供的一种IAB节点向控制节点发送第一消息的流程示意图;
图22为本申请实施例提供的另一种IAB节点向控制节点发送第一消息的流程示意图;
图23为本申请实施例提供的一种接入回传控制装置的结构示意图;
图24为本申请实施例提供的另一种接入回传控制装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请中所有节点、消息的名称仅仅是为了描述方便而设定的名称,在实际网络中的名称可能不同,不应该理解本申请限定各种节点、消息的名称。相反,任何具有和本申请中用到的节点或消息具有相同或类似功能的名称都视作本申请的方法或等效替换,都在本申请的保护范围之内,以下不再赘述。
本申请实施例提及的通信***包括但不限于:窄带物联网(narrow band-internet of things,NB-IoT)***、无线局域网(wireless local access network,WLAN)***、长期演进(long term evolution,LTE)***、第五代移动通信(5th generation mobile networks or 5th generation wireless systems,5G)或者5G之后的通信***,例如新空口(new radio,NR)***、设备到设备(device to device,D2D)通信***等。
为了更好地理解本发明实施例,下面先对本发明实施例使用的网络架构进行描述。一种适用于本申请的技术方案的IAB***中至少包括多个IAB宿主,以及IAB宿主所服务的一个或多个终端设备,一个或多个中继节点(也即,IAB节点),以及中继节点所服务的一个或多个终端设备。
参见图1,图1示出一种适用于本申请的技术方案的IAB***的架构图。如图1所示,一个IAB***至少包括两个基站,分别为基站100和基站120。IAB***还可以包括基站100所服务的终端设备(terminal)101,IAB节点110,以及IAB节点110所服务的终端设备111,其中,IAB节点110通过无线回传链路113连接到基站100。IAB***还可以包括基站200所服务的终端设备201,IAB节点210,以及IAB节点210所服务的终端设备211,其中,IAB节点210通过无线回传链路213连接到基站200。通常,基站100和基站200被称为IAB宿主。IAB宿主在本申请中也称为宿主(donor)基站、宿主节点等。
IAB***还可以包括多个其它IAB节点,例如,IAB节点120和IAB节点130,IAB节点220。IAB节点120是通过无线回传链路123连接到IAB节点110以接入到基站100的。IAB节点130是通过无线回传链路133连接到IAB节点110以接入到基站100的。IAB节点220是通过无线回传链路223连接到IAB节点210以接入到基站200的。IAB节点220还可以通过无线回传链路231连接到IAB节点130以接入到基站100的。IAB节点120为一个或多个终端设备121服务,IAB节点130为一个或多个终端设备131服务,IAB节点220为一个或多个终端设备221服务。在本申请中,所述无线回传链路都是从中继节点的角度来看的,例如无线回传链路113是IAB节点110的回传链路,无线回传链路123是IAB节点120的回传链路。如图1所示,一个IAB节点,如120,可以通过无线回传链路,如123,连接另一个IAB节点110,从而连接到网络。而且,中继节点可以经过多级无线中继节点连接到网络。
应理解,图1仅是一种示例性说明,IAB***可以包括多个IAB宿主,本申请实施例并不对IAB***中包括的IAB宿主的数量、IAB节点的数量、UE的数量等进行具体限定。
应理解,本申请中用IAB节点仅仅出于描述的需要,并不表示本申请的方案仅用于NR的场景,在本申请中,IAB节点可以泛指任何具有中继功能的节点或设备,本申请中的IAB节点和中继节点的使用应理解具有类似的含义。
基站100包括但不限于:演进型节点B(evolved node base,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,或home node B,HNB)、基带单元(baseband Unit,BBU)、演进的(evolved LTE,eLTE)基站、NR基站(next generation node B,gNB)、下一代演进型节点B(next generation eNodeB,ng-eNB)等。
终端设备包括但不限于:用户设备(user equipment,UE)、移动台、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、终端、无线通信设备、用户代理、无线局域网(wireless local access network,WLAN)中的站点(station,ST)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的移动台以及未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等中的任意一种。IAB节点是中继节点的特定的名称,不对本申请的方案构成限定,可以是一种具有转发功能的上述基站或者终端设备中的一种,也可以是一种独立的设备形态。例如,本申请的IAB节点也可以被称为中继节点(relay node,RN)、传输接收点(transmission and reception point)、中继发送接收点(relaying TRP)等。
另外,本申请中还涉及到如下基本术语或概念。
接入链路(access link):IAB节点与其通过无线链路直接服务的终端设备之间的链路或IAB宿主与其通过无线链路直接服务的终端之间的链路。接入链路包括上行接入链路和下行接入链路。上行接入链路也被称为接入链路的上行传输,下行接入链路也被称为接入链路的下行传输。
回传链路(backhaul link):IAB节点和其上级节点(即IAB父节点)之间的链路。此时,该IAB节点作为其IAB父节点的下级节点(即IAB子节点)。应理解,IAB父节点可以是IAB节点,也可以是IAB宿主。IAB节点向IAB父节点进行数据传输被称为回传链路的上行传输。IAB节点接收IAB父节点的数据传输被称为回传链路的下行传输。
应理解,图1所示的接入和回传一体化***中,一个IAB节点连接一个上级节点。但是在未来的中继***中,为了提高无线回传链路的可靠性,一个IAB节点,如120,可以有多个上级节点同时为一个IAB节点提供服务,如图1中的IAB节点130还可以通过回传链路134连接到IAB节点120,即,IAB节点110和IAB节点120都视为IAB节点130的上级节点。IAB节点110,120,130的名称并不限制其所部署的场景或网络,可以是比如relay,RN等任何其他名称。本申请使用IAB节点仅是方便描述的需要。
在图1中,无线链路102,112,122,132,113,123,133,134,202,213,222,223,231可以是双向链路,包括上行和下行传输链路,特别地,无线回传链路113,123,133,134,213,223,231可以用于上级节点为下级节点提供服务,如上级节点100为下级节点110提供无线回传服务。所述节点不限于是网络节点还是终端设备,例如,在D2D场景下,终端设备可以充当中继节点为其他终端设备服务。无线回传链路在某些场景下又可以是接入链路,如回 传链路123对节点110来说也可以被视作接入链路,回传链路113也是节点100的接入链路。应理解,上述上级节点可以是基站,也可以是中继节点,下级节点可以是中继节点,也可以是具有中继功能的终端设备,例如D2D场景下,下级节点也可以是终端设备。
参见图2,图2是IAB***的一个具体示例。在图2所示的IAB***中,包括宿主基站,IAB节点1,IAB节点2,UE1和UE2。其中,宿主基站和IAB节点1之间的链路,以及IAB节点1和IAB节点2之间的链路为回传链路。UE1和宿主基站之间的链路以及UE2和IAB节点1之间的链路为接入链路。
示例性的,本申请实施例中的IAB宿主可以划分为集中单元(central unit,CU)和至少一个分布单元(distributed unit,DU)。其中,CU作为5G gNB中的逻辑节点,可以用于管理或者控制至少一个DU,也可以称之为CU与至少一个DU连接。这种结构可以将通信***中无线接入网设备的协议层分割(split),其中部分协议层功能放在CU,剩下部分协议层功能分布在DU中,由CU集中控制DU。以无线接入网设备为gNB为例,gNB的协议层包括无线资源控制(radio resource control,RRC)层、业务数据适配协议(service data adaptation protocol,SDAP)层、分组数据汇聚协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体访问控制子层(media access control,MAC)层和物理层。其中,示例性的,CU可以用于实现RRC层、SDAP层和PDCP层的功能,DU可以用于实现RLC层、MAC层和物理层的功能。本申请实施例不对CU、DU包括的协议栈做具体限定。CU与DU之间可以由F1AP接口协议来定义和连接。例如,以gNB为例,gNB的结构可以如图3所示。
示例性的,本申请实施例中的CU可以进一步分为一个控制面(CU-control plane,CU-CP)网元和至少一个用户面(CU-user plane,CU-UP)网元。其中,CU-CP可以用于控制面管理,CU-UP可以用于用户面数据传输。CU-CP与CU-UP之间的应用协议层(application protocol,AP)接口可以为E1口。CU-CP与DU之间的应用协议层接口可以为F1-C,用于控制面信令的传输。CU-UP与DU之间的应用协议层接口可以为F1-U,用于用户面数据传输。CU-UP与CU-UP之间可以通过应用协议层Xn-U接口进行通信,进行用户面数据传输。例如,以gNB为例,gNB的结构可以如图4所示。在协议栈分离的架构下(如CU-DU等),在一种实现方式中,IAB节点可以配置为DU,IAB宿主可以配置为CU。
参见图5,图5是IAB节点的结构示意图。IAB节点由移动终端(mobile termination,MT)和DU两部分组成,MT功能可理解为类似UE的一个逻辑模块。在IAB节点中,MT称为驻留在IAB节点上的功能(或模块)。由于MT类似一个普通UE的功能,因此可以认为IAB节点通过MT接入到上级节点或者IAB宿主。DU功能和普通基站的DU相同,可理解为类似基站的一个逻辑模块。在IAB中,DU被称为驻留在IAB节点上的功能(或模块)。由于DU类似一个普通基站的功能或者部分功能,因此,可以认为IAB节点可以通过DU允许下级节点、终端设备的接入。IAB宿主CU与IAB节点DU之间的应用协议层接口为F1接口,IAB宿主DU或者IAB节点DU与下游IAB节点MT之间的空口为Uu接口,如图6所示。应理解,IAB节点与IAB宿主之间的回传链路通信是基于Uu接口实现在应用协议层的F1接口通信。
IAB节点的MT与DU均具有完整的收发单元,且两者之间具有接口。但应注意,MT与DU为逻辑模块,在实际中,两者可以共享部分子模块,例如可共用收发天线,基带处 理单元等,如图7所示。
进一步的,DU可具有多个子模块,例如,DU可具有多个小区(cell),如图8所示,其中,天线面板0可以对应小区1,天线面板1可以对应小区1,天线面板2可以对应小区2。示例性的,终端设备的用户面协议栈可以如图9A所示,IAB节点的MT的用户面协议栈可以如图9B所示,终端设备的控制面协议栈可以如图10A所示,IAB节点的MT的控制面协议栈可以如图10B所示。其中,IAB节点1是IAB节点2的父节点。其中,回传适配协议(backhaul adaptation protocol,BAP)层为IAB***特有的协议层,负责将数据承载映射到RLC信道、根据本地的路由表选择下一跳等功能。
目前,IAB架构里中IAB节点与IAB宿主间的从属关系固定,一个IAB节点的MT与多个IAB宿主建立Uu连接,但是一个IAB节点的DU只能与一个固定的IAB宿主建立F1连接,例如,如图11所示,IAB节点2可以通过MT与IAB节点1和IAB节点3建立Uu连接,从而可以通过IAB节点1与IAB宿主1进行通信,通过IAB节点3与IAB宿主2进行通信,IAB节点2的DU与IAB宿主1建立F1连接,IAB节点2还可以通过DU与IAB宿主1的CU进行通信。各IAB宿主独立控制附属IAB节点,例如,图11中,IAB宿主1独立控制IAB节点1和IAB节点2,IAB宿主2独立控制IAB节点3。因此当IAB节点与父节点或者IAB宿主之间的通信链路拥塞或者中断时,IAB节点无法实现有效的数据传输,造成终端业务的服务质量难以得到满足。此外,当IAB节点与父节点或者IAB宿主之间的通信链路拥塞或者中断时,IAB节点如何选择路由以满足终端业务的服务质量,目前也没有较好的解决方案。
基于此,本申请实施例提供一种接入回传控制方法及装置。其中,方法和装置是基于同一技术构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
本申请实施例提供的接入回传控制方法可以应用于图1所示的通信***中,应理解,图1仅是一种示例性说明,并不对通信***中包括的终端设备、IAB节点、IAB宿主的数量进行具体限定。
应理解,本申请实施例中“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一(项)个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a、b、c可以是单个,也可以是多个。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例中引入控制节点(controller),其中,一个控制节点的无线覆盖范围大于一个IAB宿主的覆盖范围。例如,控制节点可以使用较高功率发射或工作在较低频率从而覆盖多个IAB宿主的覆盖范围,因此一个控制节点可以覆盖多个IAB宿主覆盖下的多个IAB节点。控制节点可以对该多个IAB宿主覆盖下的多个IAB节点进行集中控制,例如可以实现如下功能中的至少一种:控制IAB节点的接入、IAB节点间的路由选择、负载均衡等等。示例性的,IAB***可以如图12所示,其中,控制节点1可以覆盖IAB宿主1和IAB宿主2所连接的IAB节点,即可以集中控制IAB节点1~6。控制节点2可以覆盖IAB宿主3和IAB宿主4所连接的IAB节点,即可以集中控制IAB节点7~11。应理解,图12仅是一种示例性说明,并不对IAB***中IAB节点、IAB宿主、控制节点的数量、连接关系、部署位置等进行具体限定。
应理解,控制IAB节点的接入、IAB节点间的路由选择、负载均衡等功能可以集中在一 个控制节点,即一个控制节点可以实现全部控制功能。控制IAB节点的接入、IAB节点间的路由选择、负载均衡等功能也可以分别由不同控制节点实现,即一个控制节点可以实现部分控制功能,例如,控制节点1可以实现IAB节点的接入控制功能,控制节点2可以实现IAB节点间的路由选择以及负载均衡功能,控制节点3可以实现其他控制功能,等等。
控制节点可以独立部署,也可以与IAB***中的其他设备集中部署,例如,控制节点可以与IAB宿主集中部署,这种部署方式下,可以理解为IAB宿主可以实现控制节点的功能,因此,可以将具有控制节点功能的IAB宿主视为本申请涉及的控制节点。进一步的,控制节点可以与IAB宿主的CU集中部署,也可以理解为IAB宿主的CU可以实现控制节点的功能。更进一步的,控制节点可以与IAB宿主的CU-CP集中部署,也可以理解为IAB宿主的CU-CP可以实现控制节点的功能。当然,控制节点也可以部署在其他位置,也可以与其他设备集中部署,这里对控制节点的部署方式不做具体限定。
示例性的,图13示出控制节点独立部署时,IAB节点、IAB宿主与控制节点间一种可能的连接方式,控制节点可以是协议栈不分离的基站架构,也可以是CU-DU架构,一种实现中,CU中可以只包含CU-CP。在该示例中,控制节点可以通过控制节点的DU实现覆盖多个IAB宿主。
图14示出控制节点与IAB宿主的CU-CP集中部署时,IAB节点、IAB宿主与控制节点间一种可能的连接方式。在该示例中,控制节点可以通过DU1实现覆盖多个IAB宿主,例如,控制节点的DU1可以通过低频覆盖多个IAB宿主。一种实现方式中,DU1和DU2也可以为同一个DU,即该DU可以包括至少两套收发单元,其中,一套收发单元可以实现DU2的收发功能,另一套收发单元可以实现DU1的收发功能。
下面结合附图对本申请实施例提供的接入回传控制方法进行具体说明。
实施例一:
参见图15,为本申请提供的一种接入回传控制方法的流程图,本申请实施例中控制节点至少可以实现对多个IAB宿主下的IAB节点的接入控制功能,该方法包括:
S1501,IAB节点(为了描述上的方便,下面将该IAB节点称为第一IAB节点)向控制节点发送第一消息,该第一消息包含如下信息:第一IAB节点对附近节点(例如附近的IAB节点、IAB宿主等)所发送的同步信号块进行测量得到的测量值。相应的,控制节点接收第一IAB节点发送的第一消息。第一IAB节点可以为控制节点覆盖范围内任一IAB节点。
此外,第一消息还可以包含各个测量值分别对应的小区的标识(identification,ID)。
示例性,同步信号块可以是SSB,也可以是CSI-RS,也可以为其他信号,这里不再一一列举。测量值可以是RSRP值,也可以是RSRQ值,也可以为其他参数的测量值,这里不再一一列举。为了便于理解,下面以同步信号块为SSB,测量值为RSRP值为例进行说明。
控制节点可以独立部署,也可以与IAB宿主集中部署。若控制节点独立部署时,例如参阅图13所示,第一IAB节点可以通过Uu接口向控制节点发送第一消息。其中,若控制节点为CU-DU结构的网络设备,则第一IAB节点可以通过控制节点的DU向控制节点的CU发送第一消息。一种实现中,控制节点的CU可以只包括CU-CP,这种实现中,第一IAB节点可以通过控制节点的DU向控制节点的CU-CP发送第一消息。进一步的,可以是第一IAB节点的MT向控制节点发送第一消息。
若控制节点与IAB宿主集中部署(即IAB宿主可以实现控制节点1的功能)时,例如参阅图14所示,第一IAB节点可以通过F1接口向IAB宿主发送第一消息,进一步的,可以是 第一IAB节点的DU通过F1接口向IAB宿主发送第一消息。或者,第一IAB节点也可以通过Uu接口向IAB宿主发送第一消息,进一步的,可以是第一IAB节点的MT通过Uu接口向IAB宿主发送第一消息。其中,若IAB宿主为CU-DU结构的网络设备,且控制节点与IAB宿主的CU集中部署(即IAB宿主的CU可以实现控制节点的功能)时,第一IAB节点可以向IAB宿主的CU发送第一消息。若IAB宿主的CU进一步分为CU-CP和CU-UP,且控制节点与IAB宿主的CU-CP集中部署(即IAB宿主的CU-CP可以实现控制节点的功能)时,第一IAB节点可以向IAB宿主的CU-CP发送第一消息。
S1502,控制节点向第一IAB节点发送第二消息,该第二消息包含候选父节点信息,其中,该父节点信息可以包括一个或多个小区ID,该一个或多个小区ID对应的小区可以对应一个或多个候选父节点。相应的,第一IAB节点接收控制节点发送的第二消息。
其中,该至少一个候选父节点可以为该第一IAB节点应接入的父节点,也可以理解为控制节点指示该第一IAB节点的MT应建立Uu连接的第二IAB节点,从而第一IAB节点在接收第二消息后可以接入第二消息指示的至少一个小区。在IAB宿主为第一IAB节点的父节点的情况下,该IAB宿主即为第二IAB节点。
或者,该至少一个候选父节点也可以为该第一IAB节点候选接入的父节点,也可以理解为控制节点指示该第一IAB节点的MT可以建立Uu连接的第二IAB节点,从而第一IAB节点在接收第二消息后可以在第二消息指示的至少一个小区中选择全部或部分进行接入。在IAB宿主为第一IAB节点的父节点的情况下,该IAB宿主即为第二IAB节点。
应理解,第二消息中包含的上述该至少一个候选父节点对应为应接入的父节点还是候选接入的父节点,可由标准协议预先指定;或者,第二消息中还可以包含一个指示信息,指示候选父节点对应为应接入的父节点或候选接入的父节点;或者,还可以通过其他方式来指示,对此本申请不作具体限定。
此外,第二消息还可以包含IAB宿主的标识,其中,IAB宿主的标识可以包括IAB宿主的信息,例如IAB宿主的ID,具体可以是IAB宿主的CU ID等等。其中,该IAB宿主可以是控制节点针对该第一IAB节点指定的IAB宿主,也可以理解为控制节点指定第一IAB节点的DU建立F1连接的IAB宿主。应理解,在指定的IAB宿主不是第一IAB节点的父节点的情况下,第二消息可以包含父节点信息以及IAB宿主信息;在指定的IAB宿主是第一IAB节点的父节点的情况下,第二消息包含父节点信息(即IAB宿主信息)。
若第二消息包括IAB宿主的标识,控制节点还可以指示第一IAB节点接入第一小区,其中,第一小区对应的IAB节点为该至少一个候选父节点中接入该IAB宿主的IAB节点,该第一小区的数量可以为一个也可以为多个,这里不做具体限定。举例说明,第二消息包括小区1~5的标识,其中,小区1~5分别对应IAB节点1~5,其中,IAB节点1~3接入IAB宿主1,IAB节点4和5接入IAB宿主2,假设第二消息包括IAB宿主2的标识,控制节点可以指示第一IAB节点接入小区4,或者,控制节点可以指示第一IAB节点接入小区5,或者,控制节点可以指示第一IAB节点接入小区4和5,或者,控制节点可以指示第一IAB节点接入小区4或5中至少一个。
进一步的,控制节点可以通过第二消息指示第一小区,或者也可以通过其他消息,这里不做具体限定。
一种实现方式中,控制节点可以根据如下信息中的至少一项确定一个或多个候选父节点:第一消息包含的测量值、该控制节点所覆盖的IAB节点的负载、该控制节点所覆盖的 IAB宿主的负载、该控制节点所覆盖的IAB节点的容量能力、该控制节点所覆盖的IAB宿主的容量能力、该控制节点所覆盖的IAB节点的网络拓扑、以及该控制节点所覆盖的IAB宿主的网络拓扑等等。
当然,控制节点也可以通过其他方式确定一个或多个小区,这里不做具体限定。
一些实施例中,控制节点在确定指定的IAB宿主时也可以根据如下信息中的至少一项来确定:第一消息包含的测量值、该控制节点所覆盖的IAB宿主的负载、该控制节点所覆盖的IAB宿主的容量能力、该控制节点所覆盖的候选父节点的网络拓扑等等。
控制节点可以独立部署,也可以与IAB宿主集中部署。若控制节点独立部署时,例如参阅图13所示,控制节点可以通过Uu接口向第一IAB节点发送第二消息。其中,若控制节点为CU-DU结构的网络设备,则控制节点的DU可以向第一IAB节点发送第二消息。一种实现中,控制节点的CU可以进一步分为CU-CP和CU-UP。进一步的,控制节点可以向第一IAB节点的MT发送第二消息。
若控制节点与IAB宿主集中部署(即IAB宿主可以实现控制节点的功能)时,例如参阅图14所示,IAB宿主可以通过F1接口向第一IAB节点发送第二消息,进一步的,可以是IAB宿主通过F1接口向第一IAB节点的DU发送第二消息。或者,IAB宿主也可以通过Uu接口向第一IAB节点发送第二消息,进一步的,IAB宿主可以是通过Uu接口向第一IAB节点的MT发送第二消息。其中,若IAB宿主为CU-DU结构的网络设备,且控制节点与IAB宿主的CU集中部署(即IAB宿主的CU可以实现控制节点的功能)时,IAB宿主的CU可以向第一IAB节点发送第二消息。若IAB宿主的CU进一步分为CU-CP和CU-UP,且控制节点与IAB宿主的CU-CP集中部署(即IAB宿主的CU-CP可以实现控制节点的功能)时,IAB宿主的CU-CP可以向第一IAB节点发送第二消息。
在一些实施例中,步骤S1501可以执行,也可以不执行。在不执行步骤S1501的实施方式中,控制节点可以只发送第二消息,也就是在没有收到第一IAB节点发送的第一消息的情况下,也可以向该第一IAB节点发送第二消息。
在执行步骤S1501的实施方式中,第一IAB节点向控制节点发送第一消息可以在三种情况下进行:第一种情况是控制节点配置第一IAB节点进行测量,并由第一IAB节点测量后上报的;第二种情况是控制节点请求第一IAB节点上报的;第三种情况是第一IAB节点在初始接入IAB***时主动向控制节点上报等。
其中,在第一种情况下,可以是控制节点配置第一IAB节点周期性发送,也可以是控制节点配置第一IAB节点由触发事件触发发送,比如触发事件可以为第一IAB节点测量的其他小区SSB信号的RSRP值高于当前连接的小区的SSB信号的RSRP值等。示例性的,控制节点可以通过向第一IAB节点发送配置消息来配置第一IAB节点主动上报第一消息的方式。
在第二种情况下,在执行步骤S1501之前,控制节点可以向第一IAB节点发送第三消息,该第三消息用于请求第一IAB节点周期性发送或者非周期性发送第一消息,如图16所示。其中,周期性发送第一消息,可以理解为多次发送第一消息,例如,第三消息可以指示第一IAB节点在接收第三消息后的一段时间内周期性发送第一消息。非周期性发送第一消息,可以理解为单次发送第一消息,例如,第三消息可以指示第一IAB节点在接收到第三消息后发送一次第一消息。由触发事件触发发送第一消息,可以理解为当触发事件发生时发送第一消息,例如,第三消息可以指示第一IAB节点在测量的其他小区SSB信号的RSRP值高于当前连接的小区的SSB信号的RSRP值时发送第一消息。
此外,第三消息除了可以请求第一IAB点上报第一消息外,还可以用于请求第一IAB节点上报如下信息中的至少一项:第一IAB节点的DU标识、第一IAB节点的MT标识、第一IAB节点实际接入的父节点的信息、第一IAB节点实际接入的IAB宿主的信息。示例性的,第一IAB节点的DU标识可以是操作维护管理(operation administration and maintenance,OAM)或者该第一IAB节点的CU等为该第一IAB节点所分配的DU ID。第一IAB节点的MT标识可以是小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)。第一IAB节点实际接入的父节点的信息可以包括该第一IAB节点实际接入父节点的cell ID和该第一IAB节点实际接入父节点的DU ID中的至少一个。第一IAB节点的IAB宿主信息可以包括该第一IAB节点的DU实际连接的IAB宿主的CU ID、该第一IAB节点的DU实际连接的IAB宿主的CU的IP地址、该第一IAB节点的DU实际连接的IAB宿主的CU-UP的TNL地址(address)等等。
S1503,第一IAB节点向至少一个小区发起随机接入。其中,该至少一个小区可以是第二消息指示的一个或多个小区的全部或部分,也就是该至少一个小区可以是第二消息指示的一个或多个小区的子集。
可以理解的,第一IAB节点发起随机接入的小区并不一定是该第一IAB节点实际接入的小区,第一IAB节点发起随机接入后成功接入的小区为该第一IAB实际接入的小区。
一种实现方式中,针对该至少一个小区中的小区A,若第一IAB节点没有成功接入小区A,第一IAB节点可以向控制节点发送用于指示未成功接入小区A的指示信息。
进一步的,第一IAB节点可以再执行一遍上述步骤S1501~S1503。
在该至少一个候选父节点为控制节点针对该第一IAB节点指定应接入的父节点的实施方式中,第一IAB节点在接收第二消息后可以接入第二消息指示的至少一个小区。
或者,在该至少一个候选父节点为控制节点针对该第一IAB节点指定候选接入的父节点的实施方式中,第一IAB节点在接收第二消息后可以在第二消息指示的至少一个小区中选择全部或部分进行接入。也可以理解为,第一IAB节点在第二消息指示的一个或多个小区中选择所有小区进行接入,也可以在第二消息指示的一个或多个小区中选择部分小区进行接入。
若第二消息中指示IAB宿主的标识,则第一IAB节点可以在控制节点的指示下接入第一小区,其中,第一小区对应的IAB节点为该至少一个候选父节点中接入该IAB宿主的IAB节点,该第一小区的数量可以为一个也可以为多个,这里不做具体限定。举例说明,第二消息包括小区1~5的标识,其中,小区1~5分别对应IAB节点1~5,其中,IAB节点1~3接入IAB宿主1,IAB节点4和5接入IAB宿主2,假设第二消息包括IAB宿主2的标识,控制节点可以指示第一IAB节点选择小区4,从而第一IAB节点接入小区4,并在小区1~3、5中选择全部或部分小区进行接入。
其中,随机接入可以是基于竞争的,也可以是基于非竞争的。在基于竞争的随机接入方式中,第一IAB节点可以针对该至少一个小区选择合适的前导码(preamble)发起随机接入。在基于非竞争的随机接入过程中,控制节点还可以向第一IAB节点发送辅助接入的信息,比如用于非竞争接入的前导码、第一IAB节点的C-RNTI等,该信息可用于辅助第一IAB节点非竞争接入该至少一个小区。
进一步的,可以是该第一IAB节点的MT向至少一个小区发起随机接入。
该至少一个小区对应的IAB节点可以理解为该第一IAB节点的父节点。
本申请实施例中,一个控制节点可以覆盖到多个IAB宿主所覆盖的范围,从而可以对多个IAB宿主所覆盖的范围进行全网调度接入,从而当IAB节点与该IAB节点的父节点或者宿主节点之间的通信链路拥塞或者中断时,IAB节点可以在控制节点的指示下接入IAB***进行数据传输,进而可以提高终端业务的服务质量。并且通过控制节点指示IAB节点接入IAB***,可以合理的规划网络拓扑。
并且,对于接入多个父节点的IAB节点,控制节点通过全网规划为IAB节点指定IAB节点接入的IAB宿主,从而可以优化网络拓扑,并且可以提高终端业务的服务质量。例如,参阅图11所示,当IAB节点2与IAB节点1之间的通信链路拥塞时,IAB节点1与宿主节点(即IAB宿主1)之间的数据传输会产生较大的时延,甚至会中断,通过本申请实施例提供的方法,IAB节点2可以在控制节点的指示下接入IAB节点3继而接入IAB宿主2,从而可以提高IAB节点2与宿主节点之间通信链路的质量,使得IAB节点2的数据传输到宿主节点的时延较小,宿主节点可以比较及时的处理IAB节点2的数据,进而可以提高终端业务的服务质量。
一些实施例中,控制节点还可以向第一IAB节点发送配置信息,配置信息可以包括如下信息中的至少一项:BAP配置信息、路由表配置信息、RLC信道配置信息。
示例性的,BAP配置信息可以包括BAP ID,数据无线承载(data radio bearer,DRB)与RLC信道的映射关系等等。
路由表配置信息可以包括至少一条路径信息,其中,路径信息可以包括该路径的目的地址,下一跳地址,和路径ID等。第一IAB节点可以根据路由表配置信息配置路由表。示例性的,第一IAB节点根据路由表配置信息配置的路由表可以如表1所示。其中,BAP地址(BAP address)可以指该路径的目的地址,出口链路(Egress link)可以指下一跳地址。BAP路由ID(BAP Routing ID)用于标识路由表中的路由信息,BAP路径ID(BAP path ID)用于针对一个目的地址,标识该目的地址对应的各个路径信息。
表1
Figure PCTCN2019119502-appb-000001
举例说明,当第一IAB节点向节点A发送消息1时,根据表1所示的路由表,可以在BAP address为节点A的三条路径中(即Path_1、Path_2、Path_3)选择优先级比较高的Path_1(即BAP Routing 1),根据BAP Routing 1,第一IAB节点可以通过节点X向节点A发送消息1。
RLC信道配置信息可以包括RLC信道的配置,如RLC模式(RLC mode)等等。
一种可能的实施方式中,控制节点在向第一IAB节点发送配置信息之前,可以先确定第一IAB节点实际接入的父节点和实际接入的IAB宿主中的至少一项。
一种实现方式中,控制节点可以根据向第一IAB节点发送的第二消息确定第一IAB节点实际接入的父节点和实际接入的IAB宿主中的至少一项,例如,第一IAB节点实际接入的父节点可以为控制节点通过第二消息指示的候选父节点,第一IAB节点实际接入的IAB宿主也 可以为控制节点通过第二消息指定的IAB宿主。这种情况下,控制节点可以通过第二消息发送配置信息。当然,控制节点可以通过其他消息发送配置信息,这里不做具体限定。
另一种实现方式中,控制节点也可以在第一IAB节点接入父节点后获取第一IAB节点实际接入的父节点信息。控制节点也可以在第一IAB节点实际接入IAB宿主后获取第一IAB节点接入的IAB宿主信息。例如,控制节点与IAB宿主集中部署(即IAB宿主可以实现控制节点的功能)时,控制节点可以在第一IAB节点接入该IAB宿主时可以确定第一IAB节点实际接入的父节点和IAB宿主中的至少一项,也可以通过Xn接口向其他IAB宿主获取。又例如,控制节点独立部署时,控制节点可以向该IAB宿主获取第一IAB节点实际接入的父节点信息和IAB宿主信息中的至少一项,如通过Xn接口向该IAB宿主获取第一IAB节点实际接入的父节点信息和IAB宿主信息中的至少一项。
又一种实现方式中,第一IAB节点可以在实际接入父节点后向控制节点发送第一通知消息,以通知控制节点该第一IAB节点实际接入的父节点。第一IAB节点也可以确定应接入的IAB宿主后向控制节点发送第二通知消息,以通知控制节点该第一IAB节点实际接入的IAB宿主。具体实施中,第一通知消息和第二通知消息可以通过一个消息发送,也可以分别通过两个消息独立发送。其中,该第一通知消息可以在第一IAB节点接入父节点之前发送,也可以在第一IAB节点接入父节点之后发送,同样,该第二通知消息可以在第一IAB节点接入IAB宿主之前发送,也可以在第一IAB节点接入IAB宿主之后发送,这里不做具体限定。
在一些实施例中,第一IAB节点在接收到第二消息后接入网络的过程可以如下:
A1,该第一IAB节点可以向该至少一个小区对应的IAB节点发起随机接入,以建立Uu连接,其中,该至少一个小区对应的IAB节点可能是IAB节点也可能是IAB宿主。进一步的,可以是该第一IAB节点的MT向该至少一个小区对应的IAB节点发起随机接入。
其中,随机接入可以是基于竞争的,也可以是基于非竞争的。在基于竞争的随机接入方式中,第一IAB节点可以针对该至少一个小区选择合适的preamble发起随机接入。在基于非竞争的随机接入过程中,控制节点还可以向第一IAB节点发送辅助接入的信息,比如用于非竞争接入的前导码和/或第一IAB节点的C-RNTI等,该信息可用于辅助第一IAB节点非竞争接入该至少一个小区。
A2,该第一IAB节点与该至少一个小区对应的IAB节点的Uu接口建立之后,第一IAB节点可以与该IAB节点连接的IAB宿主建立RRC连接,并与核心网建立NAS连接,其中,若该IAB节点为IAB节点,则该IAB节点连接的IAB宿主可以指该IAB节点通过F1连接的IAB宿主,若该IAB节点为IAB宿主,则该IAB节点连接的IAB宿主可以指该IAB节点。进一步的,可以是该第一IAB节点的MT与该IAB节点连接的IAB宿主建立RRC连接,并与核心网建立NAS连接。
若该IAB节点连接的IAB宿主为CU-DU架构的网络设备,则第一IAB节点的MT可以通过该IAB节点连接的IAB宿主的DU与IAB宿主的CU建立RRC连接。一些实施例中,该IAB节点连接的IAB宿主的CU可以进一步分为CU-CP和CU-UP,在这些实施例中,第一IAB节点的MT可以通过该IAB节点连接的IAB宿主的DU与IAB宿主的CU-CP建立RRC连接。
A3,之后,该第一IAB节点可以基于控制节点发送的配置信息对该第一IAB节点MT的RLC,BAP层等进行配置。
A4,该第一IAB节点的MT配置完成后,第一IAB节点可以与控制节点指定的IAB宿主 建立F1连接。进一步的,可以是由第一IAB节点的DU与控制节点指定的IAB宿主建立F1连接。
其中,控制节点指定的IAB宿主可以是CU-DU结构的,这种情况下,该第一IAB节点的DU可以与该IAB宿主的CU建立F1连接。一种可能的实现中,控制节点指定的IAB宿主的CU可以进一步的分为一个CU-CP和多个CU-UP,这种情况下,该第一IAB节点的DU可以与该IAB宿主的CU-CP建立F1连接。
下面结合具体场景对控制节点在多个IAB宿主所覆盖的范围进行全网调度接入进行描述。
场景一:第一IAB节点未接入父节点。或者,第一IAB节点已连接到控制节点,已接入父节点但是未接入IAB宿主。示例性的,在控制节点独立部署的情况下,第一IAB节点可以与控制节点通过Uu接口连接,在控制节点与IAB宿主的CU-CP集中部署的情况下,第一IAB节点可以与控制节点(即IAB宿主的CU-CP)通过F1接口或者Uu接口等进行连接。
以图17所示的IAB***为例,假设IAB节点7连接到控制节点1,未接入父节点。IAB节点7的接入过程可以如下:
B1,IAB节点7向控制节点1发送第一消息,第一消息可以包括:IAB节点7对周围节点SSB信号的RSRP测量值,和对应节点的小区信息,例如,第一消息可以包括IAB节点2~4以及IAB宿主2的SSB信号的RSRP测量值。
控制节点1可以独立部署,也可以与IAB宿主1集中部署。若控制节点1独立部署时,例如参阅图13所示,IAB节点7可以通过Uu接口向控制节点1发送第一消息。其中,若控制节点1为CU-DU结构的网络设备,则IAB节点7可以通过控制节点1的DU向控制节点1的CU发送第一消息。一种实现中,控制节点1的CU可以只包括CU-CP,这种实现中,IAB节点7可以通过控制节点1的DU向控制节点1的CU-CP发送第一消息。进一步的,可以是IAB节点7的MT向控制节点1发送第一消息。
若控制节点1与IAB宿主1集中部署(即IAB宿主1可以实现控制节点1的功能)时,例如参阅图14所示,IAB节点7可以通过F1接口向IAB宿主1发送第一消息,进一步的,可以是IAB节点7的DU通过F1接口向IAB宿主1发送第一消息。或者,IAB节点7也可以通过Uu接口向IAB宿主1发送第一消息,进一步的,可以是IAB节点7的MT通过Uu接口向IAB宿主1发送第一消息。其中,若IAB宿主1为CU-DU结构的网络设备,且控制节点1与IAB宿主1的CU集中部署(即IAB宿主1的CU可以实现控制节点1的功能)时,IAB节点7可以向IAB宿主1的CU发送第一消息。若IAB宿主1的CU进一步分为CU-CP和CU-UP,且控制节点1与IAB宿主1的CU-CP集中部署(即IAB宿主1的CU可以实现控制节点1的功能)时,IAB节点7可以向IAB宿主1的CU-CP发送第一消息。
B2,控制节点1向IAB节点7发送第二消息,该第二消息可以包含候选父节点信息;进一步的,第二消息还可以包含指定的IAB宿主信息。其中,候选父节点信息可以包括一个或多个候选父节点中各个候选父节点的一个或多个小区的ID。例如,候选父节点信息可以包括IAB节点2的小区ID和IAB节点4的小区ID,指定的IAB宿主信息可以包括IAB宿主2的小区ID。进一步的,若IAB宿主2为建立F1连接的IAB宿主,则指定的IAB宿主信息还可以包括IAB宿主2的CU ID、IAB宿主2的CU IP地址中的至少一项。第二消息还可以指示IAB节点应接入IAB节点2的小区。例如,第二消息可以包括IAB节点2、3、4的小区ID,且第二消息指示IAB节点7应接入IAB节点2的小区。
示例性的,第二消息还可以包含配置信息。
控制节点1可以独立部署,也可以与IAB宿主1集中部署。若控制节点1独立部署时,例如参阅图13所示,控制节点1可以通过Uu接口向IAB节点7发送第二消息。其中,若控制节点1为CU-DU结构的网络设备,则控制节点1的CU可以通过控制节点1的DU向IAB节点7发送第二消息。一种实现中,控制节点1的CU可以只包括CU-CP,这种实现方式中,控制节点1的CU-CP可以通过控制节点1的DU向IAB节点7发送第二消息。进一步的,控制节点1可以向IAB节点7的MT发送第二消息。
若控制节点1与IAB宿主1集中部署(即IAB宿主1可以实现控制节点1的功能)时,例如参阅图14所示,IAB宿主1可以通过F1接口或者Uu接口向IAB节点7发送第二消息。其中,若IAB宿主1为CU-DU结构的网络设备,且控制节点1与IAB宿主1的CU集中部署(即IAB宿主1的CU可以实现控制节点1的功能)时,IAB宿主1的CU可以向IAB节点7发送第二消息。若IAB宿主1的CU进一步分为CU-CP和CU-UP,且控制节点1与IAB宿主1的CU-CP集中部署(即IAB宿主1的CU-CP可以实现控制节点1的功能)时,IAB宿主1的CU-CP可以向IAB节点7发送第二消息。进一步的,控制节点1可以向IAB节点7的DU或者MT发送第二消息。
控制节点1可以基于如下信息中的至少一项确定一个或多个候选父节点:第一消息包含的测量值、控制节点覆盖的IAB节点的负载、控制节点覆盖的IAB宿主的负载、控制节点覆盖的IAB节点的容量能力、控制节点覆盖的IAB宿主的容量能力、控制节点覆盖的IAB节点的网络拓扑、以及控制节点覆盖的IAB宿主的网络拓扑等等。
B3,该IAB节点7可以向IAB节点2以及第二消息指示的候选父节点的子集(假设为IAB节点4)发起随机接入,以建立Uu接口。
进一步的,可以是该IAB节点7的MT向IAB节点2的DU和IAB节点4的DU发起随机接入。
其中,随机接入可以是基于竞争的,也可以是基于非竞争的。在基于竞争的随机接入方式中,IAB节点7可以针对IAB节点2和IAB节点4选择合适的preamble发起随机接入。在基于非竞争的随机接入过程中,控制节点1还可以向IAB节点7发送辅助接入的信息,比如用于非竞争接入的前导码和/或第一IAB节点的C-RNTI等,该信息可用于辅助IAB节点7非竞争接入IAB节点2和IAB节点4。
B4,IAB节点7与IAB节点2和IAB节点4之间的Uu接口建立之后,IAB节点7可以与IAB节点2的DU所连接的IAB宿主即IAB宿主2,以及IAB节点4的DU所连接的IAB宿主即IAB宿主1建立RRC连接,并与核心网的NAS建立连接。
进一步的,可以是该IAB节点7的MT与IAB宿主2、IAB宿主1建立RRC连接,并与核心网建立NAS连接。
若IAB宿主2、IAB宿主1为CU-DU架构的网络设备,则IAB节点7的MT与IAB宿主2的CU、IAB宿主1的CU建立RRC连接。一些实施例中,IAB宿主2、IAB宿主1的CU可以进一步分为CU-CP和CU-UP。进一步的,则IAB节点7的MT与IAB宿主2的CU-CP、IAB宿主1的CU-CP建立RRC连接。
B5,IAB节点7可以基于控制节点1发送的配置信息对该IAB节点7的MT的RLC,BAP层等进行配置。
B6,IAB节点7的MT配置完成后,IAB节点7可以与控制节点1指定的IAB宿主即IAB宿主2建立F1连接。进一步的,可以是由IAB节点的DU与控制节点指定的IAB宿主建立F1连接。
其中,IAB宿主1可以是CU-DU结构的,这种情况下,该IAB节点7的DU可以与该IAB宿主2的CU建立F1连接。一种可能的实现中,IAB宿主2的CU可以进一步的分为一个CU-CP和多个CU-UP,这种情况下,该IAB节点7的DU可以与该IAB宿主2的CU-CP建立F1连接。
示例性的,IAB节点7接入网络后,IAB***可以如图18所示。
场景二:第一IAB节点已接入父节点或者IAB宿主。
以图18所示的IAB***的IAB节点4为例,控制节点1对IAB节点4进行重新调度接入过程可以如下:
C1,IAB节点4向控制节点1发送指示信息,该指示信息可以用于指示无线链路失败(radio link failure,RLF)的指示信息,或者,也可以用于指示信道质量变化,或者,也可以指示负载过载(overload),或者,还可以指示缓存(buffer)里的数据过长,或者也可以指示负载等级。
其中,IAB节点4可以在与父节点即IAB节点3发生链路断开或者发生RLF时发送用于指示RLF的指示信息。IAB节点4可以在感知到信道质量发生变化,例如信道质量指示(channel quality indicator,CQI)低于阈值时,或者,在CQI低于阈值超过预设时长时发送信道质量变化的指示信息。IAB节点4可以在感知负载较大时发送指示负载过载的指示信息,或者指示缓存里的数据过长的指示信息。
控制节点1可以独立部署,也可以与IAB宿主1集中部署。控制节点1不同部署方式下,IAB节点4向控制节点1发送该指示信息的方式与场景一中IAB节点7向控制节点1发送第一消息的方式类似,区别在于步骤B1中发送的是第一消息,C1发送的是指示消息,具体可以参阅场景一中步骤B1,相似之处不再重复赘述。
C2,控制节点1向IAB节点4发送第二消息,该第二消息可以包含候选父节点信息;进一步的,第二消息还可以包含指定的IAB宿主信息。其中,父节点信息可以包括一个或多个候选父节点的小区的标识。进一步的,控制节点1可以向IAB节点4的MT发送第二消息。此外,第二消息还可以包含配置信息。其中,控制节点1向IAB节点4发送第二消息的方式具体可以参阅场景一中步骤B2,这里不再重复赘述。
控制节点1可以基于如下信息中的至少一项确定一个或多个候选父节点:IAB节点4发送的第一消息、控制节点覆盖的IAB节点的负载、控制节点覆盖的IAB宿主的负载、控制节点覆盖的IAB节点的容量能力、控制节点覆盖的IAB宿主的容量能力、控制节点覆盖的IAB节点的网络拓扑、控制节点覆盖的IAB宿主的网络拓扑、该指示信息等等。其中,第一消息可以是IAB节点4在发送指示信息之前发送的。或者,第一消息可以是IAB节点4在接入网络时向控制节点1发送的。或者,第一消息可以是IAB节点4在发送指示信息之后发送的。或者,第一消息可以是IAB节点4在发送指示信息时发送的,例如将指示信息包含在第一消息中发送给控制节点1。其中,第一消息可以包括:IAB节点4对周围节点SSB信号的RSRP测量值,和对应节点的小区信息,例如,第一消息可以包括IAB节点3、5、7以及IAB宿主1的SSB信号的RSRP测量值。
假设,第二消息包含的父节点信息可以包括IAB节点5的小区ID,指定的IAB宿主信息可以包括IAB宿主1的小区ID。进一步的,若IAB宿主1为建立F1连接的IAB宿主,则指定的IAB宿主信息还可以包括IAB宿主1的CU ID或者IAB宿主1的CU IP地址中的至少一项。
C3,该IAB节点4向IAB节点5发起随机接入,以建立Uu连接,并对IAB节点4的MT进 行配置,以及与IAB宿主1建立F1连接。其过程与场景一中IAB节点7向IAB节点2和IAB节点4发起随机接入,以建立Uu连接,并对IAB节点7的MT进行配置,以及与IAB宿主2建立F1连接的过程类似,具体可以参阅步骤B3~B6,相似之处不再赘述。
示例性的,IAB节点4重新接入网络后,IAB***可以如图19所示。
实施例二:
参见图20,为本申请提供的另一种接入回传控制方法的流程图,本申请实施例中控制节点至少可以实现对多个IAB宿主下的IAB节点的负载均衡功能,该方法包括:
S2001,控制节点向IAB节点发送第四消息,该第四消息用于控制所述IAB节点的路由调度。相应的,IAB节点可以接收控制节点发送的第四消息。
示例性的,第四消息可以但不限于包含如下信息中至少一项:路由表的更新信息;用于指示IAB节点由第一IAB宿主切换到第二IAB宿主的指示信息,示例性的,该指示信息可以为第二IAB宿主的IP地址,或者第二IAB宿主的宿主ID等等;用于指示IAB节点将用户面连接由第一IAB宿主的第一CU-UP切换到第一IAB宿主的第二CU-UP的指示信息,示例性的,该指示信息可以是第二CU-UP的TNL地址;路由表的配置信息。示例性的,第二CU-UP的TNL地址可以指第二CU-UP的隧道端点标识(tunnel endpoint identifier,TEID)。
其中,路由表的更新信息可以包括如下信息中的至少一项:IAB节点的下一跳的更新信息、IAB节点的路由路径优先级的更新信息、新增路由路径的信息、删除路由路径的信息。
控制节点在不同部署方式下向IAB节点发送第四消息的过程,与实施例一步骤S1502类似,区别在于步骤S1502发送的是第一消息,步骤S2001发送的是第四消息,发送方式相同,具体可以参阅步骤S1502的相关描述,相似之处不再重复赘述。
一种可能的实施例中,若第四消息包含路由表的更新信息,IAB节点在接收到第四消息后可以基于第四消息更新本地存储的路由表。例如,若第四消息包含IAB节点的下一跳的更新信息,IAB节点基于该更新信息更新路由表,示例性的,以表1所述路由表为例,假设第四消息指示BAP Routing ID为3的下一跳为X,则IAB节点基于该第四消息更新路由表,更新后的路由表可以如表2所示。
表2
BAP Routing ID BAP address BAP path ID Egress link priority
1 A Path_1 X 1
2 A Path_2 Y 2
3 A Path_3 X 3
4 B Path_1 Y 2
5 B Path_2 X 1
又例如,若第四消息包含IAB节点的路由路径优先级的更新信息,IAB节点基于该更新信息更新路由表,示例性的,以表1所述路由表为例,假设第四消息指示BAP Routing ID为4的优先级为4,则IAB节点基于该第四消息更新路由表,更新后的路由表可以如表3所示。
表3
BAP Routing ID BAP address BAP path ID Egress link priority
1 A Path_1 X 1
2 A Path_2 Y 2
3 A Path_3 Z 3
4 B Path_1 Y 4
5 B Path_2 X 1
再例如,若第四消息包含新增路由路径的信息,IAB节点基于该更新信息更新路由表,示例性的,以表3所述路由表为例,假设第四消息指示增加BAP Routing ID为6的路径,该路径的BAP address为B,BAP path ID为Path_3,Egress link为Z,priority为3,则IAB节点基于该第四消息更新路由表,更新后的路由表可以如表4所示。
表4
BAP Routing ID BAP address BAP path ID Egress link priority
1 A Path_1 X 1
2 A Path_2 Y 2
3 A Path_3 Z 3
4 B Path_1 Y 4
5 B Path_2 X 1
6 B Path_3 Z 3
再例如,若第四消息包含删除路由路径的信息,IAB节点基于该更新信息更新路由表,示例性的,以表5所述路由表为例,假设第四消息指示删除BAP Routing ID为3的路径,则IAB节点基于该第四消息更新路由表,更新后的路由表可以如表5所示。
表5
BAP Routing ID BAP address BAP path ID Egress link priority
1 A Path_1 X 1
2 A Path_2 Y 2
4 B Path_1 Y 4
5 B Path_2 X 1
6 B Path_3 Z 3
另一种可能的实现中,若第四消息包含路由表的配置信息,IAB节点在接收到第四消息后可以基于第四消息配置路由表。具体过程可以参阅实施例一中路由表配置的相关描述,这里不再赘述。
一种其他实现方式中,若第四消息包含用于指示IAB节点将通信连接和用户面数据的IP地址由第一IAB宿主切换到第二IAB宿主的指示信息,IAB节点可以由第一IAB宿主切换连接到第二IAB宿主,并将路由表中用户面数据的IP地址由第一IAB宿主的IP地址更新为第二IAB宿主的地址。
另一种其他实现方式中,若第四消息包含用于指示IAB节点将用户面连接和用户面数据的TNL地址由第一IAB宿主的第一CU-UP切换到第一IAB宿主的第二CU-UP的指示信息,IAB节点可以将用户面连接由第一IAB宿主的第一CU-UP切换到第一IAB宿主的第二 CU-UP,并将用户面数据的TNL地址由第一CU-UP的地址更新为第二CU-UP的地址。
S2002,IAB节点基于更新后的路由表传输数据。
本申请实施例通过引入控制节点,该控制节点可以覆盖(如通过低频覆盖等方式)多个IAB宿主,从而可以实现对跨多个IAB宿主覆盖区域的IAB节点进行集中控制,来实现集中路由控制、负载均衡等,从而可以提高资源利用率,平衡负载,提高整网的可靠性。
一些实施例中,若第四消息包含路由表的配置信息,控制节点可以先确定IAB节点实际接入的父节点和IAB宿主中的至少一项。具体的,控制节点确定IAB节点实际接入的父节点和IAB宿主中的至少一项的过程,具体可以参阅上述实施例中的相关描述,这里不再重复赘述。
本申请实施例中,IAB节点可以参阅上述实施例一所述的方法接入网络,也可以采用其他方法接入网络,这里不做具体限定。
另一些实施例中,控制节点在向IAB节点发送第四消息之前,可以确定IAB节点的新的路由信息,例如路由表的更新信息、路由表的配置信息、通信连接和用户面数据的新的IP地址、用户面连接和用户面数据的新的TNL地址,等等。
一种可能的实现方式中,在IAB节点接收控制节点发送的第四消息之前,IAB节点还可以向所述控制节点发送第五消息,第五消息包含该IAB节点的状态信息,该状态信息可以是负载信息、容量能力信息、链路断裂信息、链路释放信息等中的至少一项,如图21所示。从而控制节点可以根据第五消息确定IAB节点的新的路由信息。
其中,负载信息可以为用于指示负载过载的指示信息;或者,负载信息也可以为用于指示缓存中数据超过阈值的指示信息。或者,负载信息还可以为用于指示负载等级的指示。
容量能力信息可以包括如下信息中的至少一项:IAB节点的用于上行通信的容量能力、IAB节点的用于下行通信的容量能力。
进一步的,第五消息可以是IAB节点主动上报,也可以是控制节点请求IAB节点上报的。
其中,IAB节点主动上报第五消息的过程与上述实施例一中IAB节点主动上报第一消息的过程类似,相似之处不再赘述。例如,可以是控制节点配置第一IAB节点周期性发送第五消息,也可以是控制节点配置第一IAB节点由触发事件触发发送第五消息,比如触发事件可以为负载超过阈值,或者,也可以是负载超过阈值的时间超过预设时长,或者,也可以是buffer里的数据量大于阈值,或者,也可以是buffer里的数据量大于阈值的时长超过预设时长,等等。示例性的,控制节点可以通过向第一IAB节点发送配置消息来配置第一IAB节点主动上报第五消息的方式。控制节点请求IAB节点上报第五消息的实施方式中,控制节点可以向IAB节点发送第六消息,该第六消息用于请求IAB节点发送第五消息,如图22所示。
进一步的,第六消息还可以包含用于指示IAB节点周期性或者非周期性发送或者事件触发发送第五消息的指示信息。其中,周期性发送第四消息,可以理解为多次发送第五消息,例如,第六消息可以指示IAB节点在接收第六消息后的一段时间内周期性发送第五消息。非周期性发送第五消息,可以理解为单次发送第五消息,例如,第六消息可以指示IAB节点在接收到第六消息后发送一次第五消息。事件触发发送第五消息,可以理解为当预设的事件发生时发送第五消息,例如,第六消息可以指示IAB节点在IAB节点的负载过载时发送第四消息等等。本申请实施例二中触发发送第五消息的事件可以是负载超过阈值,或者,也可以是负载超过阈值的时间超过预设时长,或者,也可以是buffer里的数据量大于阈值, 或者,也可以是buffer里的数据量大于阈值的时长超过预设时长,等等。
此外,第六消息除了可以请求IAB点上报第五消息外,还可以用于请求IAB节点上报如下信息中的至少一项:IAB节点的DU标识、IAB节点的MT标识、IAB节点实际接入的父节点的信息、IAB节点实际接入的IAB宿主的信息。示例性的,IAB节点的DU标识可以是OAM或者该IAB节点的CU等为该IAB节点所分配的DU ID。IAB节点的MT标识可以是C-RNTI。IAB节点的父节点信息可以但不限于包括该IAB节点实际接入父节点的cell ID等。IAB节点的IAB宿主信息可以但不限于包括该IAB节点的DU实际连接的IAB宿主的CU ID、该IAB节点的DU实际连接的IAB宿主的CU的IP地址、该IAB节点的DU实际连接的IAB宿主的CU-UP的TNL address等等。
基于与方法实施例的同一发明构思,本申请实施例提供一种接入回传控制装置。该接入回传控制装置的结构可以如图23所示,包括收发单元2301、处理单元2302。
一种具体实施方式中,接入回传控制装置具体可以用于实现图15~19的实施例中IAB节点执行的方法,该装置可以是IAB节点本身,也可以是IAB节点中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。其中,收发单元2301,用于接收控制节点发送的第一消息,控制节点用于对多个IAB宿主下的多个IAB节点进行接入控制,第一消息包含至少一个第一小区的标识,其中,至少一个第一小区的标识为控制节点根据第一IAB上报的同步信号块测量信息确定的,第一IAB节点为多个IAB节点中的任一IAB节点,同步信号块测量信息包括如下信息中至少一项:第一IAB节点对至少一个第二IAB节点所发送同步信号块进行测量得到的测量值、第一IAB节点对至少一个IAB宿主所发送同步信号块进行测量得到的测量值。处理单元2302,用于向至少一个第二小区发起随机接入,至少一个第二小区为至少一个第一小区的全部或部分。
一种实现方式中,收发单元2301,还可以用于:在接收控制节点发送的第一消息之前,向控制节点发送同步信号块测量信息。
示例性的,同步信号块测量信息还可以包括各个所述测量值分别对应的小区的标识。
第一消息还可以包含IAB宿主的标识,所述IAB宿主为指定所述第一IAB节点接入的IAB宿主。
收发单元2301,还可以用于:接收控制节点发送的配置信息,配置信息包括如下信息中的至少一项:回传适配协议配置信息、路由表配置信息、无线链路控制配置信息。
收发单元2301,还可以用于:在与父节点之间的无线链路失败时,向控制节点发送用于指示无线链路失败的指示信息。
收发单元2301,还可以用于:在与父节点之间信道的信道质量变化时,向控制节点发送用于指示信道质量变化的指示信息。
收发单元2301,还可以用于:在接收控制节点发送的第一消息之前,接收控制节点发送的第二消息,第二消息用于请求装置发送同步信号块测量信息。
示例性的,第二消息还可以包含用于指示第一IAB节点周期性或者非周期性发送同步信号块测量信息的指示信息。
第二消息还可以用于请求第一IAB节点发送如下信息中的至少一项:第一IAB节点的DU标识、第一IAB节点的MT标识、第一IAB节点的父节点信息、第一IAB节点所连接的IAB宿主的信息。
另一种具体实施方式中,接入回传控制装置具体可以用于实现图15~19的实施例中控 制节点执行的方法,该装置可以是控制节点本身,也可以是控制节点中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。其中,处理单元2302,用于根据第一IAB节点上报的同步信号块测量信息确定至少一个小区,同步信号块测量信息包括如下信息中至少一项:第一IAB节点对至少一个第二IAB节点所发送同步信号块进行测量得到的测量值、第一IAB节点对至少一个IAB宿主所发送同步信号块进行测量得到的测量值。收发单元2301,用于向第一IAB节点发送第一消息,第一消息包含至少一个小区的标识,所述第一消息用于指示所述第一IAB节点的候选父节点。
一种实现方式中,收发单元2301,还可以用于:在处理单元2302根据第一IAB节点上报的同步信号块测量信息确定至少一个小区之前,接收第一IAB节点发送的同步信号块测量信息。
示例性的,同步信号块测量信息还可以包括各个所述测量值分别对应的小区的标识。
第一消息还可以包含IAB宿主的标识,IAB宿主为指定所述第一IAB节点接入的IAB宿主。
收发单元2301,还可以用于:向第一IAB节点发送配置信息,配置信息包括如下信息中的至少一项:回传适配协议配置信息、路由表配置信息、无线链路控制配置信息。
收发单元2301,还可以用于:在处理器2302根据第一IAB节点上报的同步信号块测量信息确定至少一个小区之前,接收第一IAB节点发送的用于指示无线链路失败的指示信息。
收发单元2301,还可以用于:接收第一IAB节点发送的用于指示信道质量变化的指示信息。
收发单元2301,还可以用于:在接收第一IAB节点发送的第一消息之前,向第一IAB节点发送第二消息,第二消息用于请求第一IAB节点发送同步信号块测量信息。
示例性的,第二消息还可以包含用于指示IAB节点周期性或者非周期性发送同步信号块测量信息的指示信息。
第二消息还可以用于请求第一IAB节点发送如下信息中的至少一项:第一IAB节点的DU标识、第一IAB节点的MT标识、第一IAB节点的父节点信息、第一IAB节点所连接的IAB宿主的信息。
又一种具体实施方式中,接入回传控制装置具体可以用于实现图20~22的实施例中IAB节点执行的方法,该装置可以是IAB节点本身,也可以是IAB节点中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。其中,收发单元2301,用于接收控制节点发送的第一消息,控制节点用于对多个IAB宿主下的多个IAB节点进行负载均衡,该IAB节点为控制节点覆盖范围内的多个IAB节点中的任一IAB节点。第一消息用于控制IAB节点的路由调度。处理单元2302,用于基于第一消息通过收发单元2301传输数据。
示例性的,第一消息可以包含如下信息中至少一项:路由表的更新信息;用于指示IAB节点由第一IAB宿主切换到第二IAB宿主的指示信息,示例性的,该指示信息可以为第二IAB宿主的IP地址,或者第二IAB宿主的宿主ID等等;用于指示IAB节点将用户面连接由第一IAB宿主的第一CU-UP切换到第一IAB宿主的第二CU-UP的指示信息,示例性的,该指示信息可以是第二CU-UP的TNL地址;路由表的配置信息。
示例性的,路由表的更新信息可以包括如下信息中的至少一项:IAB节点的下一跳的更新信息、IAB节点的路由路径优先级的更新信息、新增路由路径的信息、删除路由路径的信息。
一种实现方式中,收发单元2301,还可以用于:在接收控制节点发送的第一消息之前,向控制节点发送第二消息,第二消息包含IAB节点的负载信息以及容量能力信息中的至少一项。
示例性的,负载信息可以为用于指示负载过载的指示信息;或者,负载信息也可以为用于指示缓存中数据超过阈值的指示信息;或者,负载信息还可以为用于指示负载等级的指示。
容量能力信息可以包括如下信息中的至少一项:IAB节点的用于上行通信的容量能力、IAB节点的用于下行通信的容量能力。
收发单元2301,还可以用于:在向控制节点发送第二消息之前,接收控制节点发送的第三消息,第三消息用于请求装置发送第二消息。
第三消息还可以包含用于指示IAB节点周期性或者非周期性发送第二消息的指示信息。
第三消息还可以用于请求IAB节点发送如下信息中的至少一项:IAB节点的DU标识、IAB节点的MT标识、IAB节点的父节点信息、IAB节点所连接的IAB宿主的信息。
再一种具体实施方式中,接入回传控制装置具体可以用于实现图20~22的实施例中控制节点执行的方法,该装置可以是控制节点本身,也可以是控制节点中的芯片或芯片组或芯片中用于执行相关方法功能的一部分,装置用于对多个IAB宿主下的多个IAB节点进行负载均衡。其中,处理单元2302,用于确定IAB节点的路由更新信息,该IAB节点为控制节点覆盖范围内的任一IAB节点。收发单元2301,用于向IAB节点发送第一消息,第一消息用于控制IAB节点的路由调度。
示例性的,第一消息可以包含如下信息中至少一项:路由表的更新信息;用于指示IAB节点由第一IAB宿主切换到第二IAB宿主的指示信息,示例性的,该指示信息可以为第二IAB宿主的IP地址,或者第二IAB宿主的宿主ID等等;用于指示IAB节点将用户面连接由第一IAB宿主的第一CU-UP切换到第一IAB宿主的第二CU-UP的指示信息,示例性的,该指示信息可以是第二CU-UP的TNL地址;路由表的配置信息。
示例性的,路由表的更新信息可以包括如下信息中的至少一项:IAB节点的下一跳的更新信息、IAB节点的路由路径优先级的更新信息、新增路由路径的信息、删除路由路径的信息。
一种实现方式中,收发单元2301,还可以用于:在向IAB节点发送第一消息之前,接收IAB节点发送的第二消息,第二消息包含IAB节点的负载信息以及容量能力信息中的至少一项。
示例性的,负载信息可以为用于指示负载过载的指示信息;或者,负载信息也可以为用于指示缓存中数据超过阈值的指示信息;或者,负载信息还可以为用于指示负载等级的指示。
容量能力信息可以包括如下信息中至少一项:IAB节点的用于上行通信的容量能力、IAB节点的用于下行通信的容量能力。
收发单元2301,还可以用于:在接收IAB节点发送的第二消息之前,向IAB节点发送第三消息,第三消息用于请求IAB节点发送第二消息。
第三消息还可以包含用于指示IAB节点周期性或者非周期性发送第二消息的指示信息。
第三消息还可以用于请求IAB节点发送如下信息中的至少一项:IAB节点的分布单元DU标识、IAB节点的移动终端MT标识、IAB节点的父节点信息、IAB节点所连接的IAB宿 主的信息。
处理单元2302,还可以用于:在收发单元2301向IAB节点发送第一消息之前,确定IAB节点接入网络。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。可以理解的是,本申请实施例中各个模块的功能或者实现可以进一步参考方法实施例的相关描述。
一种可能的方式中,接入回传控制装置可以如图24所示,该装置可以是网络设备或者网络设备中的芯片,其中,网络设备可以控制节点,也可以是IAB节点。该装置可以包括处理器2401,通信接口2402,存储器2403。其中,处理单元2302可以为处理器2401。收发单元2301可以为通信接口2402。
处理器2401,可以是一个中央处理单元(central processing unit,CPU),或者为数字处理单元等等。通信接口2402可以是收发器、也可以为接口电路如收发电路等、也可以为收发芯片等等。该装置还包括:存储器2403,用于存储处理器2402执行的程序。存储器2403可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器2403是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
处理器2401用于执行存储器2403存储的程序代码,具体用于执行上述处理单元2302的动作,本申请在此不再赘述。
通信接口2402,具体用于执行上述收发单元2301的动作,本申请在此不再赘述。
本申请实施例中不限定上述通信接口2401、处理器2402以及存储器2403之间的具体连接介质。本申请实施例在图24中以存储器2403、处理器2402以及通信接口2401之间通过总线2404连接,总线在图24中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图24中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本发明实施例还提供了一种计算机可读存储介质,用于存储为执行上述处理器所需执行的计算机软件指令,其包含用于执行上述处理器所需执行的程序。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介 质(例如固态硬盘(Solid State Disk,SSD))等。
本申请是参照根据本申请的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (39)

  1. 一种接入回传控制方法,其特征在于,所述方法包括:
    第一接入回传一体化IAB节点接收控制节点发送的第一消息,所述控制节点用于对多个IAB宿主覆盖下的多个IAB节点进行接入控制,所述第一消息包含至少一个第一小区的标识,其中,所述至少一个第一小区为所述控制节点根据所述第一IAB节点上报的同步信号块测量信息确定的,所述同步信号块测量信息包括如下信息中至少一项:所述第一IAB节点对至少一个第二IAB节点所发送同步信号块进行测量得到的测量值、所述第一IAB节点对所述多个IAB宿主所发送同步信号块进行测量得到的测量值,其中,所述第一IAB节点和所述第二IAB节点分别为所述多个IAB节点中的任意两个IAB节点;
    所述第一IAB节点向至少一个第二小区发起随机接入,所述至少一个第二小区为所述至少一个第一小区的全部或部分。
  2. 如权利要求1所述的方法,其特征在于,所述第一消息还包含IAB宿主的标识,所述IAB宿主为指定所述第一IAB节点应接入的IAB宿主。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一IAB节点接收所述控制节点发送的配置信息,所述配置信息包括如下信息中的至少一项:回传适配协议配置信息、路由表配置信息、无线链路控制配置信息。
  4. 如权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:
    所述第一IAB节点在与父节点之间的无线链路失败时,向所述控制节点发送用于指示无线链路失败的指示信息。
  5. 如权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:
    所述第一IAB节点在与父节点之间信道的信道质量变化时,向所述控制节点发送用于指示信道质量变化的指示信息。
  6. 如权利要求1至5任一项所述的方法,其特征在于,在所述第一IAB节点接收控制节点发送的第一消息之前,所述方法还包括:
    所述第一IAB节点接收所述控制节点发送的第二消息,所述第二消息用于请求所述第一IAB节点发送所述同步信号块测量信息。
  7. 如权利要求6所述的方法,其特征在于,所述第二消息还包含用于指示所述第一IAB节点周期性或者非周期性发送所述同步信号块测量信息的指示信息。
  8. 如权利要求6或7所述的方法,其特征在于,所述第二消息还用于请求所述第一IAB节点发送如下信息中的至少一项:所述第一IAB节点的分布单元DU标识、所述第一IAB节点的移动终端MT标识、所述第一IAB节点实际接入的父节点的信息、所述第一IAB节点实际连接的IAB宿主的信息。
  9. 如权利要求1至8任一项所述的方法,其特征在于,所述同步信号块测量信息还包括各个所述测量值分别对应的小区的标识。
  10. 一种接入回传控制方法,其特征在于,所述方法包括:
    控制节点根据第一接入回传一体化IAB节点上报的同步信号块测量信息确定至少一个小区,所述同步信号块测量信息包括如下信息中至少一项:所述第一IAB节点对至少一个第二IAB节点所发送同步信号块进行测量得到的测量值、所述第一IAB节点对所述多个IAB宿主所发送同步信号块进行测量得到的测量值,其中,所述第一IAB节点和所述第二 IAB节点分别为所述多个IAB节点中的任意两个IAB节点;
    所述控制节点向所述第一IAB节点发送第一消息,所述第一消息包含所述至少一个小区的标识,所述第一消息用于指示所述第一IAB节点的候选父节点的小区。
  11. 如权利要求10所述的方法,其特征在于,所述第一消息还包含IAB宿主的标识,IAB宿主为指定所述第一IAB节点应接入的IAB宿主。
  12. 如权利要求10或11所述的方法,其特征在于,所述方法还包括:
    所述控制节点向所述第一IAB节点发送配置信息,所述配置信息包括如下信息中的至少一项:回传适配协议配置信息、路由表配置信息、无线链路控制配置信息。
  13. 如权利要求10至12任一项所述的方法,其特征在于,所述方法还包括:
    所述控制节点接收所述第一IAB节点发送的用于指示无线链路失败的指示信息。
  14. 如权利要求10至13任一项所述的方法,其特征在于,所述方法还包括:
    所述控制节点接收所述第一IAB节点发送的用于指示信道质量变化的指示信息。
  15. 如权利要求10至14任一项所述的方法,其特征在于,在控制节点根据第一IAB节点上报的同步信号块测量信息确定至少一个小区之前,所述方法还包括:
    所述控制节点向所述第一IAB节点发送第二消息,所述第二消息用于请求所述第一IAB节点发送所述同步信号块测量信息。
  16. 如权利要求15所述的方法,其特征在于,所述第二消息还包含用于指示所述第一IAB节点周期性或者非周期性发送所述同步信号块测量信息的指示信息。
  17. 如权利要求15或16所述的方法,其特征在于,所述第二消息还用于请求所述第一IAB节点发送如下信息中的至少一项:所述第一IAB节点的分布单元DU标识、所述第一IAB节点的移动终端MT标识、所述第一IAB节点实际接入的父节点的信息、所述第一IAB节点实际连接的IAB宿主的信息。
  18. 如权利要求10至17任一项所述的方法,其特征在于,所述同步信号块测量信息还包括各个所述测量值分别对应的小区的标识。
  19. 一种接入回传控制装置,其特征在于,所述装置包括:
    收发器,用于接收控制节点发送的第一消息,所述控制节点用于对多个接入回传一体化IAB宿主覆盖下的多个IAB节点进行接入控制,所述第一消息包含至少一个第一小区的标识,其中,所述至少一个第一小区为所述控制节点根据第一IAB节点上报的同步信号块测量信息确定的,所述同步信号块测量信息包括如下信息中至少一项:所述第一IAB节点对至少一个第二IAB节点所发送同步信号块进行测量得到的测量值、所述第一IAB节点对所述多个IAB宿主所发送同步信号块进行测量得到的测量值,其中,所述第一IAB节点和所述第二IAB节点分别为所述多个IAB节点中的任意两个IAB节点;
    处理器,用于向至少一个第二小区发起随机接入,所述至少一个第二小区为所述至少一个第一小区的全部或部分。
  20. 如权利要求19所述的装置,其特征在于,所述第一消息还包含IAB宿主的标识,所述IAB宿主为指定所述第一IAB节点应接入的IAB宿主。
  21. 如权利要求19或20所述的装置,其特征在于,所述收发器,还用于:
    接收所述控制节点发送的配置信息,所述配置信息包括如下信息中的至少一项:回传适配协议配置信息、路由表配置信息、无线链路控制配置信息。
  22. 如权利要求19至21任一项所述的装置,其特征在于,所述收发器,还用于:
    在与父节点之间的无线链路失败时,向所述控制节点发送用于指示无线链路失败的指示信息。
  23. 如权利要求19至21任一项所述的装置,其特征在于,所述收发器,还用于:
    在与父节点之间信道的信道质量变化时,向所述控制节点发送用于指示信道质量变化的指示信息。
  24. 如权利要求19至23任一项所述的装置,其特征在于,所述收发器,还用于:
    在接收所述控制节点发送的第一消息之前,接收所述控制节点发送的第二消息,所述第二消息用于请求所述装置发送所述同步信号块测量信息。
  25. 如权利要求24所述的装置,其特征在于,所述第二消息还包含用于指示所述第一IAB节点周期性或者非周期性发送所述同步信号块测量信息的指示信息。
  26. 如权利要求24或25所述的装置,其特征在于,所述第二消息还用于请求所述第一IAB节点发送如下信息中的至少一项:所述第一IAB节点的分布单元DU标识、所述第一IAB节点的移动终端MT标识、所述第一IAB节点的父节点信息、所述第一IAB节点所连接的IAB宿主的信息。
  27. 如权利要求19至26任一项所述的装置,其特征在于,所述同步信号块测量信息还包括各个所述测量值分别对应的小区的标识。
  28. 一种接入回传控制装置,其特征在于,所述装置包括:
    处理器,用于根据第一接入回传一体化IAB节点上报的同步信号块测量信息确定至少一个小区,所述同步信号块测量信息包括如下信息中至少一项:所述第一IAB节点对至少一个第二IAB节点所发送同步信号块进行测量得到的测量值、所述第一IAB节点对所述多个IAB宿主所发送同步信号块进行测量得到的测量值,其中,所述第一IAB节点和所述第二IAB节点分别为所述多个IAB节点中的任意两个IAB节点;
    收发器,用于向所述第一IAB节点发送第一消息,所述第一消息包含所述至少一个小区的标识,所述第一消息用于指示所述IAB节点的候选父节点。
  29. 如权利要求28所述的装置,其特征在于,所述第一消息还包含IAB宿主的标识,IAB宿主为指定所述第一IAB节点应接入的IAB宿主。
  30. 如权利要求28或29所述的装置,其特征在于,所述收发器,还用于:
    向所述第一IAB节点发送配置信息,所述配置信息包括如下信息中的至少一项:回传适配协议配置信息、路由表配置信息、无线链路控制配置信息。
  31. 如权利要求28至30任一项所述的装置,其特征在于,所述收发器,还用于:
    接收所述第一IAB节点发送的用于指示无线链路失败的指示信息。
  32. 如权利要求28至31任一项所述的装置,其特征在于,所述收发器,还用于:
    接收所述第一IAB节点发送的用于指示信道质量变化的指示信息。
  33. 如权利要求28至32任一项所述的装置,其特征在于,所述收发器,还用于:
    在所述处理器根据第一IAB节点上报的同步信号块测量信息确定至少一个小区之前,向所述第一IAB节点发送第二消息,所述第二消息用于请求所述第一IAB节点发送所述同步信号块测量信息。
  34. 如权利要求33所述的装置,其特征在于,所述第二消息还包含用于指示所述第一IAB节点周期性或者非周期性发送所述同步信号块测量信息的指示信息。
  35. 如权利要求33或34所述的装置,其特征在于,所述第二消息还用于请求所述第 一IAB节点发送如下信息中的至少一项:所述第一IAB节点的分布单元DU标识、所述第一IAB节点的移动终端MT标识、所述第一IAB节点的父节点信息、所述第一IAB节点所连接的IAB宿主的信息。
  36. 如权利要求28至35任一项所述的装置,其特征在于,所述同步信号块测量信息还包括各个所述测量值分别对应的小区的标识。
  37. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储程序或指令,所述程序或所述指令在被一个或多个处理器读取并执行时可实现权利要求1至9任一项所述的方法;或者,所述程序或所述指令在被一个或多个处理器读取并执行时可实现权利要求10至18任一项所述的方法。
  38. 一种计算机程序产品,其特征在于,当所述计算机程序产品在接入回传一体化IAB节点上运行时,使得所述IAB节点执行权利要求1至9任一所述的方法;或者
    当所述计算机程序产品在控制节点上运行时,使得所述控制节点执行权利要求10至18任一所述的方法。
  39. 一种通信***,其特征在于,所述***包括:
    如权利要求19至27任一项所述的接入回传控制装置;
    如权利要求28至36任一项所述的接入回传控制装置。
PCT/CN2019/119502 2019-11-19 2019-11-19 一种接入回传控制方法及装置 WO2021097678A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980102002.2A CN114642076A (zh) 2019-11-19 2019-11-19 一种接入回传控制方法及装置
PCT/CN2019/119502 WO2021097678A1 (zh) 2019-11-19 2019-11-19 一种接入回传控制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/119502 WO2021097678A1 (zh) 2019-11-19 2019-11-19 一种接入回传控制方法及装置

Publications (1)

Publication Number Publication Date
WO2021097678A1 true WO2021097678A1 (zh) 2021-05-27

Family

ID=75980073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119502 WO2021097678A1 (zh) 2019-11-19 2019-11-19 一种接入回传控制方法及装置

Country Status (2)

Country Link
CN (1) CN114642076A (zh)
WO (1) WO2021097678A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116033512A (zh) * 2023-03-30 2023-04-28 广州世炬网络科技有限公司 自回传iab网络中iab宿主节点切换方法、装置、设备及介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190350023A1 (en) * 2018-05-11 2019-11-14 At&T Intellectual Property I, L.P. Radio resource configuration and measurements for integrated access backhaul for 5g or other next generation network
WO2019216670A1 (en) * 2018-05-09 2019-11-14 Samsung Electronics Co., Ltd. Methods and systems for routing data through iab nodes in 5g communication networks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019216670A1 (en) * 2018-05-09 2019-11-14 Samsung Electronics Co., Ltd. Methods and systems for routing data through iab nodes in 5g communication networks
US20190350023A1 (en) * 2018-05-11 2019-11-14 At&T Intellectual Property I, L.P. Radio resource configuration and measurements for integrated access backhaul for 5g or other next generation network

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NG-RAN; Architecture description (Release 15)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.401, vol. RAN WG3, no. V15.6.0, 13 July 2019 (2019-07-13), pages 1 - 46, XP051754689 *
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Study on Integrated Access and Backhaul; (Release 16)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 38.874, no. V16.0.0, 31 December 2018 (2018-12-31), pages 1 - 111, XP051591643 *
ITRI: "Backhaul RLF handling", 3GPP DRAFT; R2-1913063_BH_RLF_HANDLING, vol. RAN WG2, 4 October 2019 (2019-10-04), Chongqing, China, pages 1 - 4, XP051791081 *
LENOVO, MOTOROLA MOBILITY: "Cell selection for IAB RLF recovery", 3GPP DRAFT; R2-1915128, vol. RAN WG2, 8 November 2019 (2019-11-08), Reno, Nevada, USA, pages 1 - 3, XP051817037 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116033512A (zh) * 2023-03-30 2023-04-28 广州世炬网络科技有限公司 自回传iab网络中iab宿主节点切换方法、装置、设备及介质

Also Published As

Publication number Publication date
CN114642076A (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
RU2713442C1 (ru) Система и способ переключения сот
US11405805B2 (en) Link maintenance method and apparatus
AU2018269260B2 (en) Data transmission method, access network device and terminal
US10320449B2 (en) Dynamic cell clustering for coordinated multipoint operation
US11800430B2 (en) Methods, wireless communications networks and infrastructure equipment
WO2020098747A1 (zh) 传输路径的配置方法及装置
US10455627B2 (en) Data transmission link establishment apparatus and method, and communications system
WO2017124900A1 (zh) 电子设备和通信方法
WO2020192654A1 (zh) 配置无线链路控制rlc承载的方法和装置
JP2020511844A (ja) 通信方法、セカンダリネットワークノード及び端末
CN114586405B (zh) 测量报告上报方法及装置
WO2021097678A1 (zh) 一种接入回传控制方法及装置
WO2021036963A1 (zh) 数据处理方法、装置和***
CN108924958B (zh) 建立连接的方法和装置
US11546819B2 (en) Cellular telecommunications network
WO2022205251A1 (zh) 信息收发方法,数据发送方法以及装置
WO2021163861A1 (zh) 一种通信方法及装置
WO2023142981A1 (zh) 通信方法及相关装置
WO2024007878A1 (zh) 通信方法及装置
WO2023205941A1 (zh) 信息的发送、接收、配置方法以及装置和通信***
WO2023150974A1 (zh) Iab宿主设备以及传输迁移管理方法
WO2023185466A1 (zh) 一种通信方法及装置
WO2024027636A1 (zh) 一种通信方法、通信装置及通信***
US20230292349A1 (en) Method and apparatus for resource restriction
KR20230079434A (ko) Iab 계층적인 du 리소스 구성

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953435

Country of ref document: EP

Kind code of ref document: A1