WO2021097631A1 - 一种信息上报方法及装置 - Google Patents

一种信息上报方法及装置 Download PDF

Info

Publication number
WO2021097631A1
WO2021097631A1 PCT/CN2019/119288 CN2019119288W WO2021097631A1 WO 2021097631 A1 WO2021097631 A1 WO 2021097631A1 CN 2019119288 W CN2019119288 W CN 2019119288W WO 2021097631 A1 WO2021097631 A1 WO 2021097631A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
resources
resource set
identifiers
signal
Prior art date
Application number
PCT/CN2019/119288
Other languages
English (en)
French (fr)
Inventor
管鹏
张希
樊波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/119288 priority Critical patent/WO2021097631A1/zh
Priority to CN202080079527.1A priority patent/CN114731658A/zh
Priority to EP20891403.6A priority patent/EP4040894A4/en
Priority to PCT/CN2020/075088 priority patent/WO2021098048A1/zh
Publication of WO2021097631A1 publication Critical patent/WO2021097631A1/zh
Priority to US17/746,398 priority patent/US20220279370A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • This application relates to the field of communication technology, and in particular to an information reporting method and device.
  • the network and the terminal in order to overcome the path loss, the network and the terminal usually use a directional high-gain antenna array to form an analog beam for communication.
  • the analog beam is directional, and the main lobe direction and 3dB beam width can be used to describe an analog beam pattern. Among them, the narrower the beam width, the greater the antenna gain.
  • network equipment and terminal equipment can send and receive signals in a specific direction. Take the following communication as an example.
  • a network device sends a signal in a specific direction, and a terminal device receives a signal in the specific direction. When the signal sending direction and the signal receiving direction are aligned, the network device and the terminal device can realize normal communication.
  • beam alignment that is, the beam direction alignment of the transmitting end and the receiving end
  • beam training is required.
  • the downlink beam training is achieved by sending one or more reference signals through the network equipment, and the terminal equipment measures the reference signals sent by the network equipment, and reports the measurement results as required.
  • Downlink beam training can complete beam selection, beam quality measurement and reporting, beam tracking and other functions.
  • the result of the downlink beam training can be used for the network equipment to perform beam indication.
  • the network device in order to implement beam training based on L1 (layer 1, physical layer)-SINR (hereinafter abbreviated as SINR), the network device is supported to configure one or more references for signal measurement A signal resource set (channel measurement resource set, CMR set), and one or more reference signal resource sets (interference measurement resource set, IMR set) used for interference measurement.
  • the reference signal resource (CMR) in the CMR set and the reference signal resource (IMR) in the IMR set have a one-to-one correspondence.
  • CMR1 corresponds to IMR1
  • CMR2 corresponds to IMR2. This way of resource correspondence may increase resource overhead.
  • This application provides an information reporting method and device, which is beneficial to reducing resource overhead.
  • the present application provides an information reporting method, the method includes: receiving configuration information sent by a network device, the configuration information is used to configure a first resource set and a second resource set, the resources in the first resource set The resource corresponding to the identifier is used for channel measurement, the resource corresponding to the resource identifier in the second resource set is used for interference measurement, and the first resource set includes the identifiers of N first resources, and the identifiers of the N first resources are the same ,
  • the second resource set includes the identifiers of N second resources, the identifiers of the N first resources correspond to the identifiers of the N second resources one-to-one, and N is an integer greater than 1, and the signal on the first resource is measured Strength, get the first signal strength; measure the signal strength on the N second resources, get the N second signal strength; report the first signal-to-interference and noise ratio SINR to the network device based on the first signal strength and the N second signal strengths . Based on the method described in the first aspect, it is beneficial to save
  • the receiving parameters of the N second resources are the same as the receiving parameters of the first resource. Or, it can be expressed as: the receiving parameters of the N second resources and the receiving parameters of the first resource are quasi-co-location (QCL). Or, it can be expressed as: the terminal device measures the signal strength on the N second resources through the receiving parameters of the first resource.
  • the specific implementation manner of reporting the first SINR to the network device based on the first signal strength and the N second signal strengths is: determining N SINRs, the i-th SINR of the N SINRs SINR is obtained based on the i-th second signal strength among the first signal strength and the N second signal strengths, i is an integer greater than 0 and less than or equal to N; report one or more of the N SINRs to the network device The first SINR.
  • the network device After the network device determines the interference of the transmission parameters of one or more second resources on the transmission parameters and/or reception parameters of the first resource, it can schedule the subsequent data transmissions to avoid beam synchronization with greater mutual interference. Transmission, or pairing with beams with less mutual interference for simultaneous transmission.
  • the position of the identifier of the first resource corresponding to the one or more first SINRs in the first resource set is reported to the network device.
  • the identifiers of the first resources in the first resource set are the same, the second resources used when calculating the SINR are different. Therefore, the identifiers of the first resources corresponding to the one or more first SINRs are reported in the first resource set by reporting to the network device.
  • the position in the middle is conducive to the network device to accurately determine the second resource used when calculating the SINR.
  • the first SINR is obtained based on the sum of the N second signal strengths and the first signal strength.
  • the function of interference accumulation can be realized.
  • the interference measurement can be made more accurate.
  • the first resource set further includes a resource identifier that is different from the identifier of the first resource, and the position of the identifier of the first resource in the first resource set may also be reported to the network device. It is helpful for the network device to accurately determine the second resource used when calculating the SINR.
  • the present application provides an information reporting method.
  • the method includes: sending configuration information to a terminal device, the configuration information is used to configure a first resource set and a second resource set, and the resource identifier in the first resource set
  • the corresponding resource is used for channel measurement
  • the resource corresponding to the resource identifier in the second resource set is used for interference measurement
  • the first resource set includes the identifiers of N first resources, and the identifiers of the N first resources are the same
  • the second resource set includes the identifiers of N second resources, the identifiers of the N first resources correspond to the identifiers of the N second resources one-to-one, and N is an integer greater than 1
  • the first reference is sent in the first resource Signal; respectively send second reference signals in the N second resources; receive the first signal-to-interference-to-noise ratio SINR reported by the terminal device.
  • the position of the identifier of the first resource corresponding to the one or more first SINRs reported by the terminal device in the first resource set may also be received.
  • the first resource set further includes a resource identifier different from the identifier of the first resource, and the position of the identifier of the first resource in the first resource set reported by the terminal device may also be received.
  • this application provides an information reporting method.
  • the method includes: receiving configuration information sent by a network device, where the configuration information is used to configure a first resource set and a second resource set, and resources in the first resource set
  • the resource corresponding to the identifier is used for channel measurement
  • the resource corresponding to the resource identifier in the second resource set is used for interference measurement
  • the first resource set includes N identifiers of the first resource
  • the second resource set includes N
  • the identifier of the second resource, the identifiers of the N second resources are the same, the identifiers of the N first resources correspond to the identifiers of the N second resources one-to-one, and N is an integer greater than 1, and the N first resources are measured
  • the first SINR is the SINR in the N SINRs obtained based on the N first signal intensities and the N second signal intensities.
  • the specific implementation of measuring the signal strength on the N first resources is: measuring the signal strength on the N first resources through the reception parameters of the N first resources;
  • a specific implementation manner of performing N measurements of signal strength is: performing N measurements of the signal strength on the second resource through the reception parameters of N first resources.
  • the receiving parameter of each second resource among the N second resources and the first resource associated with it is QCL.
  • each of the N second resources has the same receiving parameter as the first resource associated with it.
  • the period of the second resource is 1/N times the period of the first resource.
  • the network device transmits the reference signal of the second resource N times in a period of the first resource.
  • the period of the second resource is the same as the period of the first resource, and the time domain range for measuring the strength of the N second signals is less than or equal to the time length of one time unit.
  • one time unit is one OFDM symbol.
  • one time unit may also be two OFDM symbols, three OFDM symbols, or four OFDM symbols.
  • the time unit may also be one time slot, one subframe, one millisecond, and so on.
  • the time unit may also be two time slots, two subframes, two milliseconds, and so on.
  • the signal strength on the second resource may also be measured once to obtain a second signal strength.
  • the first SINR reported to the network device is the SINR among the N SINRs obtained based on the N first signal strengths and one second signal strength.
  • the present application provides an information reporting method, the method comprising: sending configuration information to a terminal device, the configuration information is used to configure a first resource set and a second resource set, and the resource identifier in the first resource set The corresponding resource is used for channel measurement, the resource corresponding to the resource identifier in the second resource set is used for interference measurement, the first resource set includes N first resource identifiers, and the second resource set includes N first resource identifiers.
  • the identifier of the second resource, the identifiers of the N second resources are the same, the identifiers of the N first resources correspond to the identifiers of the N second resources, and N is an integer greater than 1; the N first resources are respectively Send the first reference signal; send the second reference signal in the second resource; receive one or more first signal-to-interference and noise ratio SINRs reported by the terminal device.
  • the period of the second resource is 1/N times the period of the first resource.
  • the period of the second resource is the same as the period of the first resource.
  • the beneficial effects of the fourth aspect can be referred to the beneficial effects of the third aspect, which will not be repeated here.
  • the present application provides an information reporting method.
  • the method includes: receiving configuration information sent by a network device, the configuration information being used to configure a first resource set, and a resource usage corresponding to a resource identifier in the first resource set.
  • the first resource set includes the identifiers of N first resources, the identifiers of the N first resources are the same, and N is an integer greater than 1, and the signal strength on the first resource is measured N times to obtain N signal strengths; report the first signal strength of the N signal strengths to the network device. Based on the method described in the fifth aspect, it is beneficial to save resource overhead.
  • the time domain range of N measurements is less than or equal to the time length of one time unit.
  • one time unit is one OFDM symbol.
  • one time unit may also be two OFDM symbols, three OFDM symbols, or four OFDM symbols.
  • the time unit may also be one time slot, one subframe, one millisecond, and so on.
  • the time unit may also be two time slots, two subframes, two milliseconds, and so on.
  • the time domain measurement range of each of the N measurements is less than or equal to N IFFT /N, where N IFFT is the time length of a time unit.
  • the time-domain measurement range of each of the N measurements is less than or equal to N IFFT /NN CP /N, where N CP is the time length of the cyclic prefix, and N IFFT is the time length of a time unit .
  • the cyclic prefix is a guard interval. Therefore, it should be ensured that the time domain measurement range of each of the N measurements is less than or equal to N IFFT /NN CP /N.
  • N measurements are performed after the cyclic prefix.
  • the configuration information further includes a repetition factor, and the repetition factor is off, and the position of the identifier of the first resource corresponding to the first signal strength in the first resource set can also be reported to the network device. This is beneficial for the network device to determine the sending parameter used to measure the first signal strength.
  • this application provides an information reporting method.
  • the method includes: sending configuration information to a terminal device, the configuration information is used to configure a first resource set, and the resource corresponding to the resource identifier in the first resource set is used for the channel Measurement, the first resource set includes N identifications of the first resources, the identifications of the N first resources are the same, and N is an integer greater than 1; the reference signal is sent on the first resource; the N signal strengths reported by the terminal device are received The first signal strength in.
  • the configuration information further includes a repetition factor, the repetition factor is off, and the specific implementation manner of sending the reference signal in the first resource is: sending the reference signal N times in the first resource through N sending parameters.
  • the time domain range for sending N reference signals through N sending parameters is less than or equal to the time length of one time unit.
  • one time unit is one OFDM symbol.
  • one time unit may also be two OFDM symbols, three OFDM symbols, or four OFDM symbols.
  • the time unit may also be one time slot, one subframe, one millisecond, and so on.
  • the time unit may also be two time slots, two subframes, two milliseconds, and so on.
  • the time domain range of the reference signal sent each time is less than or equal to N IFFT /N, where N IFFT is the time length of a time unit.
  • the time domain range of the reference signal sent each time is less than or equal to N IFFT /NN CP /N, where N CP is the time length of the cyclic prefix, and N IFFT is the time length of a time unit.
  • sending the reference signal N times through the N sending parameters is performed after the cyclic prefix.
  • the configuration information further includes a repetition factor, where the repetition factor is off, and the position of the identifier of the first resource corresponding to the first signal strength reported by the terminal device in the first resource set can also be received.
  • beneficial effects of the sixth aspect can be referred to the beneficial effects of the fifth aspect, which will not be repeated here.
  • a communication device in a seventh aspect, is provided.
  • the device may be a terminal device, or a device in a terminal device, or a device that can be matched and used with a terminal device.
  • the communication device may also be a chip system.
  • the communication device can perform the method described in the first aspect or the third aspect or the fifth aspect.
  • the function of the communication device can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the unit can be software and/or hardware.
  • a communication device may be a terminal device, or a device in a terminal device, or a device that can be matched and used with a terminal device.
  • the communication device may also be a chip system.
  • the communication device can perform the method described in the second aspect or the fourth aspect or the sixth aspect.
  • the function of the communication device can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the unit can be software and/or hardware.
  • an embodiment of the present application provides a communication device, the communication device includes a processor, and when the processor calls a computer program in a memory, as described in any one of the first aspect to the sixth aspect The method is executed.
  • an embodiment of the present application provides a communication device, the communication device includes a processor and a memory, the memory is used to store computer-executable instructions; the processor is used to execute the computer-executable instructions stored in the memory, So that the communication device executes the method according to any one of the first aspect to the sixth aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor, a memory, and a transceiver.
  • the transceiver is used for receiving signals or sending signals; and the memory is used for storing program codes.
  • the processor is configured to call the program code from the memory to execute the method described in any one of the first aspect to the sixth aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor and an interface circuit.
  • the interface circuit is configured to receive code instructions and transmit them to the processor;
  • the code instructions are used to execute the method described in any one of the first aspect to the sixth aspect.
  • an embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium is used to store instructions, and when the instructions are executed, such as any one of the first aspect to the sixth aspect The method described in the item is implemented.
  • an embodiment of the present application provides a computer program product including instructions, which when executed, enable the method described in any one of the first aspect to the sixth aspect to be implemented.
  • FIG. 1 is a schematic diagram of the related configuration of the existing reference signal measurement and reporting used for beam training
  • Figure 2 is a schematic diagram of an existing SINR measurement
  • FIG. 3 is a schematic diagram of a communication system provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of a related configuration of reference signal measurement and reporting for beam training provided by an embodiment of this application;
  • FIG. 6 is a schematic diagram of SINR measurement provided by an embodiment of the application.
  • FIG. 7 is a schematic flowchart of another information reporting method provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of another related configuration of reference signal measurement and reporting for beam training provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of another SINR measurement provided by an embodiment of this application.
  • FIG. 10 is a schematic flowchart of another information reporting method provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of yet another related configuration of reference signal measurement and reporting for beam training provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of a channel measurement provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of a time unit provided by an embodiment of this application.
  • FIG. 14 is a schematic diagram of a time unit provided by an embodiment of this application.
  • FIG. 15 is a schematic diagram of another channel measurement provided by an embodiment of this application.
  • FIG. 16 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 17a is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 17b is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • At least one (item) refers to one or more
  • multiple refers to two or more than two
  • at least two (item) refers to two or three and three
  • “and/or” is used to describe the corresponding relationship of the corresponding objects. It means that there can be three kinds of relationships.
  • a and/or B can mean: there is only A, only B, and both A and B. In this case, A and B can be singular or plural.
  • the character “/” generally indicates that the corresponding objects before and after are in an “or” relationship.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, and c can be single or multiple.
  • 3GPP R16 introduced a beam management mechanism based on L1-SINR (layer 1-SINR, layer one signal-to-interference and noise ratio).
  • L1-SINR layer 1-SINR, layer one signal-to-interference and noise ratio
  • IMR interference measurement resource
  • CMR channel measurement resource
  • IMR resources are used for terminal equipment measurement for interference and noise measurement.
  • CMR resources are used for terminal equipment to perform channel measurement. IMR resources and CMR resources may be collectively referred to as CSI-RS resources.
  • the network device configures a report setting (ReportConfig#1) with the reported amount of CRI-SINR, and the report setting (ReportConfig#1) corresponds to two resource settings (ResourceConfig), which are respectively channel measurement resources Setting (ResourceConfig#1) and interference measurement resource setting (ResourceConfig#2).
  • ResourceConfig resource settings
  • Channel measurement resource setting its function is marked as channel measurement (resourcesForChannelMeasurement).
  • Interference measurement resource setting its function is marked as interference measurement (resourcesForInterferenceMeasurement).
  • FIG. 1 takes resource set #1 including CSI-RS resource #1 (CSI-RS resource #1) and CSI-RS resource #2 (CSI-RS resource #2) as an example.
  • FIG. 1 takes resource set #1 including CSI-RS resource #1 (CSI-RS resource #1) and CSI-RS resource #2 (CSI-RS resource #2) as an example.
  • CSI-RS resource #11 CSI-RS resource#11
  • CSI-RS resource #12 CSI-RS resource#12
  • CSI-RS resource#1 corresponds to CSI-RS resource#11
  • CSI-RS resource#2 corresponds to CSI-RS resource#12.
  • the resource configuration shown in Figure 1 may increase the overhead of CMR resources.
  • the transmission parameters corresponding to CSI-RS resource#1 and CSI-RS resource#2 are the same, and the transmission parameters corresponding to CSI-RS resource#1 and CSI-RS resource#2 are both beam a1.
  • the receiving parameters corresponding to CSI-RS resource#1 and CSI-RS resource#2 are also the same, and the receiving parameters corresponding to CSI-RS resource#1 and CSI-RS resource#2 are both beam b1.
  • the transmission parameter corresponding to CSI-RS resource#11 is beam a2
  • the transmission parameter corresponding to CSI-RS resource#12 is beam a3.
  • the network device uses beam a1 to transmit the reference signal CSI-RS1 in CSI-RS resource#1, and uses beam a2 to transmit the reference signal CSI-RS11 in CSI-RS resource#11.
  • the terminal device measures the signal strength 1 of the CSI-RS1 through the beam b1, and measures the signal strength 2 of the CSI-RS11 through the beam b1.
  • the terminal device determines the ratio of signal strength 1 to signal strength 2 as SINR1, and reports SINR1 to the network device.
  • the network device uses beam a1 to send the reference signal CSI-RS2 in CSI-RS resource#2, and uses beam a3 to send the reference signal CSI-RS12 in CSI-RS resource#12.
  • the terminal device measures the signal strength 3 of the CSI-RS2 through the beam b1, and measures the signal strength 4 of the CSI-RS12 through the beam b1.
  • the terminal device determines the ratio of signal strength 3 to signal strength 4 as SINR2, and reports SINR2 to the network device.
  • the resource configuration in FIG. 1 is used to measure the interference of the beam a2 and the beam a3 to the same pair of beams (beam a1 and beam b1).
  • the terminal device actually only needs to perform channel measurement once, that is, only one CMR resource needs to be configured to correspond to multiple IMR resources.
  • resource set #1 includes CSI-RS resource#1
  • resource set #2 includes CSI-RS resource#11 and CSI-RS resource#12.
  • CSI-RS resource#1 can correspond to CSI-RS resource#11 and CSI-RS resource#12 at the same time.
  • an embodiment of the present application provides an information reporting method.
  • the system architecture of the embodiments of the present application is first described below:
  • the method provided in the embodiments of this application can be applied to various communication systems, for example, it can be an Internet of Things (IoT) system, a narrowband Internet of Things (NB-IoT) system, and a long-term evolution (Internet of Things, NB-IoT) system.
  • IoT Internet of Things
  • NB-IoT narrowband Internet of Things
  • NB-IoT Internet of Things
  • LTE Long term evolution
  • 5G fifth generation
  • 5G 5G new radio
  • NR 5G new radio
  • FIG. 3 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application, and the solution in the present application can be applied to the communication system.
  • the communication system may include at least one network device and at least one terminal device.
  • FIG. 3 takes the communication system including one network device and one terminal device as an example. As shown in Figure 3, the network equipment and terminal equipment can communicate with each other through beams. Both network equipment and terminal equipment can generate multiple beams.
  • Fig. 3 takes the example that the network device can transmit beam a1 to beam a3, and the receiving beam of the terminal device includes beam b1 and beam b2.
  • the network device involved in the embodiments of the present application is an entity on the network side for transmitting or receiving signals, and can be used to convert received air frames and Internet protocol (IP) packets to each other, as A router between the terminal device and the rest of the access network, where the rest of the access network may include an IP network and so on.
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may be an evolved Node B (eNB or e-NodeB) in LTE, a new radio controller (NR controller), or a gNode B (gNB) in a 5G system.
  • eNB evolved Node B
  • NR controller new radio controller
  • gNode B gNode B
  • it can be a centralized unit, it can be a new wireless base station, it can be a remote radio module, it can be a micro base station, it can be a relay, or it can be a distributed unit, It may be a reception point (transmission reception point, TRP) or transmission point (transmission point, TP) or any other wireless access device, but the embodiment of the present application is not limited thereto.
  • TRP transmission reception point
  • TP transmission point
  • the terminal device involved in the embodiments of the present application is an entity on the user side for receiving or transmitting signals.
  • the terminal device may be a device that provides voice and/or data connectivity to the user, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • the terminal device can also be another processing device connected to the wireless modem.
  • the terminal device can communicate with a radio access network (RAN).
  • Terminal devices can also be called wireless terminals, subscriber units, subscriber stations, mobile stations, mobile stations, remote stations, and access points , Remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), user equipment (user device), or user equipment (user equipment, UE), etc.
  • the terminal equipment can be a mobile terminal, such as a mobile phone (or called a "cellular" phone) and a computer with a mobile terminal.
  • a mobile terminal such as a mobile phone (or called a "cellular" phone) and a computer with a mobile terminal.
  • the terminal device can be a portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile device, which is connected with wireless The access network exchanges language and/or data.
  • the terminal device may also be a personal communication service (PCS) phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), and other equipment.
  • Common terminal devices include, for example, mobile phones, tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, such as smart watches, smart bracelets, pedometers, etc., but this application is implemented Examples are not limited to this.
  • FIG. 4 is a schematic flowchart of an information reporting method provided by an embodiment of the present application.
  • the information reporting method includes the following steps 401 to 406.
  • the subject of the method execution shown in FIG. 4 may be a network device and a terminal device, or the subject may be a chip in a network device and a chip in a terminal device.
  • FIG. 4 uses the network device and the terminal device as the execution subject of the method as an example for description.
  • the execution subject of the information reporting method shown in the other figures of the embodiment of the present application is the same, and will not be repeated hereafter. among them:
  • the network device sends configuration information to the terminal device.
  • the configuration information is used to configure the first resource set and the second resource set, the resource corresponding to the resource identifier in the first resource set is used for channel measurement, and the resource corresponding to the resource identifier in the second resource set is used for interference Measured, the first resource set includes N first resource identities, the N first resources have the same identities, the second resource set includes N second resource identities, and the N first resource identities There is a one-to-one correspondence (or association) with the identifiers of the N second resources, and N is an integer greater than 1.
  • the first resource set includes N first resource identities, and the N first resources have the same identities. Therefore, it can be understood that the first resource set includes N identical first resources, or it can be understood that the first resource set includes one first resource.
  • the identifiers of the N second resources included in the second resource set may be the same or different. If the identifiers of the N second resources are the same, it means that the second resource set includes N same second resources. If the identifiers of the N second resources are not the same, it means that the second resource set includes N different second resources.
  • the first resource set is a resource set corresponding to resource set #1 (resourceset#1).
  • the second resource set is a resource set corresponding to resource set #2 (resourceset#2).
  • the first resource set includes two identical first resource identifiers, and the first resource identifier is CSI-RS resource#1.
  • the second resource set includes two second resource identifiers, which are CSI-RS resource#11 and CSI-RS resource#12, respectively.
  • the first CSI-RS resource#1 corresponds to CSI-RS resource#11
  • the second CSI-RS resource#1 corresponds to CSI-RS resource#12. That is, the first resource set includes two identical first resources, and the second resource set includes two different second resources.
  • the configuration information also includes a repetition factor.
  • the repetition factor is on, it means that the transmission parameters of the N first resources are the same transmission parameter.
  • the repetition factor is off, it means that the transmission parameters of the N first resources are not the same transmission parameter.
  • the repetition factor is repetition, and the repetition factor is on.
  • “Repetition: ON” means that the repetition factor is on.
  • “Repetition: OFF” means that the repetition factor is off.
  • the network device sends the first reference signal in the first resource.
  • the network device sends second reference signals in the N second resources respectively.
  • the network device may send the first reference signal in the first resource and the second reference signal in the N second resources respectively.
  • the terminal device measures the signal strength on the first resource to obtain the first signal strength.
  • the terminal device measures the signal strengths on the N second resources to obtain N second signal strengths.
  • the terminal device after receiving the configuration information sent by the network device, the terminal device can measure the first signal strength on the first resource and the signal strength on the N second resources to obtain N second signal strengths.
  • the receiving parameters of the N second resources are the same as the receiving parameters of the first resource. Or, it can be expressed as: the receiving parameters of the N second resources and the receiving parameters of the first resource are quasi-co-location (QCL). Or, it can be expressed as: the terminal device measures the signal strength on the N second resources through the receiving parameters of the first resource.
  • a measurement performed by a terminal device in a measurement result reporting period is taken as an example for description.
  • a measurement result reporting cycle is 10ms.
  • the period of CSI-RS resource#1 is 10ms.
  • the period of CSI-RS resource#11 is 10ms.
  • the period of CSI-RS resource#12 is 10ms.
  • the terminal device measures a total of 3 reference signals, which are the CSI-RS1 sent on the resource corresponding to CSI-RS resource#1, and the CSI-RS sent on the resource corresponding to CSI-RS resource#11.
  • the transmission parameter of CSI-RS resource#1 is beam a1
  • the transmission parameter of CSI-RS resource#11 is beam a2
  • the transmission parameter of CSI-RS resource#12 is beam a3.
  • the receiving parameter of CSI-RS resource#1 is beam b1.
  • the terminal device measures the signal strength of the CSI-RS1 on the resource corresponding to CSI-RS resource#1 through the beam b1 to obtain the first signal strength P1.
  • the terminal device measures the signal strength of the CSI-RS11 on the resource corresponding to CSI-RS resource#11 through the beam b1 to obtain the second signal strength P11.
  • the terminal device measures the signal strength of the CSI-RS12 on the resource corresponding to CSI-RS resource#12 through the beam b1 to obtain the second signal strength P12. It can be seen that in a measurement result reporting period, the terminal device only performs channel measurement once.
  • the signal strength may be signal received power or signal received energy.
  • the terminal device reports the first SINR to the network device based on the first signal strength and the N second signal strengths.
  • the terminal device may report the first SINR to the network device based on the first signal strength and the N second signal strengths.
  • the following describes two specific implementation manners for the terminal device to report the first SINR to the network device based on the first signal strength and the N second signal strengths:
  • Manner 1 The terminal device determines N SINRs, and the i-th SINR among the N SINRs is obtained based on the i-th second signal strength among the first signal strength and the N second signal strengths, and i is greater than 0 and less than or An integer equal to N; the terminal device reports one or more first SINRs among the N SINRs to the network device.
  • the terminal device measures the above-mentioned first signal strength P1, second signal strength P11, and second signal strength P12.
  • the terminal device can determine 2 SINRs.
  • SINR1 P1/(P11+N1).
  • SINR2 P1/(P12+N2).
  • N1 and N2 are noise power.
  • N1 and N2 can be the same or different.
  • the terminal device can determine how many SINRs to report according to the number of beam reports predefined by the protocol or configured by the network device. For example, if the number of beam reports predefined by the protocol or configured by the network device is 2, the terminal device may report SINR1 and SINR2 to the network device. Or, if the number of beam reports predefined by the protocol or configured by the network device is 1, the terminal device may report the maximum or minimum value of SINR1 and SINR2 to the network device.
  • the network device determines the interference situation of the sending parameter of one or more second resources to the sending parameter and/or the receiving parameter of the first resource. After the network device determines the interference of the transmission parameters of one or more second resources on the transmission parameters and/or reception parameters of the first resource, it can schedule the subsequent data transmissions to avoid beam synchronization with greater mutual interference. Transmission, or pairing with beams with less mutual interference for simultaneous transmission.
  • the network device may also instruct the terminal device to report the maximum SINR or the minimum SINR.
  • the network device may also instruct the terminal device to report a beam with greater mutual interference or a beam with less mutual interference, for example, instruct the terminal device to report an SINR that is greater than a preset threshold or less than a preset threshold.
  • the terminal device may also report to the network device the position of the identifier of the first resource corresponding to the one or more first SINRs in the first resource set. For example, if the terminal device reports SINR1 and SINR2 to the network device, the terminal device reports to the network device that the CSI-RS resource#1 corresponding to SINR1 is the first in the first resource set, and the CSI-RS resource#1 corresponding to SINR2 The position in the first resource set is the second.
  • the identifiers of the first resources in the first resource set are the same, the second resources used when calculating the SINR are different. Therefore, the identifiers of the first resources corresponding to the one or more first SINRs are reported in the first resource set by reporting to the network device. The position in the middle is conducive to the network device to accurately determine the second resource used when calculating the SINR.
  • the position of the first resource corresponding to the first SINR in the first resource set is indicated by X bits
  • the K is the number of different resource identifiers in the first resource set
  • N i is the number of times that the i-th resource identifier in the K resource identifiers is repeated. Is the total number of identifiers included in the first resource set. For example, in the configuration shown in Figure 5, K is 1. N i is 2. therefore, Is 2. Therefore, the position of the first resource corresponding to the first SINR in the first resource set is indicated by 1 bit.
  • bit value For example, if the bit value is 0, it means that the position of the first resource corresponding to the first SINR in the first resource set is the first; if the bit value is 1, it means that the first resource corresponding to the first SINR is in the first resource set.
  • the position in is second.
  • the first SINR is obtained based on the sum of N second signal strengths and the first signal strength.
  • the terminal device obtains only one SINR based on the first signal strength and the N second signal strengths.
  • the function of interference accumulation can be realized.
  • the interference measurement can be made more accurate.
  • the network device can simulate the transmission of multiple interference beams on multiple second resources, and the target terminal device can accumulate interference measured on multiple second resources.
  • supporting option 2a should not have RRC impact.
  • the base station can only configure one list containing N CMRs and another list containing N IMRs, and CMR and IMR There is a one-to-one correspondence.
  • this list of N CMRs can be configured with the same CSI-RS resource identifier, so that the terminal is implicitly notified that the option 2a method should be used when calculating interference.
  • the measurement results of N IMRs are accumulated.
  • Proposal X Support L1-SINR reporting of option 2a (that is, one CMR is associated with multiple IMRs) by configuring a list of CMR resources with the same CSI-RS resource ID. (Following previous RAN1 guidance, support of option 2a should not have RRC impact, which means that gNB can only configure a list of N CMR(s) and another list of N IMR(s), and: 1 they are mapped. a compensated solution, the list of CMR(s) can be configured with the same CSI-RS resource ID, which indicators implicitly that UE should adopt option 2a to calculate the interference of all based on the measurement (associated).
  • Proposal X Support option 2a (1 CMR can associates with more than 1 IMRs) for L1-SINR report, by configuring a list of CMRs with the same CSI-RS resource ID.)
  • the terminal device may not report the position of the first resource in the first resource set to the network device.
  • the terminal device may report to the network device the status of the first resource in the first resource set. position.
  • the position of the first resource in the first resource set is indicated by X bits
  • the K is the number of different resource identifiers in the first resource set.
  • the first resource set in FIG. 5 includes not only two CSI-RS resource#1 but also two CSI-RS resource#2, then K is 2 and X is 1.
  • the protocol is pre-defined or the network device may instruct the terminal device to report the first SINR using the above-mentioned method one or two.
  • the terminal device may report capability information, which indicates whether the terminal device supports the method described in the embodiment corresponding to FIG. 4.
  • the protocol is pre-defined or the network device can instruct the terminal device to execute the method described in the embodiment corresponding to FIG. 4.
  • the network device configures N identical first resource identities in the first resource set, and N first resource identities are configured in the second resource set.
  • the N first resource identities are the same as those of the first resource.
  • the identifiers of the N second resources are in one-to-one correspondence. Therefore, by implementing the method described in FIG. 4, it is beneficial to save resource overhead.
  • FIG. 7 is a schematic flowchart of another information reporting method provided by an embodiment of the present application.
  • the information reporting method includes the following steps 701 to 706.
  • the subject of the method execution shown in FIG. 7 may be a network device and a terminal device, or the subject may be a chip in a network device and a chip in a terminal device.
  • FIG. 7 uses network equipment and terminal equipment as the execution subject of the method as an example for description.
  • the execution subject of the information reporting method shown in the other figures of the embodiment of the present application is the same, and will not be repeated hereafter. among them:
  • the network device sends configuration information to the terminal device.
  • the configuration information is used to configure the first resource set and the second resource set, the resource corresponding to the resource identifier in the first resource set is used for channel measurement, and the resource corresponding to the resource identifier in the second resource set is used for interference Measured, the first resource set includes N first resource identities, the second resource set includes N second resource identities, the N second resource identities are the same, and the N first resource identities There is a one-to-one correspondence with the identifiers of the N second resources, and the N is an integer greater than 1.
  • the second resource set includes the identities of N second resources, and the identities of the N second resources are the same. Therefore, it can be understood that the second resource set includes N identical second resources, or it can be understood that the second resource set includes one second resource.
  • the identifiers of the N first resources included in the first resource set may be the same or different. If the identifiers of the N first resources are the same, it means that the first resource set includes N same first resources. If the identifiers of the N first resources are not the same, it means that the first resource set includes N different first resources.
  • the first resource set is a resource set corresponding to resource set #1 (resourceset#1).
  • the second resource set is a resource set corresponding to resource set #2 (resourceset#2).
  • the first resource set includes two first resource identifiers, which are CSI-RS resource#1 and CSI-RS resource#2, respectively.
  • the second resource set includes two identical second resource identifiers, and the identifier of the second resource is CSI-RS resource#11.
  • CSI-RS resource#1 corresponds to the first CSI-RS resource#11
  • CSI-RS resource#2 corresponds to the second CSI-RS resource#11. That is, the first resource set includes two different first resources, and the second resource set includes two identical second resources.
  • the configuration information also includes a repetition factor.
  • the repetition factor When the repetition factor is on, it means that the transmission parameters of the N first resources are the same transmission parameter.
  • the repetition factor is off, it means that the transmission parameters of the N first resources are not the same transmission parameter.
  • the repetition factor is repetition, and the repetition factor is off.
  • “Repetition: ON” means that the repetition factor is on.
  • “Repetition: OFF” means that the repetition factor is off.
  • the network device sends the first reference signal on the N first resources respectively.
  • the network device sends the second reference signal in the second resource.
  • the network device may respectively send the first reference signal on the N first resources and the second reference signal on the second resource.
  • the terminal device measures the signal strengths on the N first resources to obtain N first signal strengths.
  • the terminal device measures the signal strength on the second resource N times to obtain N second signal strengths.
  • the terminal device after receiving the configuration information sent by the network device, the terminal device can measure the signal strength on the N first resources, obtain the N first signal strengths, and perform N measurements on the signal strength on the second resource , Get N second signal strength.
  • the specific implementation manner for the terminal device to measure the signal strength on the N first resources is: measuring the signal strength on the N first resources through the reception parameters of the N first resources;
  • a specific implementation manner of performing N measurements of the signal strength on the second resource is: performing N measurements on the signal strength on the second resource through N reception parameters of the first resource.
  • each second resource among the N second resources and the first resource associated with it is QCL.
  • each of the N second resources has the same receiving parameter as the first resource associated with it.
  • the period of the second resource is 1/N times the period of the first resource.
  • the network device sends the reference signal N times in the second resource in a period of the first resource.
  • a measurement performed by a terminal device in a measurement result reporting period is taken as an example for description.
  • the transmission parameters of CSI-RS resource#1 and CSI-RS resource#2 are different, and the receiving parameters are also different.
  • the period of CSI-RS resource#1 and CSI-RS resource#2 is 10ms (milliseconds).
  • the reporting period of a measurement result is 10ms.
  • the period of CSI-RS resource#11 is 5ms.
  • the terminal device measures the signal strength once on the resource corresponding to CSI-RS resource#1, and once on the resource corresponding to CSI-RS resource#2.
  • the terminal device measures the signal strength twice on the resource corresponding to CSI-RS resource#11 in a measurement result reporting period.
  • the transmission parameter of CSI-RS resource#1 is beam a1
  • the transmission parameter of CSI-RS resource#2 is beam a2
  • the transmission parameter of CSI-RS resource#11 is beam a3.
  • the receiving parameter of CSI-RS resource#1 is beam b1.
  • the terminal device measures the signal strength of the CSI-RS1 on the resource corresponding to CSI-RS resource#1 through the beam b1 to obtain the first signal strength P1.
  • the terminal device measures the signal strength of the CSI-RS2 on the resource corresponding to CSI-RS resource#2 through the beam b2 to obtain the first signal strength P2.
  • the network device transmits CSI-RS11 twice in CSI-RS resource#11 through beam a3 within 10ms.
  • the terminal device measures the signal strength of the CSI-RS11 sent for the first time through the beam b1 to obtain the second signal strength P11.
  • the terminal device measures the signal strength of the CSI-RS11 sent for the second time through the beam b2 to obtain the second signal strength P12. It can be seen that if the period of the second resource is the same as the period of the first resource, it takes 20 ms to measure the signal strength of the CSI-RS 11 twice. The reporting period of a measurement result will become 20ms. Therefore, by setting the period of the second resource to 1/N times the period of the first resource, it is beneficial to reduce the duration of the measurement result reporting period and to increase the speed of beam training.
  • the period of the second resource is the same as the period of the first resource, and the time domain range for measuring the strength of N second signals is less than or equal to the time length of one time unit, that is, measuring N second signals.
  • the total duration of the signal strength is less than or equal to the duration of one time unit.
  • one time unit is an orthogonal frequency division multiplexing (Orthogonal frequency divided multiplexing, OFDM) symbol.
  • one time unit may also be two OFDM symbols, three OFDM symbols, or four OFDM symbols.
  • the time unit may also be one time slot, one subframe, one millisecond, and so on.
  • the time unit may also be two time slots, two subframes, two milliseconds, and so on.
  • the period of CSI-RS resource#1 and CSI-RS resource#2 is 10ms (milliseconds).
  • the reporting period of a measurement result is 10ms.
  • the period of CSI-RS resource#11 is 10ms.
  • the terminal device measures the signal strength of the CSI-RS1 on the resource corresponding to CSI-RS resource#1 through the beam b1 to obtain the first signal strength P1.
  • the terminal device measures the signal strength of the CSI-RS2 on the resource corresponding to CSI-RS resource#2 through the beam b2 to obtain the first signal strength P2.
  • the network device transmits the CSI-RS11 once on the resource corresponding to CSI-RS resource#11 through the beam a3 within 10ms.
  • the duration of the network device sending CSI-RS11 once is equal to one OFDM symbol.
  • the terminal device performs a total of two measurements on the signal strength of the CSI-RS11. In the first measurement, the terminal device measures the signal strength of the CSI-RS11 through the beam b1 to obtain the second signal strength P11. In the second measurement, the terminal device switches to beam b2 to measure the signal strength of the CSI-RS11, and obtain the second signal strength P12.
  • the time domain range for each measurement of the second signal strength is less than or equal to N IFFT /NN CP /N, where N CP is the time length of the cyclic prefix, and N IFFT is the time of one time unit. length.
  • measuring the N second signal strengths is performed after the cyclic prefix.
  • the terminal device reports one or more first SINRs to the network device.
  • the first SINR is the SINR in the N SINRs obtained based on the N first signal intensities and the N second signal intensities.
  • the terminal device measures the first signal strength P1, the first signal strength P2, the second signal strength P11, and the second signal strength P12.
  • the terminal device can determine 2 SINRs.
  • SINR1 P1/(P11+N1).
  • SINR2 P2/(P12+N2).
  • N1 and N2 are noise power.
  • N1 and N2 can be the same or different.
  • the terminal device can report SINR1 and SINR2 to the network device.
  • the terminal device may report the maximum value or the minimum value of SINR1 and SINR2 to the network device.
  • the terminal device reports a first SINR to the network device, where the first SINR is obtained based on the sum of N first signal strengths and the sum of N second signal strengths.
  • the first SINR (P1+P2)/(P11+P12+N1).
  • the terminal device determines the SINR based on the first signal strength and the second signal strength and the scaling factor.
  • the scaling factor is related to N.
  • the scaling factor is equal to N or an integer multiple of N.
  • the terminal device measures the first signal strength P1, the first signal strength P2, the second signal strength P11, and the second signal strength P12.
  • SINR1 0.5*P1/(P11+N1)
  • SINR2 0.5*P2/(P12+N2).
  • the CSI processing unit (CSI processing unit, CPU) required for the terminal device to measure the first signal strength once in the time length of one time unit is 1. If the terminal device needs to measure the second signal strength N times in the length of time measured in a time unit, the CSI processing unit (CPU) that the terminal device needs to process the second resource is W, and W is a value greater than 1. A number less than or equal to N.
  • the signal strength on the second resource may also be measured once to obtain a second signal strength.
  • the first SINR reported to the network device is the SINR among the N SINRs obtained based on the N first signal strengths and one second signal strength.
  • the receiving parameters of CSI-RS resource#1 and CSI-RS resource#2 in FIG. 8 are the same, and both are beam b1.
  • the terminal device measures the signal strength of the CSI-RS1 on the resource corresponding to CSI-RS resource#1 through the beam b1 to obtain the first signal strength P1.
  • the terminal device measures the signal strength of the CSI-RS2 on the resource corresponding to CSI-RS resource#2 through the beam b1 to obtain the first signal strength P2.
  • the terminal device measures the signal strength of the CSI-RS11 on the resource corresponding to CSI-RS resource#11 through the beam b1 to obtain the second signal strength P11.
  • the terminal device reports one or more of SINR1 and SINR2 to the network device.
  • the terminal device measures the signal strength on the second resource Z times to obtain Z second signal strengths.
  • Z is the number of different receiving parameters in the first resource set.
  • the period of the second resource is 1/Z times the period of the first resource. Where Z is the number of different receiving parameters in the first resource set.
  • the terminal device may report capability information, which indicates whether the terminal device supports the method described in the embodiment corresponding to FIG. 7.
  • the protocol is pre-defined or the network device can instruct the terminal device to execute the method described in the embodiment corresponding to FIG. 7.
  • the network device configures N first resource identities in the first resource set, and N identical first resource identities are configured in the second resource set.
  • the N first resource identities are the same as those of the first resource.
  • the identifiers of the N second resources correspond one-to-one. Therefore, by implementing the method described in FIG. 7, it is beneficial to save resource overhead.
  • FIG. 10 is a schematic flowchart of an information reporting method provided by an embodiment of the present application.
  • the information reporting method includes the following steps 1001 to 1004.
  • the method execution subject shown in FIG. 10 may be a network device and a terminal device, or the subject may be a chip in a network device and a chip in a terminal device.
  • FIG. 10 uses the network device and the terminal device as the execution subject of the method as an example for description.
  • the execution subject of the information reporting method shown in the other figures of the embodiment of the present application is the same, and will not be repeated hereafter. among them:
  • a network device sends configuration information to a terminal device.
  • the configuration information is used to configure a first resource set, the resource corresponding to the resource identifier in the first resource set is used for channel measurement, the first resource set includes the identifiers of N first resources, and the N first resource sets The identifiers of the resources are the same, and the N is an integer greater than 1. Because the first resource set includes N first resource identities, and the N first resources have the same identities. Therefore, it can be understood that the first resource set includes N identical first resources, or it can be understood that the first resource set includes one first resource.
  • the first resource set is a resource set corresponding to resource set #1 (resourceset#1).
  • the first resource set includes two identical first resource identifiers, and the first resource identifier is CSI-RS resource#1.
  • the configuration information further includes a repetition factor.
  • the repetition factor When the repetition factor is enabled, it indicates that the transmission parameters of the N first resources are the same transmission parameter.
  • the repetition factor is off, it means that the transmission parameters of the N first resources are not the same transmission parameter.
  • the repetition factor is repetition.
  • “Repetition: ON” means that the repetition factor is on.
  • “Repetition: OFF” means that the repetition factor is off.
  • Figure 11 takes the repetition factor as an example.
  • the network device sends a reference signal in the first resource.
  • the network device after the network device sends the configuration information to the terminal device, the network device sends the reference signal in the first resource.
  • the terminal device measures the signal strength on the first resource N times to obtain N signal strengths.
  • the terminal device after receiving the configuration information, the terminal device measures the signal strength on the first resource N times to obtain N signal strengths.
  • the specific implementation manners for the terminal device to measure the signal strength on the first resource N times include the following two manners:
  • Manner 1 The network device uses one transmission parameter to transmit the reference signal once or N times on the first resource, and the terminal device uses N different reception parameters to measure the signal strength on the first resource N times.
  • the transmission parameters of the two CSI-RS resource#1 are the transmission beam a1.
  • the network device transmits the CSI-RS1 once or twice in a measurement result reporting period through the beam a1.
  • CSI-RS resource#1 ranked first corresponds to receiving beam b1, and CSI-RS resource#1 ranked second corresponds to receiving beam b2.
  • the terminal device performs the first measurement on the CSI-RS1 on the resource corresponding to CSI-RS resource#1 through the receiving beam b1, and obtains the signal strength P1.
  • the terminal device performs a second measurement on the CSI-RS1 on the resource corresponding to CSI-RS resource#1 through the receiving beam b2 to obtain the signal strength P2.
  • the time domain range for the terminal device to perform N measurements is less than or equal to the time length of one time unit, that is, the total time for the terminal device to perform N measurements is less than or equal to the time length of one time unit.
  • one time unit is one OFDM symbol.
  • one time unit may also be two OFDM symbols, three OFDM symbols, or four OFDM symbols.
  • the time unit may also be one time slot, one subframe, one millisecond, and so on.
  • the time unit may also be two time slots, two subframes, two milliseconds, and so on.
  • the network device may send CSI-RS1 once in a measurement result reporting period.
  • the duration of the network device sending CSI-RS1 once is equal to one OFDM.
  • the terminal equipment measures the signal strength of CSI-RS1 twice in total.
  • the terminal device measures the signal strength of the CSI-RS1 through the beam b1 to obtain the signal strength P1.
  • the terminal device switches to beam b2 to measure the signal strength of CSI-RS1 to obtain signal strength P2.
  • the time domain measurement range of each of the N measurements is less than or equal to N IFFT /N, where N IFFT is the time length of a time unit.
  • the time-domain measurement range of each of the N measurements is less than or equal to N IFFT /NN CP /N, where N CP is the time length of the cyclic prefix, and N IFFT is the time length of a time unit .
  • the cyclic prefix is a guard interval and cannot be used to send reference signals. Therefore, it should be ensured that the time domain measurement range of each of the N measurements is less than or equal to N IFFT /NN CP /N.
  • N measurements are performed after the cyclic prefix.
  • N measurements are performed after the cyclic prefix.
  • FIG. 13 there may be one cyclic prefix in one time unit, and N measurements are performed after the cyclic prefix.
  • FIG. 14 there may be multiple cyclic prefixes in one time unit, and each of the N measurements is performed after one cyclic prefix.
  • Manner 2 The network device uses N different sending parameters to send the reference signal N times on the first resource.
  • the terminal device may use the same receiving parameter to measure the signal strength on the first resource N times.
  • CSI-RS resource#1 ranked first corresponds to transmission beam a1
  • CSI-RS resource#1 ranked second corresponds to transmission beam a2.
  • the receiving parameters of the two CSI-RS resource#1 are the receiving beam b1.
  • the terminal device performs the first measurement on the CSI-RS1 sent by the beam a1 by receiving the beam b1, and obtains the signal strength P1.
  • the terminal device performs a second measurement on the CSI-RS1 sent by the beam a2 by receiving the beam b1 to obtain the signal strength P2.
  • the time domain range for the network device to send N reference signals through N sending parameters is less than or equal to the time length of one time unit, that is, the total time for the network device to send N reference signals through N sending parameters.
  • the time domain range for the terminal device to perform N measurements is less than or equal to the time length of one time unit, that is, the total time for the terminal device to perform N measurements is less than or equal to the time length of one time unit.
  • one time unit is one OFDM symbol.
  • one time unit may also be two OFDM symbols, three OFDM symbols, or four OFDM symbols.
  • the network device transmits CSI-RS1 twice in total.
  • the network device transmits the CSI-RS1 through the beam a1.
  • the network device switches to beam a2 to transmit CSI-RS1.
  • the terminal equipment measures the signal strength of CSI-RS1 twice in total.
  • the terminal device measures the signal strength of the CSI-RS1 sent by the beam a1 through the beam b1 to obtain the signal strength P1.
  • the terminal device measures the signal strength of the CSI-RS1 through the beam b2 to obtain the signal strength P2.
  • the time domain range of the reference signal sent by the network device through N sending parameters each time is less than or equal to N IFFT /N, where N IFFT is the time length of one time unit.
  • N IFFT is the time length of one time unit.
  • the time-domain measurement range of each measurement is less than or equal to N IFFT /N.
  • the time domain range of the reference signal sent by the network device through N sending parameters each time is less than or equal to N IFFT /NN CP /N, where N CP is the time length of the cyclic prefix, and N IFFT is a The time length of the time unit.
  • the time-domain measurement range of each measurement is less than or equal to N IFFT /NN CP /N.
  • the network device sends the reference signal N times through the N sending parameters and executes it after the cyclic prefix.
  • N measurements of the terminal device are performed after the cyclic prefix.
  • the protocol is pre-defined or the network device can also instruct the terminal device to perform N measurements in a time length less than or equal to one time unit.
  • the method includes any one of the following methods: based on interleaving Frequency division multiple access (Interleaved Frequency Division Multiple Access, IFDMA) signal transmission and/or reception method, expanded subcarrier spacing (larger subcarrier spacing) signal transmission and/or reception method, based on discrete Fourier transform (Discrete Fourier Transform) Transform, DFT) signal sending and/or receiving method.
  • IFDMA Interleaved Frequency Division Multiple Access
  • IFDMA Interleaved Frequency Division Multiple Access
  • expanded subcarrier spacing larger subcarrier spacing
  • DFT discrete Fourier transform
  • the terminal device reports the first signal strength among the N signal strengths to the network device.
  • the terminal device after the terminal device measures the N signal strengths, it reports the first signal strength of the N signal strengths to the network device.
  • the first signal strength can be the minimum value or the maximum value.
  • the terminal device when the repetition factor in the configuration information is off, the terminal device also reports to the network device the position of the identifier of the first resource corresponding to the first signal strength in the first resource set. This is beneficial for the network device to determine the sending parameter used to measure the first signal strength.
  • the terminal device may report capability information, which indicates whether the terminal device supports the method described in the embodiment corresponding to FIG. 10.
  • the protocol pre-defined or the network device can instruct the terminal device to execute the method described in the embodiment corresponding to FIG. 10.
  • this application provides a method for uplink beam training.
  • the method includes: sending by a network device, the configuration information is used to configure a first resource set, and a resource corresponding to a resource identifier in the first resource set
  • the first resource set includes N first resource identities, the N first resources have the same identities, and N is an integer greater than 1.
  • the terminal device After receiving the configuration information, the terminal device sends the reference signal in the first resource. After the network device sends the configuration information, the reference signal is measured in the first resource.
  • the terminal device sending the reference signal in the first resource includes: sending the reference signal N times through N sending parameters, or sending the reference signal N times through one sending parameter.
  • the time domain range in which the terminal device sends the reference signal N times is less than or equal to the time length of one time unit.
  • the network device measuring the reference signal in the first resource includes: measuring the reference signal N times by using N receiving parameters, or measuring the reference signal N times by using one receiving parameter.
  • the time domain range of the reference signal measured by the network device N times is less than or equal to the time length of one time unit.
  • one time unit is one OFDM symbol.
  • one time unit may also be two OFDM symbols, three OFDM symbols, or four OFDM symbols.
  • the time unit may also be one time slot, one subframe, one millisecond, and so on.
  • the time unit may also be two time slots, two subframes, two milliseconds, and so on.
  • FIG. 16 shows a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device shown in FIG. 16 may be used to perform part or all of the functions of the terminal device in the method embodiment described in FIG. 4.
  • the device may be a terminal device, a device in a terminal device, or a device that can be matched and used with the terminal device.
  • the communication device may also be a chip system.
  • the communication device shown in FIG. 16 may include a receiving unit 1601 and a sending unit 1602.
  • the receiving unit 1601 and the sending unit 1602 may also be integrated into one unit, and this unit may be referred to as a transceiver unit, which is the same below, and will not be described in detail below.
  • the communication device may further include a processing unit for performing data processing.
  • FIG. 16 takes the communication device including a receiving unit 1601 and a sending unit 1602 as an example for description. The same applies below, and the details are not repeated below. among them:
  • the receiving unit 1601 is configured to receive configuration information sent by a network device, the configuration information is used to configure the first resource set and the second resource set, the resource corresponding to the resource identifier in the first resource set is used for channel measurement, and the second resource set is used for channel measurement.
  • the resource corresponding to the resource identifier of is used for interference measurement.
  • the first resource set includes N identifiers of the first resource, and the N identifiers of the first resources are the same.
  • the second resource set includes N identifiers of the second resource, and N The identifier of the first resource corresponds to the identifier of the N second resources one-to-one, and N is an integer greater than 1.
  • the receiving unit 1601 is also used to measure the signal strength on the first resource to obtain the first signal strength; the receiving unit 1601, It is also used to measure the signal strength on the N second resources to obtain N second signal strengths; the sending unit 1602 is used to report the first signal to interference noise ratio to the network device based on the first signal strength and the N second signal strengths SINR.
  • the receiving parameters of the N second resources are the same as the receiving parameters of the first resource.
  • the sending unit 1602 is specifically configured to: determine N SINRs, where the i-th SINR among the N SINRs is obtained based on the i-th second signal strength among the first signal strength and the N second signal strengths , I is an integer greater than 0 and less than or equal to N; one or more first SINRs among the N SINRs are reported to the network device.
  • the sending unit 1602 is further configured to report the position of the identifier of the first resource corresponding to the one or more first SINRs in the first resource set to the network device.
  • the first SINR is obtained based on the sum of the N second signal strengths and the first signal strength.
  • the first resource set further includes a resource identifier that is different from the identifier of the first resource
  • the sending unit 1602 is further configured to report the position of the identifier of the first resource in the first resource set to the network device.
  • FIG. 16 shows a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device shown in FIG. 16 may be used to perform part or all of the functions of the network device in the method embodiment described in FIG. 4.
  • the device can be a network device, a device in a network device, or a device that can be matched and used with the network device.
  • the communication device may also be a chip system.
  • the communication device shown in FIG. 16 may include a receiving unit 1601 and a sending unit 1602. among them:
  • the sending unit 1602 is configured to send configuration information to the terminal device, the configuration information is used to configure the first resource set and the second resource set, the resource corresponding to the resource identifier in the first resource set is used for channel measurement, and the resource in the second resource set is used for channel measurement.
  • the resource corresponding to the resource identifier is used for interference measurement.
  • the first resource set includes the identifiers of N first resources, the identifiers of the N first resources are the same, and the second resource set includes the identifiers of N second resources.
  • the identifier of a resource corresponds to the identifiers of the N second resources in a one-to-one relationship, and N is an integer greater than 1.
  • the sending unit 1602 is also used to send the first reference signal in the first resource; the sending unit 1602 is also used to send the first reference signal to the N
  • the second resources respectively send second reference signals;
  • the receiving unit 1601 is configured to receive the first signal-to-interference-to-noise ratio SINR reported by the terminal device.
  • the receiving unit 1601 is further configured to receive the position of the identifier of the first resource corresponding to the one or more first SINRs reported by the terminal device in the first resource set.
  • the first resource set further includes a resource identifier that is different from the identifier of the first resource
  • the receiving unit 1601 is further configured to receive the identifier of the first resource reported by the terminal device in the first resource set. position.
  • FIG. 16 shows a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device shown in FIG. 16 may be used to perform part or all of the functions of the terminal device in the method embodiment described in FIG. 7 above.
  • the device may be a terminal device, a device in a terminal device, or a device that can be matched and used with the terminal device.
  • the communication device may also be a chip system.
  • the communication device shown in FIG. 16 may include a receiving unit 1601 and a sending unit 1602. among them:
  • the receiving unit 1601 is configured to receive configuration information sent by a network device, the configuration information is used to configure the first resource set and the second resource set, the resource corresponding to the resource identifier in the first resource set is used for channel measurement, and the second resource set is used for channel measurement.
  • the resource corresponding to the resource identifier of is used for interference measurement
  • the first resource set includes N identifiers of the first resource
  • the second resource set includes N identifiers of the second resource
  • the identifiers of the N second resources are the same
  • N The identifiers of the first resource correspond to the identifiers of the N second resources one-to-one, and N is an integer greater than 1.
  • the receiving unit 1601 is also used to measure the signal strengths on the N first resources to obtain N first signal strengths;
  • the receiving unit 1601 is further configured to perform N measurements on the signal strength on the second resource to obtain N second signal strengths;
  • the sending unit 1602 is configured to report one or more first signal-to-interference and noise ratio SINRs to the network device,
  • the first SINR is the SINR in the N SINRs obtained based on the N first signal intensities and the N second signal intensities.
  • the way for the receiving unit 1601 to measure the signal strengths on the N first resources is specifically: measuring the signal strengths on the N first resources through the receiving parameters of the N first resources; the receiving unit 1601 pairs
  • the manner of measuring the signal strength on the second resource N times is specifically: measuring the signal strength on the second resource N times through the receiving parameters of the N first resources.
  • the period of the second resource is 1/N times the period of the first resource.
  • the period of the second resource is the same as the period of the first resource, and the time domain range for measuring the strength of the N second signals is less than or equal to the time length of one time unit.
  • FIG. 16 shows a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device shown in FIG. 16 may be used to perform part or all of the functions of the network device in the method embodiment described in FIG. 7.
  • the device can be a network device, a device in a network device, or a device that can be matched and used with the network device.
  • the communication device may also be a chip system.
  • the communication device shown in FIG. 16 may include a receiving unit 1601 and a sending unit 1602. among them:
  • the sending unit 1602 is configured to send configuration information to the terminal device, the configuration information is used to configure the first resource set and the second resource set, the resource corresponding to the resource identifier in the first resource set is used for channel measurement, and the resource in the second resource set is used for channel measurement.
  • the resource corresponding to the resource identifier is used for interference measurement.
  • the first resource set includes N first resource identifiers
  • the second resource set includes N second resource identifiers
  • the N second resource identifiers are the same.
  • the identifiers of a resource correspond to the identifiers of the N second resources in a one-to-one relationship, and N is an integer greater than 1.
  • the sending unit 1602 is further configured to send the first reference signal on the N first resources respectively; the sending unit 1602 is also configured to The second reference signal is sent in the second resource; the receiving unit 1601 is configured to receive one or more first signal-to-interference and noise ratio SINRs reported by the terminal device.
  • the period of the second resource is 1/N times the period of the first resource.
  • the period of the second resource is the same as the period of the first resource.
  • FIG. 16 shows a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device shown in FIG. 16 may be used to perform part or all of the functions of the terminal device in the method embodiment described in FIG. 10.
  • the device may be a terminal device, a device in a terminal device, or a device that can be matched and used with the terminal device.
  • the communication device may also be a chip system.
  • the communication device shown in FIG. 16 may include a receiving unit 1601 and a sending unit 1602. among them:
  • the receiving unit 1601 is configured to receive configuration information sent by a network device, the configuration information is used to configure a first resource set, the resource corresponding to the resource identifier in the first resource set is used for channel measurement, and the first resource set includes N first resource sets.
  • the identifier of the resource, the identifiers of the N first resources are the same, and N is an integer greater than 1.
  • the receiving unit 1601 is also used to measure the signal strength on the first resource N times to obtain N signal strengths; the sending unit 1602, It is used to report the first signal strength among the N signal strengths to the network device.
  • the time domain range of N measurements is less than or equal to the time length of one time unit.
  • the time domain measurement range of each of the N measurements is less than or equal to N IFFT /N, where N IFFT is the time length of a time unit.
  • the time-domain measurement range of each of the N measurements is less than or equal to N IFFT /NN CP /N, where N CP is the time length of the cyclic prefix, and N IFFT is the time length of a time unit .
  • N measurements are performed after the cyclic prefix.
  • the configuration information also includes a repetition factor, and the repetition factor is off,
  • the sending unit 1602 is further configured to report the position of the identifier of the first resource corresponding to the first signal strength in the first resource set to the network device.
  • FIG. 16 shows a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device shown in FIG. 16 may be used to perform part or all of the functions of the network device in the method embodiment described in FIG. 10.
  • the device can be a network device, a device in a network device, or a device that can be matched and used with the network device.
  • the communication device may also be a chip system.
  • the communication device shown in FIG. 16 may include a receiving unit 1601 and a sending unit 1602. among them:
  • the sending unit 1602 is configured to send configuration information to the terminal device, the configuration information is used to configure a first resource set, the resource corresponding to the resource identifier in the first resource set is used for channel measurement, and the first resource set includes N first resources The identifiers of the N first resources are the same, and N is an integer greater than 1.
  • the sending unit 1602 is also used to send a reference signal in the first resource; the receiving unit 1601 is used to receive the N signal strengths reported by the terminal equipment The first signal strength.
  • the configuration information also includes a repetition factor, the repetition factor is off, and the sending unit 1602 sends the reference signal in the first resource specifically as follows: sending the reference signal N times in the first resource through N sending parameters .
  • the time domain range for sending N reference signals through N sending parameters is less than or equal to the time length of one time unit.
  • the time domain range of the reference signal sent each time is less than or equal to N IFFT /N, where N IFFT is the time length of a time unit.
  • the time domain range of the reference signal sent each time is less than or equal to N IFFT /NN CP /N, where N CP is the time length of the cyclic prefix, and N IFFT is the time length of a time unit.
  • sending the reference signal N times through the N sending parameters is performed after the cyclic prefix.
  • the configuration information further includes a repetition factor, the repetition factor is off, and the receiving unit 1601 is further configured to receive the identifier of the first resource corresponding to the first signal strength reported by the terminal device in the first resource set s position.
  • a communication device 170 provided by an embodiment of this application is used to implement the function of the terminal device in the foregoing method.
  • the device may be a terminal device or a device for terminal devices.
  • the device used for the terminal device may be a chip system or a chip in the terminal device. Among them, the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the communication device 170 is used to implement the function of the communication device in the foregoing method.
  • the device may be a communication device or a device for a communication device.
  • the device used for the communication device may be a chip system or a chip in the communication device. Among them, the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the communication device 170 includes at least one processor 1717, which is configured to implement the data processing function of the terminal device or the network device in the method provided in the embodiment of the present application.
  • the apparatus 170 may further include a communication interface 1710, which is used to implement the receiving and sending operations of the terminal device or the network device in the method provided in the embodiment of the present application.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces, which are used to communicate with other devices through a transmission medium.
  • the communication interface 1710 is used for the device in the device 170 to communicate with other devices.
  • the processor 1717 uses the communication interface 1710 to send and receive data, and is used to implement the method described in the foregoing method embodiment.
  • the device 170 may also include at least one memory 1730 for storing program instructions and/or data.
  • the memory 1730 and the processor 1717 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1717 may operate in cooperation with the memory 1730.
  • the processor 1717 may execute program instructions stored in the memory 1730. At least one of the at least one memory may be included in the processor.
  • the embodiment of the present application does not limit the specific connection medium between the communication interface 1710, the processor 1717, and the memory 1730.
  • the memory 1730, the communication interface 1717, and the communication interface 1710 are connected by a bus 1740.
  • the bus is represented by a thick line in FIG. 17a.
  • the connection mode between other components is only for schematic illustration. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only a thick line is used in FIG. 17a, but it does not mean that there is only one bus or one type of bus.
  • the communication interface 1710 may output or receive a baseband signal.
  • the output or reception of the communication interface 1710 may be a radio frequency signal.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or Perform the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • FIG. 17b is a schematic structural diagram of another terminal device 1700 provided in an embodiment of the application.
  • the terminal device can perform the operations performed by the terminal device in the foregoing method embodiment.
  • FIG. 17b only shows the main components of the terminal device.
  • the terminal device 1700 includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program. For example, it is used to support the terminal device to execute the description in Figure 4, Figure 7, and Figure 10. Process.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the terminal device 1700 may also include input and output devices, such as a touch screen, a display screen, a keyboard, etc., which are mainly used to receive data input by the user and output data to the user. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor can read the software program in the storage unit, interpret and execute the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 17b shows only one memory and a processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit (CPU).
  • the baseband processor is mainly used to process communication protocols and communication data, and the CPU is mainly used to process the entire terminal.
  • the equipment controls, executes the software program, and processes the data of the software program.
  • the processor may also be a network processor (network processor, NP) or a combination of CPU and NP.
  • the processor may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • the memory may include volatile memory (volatile memory), such as random-access memory (RAM); the memory may also include non-volatile memory (non-volatile memory), such as flash memory (flash memory) , Hard disk drive (HDD) or solid-state drive (solid-state drive, SSD); the memory may also include a combination of the above types of memory.
  • the antenna and radio frequency circuit with the transceiver function can be regarded as the communication unit 1701 of the terminal device 1700
  • the processor with the processing function can be regarded as the communication unit 1701 of the terminal device 1700.
  • the communication unit 1701 may also be referred to as a transceiver, a transceiver, a transceiving device, a transceiving unit, etc., for implementing transceiving functions.
  • the device for implementing the receiving function in the communication unit 1701 can be regarded as the receiving unit, and the device for implementing the sending function in the communication unit 1701 as the sending unit, that is, the communication unit 1701 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the communication unit 1701 and the processing unit 1702 may be integrated into one device or separated into different devices.
  • the processor and the memory may also be integrated into one device or separate into different devices.
  • the communication unit 1701 can be used to perform the transceiving operation of the terminal device in the foregoing method embodiment.
  • the processing unit 1702 may be used to perform data processing operations of the terminal device in the foregoing method embodiment.
  • the embodiment of the present invention also provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when it runs on a processor, the method flow of the foregoing method embodiment is realized.
  • the embodiment of the present invention also provides a computer program product.
  • the computer program product runs on a processor, the method flow of the above method embodiment is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信息上报方法,该方法包括:接收网络设备发送的配置信息,该配置信息用于配置第一资源集合和第二资源集合,该第一资源集合中的资源标识对应的资源用于信道测量,该第二资源集合中的资源标识对应的资源用于干扰测量,该第一资源集合中包括N个第一资源的标识,该N个第一资源的标识相同,第二资源集合中包括N个第二资源的标识,该N个第一资源的标识与该N个第二资源的标识一一对应,N为大于1的整数;测量第一资源上的信号强度,得到第一信号强度;测量N个第二资源上的信号强度,得到N个第二信号强度;基于第一信号强度和N个第二信号强度向网络设备上报第一信干噪比SINR。实施本申请的方案,有利于节省资源的开销。

Description

一种信息上报方法及装置 技术领域
本申请涉及通信技术领域,特别涉及一种信息上报方法及装置。
背景技术
在高频通信***中,为了克服路损,网络和终端通常都会使用具有方向性的高增益的天线阵列形成模拟波束来进行通信。一般来说,模拟波束是具有方向性的,可以用主瓣方向和3dB波束宽度来描述一个模拟波束形状(beam pattern)。其中,波束宽度越窄,天线增益越大。基于模拟波束,网络设备和终端设备可以朝向特定的方向发送信号和接收信号。以下行通信为例,网络设备朝向特定方向发送信号,终端设备朝向该特定方向接收信号,当发送信号的方向和接收信号的方向对齐时,该网络设备和该终端设备可实现正常通信。为了实现波束对齐(即发送端和接收端的波束方向对齐),需要进行波束训练。
在现有协议中,下行波束训练是通过网络设备发送一个或多个参考信号,终端设备对网络设备发送的参考信号进行测量,并按要求将测量结果上报来实现的。下行波束训练可以完成波束选择,波束质量测量和上报,波束跟踪等功能。下行波束训练的结果可以用于网络设备进行波束指示。
3GPP Release 16(R16)中,为了实现基于L1(layer 1,层一,即物理层)-SINR(后文中简写为SINR)的波束训练,支持网络设备配置一个或多个用于信号测量的参考信号资源集合(channel measurement resource set,CMR set),与一个或多个用于干扰测量的参考信号资源集合(interference measurement resource set,IMR set)。并且,CMR set中的参考信号资源(CMR)与IMR set中的参考信号资源(IMR)是一对一对应的。例如,CMR1对应IMR1,CMR2对应IMR2。这样的资源对应方式,可能会增加资源的开销。
发明内容
本申请提供了一种信息上报方法及装置,有利于减小资源开销。
第一方面,本申请提供了一种信息上报方法,该方法包括:接收网络设备发送的配置信息,该配置信息用于配置第一资源集合和第二资源集合,该第一资源集合中的资源标识对应的资源用于信道测量,该第二资源集合中的资源标识对应的资源用于干扰测量,该第一资源集合中包括N个第一资源的标识,该N个第一资源的标识相同,第二资源集合中包括N个第二资源的标识,该N个第一资源的标识与该N个第二资源的标识一一对应,N为大于1的整数;测量第一资源上的信号强度,得到第一信号强度;测量N个第二资源上的信号强度,得到N个第二信号强度;基于第一信号强度和N个第二信号强度向网络设备上报第一信干噪比SINR。基于第一方面所描述的方法,有利于节省资源的开销。
在一种可能的实现中,N个第二资源的接收参数与第一资源的接收参数相同。或者,可以表达为:N个第二资源的接收参数与第一资源的接收参数是准共址(quasi-co-location,QCL)的。或者,可以表达为:终端设备通过第一资源的接收参数测量N个第二资源上的信号强度。通过实施该可能的实现方式,能够准确地测量出第二资源的发送参数对第一资源的发送参数和/或接收参数的干扰情况。
在一种可能的实现中,基于第一信号强度和N个第二信号强度向网络设备上报第一信干噪比SINR的具体实现方式为:确定N个SINR,该N个SINR中第i个SINR基于第一信号强度和N个第二信号强度中的第i个第二信号强度得到,i为大于0,且小于或等于N的整数;向网络设备上报N个SINR中的一个或多个第一SINR。通过实施该可能的实现方式,有利于网络设备确定一个或多个第二资源的发送参数对第一资源的发送参数和/或接收参数的干扰情况。网络设备确定一个或多个第二资源的发送参数对第一资源的发送参数和/或接收参数的干扰情况之后,在后续进行数据传输时,就可以通过调度,规避相互干扰较大的波束同传,或者配对相互干扰较小的波束同传。
在一种可能的实现中,向网络设备上报一个或多个第一SINR对应的第一资源的标识在第一资源集合中的位置。虽然第一资源集合中第一资源的标识相同,但计算SINR时采用的第二资源不同,因此通过向网络设备上报该一个或多个第一SINR对应的第一资源的标识在第一资源集合中的位置,有利于网络设备准确地确定计算SINR时采用的第二资源。
在一种可能的实现中,第一SINR基于N个第二信号强度之和以及第一信号强度得到。通过实施该可能的实现方式,可以实现干扰累加的功能。在终端设备经历的干扰环境较为复杂时,可以使干扰测量更加准确。可选的,第一资源集合中还包括与第一资源的标识不同的资源标识,还可向网络设备上报第一资源的标识在第一资源集合中的位置。有利于网络设备准确地确定计算SINR时采用的第二资源。
第二方面,本申请提供了一种信息上报方法,该方法包括:向终端设备发送配置信息,该配置信息用于配置第一资源集合和第二资源集合,该第一资源集合中的资源标识对应的资源用于信道测量,该第二资源集合中的资源标识对应的资源用于干扰测量,该第一资源集合中包括N个第一资源的标识,该N个第一资源的标识相同,第二资源集合中包括N个第二资源的标识,该N个第一资源的标识与该N个第二资源的标识一一对应,N为大于1的整数;在第一资源发送第一参考信号;在N个第二资源分别发送第二参考信号;接收终端设备上报的第一信干噪比SINR。
在一种可能的实现中,还可接收终端设备上报的一个或多个第一SINR对应的第一资源的标识在第一资源集合中的位置。
在一种可能的实现中,第一资源集合中还包括与第一资源的标识不同的资源标识,还可接收终端设备上报的第一资源的标识在第一资源集合中的位置。
第二方面的有益效果可参见第一方面的有益效果,在此不赘述。
第三方面,本申请提供了一种信息上报方法,该方法包括:接收网络设备发送的配置信息,该配置信息用于配置第一资源集合和第二资源集合,该第一资源集合中的资源标识对应的资源用于信道测量,该第二资源集合中的资源标识对应的资源用于干扰测量,该第一资源集合中包括N个第一资源的标识,该第二资源集合中包括N个第二资源的标识,N个第二资源的标识相同,该N个第一资源的标识与该N个第二资源的标识一一对应,N为大于1的整数;测量N个第一资源上的信号强度,得到N个第一信号强度;对第二资源上的信号强度进行N次测量,得到N个第二信号强度;向网络设备上报一个或多个第一信干噪比SINR,该第一SINR为基于N个第一信号强度和N个第二信号强度得到的N个SINR中的SINR。基于第三方面所描述的方法,有利于节省资源的开销。
在一种可能的实现中,测量N个第一资源上的信号强度的具体实现方式为:通过N个第一资源的接收参数测量N个第一资源上的信号强度;对第二资源上的信号强度进行N次 测量的具体实现方式为:通过N个第一资源的接收参数对第二资源上的信号强度进行N次测量。或者,可以表达为:N个第二资源中的各个第二资源与其关联的第一资源的接收参数是QCL的。或者,可以表达为:N个第二资源中的各个第二资源与其关联的第一资源的接收参数相同。通过实施该可能的实现方式,能够准确地测量出第二资源的发送参数对第一资源的发送参数和/或接收参数的干扰情况。
在一种可能的实现中,第二资源的周期为第一资源的周期的1/N倍。在该可能的实现方式中,网络设备在一个第一资源的周期内发送N次第二资源的参考信号。通过设置第二资源的周期为第一资源的周期的1/N倍,有利于降低测量结果上报周期的时长,有利于提升波束训练的速度。
在一种可能的实现中,第二资源的周期与第一资源的周期相同,测量N个第二信号强度的时域范围小于或等于一个时间单元的时间长度。可选的,一个时间单元为一个OFDM符号。或者,一个时间单元也可以为两个OFDM符号、三个OFDM符号或四个OFDM符号等。或者,时间单元也可以为一个时隙,一个子帧,一毫秒等。或者,时间单元也可以为两个时隙,两个子帧,两毫秒等。通过实施该可能的实现方式,有利于降低测量结果上报周期的时长,有利于提升波束训练的速度。
在一种可能的实现中,N个第一资源的接收参数相同时,也可以对第二资源上的信号强度进行一次测量,得到一个第二信号强度。向网络设备上报的第一SINR为基于N个第一信号强度和一个第二信号强度得到的N个SINR中的SINR。
第四方面,本申请提供了一种信息上报方法,该方法包括:向终端设备发送配置信息,该配置信息用于配置第一资源集合和第二资源集合,该第一资源集合中的资源标识对应的资源用于信道测量,该第二资源集合中的资源标识对应的资源用于干扰测量,该第一资源集合中包括N个第一资源的标识,该第二资源集合中包括N个第二资源的标识,该N个第二资源的标识相同,该N个第一资源的标识与该N个第二资源的标识一一对应,N为大于1的整数;在N个第一资源分别发送第一参考信号;在第二资源发送第二参考信号;接收终端设备上报的一个或多个第一信干噪比SINR。
在一种可能的实现中,第二资源的周期为第一资源的周期的1/N倍。
在一种可能的实现中,第二资源的周期与第一资源的周期相同。
第四方面的有益效果可参见第三方面的有益效果,在此不赘述。
第五方面,本申请提供了一种信息上报方法,该方法包括:接收网络设备发送的配置信息,该配置信息用于配置第一资源集合,该第一资源集合中的资源标识对应的资源用于信道测量,该第一资源集合中包括N个第一资源的标识,该N个第一资源的标识相同,N为大于1的整数;对第一资源上的信号强度进行N次测量,得到N个信号强度;向网络设备上报N个信号强度中的第一信号强度。基于第五方面所描述的方法,有利于节省资源的开销。
在一种可能的实现中,N次测量的时域范围小于或等于一个时间单元的时间长度。可选的,一个时间单元为一个OFDM符号。或者,一个时间单元也可以为两个OFDM符号、三个OFDM符号或四个OFDM符号等。或者,时间单元也可以为一个时隙,一个子帧,一毫秒等。或者,时间单元也可以为两个时隙,两个子帧,两毫秒等。通过实施该可能的实现方式,有利于降低测量结果上报周期的时长,有利于提升波束训练的速度。
在一种可能的实现中,N次测量中的每次测量的时域测量范围小于或等于N IFFT/N,N IFFT 为一个时间单元的时间长度。
在一种可能的实现中,N次测量中的每次测量的时域测量范围小于或等于N IFFT/N-N CP/N,N CP为循环前缀的时间长度,N IFFT为一个时间单元的时间长度。循环前缀为保护间隔,因此,应保证N次测量中的每次测量的时域测量范围小于或等于N IFFT/N-N CP/N。
在一种可能的实现中,N次测量在循环前缀之后执行。
在一种可能的实现中,配置信息中还包括重复因子,重复因子为关闭,还可向网络设备上报第一信号强度对应的第一资源的标识在第一资源集合中的位置。这样有利于网络设备确定出测量第一信号强度采用的发送参数。
第六方面,本申请提供了一种信息上报方法,该方法包括:向终端设备发送配置信息,配置信息用于配置第一资源集合,该第一资源集合中的资源标识对应的资源用于信道测量,第一资源集合中包括N个第一资源的标识,该N个第一资源的标识相同,N为大于1的整数;在第一资源发送参考信号;接收终端设备上报的N个信号强度中的第一信号强度。
在一种可能的实现中,配置信息中还包括重复因子,重复因子为关闭,在第一资源发送参考信号的具体实现方式为:通过N个发送参数在第一资源发送N次参考信号。
在一种可能的实现中,通过N个发送参数发送N次参考信号的时域范围小于或等于一个时间单元的时间长度。可选的,一个时间单元为一个OFDM符号。或者,一个时间单元也可以为两个OFDM符号、三个OFDM符号或四个OFDM符号等。或者,时间单元也可以为一个时隙,一个子帧,一毫秒等。或者,时间单元也可以为两个时隙,两个子帧,两毫秒等。
在一种可能的实现中,每次发送参考信号的时域范围小于或等于N IFFT/N,N IFFT为一个时间单元的时间长度。
在一种可能的实现中,每次发送参考信号的时域范围小于或等于N IFFT/N-N CP/N,N CP为循环前缀的时间长度,N IFFT为一个时间单元的时间长度。
在一种可能的实现中,通过N个发送参数发送N次参考信号在循环前缀之后执行。
在一种可能的实现中,配置信息中还包括重复因子,重复因子为关闭,还可接收终端设备上报的第一信号强度对应的第一资源的标识在第一资源集合中的位置。
第六方面的有益效果可参见第五方面的有益效果,在此不赘述。
第七方面,提供了一种通信装置,该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该通信装置还可以为芯片***。该通信装置可执行第一方面或第三方面或第五方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。该单元可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第一方面或第三方面或第五方面所述的方法以及有益效果,重复之处不再赘述。
第八方面,提供了一种通信装置,该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该通信装置还可以为芯片***。该通信装置可执行第二方面或第四方面或第六方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。该单元可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第二方面或第四方面或第六方面所述的方法以及有益效果,重复之处不再赘述。
第九方面,本申请实施例提供一种通信装置,所述通信装置包括处理器,当所述处理 器调用存储器中的计算机程序时,如第一方面~第六方面中任意一项所述的方法被执行。
第十方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如第一方面~第六方面中任意一项所述的方法。
第十一方面,本申请实施例提供一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用于从所述存储器调用所述程序代码执行如第一方面~第六方面中任意一项所述的方法。
第十二方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如第一方面~第六方面中任意一项所述的方法。
第十三方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质用于存储指令,当所述指令被执行时,使得如第一方面~第六方面中任意一项所述的方法被实现。
第十四方面,本申请实施例提供一种包括指令的计算机程序产品,当所述指令被执行时,使得如第一方面~第六方面中任意一项所述的方法被实现。
附图说明
图1为现有的用于波束训练的参考信号测量与上报的相关配置的示意图;
图2为现有的SINR测量的示意图;
图3为本申请实施例提供的一种通信***的示意图;
图4为本申请实施例提供的一种信息上报方法的流程示意图;
图5为本申请实施例提供的一种用于波束训练的参考信号测量与上报的相关配置的示意图;
图6为本申请实施例提供的一种SINR测量的示意图;
图7为本申请实施例提供的另一种信息上报方法的流程示意图;
图8为本申请实施例提供的另一种用于波束训练的参考信号测量与上报的相关配置的示意图;
图9为本申请实施例提供的另一种SINR测量的示意图;
图10为本申请实施例提供的又一种信息上报方法的流程示意图;
图11为本申请实施例提供的又一种用于波束训练的参考信号测量与上报的相关配置的示意图;
图12为本申请实施例提供的一种信道测量的示意图;
图13为本申请实施例提供的一种时间单元的示意图;
图14为本申请实施例提供的一种时间单元的示意图;
图15为本申请实施例提供的另一种信道测量的示意图;
图16为本申请实施例提供的一种通信装置的结构示意图;
图17a为本申请实施例提供的一种通信装置的结构示意图;
图17b为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述对应对象的对应关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后对应对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
3GPP R16引入了基于L1-SINR(layer 1-SINR,层一信干噪比)的波束管理机制,为了进行基于L1-SINR的波束管理,协议允许专门配置干扰测量资源(Interference measurement resource,IMR)。IMR与信道测量资源(Channel measurement resource,CMR)具有一一对应关系,即一个CMR配置一个IMR。IMR资源用于终端设备测量进行干扰和噪声的测量。CMR资源用于终端设备进行信道测量。IMR资源和CMR资源可以统称为CSI-RS资源。
下面对现有的用于波束训练的参考信号测量与上报的相关配置进行详细介绍:
例如,如图1所示,网络设备配置一个上报设置(ReportConfig#1)的上报量是CRI-SINR,且该上报设置(ReportConfig#1)对应两个资源设置(ResourceConfig),分别为信道测量资源设置(ResourceConfig#1)和干扰测量资源设置(ResourceConfig#2)。信道测量资源设置,其功能标记为信道测量(resourcesForChannelMeasurement)。干扰测量资源设置,其功能标记为干扰测量(resourcesForInterferenceMeasurement)。
RsourceConfig#1中包含一个资源集合列表(ResourceSetList),其中,该资源集合列表包括M(>=1)个资源集合。例如,包括资源集合#1(resourceset#1)等。RsourceConfig#2中也包含一个资源集合列表(ResourceSetList),其中,该资源集合列表包括有M(>=1)个资源集合,例如资源集合#2(resourceset#2)等。资源集合#1(resourceset#1)中包括Y(>=1)个CMR资源。例如,图1以资源集合#1包括CSI-RS资源#1(CSI-RS resource#1)和CSI-RS资源#2(CSI-RS resource#2)为例。资源集合#2中包括Y(>=1)个IMR资源。例如,图1以资源集合#2(resourceset#2)包括CSI-RS资源#11(CSI-RS resource#11)和CSI-RS资源#12(CSI-RS resource#12)为例。其中,CSI-RS resource#1对应CSI-RS  resource#11,CSI-RS resource#2对应CSI-RS resource#12。
然而,图1所示的资源配置可能会增加CMR资源的开销。例如,如图2所示,假设CSI-RS resource#1和CSI-RS resource#2对应的发送参数相同,CSI-RS resource#1和CSI-RS resource#2对应的发送参数均为波束a1。CSI-RS resource#1和CSI-RS resource#2对应的接收参数也相同,CSI-RS resource#1和CSI-RS resource#2对应的接收参数均为波束b1。CSI-RS resource#11对应的发送参数为波束a2,CSI-RS resource#12对应的发送参数为波束a3。
网络设备在CSI-RS resource#1采用波束a1发送参考信号CSI-RS1,在CSI-RS resource#11采用波束a2发送参考信号CSI-RS11。终端设备通过波束b1测量CSI-RS1的信号强度1,以及通过波束b1测量CSI-RS11的信号强度2。终端设备将信号强度1与信号强度2的比值确定为SINR1,并向网络设备上报SINR1。然后网络设备在CSI-RS resource#2采用波束a1发送参考信号CSI-RS2,在CSI-RS resource#12采用波束a3发送参考信号CSI-RS12。终端设备通过波束b1测量CSI-RS2的信号强度3,以及通过波束b1测量CSI-RS12的信号强度4。终端设备将信号强度3与信号强度4的比值确定为SINR2,并向网络设备上报SINR2。
也就是说,图1的资源配置用于测量波束a2和波束a3对同一对波束(波束a1和波束b1)的干扰情况。在这种情况下,终端设备实际上只需要进行一次信道测量,即只需要配置一个CMR资源对应多个IMR资源。例如,在资源集合#1(resourceset#1)中包括CSI-RS resource#1,在资源集合#2(resourceset#2)中包括CSI-RS resource#11和CSI-RS resource#12。这样CSI-RS resource#1就可同时对应CSI-RS resource#11和CSI-RS resource#12。但由于协议规定CMR资源与IMR资源必须一一对应,不能一个CMR资源同时对应多个IMR资源。因此,在现有的CMR资源与IMR资源的对应关系中,在测量多个波束对同一对波束的干扰情况时,通常是对不同的IMR配置不同的CMR资源。可见,这样增加了CMR资源的开销。
因此,为了降低CMR资源的开销,本申请实施例提供了一种信息上报方法。为了能够更好地理解本申请实施例,下面先对本申请实施例的***架构进行说明:
本申请实施例提供的方法可以应用于各类通信***中,例如,可以是物联网(internet of things,IoT)***、窄带物联网(narrow band internet of things,NB-IoT)***、长期演进(long term evolution,LTE)***,也可以是第五代(5th-generation,5G)通信***,还可以是LTE与5G混合架构、也可以是5G新无线(new radio,NR)***,以及未来通信发展中出现的新的通信***等。
图3是本申请实施例提供的一种通信***的架构示意图,本申请中的方案可适用于该通信***。该通信***可以包括至少一个网络设备和至少一个终端设备,图3以通信***中包括一个网络设备和一个终端设备为例。如图3所示,网络设备和终端设备之间可以通过波束进行通信。网络设备和终端设备都能够产生多个波束。图3以网络设备可以发送波束a1~波束a3,终端设备的接收波束包括波束b1和波束b2为例。
本申请实施例中所涉及的网络设备,是网络侧的一种用于发射或接收信号的实体,可以用于将收到的空中帧与网络协议(internet protocol,IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可以包括IP网络等。网络设备还可以协调对空中接口的属性管理。例如,网络设备可以是LTE中的演进型基站 (evolutional Node B,eNB或e-NodeB),还可以是新无线控制器(new radio controller,NR controller),可以是5G***中的gNode B(gNB),可以是集中式网元(centralized unit),可以是新无线基站,可以是射频拉远模块,可以是微基站,可以是中继(relay),可以是分布式网元(distributed unit),可以是接收点(transmission reception point,TRP)或传输点(transmission point,TP)或者任何其它无线接入设备,但本申请实施例不限于此。
本申请实施例中涉及的终端设备,是用户侧的一种用于接收或发射信号的实体。终端设备可以是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。终端设备也可以是连接到无线调制解调器的其他处理设备。终端设备可以与无线接入网(radio access network,RAN)进行通信。终端设备也可以称为无线终端、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、用户设备(user device)、或用户设备(user equipment,UE)等等。终端设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,终端设备还可以是个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。常见的终端设备例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等,但本申请实施例不限于此。
下面对本申请实施例提供的信息上报方法进一步进行详细描述:
请参见图4,图4是本申请实施例提供的一种信息上报方法的流程示意图。如图4所示,该信息上报方法包括如下步骤401~步骤406。图4所示的方法执行主语可以为网络设备和终端设备,或主语可以为网络设备中的芯片和终端设备中的芯片。图4以网络设备和终端设备为方法的执行主体为例进行说明。本申请实施例的其他附图所示的信息上报方法的执行主语同理,后文不再赘述。其中:
401、网络设备向终端设备发送配置信息。
其中,该配置信息用于配置第一资源集合和第二资源集合,该第一资源集合中的资源标识对应的资源用于信道测量,该第二资源集合中的资源标识对应的资源用于干扰测量,该第一资源集合中包括N个第一资源的标识,该N个第一资源的标识相同,该第二资源集合中包括N个第二资源的标识,该N个第一资源的标识与该N个第二资源的标识一一对应(或关联),N为大于1的整数。
由于该第一资源集合中包括N个第一资源的标识,且N个第一资源的标识相同。因此,可以理解为该第一资源集合包括N个相同的第一资源,或者,可以理解为该第一资源集合包括一个第一资源。
其中,该第二资源集合中包括的N个第二资源的标识可以相同或不相同。如果该N个第二资源的标识相同,则表示该第二资源集合包括N个相同的第二资源。如果该N个第二资源的标识不相同,则表示该第二资源集合包括N个不相同的第二资源。
举例来说,如图5所示,第一资源集合为资源集合#1(resourceset#1)对应的资源集 合。第二资源集合为资源集合#2(resourceset#2)对应的资源集合。其中,第一资源集合包括两个相同的第一资源的标识,第一资源的标识为CSI-RS resource#1。第二资源集合包括两个第二资源的标识,分别为CSI-RS resource#11和CSI-RS resource#12。第一个CSI-RS resource#1与CSI-RS resource#11相对应,第二个CSI-RS resource#1与CSI-RS resource#12相对应。也就是说,第一资源集合中包括两个相同的第一资源,第二资源集合中包括两个不相同的第二资源。
可选的,配置信息中还包括重复因子。该重复因子为开启时,表示N个第一资源的发送参数为同一个发送参数。该重复因子为关闭时,表示N个第一资源的发送参数不为同一个发送参数。例如,如图5所示,重复因子为repetition,该重复因子为开启。“Repetition:ON”表示重复因子为开启。“Repetition:OFF”表示重复因子为关闭。
402、网络设备在第一资源发送第一参考信号。
403、网络设备在N个第二资源分别发送第二参考信号。
本申请实施例中,网络设备向终端设备发送配置信息之后,网络设备可在第一资源发送第一参考信号以及在N个第二资源分别发送第二参考信号。
404、终端设备测量第一资源上的信号强度,得到第一信号强度。
405、终端设备测量N个第二资源上的信号强度,得到N个第二信号强度。
本申请实施例中,终端设备接收网络设备发送的配置信息之后,可测量第一资源上的第一信号强度,以及测量N个第二资源上的信号强度,得到N个第二信号强度。
在一种可能的实现中,N个第二资源的接收参数与第一资源的接收参数相同。或者,可以表达为:N个第二资源的接收参数与第一资源的接收参数是准共址(quasi-co-location,QCL)的。或者,可以表达为:终端设备通过第一资源的接收参数测量N个第二资源上的信号强度。通过实施该可能的方式,能够准确地测量出第二资源的发送参数对第一资源的发送参数和/或接收参数的干扰情况。
举例来说,以终端设备在一个测量结果上报周期内进行的测量为例进行说明。如图6所示,一个测量结果上报周期为10ms。CSI-RS resource#1的周期为10ms。CSI-RS resource#11的周期为10ms。CSI-RS resource#12的周期为10ms。在一个测量结果上报周期内,终端设备总共进行测量3个参考信号,分别为在CSI-RS resource#1对应的资源发送的CSI-RS1,在CSI-RS resource#11对应的资源发送的CSI-RS11,在CSI-RS resource#12对应的资源发送的CSI-RS12。其中,CSI-RS resource#1的发送参数为波束a1,CSI-RS resource#11的发送参数为波束a2,CSI-RS resource#12的发送参数为波束a3。CSI-RS resource#1的接收参数为波束b1。终端设备通过波束b1在CSI-RS resource#1对应的资源测量CSI-RS1的信号强度,得到第一信号强度P1。终端设备通过波束b1在CSI-RS resource#11对应的资源测量CSI-RS11的信号强度,得到第二信号强度P11。终端设备通过波束b1在CSI-RS resource#12对应的资源测量CSI-RS12的信号强度,得到第二信号强度P12。可见,在一个测量结果上报周期内,终端设备只进行一次信道测量。
在一种可能的实现中,信号强度可以为信号接收功率或信号接收能量等。
406、终端设备基于第一信号强度和N个第二信号强度向网络设备上报第一SINR。
本申请实施例中,终端设备测量得到第一信号强度和N个第二信号强度之后,可基于第一信号强度和N个第二信号强度向网络设备上报第一SINR。
下面对终端设备基于第一信号强度和N个第二信号强度向网络设备上报第一SINR的 两种具体实现方式进行介绍:
方式一:终端设备确定N个SINR,该N个SINR中第i个SINR基于第一信号强度和N个第二信号强度中的第i个第二信号强度得到,i为大于0,且小于或等于N的整数;终端设备向网络设备上报N个SINR中的一个或多个第一SINR。
例如,终端设备测量得到上述第一信号强度P1、第二信号强度P11和第二信号强度P12。终端设备可以确定2个SINR。SINR1=P1/(P11+N1)。SINR2=P1/(P12+N2)。其中,N1和N2为噪声功率。N1和N2可以相同或不同。终端设备可以按照协议预定义的或者网络设备配置的波束上报数目来确定上报多少个SINR。例如,如果协议预定义的或者网络设备配置的波束上报数目为2,终端设备可以向网络设备上报SINR1和SINR2。或者,如果协议预定义的或者网络设备配置的波束上报数目为1,终端设备可以向网络设备上报SINR1和SINR2中的最大值或最小值。
通过实施方式一,有利于网络设备确定一个或多个第二资源的发送参数对第一资源的发送参数和/或接收参数的干扰情况。网络设备确定一个或多个第二资源的发送参数对第一资源的发送参数和/或接收参数的干扰情况之后,在后续进行数据传输时,就可以通过调度,规避相互干扰较大的波束同传,或者配对相互干扰较小的波束同传。
可选的,网络设备还可以指示终端设备上报最大的SINR或者最小的SINR。或者,网络设备还可以指示终端设备上报相互干扰较大的波束或者相互干扰较小的波束,例如,指示终端设备上报SINR大于预设阈值或小于预设阈值的SINR。
在一种可能的实现中,终端设备还可向网络设备上报该一个或多个第一SINR对应的第一资源的标识在第一资源集合中的位置。例如,终端设备向网络设备上报SINR1和SINR2,则终端设备向网络设备上报SINR1对应的CSI-RS resource#1在第一资源集合中的位置为第一位,SINR2对应的CSI-RS resource#1在第一资源集合中的位置为第二位。
虽然第一资源集合中第一资源的标识相同,但计算SINR时采用的第二资源不同,因此通过向网络设备上报该一个或多个第一SINR对应的第一资源的标识在第一资源集合中的位置,有利于网络设备准确地确定计算SINR时采用的第二资源。
其中,第一SINR对应的第一资源在第一资源集合中的位置通过X个比特指示,该
Figure PCTCN2019119288-appb-000001
K为第一资源集合中不同的资源标识的数量,该N i为K个资源标识中第i个资源标识重复的次数。
Figure PCTCN2019119288-appb-000002
为第一资源集合中总共包括的标识数量。例如,在图5所示的配置中,K为1。N i为2。因此,
Figure PCTCN2019119288-appb-000003
为2。因此,第一SINR对应的第一资源在第一资源集合中的位置通过1个比特指示。例如,如果比特值为0,表示第一SINR对应的第一资源在第一资源集合中的位置为第一位;如果比特值为1,表示第一SINR对应的第一资源在第一资源集合中的位置为第二位。
方式二:第一SINR基于N个第二信号强度之和以及第一信号强度得到。在方式二中,终端设备基于第一信号强度和N个第二信号强度只得到一个SINR。例如,第一SINR==P1/(P11+P12+N1)。通过实施方式二,可以实现干扰累加的功能。在终端设备经历的干扰环境较为复杂时,可以使干扰测量更加准确。例如,网络设备与目标终端设备通过一个服务波束进行通信时,还与其他终端设备通过其他波束进行通信。目标终端设备会受到多个干扰波束的影响,这时网络设备可以在多个第二资源上模拟多个干扰波束的传输,目标终端设备可以将多个第二资源上测到的干扰进行累加。
按照RAN1的指导,支持option2a(即一个CMR关联多个IMR)不应该有RRC影响, 这意味着基站只能配置一个包含N个CMR的列表和另一个包含N个IMR的列表,并且CMR和IMR是一一对应的。作为一种解决方案,这个包含N个CMR的列表(中的N个CMR)可以被配置成相同的CSI-RS资源标识,这样隐式的通知终端应该采用option2a的方法在计算干扰时将关联的N个IMR的测量结果累加。提议X:通过配置一个列表的CMR资源具有相同的CSI-RS资源ID的方式支持option2a(即一个CMR关联多个IMR)的L1-SINR上报。(Following previous RAN1 guidance,support of option 2a should not have RRC impact,which means that gNB can only configure a list of N CMR(s)and another list of N IMR(s),and they are 1:1 mapped.As a compromised solution,the list of CMR(s)can be configured with the same CSI-RS resource ID,which indicates implicitly that UE should adopt option 2a to calculate the interference based on accumulating measurement of all the associated N IMR(s).Proposal X:Support option 2a(1 CMR can associates with more than 1 IMRs)for L1-SINR report,by configuring a list of CMRs with the same CSI-RS resource ID.)
在一种可能的实现中,如果第一资源集合中所有标识相同,则在方式二中,终端设备可以不向网络设备上报第一资源在第一资源集合中的位置。
在一种可能的实现中,如果第一资源集合中还包括与第一资源的标识不同的资源标识,则在方式二中,终端设备可以向网络设备上报第一资源在第一资源集合中的位置。例如,第一资源在第一资源集合中的位置通过X个比特指示,该
Figure PCTCN2019119288-appb-000004
K为第一资源集合中不同的资源标识的数量。例如,图5中第一资源集合除包括2个CSI-RS resource#1之外,还包括2个CSI-RS resource#2,则K为2,X为1。
在一种可能的实现中,协议预定义或者网络设备可指示终端设备采用上述方式一或方式二来上报第一SINR。
在一种可能的实现中,终端设备可以上报能力信息,该能力信息指示终端设备是否支持图4所对应的实施例所描述的方法。
在一种可能的实现中,协议预定义或者网络设备可指示终端设备执行图4所对应的实施例所描述的方法。
在图4所描述的方法中,网络设备在第一资源集合配置N个相同的第一资源的标识,在第二资源集合配置N个第一资源的标识,该N个第一资源的标识与该N个第二资源的标识一一对应。因此,通过实施图4所描述的方法,有利于节省资源的开销。
上述实施例介绍了如何节省CMR资源的开销,下面结合图7对如何节省IMR资源的开销进行介绍:
请参见图7,图7是本申请实施例提供的另一种信息上报方法的流程示意图。如图7所示,该信息上报方法包括如下步骤701~步骤706。图7所示的方法执行主语可以为网络设备和终端设备,或主语可以为网络设备中的芯片和终端设备中的芯片。图7以网络设备和终端设备为方法的执行主体为例进行说明。本申请实施例的其他附图所示的信息上报方法的执行主语同理,后文不再赘述。其中:
701、网络设备向终端设备发送配置信息。
其中,该配置信息用于配置第一资源集合和第二资源集合,该第一资源集合中的资源标识对应的资源用于信道测量,该第二资源集合中的资源标识对应的资源用于干扰测量,该第一资源集合中包括N个第一资源的标识,该第二资源集合中包括N个第二资源的标识, 该N个第二资源的标识相同,该N个第一资源的标识与N个第二资源的标识一一对应,该N为大于1的整数。
由于该第二资源集合中包括N个第二资源的标识,且N个第二资源的标识相同。因此,可以理解为该第二资源集合包括N个相同的第二资源,或者,可以理解为该第二资源集合包括一个第二资源。
其中,该第一资源集合中包括的N个第一资源的标识可以相同或不相同。如果该N个第一资源的标识相同,则表示该第一资源集合包括N个相同的第一资源。如果该N个第一资源的标识不相同,则表示该第一资源集合包括N个不相同的第一资源。
举例来说,如图8所示,第一资源集合为资源集合#1(resourceset#1)对应的资源集合。第二资源集合为资源集合#2(resourceset#2)对应的资源集合。其中,第一资源集合包括两个第一资源的标识,分别为CSI-RS resource#1和CSI-RS resource#2。第二资源集合包括两个相同的第二资源的标识,该第二资源的标识为CSI-RS resource#11。CSI-RS resource#1与第一个CSI-RS resource#11相对应,CSI-RS resource#2与第二个CSI-RS resource#11相对应。也就是说,第一资源集合中包括两个不相同的第一资源,第二资源集合中包括两个相同的第二资源。
可选的,配置信息中还包括重复因子。该重复因子为开启时,表示N个第一资源的发送参数为同一个发送参数。该重复因子为关闭时,表示N个第一资源的发送参数不为同一个发送参数。例如,如图8所示,重复因子为repetition,该重复因子为关闭。“Repetition:ON”表示重复因子为开启。“Repetition:OFF”表示重复因子为关闭。
702、网络设备在N个第一资源分别发送第一参考信号。
703、网络设备在第二资源发送第二参考信号。
本申请实施例中,网络设备向终端设备发送配置信息之后,网络设备可在N个第一资源分别发送第一参考信号以及在第二资源发送第二参考信号。
704、终端设备测量N个第一资源上的信号强度,得到N个第一信号强度。
705、终端设备对第二资源上的信号强度进行N次测量,得到N个第二信号强度。
本申请实施例中,终端设备接收网络设备发送的配置信息之后,可测量N个第一资源上的信号强度,得到N个第一信号强度,以及对第二资源上的信号强度进行N次测量,得到N个第二信号强度。
在一种可能的实现中,终端设备测量N个第一资源上的信号强度的具体实施方式为:通过N个第一资源的接收参数测量N个第一资源上的信号强度;终端设备对第二资源上的信号强度进行N次测量的具体实施方式为:通过N个第一资源的接收参数对第二资源上的信号强度进行N次测量。
或者,可以表达为:N个第二资源中的各个第二资源与其关联的第一资源的接收参数是QCL的。或者,可以表达为:N个第二资源中的各个第二资源与其关联的第一资源的接收参数相同。
在一种可能的实现中,第二资源的周期为第一资源的周期的1/N倍。在该可能的实现方式中,网络设备在一个第一资源的周期内在第二资源发送N次参考信号。通过设置第二资源的周期为第一资源的周期的1/N倍,有利于降低测量结果上报周期的时长,有利于提升波束训练的速度。
举例来说,以终端设备在一个测量结果上报周期内进行的测量为例进行说明。如图9 所示,CSI-RS resource#1和CSI-RS resource#2的发送参数不相同,且接收参数也不相同。CSI-RS resource#1和CSI-RS resource#2的周期为10ms(毫秒)。一个测量结果上报周期为10ms。CSI-RS resource#11的周期为5ms。终端设备在CSI-RS resource#1对应的资源测量一次信号强度,在CSI-RS resource#2对应的资源测量一次信号强度。终端设备在一个测量结果上报周期内总共在CSI-RS resource#11对应的资源测量两次信号强度。
其中,CSI-RS resource#1的发送参数为波束a1,CSI-RS resource#2的发送参数为波束a2,CSI-RS resource#11的发送参数为波束a3。CSI-RS resource#1的接收参数为波束b1。终端设备通过波束b1在CSI-RS resource#1对应的资源测量CSI-RS1的信号强度,得到第一信号强度P1。终端设备通过波束b2在CSI-RS resource#2对应的资源测量CSI-RS2的信号强度,得到第一信号强度P2。网络设备在10ms内通过波束a3在CSI-RS resource#11发送两次CSI-RS11。终端设备通过波束b1测量第一次发送的CSI-RS11的信号强度,得到第二信号强度P11。终端设备通过波束b2测量第二次发送的CSI-RS11的信号强度,得到第二信号强度P12。可见,如果第二资源的周期与第一资源的周期相同,那么测量两次CSI-RS11的信号强度需要20ms。一次测量结果上报周期将变为20ms。因此,通过将第二资源的周期设置为第一资源的周期的1/N倍,有利于降低测量结果上报周期的时长,有利于提升波束训练的速度。
在一种可能的实现中,第二资源的周期与所述第一资源的周期相同,测量N个第二信号强度的时域范围小于或等于一个时间单元的时间长度,即测量N个第二信号强度的总时长小于或等于一个时间单元的时间长度。可选的,一个时间单元为一个正交频分复用(Orthogonal frequency divided multiplexing,OFDM)符号。或者,一个时间单元也可以为两个OFDM符号、三个OFDM符号或四个OFDM符号等。或者,时间单元也可以为一个时隙,一个子帧,一毫秒等。或者,时间单元也可以为两个时隙,两个子帧,两毫秒等。通过实施该可能的实现方式,有利于降低测量结果上报周期的时长,有利于提升波束训练的速度。
例如,在图9中,CSI-RS resource#1和CSI-RS resource#2的周期为10ms(毫秒)。一个测量结果上报周期为10ms。CSI-RS resource#11的周期为10ms。终端设备通过波束b1在CSI-RS resource#1对应的资源测量CSI-RS1的信号强度,得到第一信号强度P1。终端设备通过波束b2在CSI-RS resource#2对应的资源测量CSI-RS2的信号强度,得到第一信号强度P2。网络设备在10ms内通过波束a3在CSI-RS resource#11对应的资源发送1次CSI-RS11。网络设备发送1次CSI-RS11的持续时间等于一个OFDM符号。在一个OFDM符号内,终端设备对CSI-RS11的信号强度总共进行两次测量。第一次测量时,终端设备通过波束b1对CSI-RS11的信号强度进行测量,得到第二信号强度P11。第二次测量时,终端设备切换至波束b2对CSI-RS11的信号强度进行测量,得到第二信号强度P12。
在一种可能的实现中,每次测量第二信号强度的时域范围小于或等于N IFFT/N-N CP/N,所述N CP为循环前缀的时间长度,该N IFFT为一个时间单元的时间长度。
在一种可能的实现中,测量N个第二信号强度在循环前缀之后执行。
706、终端设备向网络设备上报一个或多个第一SINR。
本申请实施例中,该第一SINR为基于N个第一信号强度和N个第二信号强度得到的N个SINR中的SINR。
例如,终端设备测量得到上述第一信号强度P1、第一信号强度P2、第二信号强度P11 和第二信号强度P12。终端设备可以确定2个SINR。SINR1=P1/(P11+N1)。SINR2=P2/(P12+N2)。其中,N1和N2为噪声功率。N1和N2可以相同或不同。终端设备可以向网络设备上报SINR1和SINR2。或者,终端设备可以向网络设备上报SINR1和SINR2中的最大值或最小值。
在一种可能的实现中,终端设备向网络设备上报一个第一SINR,该第一SINR为基于N个第一信号强度之和,以及N个第二信号强度之和得到的。例如,第一SINR=(P1+P2)/(P11+P12+N1)。通过可能的实现,可以实现干扰累加的功能。在终端设备经历的干扰环境较为复杂时,可以使干扰测量更加准确。
在一种可能的实现中,如果终端设备测量在一个时间单元的时间长度内测量了1次第一信号强度,且在一个时间单元的时间长度内测量了N次第二信号强度,在计算SINR时,需要考虑对测得的信号强度进行缩放(scaling)。也就是说,终端设备基于第一信号强度和第二信号强度以及缩放因子来确定SINR。该缩放因子与N相关。例如,该缩放因子等于N或为N的整数倍。例如,终端设备测量得到第一信号强度P1、第一信号强度P2、第二信号强度P11和第二信号强度P12。SINR1=P1/(2*P11+N1),SINR2=P2/(2*P12+N2)。或者,SINR1=0.5*P1/(P11+N1),SINR2=0.5*P2/(P12+N2)。
可选的,假设终端设备在一个时间单元的时间长度测量1次第一信号强度所需要占用的CSI计算单元(CSI processing unit,CPU)为1。如果终端设备需要在测量在一个时间单元的时间长度测量N次第二信号强度,那么终端设备处理第二资源所需要占用的CSI计算单元(CSI processing unit,CPU)为W,W为一个大于1小于等于N的数。
在一种可能的实现中,N个第一资源的接收参数相同时,也可以对第二资源上的信号强度进行一次测量,得到一个第二信号强度。向网络设备上报的第一SINR为基于N个第一信号强度和一个第二信号强度得到的N个SINR中的SINR。
例如,图8中的CSI-RS resource#1和CSI-RS resource#2的接收参数相同,均为波束b1。终端设备通过波束b1在CSI-RS resource#1对应的资源测量CSI-RS1的信号强度,得到第一信号强度P1。终端设备通过波束b1在CSI-RS resource#2对应的资源测量CSI-RS2的信号强度,得到第一信号强度P2。终端设备通过波束b1在CSI-RS resource#11对应的资源测量CSI-RS11的信号强度,得到第二信号强度P11。终端设备可以得到SINR1=P1/(P11+N1),SINR2=P2/(P11+N2)。终端设备向网络设备上报SINR1和SINR2中的一个或多个。
在一种可能的实现中,终端设备对第二资源上的信号强度进行Z次测量,得到Z个第二信号强度。其中Z是第一资源集合中不同的接收参数的数目。
在一种可能的实现中,第二资源的周期为第一资源的周期的1/Z倍。其中Z是第一资源集合中不同的接收参数的数目。
在一种可能的实现中,终端设备可以上报能力信息,该能力信息指示终端设备是否支持图7所对应的实施例所描述的方法。
在一种可能的实现中,协议预定义或者网络设备可指示终端设备执行图7所对应的实施例所描述的方法。
在图7所描述的方法中,网络设备在第一资源集合配置N个第一资源的标识,在第二资源集合配置N个相同的第一资源的标识,该N个第一资源的标识与该N个第二资源的标识一一对应。因此,通过实施图7所描述的方法,有利于节省资源的开销。
下面结合图10对如何节省CMR资源的开销的另一种方法进行介绍:
请参见图10,图10是本申请实施例提供的一种信息上报方法的流程示意图。如图10所示,该信息上报方法包括如下步骤1001~步骤1004。图10所示的方法执行主语可以为网络设备和终端设备,或主语可以为网络设备中的芯片和终端设备中的芯片。图10以网络设备和终端设备为方法的执行主体为例进行说明。本申请实施例的其他附图所示的信息上报方法的执行主语同理,后文不再赘述。其中:
1001、网络设备向终端设备发送配置信息。
其中,该配置信息用于配置第一资源集合,该第一资源集合中的资源标识对应的资源用于信道测量,该第一资源集合中包括N个第一资源的标识,该N个第一资源的标识相同,该N为大于1的整数。由于该第一资源集合中包括N个第一资源的标识,且N个第一资源的标识相同。因此,可以理解为该第一资源集合包括N个相同的第一资源,或可以理解为第一资源集合包括一个第一资源。
举例来说,如图11所示,第一资源集合为资源集合#1(resourceset#1)对应的资源集合。其中,第一资源集合包括两个相同的第一资源的标识,第一资源的标识为CSI-RS resource#1。
可选的,配置信息中还包括重复因子,该重复因子为开启时,表示N个第一资源的发送参数为同一个发送参数。该重复因子为关闭时,表示N个第一资源的发送参数不为同一个发送参数。例如,如图11所示,重复因子为repetition。“Repetition:ON”表示重复因子为开启。“Repetition:OFF”表示重复因子为关闭。图11以重复因子为开启为例。
1002、网络设备在第一资源发送参考信号。
本申请实施例中,网络设备向终端设备发送配置信息之后,网络设备在第一资源发送参考信号。
1003、终端设备对第一资源上的信号强度进行N次测量,得到N个信号强度。
本申请实施例中,终端设备接收配置信息之后,对第一资源上的信号强度进行N次测量,得到N个信号强度。
其中,终端设备对第一资源上的信号强度进行N次测量的具体实现方式包括以下两种方式:
方式一:网络设备采用一个发送参数在第一资源上发送一次或N次参考信号,则终端设备使用N个不同的接收参数对第一资源上的信号强度进行N次测量。
例如,如图11和图12所示,配置信息中的重复因子为开启。两个CSI-RS resource#1的发送参数均为发送波束a1。网络设备通过波束a1在一个测量结果上报周期内发送1次或2次CSI-RS1。排列第一位的CSI-RS resource#1对应接收波束b1,排列第二位的CSI-RS resource#1对应接收波束b2。终端设备通过接收波束b1对CSI-RS resource#1对应的资源上的CSI-RS1进行第一次测量,得到信号强度P1。终端设备通过接收波束b2对CSI-RS resource#1对应的资源上的CSI-RS1进行第二次测量,得到信号强度P2。
在一种可能的实现中,终端设备进行N次测量的时域范围小于或等于一个时间单元的时间长度,即终端设备进行N次测量的总时长小于或等于一个时间单元的时间长度。可选的,一个时间单元为一个OFDM符号。或者,一个时间单元也可以为两个OFDM符号、三个OFDM符号或四个OFDM符号等。或者,时间单元也可以为一个时隙,一个子帧, 一毫秒等。或者,时间单元也可以为两个时隙,两个子帧,两毫秒等。通过实施该可能的实现方式,有利于降低测量结果上报周期的时长,有利于提升波束训练的速度。
例如,如图12所示,网络设备可以在一个测量结果上报周期内发送一次CSI-RS1。网络设备发送1次CSI-RS1的持续时间等于一个OFDM。在一个OFDM内,终端设备对CSI-RS1的信号强度总共进行两次测量。第一次测量时,终端设备通过波束b1对CSI-RS1的信号强度进行测量,得到信号强度P1。第二次测量时,终端设备切换至波束b2对CSI-RS1的信号强度进行测量,得到信号强度P2。
在一种可能的实现中,N次测量中的每次测量的时域测量范围小于或等于N IFFT/N,N IFFT为一个时间单元的时间长度。
在一种可能的实现中,N次测量中的每次测量的时域测量范围小于或等于N IFFT/N-N CP/N,N CP为循环前缀的时间长度,N IFFT为一个时间单元的时间长度。循环前缀为保护间隔,不能用于发送参考信号,因此,应保证N次测量中的每次测量的时域测量范围小于或等于N IFFT/N-N CP/N。
在一种可能的实现中,N次测量在循环前缀之后执行。例如,如图13所示,一个时间单元内可以有一个循环前缀,N次测量均在该循环前缀之后执行。再如,如图14所示,一个时间单元内可以有多个循环前缀,N次测量中的每次测量均在一个循环前缀之后执行。
方式二:网络设备采用N个不同的发送参数在第一资源上发送N次参考信号。终端设备可以使用相同的接收参数对第一资源上的信号强度进行N次测量。
例如,假设配置信息中的重复因子为关闭。如图15所示,排列第一位的CSI-RS resource#1对应发送波束a1,排列第二位的CSI-RS resource#1对应发送波束a2。两个CSI-RS resource#1的接收参数均为接收波束b1。终端设备通过接收波束b1对波束a1发送的CSI-RS1进行第一次测量,得到信号强度P1。终端设备通过接收波束b1对波束a2发送的CSI-RS1进行第二次测量,得到信号强度P2。
在一种可能的实现中,网络设备通过N个发送参数发送N次参考信号的时域范围小于或等于一个时间单元的时间长度,即网络设备通过N个发送参数发送N次参考信号的总时长小于或等于一个时间单元的时间长度。相应地,终端设备进行N次测量的时域范围小于或等于一个时间单元的时间长度,即终端设备进行N次测量的总时长小于或等于一个时间单元的时间长度。可选的,一个时间单元为一个OFDM符号。或者,一个时间单元也可以为两个OFDM符号、三个OFDM符号或四个OFDM符号等。通过实施该可能的实现方式,有利于降低测量结果上报周期的时长,有利于提升波束训练的速度。
再如,如图15所示,在一个OFDM内,网络设备对CSI-RS1总共进行两次发送。第一次发送时,网络设备通过波束a1对CSI-RS1进行发送。第二次发送时,网络设备切换至波束a2对CSI-RS1进行发送。在一个OFDM内,终端设备对CSI-RS1的信号强度总共进行两次测量。第一次测量时,终端设备通过波束b1对波束a1发送的CSI-RS1的信号强度进行测量,得到信号强度P1。第二次测量时,终端设备通过波束b2对CSI-RS1的信号强度进行测量,得到信号强度P2。
在一种可能的实现中,网络设备通过N个发送参数每次发送参考信号的时域范围小于或等于N IFFT/N,该N IFFT为一个时间单元的时间长度。相应地,终端设备的N次测量中,每次测量的时域测量范围小于或等于N IFFT/N。
在一种可能的实现中,网络设备通过N个发送参数每次发送参考信号的时域范围小于 或等于N IFFT/N-N CP/N,该N CP为循环前缀的时间长度,该N IFFT为一个时间单元的时间长度。相应地,终端设备的N次测量中,每次测量的时域测量范围小于或等于N IFFT/N-N CP/N。
在一种可能的实现中,网络设备通过N个发送参数发送N次参考信号在循环前缀之后执行。相应地,终端设备的N次测量在循环前缀之后执行。
在一种可能的实现中,协议预定义或者网络设备还可以指示终端设备在小于或等于一个时间单元的时间长度内进行N次测量的方法,该方法包括以下方法中的任意一种:基于交织频分多址复用(Interleaved Frequency Division MultipleAccess,IFDMA)的信号发送和/或接收方法、扩大子载波间隔(larger subcarrier spacing)的信号发送和/或接收方法、基于离散傅里叶变换(Discrete Fourier Transform,DFT)的信号发送和/或接收方法。
1004、终端设备向网络设备上报N个信号强度中的第一信号强度。
本申请实施例中,终端设备测量得到N个信号强度之后,向网络设备上报N个信号强度中的第一信号强度。该第一信号强度可以是最小值或最大值。
在一种可能的实现中,配置信息中的重复因子为关闭时,终端设备还向网络设备上报第一信号强度对应的第一资源的标识在第一资源集合中的位置。这样有利于网络设备确定出测量第一信号强度采用的发送参数。
在一种可能的实现中,终端设备可以上报能力信息,该能力信息指示终端设备是否支持图10所对应的实施例所描述的方法。
在一种可能的实现中,协议预定义或者网络设备可指示终端设备执行图10所对应的实施例所描述的方法。
在现有的波束训练中,采用不同的CMR资源进行训练。通过实施图10所描述的方法,采用相同的CMR资源就能进行波束训练,有利于节省CMR资源开销。
在一种可能的实现中,本申请提供一种上行波束训练的方法,该方法包括:网络设备发送,该配置信息用于配置第一资源集合,该第一资源集合中的资源标识对应的资源用于上行探测,第一资源集合中包括N个第一资源的标识,该N个第一资源的标识相同,N为大于1的整数。终端设备接收该配置信息之后,在第一资源发送参考信号。网络设备发送配置信息之后,在第一资源测量参考信号。
在一种可能的实现中,终端设备在第一资源发送参考信号包括:通过N个发送参数发送N次参考信号,或者,通过一个发送参数发送N次参考信号。终端设备发送N次参考信号的时域范围小于或等于一个时间单元的时间长度。
在一种可能的实现中,网络设备在第一资源测量参考信号包括:通过N个接收参数测量N次参考信号,或者,通过一个接收参数测量N次参考信号。可选的,网络设备测量N次参考信号的时域范围小于或等于一个时间单元的时间长度。
可选的,一个时间单元为一个OFDM符号。或者,一个时间单元也可以为两个OFDM符号、三个OFDM符号或四个OFDM符号等。或者,时间单元也可以为一个时隙,一个子帧,一毫秒等。或者,时间单元也可以为两个时隙,两个子帧,两毫秒等。
请参见图16,图16示出了本申请实施例的一种通信装置的结构示意图。图16所示的通信装置可以用于执行上述图4所描述的方法实施例中终端设备的部分或全部功能。该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该通信装置还可以为芯片***。图16所示的通信装置可以包括接收单元1601和发 送单元1602。可选的,接收单元1601和发送单元1602也可集成于一个单元中,该单元可以称为收发单元,下文同理,下文不再赘述。可选的,通信装置还可包括处理单元,用于进行数据处理,图16以通信装置包括接收单元1601和发送单元1602为例进行说明,下文同理,下文不再赘述。其中:
接收单元1601,用于接收网络设备发送的配置信息,配置信息用于配置第一资源集合和第二资源集合,第一资源集合中的资源标识对应的资源用于信道测量,第二资源集合中的资源标识对应的资源用于干扰测量,第一资源集合中包括N个第一资源的标识,N个第一资源的标识相同,第二资源集合中包括N个第二资源的标识,N个第一资源的标识与N个第二资源的标识一一对应,N为大于1的整数;接收单元1601,还用于测量第一资源上的信号强度,得到第一信号强度;接收单元1601,还用于测量N个第二资源上的信号强度,得到N个第二信号强度;发送单元1602,用于基于第一信号强度和N个第二信号强度向网络设备上报第一信干噪比SINR。
在一种可能的实现中,N个第二资源的接收参数与第一资源的接收参数相同。
在一种可能的实现中,发送单元1602具体用于:确定N个SINR,N个SINR中第i个SINR基于第一信号强度和N个第二信号强度中的第i个第二信号强度得到,i为大于0,且小于或等于N的整数;向网络设备上报N个SINR中的一个或多个第一SINR。
在一种可能的实现中,发送单元1602,还用于向网络设备上报一个或多个第一SINR对应的第一资源的标识在第一资源集合中的位置。
在一种可能的实现中,第一SINR基于N个第二信号强度之和以及第一信号强度得到。
在一种可能的实现中,第一资源集合中还包括与第一资源的标识不同的资源标识,
发送单元1602,还用于向网络设备上报第一资源的标识在第一资源集合中的位置。
请参见图16,图16示出了本申请实施例的一种通信装置的结构示意图。图16所示的通信装置可以用于执行上述图4所描述的方法实施例中网络设备的部分或全部功能。该装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。其中,该通信装置还可以为芯片***。图16所示的通信装置可以包括接收单元1601和发送单元1602。其中:
发送单元1602,用于向终端设备发送配置信息,配置信息用于配置第一资源集合和第二资源集合,第一资源集合中的资源标识对应的资源用于信道测量,第二资源集合中的资源标识对应的资源用于干扰测量,第一资源集合中包括N个第一资源的标识,N个第一资源的标识相同,第二资源集合中包括N个第二资源的标识,N个第一资源的标识与N个第二资源的标识一一对应,N为大于1的整数;发送单元1602,还用于在第一资源发送第一参考信号;发送单元1602,还用于在N个第二资源分别发送第二参考信号;接收单元1601,用于接收终端设备上报的第一信干噪比SINR。
在一种可能的实现中,接收单元1601,还用于接收终端设备上报的一个或多个第一SINR对应的第一资源的标识在第一资源集合中的位置。
在一种可能的实现中,第一资源集合中还包括与第一资源的标识不同的资源标识,接收单元1601,还用于接收终端设备上报的第一资源的标识在第一资源集合中的位置。
请参见图16,图16示出了本申请实施例的一种通信装置的结构示意图。图16所示的 通信装置可以用于执行上述图7所描述的方法实施例中终端设备的部分或全部功能。该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该通信装置还可以为芯片***。图16所示的通信装置可以包括接收单元1601和发送单元1602。其中:
接收单元1601,用于接收网络设备发送的配置信息,配置信息用于配置第一资源集合和第二资源集合,第一资源集合中的资源标识对应的资源用于信道测量,第二资源集合中的资源标识对应的资源用于干扰测量,第一资源集合中包括N个第一资源的标识,第二资源集合中包括N个第二资源的标识,N个第二资源的标识相同,N个第一资源的标识与N个第二资源的标识一一对应,N为大于1的整数;接收单元1601,还用于测量N个第一资源上的信号强度,得到N个第一信号强度;接收单元1601,还用于对第二资源上的信号强度进行N次测量,得到N个第二信号强度;发送单元1602,用于向网络设备上报一个或多个第一信干噪比SINR,第一SINR为基于N个第一信号强度和N个第二信号强度得到的N个SINR中的SINR。
在一种可能的实现中,接收单元1601测量N个第一资源上的信号强度的方式具体为:通过N个第一资源的接收参数测量N个第一资源上的信号强度;接收单元1601对第二资源上的信号强度进行N次测量的方式具体为:通过N个第一资源的接收参数对第二资源上的信号强度进行N次测量。
在一种可能的实现中,第二资源的周期为第一资源的周期的1/N倍。
在一种可能的实现中,第二资源的周期与第一资源的周期相同,测量N个第二信号强度的时域范围小于或等于一个时间单元的时间长度。
请参见图16,图16示出了本申请实施例的一种通信装置的结构示意图。图16所示的通信装置可以用于执行上述图7所描述的方法实施例中网络设备的部分或全部功能。该装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。其中,该通信装置还可以为芯片***。图16所示的通信装置可以包括接收单元1601和发送单元1602。其中:
发送单元1602,用于向终端设备发送配置信息,配置信息用于配置第一资源集合和第二资源集合,第一资源集合中的资源标识对应的资源用于信道测量,第二资源集合中的资源标识对应的资源用于干扰测量,第一资源集合中包括N个第一资源的标识,第二资源集合中包括N个第二资源的标识,N个第二资源的标识相同,N个第一资源的标识与N个第二资源的标识一一对应,N为大于1的整数;发送单元1602,还用于在N个第一资源分别发送第一参考信号;发送单元1602,还用于在第二资源发送第二参考信号;接收单元1601,用于接收终端设备上报的一个或多个第一信干噪比SINR。
在一种可能的实现中,第二资源的周期为第一资源的周期的1/N倍。
在一种可能的实现中,第二资源的周期与第一资源的周期相同。
请参见图16,图16示出了本申请实施例的一种通信装置的结构示意图。图16所示的通信装置可以用于执行上述图10所描述的方法实施例中终端设备的部分或全部功能。该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该通信装置还可以为芯片***。图16所示的通信装置可以包括接收单元1601 和发送单元1602。其中:
接收单元1601,用于接收网络设备发送的配置信息,配置信息用于配置第一资源集合,第一资源集合中的资源标识对应的资源用于信道测量,第一资源集合中包括N个第一资源的标识,N个第一资源的标识相同,N为大于1的整数;接收单元1601,还用于对第一资源上的信号强度进行N次测量,得到N个信号强度;发送单元1602,用于向网络设备上报N个信号强度中的第一信号强度。
在一种可能的实现中,N次测量的时域范围小于或等于一个时间单元的时间长度。
在一种可能的实现中,N次测量中的每次测量的时域测量范围小于或等于N IFFT/N,N IFFT为一个时间单元的时间长度。
在一种可能的实现中,N次测量中的每次测量的时域测量范围小于或等于N IFFT/N-N CP/N,N CP为循环前缀的时间长度,N IFFT为一个时间单元的时间长度。
在一种可能的实现中,N次测量在循环前缀之后执行。
在一种可能的实现中,配置信息中还包括重复因子,重复因子为关闭,
发送单元1602,还用于向网络设备上报第一信号强度对应的第一资源的标识在第一资源集合中的位置。
请参见图16,图16示出了本申请实施例的一种通信装置的结构示意图。图16所示的通信装置可以用于执行上述图10所描述的方法实施例中网络设备的部分或全部功能。该装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。其中,该通信装置还可以为芯片***。图16所示的通信装置可以包括接收单元1601和发送单元1602。其中:
发送单元1602,用于向终端设备发送配置信息,配置信息用于配置第一资源集合,第一资源集合中的资源标识对应的资源用于信道测量,第一资源集合中包括N个第一资源的标识,N个第一资源的标识相同,N为大于1的整数;发送单元1602,还用于在第一资源发送参考信号;接收单元1601,用于接收终端设备上报的N个信号强度中的第一信号强度。
在一种可能的实现中,配置信息中还包括重复因子,重复因子为关闭,发送单元1602在第一资源发送参考信号的方式具体为:通过N个发送参数在第一资源发送N次参考信号。
在一种可能的实现中,通过N个发送参数发送N次参考信号的时域范围小于或等于一个时间单元的时间长度。
在一种可能的实现中,每次发送参考信号的时域范围小于或等于N IFFT/N,N IFFT为一个时间单元的时间长度。
在一种可能的实现中,每次发送参考信号的时域范围小于或等于N IFFT/N-N CP/N,N CP为循环前缀的时间长度,N IFFT为一个时间单元的时间长度。
在一种可能的实现中,通过N个发送参数发送N次参考信号在循环前缀之后执行。
在一种可能的实现中,配置信息中还包括重复因子,重复因子为关闭,接收单元1601,还用于接收终端设备上报的第一信号强度对应的第一资源的标识在第一资源集合中的位置。
如图17a所示为本申请实施例提供的一种通信装置170,用于实现上述方法中终端设备的功能。该装置可以是终端设备或用于终端设备的装置。用于终端设备的装置可以为终 端设备内的芯片***或芯片。其中,芯片***可以由芯片构成,也可以包含芯片和其他分立器件。或者,通信装置170,用于实现上述方法中通信设备的功能。该装置可以是通信设备或用于通信设备的装置。用于通信设备的装置可以为通信设备内的芯片***或芯片。其中,芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置170包括至少一个处理器1717,用于实现本申请实施例提供的方法中终端设备或网络设备的数据处理功能。装置170还可以包括通信接口1710,用于实现本申请实施例提供的方法中终端设备或网络设备的收发操作。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。例如,通信接口1710用于装置170中的装置可以和其它设备进行通信。处理器1717利用通信接口1710收发数据,并用于实现上述方法实施例所述的方法。
装置170还可以包括至少一个存储器1730,用于存储程序指令和/或数据。存储器1730和处理器1717耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1717可能和存储器1730协同操作。处理器1717可能执行存储器1730中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述通信接口1710、处理器1717以及存储器1730之间的具体连接介质。本申请实施例在图17a中以存储器1730、通信接口1717以及通信接口1710之间通过总线1740连接,总线在图17a中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图17a中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
装置170具体是用于终端设备或网络设备的装置时,例如装置170具体是芯片或者芯片***时,通信接口1710所输出或接收的可以是基带信号。装置170具体是终端设备或网络设备时,通信接口1710所输出或接收的可以是射频信号。在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
作为示例,图17b为本申请实施例提供的另一种终端设备1700的结构示意图。该终端设备可执行上述方法实施例中终端设备所执行的操作。
为了便于说明,图17b仅示出了终端设备的主要部件。如图17b所示,终端设备1700包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行图4、图7、图10所描述的流程。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。终端设备1700还可以包括输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的, 处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图17b仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器(central processing unit,CPU),基带处理器主要用于对通信协议以及通信数据进行处理,CPU主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。可选的,该处理器还可以是网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
示例性的,在本申请实施例中,如图17b所示,可以将具有收发功能的天线和射频电路视为终端设备1700的通信单元1701,将具有处理功能的处理器视为终端设备1700的处理单元1702。
通信单元1701也可以称为收发器、收发机、收发装置、收发单元等,用于实现收发功能。可选的,可以将通信单元1701中用于实现接收功能的器件视为接收单元,将通信单元1701中用于实现发送功能的器件视为发送单元,即通信单元1701包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
在一些实施例中,通信单元1701、处理单元1702可能集成为一个器件,也可以分离为不同的器件,此外,处理器与存储器也可以集成为一个器件,或分立为不同器件。
其中,通信单元1701可用于执行上述方法实施例中终端设备的收发操作。处理单元1702可用于执行上述方法实施例中终端设备的数据处理操作。
本发明实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在处理器上运行时,上述方法实施例的方法流程得以实现。
本发明实施例还提供一种计算机程序产品,当所述计算机程序产品在处理器上运行时,上述方法实施例的方法流程得以实现。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明 所必须的。
本申请提供的各实施例的描述可以相互参照,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。为描述的方便和简洁,例如关于本申请实施例提供的各装置、设备的功能以及执行的步骤可以参照本申请方法实施例的相关描述,各方法实施例之间、各装置实施例之间也可以互相参考、结合或引用。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (64)

  1. 一种信息上报方法,其特征在于,所述方法包括:
    接收网络设备发送的配置信息,所述配置信息用于配置第一资源集合和第二资源集合,所述第一资源集合中的资源标识对应的资源用于信道测量,所述第二资源集合中的资源标识对应的资源用于干扰测量,所述第一资源集合中包括N个第一资源的标识,所述N个第一资源的标识相同,所述第二资源集合中包括N个第二资源的标识,所述N个第一资源的标识与所述N个第二资源的标识一一对应,所述N为大于1的整数;
    测量所述第一资源上的信号强度,得到第一信号强度;
    测量所述N个第二资源上的信号强度,得到N个第二信号强度;
    基于所述第一信号强度和所述N个第二信号强度向所述网络设备上报第一信干噪比SINR。
  2. 根据权利要求1所述的方法,其特征在于,所述N个第二资源的接收参数与所述第一资源的接收参数相同。
  3. 根据权利要求1或2所述的方法,其特征在于,所述基于所述第一信号强度和所述N个第二信号强度向所述网络设备上报第一信干噪比SINR,包括:
    确定N个SINR,所述N个SINR中第i个SINR基于所述第一信号强度和所述N个第二信号强度中的第i个第二信号强度得到,所述i为大于0,且小于或等于N的整数;
    向所述网络设备上报所述N个SINR中的一个或多个第一SINR。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    向所述网络设备上报所述一个或多个第一SINR对应的第一资源的标识在所述第一资源集合中的位置。
  5. 根据权利要求1所述的方法,其特征在于,所述第一SINR基于所述N个第二信号强度之和以及所述第一信号强度得到。
  6. 根据权利要求5所述的方法,其特征在于,所述第一资源集合中还包括与所述第一资源的标识不同的资源标识,所述方法还包括:
    向所述网络设备上报所述第一资源的标识在所述第一资源集合中的位置。
  7. 一种信息上报方法,其特征在于,所述方法包括:
    向终端设备发送配置信息,所述配置信息用于配置第一资源集合和第二资源集合,所述第一资源集合中的资源标识对应的资源用于信道测量,所述第二资源集合中的资源标识对应的资源用于干扰测量,所述第一资源集合中包括N个第一资源的标识,所述N个第一资源的标识相同,所述第二资源集合中包括N个第二资源的标识,所述N个第一资源的标识与所述N个第二资源的标识一一对应,所述N为大于1的整数;
    在所述第一资源发送第一参考信号;
    在所述N个第二资源分别发送第二参考信号;
    接收所述终端设备上报的第一信干噪比SINR。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    接收所述终端设备上报的一个或多个所述第一SINR对应的第一资源的标识在所述第一资源集合中的位置。
  9. 根据权利要求7所述的方法,其特征在于,所述第一资源集合中还包括与所述第一资源的标识不同的资源标识,所述方法还包括:
    接收所述终端设备上报的所述第一资源的标识在所述第一资源集合中的位置。
  10. 一种信息上报方法,其特征在于,所述方法包括:
    接收网络设备发送的配置信息,所述配置信息用于配置第一资源集合和第二资源集合,所述第一资源集合中的资源标识对应的资源用于信道测量,所述第二资源集合中的资源标识对应的资源用于干扰测量,所述第一资源集合中包括N个第一资源的标识,所述第二资源集合中包括N个第二资源的标识,所述N个第二资源的标识相同,所述N个第一资源的标识与所述N个第二资源的标识一一对应,所述N为大于1的整数;
    测量所述N个第一资源上的信号强度,得到N个第一信号强度;
    对所述第二资源上的信号强度进行N次测量,得到N个第二信号强度;
    向所述网络设备上报一个或多个第一信干噪比SINR,所述第一SINR为基于所述N个第一信号强度和所述N个第二信号强度得到的N个SINR中的SINR。
  11. 根据权利要求10所述的方法,其特征在于,
    所述测量所述N个第一资源上的信号强度,包括:
    通过N个第一资源的接收参数测量所述N个第一资源上的信号强度;
    所述对所述第二资源上的信号强度进行N次测量,包括:
    通过所述N个第一资源的接收参数对所述第二资源上的信号强度进行N次测量。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第二资源的周期为所述第一资源的周期的1/N倍。
  13. 根据权利要求10或11所述的方法,其特征在于,所述第二资源的周期与所述第一资源的周期相同,测量所述N个第二信号强度的时域范围小于或等于一个时间单元的时间长度。
  14. 一种信息上报方法,其特征在于,所述方法包括:
    向终端设备发送配置信息,所述配置信息用于配置第一资源集合和第二资源集合,所述第一资源集合中的资源标识对应的资源用于信道测量,所述第二资源集合中的资源标识对应的资源用于干扰测量,所述第一资源集合中包括N个第一资源的标识,所述第二资源集合中包括N个第二资源的标识,所述N个第二资源的标识相同,所述N个第一资源的 标识与所述N个第二资源的标识一一对应,所述N为大于1的整数;
    在所述N个第一资源分别发送第一参考信号;
    在所述第二资源发送第二参考信号;
    接收所述终端设备上报的一个或多个第一信干噪比SINR。
  15. 根据权利要求14所述的方法,其特征在于,所述第二资源的周期为所述第一资源的周期的1/N倍。
  16. 根据权利要求14所述的方法,其特征在于,所述第二资源的周期与所述第一资源的周期相同。
  17. 一种信息上报方法,其特征在于,所述方法包括:
    接收网络设备发送的配置信息,所述配置信息用于配置第一资源集合,所述第一资源集合中的资源标识对应的资源用于信道测量,所述第一资源集合中包括N个第一资源的标识,所述N个第一资源的标识相同,所述N为大于1的整数;
    对所述第一资源上的信号强度进行N次测量,得到N个信号强度;
    向所述网络设备上报所述N个信号强度中的第一信号强度。
  18. 根据权利要求17所述的方法,所述N次测量的时域范围小于或等于一个时间单元的时间长度。
  19. 根据权利要求18所述的方法,所述N次测量中的每次测量的时域测量范围小于或等于N IFFT/N,所述N IFFT为一个时间单元的时间长度。
  20. 根据权利要求18所述的方法,所述N次测量中的每次测量的时域测量范围小于或等于N IFFT/N-N CP/N,所述N CP为循环前缀的时间长度,所述N IFFT为一个时间单元的时间长度。
  21. 根据权利要求20所述的方法,所述N次测量在循环前缀之后执行。
  22. 根据权利要求17~21中任意一项所述的方法,所述配置信息中还包括重复因子,所述重复因子为关闭,所述方法还包括:
    向所述网络设备上报所述第一信号强度对应的第一资源的标识在所述第一资源集合中的位置。
  23. 一种信息上报方法,其特征在于,所述方法包括:
    向终端设备发送配置信息,所述配置信息用于配置第一资源集合,所述第一资源集合中的资源标识对应的资源用于信道测量,所述第一资源集合中包括N个第一资源的标识,所述N个第一资源的标识相同,所述N为大于1的整数;
    在所述第一资源发送参考信号;
    接收所述终端设备上报的所述N个信号强度中的第一信号强度。
  24. 根据权利要求23所述的方法,其特征在于,所述配置信息中还包括重复因子,所述重复因子为关闭,所述在所述第一资源发送参考信号,包括:
    通过N个发送参数在所述第一资源发送N次参考信号。
  25. 根据权利要求24所述的方法,其特征在于,通过N个发送参数发送N次参考信号的时域范围小于或等于一个时间单元的时间长度。
  26. 根据权利要求25所述的方法,其特征在于,每次发送参考信号的时域范围小于或等于N IFFT/N,所述N IFFT为一个时间单元的时间长度。
  27. 根据权利要求25所述的方法,其特征在于,每次发送参考信号的时域范围小于或等于N IFFT/N-N CP/N,所述N CP为循环前缀的时间长度,所述N IFFT为一个时间单元的时间长度。
  28. 根据权利要求27所述的方法,其特征在于,通过N个发送参数发送N次参考信号在循环前缀之后执行。
  29. 根据权利要23~28中任意一项所述的方法,其特征在于,所述配置信息中还包括重复因子,所述重复因子为关闭,所述方法还包括:
    接收所述终端设备上报的所述第一信号强度对应的第一资源的标识在所述第一资源集合中的位置。
  30. 一种通信装置,其特征在于,所述通信装置包括:
    接收单元,用于接收网络设备发送的配置信息,所述配置信息用于配置第一资源集合和第二资源集合,所述第一资源集合中的资源标识对应的资源用于信道测量,所述第二资源集合中的资源标识对应的资源用于干扰测量,所述第一资源集合中包括N个第一资源的标识,所述N个第一资源的标识相同,所述第二资源集合中包括N个第二资源的标识,所述N个第一资源的标识与所述N个第二资源的标识一一对应,所述N为大于1的整数;
    所述接收单元,还用于测量所述第一资源上的信号强度,得到第一信号强度;
    所述接收单元,还用于测量所述N个第二资源上的信号强度,得到N个第二信号强度;
    发送单元,用于基于所述第一信号强度和所述N个第二信号强度向所述网络设备上报第一信干噪比SINR。
  31. 根据权利要求30所述的通信装置,其特征在于,所述N个第二资源的接收参数与所述第一资源的接收参数相同。
  32. 根据权利要求30或31所述的通信装置,其特征在于,所述发送单元具体用于:
    确定N个SINR,所述N个SINR中第i个SINR基于所述第一信号强度和所述N个 第二信号强度中的第i个第二信号强度得到,所述i为大于0,且小于或等于N的整数;
    向所述网络设备上报所述N个SINR中的一个或多个第一SINR。
  33. 根据权利要求32所述的通信装置,其特征在于,
    所述发送单元,还用于向所述网络设备上报所述一个或多个第一SINR对应的第一资源的标识在所述第一资源集合中的位置。
  34. 根据权利要求30所述的通信装置,其特征在于,所述第一SINR基于所述N个第二信号强度之和以及所述第一信号强度得到。
  35. 根据权利要求34所述的通信装置,其特征在于,所述第一资源集合中还包括与所述第一资源的标识不同的资源标识,
    所述发送单元,还用于向所述网络设备上报所述第一资源的标识在所述第一资源集合中的位置。
  36. 一种通信装置,其特征在于,所述通信装置包括:
    发送单元,用于向终端设备发送配置信息,所述配置信息用于配置第一资源集合和第二资源集合,所述第一资源集合中的资源标识对应的资源用于信道测量,所述第二资源集合中的资源标识对应的资源用于干扰测量,所述第一资源集合中包括N个第一资源的标识,所述N个第一资源的标识相同,所述第二资源集合中包括N个第二资源的标识,所述N个第一资源的标识与所述N个第二资源的标识一一对应,所述N为大于1的整数;
    所述发送单元,还用于在所述第一资源发送第一参考信号;
    所述发送单元,还用于在所述N个第二资源分别发送第二参考信号;
    接收单元,用于接收所述终端设备上报的第一信干噪比SINR。
  37. 根据权利要求36所述的通信装置,其特征在于,
    所述接收单元,还用于接收所述终端设备上报的一个或多个所述第一SINR对应的第一资源的标识在所述第一资源集合中的位置。
  38. 根据权利要求36所述的通信装置,其特征在于,所述第一资源集合中还包括与所述第一资源的标识不同的资源标识,所述接收单元,还用于接收所述终端设备上报的所述第一资源的标识在所述第一资源集合中的位置。
  39. 一种通信装置,其特征在于,所述通信装置包括:
    接收单元,用于接收网络设备发送的配置信息,所述配置信息用于配置第一资源集合和第二资源集合,所述第一资源集合中的资源标识对应的资源用于信道测量,所述第二资源集合中的资源标识对应的资源用于干扰测量,所述第一资源集合中包括N个第一资源的标识,所述第二资源集合中包括N个第二资源的标识,所述N个第二资源的标识相同,所述N个第一资源的标识与所述N个第二资源的标识一一对应,所述N为大于1的整数;
    所述接收单元,还用于测量所述N个第一资源上的信号强度,得到N个第一信号强度;
    所述接收单元,还用于对所述第二资源上的信号强度进行N次测量,得到N个第二信号强度;
    发送单元,用于向所述网络设备上报一个或多个第一信干噪比SINR,所述第一SINR为基于所述N个第一信号强度和所述N个第二信号强度得到的N个SINR中的SINR。
  40. 根据权利要求39所述的通信装置,其特征在于,所述接收单元测量所述N个第一资源上的信号强度的方式具体为:
    通过N个第一资源的接收参数测量所述N个第一资源上的信号强度;
    所述接收单元对所述第二资源上的信号强度进行N次测量的方式具体为:
    通过所述N个第一资源的接收参数对所述第二资源上的信号强度进行N次测量。
  41. 根据权利要求39或40所述的通信装置,其特征在于,所述第二资源的周期为所述第一资源的周期的1/N倍。
  42. 根据权利要求39或40所述的通信装置,其特征在于,所述第二资源的周期与所述第一资源的周期相同,测量所述N个第二信号强度的时域范围小于或等于一个时间单元的时间长度。
  43. 一种通信装置,其特征在于,所述通信装置包括:
    发送单元,用于向终端设备发送配置信息,所述配置信息用于配置第一资源集合和第二资源集合,所述第一资源集合中的资源标识对应的资源用于信道测量,所述第二资源集合中的资源标识对应的资源用于干扰测量,所述第一资源集合中包括N个第一资源的标识,所述第二资源集合中包括N个第二资源的标识,所述N个第二资源的标识相同,所述N个第一资源的标识与所述N个第二资源的标识一一对应,所述N为大于1的整数;
    所述发送单元,还用于在所述N个第一资源分别发送第一参考信号;
    所述发送单元,还用于在所述第二资源发送第二参考信号;
    接收单元,用于接收所述终端设备上报的一个或多个第一信干噪比SINR。
  44. 根据权利要求43所述的通信装置,其特征在于,所述第二资源的周期为所述第一资源的周期的1/N倍。
  45. 根据权利要求43所述的通信装置,其特征在于,所述第二资源的周期与所述第一资源的周期相同。
  46. 一种通信装置,其特征在于,所述通信装置包括:
    接收单元,用于接收网络设备发送的配置信息,所述配置信息用于配置第一资源集合,所述第一资源集合中的资源标识对应的资源用于信道测量,所述第一资源集合中包括N个第一资源的标识,所述N个第一资源的标识相同,所述N为大于1的整数;
    所述接收单元,还用于对所述第一资源上的信号强度进行N次测量,得到N个信号强度;
    发送单元,用于向所述网络设备上报所述N个信号强度中的第一信号强度。
  47. 根据权利要求46所述的通信装置,其特征在于,所述N次测量的时域范围小于或等于一个时间单元的时间长度。
  48. 根据权利要求47所述的通信装置,其特征在于,所述N次测量中的每次测量的时域测量范围小于或等于N IFFT/N,所述N IFFT为一个时间单元的时间长度。
  49. 根据权利要求47所述的通信装置,其特征在于,所述N次测量中的每次测量的时域测量范围小于或等于N IFFT/N-N CP/N,所述N CP为循环前缀的时间长度,所述N IFFT为一个时间单元的时间长度。
  50. 根据权利要求49所述的通信装置,其特征在于,所述N次测量在循环前缀之后执行。
  51. 根据权利要求46~50中任意一项所述的通信装置,其特征在于,所述配置信息中还包括重复因子,所述重复因子为关闭,
    所述发送单元,还用于向所述网络设备上报所述第一信号强度对应的第一资源的标识在所述第一资源集合中的位置。
  52. 一种通信装置,其特征在于,所述通信装置包括:
    发送单元,用于向终端设备发送配置信息,所述配置信息用于配置第一资源集合,所述第一资源集合中的资源标识对应的资源用于信道测量,所述第一资源集合中包括N个第一资源的标识,所述N个第一资源的标识相同,所述N为大于1的整数;
    所述发送单元,还用于在所述第一资源发送参考信号;
    接收单元,用于接收所述终端设备上报的所述N个信号强度中的第一信号强度。
  53. 根据权利要求52所述的通信装置,其特征在于,所述配置信息中还包括重复因子,所述重复因子为关闭,所述发送单元在所述第一资源发送参考信号的方式具体为:
    通过N个发送参数在所述第一资源发送N次参考信号。
  54. 根据权利要求53所述的通信装置,其特征在于,通过N个发送参数发送N次参考信号的时域范围小于或等于一个时间单元的时间长度。
  55. 根据权利要求54所述的通信装置,其特征在于,每次发送参考信号的时域范围小于或等于N IFFT/N,所述N IFFT为一个时间单元的时间长度。
  56. 根据权利要求54所述的通信装置,其特征在于,每次发送参考信号的时域范围小于或等于N IFFT/N-N CP/N,所述N CP为循环前缀的时间长度,所述N IFFT为一个时间单元的时间长度。
  57. 根据权利要求56所述的通信装置,其特征在于,通过N个发送参数发送N次参考信号在循环前缀之后执行。
  58. 根据权利要求52~57中任意一项所述的通信装置,其特征在于,所述配置信息中还包括重复因子,所述重复因子为关闭,所述接收单元,还用于接收所述终端设备上报的所述第一信号强度对应的第一资源的标识在所述第一资源集合中的位置。
  59. 一种通信装置,所述通信装置包括处理器,当所述处理器执行存储器中的计算机程序时,如权利要求1~6、7~9、10~13、14~16、17~22或23~29中任意一项所述的方法被执行。
  60. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储计算机执行指令;
    所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如权利要求1~6、7~9、10~13、14~16、17~22或23~29中任一项所述的方法。
  61. 一种通信装置,其特征在于,包括处理器、存储器和收发器;
    所述收发器,用于接收信号或者发送信号;
    所述存储器,用于存储程序代码;
    所述处理器,用于从所述存储器调用所述程序代码执行如权利要求1~6、7~9、10~13、14~16、17~22或23~29中任一项所述的方法。
  62. 一种通信装置,其特征在于,包括处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如权利要求1~6、7~9、10~13、14~16、17~22或23~29中任一项所述的方法。
  63. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储指令,当所述指令被执行时,使如权利要求1~6、7~9、10~13、14~16、17~22或23~29中任一项所述的方法被实现。
  64. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被执行时,使如权利要求1~6、7~9、10~13、14~16、17~22或23~29中任一项所述的方法被实现。
PCT/CN2019/119288 2019-11-18 2019-11-18 一种信息上报方法及装置 WO2021097631A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2019/119288 WO2021097631A1 (zh) 2019-11-18 2019-11-18 一种信息上报方法及装置
CN202080079527.1A CN114731658A (zh) 2019-11-18 2020-02-13 一种信息上报方法及装置
EP20891403.6A EP4040894A4 (en) 2019-11-18 2020-02-13 INFORMATION REPORTING METHOD AND DEVICE
PCT/CN2020/075088 WO2021098048A1 (zh) 2019-11-18 2020-02-13 一种信息上报方法及装置
US17/746,398 US20220279370A1 (en) 2019-11-18 2022-05-17 Information reporting method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/119288 WO2021097631A1 (zh) 2019-11-18 2019-11-18 一种信息上报方法及装置

Publications (1)

Publication Number Publication Date
WO2021097631A1 true WO2021097631A1 (zh) 2021-05-27

Family

ID=75980355

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/119288 WO2021097631A1 (zh) 2019-11-18 2019-11-18 一种信息上报方法及装置
PCT/CN2020/075088 WO2021098048A1 (zh) 2019-11-18 2020-02-13 一种信息上报方法及装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075088 WO2021098048A1 (zh) 2019-11-18 2020-02-13 一种信息上报方法及装置

Country Status (4)

Country Link
US (1) US20220279370A1 (zh)
EP (1) EP4040894A4 (zh)
CN (1) CN114731658A (zh)
WO (2) WO2021097631A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210352651A1 (en) * 2020-05-07 2021-11-11 Qualcomm Incorporated Techniques for measurement of signal-to-interference-plus-noise ratio (sinr)
US11658729B2 (en) * 2020-05-08 2023-05-23 Qualcomm Incorporated Full duplex downlink and uplink beam pair selection
CN116195293A (zh) * 2020-09-15 2023-05-30 苹果公司 从用户装备接收干扰和噪声功率波动报告

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107370559A (zh) * 2016-05-13 2017-11-21 中兴通讯股份有限公司 信道状态信息的反馈方法及装置
CN108282212A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种信道状态信息处理的方法、装置和***
CN109802806A (zh) * 2017-11-17 2019-05-24 维沃移动通信有限公司 信道状态信息参考信号资源的配置方法和设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3493422A4 (en) * 2016-08-05 2020-03-04 LG Electronics Inc. -1- METHOD FOR REPORTING THE CHANNEL STATUS IN A WIRELESS COMMUNICATION SYSTEM AND DEVICE THEREFOR
KR101956800B1 (ko) * 2016-12-28 2019-06-27 엘지전자 주식회사 무선 통신 시스템에서의 참조 신호 자원 수신 방법 및 이를 위한 장치
CN108282321B (zh) * 2017-01-06 2022-03-29 华为技术有限公司 一种信息指示的方法、网络设备和终端设备
JP6911147B2 (ja) * 2018-01-11 2021-07-28 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてチャネル状態情報を報告するための方法及びそのための装置
CN110062416B (zh) * 2018-01-19 2023-04-28 维沃移动通信有限公司 资源关系的通知、确定方法、基站及终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107370559A (zh) * 2016-05-13 2017-11-21 中兴通讯股份有限公司 信道状态信息的反馈方法及装置
CN108282212A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种信道状态信息处理的方法、装置和***
CN109802806A (zh) * 2017-11-17 2019-05-24 维沃移动通信有限公司 信道状态信息参考信号资源的配置方法和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SONY: "Enhancements on multi-beam operation", 3GPP DRAFT; R1-1912356, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051823373 *
ZTE: "Enhancements on multi-beam operation", 3GPP DRAFT; R1-1911931, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, US; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051823112 *

Also Published As

Publication number Publication date
EP4040894A1 (en) 2022-08-10
EP4040894A4 (en) 2022-11-23
WO2021098048A1 (zh) 2021-05-27
US20220279370A1 (en) 2022-09-01
CN114731658A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2018228421A1 (zh) 用户终端间交叉链路干扰测量的方法、用户终端和传输接收点
US11064492B2 (en) Resource configuration method and apparatus
US20220046735A1 (en) Secondary cell activation method and apparatus
US20210351825A1 (en) Channel state information transmission method and apparatus
US20220394504A1 (en) Beam pair training method and communication apparatus
WO2021098048A1 (zh) 一种信息上报方法及装置
JP6783945B2 (ja) 参照信号送信方法および装置
JP2020504549A (ja) リソース指示方法、装置およびシステム
US11799520B2 (en) Communication method and communications apparatus
WO2019100905A1 (zh) 数据传输方法、终端设备和网络设备
US20230180023A1 (en) Beam information determining method and apparatus, and electronic device
WO2019029562A1 (zh) 波束失败恢复方法和用户终端
WO2019029689A1 (zh) 测量报告上报方法和用户终端
WO2022001241A1 (zh) 一种波束管理方法及装置
WO2021081770A1 (zh) 一种测量方法及装置
WO2020029873A1 (zh) 通信方法、装置和通信***
WO2020156562A1 (zh) 通信方法和装置
WO2021088042A1 (zh) 一种通信方法及装置
US20230140502A1 (en) Beam indication method and communications apparatus
JP2023513291A (ja) データ伝送方法及び装置
WO2023011195A1 (zh) 一种通信方法及通信装置
WO2021204253A1 (zh) 一种波束训练方法及装置
WO2021013138A1 (zh) 无线网络通信方法和通信装置
EP4387306A1 (en) Method and apparatus for measuring interference
WO2023273969A1 (zh) 资源测量方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953469

Country of ref document: EP

Kind code of ref document: A1