WO2021094674A1 - Câbles métalliques à deux couches avec couche interne gainée à rendement amélioré - Google Patents

Câbles métalliques à deux couches avec couche interne gainée à rendement amélioré Download PDF

Info

Publication number
WO2021094674A1
WO2021094674A1 PCT/FR2020/051995 FR2020051995W WO2021094674A1 WO 2021094674 A1 WO2021094674 A1 WO 2021094674A1 FR 2020051995 W FR2020051995 W FR 2020051995W WO 2021094674 A1 WO2021094674 A1 WO 2021094674A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
layer
metal wires
equal
elastomeric composition
Prior art date
Application number
PCT/FR2020/051995
Other languages
English (en)
Inventor
Alexandre GIANETTI
Pierre-Marie MICHON
Original Assignee
Compagnie Generale Des Etablissements Michelin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale Des Etablissements Michelin filed Critical Compagnie Generale Des Etablissements Michelin
Priority to EP20819811.9A priority Critical patent/EP4058629B1/fr
Priority to AU2020382109A priority patent/AU2020382109A1/en
Publication of WO2021094674A1 publication Critical patent/WO2021094674A1/fr

Links

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/062Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/062Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
    • D07B1/0626Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration the reinforcing cords consisting of three core wires or filaments and at least one layer of outer wires or filaments, i.e. a 3+N configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/201Wires or filaments characterised by a coating
    • D07B2201/2011Wires or filaments characterised by a coating comprising metals
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2023Strands with core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2029Open winding
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2029Open winding
    • D07B2201/2031Different twist pitch
    • D07B2201/2032Different twist pitch compared with the core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2038Strands characterised by the number of wires or filaments
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2046Strands comprising fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2059Cores characterised by their structure comprising wires
    • D07B2201/2061Cores characterised by their structure comprising wires resulting in a twisted structure
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2059Cores characterised by their structure comprising wires
    • D07B2201/2062Cores characterised by their structure comprising wires comprising fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2065Cores characterised by their structure comprising a coating
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2071Spacers
    • D07B2201/2074Spacers in radial direction
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3071Zinc (Zn)
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3085Alloys, i.e. non ferrous
    • D07B2205/3089Brass, i.e. copper (Cu) and zinc (Zn) alloys
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2207/00Rope or cable making machines
    • D07B2207/40Machine components
    • D07B2207/4072Means for mechanically reducing serpentining or mechanically killing of rope
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/2015Killing or avoiding twist
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/208Enabling filler penetration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2046Tire cords
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B5/00Making ropes or cables from special materials or of particular form
    • D07B5/12Making ropes or cables from special materials or of particular form of low twist or low tension by processes comprising setting or straightening treatments
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B7/00Details of, or auxiliary devices incorporated in, rope- or cable-making machines; Auxiliary apparatus associated with such machines
    • D07B7/02Machine details; Auxiliary devices
    • D07B7/14Machine details; Auxiliary devices for coating or wrapping ropes, cables, or component strands thereof
    • D07B7/145Coating or filling-up interstices

Definitions

  • the invention relates to metal cables which can be used in particular for reinforcing tires, particularly tires intended to equip vehicles carrying heavy loads and traveling at sustained speed, such as, for example, trucks, tractors, trailers or buses trucks, planes ...
  • a tire of the heavy-duty type with a radial carcass reinforcement comprises a tread, two inextensible beads, two sidewalls connecting the beads to the tread and a belt, or crown reinforcement, disposed circumferentially between the reinforcement carcass and tread.
  • This vertex reinforcement includes several reinforcements with different functions.
  • the crown frame generally comprises a working frame comprising two working plies, or crossed plies, comprising wire working metal reinforcing elements arranged substantially parallel to each other in each working ply, but crossed by one ply to the other, that is to say inclined, symmetrically or not, with respect to the median circumferential plane, by an angle generally ranging from 15 ° to 40 °.
  • This working reinforcement allows, among other functions, the at least partial transmission of the transverse forces exerted by the ground on the tire during the rolling of the latter in order to ensure the directionality of the tire, that is to say the capacity of the tire. tire to allow the vehicle on which it is mounted to turn.
  • the third requirement is particularly strong for tire casings for industrial vehicles such as heavy goods vehicles, designed to be able to be retreaded one or more times when the treads which they comprise reach a critical degree of wear afterwards. prolonged taxiing.
  • layered steel cables consisting of a central core and one or more layers of concentric son arranged around this core.
  • the most used layered cables are essentially cables of M + N or M + N + P construction, formed of a core of M wire (s) surrounded by at least one layer of N wires possibly itself surrounded by an outer layer of P wires, the M, N or even P wires generally having the same diameter for reasons of simplification and cost.
  • the two-layer cables most used today in tire belts are essentially 3 + N construction cables made up of a core or internal layer of 3 internal metal wires. and an outer layer of N outer metal wires helically wound around the inner layer of the cable (eg 8 or 9 outer metal wires).
  • the outer layer is relatively desaturated thanks to the large diameter of the inner layer provided by the presence of the three core threads, all the more so when the diameter of the core threads is chosen to be greater than that of the threads of the outer layer.
  • This type of construction promotes, as we know, the external penetrability of the cable by the calendering rubber of the tire or other rubber article during the curing of the latter, and consequently makes it possible to improve endurance. cables in fatigue and fatigue-corrosion, particularly vis-à-vis the problem of cleavage described above.
  • the construction cables (M> 1) + N however have the drawback that they are not penetrable to the core because of the presence of a channel or capillary in the center of the N core wires, which remains empty after impregnation with the rubber and therefore conducive, by a sort of "wicking" effect, to the propagation of corrosive media such as water.
  • This drawback of M + N construction cables is well known, it has been explained for example in patent applications WO 01/00922, WO 01/49926, WO 2005/071157, WO 2006/013077.
  • the aim of the invention is a cable with improved efficiency solving the problems mentioned above.
  • the invention relates to a two-layer cable, comprising:
  • the cable is obtained by a process comprising a manufacturing step of the sheathed inner layer in which the inner layer is surrounded with an elastomeric composition having a thickness G then N external metal wires to form the external layer, with N being strictly greater than Nmax which is the maximum number of external metal wires that can be placed on the theoretical external layer obtained when the internal layer is directly in contact with the theoretical outer layer.
  • Any interval of values designated by the expression “between a and b” represents the domain of values going from more than a to less than b (that is to say limits a and b excluded) while any interval of values designated by the expression “from a to b” signifies the range of values going from the limit “a” to the limit “b”, that is to say including the strict limits “a” and “b ".
  • the cable has two layers of son, that is to say it comprises an assembly consisting of two layers of son, no more and no less, that is to say that the assembly has two layers of wires, not one, not three, but only two.
  • the inner layer of the cable is surrounded by an elastomeric composition having a thickness G and then it is surrounded by an outer layer.
  • elastomer composition or elastomeric composition is meant that the composition comprises at least one elastomer or one rubber (the two terms being synonymous) and at least one other component.
  • Nmax The maximum number of outer wires having a diameter d3 which can be placed on the theoretical outer layer having a helix radius Rt and a helix angle at obtained when the inner layer is directly in contact with the theoretical outer layer, hereinafter referred to as Nmax is defined by the following formula:
  • Nmax E (TÎ / arctan [(d3 / 2) 2 / ((Rt 2 - (d3 / 2) 2 ) x cos 2 at))] 1/2 ) with, by definition, E is the integer value of the formula in parenthesis, the helix radius Rt of the theoretical outer layer of the cable is the radius of the theoretical circle passing through the centers of the outer wires of the theoretical outer layer in a plane perpendicular to the axis of the cable.
  • the cable according to the invention has N> Nmax wires thus making it possible to increase the breaking force of the cable by adding at least minus one extra thread.
  • the inventors behind the invention put forward the hypothesis that the presence of the sheath makes it possible, on the one hand, to create a sufficient arch around the internal layer making it possible to add an additional thread and, on the other hand, to relieve the contact pressures by a cushion effect between the inner layer and the outer layer thereby improving the performance of each of the son of the cable.
  • the pitch of a wire represents the length of this wire, measured parallel to the axis of the cable in which it is located, at the end of which the wire having this pitch makes one turn. complete around said axis of the wire.
  • the direction of winding of a layer of wires is understood to mean the direction formed by the wires relative to the axis of the cable.
  • the direction of winding is commonly designated by the letter either Z or S.
  • the cable is metallic.
  • metallic cable is understood to mean by definition a cable formed of wires consisting mainly (that is to say for more than 50% of these wires) or entirely (for 100% of the wires) of a metallic material.
  • Such a metallic cable is preferably implemented with a steel cable, more preferably made of pearlitic (or ferrito-pearlitic) carbon steel hereinafter referred to as "carbon steel”, or even stainless steel (by definition, steel comprising at least 11% chromium and at least 50% iron). But it is of course possible to use other steels or other alloys.
  • its carbon content (% by weight of steel) is preferably between 0.05% and 1.2%, in particular between 0.4% and 1.1. %; these contents represent a good compromise between the mechanical properties required for the tire and the feasibility of the cords.
  • the metal or steel used can itself be coated with a metal layer improving, for example, the setting properties.
  • a metal layer improving, for example, the setting properties.
  • the steel used is covered with a layer of brass (Zn-Cu alloy) or of zinc.
  • the wires of the same layer all have substantially the same diameter.
  • the outer cords all have substantially the same diameter.
  • substantially the same diameter is meant that the wires have the same diameter within industrial tolerances.
  • the outer threads are wound helically around the inner thread at a pitch ranging from 10 to 30 mm.
  • the threads do not undergo preformation.
  • the outer layer comprises a relatively high number of outer threads and therefore exhibits a relatively high breaking strength.
  • the ratio of the diameter d1 of the or each internal metal wire to the diameter d3 of each external metal wire ranges from 0.9 to 1.2.
  • the diameter d1 of the or each internal metal wire is equal to the diameter d3 of each external metal wire.
  • the same diameter is preferably used for the internal metal wire (s) and for the external metal wires, which limits the number of different diameters to be managed during the manufacture of the cable.
  • the outer layer of the cable is saturated so that the inter-wire distance of the outer metal wires is strictly less than 20 ⁇ m.
  • a saturated cable layer is such that the inter-wire distance of the outer metal wires is strictly less than 20 ⁇ m.
  • the inter-wire distance of the outer layer of outer wires is defined, on a section of the cable perpendicular to the main axis of the cable, as the shortest distance that separates, on average, two metallic wires external adjacent.
  • the inter-wire distance of the outer metal wires is less than or equal to 100 ⁇ m.
  • a desaturated cable layer is such that the inter-wire distance of the outer metal wires is greater than or equal to 20 ⁇ m.
  • the thickness G of the sheath of elastomeric composition is strictly greater than 10 ⁇ m, preferably greater than or equal to 12 ⁇ m and more preferably greater than or equal to 15 ⁇ m.
  • the thickness G of the sheath of elastomeric composition is less than or equal to 300 ⁇ m, preferably less than or equal to 250 ⁇ m and more preferably less than or equal to 230 ⁇ m. This thickness makes it possible to optimize the relatively high number of external metal wires and therefore to have a relatively high breaking force while limiting the external diameter of the cable.
  • the elastomeric composition comprises an elastomer chosen from the group consisting of polybutadienes, natural rubber, synthetic polyisoprenes, butadiene copolymers, isoprene copolymers, and mixtures of these elastomers.
  • the elastomeric composition comprises an elastomer chosen from the group consisting of natural rubber, synthetic polyisoprenes, isoprene copolymers, and mixtures of these elastomers.
  • the elastomer composition also comprises a vulcanization system, a filler. More preferably, the elastomer is diene.
  • the elastomeric composition comprises carbon black as reinforcing filler.
  • the most severe transverse forces exerted in the cable when the latter is placed in tension are the transverse forces exerted between internal metal wires.
  • cables having an architecture in which M> 1 and comprising a number of external metal wires such that the external layer of the cable is saturated so as to maximize the breaking force by adding a maximum number of external metal wires.
  • M> 1 the cable according to the invention having an architecture in which M> 1, thanks to the formation of a cushion of elastomer composition at least partially absorbing the transverse forces exerted between the internal metal wires, the cable exhibits a markedly improved breaking strength.
  • each metal wire respectively has a diameter d 1, d3 ranging from 0.22 mm to 0.60 mm and preferably from 0.22 mm to 0.50 mm.
  • the transverse forces exerted between the internal metal wires are absorbed by the sheath and the cable has an improved breaking force due to the presence of an external metal wire. additional while limiting its external diameter.
  • Another object of the invention is a reinforced product comprising an elastomeric matrix and at least one cable as defined above.
  • the reinforced product comprises one or more cables according to the invention embedded in the elastomeric matrix, and in the case of several cables, the cables are arranged side by side in a main direction.
  • Another object of the invention is a tire comprising at least one cable or a reinforced product as defined above.
  • the tire comprises a carcass reinforcement anchored in two beads and surmounted radially by a crown reinforcement itself surmounted by a tread, the crown reinforcement being joined to said beads by two sidewalls and comprising at least one cable as defined above.
  • the crown frame comprises a protective frame and a working frame, the working frame comprising at least one cable as defined above, the protective frame being radially interposed between the tread and the working reinforcement.
  • the cable is particularly intended for industrial vehicles chosen from heavy vehicles such as "Heavy goods” - ie, metro, bus, road transport vehicles (trucks, tractors, trailers), off-road vehicles - , agricultural or civil engineering machinery, other transport or handling vehicles.
  • heavy vehicles such as "Heavy goods” - ie, metro, bus, road transport vehicles (trucks, tractors, trailers), off-road vehicles - , agricultural or civil engineering machinery, other transport or handling vehicles.
  • the tire is for a heavy vehicle type vehicle.
  • FIG. 1 is a sectional view perpendicular to the circumferential direction of a tire according to the invention
  • FIG. 2 is a sectional view of a reinforced product according to the invention.
  • FIG. 3 is a schematic sectional view perpendicular to the cable axis (assumed rectilinear and at rest) of a cable (50) according to a first embodiment of the invention
  • FIG. 4 is a view similar to that of Figure 3 of a cable (50 ’) according to a second embodiment of the invention
  • FIG. 5 is a view similar to that of Figure 3 of a cable (50 ") according to a third embodiment of the invention.
  • FIG. 1 there is shown a reference X, Y, Z corresponding to the usual respectively axial (X), radial (Y) and circumferential (Z) orientations of a tire.
  • the “median circumferential plane” M of the tire is the plane which is normal to the axis of rotation of the tire and which is located equidistant from the annular reinforcing structures of each bead.
  • the tire 10 is for a heavy-duty vehicle.
  • the tire 10 has a dimension of the 315/80 R 22.5 type.
  • This tire 10 comprises a crown 2 reinforced by a crown reinforcement or belt 6, two sidewalls 3 and two beads 4, each of these beads 4 being reinforced with a bead wire 5.
  • the crown 2 is surmounted by a strip of bearing not shown in this schematic figure.
  • a carcass reinforcement 7 is wound around the two bead wires 5 in each bead 4, the upturn 8 of this reinforcement 7 being for example disposed towards the outside of the tire 10 which is shown here mounted on its rim 9.
  • the carcass reinforcement 7 is in a manner known per se consisting of at least one ply reinforced by so-called "radial" cables, that is to say that these cables are arranged practically parallel to each other and extend from one bead to the other.
  • the tire according to the invention is characterized in that its belt 6 comprises at least, as reinforcement of at least one of the belt plies, a two-layer metal cable according to the invention.
  • this belt 6 it will be understood that the cables of the invention can for example reinforce all or part of the so-called working belt plies.
  • this tire 10 also comprises, in a known manner, an inner layer of rubber or elastomer (commonly called “inner rubber") which defines the radially internal face of the tire and which is intended to protect the ply from casing of the air diffusion coming from the space inside the tire.
  • FIG. 2 EXAMPLE OF A REINFORCED PRODUCT ACCORDING TO THE INVENTION
  • the reinforced product 100 comprises at least one cable 50, in the species several cables 50, embedded in the elastomeric matrix 102.
  • the reinforced product 100 comprises several cables 50 arranged side by side in the main direction X and extending parallel to each other within the reinforced product 100 and collectively embedded in the elastomeric matrix 102.
  • the cable 50 is metallic and has two layers. Thus, it is understood that the layers of metal son constituting the cable 50 are two in number, no more, no less.
  • the cable 50 comprises an internal layer C1 of the cable consisting of M> 1 internal metal wires F1.
  • the internal layer C1 is surrounded by an elastomeric composition having a thickness G then forming the internal sheathed layer CIG.
  • the outer layer C3 consists of N> Nmax outer metal wires F3 wound around the internal sheathed layer CIG of the cable.
  • Each internal metal wire F1 and each external metal wire F3 respectively has a diameter d1 and d3.
  • the outer layer C3 of the cable is saturated.
  • the inter-wire distance of the outer wires is strictly less than 20 ⁇ m and here is equal to 0 ⁇ m.
  • Each wire has a tensile strength, denoted Rm, such that 2500 ⁇ Rm ⁇ 3100 MPa.
  • the steel of these wires is said to be of SHT (“Super High Tensile”) grade.
  • Other yarns can be used, for example lower grade yarns, for example of grade NT ("Normal Tensile") or HT ("High Tensile”), such as higher grade yarns, for example of UT grade (" Ultra Tensile ”) or MT (“ Mega Tensile ”).
  • the cable according to the invention is manufactured using a process comprising steps well known to those skilled in the art.
  • the cable described above is manufactured according to known processes comprising the following steps, preferably carried out online and continuously:
  • the internal layer C1 is surrounded with an elastomeric composition having a thickness G then the N external metal wires F3 are assembled by twisting around the internal layer CIG at the pitch p3 and in the S direction to form the assembly of the CIG and C3 layers, with N being strictly greater than Nmax which is the maximum number of external metal wires F3 that can be placed on the theoretical external layer C3T obtained when the internal layer C1 is directly in contact with the theoretical outer layer C3T;
  • torsional balancing is understood here to mean, in a manner well known to those skilled in the art, the cancellation of the residual torsional torques (or of the elastic torsional return) exerted on each wire, in the layer. intermediate as in the outer layer.
  • the thickness G of the sheath of elastomeric composition is strictly greater than 10 ⁇ m, preferably greater than or equal to 12 ⁇ m and more preferably greater than or equal to 15 ⁇ m and the thickness G is less than or equal to 300 ⁇ m, preferably less than or equal to 250 ⁇ m and more preferably less than or equal to 230 ⁇ m.
  • G 71 ⁇ m.
  • the elastomeric composition comprises a vulcanization system, a filler and a diene elastomer.
  • elastomeric composition use is made of a composition of diene elastomer (s) conventional for tires, based on natural rubber (peptized) and carbon black N330 (65 phr), further comprising the usual additives.
  • the hoop F is wound at the pitch pf in the Z direction around the assembly obtained previously.
  • the cord is then incorporated by calendering into composite fabrics formed from a known composition based on natural rubber and carbon black as reinforcing filler, conventionally used for the manufacture of crown reinforcements for radial tires.
  • This composition essentially comprises, in addition to the elastomer and the reinforcing filler (carbon black), an antioxidant, stearic acid, an extender oil, cobalt naphthenate as an adhesion promoter, finally a vulcanization system (sulfur, accelerator, ZnO).
  • the composite fabrics reinforced by these cables comprise a matrix of elastomeric composition formed of two thin layers of elastomeric composition which are superimposed on either side of the cables and which respectively have a thickness ranging from 0.6 and 1.5. mm.
  • the calendering pitch (laying of cables in the fabric of elastomeric composition) ranges from 1 mm to 4 mm.
  • FIG. 4 shows a cable 50 ’according to a second embodiment of the invention. Elements similar to the first embodiment are designated by identical references.
  • FIG. 5 shows a cable 50 ”according to a third embodiment of the invention. Elements similar to the first embodiment are designated by identical references.
  • Table 1 summarizes the characteristics for the different cables 50, 50 'and 50 ".
  • Table 5 summarizes the characteristics of the indicator cable T1, of comparative cables C1 and C2 not in accordance with the invention.
  • Table 5 the indicator cable T1, the comparative cables C1 and C2 and the cable 50 ′ according to the invention. The results of these tests are given in base 100. Thus, a result greater than 100 for one or other of these tests means that the cable tested has a breaking force greater than the control cable. In the same table, we also compared the breaking force related to the diameter of the cable.
  • the cable 50 ’ according to the invention has a breaking force of the same order as that of the comparative cable C2 and better compared to the control cable T1 and the comparative cable C1.
  • the breaking force reduced to the diameter of the cable is significantly greater than that of the control cable T1 and that of the comparative cables C1 and C2 with improved penetrability.
  • the cable according to the invention has a better arrangement of the wires in the same space. This test clearly demonstrates that the presence here of the sheath of elastomeric composition making it possible to put two additional threads on the outer layer in accordance with the invention makes it possible to obtain an arching effect and thus a more effective participation of each thread in the breaking force. of the cable compared to the T1 cable and thus solve the problems mentioned in the preamble.

Landscapes

  • Ropes Or Cables (AREA)

Abstract

L'invention concerne un câble (50) à deux couches, comprenant : - une couche interne (C1) constituée de M>1 fils métalliques internes (F1), - une couche externe (C3) du câble constituée de N fils métalliques externes (F3) enroulés autour de la couche interne (C1) du câble. Le câble (50) est obtenu par un procédé comprenant une étape de fabrication de la couche interne gainée (CIG) dans laquelle on entoure la couche interne (CI) d'une composition élastomérique présentant une épaisseur G puis des N fils métalliques externes pour former la couche externe (C3), avec N étant strictement supérieur à Nmax qui est le nombre maximum de fils métalliques externes (F3) pouvant être disposés sur la couche externe théorique (C3T) obtenue lorsque la couche interne (C1) est directement au contact de la couche externe théorique (C3T).

Description

Câble métalliques à deux couches avec couche interne gainée à rendement amélioré
[001] L’invention concerne les câbles métalliques utilisables notamment pour le renforcement de pneumatiques, particulièrement de pneumatiques destinés à équiper des véhicules portant de lourdes charges et roulant à vitesse soutenue, tels que, par exemple, les camions, tracteurs, remorques ou bus routiers, avions...
[002] Un pneumatique de type poids-lourds à armature de carcasse radiale comprend une bande de roulement, deux bourrelets inextensibles, deux flancs reliant les bourrelets à la bande de roulement et une ceinture, ou armature de sommet, disposée circonférentiellement entre l’armature de carcasse et la bande de roulement. Cette armature de sommet comprend plusieurs armatures aux fonctions différentes.
[003] L’armature de sommet comprend généralement une armature de travail comprenant deux nappes de travail, ou nappes croisées, comprenant des éléments filaires de renfort métalliques de travail agencés les uns sensiblement parallèlement aux autres dans chaque nappe de travail, mais croisés d'une nappe à l'autre, c’est-à-dire inclinés, symétriquement ou non, par rapport au plan circonférentiel médian, d'un angle allant généralement de 15° et 40°. Cette armature de travail permet, entre autres fonctions, la transmission au moins partielle des efforts transversaux exercés par le sol sur le pneumatique lors du roulage de ce dernier afin d’assurer la directionalité du pneumatique, c’est-à-dire la capacité du pneumatique à permettre au véhicule sur lequel il est monté de tourner.
[004] Certains pneumatiques actuels, dits "routiers", sont destinés à rouler à grande vitesse et sur des trajets de plus en plus longs, du fait de l'amélioration du réseau routier et de la croissance du réseau autoroutier dans le monde. L'ensemble des conditions, sous lesquelles un tel pneumatique est appelé à rouler, permet sans aucun doute un accroissement du nombre de kilomètres parcourus, l'usure du pneumatique étant moindre ; par contre l'endurance de ce dernier et en particulier de l'armature de sommet s’en trouve pénalisée. [005] L’armature de sommet de pneumatique doit satisfaire de manière connue à différentes exigences, souvent contradictoires, notamment :
- être la plus rigide possible à faible déformation, car elle contribue d’une manière substantielle à rigidifier le sommet du pneumatique ;
- avoir une hystérèse aussi basse que possible, pour d’une part minimiser réchauffement en roulage de la zone interne du sommet et d’autre part réduire la résistance au roulement du pneumatique, synonyme d'économie de carburant ;
- posséder enfin une endurance élevée, vis-à-vis en particulier du phénomène de séparation, fissuration des extrémités des nappes croisées dans la zone d’épaule du pneumatique, connu sous le terme de "clivage", ce qui exige notamment des câbles métalliques qui renforcent les nappes de travail de présenter une résistance élevée à la fatigue en compression, le tout dans une atmosphère plus ou moins corrosive.
[006] La troisième exigence est particulièrement forte pour les enveloppes de pneumatiques pour véhicules industriels tels que véhicules poids-lourds, conçues pour pouvoir être rechapées une ou plusieurs fois lorsque les bandes de roulement qu’elles comportent atteignent un degré d’usure critique après un roulage prolongé.
[007] Pour le renforcement des nappes de travail ci-dessus, on utilise généralement des câbles d'acier dits à couches constitués d'une âme centrale et d'une ou plusieurs couches de fils concentriques disposées autour de cette âme. Les câbles à couches les plus utilisés sont essentiellement des câbles de construction M+N ou M+N+P, formés d'une âme de M fil(s) entourée d'au moins une couche de N fils éventuellement elle-même entourée d'une couche externe de P fils, les M, N voire P fils ayant généralement le même diamètre pour des raisons de simplification et de coût.
[008] Pour toutes les raisons exposées ci-dessus, les câbles à deux couches les plus utilisés aujourd'hui dans les ceintures de pneumatiques sont essentiellement des câbles de construction 3+N constitués d'une âme ou couche interne de 3 fils métalliques internes et d'une couche externe de N fils métalliques externes enroulés en hélice autour de la couche interne du câble (par exemple, de 8 ou 9 fils métalliques externes). La couche externe est relativement désaturée grâce au diamètre élevé de la couche interne apporté par la présence des trois fils d'âme, d'autant plus lorsque le diamètre des fils d'âme est choisi supérieur à celui des fils de la couche externe.
[009] Ce type de construction favorise, on le sait, la pénétrabilité externe du câble par la gomme de calandrage du pneumatique ou autre article en caoutchouc lors de la cuisson de ces derniers, et par voie de conséquence permet d'améliorer l'endurance des câbles en fatigue et fatigue-corrosion, particulièrement vis-à-vis du problème de clivage décrit précédemment.
[010] Les câbles de construction (M>1) + N ont toutefois pour inconvénient qu'ils ne sont pas pénétrables jusqu'à cœur à cause de la présence d'un canal ou capillaire au centre des N fils d'âme, qui reste vide après imprégnation par le caoutchouc et donc propice, par une sorte d'effet "de mèche", à la propagation de milieux corrosifs tels que l'eau. Cet inconvénient des câbles de construction M+N est bien connu, il a été exposé par exemple dans les demandes de brevet WO 01/00922, WO 01/49926, WO 2005/071157, WO 2006/013077.
[011] Pour résoudre le problème ci-dessus, on a proposé d'ouvrir la couche interne, en écartant ses fils, grâce à un fil noyau unitaire et de supprimer un fil de la couche externe ; le câble ainsi obtenu, de construction 1+3+(P-1), devient pénétrable de l'extérieur jusqu'en son centre. Relativement aux fils de la couche interne, le fil noyau ne doit être ni trop fin, sans quoi il ne produit pas l'effet de désaturation qui est visé, ni trop gros sans quoi le fil ne reste pas au centre du câble.
[012] Cette solution est tout d'abord coûteuse puisqu'elle nécessite d'ajouter un fil qui ne contribue pas par ailleurs à la résistance du câble ; elle se heurte en outre à un problème de fabrication : une tension élevée sur le fil noyau est nécessaire pour maintenir le fil au centre du câble lors du retordage, tension qui peut dans certains cas approcher la force à la rupture du fil. Enfin, la suppression d'un fil externe a pour conséquence de réduire encore la résistance du câble par unité de section.
[013] Toutes les contraintes ci-dessus sont fortement pénalisantes du point de vue industriel et antinomiques de la recherche de cadences de fabrication élevées.
[014] L’invention a pour but un câble avec un rendement amélioré résolvant les problèmes évoqués ci-dessus.
[015] CABLE SELON L’INVENTION
[016] A cet effet, l’invention a pour objet un câble à deux couches, comprenant :
- une couche interne constituée de M>1 fils métalliques internes ,
- une couche externe du câble constituée de N fils métalliques externes enroulés autour de la couche interne du câble, dans lequel : le câble est obtenu par un procédé comprenant une étape de fabrication de la couche interne gainée dans laquelle on entoure la couche interne d’une composition élastomérique présentant une épaisseur G puis des N fils métalliques externes pour former la couche externe, avec N étant strictement supérieur à Nmax qui est le nombre maximum de fils métalliques externes pouvant être disposés sur la couche externe théorique obtenue lorsque la couche interne est directement au contact de la couche externe théorique.
[017] Tout intervalle de valeurs désigné par l’expression « entre a et b » représente le domaine de valeurs allant de plus de a à moins de b (c’est-à-dire bornes a et b exclues) tandis que tout intervalle de valeurs désigné par l’expression « de a à b » signifie le domaine de valeurs allant de la borne « a » jusqu’à la borne « b » c’est-à-dire incluant les bornes strictes « a » et « b ».
[018] Dans l’invention, le câble est à deux couches de fils, c’est-à-dire qu’il comprend un assemblage constitué de deux couches de fils, ni plus ni moins, c’est-à-dire que l’assemblage a deux couches de fils, pas une, pas trois, mais uniquement deux.
[019] La couche interne du câble est entourée d’une composition élastomérique présentant une épaisseur G puis elle est entourée d’une couche externe.
[020] Par directement au contact de la couche externe théorique, on entend qu’aucune gaine n’est agencée entre la couche interne et la couche externe théorique. La couche externe est ainsi disposée au plus près du centre dans lequel la couche interne est circonscrite.
[021] Par composition d’élastomère ou composition élastomérique, on entend que la composition comprend au moins un élastomère ou un caoutchouc (les deux termes étant synonymes) et au moins un autre composant.
[022] Le nombre maximum de fils externes présentant un diamètre d3 pouvant être disposés sur la couche externe théorique présentant un rayon d’hélice Rt et un angle d’hélice at obtenu lorsque la couche interne est directement au contact de la couche externe théorique, ci-désigné par Nmax est défini par la formule suivante:
Nmax=E(TÎ/ arctan[(d3/2)2/((Rt2-(d3/2)2) x cos2at))]1/2) avec, par définition, E est la valeur entière de la formule entre parenthèse, le rayon d’hélice Rt de la couche externe théorique du câble est le rayon du cercle théorique passant par les centres des fils externes de la couche externe théorique dans un plan perpendiculaire à l’axe du câble.
[023] L’angle d’hélice at est une grandeur bien connue de l’homme du métier et peut être déterminé par le calcul suivant at=Arctan [2p x Rt/P], formule dans laquelle P est le pas exprimé en millimètres auquel chaque élément filaire métallique est enroulé et Rt est le rayon d’hélice de la couche externe théorique du câble exprimée en millimètres et Arctan désignant la fonction arctangente.
[024] Contrairement à l’état de la technique dans lequel les câbles présentent un N=Nmax, le câble selon l’invention présente N> Nmax fils permettant ainsi d’augmenter la force à rupture du câble par l’ajout d’au moins un fil supplémentaire. Les inventeurs à l’origine de l’invention émettent l’hypothèse que la présence de la gaine permet d’une part de créer une voûte suffisante autour de la couche interne permettant d’ajouter un fil supplémentaire et d’autre part de soulager les pressions de contact par un effet coussin entre la couche interne et la couche externe améliorant de ce fait le rendement de chacun des fils du câble.
[025] On rappelle que, de manière connue, le pas d’un fil représente la longueur de ce fil, mesurée parallèlement à l'axe du câble dans lequel il se trouve, au bout de laquelle le fil ayant ce pas effectue un tour complet autour dudit axe du fil.
[026] Par sens d’enroulement d’une couche de fils, on entend le sens formé par les fils par rapport à l’axe du câble. Le sens d’enroulement est communément désigné par la lettre soit Z, soit S.
[027] Les pas, sens d’enroulement et diamètres des fils sont déterminés conformément à la norme ASTM D2969-04 de 2014.
[028] Avantageusement, le câble est métallique. Par câble métallique, on entend par définition un câble formé de fils constitués majoritairement (c’est-à-dire pour plus de 50% de ces fils) ou intégralement (pour 100% des fils) d'un matériau métallique. Un tel câble métallique est préférentiellement mise en oeuvre avec un câble en acier, plus préférentiellement en acier perlitique (ou ferrito-perlitique) au carbone désigné ci-après par "acier au carbone", ou encore en acier inoxydable (par définition, acier comportant au moins 11 % de chrome et au moins 50% de fer). Mais il est bien entendu possible d'utiliser d'autres aciers ou d'autres alliages.
[029] Lorsqu'un acier au carbone est avantageusement utilisé, sa teneur en carbone (% en poids d'acier) est de préférence comprise entre 0,05% et 1 ,2%, notamment entre 0,4% et 1 ,1% ; ces teneurs représentent un bon compromis entre les propriétés mécaniques requises pour le pneumatique et la faisabilité des fils.
[030] Le métal ou l'acier utilisé, qu'il s'agisse en particulier d'un acier au carbone ou d'un acier inoxydable, peut être lui-même revêtu d'une couche métallique améliorant par exemple les propriétés de mise en oeuvre du câble métallique et/ou de ses éléments constitutifs, ou les propriétés d'usage du câble et/ou du pneumatique eux-mêmes, telles que les propriétés d'adhésion, de résistance à la corrosion ou encore de résistance au vieillissement. Selon un mode de réalisation préférentiel, l'acier utilisé est recouvert d'une couche de laiton (alliage Zn-Cu) ou de zinc.
[031] De préférence, les fils d’une même couche (interne ou externe) présentent tous sensiblement le même diamètre. Avantageusement, les fils externes présentent tous sensiblement le même diamètre. Par « sensiblement le même diamètre», on entend que les fils ont le même diamètre aux tolérances industrielles près.
[032] Avantageusement, les fils externes sont enroulés en hélice autour du fil interne selon un pas allant de 10 à 30 mm.
[033] De préférence, les fils ne subissent pas de préformation.
[034] Avantageusement, N= Nmax+1 ou Nmax+2 et de préférence N=Nmax+1. Afin de limiter le diamètre externe du câble, l’homme du métier saura adapter l’épaisseur G de composition élastomérique nécessaire à un bon compromis pression de contact et force à rupture améliorée. La couche externe comprend un nombre relativement élevé de fils externes et donc présente une force à rupture relativement élevée.
[035] Avantageusement, le rapport du diamètre d1 du ou de chaque fil métallique interne sur le diamètre d3 de chaque fil métallique externe va de 0,9 à 1 ,2.
[036] Avantageusement, le diamètre d1 du ou de chaque fil métallique interne est égal au diamètre d3 de chaque fil métallique externe. Ainsi, on utilise préférentiellement le même diamètre pour le ou les fil(s) métallique(s) interne(s) et pour les fils métallique externes ce qui limite le nombre de diamètres différents à gérer lors de la fabrication du câble.
[037] Avantageusement, la couche externe du câble est saturée de sorte que la distance inter-fils des fils métalliques externes est inférieure strictement à 20 pm..
[038] Par définition, une couche de câble saturée est telle que la distance inter-fils des fils métalliques externes est inférieure strictement à 20 pm. La distance inter-fils de la couche externe de fils externes est définie, sur une section du câble perpendiculaire à l’axe principal du câble, comme la distance la plus courte qui sépare, en moyenne, deux fils métalliques externes adjacents. Ainsi, cette construction du câble permet d’assurer une bonne stabilité architecturale de la couche externe et la saturation de la couche externe permet de s’assurer que la couche externe comprend un nombre relativement élevé de fils métalliques externes et donc présente une force à rupture relativement élevée.
[039] De préférence, la distance interfils des fils métallique externes est inférieure ou égale à lOOpm.Par opposition, une couche de câble désaturée est telle que la distance inter-fils des fils métalliques externes est supérieure ou égale à 20 pm.
[040] Avantageusement, l’épaisseur G de la gaine de composition élastomérique est strictement supérieure 10 pm, de préférence supérieure ou égale à 12 pm et plus préférentiellement supérieure ou égale à 15 pm. Plus l’épaisseur G de la composition élastomérique est importante, plus on peut rajouter des fils métalliques sur la couche externe et remplir les capillaires entre les fils.
[041] Avantageusement, l’épaisseur G de la gaine de composition élastomérique est inférieure ou égale à 300 pm, de préférence inférieure ou égale à 250 pm et plus préférentiellement inférieure ou égale à 230 pm. Cette épaisseur permet d’optimiser le nombre relativement élevé de fils métalliques externes et donc d’avoir une force à rupture relativement élevée tout en limitant le diamètre externe du câble.
[042] Avantageusement, la composition élastomérique comprend un élastomère choisi dans le groupe constitué par les polybutadiènes, le caoutchouc naturel, les polyisoprènes de synthèse, les copolymères de butadiène, les copolymères d'isoprène, et les mélanges de ces élastomères.
[043] De préférence, la composition élastomérique comprend un élastomère choisi dans le groupe constitué par le caoutchouc naturel, les polyisoprènes de synthèse, les copolymères d'isoprène, et les mélanges de ces élastomères.
[044] De préférence, la composition d’élastomère comprend également un système de vulcanisation, une charge. Plus préférentiellement, l’élastomère est diénique.
[045] De préférence, la composition élastomérique comprend du noir de carbone à titre de charge renforçante.
[046] Avantageusement, M= 2, 3 ou 4 et de préférence M=3 ou 4. Les efforts transversaux les plus sévères qui s’exercent dans le câble lorsque celui-ci est mis en tension sont les efforts transversaux s’exerçant entre les fils métalliques internes.
[047] Dans l’état de la technique, on connaît des câbles présentant une architecture dans laquelle M>1 et comprenant un nombre de fils métalliques externes tels que la couche externe du câble soit saturée de façon à maximiser la force à rupture en ajoutant un nombre maximal de fils métalliques externes. Ici, pour le câble selon l’invention présentant une architecture dans laquelle M>1 , grâce à la formation d’un coussin de composition d’élastomère absorbant au moins partiellement les efforts transversaux s’exerçant entre les fils métalliques internes, le câble présente une force à rupture nettement améliorée.
[048] Avantageusement, N= 9,10, 11 ou 12, de préférence N=10 ou 11.
[049] Avantageusement, chaque fil métallique présente respectivement un diamètre d 1 , d3 allant de 0,22 mm à 0,60 mm et de préférence de 0,22 mm à 0,50 mm.
[050] Dans une première variante, M=2 et N=9 ou 10.
[051] Dans une deuxième variante, M=3 et N=10.
[052] Dans une troisième variante, M=4 et N=11.
[053] Dans ces trois variantes de câbles selon l’invention, les efforts transversaux s’exerçant entre les fils métalliques internes sont absorbés par la gaine et le câble présente une force à rupture améliorée du fait de la présence d’un fil métallique externe supplémentaire tout en limitant son diamètre externe.
[054] PRODUIT RENFORCE SELON L’INVENTION
[055] Un autre objet de l’invention est un produit renforcé comprenant une matrice élastomérique et au moins un câble tel que défini ci-dessus.
[056] Avantageusement, le produit renforcé comprend un ou plusieurs câbles selon l’invention noyés dans la matrice élastomérique, et dans le cas de plusieurs câbles, les câbles sont agencés côte à côte selon une direction principale.
[057] PNEUMATIQUE SELON L’INVENTION
[058] Un autre objet de l’invention est un pneumatique comprenant au moins un câble ou un produit renforcé tel que définis ci-dessus.
[059] De préférence, le pneumatique comporte une armature de carcasse ancrée dans deux bourrelets et surmontée radialement par une armature de sommet elle-même surmontée d'une bande de roulement, l’armature de sommet étant réunie auxdits bourrelets par deux flancs et comportant au moins un câble tel que défini ci-dessus.
[060] Dans un mode de réalisation préféré, l’armature de sommet comprend une armature de protection et une armature de travail, l’armature de travail comprenant au moins un câble tel que défini ci-dessus, l’armature de protection étant radialement intercalée entre la bande de roulement et l’armature de travail.
[061] Le câble est tout particulièrement destiné à des véhicules industriels choisis parmi des véhicules lourds tels que "Poids lourd" - i.e., métro, bus, engins de transport routier (camions, tracteurs, remorques), véhicules hors-la-route -, engins agricoles ou de génie civil, autres véhicules de transport ou de manutention.
[062] De manière préférentielle, le pneumatique est pour véhicule de type poids lourds. [063] L’invention sera mieux comprise à la lecture des exemples qui vont suivre, donnés uniquement à titre d’exemples non limitatifs et faite en se référant aux dessins dans lesquels :
- la figure 1 est une vue en coupe perpendiculaire à la direction circonférentielle d’un pneumatique selon l’invention ;
- la figure 2 est une vue en coupe d’un produit renforcé selon l’invention ;
- la figure 3 est une vue schématique en coupe perpendiculaire à l’axe du câble (supposé rectiligne et au repos) d’un câble (50) selon un premier mode de réalisation de l’invention ;
- la figure 4 est une vue analogue à celle de la figure 3 d’un câble (50’) selon un deuxième mode de réalisation l’invention ;
- la figure 5 est une vue analogue à celle de la figure 3 d’un câble (50”) selon un troisième mode de réalisation de l’invention.
[064] EXEMPLE DE PNEUMATIQUE SELON L’INVENTION
[065] Dans la figure 1, on a représenté un repère X, Y, Z correspondant aux orientations habituelles respectivement axiale (X), radiale (Y) et circonférentielle (Z) d’un pneumatique. [066] Le « plan circonférentiel médian » M du pneumatique est le plan qui est normal à l'axe de rotation du pneumatique et qui se situe à équidistance des structures annulaires de renfort de chaque bourrelet.
[067] On a représenté sur la figure 1 un pneumatique selon l’invention et désigné par la référence générale 10.
[068] Le pneumatique 10 est pour véhicule type poids-lourds. Ainsi, le pneumatique 10 présente une dimension de type 315/80 R 22.5.
[069] Ce pneumatique 10 comporte un sommet 2 renforcé par une armature de sommet ou ceinture 6, deux flancs 3 et deux bourrelets 4, chacun de ces bourrelets 4 étant renforcé avec une tringle 5. Le sommet 2 est surmonté d'une bande de roulement non représentée sur cette figure schématique. Une armature de carcasse 7 est enroulée autour des deux tringles 5 dans chaque bourrelet 4, le retournement 8 de cette armature 7 étant par exemple disposé vers l'extérieur du pneumatique 10 qui est ici représenté monté sur sa jante 9. L'armature de carcasse 7 est de manière connue en soi constituée d'au moins une nappe renforcée par des câbles dits "radiaux", c'est-à-dire que ces câbles sont disposés pratiquement parallèles les uns aux autres et s'étendent d'un bourrelet à l'autre de manière à former un angle compris entre 80° et 90° avec le plan circonférentiel médian (plan perpendiculaire à l'axe de rotation du pneumatique qui est situé à mi-distance des deux bourrelets 4 et passe par le milieu de l'armature de sommet 6).
[070] Le pneumatique conforme à l'invention est caractérisé en ce que sa ceinture 6 comporte au moins, à titre de renforcement d'au moins une des nappes de ceinture, un câble métallique à deux couches conforme à l'invention. Dans cette ceinture 6, on comprendra que les câbles de l'invention peuvent par exemple renforcer tout ou partie des nappes de ceinture dites de travail. Bien entendu, ce pneumatique 10 comporte en outre de manière connue une couche de gomme ou élastomère intérieure (communément appelée "gomme intérieure") qui définit la face radialement interne du pneumatique et qui est destinée à protéger la nappe de carcasse de la diffusion d’air provenant de l’espace intérieur au pneumatique.
[071] EXEMPLE DE PRODUIT RENFORCE SELON L’INVENTION [072] On a représenté sur la figure 2 un produit renforcé selon l’invention et désigné par la référence générale 100. Le produit renforcé 100 comprend au moins un câble 50, en l’espèce plusieurs câbles 50, noyés dans la matrice élastomérique 102.
[073] Sur la figure 2, on a représenté la matrice élastomérique 102, les câbles 50 dans un repère X, Y, Z dans lequel la direction Y est la direction radiale et les directions X et Z sont les directions axiale et circonférentielle. Sur la figure 3, le produit renforcé 100 comprend plusieurs câbles 50 agencés côte à côte selon la direction principale X et s’étendant parallèlement les uns aux autres au sein du produit renforcé 100 et noyés collectivement dans la matrice élastomérique 102.
[074] CABLE SELON UN PREMIER MODE DE REALISATION DE L’INVENTION
[075] On a représenté sur la figure 3 le câble 50 selon un premier mode de réalisation de l’invention.
[076] Le câble 50 est métallique et est à deux couches. Ainsi, on comprend que les couches de fils métalliques constituant le câble 50 sont au nombre de deux, ni plus, ni moins.
[077] Le câble 50 comprend une couche interne C1 du câble constituée de M>1 fils métalliques internes F1 . En l’espèce, M= 2, 3 ou 4 et de préférence M=3 ou 4, ici M=2. La couche interne C1 est entourée d’une composition élastomérique présentant une épaisseur G formant alors la couche interne gainée CIG. La couche externe C3 est constituée de N>Nmax fils métalliques externes F3 enroulés autour de la couche interne gainée CIG du câble.
Nmax=E(n/ arctan[(d3/2)2/((Rt2-(d3/2)2) x cos2at))]1/2)=E(n/ arctan[(0,30/2)2/((0,472-(0,30/2)2) x cos2(3.14x10,9/180)))]1/2)= E(9,58)=9. En l’espèce, N= 9,10, 11 ou 12, de préférence N=10 ou 11 et N=Nmax +1=9+1 =10.
[078] Chaque fil métallique interne F1 et chaque fil métallique externe F3 présente respectivement un diamètre d1 et d3. Le diamètre d1 de chaque fil métallique interne F1 est préférentiellement égal au diamètre d3 de chaque fil métallique externe F3.lci d1 =d3=0,30 mm.
[079] La couche externe C3 du câble est saturée. La distance inter-fils des fils externes est inférieure strictement à 20 pm et ici est égale à 0 pm.
[080] Chaque fil présente une résistance à la rupture, notée Rm, telle que 2500 < Rm < 3100 MPa. On dit de l’acier de ces fils qu’il est de grade SHT (« Super High Tensile »). D’autres fils peuvent être utilisés, par exemple des fils de grade inférieur, par exemple de grade NT (« Normal Tensile ») ou HT (« High Tensile »), comme des fils de grade supérieur, par exemple de grade UT (« Ultra Tensile ») ou MT (« Mega Tensile »). [081] PROCEDE DE FABRICATION DU CABLE SELON L’INVENTION
[082] On fabrique le câble selon l’invention grâce à un procédé comprenant des étapes bien connues de l’homme du métier.
[083] Le câble précédemment décrit est fabriqué selon des procédés connus comportant les étapes suivantes, opérées préférentiellement en ligne et en continu :
- tout d’abord, une première étape d’assemblage par retordage des M>1 fils internes F1 de la couche interne C1 au pas p1 et dans le sens S pour former la couche interne C1 en un premier point d’assemblage ;
- suivie d’une deuxième étape de fabrication de la couche interne gainée CIG, on entoure la couche interne C1 d’une composition élastomérique présentant une épaisseur G puis on assemble par retordage les N fils métalliques externes F3 autour de la couche interne CIG au pas p3 et dans le sens S pour former l’assemblage des couches CIG et C3, avec N étant strictement supérieur à Nmax qui est le nombre maximum de fils métalliques externes F3 pouvant être disposés sur la couche externe théorique C3T obtenue lorsque la couche interne C1 est directement au contact de la couche externe théorique C3T ;
- préférentiellement une étape d’équilibrage final des torsions.
[084] Par « équilibrage de torsion », on entend ici de manière bien connue de l’homme du métier l’annulation des couples de torsion résiduels (ou du retour élastique de de torsion) s’exerçant sur chaque fil, dans la couche intermédiaire comme dans la couche externe.
[085] Apres cette étape ultime d’équilibrage de la torsion, la fabrication du câble est terminée.
[086] En l’espèce, N>Nmax =9, ici N=10.
[087] L’épaisseur G de la gaine de composition élastomérique est strictement supérieure à 10 pm, de préférence supérieure ou égale à 12 pm et plus préférentiellement supérieure ou égale à 15 pm et l’épaisseur G est inférieure ou égale à 300 pm, de préférence inférieure ou égale à 250 pm et plus préférentiellement inférieure ou égale à 230 pm. Ici, G=71 pm.
[088] La composition élastomérique comprend un système de vulcanisation, une charge et un élastomère diénique.
[089] On utilise comme composition élastomérique, une composition d’élastomère(s) diénique(s) conventionnelle pour pneumatique, à base de caoutchouc naturel (peptisé) et de noir de carbone N330 (65 pce), comportant en outre les additifs usuels suivants: soufre (7 pce), accélérateur sulfénamide (1 pce), ZnO (8 pce), acide stéarique (0,7 pce), antioxydant (1,5 pce), naphténate de cobalt (1,5 pce) (pce signifiant parties en poids pour cent parties d'élastomère) ; le module E10 de la composition élastomérique d'enrobage est de 10 MPa environ.
[090] Eventuellement, dans une dernière étape d’assemblage, on enroule la frette F au pas pf dans le sens Z autour de l’assemblage précédemment obtenu.
[091] Le câble est ensuite incorporé par calandrage à des tissus composites formés d'une composition connue à base de caoutchouc naturel et de noir de carbone à titre de charge renforçante, utilisée conventionnellement pour la fabrication des armatures de sommet de pneumatiques radiaux. Cette composition comporte essentiellement, en plus de l'élastomère et de la charge renforçante (noir de carbone), un antioxydant, de l'acide stéarique, une huile d'extension, du naphténate de cobalt en tant que promoteur d'adhésion, enfin un système de vulcanisation (soufre, accélérateur, ZnO).
[092] Les tissus composites renforcés par ces câbles comportent une matrice de composition élastomérique formée de deux couches fines de composition élastomérique qui sont superposées de part et d’autre des câbles et qui présentent respectivement une épaisseur allant de 0,6 et 1,5 mm. Le pas de calandrage (pas de pose des câbles dans le tissu de composition élastomérique) va de 1 mm à 4 mm.
[093] Ces tissus composites sont ensuite utilisés en tant que nappe de travail dans l’armature de sommet lors du procédé de fabrication du pneumatique, dont les étapes sont par ailleurs connues de l’homme du métier.
[094] CABLE SELON UN DEUXIEME MODE DE REALISATION DE L’INVENTION [095] On a représenté sur la figure 4 un câble 50’ selon un deuxième mode de réalisation de l’invention. Les éléments analogues au premier mode de réalisation sont désignés par des références identiques.
[096] A la différence du premier mode de réalisation décrit précédemment, le câble 50’ selon le deuxième mode de réalisation est tel que M=3 et L =10.
[097] CABLE SELON UN TROISIEME MODE DE REALISATION DE L’INVENTION [098] On a représenté sur la figure 5 un câble 50” selon un troisième mode de réalisation de l’invention. Les éléments analogues au premier mode de réalisation sont désignés par des références identiques.
[099] A la différence du premier mode de réalisation du câble 50 décrit précédemment, le câble 50” selon le troisième mode de réalisation est tel que M=4 et L=11.
[0100] On a résumé dans le tableau 1 ci-dessous les caractéristiques pour les différents câbles 50, 50’et 50”.
[0101] Tableau 1
Figure imgf000013_0001
Figure imgf000014_0001
[0102] TESTS COMPARATIFS
[0103] Variation du NMAX en fonction du diamètre de fils
[0104] On a résumé dans les tableaux 2, 3 et 4 ci-dessous les caractéristiques pour les variations de diamètres pour les différents câbles 50, 50’et 50” et on a calculé le Nmax.
[0105] Tableau 2
Figure imgf000014_0002
[0106] Tableau 3
Figure imgf000014_0003
Figure imgf000015_0001
[0107] Tableau 4
Figure imgf000015_0002
[0108] TESTS DE RESISTANCE A LA RUPTURE
[0109] Ce test permet de déterminer la résistance à la rupture des câbles testés, par mesure de la force à la rupture notée Fm (charge maximale en N) effectuée en traction selon la norme ISO 6892-1 d’octobre 2009.
[0110] On a résumé dans le tableau 5, les caractéristiques du câble témoin T1 , de câbles comparatifs C1 et C2 non conforme à l’invention.
[0111] Tableau 5
Figure imgf000016_0001
le câble témoin T1, les câbles comparatifs C1 et C2 et le câble 50’ selon l’invention. Les résultats à ces tests sont donnés en base 100. Ainsi, un résultat supérieur à 100 à l’un ou l’autre de ces tests signifie que le câble testé présente une force à rupture supérieure au câble témoin. Dans le même tableau, on aussi comparé la force à rupture rapportée au diamètre du câble.
[0113] Tableau 6
Figure imgf000016_0002
Figure imgf000017_0001
[0114] On note que le câble 50’ selon l’invention présente une force à rupture du même ordre que celle du câble comparatif C2 et meilleur par rapport au câble témoin T1 et au câble comparatif C1.
[0115] On note que la force à rupture ramenée au diamètre du câble est significativement supérieure à celle du câble témoin T1 et à celles des câbles comparatifs C1 et C2 avec une pénétrabilité améliorée. Le câble selon l’invention possède un meilleur arrangement des fils dans un même encombrement. Ce test démontre bien que la présence ici de la gaine de composition élastomérique permettant de mettre deux fils supplémentaire sur la couche externe conformément à l’invention permet d’obtenir un effet voûte et ainsi une participation plus efficace de chaque fil à la force à rupture du câble par rapport au câble T1 et ainsi de résoudre les problèmes évoqués en préambule.
[0116] Bien entendu, l'invention n'est pas limitée aux exemples de réalisation précédemment décrits.
[0117] Pour des raisons de faisabilité industrielle, de coût et de performance globale, on préfère mettre en oeuvre l'invention avec des fils linéaires, c’est-à-dire droit, et de section transversale conventionnelle circulaire.
[0118] On pourra également combiner les caractéristiques des différents modes de réalisation décrits ou envisagés ci-dessus sous réserve que celles-ci soient compatibles entre elles.

Claims

Revendications
1. Câble métallique (50) à deux couches, caractérisé en ce qu’il comprend :
- une couche interne (C1) constituée de M>1 fils métalliques internes (F1),
- une couche externe (C3) du câble constituée de N fils métalliques externes (F3) enroulés autour de la couche interne (C1 ) du câble, dans lequel : le câble (50) est obtenu par un procédé comprenant une étape de fabrication de la couche interne gainée (CIG) dans laquelle on entoure la couche interne (Cl) d’une composition élastomérique présentant une épaisseur G puis des N fils métalliques externes pour former la couche externe (C3), avec N étant strictement supérieur à Nmax qui est le nombre maximum de fils métalliques externes (F3) pouvant être disposés sur la couche externe théorique (C3T) obtenue lorsque la couche interne (C1) est directement au contact de la couche externe théorique (C3T).
2. Câble (50) selon la revendication précédente, dans lequel N= Nmax+1 ou Nmax+2 et de préférence N=Nmax+1.
3. Câble (50) selon l’une quelconque des revendications précédentes, dans lequel le diamètre d1 de chaque fils métalliques internes (F1) est égal au diamètre d3 de chaque fils métalliques externes (F3).
4. Câble (50) selon l’une quelconque des revendications précédentes, dans lequel la couche externe (C3) du câble est saturée de sorte que la distance inter-fils des fils métalliques externes (F3) est inférieure strictement à 20 pm.
5. Câble (50) selon l’une quelconque des revendications précédentes, dans lequel l’épaisseur G de la gaine de composition élastomérique est strictement supérieure à 10 pm, de préférence supérieure ou égale à 12 pm et plus préférentiellement supérieure ou égale à 15 pm.
6. Câble (50) selon l’une quelconque des revendications précédentes, dans lequel l’épaisseur G de la gaine de composition élastomérique est inférieure ou égale à 300 pm, de préférence inférieure ou égale à 250 pm et plus préférentiellement inférieure ou égale à 230 pm.
7. Câble (50) selon l’une quelconque des revendications précédentes, dans lequel la gaine de composition élastomérique comprend un élastomère choisi dans le groupe constitué par les polybutadiènes, le caoutchouc naturel, les polyisoprènes de synthèse, les copolymères de butadiène, les copolymères d'isoprène, et les mélanges de ces élastomères.
8. Câble (50) selon la revendication précédente, dans lequel la gaine de composition élastomérique comprend un élastomère choisi dans le groupe constitué par le caoutchouc naturel, les polyisoprènes de synthèse, les copolymères d'isoprène, et les mélanges de ces élastomères.
9. Câble (50) selon l'une quelconque des revendications précédentes, dans lequel la gaine de composition élastomérique comprend du noir de carbone à titre de charge renforçante.
10. Câble (50) selon l’une quelconque des revendications précédentes, dans lequel M= 2, 3 ou 4 et de préférence M=3 ou 4.
11. Câble (50) selon l’une quelconque des revendications précédentes, dans lequel N= 9,10, 11 ou 12, de préférence N=10 ou 11.
12. Câble (50) selon l’une quelconque des revendications précédentes, dans lequel chaque fil métallique (F1, F3) présente respectivement un diamètre d 1 , d3 allant de 0,22 mm à 0,60 mm et de préférence de 0,22 mm à 0,50 mm.
13. Produit renforcé (100), caractérisé en ce qu’il comprend une matrice élastomérique (102) et au moins un câble (50) selon l’une quelconque des revendications 1 à 12.
14. Pneumatique (10), caractérisé en ce qu’il comprend au moins un câble (50) selon l’une quelconque des revendications 1 à 12 ou un produit renforcé selon la revendication 13.
PCT/FR2020/051995 2019-11-15 2020-11-05 Câbles métalliques à deux couches avec couche interne gainée à rendement amélioré WO2021094674A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20819811.9A EP4058629B1 (fr) 2019-11-15 2020-11-05 Câbles métalliques à deux couches avec couche interne gainée à rendement amélioré
AU2020382109A AU2020382109A1 (en) 2019-11-15 2020-11-05 Two-layer metal cables having a sheathed inner layer and an improved performance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1912766 2019-11-15
FR1912766A FR3103200A1 (fr) 2019-11-15 2019-11-15 Câble métalliques à deux couches avec couche interne gainée à rendement amélioré

Publications (1)

Publication Number Publication Date
WO2021094674A1 true WO2021094674A1 (fr) 2021-05-20

Family

ID=70295197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/051995 WO2021094674A1 (fr) 2019-11-15 2020-11-05 Câbles métalliques à deux couches avec couche interne gainée à rendement amélioré

Country Status (4)

Country Link
EP (1) EP4058629B1 (fr)
AU (1) AU2020382109A1 (fr)
FR (1) FR3103200A1 (fr)
WO (1) WO2021094674A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001000922A1 (fr) 1999-06-29 2001-01-04 Societe De Technologie Michelin Cable d'acier multicouches pour carcasse de pneumatique
WO2001049926A1 (fr) 1999-12-30 2001-07-12 Societe De Technologie Michelin Cable d'acier multicouches pour carcasse de pneumatique
WO2005071157A1 (fr) 2003-12-24 2005-08-04 Societe De Technologie Michelin Cable metallique a trois couches pour armature de carcasse de pneumatique
WO2006013077A1 (fr) 2004-08-02 2006-02-09 Societe De Technologie Michelin Cable a couches pour ceinture de pneumatique
JP2008068656A (ja) * 2006-09-12 2008-03-27 Bridgestone Corp 空気入りラジアルタイヤ
JP2009121009A (ja) * 2007-05-17 2009-06-04 Bridgestone Corp コードおよびその製造方法並びに、コード製造設備

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001000922A1 (fr) 1999-06-29 2001-01-04 Societe De Technologie Michelin Cable d'acier multicouches pour carcasse de pneumatique
WO2001049926A1 (fr) 1999-12-30 2001-07-12 Societe De Technologie Michelin Cable d'acier multicouches pour carcasse de pneumatique
WO2005071157A1 (fr) 2003-12-24 2005-08-04 Societe De Technologie Michelin Cable metallique a trois couches pour armature de carcasse de pneumatique
WO2006013077A1 (fr) 2004-08-02 2006-02-09 Societe De Technologie Michelin Cable a couches pour ceinture de pneumatique
JP2008068656A (ja) * 2006-09-12 2008-03-27 Bridgestone Corp 空気入りラジアルタイヤ
JP2009121009A (ja) * 2007-05-17 2009-06-04 Bridgestone Corp コードおよびその製造方法並びに、コード製造設備

Also Published As

Publication number Publication date
EP4058629B1 (fr) 2024-04-03
AU2020382109A1 (en) 2022-05-19
EP4058629A1 (fr) 2022-09-21
FR3103200A1 (fr) 2021-05-21

Similar Documents

Publication Publication Date Title
EP3728728B1 (fr) Câbles multi-torons à deux couches à très bas, bas et moyen modules
EP3728730B1 (fr) Câbles multi-torons à deux couches à très bas, bas et moyen modules
EP3728731B1 (fr) Câbles multi-torons à deux couches à très bas, bas et moyen modules
EP3728729B1 (fr) Câbles multi-torons à deux couches à très bas, bas et moyen modules
EP4061996B1 (fr) Câble multi-torons à deux couches à énergie de rupture surfacique améliorée
WO2021260302A1 (fr) Câble multi-torons à deux couches à endurance sous flexion améliorée
EP4172407A1 (fr) Câble multi-torons à deux couches à endurance sous flexion améliorée
EP4058629B1 (fr) Câbles métalliques à deux couches avec couche interne gainée à rendement amélioré
WO2021260304A1 (fr) Câble multi-torons à deux couches à endurance sous flexion améliorée
EP4172405A1 (fr) Câble multi-torons à deux couches à endurance sous flexion améliorée
EP4058628B1 (fr) Câble multi-torons à deux couches avec couche interne gainée à rendement amélioré
FR3130858A1 (fr) Câble multi-torons à deux couches à endurance sous flexion améliorée
FR3122677A1 (fr) Câble multi-torons à deux couches à énergie de rupture surfacique améliorée
FR3122676A1 (fr) Câble multi-torons à deux couches à énergie de rupture surfacique améliorée
FR3122678A1 (fr) Câble multi-torons à deux couches à énergie de rupture surfacique améliorée
FR3122672A1 (fr) Câble multi-torons à deux couches à énergie de rupture surfacique améliorée
WO2021094675A1 (fr) Câble multi-torons à deux couches avec couche interne gainée à pénétrabilité améliorée
EP4240897A1 (fr) Câble multi-torons à deux couches avec couche interne gainée à pénétrabilité améliorée
FR3122673A1 (fr) Câble multi-torons à deux couches à énergie de rupture surfacique améliorée
FR3122674A1 (fr) Câble multi-torons à deux couches à énergie de rupture surfacique améliorée
FR3122675A1 (fr) Câble multi-torons à deux couches à énergie de rupture surfacique améliorée
FR3136788A1 (fr) Câble multi-torons à deux couches de multi-torons

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20819811

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020382109

Country of ref document: AU

Date of ref document: 20201105

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020819811

Country of ref document: EP

Effective date: 20220615