WO2021093832A1 - 一种c3n4改性有机膜的制备方法及应用 - Google Patents

一种c3n4改性有机膜的制备方法及应用 Download PDF

Info

Publication number
WO2021093832A1
WO2021093832A1 PCT/CN2020/128542 CN2020128542W WO2021093832A1 WO 2021093832 A1 WO2021093832 A1 WO 2021093832A1 CN 2020128542 W CN2020128542 W CN 2020128542W WO 2021093832 A1 WO2021093832 A1 WO 2021093832A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
pfm
preparation
liquid
organic solvent
Prior art date
Application number
PCT/CN2020/128542
Other languages
English (en)
French (fr)
Inventor
庄涛
王锦
杨帆
赵玉强
张利钧
张建琳
王永新
刘善军
Original Assignee
济南市环境研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 济南市环境研究院 filed Critical 济南市环境研究院
Publication of WO2021093832A1 publication Critical patent/WO2021093832A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Definitions

  • the invention relates to the technical field of preparation of environmental functional materials, in particular to a preparation method and application of a C 3 N 4 modified organic film.
  • Photocatalytic oxidation technology has a wide range of adaptability to the degradation of organic pollutants.
  • the degradation reaction can be carried out under normal temperature and pressure, and cheap sunlight can be used as the energy required to degrade organic pollutants. It is the most promising environmental technology. one.
  • powdered photocatalysts generally have the problems of difficulty in catalyst recovery and regeneration and easy to produce secondary pollution. This problem can be effectively avoided by immobilizing the photocatalyst.
  • Graphite phase carbon nitride (gC 3 N 4 ) is an excellent photocatalyst, with good visible light response, low cost and simple preparation process.
  • gC 3 N 4 Graphite phase carbon nitride
  • MCN mesoporous gC 3 N 4
  • NCN nitrogen-rich gC 3 N 4
  • DCN defect gC 3 N 4
  • Mesoporous gC 3 N 4 has a higher specific surface area and abundant mesoporous pores, which can expose more surface active sites and improve its performance in applications such as catalytic reactions.
  • Nitrogen-rich gC 3 N 4 exhibits obvious visible light absorption capacity and can promote the separation of photo-generated electrons and holes.
  • the defect gC 3 N 4 has a high specific surface area, and the visible light absorption capacity is greatly improved, and the photocatalytic performance is greatly improved.
  • Organic membranes such as polyvinylidene fluoride (PVDF), polysulfone (PS), polyethersulfone (PES), polyacrylonitrile (PAN) and polytetrafluoroethylene (PTFE) membranes have excellent mechanical properties, thermal stability and Chemical resistance and simple preparation process have been widely used in industrial microfiltration and ultrafiltration processes.
  • PVDF polyvinylidene fluoride
  • PS polysulfone
  • PES polyethersulfone
  • PAN polyacrylonitrile
  • PTFE polytetrafluoroethylene
  • the present invention provides a preparation method and application of a C 3 N 4 modified organic film to solve the defects in the prior art.
  • the present invention adopts the following technical solutions.
  • One aspect of the present invention provides a method for preparing a C 3 N 4 modified organic film, including:
  • Step 1) Add carbonized nitrogen CN and a pore former to an organic solvent, wherein the mass ratio of the CN to the pore former is 0.4:1 to 2.5:1, and the mass ratio of the pore former to the organic solvent is 1. :81 ⁇ 1:87;
  • the mixed solution is obtained by ultrasonic treatment, and then the polymeric polymer membrane material PFM is added to the mixed solution, the PFM accounts for 12-15% of the total mass of PFM and the mixed solution, stirred at constant temperature, and left to stand still Degassing to form a casting liquid;
  • Step 2 Pour the casting liquid to one side of a clean and dry glass plate, scrape the liquid film with a square coater, and immerse the glass plate with the scraped liquid film into deionized water for phase exchange.
  • the casting liquid After curing and forming the film, the film is taken out and immersed in deionized water to remove the residual organic solvent to obtain a C 3 N 4 modified organic film.
  • the CN is graphite phase carbon nitride gC 3 N 4 , mesoporous gC 3 N 4 , nitrogen-rich gC 3 N 4 or defect gC 3 N 4 .
  • the PFM is polyvinylidene fluoride, polysulfone, polyethersulfone, polyacrylonitrile or polytetrafluoroethylene.
  • the mass ratio of CN and PFM in step 1) is 1:6.25 to 1:25.
  • the power of the ultrasonic treatment is 500W
  • the time of the ultrasonic treatment is 1h
  • the temperature of the constant temperature stirring is 50°C
  • the rotation speed is 200rpm
  • the stirring time is 12h
  • the soaking time is 12h.
  • the pore-forming agent is polyvinylpyrrolidone or polyethylene glycol
  • the organic solvent is 1-methyl-2-pyrrolidone, dimethylformamide or dimethylacetamide.
  • step 2) before the glass plate with the scraped liquid film is immersed in deionized water for phase exchange, the glass plate with the scraped liquid film needs to be allowed to stand in the air for 15 seconds.
  • the thickness of the liquid film in step 2) is 250 ⁇ m, and the immersion time in deionized water is 24 hours.
  • the PFM is polyvinylidene fluoride, and the mass ratio of the CN to the polyvinylidene fluoride is 1:6.25.
  • Another aspect of the present invention provides a C 3 N 4 modified organic membrane prepared by the above method, and the C 3 N 4 modified organic membrane is used for catalytic degradation of organic dyes and antibiotic wastewater.
  • the recycling rate of the film is greatly improved, and the catalytic efficiency is increased by more than 6 times; the CN modified organic film can fully exert the catalytic performance of the photocatalyst under the condition of visible light irradiation.
  • the organic membrane solidifies CN to provide attachment sites for it, easy to recycle, and solve the problem of difficult separation and recycling of photocatalysts and easy to produce secondary pollution; at the same time, the organic membrane has the ability to catalyze the degradation of organic matter, and the membrane is resistant to pollution The performance is improved; the degradation efficiency of the photocatalytic film is directly investigated under sunlight, which provides data support for the actual production of the C 3 N 4 modified organic film.
  • Figure 1 is the SEM image of CN 80 -PVDF hybrid membrane and PVDF membrane
  • Figure 2 is the x-ray diffraction spectrum of CN 80 -PVDF hybrid film and PVDF film;
  • Figure 3 shows the result of photocatalytic degradation of antibiotics by CN-PVDF hybrid membrane
  • Figure 4 shows the photocatalytic degradation of antibiotics by CN 80 -PVDF hybrid membrane
  • Figure 5 shows the results of the solar photocatalytic degradation cycle experiment of CN 80 -PVDF hybrid membrane on dyes.
  • the PFM is a polymer membrane material
  • the CN is the abbreviation of C 3 N 4.
  • the graphite phase carbon nitride gC 3 N 4 refers to unmodified graphite carbon nitride without special instructions.
  • This embodiment provides a method for preparing a C 3 N 4 modified organic film, and in particular relates to a method for preparing a CN-PVDF (Mesoporous Graphite Phase Carbon Nitride-Polyvinylidene Fluoride) hybrid film, including:
  • Step 1) Add 80 mg of nitrogen carbide CN (mesoporous gC 3 N 4 ) and 35.7 mg of polyvinylpyrrolidone PVP to 3 mL of 1-methyl-2-pyrrolidone NMP, and ultrasonicate in a 500W ultrasonic cleaner for 1 hour to obtain a mixed solution, and then Add 500mg PVDF (ie polymer membrane material PFM) to the mixed solution, where the mass ratio of CN to PFM is 1:6.25, stir at a constant temperature of 50°C for 12 hours, and let stand for 12 hours to defoam to form a casting liquid;
  • 500mg PVDF ie polymer membrane material PFM
  • Step 2 Pour the prepared casting liquid onto the side of a clean and dry glass plate, scrape a 250 ⁇ m thick liquid film with a square coater, and let the glass plate with the scraped liquid film stand in the air for 15 seconds
  • the glass plate is quickly immersed in deionized water to complete the phase exchange process.
  • the casting solution is solidified to form a film.
  • the film is taken out and soaked in deionized water for 24 hours to remove residual NMP solvent to obtain a C 3 N 4 modification.
  • the organic membrane is denoted as CN 80 -PVDF hybrid membrane.
  • Figure 1 is the SEM image of CN 80 -PVDF hybrid membrane and PVDF membrane: the magnification of each image in Figure 1 is 500 times, and the scale represents 20 ⁇ m; among them, a is the surface image of PVDF, and it can be seen that the surface of the membrane is relatively high. Smooth; b is a cross-sectional view of the PVDF membrane, and the pore structure of the membrane sublayer can be clearly seen; c is the surface map of the CN 80 -PVDF hybrid membrane obtained by this embodiment, and it can be clearly seen that the PVDF membrane is relatively uniform Loaded with CN particles, and the size of CN particles is 1 ⁇ 5 ⁇ m; d is a cross-sectional view of CN 80 -PVDF hybrid membrane.
  • Figure 2 is the x-ray diffraction spectrum of the CN 80 -PVDF hybrid film and PVDF film of this embodiment. Referring to Figure 2, it can be seen that the 27.2° diffraction peak corresponds to the (002) crystal plane of the CN conjugated interlayer stack. In the PVDF spectrum, 18.2° and 26.5° correspond to ⁇ -phase PVDF, and 20.2° corresponds to ⁇ -phase PVDF.
  • the CN-PVDF hybrid membranes obtained in different proportions obtained in Examples 1 to 4 were used for application experiments.
  • the specific content is as follows:
  • the performance of the sample was evaluated by the visible light degradation performance of cefotaxime sodium in water at room temperature.
  • Figure 3 shows the result of photocatalytic degradation of antibiotics by CN-PVDF hybrid membrane.
  • the membrane is taken out, the surface of the membrane is cleaned, and soaked in deionized water for 12 hours for use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种C 3N 4改性有机膜的制备方法及应用,将碳化氮CN和造孔剂加入有机溶剂中,其中,CN与造孔剂的质量比为0.4:1~2.5:1,造孔剂与有机溶剂的质量比为1:81~1:87;超声处理得到混合溶液,然后向混合溶液中加入聚合高分子膜材料PFM,PFM占PFM与所述混合溶液的总质量的12~15%,恒温搅拌,静置脱泡,形成铸膜液;将制备好的铸膜液倾倒至洁净、干燥的玻璃板一侧,利用四方涂布器刮制液膜,将刮制好液膜的玻璃板浸入去离子水中进行相交换,铸膜液固化成膜后取出膜,并置于去离子水中浸泡,去除残余有机溶剂,得到C 3N 4改性有机膜,具有催化降解有机物的能力和抗污染性。

Description

一种C 3N 4改性有机膜的制备方法及应用
本申请要求于2019年11月14日提交中国专利局、申请号为201911112869.4、发明名称为“一种C 3N 4改性有机膜的制备方法及应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及环境功能材料制备技术领域,尤其涉及一种C 3N 4改性有机膜的制备方法及应用。
背景技术
光催化氧化技术对降解有机污染物有着广泛的适应性,降解反应可在常温常压下进行,且可利用廉价的太阳光作为所需能源进行有机污染物降解,是最有应用前景的环境技术之一。但是在光催化研究过程中,粉末状光催化剂普遍存在催化剂回收再生困难、易产生二次污染的问题,通过光催化剂的固定化可以有效地避免这一问题。
石墨相氮化碳(g-C 3N 4)是一种优良的光催化剂,具有良好的可见光响应、成本低和制备过程简单等优点。在g-C 3N 4基础上,通过改性,可以获得比表面积更大、光催化性能更优的一系列C 3N 4,如介孔g-C 3N 4(MCN)、富氮g-C 3N 4(NCN)和缺陷g-C 3N 4(DCN)。介孔g-C 3N 4拥有较高比表面积和丰富的介孔孔道,能暴露更多的表面活性位,使其在催化反应等应用方面的性能得以提升。富氮g-C 3N 4表现出较明显的可见光吸收能力,能够促进光生电子-空穴的分离。缺陷g-C 3N 4具有高比表面积,且可见光吸收能力得到大幅度改善,光催化性能大幅提升。
聚偏氟乙烯(PVDF)、聚砜(PS)、聚醚砜(PES)、聚丙烯腈(PAN)和聚四氟乙烯(PTFE)膜等有机膜以其优异的机械性能、热稳定性和耐化学性及制备工艺简单在工业微滤和超滤过程中得到了广泛的应用。但因有机膜的疏水性强,易吸附有机杂质而被污染,使其在应用上受到限制。目前已有的关于C 3N 4负载至有机膜上的相关研究成果大多采用真空过滤、接枝、表面涂覆等方法,这些方法操作较复杂,结合层在运行的过程中容易脱落, 且催化效率较低。
因此亟需寻求一种膜改性方法,固定光催化剂的同时提高膜的抗污染性能。
发明内容
本发明提供了一种C 3N 4改性有机膜的制备方法及应用,以解决现有技术存在的缺陷。
为了实现上述目的,本发明采取了如下技术方案。
本发明的一方面提供了一种C 3N 4改性有机膜的制备方法,包括:
步骤1)将碳化氮CN和造孔剂加入有机溶剂中,其中,所述CN与造孔剂的质量比为0.4:1~2.5:1,所述造孔剂与有机溶剂的质量比为1:81~1:87;超声处理得到混合溶液,然后向混合溶液中加入聚合高分子膜材料PFM,所述PFM占PFM与所述混合溶液的总质量的12~15%,恒温搅拌,静置脱泡,形成铸膜液;
步骤2)将所述铸膜液倾倒至洁净、干燥的玻璃板一侧,利用四方涂布器刮制液膜,将刮制好液膜的玻璃板浸入去离子水中进行相交换,铸膜液固化成膜后取出膜,并置于去离子水中浸泡,去除残余有机溶剂,得到C 3N 4改性有机膜。
优选地,所述CN为石墨相氮化碳g-C 3N 4、介孔g-C 3N 4、富氮g-C 3N 4或缺陷g-C 3N 4
优选地,PFM为聚偏氟乙烯、聚砜、聚醚砜、聚丙烯腈或聚四氟乙烯。
优选地,步骤1)中所述CN和PFM的质量比为1:6.25~1:25。
优选地,步骤1)中,所述超声处理的功率为500W,所述超声处理的时间为1h;所述恒温搅拌的温度为50℃,转速为200rpm,搅拌时间为12h;所述静置脱泡的时间为12h。
优选地,所述造孔剂为聚乙烯吡咯烷酮或聚乙二醇,所述有机溶剂为1-甲基-2-吡咯烷酮、二甲基甲酰胺或二甲基乙酰胺。
优选地,步骤2)中将刮制好液膜的玻璃板浸入去离子水中进行相交换之前还需要将刮制好液膜的玻璃板在空气中静置15s。
优选地,步骤2)中所述液膜的厚度为250μm,置于去离子水中浸泡的时间为24h。
优选地,所述PFM为聚偏氟乙烯,所述CN与聚偏氟乙烯的质量比为1:6.25。
本发明的另一方面提供了一种上述方法制得的C 3N 4改性有机膜,所述C 3N 4改性有机膜用于催化降解有机染料和抗生素的污水。
本发明通过使CN颗粒被有机大分子紧紧包裹,膜的重复利用率大大提高,催化效率提高6倍以上;CN改性有机膜在可见光照射的条件下,CN可充分发挥光催化剂的催化性能,有机膜将CN固载,为其提供附着位点,易于回收再利用,解决光催化剂分离回收难、易产生二次污染的问题;同时使有机膜具有催化降解有机物的能力,膜的抗污染性能得以提升;在太阳光照下直接考察光催化膜的降解效率,为C 3N 4改性有机膜投入实际生产提供数据支持。
本发明附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为CN 80-PVDF杂化膜和PVDF膜的SEM图;
图2为CN 80-PVDF杂化膜和PVDF膜的x射线衍射谱图;
图3为CN-PVDF杂化膜对抗生素的光催化降解结果图
图4为CN 80-PVDF杂化膜对抗生素的太阳光催化降解结果图;
图5为CN 80-PVDF杂化膜对染料的太阳光催化降解循环实验结果图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或 类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤和/或操作,但是并不排除存在或添加一个或多个其他特征、整数、步骤和/或操作。应该理解,这里使用的措辞“和/或”包括一个或更多个相关联的列出项的任一单元和全部组合。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
在本发明中,所述PFM为聚合物高分子膜材料;
所述CN为C 3N 4的缩写。
在本发明中,所述石墨相氮化碳g-C 3N 4,在不经特殊说明的情况下指的是未经改性的石墨氮化碳。
为便于对本发明实施例的理解,下面将结合附图以具体实施例为例做进一步的解释说明。
实施例1
本实施例提供了一种C 3N 4改性有机膜的制备方法,尤其涉及一种CN-PVDF(介孔石墨相氮化碳-聚偏氟乙烯)杂化膜的制备方法,包括:
步骤1)将80mg碳化氮CN(介孔g-C 3N 4)和35.7mg聚乙烯吡咯烷酮PVP加入到3mL1-甲基-2-吡咯烷酮NMP中,在500W的超声波清洗器中超声1h得到混合溶液,然后向混合溶液中加入500mgPVDF中(即聚合高分子膜材料PFM),其中CN与PFM的质量比为1:6.25,50℃恒温搅拌12h,静置脱泡12h,形成铸膜液;
步骤2)将制备好的铸膜液倾倒至洁净、干燥的玻璃板一侧,利用四方涂布器刮制250μm厚的液膜,将刮制好液膜的玻璃板在空气中静置15s后迅速将玻璃板浸入去离子水中完成相交换过程,铸膜液固化成膜,铸膜 液固化成膜后取出膜,并置于去离子水中浸泡24h,去除残余NMP溶剂,得到C 3N 4改性有机膜,记为CN 80-PVDF杂化膜。
图1为CN 80-PVDF杂化膜和PVDF膜的SEM图:图1中各图的放大倍数均为500倍,标尺代表20μm;其中,a为PVDF的膜表面图,可以看出膜表面较光滑;b为PVDF膜截面图,可以明显看出膜亚层的孔道结构;c为通过本实施例得到的CN 80-PVDF杂化膜表面图,通过该图可以明显看出PVDF膜中较为均匀负载上了CN颗粒,且CN颗粒粒径在1~5μm;d为CN 80-PVDF杂化膜截面图,通过对比可以看出b中的孔道结构有所改变,部分大孔被指状孔替代,结构更优,这是因为在聚合物溶液中加入CN粒子可以通过增加热力学不稳定性来提高相转化率,使得膜的结构发生一定变化。
图2为本实施例的CN 80-PVDF杂化膜和PVDF膜的x射线衍射谱图,参照图2,可以看出27.2°衍射峰对应着CN共轭层间堆叠(002)晶面。在PVDF图谱中,18.2°和26.5°对应着α相PVDF,20.2°对应着β相PVDF,在CN 80-PVDF曲线中,在27.2°处观察到一个较高的峰,说明CN和PVDF成功复合到了一起,而原本位于20.2°的峰消失,说明PVDF在与CN复合过程中晶体结构发生了变化,α相减少,因此由α相导致的较强疏水性也有所降低。
实施例2~4
根据实施例1步骤,分别制备以下质量比的CN-PVDF杂化膜,CN:PVDF=1:25(记为CN 20-PVDF)、CN:PVDF=1:12.5(记为CN 40-PVDF)、CN:PVDF=1:8.3(记为CN 60-PVDF),其中具体的CN添加量分别为20mg、40mg和60mg,PVDF的量以及其他量均如实施例1所述.
通过实施例1~4得到的不同比例得到的CN-PVDF杂化膜进行应用实验。具体内容如下:
应用实施例1
样品的性能通过对水中头孢噻肟钠在室温下的可见光降解性能来评价。分别将预先制备好的上述4种不同比例的杂化膜(实施例1~4)分别置入2mg/L的100mL头孢噻肟钠抗生素水溶液中,在磁力搅拌下,将溶液置于黑暗条件下吸附30min,然后,将其置于过滤掉420nm以下波长 的300W氙灯可见光照射,每隔20min取1mL溶液过滤后进行浓度分析。每一组实验均重复三次,保证实验的准确性。图3为CN-PVDF杂化膜对抗生素的光催化降解结果图。参照图3,可以看出在可见光照射180min后,当CN:PVDF=1:6.25时,即CN 80-PVDF杂化膜的头孢噻肟钠的去除率达到98.5%,CN 20-PVDF、CN 40-PVDF和CN 60-PVDF杂化膜的头孢噻肟钠的去除率也分别达到70%、90%和92%,表明该杂化膜对抗生素具有良好的去除效果。
采用CN 80-PVDF膜进行的光催化实验完成后取出该膜,清洗膜表面,并在去离子水中浸泡12h,待用。
应用实施例2
将制备好的CN 80-PVDF(CN:PVDF=1:6.25)的杂化膜置入2mg/L的100mL头孢噻肟钠水溶液中,然后将其置于太阳光下,每隔30min取1mL溶液过滤后进行浓度分析。图4为CN 80-PVDF杂化膜对抗生素的太阳光催化降解循环实验结果图。参照图4,在太阳光照射5h后,当CN:PVDF=1:6.25时,头孢噻肟钠的去除率达到97.5%,表明该杂化膜对抗生素具有良好的去除效果。
太阳光催化实验完成后取出该膜,清洗膜表面,并在去离子水中浸泡12h,待用。循环上述光催化实验,反复使用CN 80-PVDF膜检测样品的稳定性。参照图4可以看出,本发明的杂化膜使用后在太阳光催化的条件下循环使用五次后,头孢噻肟钠的去除效果仍达到97.4%,所以样品具有良好的稳定性及实际应用性。
应用实施例3
将制备好的CN 80-PVDF(CN:PVDF=1:6.25)的杂化膜置入2mg/L的100mL罗丹明B水溶液中,然后将其置于太阳光下,每隔30min取3mL溶液过滤后进行浓度分析。图5为CN 80-PVDF杂化膜对染料的太阳光催化降解循环实验结果图。参照图5,在太阳光照射5h后,CN 80-PVDF(CN:PVDF=1:6.25)对罗丹明B的去除率达到98.1%,表明该杂化膜对染料具有良好的去除效果。
太阳光催化实验完成后取出该膜,清洗膜表面,并在去离子水中浸泡12h,待用。循环上述光催化实验,反复使用CN 80-PVDF膜检测样品的稳 定性。参照图5可以看出,本发明的杂化膜使用后在太阳光催化的条件下循环使用五次后,罗丹明B的去除效果达到99.6%,其光催化性能并未受影响,所以样品具有良好的稳定性及实际应用性。
将CN 80-PVDF膜及其在太阳光催化降解和暗吸附2mg/L的100mL罗丹明B的膜表面对比,得出在太阳光催化降解下的膜表面颜色明显要比暗吸附后的膜表面颜色浅,说明样品具有良好的自清洁性能。
应用实施例4
将实验所需的细菌菌液100μL添加到一个含100mL液体培养基的无菌锥形瓶中,180rpm恒温培养10h待用。取1mL上述菌液,加入99mL磷酸缓冲溶液(PBS),并加入CN 60-PVDF膜,搅拌30min,然后,将其置于配有420nm滤光片的氙灯下(300W)照射,每隔30min取样1mL,样品放置在4℃避光保存。用无菌PBS对所取水样进行梯度稀释,各取100μL,水样稀释于固体培养基平板上,用玻璃涂布棒涂布均匀,平行3份,37℃下培养24h后进行菌落计数(CFU/mL)。初始大肠杆菌浓度约为10 7CFU/mL,4小时后,大肠杆菌浓度降低到10 4CFU/mL,说明大肠杆有一定的减少,证明该膜具有一定的抗菌性。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (17)

  1. 一种C 3N 4改性有机膜的制备方法,其特征在于,包括:
    步骤1)将碳化氮CN和造孔剂加入有机溶剂中,其中,所述CN与造孔剂的质量比为0.4:1~2.5:1,造孔剂与有机溶剂的质量比为1:81~1:87;超声处理得到混合溶液,然后向所述混合溶液中加入聚合高分子膜材料PFM,PFM占PFM与所述混合溶液的总质量的12~15%,恒温搅拌,静置脱泡,形成铸膜液;
    步骤2)将所述铸膜液倾倒至洁净、干燥的玻璃板一侧,利用四方涂布器刮制液膜,将刮制好液膜的玻璃板浸入去离子水中进行相交换,铸膜液固化成膜后取出膜,并置于去离子水中浸泡,去除残余有机溶剂,得到C 3N 4改性有机膜。
  2. 一种C 3N 4改性有机膜的制备方法,其特征在于,包括:
    步骤1)将氮化碳CN和造孔剂加入有机溶剂中,其中,所述CN与造孔剂的质量比为0.4:1~2.5:1,所述造孔剂与有机溶剂的质量比为1:81~1:87;超声处理得到混合溶液,然后向所述混合溶液中加入聚合高分子膜材料PFM,PFM占PFM与所述混合溶液的总质量的12~15%,恒温搅拌,静置脱泡,形成铸膜液;
    步骤2)将所述铸膜液倾倒至洁净、干燥的玻璃板一侧,利用四方涂布器刮制液膜,将刮制好液膜的玻璃板浸入去离子水中进行相交换,铸膜液固化成膜后取出膜,并置于去离子水中浸泡,去除残余有机溶剂,得到C 3N 4改性有机膜。
  3. 根据权利要求1或2所述的制备方法,其特征在于,所述的CN为石墨相氮化碳g-C 3N 4、介孔g-C 3N 4、富氮g-C 3N 4或缺陷g-C 3N 4
  4. 根据权利要求1或2所述的制备方法,其特征在于,所述的PFM为聚偏氟乙烯、聚砜、聚醚砜、聚丙烯腈或聚四氟乙烯。
  5. 根据权利要求1或2所述的制备方法,其特征在于,所述的步骤1)中CN和PFM的质量比为1:6.25~1:25。
  6. 根据权利要求1或2所述的制备方法,其特征在于,所述的步骤1)中,所述超声处理的功率为500W,所述超声处理的时间为1h;所述恒温 搅拌的温度为50℃,转速为200rpm,搅拌时间为12h;所述静置脱泡的时间为12h。
  7. 根据权利要求1或2所述的制备方法,其特征在于,所述的造孔剂为聚乙烯吡咯烷酮或聚乙二醇,所述有机溶剂为1-甲基-2-吡咯烷酮、二甲基甲酰胺或二甲基乙酰胺。
  8. 根据权利要求1或2所述的制备方法,其特征在于,所述的步骤2)中将刮制好液膜的玻璃板浸入去离子水中进行相交换之前还将刮制好液膜的玻璃板在空气中静置15s。
  9. 根据权利要求1或2所述的制备方法,其特征在于,所述的步骤2)中液膜厚度为250μm,置于去离子水中浸泡的时间为24h。
  10. 根据权利要求1或2所述的制备方法,其特征在于,所述的PFM为聚偏氟乙烯,所述碳化氮与聚偏氟乙烯的质量比为1:6.25。
  11. 一种权利要求1~10任一所述制备方法制得的C 3N 4改性有机膜。
  12. 权利要求11所述的C 3N 4改性有机膜在催化降解有机染料和抗生素的污水中的应用。
  13. 根据权利要求12所述的应用,其特征在于,所述有机染料包括罗丹明B。
  14. 根据权利要求12所述的应用,其特征在于,所述抗生素包括头孢噻肟钠。
  15. 根据权利要求12所述的应用,其特征在于,所述催化降解在可见光下进行。
  16. 权利要求12所述的C 3N 4改性有机膜在抑制大肠杆菌中的应用。
  17. 一种铸膜液,其特征在于,为权利要求1~11任一项所述制备方法中采用的铸膜液。
PCT/CN2020/128542 2019-11-14 2020-11-13 一种c3n4改性有机膜的制备方法及应用 WO2021093832A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911112869.4 2019-11-14
CN201911112869.4A CN110961132A (zh) 2019-11-14 2019-11-14 一种c3n4改性有机膜的制备方法及应用

Publications (1)

Publication Number Publication Date
WO2021093832A1 true WO2021093832A1 (zh) 2021-05-20

Family

ID=70030595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128542 WO2021093832A1 (zh) 2019-11-14 2020-11-13 一种c3n4改性有机膜的制备方法及应用

Country Status (2)

Country Link
CN (1) CN110961132A (zh)
WO (1) WO2021093832A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113578362A (zh) * 2021-07-23 2021-11-02 上海工程技术大学 一种炔基修饰的半导体材料的制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110961132A (zh) * 2019-11-14 2020-04-07 济南市环境研究院 一种c3n4改性有机膜的制备方法及应用
CN111744367A (zh) * 2020-05-29 2020-10-09 北京交通大学 一种纳米材料和mof共同改性有机膜的制备方法及应用
CN114870654A (zh) * 2022-05-09 2022-08-09 广东工业大学 一种纳米改性碳片基超滤膜材料及其制备方法与应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106669468A (zh) * 2016-12-20 2017-05-17 济南大学 基于金属掺杂g‑C3N4的可见光催化平板式超滤膜及制备方法
CN106807257A (zh) * 2016-12-20 2017-06-09 济南大学 基于金属掺杂g‑C3N4的可见光催化中空纤维超滤膜及制备方法
CN106832692A (zh) * 2017-02-16 2017-06-13 南京工程学院 一种复合改性聚偏氟乙烯及其膜的制备方法
CN106902650A (zh) * 2017-04-13 2017-06-30 淮阴师范学院 一种抗污染自清洁聚偏氟乙烯平板超滤膜及其制备方法和应用
US20170232427A1 (en) * 2016-02-16 2017-08-17 The George Washington University Doped graphitic carbon nitrides, methods of making and uses of the same
CN107999111A (zh) * 2017-12-05 2018-05-08 中国地质大学(武汉) 一种光催化复合材料及其制备改性pvdf膜的方法
CN108816059A (zh) * 2018-06-08 2018-11-16 太原理工大学 一种掺杂石墨化碳氮化物的混合基质膜的制备方法及应用
CN110961132A (zh) * 2019-11-14 2020-04-07 济南市环境研究院 一种c3n4改性有机膜的制备方法及应用
CN111744367A (zh) * 2020-05-29 2020-10-09 北京交通大学 一种纳米材料和mof共同改性有机膜的制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106693726A (zh) * 2015-11-18 2017-05-24 天津工业大学 一种聚偏氟乙烯与碳纳米管复合膜的制膜配方及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170232427A1 (en) * 2016-02-16 2017-08-17 The George Washington University Doped graphitic carbon nitrides, methods of making and uses of the same
CN106669468A (zh) * 2016-12-20 2017-05-17 济南大学 基于金属掺杂g‑C3N4的可见光催化平板式超滤膜及制备方法
CN106807257A (zh) * 2016-12-20 2017-06-09 济南大学 基于金属掺杂g‑C3N4的可见光催化中空纤维超滤膜及制备方法
CN106832692A (zh) * 2017-02-16 2017-06-13 南京工程学院 一种复合改性聚偏氟乙烯及其膜的制备方法
CN106902650A (zh) * 2017-04-13 2017-06-30 淮阴师范学院 一种抗污染自清洁聚偏氟乙烯平板超滤膜及其制备方法和应用
CN107999111A (zh) * 2017-12-05 2018-05-08 中国地质大学(武汉) 一种光催化复合材料及其制备改性pvdf膜的方法
CN108816059A (zh) * 2018-06-08 2018-11-16 太原理工大学 一种掺杂石墨化碳氮化物的混合基质膜的制备方法及应用
CN110961132A (zh) * 2019-11-14 2020-04-07 济南市环境研究院 一种c3n4改性有机膜的制备方法及应用
CN111744367A (zh) * 2020-05-29 2020-10-09 北京交通大学 一种纳米材料和mof共同改性有机膜的制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG JIALI ,, LI YANG, PENG XIAOMING, LUO WENDONG: "On Applications of Graphitic Carbon Nitride in Pollutant Removal and Detection in Water Environment", HUADONG JIAOTONG DAXUE XUEBAO - JOURNAL OF EAST CHINA JIAOTONG UNIVERSITY, HUADONG JIAOTONG DAXUE, CN, vol. 36, 15 February 2019 (2019-02-15), CN, pages 109 - 116, XP055818062, ISSN: 1005-0523 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113578362A (zh) * 2021-07-23 2021-11-02 上海工程技术大学 一种炔基修饰的半导体材料的制备方法和应用
CN113578362B (zh) * 2021-07-23 2023-09-08 上海工程技术大学 一种炔基修饰的半导体材料的制备方法和应用

Also Published As

Publication number Publication date
CN110961132A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
WO2021093832A1 (zh) 一种c3n4改性有机膜的制备方法及应用
CN111939775B (zh) 一种耐溶剂反渗透复合膜的制备方法
CN111744367A (zh) 一种纳米材料和mof共同改性有机膜的制备方法及应用
CN112387131B (zh) 一种聚合物微孔膜、其制备方法及应用
WO2017107658A1 (zh) 一种蒽醌功能化的聚偏氟乙烯膜及其制备方法与应用
CN109126480B (zh) 一种金属有机框架纳米片改性正渗透膜及其制备方法和应用
CN112156662B (zh) 一种自清洁静电纺纳米纤维滤膜、制备方法及应用
WO2022227838A1 (zh) 一种中空纤维无机膜的制备方法
CN110787645A (zh) 一种可见光光催化剂改性的pvdf超滤膜及其制备方法与应用
CN109745865A (zh) 一种基于石墨/二氧化钛复合材料的聚偏氟乙烯电催化超滤膜
WO2022160567A1 (zh) 一种基于原位还原的无机改性膜的制备方法及其应用
CN113262645B (zh) 一种自清洁复合超滤膜及其制备方法
CN108854588B (zh) 一种具有双重过硫酸盐活化功能的中空纤维陶瓷膜的制备方法及应用
CN113289657B (zh) 一种氮掺杂石墨烯催化膜的制备方法及其应用
CN109019761B (zh) 一种光电化学过滤器装置及其应用
CN110975626B (zh) 一种光-芬顿催化自清洁性超亲水性pvdf超滤膜的制备方法
CN112090296A (zh) 基于F-TiO2/Fe-g-C3N4的自清洁平板式PVDF超滤膜及制备方法
CN114452818B (zh) 一种基于分离-催化序构的超滤膜及其制备方法
CN114917755A (zh) 一种具有抗菌效应的纳米复合正渗透膜及其制备方法与应用
CN114950160A (zh) 一种纳米粒子改性pvdf超滤膜复合材料及其制备方法和应用
CN210410244U (zh) 一种氨基化氧化石墨烯与石墨相氮化碳复合改性膜
CN113546523A (zh) 复合Ag@BiOBr光催化材料的PVDF超滤膜及其制备方法和应用
CN113975982B (zh) 聚偏氟乙烯复合膜的制备方法
CN115178110B (zh) 一种具有高效动态吸附和光-Fenton再生特性的污水处理膜、其制备方法及应用
CN114672024B (zh) 一种杂化材料、制备方法及自修复反应性杂化超滤膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887624

Country of ref document: EP

Kind code of ref document: A1