WO2021093822A1 - 一种射频功率放大器、芯片及通信终端 - Google Patents

一种射频功率放大器、芯片及通信终端 Download PDF

Info

Publication number
WO2021093822A1
WO2021093822A1 PCT/CN2020/128471 CN2020128471W WO2021093822A1 WO 2021093822 A1 WO2021093822 A1 WO 2021093822A1 CN 2020128471 W CN2020128471 W CN 2020128471W WO 2021093822 A1 WO2021093822 A1 WO 2021093822A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
resistor
power amplifier
power
output
Prior art date
Application number
PCT/CN2020/128471
Other languages
English (en)
French (fr)
Inventor
赵锦鑫
白云芳
Original Assignee
唯捷创芯(天津)电子技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 唯捷创芯(天津)电子技术股份有限公司 filed Critical 唯捷创芯(天津)电子技术股份有限公司
Priority to JP2022527830A priority Critical patent/JP2023507245A/ja
Priority to KR1020227020399A priority patent/KR20220101164A/ko
Priority to EP20886218.5A priority patent/EP4060896A4/en
Publication of WO2021093822A1 publication Critical patent/WO2021093822A1/zh
Priority to US17/663,429 priority patent/US20220278659A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • H03F1/0227Continuous control by using a signal derived from the input signal using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/04Measuring peak values or amplitude or envelope of ac or of pulses
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0233Continuous control by using a signal derived from the output signal, e.g. bootstrapping the voltage supply
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • H03F1/0272Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A by using a signal derived from the output signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/213Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G9/00Combinations of two or more types of control, e.g. gain control and tone control
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/102A non-specified detector of a signal envelope being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/555A voltage generating circuit being realised for biasing different circuit elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention relates to a radio frequency power amplifier, and also to an integrated circuit chip including the radio frequency power amplifier and a corresponding communication terminal, belonging to the technical field of radio frequency integrated circuits.
  • the RF power amplifier is an indispensable key component in wireless communication applications. It is used to power amplify the modulated RF signal output by the transceiver to meet the power requirements of the RF signal required for wireless communication. Due to the performance requirements of wireless communication, the RF power amplifier needs to be power controlled. Moreover, due to process deviations, the gain and output power of the RF power amplifier will also change.
  • the first is a power control method based on closed-loop control.
  • the power control method mainly controls the final output power of the radio frequency power amplifier by controlling the input power of the radio frequency power amplifier.
  • the power control method uses the same bias voltage to generate the output power that meets the demand, when the output power required by the RF power amplifier is small, the current of the RF power amplifier will have a margin, resulting in unnecessary waste. .
  • the other is a power control method based on open loop control.
  • the power control method mainly realizes the control of the final output power of the radio frequency power amplifier by controlling the voltage. Since the power control method cannot know the output power of the control voltage controlled radio frequency power amplifier, the control voltage cannot accurately control the bias voltage of the radio frequency power amplifier circuit, and thus cannot accurately control the output power of the radio frequency power amplifier.
  • the primary technical problem to be solved by the present invention is to provide a radio frequency power amplifier.
  • Another technical problem to be solved by the present invention is to provide an integrated circuit chip including the above radio frequency power amplifier and a corresponding communication terminal.
  • a radio frequency power amplifier including a power amplifier circuit, an output matching circuit, a power detection circuit, and a bias comparison circuit; the power amplifier circuit and the output matching circuit are connected to form a In the main signal path of the radio frequency power amplifier, the input end of the power detection circuit is connected to a certain node on the main signal path, and the output end of the power detection circuit is connected to the input end of the bias comparison circuit, The output terminal of the bias comparison circuit is connected to the bias terminal and/or the collector terminal of the power amplifier circuit;
  • the output power on the main signal path is detected by the power detection circuit, and an equivalent voltage proportional to the output power is obtained.
  • the equivalent voltage is input to the bias comparison circuit, according to the power Adjusting the value of the equivalent voltage for different bias states required by different bias terminals of the amplifying circuit to obtain one or more branch equivalent voltages;
  • the equivalent voltage of each branch is compared with the control voltage previously input to the bias comparison circuit, and the bias voltage and/or collector voltage are continuously provided for the power amplifier circuit until the control voltage is equal to the control voltage.
  • the output power level of the radio frequency power amplifier is corresponding to control the output power of the radio frequency power amplifier under different power levels to be stable.
  • the power detection circuit includes a coupler and an envelope detector
  • the input end of the coupler is connected to the output end of the power amplifier circuit through the output matching circuit
  • the through output of the coupler is The output terminal of the coupler is connected to the output load
  • the coupled output terminal of the coupler is connected to the input terminal of the envelope detector
  • the output terminal of the envelope detector is connected to the input terminal of the bias comparison circuit.
  • a capacitor is used to replace the coupler.
  • the envelope detector includes a first resistor, a second resistor, a third resistor, a first diode, a fourth resistor, and a first capacitor; the first resistor is connected to the second resistor Between the power supply and the ground, the third resistor is connected between the anode of the first diode and the common node of the first resistor and the second resistor, and the cathode of the first diode It is connected to the ground through the parallel network of the fourth resistor and the first capacitor.
  • the bias comparison circuit includes N low-dropout linear regulators, where N is a positive integer; the input end of each low-dropout linear regulator is respectively connected to the control voltage and the power detector In the circuit, the output terminal of each of the low-dropout linear regulators is connected to the bias terminal and/or the collector terminal of the power amplifier circuit.
  • each of the low dropout linear regulators includes a fifth resistor, a sixth resistor, an operational amplifier, a PMOS transistor, and a seventh resistor, and the fifth resistor and the sixth resistor are connected to the third resistor.
  • the non-inverting input terminal of the operational amplifier is connected to the common node between the fifth resistor and the sixth resistor, and the inverting input terminal of the operational amplifier is connected to an external baseband circuit, so
  • the output terminal of the operational amplifier is connected to the gate of the PMOS transistor, the source of the PMOS transistor is connected to a power source, and the drain of the PMOS transistor is connected to the ground through the seventh resistor.
  • the power amplifying circuit includes one or more stages of amplifying circuits and a bias circuit corresponding to each stage of amplifying circuit, and each stage of amplifying circuit is connected to the corresponding bias circuit.
  • a certain node on the main signal path includes any one-stage amplifying circuit, a first node and a second node of the power amplifying circuit.
  • an integrated circuit chip is provided, and the integrated circuit chip includes the above-mentioned radio frequency power amplifier.
  • a communication terminal is provided, and the communication terminal includes the above-mentioned radio frequency power amplifier.
  • the radio frequency power amplifier provided by the embodiment of the present invention detects the output power on the main signal path through the power detection circuit, and obtains an equivalent voltage proportional to the output power and inputs it to the bias comparison circuit, and adjusts the equivalent voltage through the bias comparison circuit The value is compared with the control voltage to provide the bias voltage and/or collector voltage for the power amplifier circuit, thus forming a closed loop, so that the RF power amplifier can maintain stable gain and output power at different power levels status.
  • FIG. 1 is a circuit block diagram of a radio frequency power amplifier provided by an embodiment of the present invention
  • Figure 2 is a circuit block diagram of a radio frequency power amplifier using a power detection circuit composed of an envelope detector and a coupler;
  • FIG. 3 is a schematic circuit diagram of the envelope detector in the radio frequency power amplifier provided by the embodiment of the present invention.
  • FIG. 5 is a schematic circuit diagram of a bias comparison circuit in the radio frequency power amplifier provided by an embodiment of the present invention.
  • Figure 6 is a schematic diagram 1 of the radio frequency power amplifier using a two-stage amplifying circuit
  • Fig. 7 is a schematic diagram 2 of the radio frequency power amplifier adopting a two-stage amplifying circuit
  • FIG. 8 is a diagram of the relationship between the collector voltage of the power amplifier circuit and the output power in the radio frequency power amplifier provided by an embodiment of the present invention.
  • Fig. 9 is a structural block diagram of a communication terminal according to an embodiment of the present invention.
  • the radio frequency power amplifier provided by the embodiment of the present invention includes a power amplifier circuit 5, an output matching circuit 2, a power detection circuit 3, and a bias comparison circuit 4; a power amplifier circuit 5, an output matching circuit 2 and an output load 9.
  • the input end of the power detection circuit 3 is connected to a node on the main signal path (as shown in Figure 1
  • the first node 7 between the power amplifier circuit 5 and the output matching circuit 2 and the second node 8) between the output matching circuit 2 and the output load 9 shown are connected, and the output terminal of the power detection circuit 3 is connected to the bias comparison circuit
  • the input terminal of 4 is connected, and the output terminal of the bias comparison circuit 4 is connected with the bias terminal and/or the collector terminal of the power amplifier circuit 5.
  • the power on the main signal path is detected by the power detection circuit 3, and an equivalent voltage proportional to the power of the main signal path is obtained.
  • the equivalent voltage is input to the bias comparison circuit 4, according to the different bias terminals of the power amplifier circuit 5 Different offset states are needed to adjust the value of the equivalent voltage to obtain one or more branch equivalent voltages; the equivalent voltage of each branch is compared with the control voltage 1 pre-input to the bias comparison circuit 4 of the external baseband circuit , Continue to generate the bias voltage 6 and/or the collector voltage for the power amplifier circuit 5 and the control voltage, the branch equivalent voltage voltage difference is reversed, until the generated bias voltage and/or the collector voltage make the corresponding The branch equivalent voltage of is equal to the control voltage, so that the control voltage corresponds to the output power level of the radio frequency power amplifier, so as to control the output power of the radio frequency power amplifier under different power levels to stabilize.
  • control voltage pre-input to the bias comparison circuit 4 by the external baseband circuit corresponds to the output power level of the radio frequency power amplifier, that is, one output power level corresponds to one control voltage.
  • a plurality of control voltages corresponding to the output power level of the radio frequency power amplifier are preset in the baseband circuit.
  • the value of the control voltage provided by the baseband circuit for the radio frequency power amplifier is determined according to the actual output power required by the communication terminal (such as a mobile phone) to interact with the base station. That is, by setting different control voltages, the RF power amplifier can obtain different output powers. For example, suppose that the mobile phone communicates with the base station.
  • the mobile phone If the mobile phone is closer to the base station, the output power required for information exchange between the mobile phone and the base station will be relatively small, and the base station will feed back the output power required for information exchange with the mobile phone.
  • the mobile phone For the mobile phone, the mobile phone will provide its RF power amplifier with a control voltage corresponding to the required output power level through the baseband circuit.
  • the power detection circuit 3 includes a coupler 31 and an envelope detector 30.
  • the input end of the coupler 31 is connected to the output end of the power amplifier circuit 5 through the output matching circuit 2, the through output end 8 of the coupler 31 is connected to the output load 9, and the coupling output end 32 of the coupler 31 is connected to the envelope detector 30
  • the input terminal is connected, and the output terminal of the envelope detector 30 is connected to the input terminal of the bias comparison circuit 4.
  • the coupler 31 is used to detect the output power at a certain position on the main signal path of the radio frequency power amplifier composed of the power amplifier circuit 5, the output matching circuit 2 and the output load 9 and generate coupling power.
  • the coupling power has a certain proportional relationship with the output power of the radio frequency power amplifier. For example, the output power of a certain position on the main signal path of the radio frequency power amplifier detected by the coupler 31 and the coupling power generated is one hundredth of the output power of the radio frequency power amplifier.
  • the coupling coefficient of the coupler 31 is generally greater than 20 dB, so that the output power of the power amplifier circuit 5 can be reduced while detecting the output power of a certain position on the main signal path.
  • a capacitor can be used instead of a coupler to detect the output power of a certain position on the main signal path of the radio frequency power amplifier.
  • the envelope detector 30 is used for receiving the coupling power output from the coupling output end 32 of the coupler 31 and obtaining an equivalent voltage 33 proportional to the coupling power.
  • the envelope detector 30 includes a first resistor 307, a second resistor 308, a third resistor 310, a first diode 302, a fourth resistor 304, and a first capacitor 305;
  • the two resistors 308 are connected between the power supply and the ground to provide a bias voltage for the first diode 302 through a voltage divider.
  • the third resistor 310 is connected to the anode 301 of the first diode 302 and the first resistor 307 and the second resistor 307.
  • the common node 309 of the resistor 308 is used to provide an appropriate bias current for the first diode 302.
  • the cathode 303 of the first diode 302 is connected to the ground through the parallel network of the fourth resistor 304 and the first capacitor 305.
  • the fourth resistor 304 serves as the load of the first diode 302, provides a DC state for the first diode 302, and at the same time provides the first diode 302 with a power-to-voltage conversion gain;
  • the first capacitor 305 serves as a first diode
  • the filter capacitor of the tube 302 is used to obtain the DC part of the output voltage of the first diode 302;
  • the coupling power output by the coupler 31 can be converted into an equivalent voltage with a preset swing through the fourth resistor 304 and the first capacitor 305 ,
  • the equivalent voltage is proportional to the coupling power.
  • the coupling power output by the coupler 31 is input to the anode 301 of the first diode 302 through the capacitor 306.
  • the envelope detector 30 converts the coupling power output by the coupler 31 into an equivalent voltage with a preset swing
  • the common node 303 between the fourth resistor 304 and the first capacitor 305 is used as the output of the envelope detector 30
  • the terminal is input to the bias comparison circuit 4.
  • the bias comparison circuit 4 As shown in Figure 4, when the input power at the anode 301 of the first diode 302 (the coupling power output by the coupler 31) changes from -15 dBm to 10 dBm, the DC at the cathode 303 of the first diode 302
  • the voltage (the equivalent voltage of the preset swing corresponding to the coupled power) changes from 0.3V to 1.35V.
  • the bias comparison circuit 4 includes N low-dropout linear regulators, where N is a positive integer, and the value of N is determined by the bias actually required by the power amplifier circuit 5. The number of voltages and collector voltages is determined.
  • Each low dropout linear regulator includes a fifth resistor 402, a sixth resistor 403, an operational amplifier 406, a PMOS transistor 408, and a seventh resistor 411, respectively.
  • connection relationship and working principle of each part of each low-dropout linear regulator are as follows:
  • the fifth resistor 402 and the sixth resistor 403 are connected between the third node 401 and the ground, and are used to pass
  • the voltage dividing function of the fifth resistor 402 and the sixth resistor 403 replicates the equivalent voltage output by the power detection circuit 3 in a specific proportion to obtain a branch equivalent voltage;
  • the non-inverting input terminal of the operational amplifier 406 and the fifth resistor 402 are
  • the common node 404 between the sixth resistor 403 is connected to receive the branch equivalent voltage obtained by the voltage division of the fifth resistor 402 and the sixth resistor 403 through the common node 404;
  • the inverting input terminal of the operational amplifier 406 is connected to an external
  • the baseband circuit is used to receive the control voltage corresponding to the output power level actually required by the RF power amplifier;
  • the output terminal of the operational amplifier 406 is connected to the gate of the PMOS transistor 408, the source 409 of the PMOS transistor 4
  • the working principle of the bias comparison circuit 4 is that the equivalent voltage 33 output by the power detection circuit 3 which is proportional to the detected output power is input to the operational amplifier 406 of each low-dropout linear regulator, and each low-dropout linear regulator According to the working state of the power amplifier circuit 5, the voltage stabilizer copies the equivalent voltage output by the power detection circuit 3 to a specific ratio through the voltage dividing action of the fifth resistor 402 and the sixth resistor 403 to obtain a branch equivalent voltage; After the amplifier 406 compares the branch equivalent voltage with the control voltage 1 previously input to the inverting input terminal of the operational amplifier 406, the drain 410 of the PMOS transistor 408 generates a voltage through the seventh resistor 411 to provide the power amplifier circuit 5 with a bias voltage and /Or collector voltage. Among them, the value of the seventh resistor 411 can be different values according to needs.
  • each low-dropout linear regulator can refer to the working state of the power amplifying circuit 5.
  • the working state of a certain stage of the amplifying circuit of the amplifying circuit 5; that is, each low-dropout linear regulator is divided by the fifth resistor 402 and the sixth resistor 403 according to the working state of a certain stage of the power amplifying circuit 5 Function Copy the equivalent voltage output by the power detection circuit 3 to a specific ratio to obtain a branch equivalent voltage; that is, each low-dropout linear regulator can provide a bias for the corresponding amplifying circuit in the power amplifier circuit 5.
  • multiple low-dropout linear regulators can provide the bias voltage and/or the collector voltage for the corresponding multi-stage amplifying circuit in the power amplifying circuit 5.
  • each low-dropout linear regulator Since each low-dropout linear regulator forms a closed-loop control with the power amplifier circuit 5, the output matching circuit 2, and the power detection circuit 3, each low-dropout linear regulator will continue to receive the output of the power detection circuit 3
  • the low dropout linear regulator will dynamically adjust the equivalent voltage received each time to obtain the branch equivalent voltage. After comparing the branch equivalent voltage with the control voltage, it is the corresponding value in the power amplifier circuit 5.
  • a certain stage of amplifying circuit provides bias voltage and/or collector voltage until the equivalent voltage of the corresponding branch of each low dropout linear regulator is equal to the control voltage, so that the control voltage is equal to the output power level of the RF power amplifier Correspondingly, to control the output power stability of the RF power amplifier at different power levels.
  • the output matching circuit 2 is used to achieve impedance matching with an external antenna, so that the power amplifier circuit 5 can input radio frequency signals to the antenna, and transmit the radio frequency signals to the base station through the antenna.
  • the output matching circuit 2 includes a series inductor and a parallel capacitor, that is, the inductor is connected before the first node 7 and the second node 8, and the capacitor is connected between the second node 8 and the ground.
  • the following takes the power amplifier circuit 5 using a two-stage amplifier circuit and a bias circuit corresponding to the two-stage amplifier circuit as an example, and detects the output power of the second node 8 to provide a collector for a certain stage of the power amplifier circuit 5 Voltage, or separately providing bias voltage and collector voltage for each stage of amplifying circuit are typical.
  • the working principle of the radio frequency power amplifier provided by the embodiment of the present invention and the structure of each stage of amplifying circuit and the corresponding bias circuit will be described.
  • the first stage amplifying circuit of the power amplifying circuit 5 includes a first triode 502, the collector of the first triode 502 is connected to one end of the first inductor 509, and the first inductor 509 serves as the first stage.
  • the other end of the first inductor 509 is connected to the ground through the second capacitor 510, and the second capacitor 510 serves as a bypass capacitor of the first-stage amplifying circuit, so that the common terminal 511 of the first inductor 509 and the second capacitor 510 can be regarded as an AC Ground.
  • One end of the eighth resistor 505 and the collector of the second triode 504 are connected to the node 508, the other end of the eighth resistor 505 is connected to the base of the second triode 504, and the other end of the eighth resistor 505 also passes through The second diode 506 and the third diode 507 are connected to the ground.
  • the emitter of the second triode 504 is connected to the base of the first triode 502 through a ninth resistor 503 to provide a bias current for the first triode 502.
  • the eighth resistor 505, the second triode 504, the second diode 506, the third diode 507 and the ninth resistor 503 form a bias circuit corresponding to the first-stage amplifying circuit.
  • the collector of the first transistor 502 is connected to the base of the third transistor 513 through the third capacitor 512.
  • the first-stage amplifying circuit receives the radio frequency signal through the capacitor 501, and inputs the radio frequency signal to the third capacitor 512.
  • the second stage amplifying circuit receives the radio frequency signal through the capacitor 501, and inputs the radio frequency signal to the third capacitor 512.
  • the second stage amplifying circuit receives the radio frequency signal through the capacitor 501, and inputs the radio frequency signal to the third capacitor 512.
  • the second stage amplifying circuit receives the radio frequency signal through the capacitor 501, and inputs the radio frequency signal to the third capacitor 512.
  • the second stage amplifying circuit receives the radio frequency signal through the capacitor 501, and inputs the radio frequency signal to the third capacitor 512.
  • the second stage amplifying circuit receives the radio frequency signal through the capacitor 501, and inputs the radio frequency signal to the third capacitor 512.
  • the second stage amplifying circuit receives the radio frequency signal through the
  • One end of the tenth resistor 516 and the collector of the fourth triode 515 are connected to the node 519, and the other end of the tenth resistor 516 is connected to the base of the fourth triode 515, and through the fourth diode 517, the Five diodes 518 are connected to ground.
  • the emitter of the fourth transistor 51 is connected to the base of the third transistor 513 through the eleventh resistor 514 to provide a bias current for the third transistor 513.
  • the collector of the third transistor 513 is output to the output load through the output matching circuit 2.
  • the power detection circuit 3 detects the output power of the second node 8 and obtains an equivalent voltage 526 proportional to the output power.
  • the equivalent voltage 526 is input to the bias comparison circuit 4, and the bias comparison circuit 4 obtains the equivalent voltage
  • the offset voltage 529 is obtained by comparing 526 with the control voltage 1 input to the offset comparison circuit 4 in advance.
  • the bias voltage 529 is connected to the common node 522 between the second inductor 520 and the fourth capacitor 521 to provide a collector voltage for the second stage amplifying circuit.
  • the output power of the power amplifier circuit is controlled by the collector voltage.
  • the output power of the second node 8 is detected by the power detection circuit 3, and an equivalent voltage 526 proportional to the output power is obtained, and the equivalent voltage 526 is input to the four bias comparison circuits 4 respectively.
  • the low-dropout linear regulator two of the low-dropout linear regulators adjust the value of the equivalent voltage according to the working state of the first-stage amplifying circuit of the power amplifier circuit 5 to obtain the equivalent voltages of the two branches.
  • the differential linear regulator compares the corresponding branch equivalent voltage with the control voltage, and continuously generates the corresponding bias voltage 534 and collector voltage 533 for the first-stage amplifying circuit through node 508 and node 511 until the generated The bias voltage and the collector voltage make the corresponding branch equivalent voltage equal to the control voltage; the other two low-dropout linear regulators adjust the equivalent voltage value according to the working state of the second-stage amplifier circuit of the power amplifier circuit 5, and also The two branch equivalent voltages are obtained.
  • the two low dropout linear regulators respectively compare the corresponding branch equivalent voltages with the control voltages, and continuously generate corresponding biases for the second-stage amplifying circuit through nodes 519 and 522.
  • the voltage 532 and the collector voltage 531 are set until the generated bias voltage and collector voltage make the corresponding branch equivalent voltage equal to the control voltage.
  • the radio frequency power amplifier provided by the embodiment of the present invention detects the output power on the main signal path through the power detection circuit, and obtains an equivalent voltage proportional to the output power and inputs it to the bias comparison circuit, and adjusts the equivalent voltage through the bias comparison circuit The value is compared with the control voltage to provide a bias voltage and/or collector voltage for the power amplifier circuit to form a closed loop to achieve the purpose of stably controlling the output power of the power amplifier circuit.
  • detecting the output power on the main signal path adjusting the working status of each level of the amplifier circuit, thereby suppressing the change in the working state of the RF power amplifier caused by process changes, and reducing the impact of the change in input power on the working state of the RF power amplifier. Influence, make the RF power amplifier work in gain and output power can maintain a stable state under different power levels.
  • the radio frequency power amplifier provided by the embodiment of the present invention can also be used in an integrated circuit chip.
  • the specific structure of the radio frequency power amplifier in the integrated circuit chip will not be detailed here.
  • the above-mentioned radio frequency power amplifier can also be used in the communication terminal as shown in FIG. 9 as an important part of the communication component.
  • the communication terminal mentioned here refers to the computer equipment that can be used in a mobile environment and supports multiple communication standards such as GSM, EDGE, WiFi, 4G/5G, etc., including mobile phones, notebook computers, tablet computers, car computers, etc.
  • the technical solutions provided by the embodiments of the present invention are also applicable to other communication component applications, such as communication base stations.
  • Fig. 9 is a structural block diagram of a communication terminal according to an embodiment of the present invention.
  • the communication terminal 800 may include one or more of the following components: a processing component 802, a memory 804, a power supply component 806, an input/output (I/O) interface 812, a sensor component 814, and a communication component 816.
  • a processing component 802 a memory 804
  • a power supply component 806 an input/output (I/O) interface 812
  • sensor component 814 a sensor component 814
  • a communication component 816 may include one or more of the following components: a processing component 802, a memory 804, a power supply component 806, an input/output (I/O) interface 812, a sensor component 814, and a communication component 816.
  • I/O input/output
  • the processing component 802 generally controls the overall operation of the communication terminal 800.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
  • the memory 804 is configured to store various types of data to support operations in the communication terminal 800. Examples of these data include instructions for any application or method operating on the communication terminal 800, and the like.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable and Programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable and Programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic or optical disk.
  • the power supply component 806 provides power for various components of the communication terminal 800.
  • the power supply component 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the communication terminal 800.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module.
  • the above-mentioned peripheral interface module may be a keyboard, a scroll wheel, a button, and the like.
  • the sensor component 814 includes one or more sensors for providing the communication terminal 800 with various status assessments.
  • the sensor component 814 may include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the communication terminal 800 and other devices, and is preferably a 4G/5G access module.
  • the communication terminal 800 can access wireless networks based on various communication standards, such as GSM, EDGE, WiFi, 4G/5G, or a combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

一种射频功率放大器、芯片及通信终端。该射频功率放大器包括功率放大电路(5)、输出匹配电路(2)、功率检测电路(3)和偏置比较电路(4)。通过功率检测电路(3)检测主信号通路上的输出功率,并得到与该输出功率成正比的等效电压输入到偏置比较电路(4),通过偏置比较电路(4)调整等效电压数值,并与控制电压(1)进行比较,为功率放大电路(5)提供偏置电压和/或集电极电压,由此形成一个闭环回路,使射频功率放大器工作在增益以及输出功率在不同的功率等级下都能保持稳定状态。

Description

一种射频功率放大器、芯片及通信终端 技术领域
本发明涉及一种射频功率放大器,同时也涉及包括该射频功率放大器的集成电路芯片及相应的通信终端,属于射频集成电路技术领域。
背景技术
射频功率放大器是无线通信应用中不可或缺的关键部件,用于将收发机输出的已调制射频信号进行功率放大,以满足无线通信所需的射频信号的功率要求。由于无线通信对性能的要求,射频功率放大器需要进行功率控制。并且,由于工艺的偏差会也会导致射频功率放大器的增益以及输出功率发生变化。
现有技术中,射频功率放大器的功率控制方法主要有以下两种:
第一种是基于闭环控制的功率控制方法。该功率控制方法主要通过控制射频功率放大器的输入功率,实现控制射频功率放大器最终的输出功率。此外,由于该功率控制方法采用同一个偏置电压产生满足需求的输出功率,导致当射频功率放大器所需的输出功率较小时,会使得射频功率放大器的电流出现余量,从而造成不必要的浪费。
另一种是基于开环控制的功率控制方法。该功率控制方法主要通过控制电压,实现控制射频功率放大器最终的输出功率。由于该功率控制方法无法获知控制电压控制射频功率放大器的输出功率的大小,使得控制电压无法精确控制射频功率放大电路的偏置电压,进而无法精确控制射频功率放大器的输出功率。
发明内容
本发明所要解决的首要技术问题在于提供一种射频功率放大器。
本发明所要解决的另一技术问题在于提供一种包括上述射频功率放大器的集成电路芯片及相应的通信终端。
为了实现上述目的,本发明采用下述的技术方案:
根据本发明实施例的第一方面,提供一种射频功率放大器,包括功率放大电路、输出匹配电路、功率检测电路和偏置比较电路;所述功率放大电路和所述输出匹配电路连接,构成所述射频功率放大器的 主信号通路,所述功率检测电路的输入端与所述主信号通路上的某一节点连接,所述功率检测电路的输出端与所述偏置比较电路的输入端连接,所述偏置比较电路的输出端与所述功率放大电路的偏置端和/或集电极端连接;
通过所述功率检测电路检测所述主信号通路上的输出功率,并得到与所述输出功率成正比的等效电压,所述等效电压输入到所述偏置比较电路后,根据所述功率放大电路不同偏置端所需要的不同的偏置状态调整所述等效电压的数值,得到一个或多个分支等效电压;
每个所述分支等效电压分别与预先输入到所述偏置比较电路的控制电压进行比较,持续为所述功率放大电路提供偏置电压和/或集电极电压,直到所述控制电压与所述射频功率放大器的输出功率等级相对应,以控制所述射频功率放大器在不同功率等级下的输出功率稳定。
其中较优地,所述功率检测电路包括耦合器和包络检波器,所述耦合器的输入端通过所述输出匹配电路与所述功率放大电路的输出端连接,所述耦合器的直通输出端与输出负载连接,所述耦合器的耦合输出端与所述包络检波器的输入端连接,所述包络检波器的输出端与偏置比较电路的输入端连接。
其中较优地,采用电容替代所述耦合器。
其中较优地,所述包络检波器包括第一电阻、第二电阻、第三电阻、第一二极管、第四电阻和第一电容;所述第一电阻与所述第二电阻连接在电源与地之间,所述第三电阻连接在所述第一二极管的正极与所述第一电阻和所述第二电阻的公共节点之间,所述第一二极管的负极通过所述第四电阻与所述第一电容的并联网络连接到地。
其中较优地,所述偏置比较电路包括N个低压差线性稳压器,N为正整数;每个所述低压差线性稳压器的输入端分别连接所述控制电压和所述功率检测电路,每个所述低压差线性稳压器的输出端连接所述功率放大电路的偏置端和/或集电极端。
其中较优地,每个所述低压差线性稳压器分别包括第五电阻、第六电阻、运算放大器、PMOS晶体管和第七电阻,所述第五电阻与所述第六电阻连接在第三节点与地之间,所述运算放大器的正相输入端和所述第五电阻与所述第六电阻之间的公共节点连接,所述运算放大器 的反相输入端连接外部的基带电路,所述运算放大器的输出端连接所述PMOS晶体管的栅极,所述PMOS晶体管的源极连接到电源,所述PMOS晶体管的漏极通过所述第七电阻连接到地。
其中较优地,所述功率放大电路包括一级或多级放大电路及与每一级放大电路对应的偏置电路,每一级放大电路与对应的所述偏置电路连接。
其中较优地,所述主信号通路上的某一节点包括所述功率放大电路的任意一级放大电路、第一节点和第二节点。
根据本发明实施例的第二方面,提供一种集成电路芯片,所述集成电路芯片中包括上述的射频功率放大器。
根据本发明实施例的第三方面,提供一种通信终端,所述通信终端中包括上述的射频功率放大器。
本发明实施例提供的射频功率放大器通过功率检测电路检测主信号通路上的输出功率,并得到与该输出功率成正比的等效电压输入到偏置比较电路,通过偏置比较电路调整等效电压数值,并与控制电压进行比较,为功率放大电路提供偏置电压和/或集电极电压,这样形成一个闭环回路,使射频功率放大器工作在增益以及输出功率在不同的功率等级下都能保持稳定状态。
附图说明
图1为本发明实施例提供的射频功率放大器的电路框图;
图2为采用由包络检波器和耦合器组成的功率检测电路的射频功率放大器的电路框图;
图3为本发明实施例提供的射频功率放大器中,包络检波器的电路原理图;
图4为本发明实施例提供的射频功率放大器中,包络检波器的输入功率与输出直流电压的关系图;
图5为本发明实施例提供的射频功率放大器中,偏置比较电路的电路原理图;
图6为采用两级放大电路的射频功率放大器的电路原理图1;
图7为采用两级放大电路的射频功率放大器的电路原理图2;
图8为本发明实施例提供的射频功率放大器中,功率放大电路的 集电极电压与输出功率的关系图;
图9是根据本发明实施例示出的一种通信终端的结构框图。
具体实施方式
下面结合附图和具体实施例对本发明的技术内容做进一步的详细说明。
如图1所示,本发明实施例提供的射频功率放大器包括功率放大电路5、输出匹配电路2、功率检测电路3和偏置比较电路4;功率放大电路5、输出匹配电路2及输出负载9依次连接,构成射频功率放大器的主信号通路,实现对输入射频信号的放大以满足与基站通信所需要的功率;功率检测电路3的输入端与主信号通路上的某一节点(如图1所示的位于功率放大电路5与输出匹配电路2之间的第一节点7和输出匹配电路2与输出负载9之间的第二节点8)连接,功率检测电路3的输出端与偏置比较电路4的输入端连接,偏置比较电路4的输出端与功率放大电路5的偏置端和/或集电极端连接。
通过功率检测电路3检测主信号通路上的功率,并得到与主信号通路功率成正比的等效电压,该等效电压输入到偏置比较电路4后,根据功率放大电路5不同偏置端所需要的不同的偏置状态调整等效电压的数值,得到一个或多个分支等效电压;每个分支等效电压分别与外部的基带电路预先输入到偏置比较电路4的控制电压1进行比较,持续为功率放大电路5产生与控制电压,分支等效电压电压差值成反向变化的偏置电压6和/或集电极电压,直到所产生的偏置电压和/或集电极电压使得相应的分支等效电压与控制电压相等,进而使得控制电压与射频功率放大器的输出功率等级相对应,以控制射频功率放大器在不同功率等级下的输出功率稳定。
需要说明的是,外部的基带电路预先输入到偏置比较电路4的控制电压与射频功率放大器的输出功率等级相对应,即一个输出功率等级对应于一个控制电压。在基带电路中预设设置了多个与射频功率放大器的输出功率等级相对应的控制电压。基带电路为射频功率放大器提供的控制电压的数值根据通信终端(如手机)与基站进行交互信息时实际所需的输出功率而定。即通过设置不同的控制电压可以使得射频功率放大器得到不同的输出功率。例如,假设手机与基站进行通信, 此时如果手机距离基站较近,那么手机与基站进行交互信息时需要的输出功率就会比较小,基站会将与手机进行交互信息时所需的输出功率反馈给手机,手机就会通过基带电路向其射频功率放大器提供与所需的输出功率等级对应的控制电压。
如图2所示,在本发明的一个实施例中,功率检测电路3包括耦合器31和包络检波器30。耦合器31的输入端通过输出匹配电路2与功率放大电路5的输出端连接,耦合器31的直通输出端8与输出负载9连接,耦合器31的耦合输出端32与包络检波器30的输入端连接,包络检波器30的输出端与偏置比较电路4的输入端连接。
耦合器31,用于检测功率放大电路5、输出匹配电路2及输出负载9构成的射频功率放大器的主信号通路上某一位置的输出功率并产生耦合功率。该耦合功率与射频功率放大器的输出功率具有一定的比例关系。例如,耦合器31检测的射频功率放大器的主信号通路上某一位置的输出功率并产生耦合功率是射频功率放大器的输出功率的百分之一。
由于将耦合器31连接到主信号通路上的第二节点8比第一节点7时对功率放大电路5的输出功率影响小,并且耦合器31在第二节点8位置检测到的功率更接近最终的输出功率;因此,优选将耦合器31连接到主信号通路上的第二节点8上,不仅保证对主信号通路的射频信号影响小,而且还使得功率检测电路3检测到的功率更接近放大电路最终的输出功率。其中,耦合器31的耦合系数一般大于20dB,使得在检测主信号通路上某一位置的输出功率的同时还能减小对功率放大电路5输出功率的损耗。
此外,还可以采用电容替代耦合器,实现检测射频功率放大器的主信号通路上某一位置的输出功率。
包络检波器30,用于接收耦合器31的耦合输出端32输出的耦合功率并得到与该耦合功率成正比的等效电压33。如图3所示,包络检波器30包括第一电阻307、第二电阻308、第三电阻310、第一二极管302、第四电阻304和第一电容305;第一电阻307与第二电阻308连接在电源与地之间,通过分压作用为第一二极管302提供偏置电压,第三电阻310连接在第一二极管302的正极301与第一电阻307和第 二电阻308的公共节点309之间,用于为第一二极管302提供合适的偏置电流。第一二极管302的负极303通过第四电阻304与第一电容305的并联网络连接到地。第四电阻304作为第一二极管302的负载,为第一二极管302提供直流状态,同时为第一二极管302提供功率到电压的转换增益;第一电容305作为第一二极管302的滤波电容,用于得到第一二极管302输出电压的直流部分;通过第四电阻304和第一电容305可以将耦合器31输出的耦合功率转换成预设摆幅的等效电压,该等效电压与耦合功率成正比。其中,耦合器31输出的耦合功率通过电容306输入到第一二极管302的正极301。包络检波器30将耦合器31输出的耦合功率转换成预设摆幅的等效电压后,通过以第四电阻304和第一电容305之间的公共节点303作为包络检波器30的输出端输入到偏置比较电路4。如图4所示,当第一二极管302的正极301处的输入功率(耦合器31输出的耦合功率)从-15dBm变化到10dBm时,则第一二极管302的负极303处的直流电压(与耦合功率对应的预设摆幅的等效电压)从0.3V变化到1.35V。
如图5所示,在本发明的一个实施例中,偏置比较电路4包括N个低压差线性稳压器,N为正整数,N的取值由功率放大电路5实际所需的偏置电压和集电极电压的个数决定。每个低压差线性稳压器分别包括第五电阻402、第六电阻403、运算放大器406、PMOS晶体管408和第七电阻411。每个低压差线性稳压器各部分的连接关系及工作原理如下:第五电阻402与第六电阻403连接在第三节点401与地之间,用于根据功率放大电路5的工作状态,通过第五电阻402与第六电阻403的分压作用将功率检测电路3输出的等效电压进行特定比例的复制,得到一个分支等效电压;运算放大器406的正相输入端和第五电阻402与第六电阻403之间的公共节点404连接,用于通过公共节点404接收经第五电阻402与第六电阻403分压作用得到的分支等效电压;运算放大器406的反相输入端连接外部的基带电路,用于接收与射频功率放大器实际所需的输出功率等级对应的控制电压;运算放大器406的输出端连接PMOS晶体管408的栅极,PMOS晶体管408的源极409连接到电源,PMOS晶体管408的漏极410通过第七电阻411接到地。
偏置比较电路4的工作原理为,通过将功率检测电路3输出的与其检测的输出功率成正比的等效电压33输入到每个低压差线性稳压器的运算放大器406,每个低压差线性稳压器根据功率放大电路5的工作状态,通过第五电阻402与第六电阻403的分压作用将功率检测电路3输出的等效电压进行特定比例的复制,得到一个分支等效电压;运算放大器406将分支等效电压与预先输入到运算放大器406的反相输入端的控制电压1进行比较后,PMOS晶体管408的漏极410通过第七电阻411产生电压为功率放大电路5提供偏置电压和/或集电极电压。其中,第七电阻411的数值可以根据需要选用不同的值。
由于功率放大电路5包括一级或多级放大电路及与每一级放大电路对应的偏置电路;因此,每个低压差线性稳压器根据功率放大电路5的工作状态可以指的是,功率放大电路5的某一级放大电路的工作状态;即每个低压差线性稳压器根据功率放大电路5的某一级放大电路的工作状态,通过第五电阻402与第六电阻403的分压作用将功率检测电路3输出的等效电压进行特定比例的复制,得到一个分支等效电压;即每个低压差线性稳压器可以为功率放大电路5中对应的某一级放大电路提供偏置电压和/或集电极电压,通过偏置电压或集电极电压控制对应的某一级放大电路的输出功率。那么,采用多个低压差线性稳压器可以为功率放大电路5中对应的多级放大电路提供偏置电压和/或集电极电压。
由于每个低压差线性稳压器分别与功率放大电路5、输出匹配电路2、功率检测电路3之间形成闭环控制,因此,每个低压差线性稳压器会持续收到功率检测电路3输出的等效电压,低压差线性稳压器会将每次收到的等效电压进行动态调整,得到分支等效电压,并将分支等效电压与控制电压比较后,为功率放大电路5中对应的某一级放大电路提供偏置电压和/或集电极电压,直到每个低压差线性稳压器相应的分支等效电压与控制电压相等,进而使得控制电压与射频功率放大器的输出功率等级相对应,以控制射频功率放大器在不同功率等级下的输出功率稳定。
输出匹配电路2,用于实现与外部的天线之间的阻抗匹配,使得功率放大电路5能够将射频信号输入到天线,并通过天线将射频信号 发射至基站。输出匹配电路2包括串联电感与并联电容,即在第一节点7和第二节点8之前连接电感,在第二节点8与地之间连接电容。
下面以功率放大电路5采用两级放大电路及与两级放大电路对应的偏置电路为例,并以检测第二节点8的输出功率,为功率放大电路5的某一级放大电路提供集电极电压,或者为每一级放大电路分别提供偏置电压和集电极电压为典型,对本发明实施例提供的射频功率放大器的工作原理及每一级放大电路及对应的偏置电路的结构进行说明。
如图6所示,功率放大电路5的第一级放大电路包括第一三极管502,第一三极管502的集电极连接到第一电感509的一端,第一电感509作为第一级放大电路的负载。第一电感509的另一端通过第二电容510连接到地,第二电容510作为第一级放大电路的旁路电容,从而使得第一电感509与第二电容510的公共端511可以视为交流地。第八电阻505的一端与第二三极管504的集电极连接到节点508,第八电阻505的另一端连接到第二三极管504的基极,并且第八电阻505的另一端还通过第二二极管506,第三二极管507连接到地。第二三极管504的发射极通过第九电阻503连接到第一三极管502的基极,为第一三极管502提供偏置电流。其中,第八电阻505、第二三极管504、第二二极管506,第三二极管507和第九电阻503组成与第一级放大电路对应的偏置电路。第一三极管502的集电极通过第三电容512连接到第三三极管513的基极,第一级放大电路通过电容501接收射频信号,并将该射频信号通过第三电容512输入到第二级放大电路。同样,第二电感520的一端连接到第三三极管513的集电极,作为第三三极管513的负载。第二电感520的另一端通过第四电容521连接到地,第四电容521作为第二级放大电路的旁路电容,使得第二电感520与第四电容521的公共端522可以视为交流地。第十电阻516的一端与第四三极管515的集电极连接到节点519,第十电阻516的另一端连接到第四三极管515的基极,并且通过第四二极管517,第五二极管518连接到地。第四三极管51的发射极通过第十一电阻514连接到第三三极管513的基极,为第三三极管513提供偏置电流。第三三极管513的集电极通过输出匹配电路2输出到输出负载。
功率检测电路3检测第二节点8的输出功率,并得到与该输出功率成正比的等效电压526,该等效电压526输入到偏置比较电路4,偏置比较电路4通过将等效电压526与预先输入到偏置比较电路4的控制电压1进行比较得到偏置电压529。偏置电压529连接到第二电感520与第四电容521之间的公共节点522,为第二级放大电路提供集电极电压。通过集电极电压控制功率放大电路的输出功率。
如图7所示,通过功率检测电路3检测第二节点8的输出功率,并得到与该输出功率成正比的等效电压526,该等效电压526分别输入到偏置比较电路4的4个低压差线性稳压器中,其中两个低压差线性稳压器根据功率放大电路5的第一级放大电路的工作状态调整等效电压的数值,得到两个分支等效电压,这两个低压差线性稳压器分别将相应的分支等效电压与控制电压进行个比较,通过节点508和节点511持续为第一级放大电路产生相应的偏置电压534和集电极电压533,直到所产生的偏置电压和集电极电压使得相应的分支等效电压与控制电压相等;另两个低压差线性稳压器根据功率放大电路5的第二级放大电路的工作状态调整等效电压的数值,也得到两个分支等效电压,这两个低压差线性稳压器分别将相应的分支等效电压分别与控制电压进行个比较,通过节点519和节点522持续为第二级放大电路产生相应的偏置电压532和集电极电压531,直到所产生的偏置电压和集电极电压使得相应的分支等效电压与控制电压相等。
如图8所示,当偏置比较电路4为第二极放大电路提供的集电极电压从0.4V变化到3.4V时,功率放大电路的输出功率从11dBm变化到35dBm。因此,由图4和图8可知,通过设置不同的控制电压可以使功率放大电路得到不同的输出功率。
本发明实施例提供的射频功率放大器通过功率检测电路检测主信号通路上的输出功率,并得到与该输出功率成正比的等效电压输入到偏置比较电路,通过偏置比较电路调整等效电压数值,并与控制电压进行比较,为功率放大电路提供偏置电压和/或集电极电压,这样形成一个闭环回路,达到稳定控制功率放大电路的输出功率的目的。另外,通过检测主信号通路上的输出功率,调整各级放大电路的工作状态,从而抑制由工艺变化导致的射频功率放大器工作状态变化,同时可以 减小输入功率的变化对射频功率放大器工作状态的影响,使射频功率放大器工作在增益以及输出功率在不同的功率等级下都能保持稳定状态。
本发明实施例提供的射频功率放大器还可以被用在集成电路芯片中。对于该集成电路芯片中的射频功率放大器的具体结构,在此就不再一一详述了。
另外,上述射频功率放大器还可以被用在如图9所示的通信终端中,作为通信组件的重要组成部分。这里所说的通信终端是指可以在移动环境中使用,支持GSM、EDGE、WiFi、4G/5G等多种通信制式的计算机设备,包括移动电话、笔记本电脑、平板电脑、车载电脑等。此外,本发明实施例提供的技术方案也适用于其他通信组件应用的场合,例如通信基站等。
图9是根据本发明实施例示出的一种通信终端的结构框图。参照图9,通信终端800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,输入/输出(I/O)的接口812,传感器组件814以及通信组件816。
处理组件802通常控制通信终端800的整体操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。
存储器804被配置为存储各种类型的数据以支持在通信终端800的操作。这些数据的示例包括用于在通信终端800上操作的任何应用程序或方法的指令等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM)、可编程只读存储器(PROM)、只读存储器(ROM)、磁存储器、快闪存储器、磁盘或光盘。
电源组件806为通信终端800的各种组件提供电力。电源组件806可以包括电源管理***,一个或多个电源,及其他与为通信终端800生成、管理和分配电力相关联的组件。I/O接口812为处理组件802和***接口模块之间提供接口,上述***接口模块可以是键盘、滚轮、按钮等。
传感器组件814包括一个或多个传感器,用于为通信终端800提供各个方面的状态评估。在一些实施例中,该传感器组件814可以包括加速度传感器、陀螺仪传感器、磁传感器、压力传感器或温度传感器等。
通信组件816被配置为便于通信终端800和其他设备之间以有线或无线方式的通信,优选为4G/5G接入模块。通信终端800可以接入基于各类通信制式的无线网络,如GSM、EDGE、WiFi、4G/5G或它们的组合。
以上对本发明实施例提供的射频功率放大器、芯片及通信终端进行了详细的说明。对本领域的一般技术人员而言,在不背离本发明实质内容的前提下对它所做的任何显而易见的改动,都将属于本发明专利权的保护范围。

Claims (10)

  1. 一种射频功率放大器,其特征在于包括功率放大电路、输出匹配电路、功率检测电路和偏置比较电路;所述功率放大电路和所述输出匹配电路连接,所述功率检测电路的输入端与所述主信号通路上的节点连接,所述功率检测电路的输出端与所述偏置比较电路的输入端连接,所述偏置比较电路的输出端与所述功率放大电路的偏置端和/或集电极端连接;
    通过所述功率检测电路检测所述主信号通路上的输出功率,并得到与所述输出功率成正比的等效电压,所述等效电压输入到所述偏置比较电路后,根据所述功率放大电路不同偏置端所需要的不同的偏置状态调整所述等效电压的数值,得到一个或多个分支等效电压;
    每个所述分支等效电压分别与预先输入到所述偏置比较电路的控制电压进行比较,持续为所述功率放大电路提供偏置电压和/或集电极电压,直到所述控制电压与所述射频功率放大器的输出功率等级相对应。
  2. 如权利要求1所述的射频功率放大器,其特征在于:
    所述功率检测电路包括耦合器和包络检波器,所述耦合器的输入端通过所述输出匹配电路与所述功率放大电路的输出端连接,所述耦合器的直通输出端与输出负载连接,所述耦合器的耦合输出端与所述包络检波器的输入端连接,所述包络检波器的输出端与偏置比较电路的输入端连接。
  3. 如权利要求2所述的射频功率放大器,其特征在于:
    采用电容替代所述耦合器。
  4. 如权利要求2所述的射频功率放大器,其特征在于:
    所述包络检波器包括第一电阻、第二电阻、第三电阻、第一二极管、第四电阻和第一电容;所述第一电阻与所述第二电阻连接在电源与地之间,所述第三电阻连接在所述第一二极管的正极与所述第一电阻和所述第二电阻的公共节点之间,所述第一二极管的负极通过所述第四电阻与所述第一电容的并联网络连接到地。
  5. 如权利要求1所述的射频功率放大器,其特征在于:
    所述偏置比较电路包括N个低压差线性稳压器,N为正整数;每个所述低压差线性稳压器的输入端分别连接所述控制电压和所述功率检测电路,每个所述低压差线性稳压器的输出端连接所述功率放大电路的偏置端和/或集电极端。
  6. 如权利要求1所述的射频功率放大器,其特征在于:
    每个所述低压差线性稳压器分别包括第五电阻、第六电阻、运算放大器、PMOS晶体管和第七电阻,所述第五电阻与所述第六电阻连接在第三节点与地之间,所述运算放大器的正相输入端和所述第五电阻与所述第六电阻之间的公共节点连接,所述运算放大器的反相输入端连接外部的基带电路,所述运算放大器的输出端连接所述PMOS晶体管的栅极,所述PMOS晶体管的源极连接到电源,所述PMOS晶体管的漏极通过所述第七电阻连接到地。
  7. 如权利要求1所述的射频功率放大器,其特征在于:
    所述功率放大电路包括一级或多级放大电路及与每一级放大电路对应的偏置电路,每一级放大电路与对应的所述偏置电路连接。
  8. 如权利要求7所述的射频功率放大器,其特征在于:
    所述主信号通路上的某一节点包括所述功率放大电路的任意一级放大电路、第一节点和第二节点。
  9. 一种集成电路芯片,其特征在于所述集成电路芯片中包括权利要求1~8中任意一项所述的射频功率放大器。
  10. 一种通信终端,其特征在于所述通信终端中包括权利要求1~8中任意一项所述的射频功率放大器。
PCT/CN2020/128471 2019-11-15 2020-11-12 一种射频功率放大器、芯片及通信终端 WO2021093822A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022527830A JP2023507245A (ja) 2019-11-15 2020-11-12 Rf電力増幅器、チップ及び通信端末
KR1020227020399A KR20220101164A (ko) 2019-11-15 2020-11-12 무선 주파수 전력 증폭기, 칩 및 통신 단말
EP20886218.5A EP4060896A4 (en) 2019-11-15 2020-11-12 RADIO FREQUENCY POWER AMPLIFIER, CHIP AND COMMUNICATION TERMINAL
US17/663,429 US20220278659A1 (en) 2019-11-15 2022-05-14 Radio frequency power amplifier, chip, and communication terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911121417.2 2019-11-15
CN201911121417.2A CN110855254B (zh) 2019-11-15 2019-11-15 一种射频功率放大器、芯片及通信终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/663,429 Continuation US20220278659A1 (en) 2019-11-15 2022-05-14 Radio frequency power amplifier, chip, and communication terminal

Publications (1)

Publication Number Publication Date
WO2021093822A1 true WO2021093822A1 (zh) 2021-05-20

Family

ID=69601711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128471 WO2021093822A1 (zh) 2019-11-15 2020-11-12 一种射频功率放大器、芯片及通信终端

Country Status (6)

Country Link
US (1) US20220278659A1 (zh)
EP (1) EP4060896A4 (zh)
JP (1) JP2023507245A (zh)
KR (1) KR20220101164A (zh)
CN (1) CN110855254B (zh)
WO (1) WO2021093822A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110855254B (zh) * 2019-11-15 2023-06-20 唯捷创芯(天津)电子技术股份有限公司 一种射频功率放大器、芯片及通信终端
CN111711423B (zh) * 2020-06-03 2024-02-02 唯捷创芯(天津)电子技术股份有限公司 射频功率放大器、射频前端模块及通信终端
CN113835053A (zh) * 2020-06-23 2021-12-24 通用电气精准医疗有限责任公司 射频功率放大器的功率控制装置和mri***的射频发射***
CN112702029B (zh) * 2021-03-25 2021-05-28 成都知融科技股份有限公司 片上集成检波功能的cmos功率放大器芯片
CN114152803A (zh) * 2021-10-12 2022-03-08 广州润芯信息技术有限公司 高阻微带线结构的功率检测电路
CN116526981B (zh) * 2023-04-20 2024-02-20 唯捷创芯(天津)电子技术股份有限公司 一种可调平衡式功率放大器及射频前端模块、电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106937364A (zh) * 2015-12-29 2017-07-07 联芯科技有限公司 一种射频偏置电压调整方法、装置、基带集成电路和移动终端
US20180316312A1 (en) * 2017-04-28 2018-11-01 Skyworks Solutions, Inc. Apparatus and methods for power amplifiers with positive envelope feedback
CN109428554A (zh) * 2017-09-04 2019-03-05 北京泰龙电子技术有限公司 一种射频电源功率放大器过压保护电路
CN109510634A (zh) * 2019-01-25 2019-03-22 北京唯得科技有限公司 射频功率放大器动态功率调整装置以及动态功率调整方法
CN110855254A (zh) * 2019-11-15 2020-02-28 唯捷创芯(天津)电子技术股份有限公司 一种射频功率放大器、芯片及通信终端

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126688A (en) * 1990-03-20 1992-06-30 Oki Electric Co., Ltd. Power amplifying apparatus for wireless transmitter
WO2004036775A1 (en) * 2002-10-15 2004-04-29 Triquint Semiconductor, Inc. Automatic-bias amplifier circuit
JP2005197860A (ja) * 2004-01-05 2005-07-21 Renesas Technology Corp 高周波電力増幅回路
CN102013876B (zh) * 2010-11-25 2012-01-25 深圳市广迪克科技有限公司 射频功率放大器混合功率控制***及方法
JP5854289B2 (ja) * 2013-11-11 2016-02-09 株式会社村田製作所 電力増幅モジュール
CN106849879B (zh) * 2015-12-04 2020-08-04 财团法人工业技术研究院 功率放大器电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106937364A (zh) * 2015-12-29 2017-07-07 联芯科技有限公司 一种射频偏置电压调整方法、装置、基带集成电路和移动终端
US20180316312A1 (en) * 2017-04-28 2018-11-01 Skyworks Solutions, Inc. Apparatus and methods for power amplifiers with positive envelope feedback
CN109428554A (zh) * 2017-09-04 2019-03-05 北京泰龙电子技术有限公司 一种射频电源功率放大器过压保护电路
CN109510634A (zh) * 2019-01-25 2019-03-22 北京唯得科技有限公司 射频功率放大器动态功率调整装置以及动态功率调整方法
CN110855254A (zh) * 2019-11-15 2020-02-28 唯捷创芯(天津)电子技术股份有限公司 一种射频功率放大器、芯片及通信终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4060896A4 *

Also Published As

Publication number Publication date
EP4060896A4 (en) 2023-01-11
CN110855254B (zh) 2023-06-20
CN110855254A (zh) 2020-02-28
KR20220101164A (ko) 2022-07-19
US20220278659A1 (en) 2022-09-01
JP2023507245A (ja) 2023-02-22
EP4060896A1 (en) 2022-09-21

Similar Documents

Publication Publication Date Title
WO2021093822A1 (zh) 一种射频功率放大器、芯片及通信终端
US11398805B2 (en) Power amplification module
US20180011506A1 (en) Two-stage error amplifier with nested-compensation for ldo with sink and source ability
US10396717B2 (en) Power control method, device and communication terminal for radio frequency power amplifier
WO2021244562A1 (zh) 射频功率放大器、射频前端模块及通信终端
CN106708151B (zh) 一种低功耗低压差线性稳压器***
US10230344B2 (en) Adjustable gain power amplifier, gain adjustment method and mobile terminal
US7453245B1 (en) Method and system for providing precise current regulation and limitation for a power supply
WO2021213426A1 (zh) 自动电平控制电路、信号源、信号源输出功率控制方法及储存介质
CN106292824A (zh) 低压差稳压器电路
US20200036336A1 (en) Power control circuit and power amplification circuit
CN108900167B (zh) 阻抗补偿电路及功率放大补偿电路
US11050386B2 (en) Inverse pseudo fully-differential amplifier having common-mode feedback control circuit
CN101957627B (zh) 一种ldo稳压电路
CN1965472B (zh) 用于doherty放大器偏置的方法与装置
Furth et al. Supervisory circuits for low-frequency monitoring of a communication SoC
US6998918B2 (en) Automatic current reduction biasing technique for RF amplifier
CN113625810B (zh) 无片外电容低功耗全范围稳定ldo线性稳压器
WO2016078620A1 (zh) 改善功率放大器开关谱的功率控制方法、装置及通信终端
US9367073B2 (en) Voltage regulator
JP2017022685A (ja) 電力増幅モジュール
US7994855B2 (en) Amplifier arrangement
KR20150072791A (ko) 로우 드롭 출력 타입의 전압 레귤레이터
CN103838282B (zh) 一种基于温度调整电压的电路
US11012045B2 (en) Variable gain amplifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886218

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022527830

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227020399

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020886218

Country of ref document: EP

Effective date: 20220615