WO2021093677A1 - 一种发声装置 - Google Patents

一种发声装置 Download PDF

Info

Publication number
WO2021093677A1
WO2021093677A1 PCT/CN2020/126978 CN2020126978W WO2021093677A1 WO 2021093677 A1 WO2021093677 A1 WO 2021093677A1 CN 2020126978 W CN2020126978 W CN 2020126978W WO 2021093677 A1 WO2021093677 A1 WO 2021093677A1
Authority
WO
WIPO (PCT)
Prior art keywords
sounding
vibration system
voice coil
vibration
sound
Prior art date
Application number
PCT/CN2020/126978
Other languages
English (en)
French (fr)
Inventor
王兴龙
葛连山
孙登成
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2021093677A1 publication Critical patent/WO2021093677A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/025Magnetic circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • H04R9/041Centering

Definitions

  • the present invention relates to the technical field of electro-acoustic conversion, and more specifically, to a sound generating device.
  • a double-sided sounding device usually includes a housing and two sounding units arranged in the housing.
  • Each sound unit includes a vibration system and a magnetic circuit system.
  • the vibration system includes a diaphragm, a voice coil connected with the diaphragm, a reinforcement layer, etc.
  • the magnetic circuit system is used to form a magnetic field.
  • the magnetic circuit system includes a center magnet, side magnets, and a basin frame. The center magnet and the side magnets are arranged on the basin frame. A magnetic field is formed between the center magnet and the side magnets.
  • the voice coil vibrates in response to an electrical signal from an external circuit and is subjected to ampere force in a magnetic field.
  • the voice coil drives the diaphragm to vibrate to radiate sound waves outward.
  • the double-sided sounding device couples the sounds of the two sounding units together.
  • the two sounding units of the existing double-sided sounding device have independent sounding characteristics.
  • the sensitivity of the sound generating device is difficult to guarantee, resulting in poor listening effects.
  • An object of the present invention is to provide a new technical solution for a sound generating device.
  • a sound generating device includes: a housing, a cavity is formed inside the housing; a first sounding unit arranged in the cavity, the first sounding unit including a first vibration system and the first vibration system A matched first magnetic circuit system; and a second sound emitting unit arranged in the cavity, the second sounding unit including a second vibration system and a second magnetic circuit system matched with the second vibration system;
  • the force-electric coupling coefficient of the first sounding unit is BL A
  • the force-electric coupling coefficient of the second sounding unit is BL B , where 0.6 ⁇ BL A /BL B ⁇ 1 or 0.6 ⁇ BL B /BL A ⁇ 1 .
  • the effective radiation area of the first vibration system as Sd A
  • the effective radiation area of the second vibration system as Sd B ; where 0.5 ⁇ Sd A /Sd B ⁇ 1 or 0.5 ⁇ Sd B / Sd A ⁇ 1.
  • the center of symmetry of the BL(x) displacement curve of the voice coil of at least one of the first vibration system and the second vibration system is located within a range of ⁇ 0.15 mm from the origin.
  • the ratio of the minimum force-electric coupling coefficient at the maximum linear displacement of the voice coil of at least one of the first vibration system and the second vibration system to the maximum force-electric coupling coefficient of the voice coil is greater than or equal to 60%.
  • the first sounding unit and the second sounding unit are in a side sounding sounding manner or a front sounding sounding manner.
  • the vibration directions of the first vibration system and the second vibration system are opposite.
  • the first magnetic circuit system and the second magnetic circuit system are the same magnetic circuit system, and the first vibration system and the second vibration system are respectively arranged opposite to the magnetic circuit system. On both sides.
  • the first vibration system includes a first voice coil
  • the second vibration system includes a second voice coil
  • the first voice coil and the second voice coil are alternately arranged, and when vibrating, the The smaller one of the first voice coil and the second voice coil can be inserted into the space enclosed by the larger one of the two voice coils.
  • At least one of the first vibration system and the second vibration system includes a diaphragm, a voice coil, and a centering brace that are connected together.
  • the sound emitting device has the characteristics of high sounding sensitivity.
  • Fig. 1 is a cross-sectional view of a sound generating device according to an embodiment of the present invention.
  • Fig. 2 is a cross-sectional view of a vocal unit along the long axis of another embodiment of the invention.
  • Fig. 3 is a cross-sectional view along the minor axis of the vocal unit according to another embodiment of the present invention.
  • Fig. 4 is a distribution diagram of the symmetric centers of the BL(x) curves of two sound emitting units according to an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of the attenuation amplitude of the BL(x) curve within the Xmax amplitude of two sounding units according to an embodiment of the present invention.
  • an embodiment of the present invention provides a sound generating device.
  • the sound device is a miniature sound device or a horn device.
  • the sounding device includes a casing, a first sounding unit and a second sounding unit.
  • a cavity is formed inside the housing.
  • the first sound emitting unit and the second sound emitting unit are arranged in the cavity.
  • the first sound emitting unit and the second sound emitting unit constitute a sound emitting unit.
  • the first sounding unit includes a first vibration system and a first magnetic circuit system that cooperates with the first vibration system.
  • the second sound generating unit includes a second vibration system and a second magnetic circuit system matched with the second vibration system.
  • the force-electric coupling coefficient of the first sounding unit is defined as BL A.
  • the force-electric coupling coefficient is the product of the effective length L of the voice coil and the magnetic induction intensity B of the magnetic field.
  • the force-electric coupling coefficient of the second sounding unit is BL B. Among them, 0.6 ⁇ BL A /BL B ⁇ 1 or 0.6 ⁇ BL B /BL A ⁇ 1.
  • the sound wave coupling of the two sounding units of the sounding device that meets the above conditions is more effective, and the sounding device has the characteristic of high sounding sensitivity.
  • the sounding device is double-sided sounding, which can obtain high acoustic performance in a relatively small size and small amplitude.
  • the application range of the sound device is wide, and the small amplitude can reduce the reliability risk of the sound device.
  • the housing includes an upper shell 27a, a middle shell 27b, and a lower shell 28b connected together.
  • the first magnetic circuit system and the second magnetic circuit system are the same magnetic circuit system.
  • the first vibration system and the second vibration system are respectively arranged on opposite sides of the magnetic circuit system.
  • the magnetic circuit system is embedded in the middle case 27b.
  • the two vibration systems share a magnetic circuit system. This makes the structure of the sound device simple, easy to assemble, and save raw materials.
  • the first vibration system includes a first voice coil 13, a first diaphragm 12, and a first centering support plate 14 connected together.
  • the first diaphragm 12 is a folded ring portion diaphragm.
  • the edge of the first diaphragm 12 is fixed on the middle shell 27b.
  • One end of the first voice coil 13 is connected to the center of the first diaphragm 12.
  • the first centering support piece 14 is connected to the side of the first diaphragm 12 opposite to the first voice coil 13.
  • the second vibration system includes a second voice coil 22, a second diaphragm 21, and a second centering support piece 23 connected together.
  • the second diaphragm 21 is a folded ring portion diaphragm. In this example, the folded ring portions of the first diaphragm 12 and the second diaphragm 21 protrude toward each other. The edge of the second diaphragm 21 is fixed on the middle shell 27b.
  • One end of the second voice coil 22 is connected to the center of the second diaphragm 21.
  • the second centering branch 23 is connected to the side of the second diaphragm 21 opposite to the second voice coil 22.
  • the centering support plate can make the vibration balance of the vibration system better, the ability of anti-swing polarization when the two vibration systems are working is better, and the sound device can achieve good acoustic performance.
  • the magnetic circuit system includes a center magnet 15 and side magnets 17 arranged around the center magnet 15.
  • the center magnet 15 is fixed to the middle shell 27b through a metal structure.
  • the metal structure includes a bottom part 19a and a support part 18b.
  • the support portion 18b and the bottom portion 19a are located on different layers, and the two are connected at both ends.
  • the metal structure is fixed to the middle shell 27b by insert injection molding.
  • the center magnet 15 is arranged on the bottom 19a, for example, is glued to the bottom 19a.
  • a center washer 16a is provided on the surface of the center magnet 15 opposite to the bottom 19a.
  • the bottom 19a and the center washer 16a are both magnetically conductive materials.
  • the side magnet 17 is provided on the supporting portion 18b.
  • a side washer 18a is provided on the surface of the side magnet 17 opposite to the support portion 18b.
  • the supporting portion 18b and the edge washers 18a are made of magnetic conductive material. For example, low carbon steel, SPCC and other materials.
  • a first annular gap into which the first voice coil 13 is inserted is formed between the center washer 16a and the supporting portion 18b.
  • a second annular gap into which the second voice coil 22 is inserted is formed between the bottom 19a and the side washer 18a.
  • the first annular gap and the second annular gap are staggered.
  • the two voice coils are subjected to ampere force in the magnetic field, thereby driving the diaphragm to vibrate and produce sound.
  • the cavity couples the sound of the two sounding units and outputs it to the outside through the sound hole.
  • the sounds emitted by the two sounding units through respective sounding holes (for example, the first sounding hole 28a and the second sounding hole 28b) are superimposed because of the same phase and the same frequency.
  • the sounding device has a good sounding effect.
  • the first sounding unit and the second sounding unit are in a side sounding sounding manner or a front sounding sounding manner.
  • the way of direct sounding means that the sound hole is located directly above the first diaphragm 12 or the second diaphragm 21, and the direction of sound is consistent with the vibration directions of the two diaphragms.
  • a communication channel is provided on the middle shell 27b for the sound generating unit opposite to the sound outlet to emit sound.
  • the side sounding sounding mode indicates that the sound hole is located on the side of the sounding device, and the sounding direction is not consistent with the vibration direction.
  • the direction of sound is perpendicular to the direction of vibration.
  • the side-emitting sound-producing sounding device can be assembled on the electronic equipment along the thickness direction, which conforms to the development trend of lighter, thinner, and miniaturized electronic equipment.
  • the vibration directions of the first vibration system and the second vibration system are opposite. That is, during vibration, the two vibration systems simultaneously vibrate in a direction close to each other or in a direction away from each other. This way can reduce the vibration of the sound device. Compared with the vibration mode of the same direction vibration, the vibration of the sound device is more stable, the vibration of the two vibration systems will not cancel each other, and the attenuation of the sound wave is small.
  • the first voice coil 13 and the second voice coil 22 are arranged in a staggered manner.
  • the smaller one of the first voice coil 13 and the second voice coil 22 (for example, the first voice coil 13) can be inserted into the larger one of the two voice coils (for example, the second voice coil). Circle 22) in the space enclosed by. In this way, when vibrating, the two voice coils can intersect, which can effectively reduce the thickness of the sounding device.
  • the two voice coils may also be that the two voice coils have the same size.
  • the first annular gap is opposite to the second annular gap. When vibrating, the two voice coils do not intersect each other.
  • first magnetic circuit system and the second magnetic circuit system are independent magnetic circuit systems. Two magnetic circuit systems are used to drive the respective vibration systems to vibrate.
  • the folded ring portions of the first diaphragm 12 and the second diaphragm 21 protrude in a direction away from each other.
  • the whole of the vocal unit is a rectangular parallelepiped.
  • the metal structure forms a hollow area 26, and on the short side 25, the bottom 19a and the supporting portion 18b are connected to each other, for example, connected by a side wall 19b.
  • the hollow area 26 makes the magnetic gap on the long side smaller, and the magnetic induction intensity is greater.
  • the first vibration system includes a first reinforcement layer 11 provided at the center of the first diaphragm 12.
  • the two first centering support pieces 14 are connected to the lower end surface of the first voice coil 13.
  • the second vibration system includes a second reinforcement layer 20 provided at the center of the second diaphragm 21.
  • the second centering support piece 23 is an integral structure.
  • the second centering branch 23 is connected between the second voice coil 22 and the second diaphragm 21.
  • the sounding device Since the sounding device is double-sided and the vibration directions of the two sounding units are opposite, the sounding device is likely to vibrate as a whole during the vibration process and drive the electronic equipment where the sounding device is located to vibrate.
  • the coefficient of the second sounding unit ⁇ B BL B /R B , where R B is the DC resistance of the second vibration system.
  • DC resistance is the resistance measured under the condition of direct current.
  • ⁇ A and ⁇ B is the difference between ⁇ A ⁇ B is smaller than or equal to a ratio of 0.3, i.e.: abs ( ⁇ A - ⁇ B) / min ( ⁇ A, ⁇ B) ⁇ 0.3.
  • the coupling of the sound waves of the two sounding units is more effective, and the sounding sensitivity of the sounding device is higher.
  • the vibration of the sound generating device is more stable. This makes the vibration of the electronic device where the sound emitting device is located is small.
  • the effective radiation area of the first vibration system is defined as Sd A
  • the effective radiation area of the second vibration system is defined as Sd B ; where 0.5 ⁇ Sd A /Sd B ⁇ 1 Or 0.5 ⁇ Sd B /Sd A ⁇ 1.
  • the effective radiation area refers to the area of the vibration system that effectively radiates sound waves.
  • the effective radiation area is the ratio of the volume of gas actually pushed by the diaphragm to the displacement of the voice coil.
  • the effective radiation area of the two vibration systems is within the above range, the coupling of the sound waves of the two sounding units is more effective, the sounding sensitivity of the sounding device is higher, and the sounding effect is good.
  • the center of symmetry of the BL(x) displacement curve of the voice coil of at least one of the first vibration system and the second vibration system is located at ⁇ 0.15 mm relative to the origin. Within range.
  • the BL(x)-A curve is the BL(x) displacement curve of the first sounding unit.
  • the BL(x)-B curve is the BL(x) displacement curve of the second sounding unit.
  • the abscissa is the vibration displacement of the vibration system.
  • the ordinate is the BL value of the voice coil.
  • the two curves are approximately parabolic.
  • the abscissa corresponding to the highest point of each curve is the center of symmetry.
  • the origin is the point when the vibration system is not energized, that is, the point where the abscissa is 0.
  • the centers of symmetry of the two curves are both within ⁇ 0.15mm relative to the origin.
  • the symmetric center of the BL(x) displacement curve of the two sounding units is within the above range, the sounding sensitivity of the sounding device is higher, the sounding effect is good, and the overall vibration of the sounding device is small.
  • the minimum force-electric coupling coefficient (ie, BL(Xmax)) of the voice coil of at least one of the first vibration system and the second vibration system at the maximum linear displacement and the The ratio of the maximum force-electric coupling coefficient (that is, max ⁇ BL(x)) of the voice coil is greater than or equal to 60%.
  • the BL(x)-A curve is the BL(x) displacement curve of the first sounding unit.
  • the BL(x)-B curve is the BL(x) displacement curve of the second sounding unit.
  • the two curves are irregular parabolic.
  • the maximum linear displacement refers to the maximum linear displacement of the vibration system relative to the origin, for example, ⁇ 0.5mm is the maximum linear displacement. Since the vibrations of the two vibration systems are not completely symmetrical, the corresponding force-electric coupling coefficients (ie BL values) at the two maximum linear displacements are different. Here, choose the smaller of the two, that is, the minimum force-electric coupling coefficient of the voice coil at the maximum linear displacement.
  • the maximum power coupling coefficient refers to the maximum value of the ordinate of the BL(x) curve, that is, the BL value corresponding to the center of symmetry.
  • the maximum force-electric coupling coefficient max ⁇ BL(x) ⁇ of the first voice coil 13 of the first vibration system and the second voice coil 22 of the second vibration system is 1.35.
  • the minimum force-electric coupling coefficient BL (Xmax)) at the maximum linear displacement of the first voice coil 13 is 0.98.
  • the minimum force-electric coupling coefficient BL (Xmax) at the maximum linear displacement of the second voice coil 22 is 0.77.
  • the maximum attenuation amplitude ⁇ A of the first vibration system is 0.3.
  • the maximum attenuation amplitude of the second vibration system ⁇ B is 0.42.
  • the ratio of the minimum force-electric coupling coefficient (ie BL(Xmax)) of the voice coils of the two vibration systems at the maximum linear displacement to the maximum force-electric coupling coefficient (ie max(BL(x)) of the voice coil is greater than or Equal to 60%. In this range, the sounding sensitivity of the sounding device is higher, and the sounding effect is good.
  • the sounding device includes a housing and two sounding units arranged in the housing.
  • the two sounding units are side-sounding.
  • Each sound unit includes a diaphragm, a voice coil, a reinforcement layer and a centering support piece.
  • the force-electric coupling coefficient BL A of the first sounding unit is 1.35
  • the force-electric coupling coefficient BL B of the second sounding unit is 1.2
  • BL B /BL A is 0.89.
  • DC resistance R A of the first vibration system a first sound unit is 7.5 ⁇ .
  • the second vibration system of the second sound unit DC resistance R B is 6.9 ⁇ .
  • the coefficient ⁇ A of the first sounding unit is 0.180.
  • the effective radiation area of the first vibration system is Sd A : 350mm 2 .
  • the effective radiation area of the second vibration system is Sd B : 350mm 2 .
  • Sd A /Sd B is: 1.
  • the maximum force-electric coupling coefficient max ⁇ BL(x) ⁇ of the first voice coil 13 of the first vibration system is 1.35.
  • the maximum force-electric coupling coefficient max ⁇ BL(x) ⁇ of the second voice coil 22 of the second vibration system is 1.2.
  • the minimum force-electric coupling coefficient BL (Xmax) at the maximum linear displacement of the first voice coil 13 is 0.98.
  • the minimum force-electric coupling coefficient BL (Xmax) at the maximum linear displacement of the second voice coil 22 is 0.78.
  • the ratio of the minimum force-electric coupling coefficient BL(Xmax) at the maximum linear displacement of the first voice coil 13 of the first vibration system to the maximum force-electric coupling coefficient max ⁇ BL(x) ⁇ of the voice coil is 0.73.
  • the ratio of the minimum force-electric coupling coefficient BL(Xmax) at the maximum linear displacement of the second voice coil 22 of the second vibration system to the maximum force-electric coupling coefficient max ⁇ BL(x) ⁇ of the voice coil is 0.65.
  • the sound emitting device has high listening sensitivity, good sound effect, and low vibration during operation.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)

Abstract

本发明公开了一种发声装置。该发声装置包括:壳体,在所述壳体的内部形成腔体;设置在所述腔体内的第一发声单元,所述第一发声单元包括第一振动***和与所述第一振动***配合的第一磁路***;以及设置在所述腔体内的第二发声单元,所述第二发声单元包括第二振动***和与所述第二振动***配合的第二磁路***;定义所述第一发声单元的力电耦合系数为BL A,所述第二发声单元的力电耦合系数为BL B,其中,0.6≤BL A/BL B≤1或者0.6≤BL B/BL A≤1。

Description

一种发声装置 技术领域
本发明涉及电声转换技术领域,更具体地,涉及一种发声装置。
背景技术
双面发声装置通常包括壳体和设置在壳体内的两个发声单元。每个发声单元包括振动***和磁路***。振动***包括振膜和与振膜连接的音圈、补强层等。磁路***用于形成磁场。例如,磁路***包括中心磁铁、边磁铁和盆架。中心磁铁和边磁铁设置在盆架上。在中心磁铁和边磁铁之间形成磁场。
音圈响应于外部电路的电信号,在磁场中受到安培力的作用而发生振动。音圈带动振膜振动,以向外辐射声波。
双面发声装置将两个发声单元的声音耦合在一起。然而,现有的双面发声装置的两个发声单元由于各自独立的发声特性。在进行耦合时,发声装置的灵敏度很难得到保证,造成听音效果不佳。
因此,需要提供一种新的技术方案,以解决上述技术问题。
发明内容
本发明的一个目的是提供一种发声装置的新技术方案。
根据本发明的第一方面,提供了一种发声装置。该发声装置包括:壳体,在所述壳体的内部形成腔体;设置在所述腔体内的第一发声单元,所述第一发声单元包括第一振动***和与所述第一振动***配合的第一磁路***;以及设置在所述腔体内的第二发声单元,所述第二发声单元包括第二振动***和与所述第二振动***配合的第二磁路***;定义所述第一发声单元的力电耦合系数为BL A,所述第二发声单元的力电耦合系数为BL B,其中,0.6≤BL A/BL B≤1或者0.6≤BL B/BL A≤1。
可选地,定义第一发声单元的系数λ A=BL A/R A,其中,R A为第一振动***的直流电阻;第二发声单元的系数λ B=BL B/R B,其中,R B为第二振动***的直流电阻;其中,λ A与λ B的差值与λ A与λ B中较小的一个的比值小于或等于0.3。
可选地,定义所述第一振动***的有效辐射面积为Sd A,所述第二振动***的有效辐射面积为Sd B;其中,0.5≤Sd A/Sd B≤1或者0.5≤Sd B/Sd A≤1。
可选地,所述第一振动***和所述第二振动***的至少一个的音圈的BL(x)位移曲线的对称中心位于相对于原点±0.15mm范围内。
可选地,所述第一振动***和所述第二振动***的至少一个的音圈在最大线性位移处的最小力电耦合系数与所述音圈的最大力电耦合系数之比大于或等于60%。
可选地,所述第一发声单元和所述第二发声单元为侧出声发声方式或者正出声发声方式。
可选地,在振动时,所述第一振动***和所述第二振动***的振动方向相反。
可选地,所述第一磁路***和所述第二磁路***为同一个磁路***,所述第一振动***和所述第二振动***分别被设置在所述磁路***的相对的两侧。
可选地,所述第一振动***包括第一音圈,所述第二振动***包括第二音圈,所述第一音圈和所述第二音圈交错设置,在振动时,所述第一音圈和所述第二音圈中较小的一个能***两个音圈中较大的一个所包围的空间内。
可选地,所述第一振动***和所述第二振动***中的至少一个包括连接在一起的振膜、音圈和定心支片。
根据本公开的一个实施例,该发声装置具有发音灵敏度高的特点。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是本发明实施例的发声装置的剖视图。
图2是本发明另一个实施例的发声单体沿长轴的剖视图。
图3是本发明另一个实施例的发声单体沿短轴的剖视图。
图4是本发明实施例的两个发声单元的BL(x)曲线对称中心分布图。
图5是本发明实施例的两个发声单元在Xmax振幅内BL(x)曲线的衰减幅度示意图。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
参考图1,本发明实施例提供了一种发声装置。发声装置为微型发声装置或者喇叭装置。该发声装置包括:壳体、第一发声单元和第二发声单元。在所述壳体的内部形成腔体。所述第一发声单元和所述第二发声单元设置在所述腔体内。所述第一发声单元和所述第二发声单元构成发声单体。所述第一发声单元包括第一振动***和与所述第一振动***配合的第一磁 路***。所述第二发声单元包括第二振动***和与所述第二振动***配合的第二磁路***。
定义所述第一发声单元的力电耦合系数为BL A。力电耦合系数为音圈的有效长度L与所在磁场的磁感强度B的乘积。所述第二发声单元的力电耦合系数为BL B。其中,0.6≤BL A/BL B≤1或者0.6≤BL B/BL A≤1。满足上述条件的发声装置的两个发声单元的声波的耦合更有效,发声装置具有发音灵敏度高的特点。
此外,该发声装置为双面发声,能够在相对小尺寸、小振幅下获得较高的声学性能。发声装置的应用范围广,小振幅能降低发声装置的可靠性风险。
第一发声单元和第二发声单元的力电耦合系数(即BL值)的测量以及设计为本领域的公知常识,在此不做详细说明。
在本发明的一个具体实施方式中,参考图1,壳体包括连接在一起的上壳27a、中壳27b和下壳28b。优选地,所述第一磁路***和所述第二磁路***为同一个磁路***。所述第一振动***和所述第二振动***分别被设置在所述磁路***的相对的两侧。例如,磁路***嵌设在中壳27b上。两个振动***共用一个磁路***。这使得发声装置的结构简单,组装容易,节省原材料。
第一振动***包括连接在一起的第一音圈13、第一振膜12和第一定心支片14。第一振膜12为折环部振膜。第一振膜12的边缘固定在中壳27b上。第一音圈13的一端与第一振膜12的中心部连接。第一定心支片14连接在所述第一振膜12的与所述第一音圈13相背的一侧。
第二振动***包括连接在一起的第二音圈22、第二振膜21和第二定心支片23。第二振膜21为折环部振膜。在该例子中,第一振膜12和第二振膜21的折环部朝向彼此凸出。第二振膜21的边缘固定在中壳27b上。第二音圈22的一端与第二振膜21的中心部连接。第二定心支片23连接在所述第二振膜21的与所述第二音圈22相背的一侧。
定心支片能够使振动***的振动平衡性更好,两个振动***工作时抗摇摆偏振的能力更好,发声装置能实现良好的声学表现。
磁路***包括中心磁铁15和围绕中心磁铁15设置的边磁铁17。中心磁铁15通过金属结构件与中壳27b形成固定。金属结构件包括底部19a和支撑部18b。支撑部18b和底部19a位于不同层,并且二者在两端是连接的。例如,金属结构件通过嵌件注塑的方式与中壳27b形成固定。
中心磁铁15设置在底部19a上,例如粘结在底部19a上。在中心磁铁15的与底部19a相背的表面设置有中心华司16a。所述底部19a和所述中心华司16a均为导磁材料。例如,低碳钢、SPCC等材料。边磁铁17设置在支撑部18b上。在边磁铁17的与支撑部18b相背的表面设置有边华司18a。所述支撑部18b和所述边华司18a为导磁材材料。例如,低碳钢、SPCC等材料。
在中心华司16a和支撑部18b之间形成供所述第一音圈13***的第一环形间隙。在所述底部19a和所述边华司18a之间形成供所述第二音圈22***的第二环形间隙。所述第一环形间隙和所述第二环形间隙是错开的。两个音圈响应于外部电路的电信号,在磁场中受到安培力的作用,从而带动振膜振动发声。腔体将两个发声单元的声音耦合后通过出声孔向外输出。或者是,两个发声单元经各自的出声孔(例如,第一出声孔28a和第二出声孔28b)发出的声音,由于相位相同、频率相同,从而叠加在一起。该发声装置具有良好的发声效果。
可选地,所述第一发声单元和所述第二发声单元为侧出声发声方式或者正出声发声方式。正出声发声方式是指出声孔位于所述第一振膜12或者所述第二振膜21的正上方,出声方向与两个振膜的振动方向一致。在所述中壳27b上设置有连通通道,以供与所述出声孔相背的发声单元出声。
侧出声发声方式是指出声孔位于所述发声装置的侧部,出声方向与振动方向不一致。例如,出声方向垂直于振动方向。其中,侧出声发声方式的发声装置能够沿厚度方向组装到电子设备上,顺应了电子设备轻薄化、小型化的发展趋势。
在本发明的一个具体的实施方式中,在振动时,所述第一振动***和所述第二振动***的振动方向相反。即,在振动时,两个振动***同时向靠近彼此的方向振动或者远离彼此的方向振动。这种方式能降低发声装置 的整机振动。相比于同向振动这种振动方式使得发声装置的振动更平稳,两个振动***的振动不会相互抵消,声波的衰减小。
在本发明的一个具体的实施方式中,所述第一音圈13和所述第二音圈22交错设置。在振动时,所述第一音圈13和所述第二音圈22中较小的一个(例如,第一音圈13)能***两个音圈中较大的一个(例如,第二音圈22)所包围的空间内。通过这种方式,在振动时,两个音圈能够相交,这样能有效地降低发声装置的厚度。
在其他示例中,也可以是,两个音圈的大小相同。第一环形间隙与第二环形间隙相对。在振动时,两个音圈互不相交。
在其他示例中,也可以是,第一磁路***和第二磁路***为各自独立的磁路***。两个磁路***用于驱动各自的振动***振动。
在其他示例中,如图2-3所示,第一振膜12和第二振膜21的折环部朝向远离彼此的方向凸出。发声单体的整体呈长方体。在长边24上金属结构件形成镂空区26,在短边25上底部19a和支撑部18b相互连接,例如,通过侧壁19b连接。在镂空区26没有部件屏蔽磁感线,使得该处的磁感强度显著提高。
此外,镂空区26使得长边的磁间隙更小,磁感强度更大。
第一振动***包括设置在第一振膜12的中心部的第一补强层11。第一定心支片14为两个,并且分别设置在两个短边25上。两个第一定心支片14连接在第一音圈13的下端面上。第二振动***包括设置在第二振膜21的中心部的第二补强层20。第二定心支片23为整体结构。第二定心支片23连接在第二音圈22与第二振膜21之间。
由于发声装置为双面发声,并且两个发声单元的振动方向相反,故在振动过程中,发声装置容易产生整体振动,并带动发声装置所在的电子设备振动。
在本发明的一个具体实施方式中,定义第一发声单元的系数λ A=BL A/R A,其中,R A为第一振动***的直流电阻。第二发声单元的系数λ B=BL B/R B,其中,R B为第二振动***的直流电阻。直流电阻即在通直流电条件下测得的电阻。其中,λ A与λ B的差值与λ A与λ B中较小的一个的比值小于或等于 0.3,即:abs(λ AB)/min(λ AB)≤0.3。
在发明实施例中,两个发声单元的声波的耦合更有效,发声装置的发音灵敏度更高。
此外,在上述范围内,发声装置的振动更平稳。这使得发声装置所在的电子设备的振动小。
在本发明的一个具体实施方式中,定义所述第一振动***的有效辐射面积为Sd A,所述第二振动***的有效辐射面积为Sd B;其中,0.5≤Sd A/Sd B≤1或者0.5≤Sd B/Sd A≤1。有效辐射面积是指振动***有效辐射声波的面积。例如,有效辐射面积为振膜实际推动的气体的体积与所在音圈的位移之比。两个振动***的有效辐射面积在上述范围内,两个发声单元的声波的耦合更有效,发声装置的发音灵敏度更高,发声效果良好。
在本发明的一个具体实施方式中,参考图4,所述第一振动***和所述第二振动***的至少一个的音圈的BL(x)位移曲线的对称中心位于相对于原点±0.15mm范围内。
其中,BL(x)-A曲线为第一发声单元的BL(x)位移曲线。BL(x)-B曲线为第二发声单元的BL(x)位移曲线。横坐标为振动***的振动位移。纵坐标为音圈的BL值。两个曲线呈近似抛物线形。每条曲线的最高点处对应的横坐标为对称中心。原点即振动***未通电时的点,即横坐标为0的点。
在该例子中,BL(x)-A曲线的对称中心为x=0.04mm;BL(x)-B曲线的对称中心为x=-0.07mm。两条曲线的对称中心均位于相对于原点±0.15mm范围内。两个发声单元的BL(x)位移曲线的对称中心在上述范围内,发声装置的发音灵敏度更高,发声效果良好,发声装置的整体振动小。
在本发明的一个具体实施方式中,所述第一振动***和所述第二振动***的至少一个的音圈在最大线性位移处的最小力电耦合系数(即BL(Xmax))与所述音圈的最大力电耦合系数(即max{BL(x))之比大于或等于60%。
即:min{BL(Xmax)}/max{BL(x)}≥60%。
参考图5,BL(x)-A曲线为第一发声单元的BL(x)位移曲线。BL(x)-B曲线为第二发声单元的BL(x)位移曲线。两个曲线呈不规则抛物线形。
由图5可见,最大线性位移是指振动***相对于原点发生线性位移的最大值,例如,±0.5mm为最大线性位移。由于两个振动***的振动并非完全对称,故在两个最大线性位移处对应的力电耦合系数(即BL值)是不同的。在此,取二者中较小的一个,即为音圈在最大线性位移处的最小力电耦合系数。
最大电力耦合系数是指BL(x)曲线的纵坐标的最大值,即对称中心对应的BL值。
由图5可见,第一振动***的第一音圈13和第二振动***的第二音圈22的最大力电耦合系数max{BL(x)}为1.35。第一音圈13的最大线性位移处的最小力电耦合系数BL(Xmax))为0.98。第二音圈22的最大线性位移处的最小力电耦合系数BL(Xmax)为0.77。第一振动***的最大衰减幅度△A为0.3。第二振动***的最大衰减幅度△B为0.42。两个振动***的音圈在最大线性位移处的最小力电耦合系数(即BL(Xmax))与所述音圈的最大力电耦合系数(即max{BL(x)}之比均大于或等于60%。在该范围内,发声装置的发音灵敏度更高,发声效果良好。
实施例:
一种具有双面发声功能的发声装置。该发声装置包括壳体和设置在壳体内的两个发声单元。两个发声单元为侧出声发声方式。每个发声单元包括振膜、音圈、补强层和定心支片。第一发声单元的力电耦合系数BL A为1.35,第二发声单元的力电耦合系数BL B为1.2,BL B/BL A为0.89。
第一发声单元的第一振动***的直流电阻R A为7.5Ω。第二发声单元的第二振动***的直流电阻R B为6.9Ω。第一发声单元的系数λ A为0.180。第二发声单元的系数λ A为0.174。其中,abs(λ AB)/min(λ AB)=0.034。
第一振动***的有效辐射面积为Sd A为:350mm 2。第二振动***的有效辐射面积为Sd B为:350mm 2。Sd A/Sd B为:1。
第一振动***的第一音圈13的BL(x)位移曲线的对称中心的坐标为x=0.04mm。第二振动***的第二音圈22的BL(x)位移曲线的对称中心的 坐标为x=-0.07mm。
第一振动***的第一音圈13的最大力电耦合系数max{BL(x)}为1.35。第二振动***的第二音圈22的最大力电耦合系数max{BL(x)}为1.2。第一音圈13的最大线性位移处的最小力电耦合系数BL(Xmax)为0.98。第二音圈22的最大线性位移处的最小力电耦合系数BL(Xmax)为0.78。
第一振动***的第一音圈13在最大线性位移处的最小力电耦合系数BL(Xmax)与所述音圈的最大力电耦合系数max{BL(x)}之比为0.73。第二振动***的第二音圈22在最大线性位移处的最小力电耦合系数BL(Xmax)与所述音圈的最大力电耦合系数max{BL(x)}之比为0.65。
该发声装置的听音灵敏度高,发声效果良好,在工作时的振动小。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种发声装置,其特征在于:包括:
    壳体,在所述壳体的内部形成腔体;
    设置在所述腔体内的第一发声单元,所述第一发声单元包括第一振动***和与所述第一振动***配合的第一磁路***;以及
    设置在所述腔体内的第二发声单元,所述第二发声单元包括第二振动***和与所述第二振动***配合的第二磁路***;
    定义所述第一发声单元的力电耦合系数为BL A,所述第二发声单元的力电耦合系数为BL B,其中,0.6≤BL A/BL B≤1或者0.6≤BL B/BL A≤1。
  2. 根据权利要求1所述的发声装置,其特征在于:定义第一发声单元的系数λ A=BL A/R A,其中,R A为第一振动***的直流电阻;第二发声单元的系数λ B=BL B/R B,其中,R B为第二振动***的直流电阻;其中,λ A与λ B的差值与λ A与λ B中较小的一个的比值小于或等于0.3。
  3. 根据权利要求1所述的发声装置,其特征在于:定义所述第一振动***的有效辐射面积为Sd A,所述第二振动***的有效辐射面积为Sd B;其中,0.5≤Sd A/Sd B≤1或者0.5≤Sd B/Sd A≤1。
  4. 根据权利要求1所述的发声装置,其特征在于:所述第一振动***和所述第二振动***的至少一个的音圈的BL(x)位移曲线的对称中心位于相对于原点±0.15mm范围内。
  5. 根据权利要求1所述的发声装置,其特征在于:所述第一振动***和所述第二振动***的至少一个的音圈在最大线性位移处的最小力电耦合系数与所述音圈的最大力电耦合系数之比大于或等于60%。
  6. 根据权利要求1-5中的任意一项所述的发声装置,其特征在于:所述第一发声单元和所述第二发声单元为侧出声发声方式或者正出声发声方式。
  7. 根据权利要求1-5中的任意一项所述的发声装置,其特征在于:在振动时,所述第一振动***和所述第二振动***的振动方向相反。
  8. 根据权利要求1-5中的任意一项所述的发声装置,其特征在于: 所述第一磁路***和所述第二磁路***为同一个磁路***,所述第一振动***和所述第二振动***分别被设置在所述磁路***的相对的两侧。
  9. 根据权利要求1-5中的任意一项所述的发声装置,其特征在于:所述第一振动***包括第一音圈,所述第二振动***包括第二音圈,所述第一音圈和所述第二音圈交错设置,在振动时,所述第一音圈和所述第二音圈中较小的一个能***两个音圈中较大的一个所包围的空间内。
  10. 根据权利要求1-5中的任意一项所述的发声装置,其特征在于:所述第一振动***和所述第二振动***中的至少一个包括连接在一起的振膜、音圈和定心支片。
PCT/CN2020/126978 2019-11-12 2020-11-06 一种发声装置 WO2021093677A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911102936.4 2019-11-12
CN201911102936.4A CN110881160B (zh) 2019-11-12 2019-11-12 一种发声装置

Publications (1)

Publication Number Publication Date
WO2021093677A1 true WO2021093677A1 (zh) 2021-05-20

Family

ID=69729544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126978 WO2021093677A1 (zh) 2019-11-12 2020-11-06 一种发声装置

Country Status (2)

Country Link
CN (1) CN110881160B (zh)
WO (1) WO2021093677A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110881160B (zh) * 2019-11-12 2021-08-31 歌尔股份有限公司 一种发声装置
CN211267081U (zh) * 2020-03-30 2020-08-14 歌尔股份有限公司 微型扬声器模组阵列和视听设备
CN111417057B (zh) * 2020-03-30 2022-03-15 歌尔股份有限公司 微型扬声器模组、微型扬声器模组阵列和视听设备
CN111757219B (zh) * 2020-06-29 2021-08-27 歌尔股份有限公司 出声装置以及头戴式电子设备
CN213938315U (zh) * 2020-09-25 2021-08-10 瑞声科技(新加坡)有限公司 发声单体、扬声器模组及电子终端
CN213126464U (zh) * 2020-09-25 2021-05-04 瑞声科技(新加坡)有限公司 一种发声单体和扬声器箱
CN112533112B (zh) * 2020-12-25 2022-03-04 瑞声新能源发展(常州)有限公司科教城分公司 一种双磁路结构及发声器件
EP4277296A4 (en) * 2021-04-27 2024-04-10 Shenzhen Shokz Co., Ltd. ACOUSTIC INPUT AND OUTPUT DEVICE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040086150A1 (en) * 2002-11-05 2004-05-06 Stiles Enrique M. Push-push multiple magnetic air gap transducer
CN204906699U (zh) * 2015-07-06 2015-12-23 歌尔声学股份有限公司 扬声器
CN105284127A (zh) * 2013-07-05 2016-01-27 高通股份有限公司 声音产生器
CN205320275U (zh) * 2015-10-15 2016-06-15 歌尔声学股份有限公司 双向微型扬声器
CN109756828A (zh) * 2019-01-15 2019-05-14 歌尔股份有限公司 发声装置以及电子设备
CN110881160A (zh) * 2019-11-12 2020-03-13 歌尔股份有限公司 一种发声装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990497A (ja) * 1982-11-15 1984-05-24 Matsushita Electric Ind Co Ltd スピ−カ
JP4422354B2 (ja) * 2001-02-09 2010-02-24 パイオニア株式会社 電気−機械−音響変換器
US20030118193A1 (en) * 2001-12-21 2003-06-26 Leske Lawrence A. Method and system for digitally controlling a speaker
US6778677B2 (en) * 2002-07-16 2004-08-17 C. Ronald Coffin Repairable electromagnetic linear motor for loudspeakers and the like
CN107682792B (zh) * 2017-11-08 2020-11-20 歌尔股份有限公司 一种发声装置
CN207835793U (zh) * 2017-12-25 2018-09-07 歌尔科技有限公司 一种双振膜扬声器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040086150A1 (en) * 2002-11-05 2004-05-06 Stiles Enrique M. Push-push multiple magnetic air gap transducer
CN105284127A (zh) * 2013-07-05 2016-01-27 高通股份有限公司 声音产生器
CN204906699U (zh) * 2015-07-06 2015-12-23 歌尔声学股份有限公司 扬声器
CN205320275U (zh) * 2015-10-15 2016-06-15 歌尔声学股份有限公司 双向微型扬声器
CN109756828A (zh) * 2019-01-15 2019-05-14 歌尔股份有限公司 发声装置以及电子设备
CN110881160A (zh) * 2019-11-12 2020-03-13 歌尔股份有限公司 一种发声装置

Also Published As

Publication number Publication date
CN110881160B (zh) 2021-08-31
CN110881160A (zh) 2020-03-13

Similar Documents

Publication Publication Date Title
WO2021093677A1 (zh) 一种发声装置
US10979821B2 (en) Sound generator
WO2016176997A1 (zh) 一种扬声器模组
TWM499720U (zh) 壓電陶瓷雙頻耳機結構
CN109756828A (zh) 发声装置以及电子设备
US9602913B2 (en) Dual-frequency coaxial headphone
WO2017063262A1 (zh) 扬声器
US9497547B2 (en) Speaker structure
WO2022166379A1 (zh) 发声单体
CN209787426U (zh) 一种振动发声装置及电子设备
WO2022068081A1 (zh) 发声器及包括该发声器的电子产品
WO2022222489A1 (zh) 发声装置
GB2502189A (en) Magnetic assembly for a co-axial loudspeaker
CN105828257A (zh) 扬声器
WO2021098563A1 (zh) 扬声器模组及便携式电子设备
WO2022206046A1 (zh) 发声装置
WO2020181888A1 (zh) 一种电子设备
WO2018145415A1 (zh) 一种发声装置中的振动***及发声装置
US20230345169A1 (en) Hybrid Microspeaker
WO2023029722A1 (zh) 用于电子装置的发声器件及电子装置
CN105979449B (zh) 动圈压电复合扬声器
CN109996156A (zh) 全频振动扬声器***及具备本***的电子设备
CN112165669B (zh) 扬声器
US20230292037A1 (en) Coaxial horn
WO2019205658A1 (zh) 发声装置单体、发声模组及电子终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886971

Country of ref document: EP

Kind code of ref document: A1