WO2021093669A1 - 照明装置及照明*** - Google Patents

照明装置及照明*** Download PDF

Info

Publication number
WO2021093669A1
WO2021093669A1 PCT/CN2020/126785 CN2020126785W WO2021093669A1 WO 2021093669 A1 WO2021093669 A1 WO 2021093669A1 CN 2020126785 W CN2020126785 W CN 2020126785W WO 2021093669 A1 WO2021093669 A1 WO 2021093669A1
Authority
WO
WIPO (PCT)
Prior art keywords
curved surface
light source
outer curved
lens
point
Prior art date
Application number
PCT/CN2020/126785
Other languages
English (en)
French (fr)
Inventor
邓诗涛
杨静
景桂芬
Original Assignee
苏州欧普照明有限公司
欧普照明股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201921932410.4U external-priority patent/CN211600283U/zh
Priority claimed from CN201911093751.1A external-priority patent/CN110748806A/zh
Application filed by 苏州欧普照明有限公司, 欧普照明股份有限公司 filed Critical 苏州欧普照明有限公司
Publication of WO2021093669A1 publication Critical patent/WO2021093669A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/69Details of refractors forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape

Definitions

  • This application relates to the field of optical technology, and in particular to an illuminating device and an illuminating system.
  • the color temperature of the lighting device is adjusted so that the color temperature of the indoor lighting can reach or approximate the lighting effect of outdoor natural light, so that the user can experience the effect of natural light on the body indoors.
  • users not only have high requirements for the thermal comfort of the artificial lighting device, but also have higher and higher requirements for the visual comfort of the artificial lighting system in a closed environment. How to improve the artificial lighting device in a closed environment to provide users The visual comfort is a technical problem that needs to be solved.
  • the embodiment of the application provides a lighting device.
  • the embodiment of the present application also provides a lighting system.
  • an illuminating device comprising: a point light source; a diffuser lens with a sheet structure covering the point light source, comprising an inner curved surface and an outer curved surface, and the inner curved surface is a hemispherical surface ,
  • the outer curved surface is a free-form curved surface
  • the inner curved surface of the diffuser lens is located on the side close to the point-shaped light source
  • the outer curved surface is located on the side away from the point-shaped light source
  • the diffuser lens faces the point
  • the light beam emitted by the shaped light source is diffused, so that after the light beam emerges from the outer curved surface, a light spot of a predetermined shape is formed on a preset first target surface
  • a Fresnel lens with a sheet structure the first surface of which is a flat surface , Facing the outer curved surface of the diffuser lens and coplanar with the first target surface, the second surface is disposed opposite to the first surface
  • a second aspect of the present application provides a lighting system, including a plurality of the above-mentioned lighting devices, and the plurality of lighting devices are arranged in an array.
  • FIG. 1 is a schematic diagram of the overall optical structure of a lighting device provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of the effect of a diffuser lens on diffusing the light beam emitted by a point-shaped light source in an embodiment of the application;
  • FIG. 3 is a schematic diagram of the corresponding relationship between the outer curved surface of a diffuser lens and the first target surface in an embodiment of the application;
  • FIG. 4 is a schematic diagram of the coordinate relationship between the outer curved surface of a diffuser lens and the first target surface in an embodiment of the application;
  • Fig. 5 is a rear view of a Fresnel lens in an embodiment of the application.
  • FIG. 6 is a schematic diagram of lighting simulation of a lighting device in an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a lighting device in an embodiment of the application.
  • FIG. 8 is a schematic diagram of a lighting system provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of an application of a lighting device or lighting system in an embodiment of the application.
  • FIG. 1 is a schematic diagram of the overall optical structure of a lighting device provided by this embodiment.
  • the lighting device provided by this embodiment mainly includes: a point light source 10 and a sheet structure covered on the point light source 10
  • the diffuser lens 20 and the Fresnel lens 30 of the chip structure are covered on the point light source 10 .
  • the point-shaped light source 10 may be any point-shaped light-emitting object, for example, an LED light source, and in order to improve the lighting effect, a high-power LED light source may be used.
  • the diffuser lens 20 is disposed facing the point light source 10 and is provided with a receiving cavity for accommodating the point light source 10.
  • the diffuser lens 20 includes an inner curved surface 201 and an outer curved surface 202.
  • the inner curved surface 201 is a hemispherical surface
  • the outer curved surface 202 is a free-form surface
  • the inner curved surface 201 of the diffuser lens 20 is located on the side close to the point light source 10.
  • the outer curved surface 202 is located on the side away from the point light source 10, and the diffuser lens 20 diffuses the light beam emitted by the point light source 10, so that after the light beam emerges from the outer curved surface 202, it forms a predetermined shape on the preset first target surface 100 Light spot.
  • the lighting device uses two lens structures: a diffuser lens and a Fresnel lens.
  • the inner curved surface of the diffuser lens is a hemispherical surface, and the outer curved surface is a free-form surface.
  • the diffuser lens emits light to the point light source. Diffusion is performed so that after the light beam emerges from the outer curved surface, a spot of a predetermined shape is formed on the first target surface, and the first surface of the Fresnel lens is set on the first target surface, and the generatrix of the second surface of the Fresnel lens It is zigzag, and the angles of each zigzag are not exactly the same.
  • the Fresnel lens homogenizes the light beam emitted from the outer surface of the diffuser lens, so that the light beam emerges from the second surface and reaches the preset incident angle of the second target surface. Within the predetermined range.
  • the lighting device in the embodiment of the present application diffuses the light beam emitted by the point-shaped light source through a diffuser lens, and forms a spot of a predetermined shape on the first surface of the Fresnel lens to obtain a spot similar to that formed when the sun shines into a window of a predetermined shape Then, the light output from the diffuser lens is evened through the Fresnel lens, so that an ultra-small-angle light distribution can be obtained, and uniform illuminance can be achieved, so that a window-like projection can be formed on the illuminated surface (for example, the wall), which improves the user’s Visual comfort.
  • FIG. 2 is a schematic diagram of the effect of the diffuser lens 20 on the light beam emitted by the point light source 10 in this embodiment.
  • the light beam emitted by the point light source 10 is emitted from the diffuser lens 20.
  • a uniform spot of a predetermined shape is formed on the first target surface 100, that is, the light beam emitted by the point light source 10 is diffused into a predetermined area with clear cut-off.
  • a light spot of a predetermined shape can be used to simulate the uniform light spot formed on the window when sunlight is irradiated into the window. Therefore, the shape of the light spot formed by the light beam on the first target surface 100 can be determined according to the specific application, for example, If it is necessary to simulate a square (including rectangular and square) windows, the spot shape formed by the light beam on the first target surface 100 is a square, as shown in FIG. 2. If it is necessary to simulate a circular window, the spot shape formed by the light beam on the first target surface 100 is circular. Of course, in addition to being square and circular, the light spot formed by the light beam on the first target surface 100 may also have other shapes, which are not specifically limited in this embodiment.
  • the point light source 10 may be arranged at the center of the inner curved surface 201 of the diffuser lens 20, so that the point light source 10
  • the incident light of the emitted light beam on the inner curved surface 201 is basically the normal line of the inner curved surface 201. Therefore, the angle of the light entering the diffuser lens 20 does not change substantially, so that the incident angle of the light reaching the outer curved surface 202 can be accurately determined.
  • the shape of the outer curved surface 202 of the diffuser lens 20 can be determined by modeling, or a free-form surface design method based on energy division and tangent surface iteration can be used to determine the shape of the outer curved surface 202.
  • the free-form surface design method based on energy division and tangent surface iteration can quickly obtain a free-form surface whose light-emitting effect meets the requirements. Therefore, in an optional implementation of this embodiment, a free-form surface based on energy division and tangent surface iteration is adopted.
  • the free-form surface design method determines the outer curved surface 202 of the diffuser lens 20.
  • the circular inner curved surface 201 of the diffuser lens 20 diverges the light emitted from the point light source 10, and the outer curved surface 202 controls the light output to achieve a better light output effect.
  • the shape of the outer curved surface 202 of the diffuser lens 20 is determined in the following manner.
  • Step 1 Discretize the light beam projected on the outer curved surface 202 and the predetermined area 101 of the first target surface 100 according to the energy latitude and longitude division method, and discretize the predetermined area 101 of the outer curved surface 202 and the first target surface 100.
  • the area 101 is divided into a plurality of grids, wherein the position and size of the predetermined area are the same as the position and size of the light spot of the predetermined shape.
  • Step 2 According to the law of conservation of energy, establish a correspondence between each grid on the outer curved surface and each grid on the first target surface.
  • the corresponding relationship is also equivalent to the corresponding relationship between several incident light rays and output light rays on the outer curved surface 202.
  • Step 3 According to the position of the point-shaped light source and the corresponding relationship between each grid on the outer curved surface and each grid on the first target surface, combined with the principle of light refraction, iteratively determine the position
  • the shape of the outer curved surface of the diffuser lens is obtained by using the various value points on the outer curved surface.
  • step 3 according to the above corresponding relationship, combined with snell's law, that is, the principle of light refraction, the surface normal vector at the value points in several directions on the free surface can be determined, and then the surface normal vector can be determined through the tangent surface
  • the iterative method finds the three-dimensional coordinate values of all the value points on the entire surface.
  • a space spherical coordinate system can be selected for the free-form surface.
  • a rectangular coordinate system can be selected.
  • the predetermined area 101 is a square or rectangular isometric area (that is, the shape of the spot formed on the first target surface 100 after the light beam emitted by the point light source 10 passes through the diffuser lens 20 is a square or rectangular isometric pattern) . Only need to solve the corresponding quarter free surface. Therefore, in order to solve the coordinate value of each grid node on the first target surface, the coordinate system shown in Figure 3 can be used.
  • the first target surface is a plane perpendicular to the X axis, the point light source is located at the origin and the main optical axis is X Axis, the initial shape of the free-form surface is a quarter sphere with the origin as the center of the sphere.
  • the sphere is uniformly divided in the latitude and longitude directions, that is, after ⁇ and ⁇ are divided equally, the coordinates of any point on the sphere
  • the corresponding relationship shown in the shaded part in Figure 3 is used: a light from a latitude microstrip on the free-form surface is projected onto a microstrip parallel to the X axis on the first target surface, and a light from a meridional microstrip is projected onto the first target surface.
  • the coordinate values of each node on the free-form surface are solved by the method of tangent surface iteration. Specifically, as shown in Fig. 4, assuming that the inner surface 201 is a common spherical surface and the center of the sphere coincides with the point light source 10, a grid node S 0 on the free-form surface 202 is initially selected, and the incident light vector I in_0 is determined according to its coordinates, The outgoing light vector I out_0 can be determined from the grid node T 0 corresponding to the first target surface 100 by the grid node .
  • the above two vectors are unitized, and the normal vector N 0 of the tangent element at the grid node can be obtained from snell's law. , And determine the tangent element equation at the same time.
  • the incident light rays at the nodes in the meridian and latitude directions adjacent to the mesh node can be approximately regarded as intersecting the tangent plane element at that point on the free-form surface to be obtained.
  • the neighboring node is determined by the intersection coordinates S 1, the incident light vector I in_1 which determines i.e., the light emitted by the node I out_1 vector S 1 and the first target surface coordinates corresponding node T 1 is determined,
  • the normal vector N 1 at the grid node can be obtained, and then the tangent surface element equation at this point can be determined.
  • iterate continuously along the direction of the meridian and then the coordinates of each network node in the meridian direction can be obtained, and the nodes in the meridian direction are continuous.
  • For each grid line in the latitude direction select each corresponding grid node on the first latitude obtained as the initial point.
  • iteratively along this direction can get the coordinates of each node on each latitude. So far, the coordinates of all the value points on the free-form surface have been calculated, so that the outer surface 202 can be determined.
  • the light beam emitted by the point light source 10 can form a light spot with a uniform predetermined shape as shown in FIG. 2 on the first target surface 100 through the diffuser lens 20.
  • the height of the diffuser lens 20 can be determined according to the size of the spot of a predetermined shape.
  • the spot of the predetermined shape can be obtained, the diffuser lens 20 is as small as possible.
  • the size of the light spot of the predetermined shape can be determined according to the indoor environment in which the lighting device is applied. For example, if the lighting device is applied to a car, the size of the light spot of the predetermined shape can be determined according to the size of the sunroof matching the car.
  • FIG. 5 is a rear view of a Fresnel lens 30 in this embodiment.
  • the first surface 301 of the Fresnel lens 30 of the sheet structure is a flat surface, facing the outer curved surface 202 of the diffuser lens 20, and is coplanar with the first target surface 100, and the second surface 302 and the second surface 302 are flat.
  • One surface 301 is arranged oppositely, and the generatrix of the second surface 301 is zigzag, and the angles of each zigzag are not exactly the same.
  • the Fresnel lens 30 homogenizes the light beam emitted from the outer curved surface of the diffuser lens 20, so that the light beam from the second After the surface 302 exits, the incident angle reaching the preset second target surface 200 is within a predetermined range. As shown in FIG. 5, the Fresnel lens 30 can parallelize the incident light from the first surface 301, that is, adjust the incident light from different incident directions into parallel light. In this embodiment, the first surface of the Fresnel lens is coplanar with the first target surface, so that the light beam emitted by the point light source 10 forms a predetermined surface on the first surface of the Fresnel lens after passing through the diffuser lens 20.
  • the shape of the light spot from the user's point of view, is similar to the light spot formed on the window when sunlight enters the window.
  • the Fresnel lens 30 homogenizes the light beam incident from the first surface 301, so that after the light beam emerges from the second surface 302, the incident angle of the light beam reaching the second target surface is within a predetermined range, so that the light beam is on the second target surface.
  • the shape of the light spot formed on the surface is similar to the shape of the light spot formed by the light beam on the first surface 301. From the user's point of view, the light spot is the same as the light spot formed by sunlight shining into the room from the window and hitting the wall or other illuminated objects. Similar, improves the user's visual comfort.
  • the shape of the second surface of the Fresnel lens 30 can be obtained by modeling.
  • the optimization goal is that the incident angle of the emitted light reaching the second target surface 200 is 0.
  • the surface shape of each saw tooth on the second surface 301 can be determined.
  • the Fresnel lens 30 in order to obtain a better light-emitting effect and save the area of the Fresnel lens 30, when determining the position of the Fresnel lens 30, the Fresnel lens 30 can be placed in the first position.
  • the projection on the target surface 100 is centrally aligned with the light spot of the predetermined shape described above.
  • each zigzag on the generatrix of the second surface 302 of the Fresnel lens 30 is a Bezier curve. That is, the second surface 302 of the Fresnel lens 30 includes a plurality of serrated surfaces, each serrated surface is a Bezier surface, and each serrated surface can be regarded as an independent Bezier surface lens. .
  • Each sawtooth surface can be determined by bezier surface modeling, the linear line is determined by two points, and the initial shape of the surface is determined by 4 points, and the optimization variables are set to optimize the shape using the optimization function.
  • the optimization function shown in formula (1) can be used to optimize the shape of the bezier surface.
  • B(t) is the Bezier function
  • P 0 is the starting point coordinates of the cubic Bezier curve
  • P 1 and P 2 are the control point coordinates respectively
  • P 3 is the ending point coordinates
  • t is the speed of the curve.
  • the indoor window is generally an axisymmetric shape, that is, the light spot of a predetermined shape formed by the light beam on the first target surface 100 is an axisymmetric shape. Therefore, in an alternative implementation of this embodiment, as shown in FIG. 5, the middle part of the second surface 302 of the Fresnel lens 30 may be a spherical surface to form a spherical collimating lens 3021, and the spherical collimating lens 3021 The toothed curved surfaces 3022 on both sides are of equal height. With this alternative embodiment, the middle part 3021 of the second surface 302 is a spherical surface.
  • the vector of the incident light is basically the line connecting the incident point and the point light source 10 Therefore, the middle part 3021 of the second surface 303 is set as a spherical surface, and the incident light can be adjusted to parallel light.
  • the incident angle of the light on both sides is relatively large. Therefore, it is necessary to use a Bessel curved lens to perform the incident light. Adjustment.
  • the distance between the point light source 10 and the Fresnel lens 30 may be based on the focal length of the spherical collimating lens 3021, that is, the distance between the point light source 10 and the second surface 302 of the Fresnel lens 30 is equal to the spherical surface.
  • the focal length of the collimator lens 3021 is equal to the focal length of the collimator lens 3021.
  • the predetermined range of the incident angle of the light beam reaching the second target surface is ⁇ 5 degrees, as shown in FIG. 6, so that a uniform planar light source with ultra-small angle light can be realized.
  • the positions of the first target surface 100 and the second target surface 200 may be determined according to specific applications.
  • the first target surface 100 may be set at a position about 30 mm away from the point light source 10
  • the second target surface 200 may be set at a position about 100 mm away from the point light source 10
  • the receiving surface size of the second target surface 200 may be set
  • the size of the uniform spot formed by the point light source 100 on the second target surface 200 may be 70 mm*70 mm, which is not limited in this embodiment.
  • the vertical projection of the Fresnel lens 30 on the first target surface 100 is circular, that is, in this optional implementation manner, as shown in FIG. 7, the Fresnel lens The first surface 301 of 30 is circular.
  • a circular uniform planar light source that can emit light at an ultra-small angle is obtained.
  • a lighting system is provided.
  • FIG. 8 is a schematic diagram of a lighting system provided by this embodiment.
  • the lighting system includes a plurality of lighting devices described in each embodiment in Embodiment 1, and the plurality of lighting devices are Arranged in an array.
  • Fig. 8 includes 4 lighting devices arranged in 2 rows and 2 columns.
  • the vertical projection of the Fresnel lens of each illuminating device on the first target surface may be a square. That is, the first surface of the Fresnel lens is square.
  • the lighting device or lighting system 900 provided by the embodiment of the present application can be set on the ceiling of a room to simulate a "skylight" that emits uniform light.
  • the lighting device or lighting system can provide ultra-small angle configuration.
  • the light 901, the light beam emitted by the lighting device or the lighting system hits the wall 902, thereby forming a square uniform light spot, forming an effect similar to sunlight hitting the wall from a window.
  • the lighting device or lighting system provided in the embodiments of the present application can also be applied to the roof of a car, so as to obtain similar effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种照明装置及照明***。其中,照明装置包括:点状光源(10);扩散透镜(20),面对点状光源(10)设置,并设置有收容点状光源(10)的收容腔,扩散透镜(20)的内曲面(201)为半球面,外曲面(202)为自由曲面,扩散透镜(20)的内曲面(201)位于靠近点状光源(10)的一侧,外曲面(202)位于远离点状光源(10)的一侧,扩散透镜(20)对点状光源(10)发出的光束进行扩散,使得光束从外曲面(202)出射后,在预设的第一目标面(100)上形成预定形状的光斑;菲涅尔透镜(30),其第一面(301)为平面,朝向扩散透镜(20)的外曲面(202),且与第一目标面(100)共面,第二面(302)与第一面(301)相对设置,第二面(302)的母线为锯齿状,且各个锯齿角度不完全相同,菲涅尔透镜(30)对从扩散透镜(20)的外曲面(202)出射的光束进行均匀化,使得光束从第二面(302)出射后,到达第二目标面(200)的入射角在预定范围内。

Description

照明装置及照明***
交叉引用
本发明要求在2019年11月11日提交中国专利局、申请号为201911093751.1、发明名称为“一种照明装置及照明***”的中国专利申请的优先权,以及在2019年11月11日提交中国专利局、申请号为201921932410.4、实用新型名称为“一种照明装置及照明***”的中国专利申请的优先权,上述申请的全部内容通过引用结合在本发明中。
技术领域
本申请涉及光学技术领域,尤其涉及一种照明装置及照明***。
背景技术
在相关技术中,通过调节照明装置的色温,以使室内照明的色温可以达到或接近户外自然光的照明效果,以使得用户可以在室内体验到如自然光照在身上的效果。
但在一些实例中,用户不仅对人工照明装置的温感舒适性要求高,而且对封闭环境中的人工照明***的视觉舒适性要求越来越高,如何提高封闭环境中人工照明装置给用户提供的视觉舒适性是一个需要解决的技术问题。
发明内容
本申请实施例提供一种照明装置。
本申请实施例还提供一种照明***。
本申请实施例采用下述技术方案。
本申请的第一方面,提供了一种照明装置,包括:点状光源;罩在所述点状光源上的片式结构的扩散透镜,包括内曲面和外曲面,所述内曲面为半球面,所述外曲面为自由曲面,所述扩散透镜的内曲面位于靠近所述点状光 源的一侧,所述外曲面位于远离所述点状光源的一侧,所述扩散透镜对所述点状光源发出的光束进行扩散,使得所述光束从所述外曲面出射后,在预设的第一目标面上形成预定形状的光斑;片式结构的菲涅尔透镜,其第一面为平面,朝向所述扩散透镜的外曲面,且与所述第一目标面共面,第二面与所述第一面相对设置,且所述第二面的母线为锯齿状,且各个锯齿角度不完全相同,所述菲涅尔透镜对从所述扩散透镜的外曲面出射的光束进行均匀化,使得所述光束从所述第二面出射后,到达预设的第二目标面的入射角在预定范围内。
本申请第二方面提供了一种照明***,包括多个上述的照明装置,多个所述照明装置以阵列方式排布。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例提供的一种照明装置的光学整体结构示意图;
图2为本申请实施例中一种扩散透镜对点状光源发出的光束进行扩散的效果示意图;
图3为本申请实施例中一种扩散透镜的外曲面与第一目标面的对应关系示意图;
图4为本申请实施例中一种扩散透镜的外曲面与第一目标面的坐标关系示意图;
图5为本申请实施例中一种菲涅尔透镜的后视图;
图6为本申请实施例中的一种照明装置的照明仿真示意图;
图7为本申请实施例中的一种照明装置的结构示意图;
图8为本申请实施例提供的一种照明***的示意图;
图9为本申请实施例中的一种照明装置或照明***的应用示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下结合附图,详细说明本申请各实施例提供的技术方案。
实施例1
图1为本实施例提供的一种照明装置的光学整体结构示意图,如图1所示,该实施例提供的照明装置主要包括:点状光源10、罩在点状光源10上的片式结构的扩散透镜20和片式结构的菲涅尔透镜30。
在本实施例中,点状光源10可以为任意的点状发光物体,例如,LED光源,并且,为了提高照明效果,可以采用大功率的LED光源。
在本实施例中,扩散透镜20面对点状光源10设置,并设置有收容点状光源10的收容腔。如图1所示,扩散透镜20包括内曲面201和外曲面202,其中,内曲面201为半球面,外曲面202为自由曲面,扩散透镜20的内曲面201位于靠近点状光源10的一侧,外曲面202位于远离点状光源10的一侧,扩散透镜20对点状光源10发出的光束进行扩散,使得光束从外曲面202出射后,在预设的第一目标面100上形成预定形状的光斑。
本申请实施例中,照明装置采用了两个片式结构的透镜:扩散透镜和菲涅尔透镜,扩散透镜的内曲面为半球面,外曲面为自由曲面,扩散透镜对点状光源发出的光进行扩散,使得光束从外曲面出射后,在第一目标面上形成预定形状的光斑,而菲涅尔透镜的第一面设置在第一目标面上,菲涅尔透镜的第二面的母线为锯齿状,且各个锯齿角度不完全相同,菲涅尔透镜对从扩 散透镜的外曲面出射的光束进行均匀化,使得光束从第二面出射后,到达预设的第二目标面的入射角在预定范围内。本申请实施例中的照明装置通过扩散透镜对点状光源发出的光束进行扩散,在菲涅尔透镜的第一面上形成预定形状的光斑,得到类似太阳照射进预定形状的窗户时形成的光斑,再通过菲涅尔透镜对扩散透镜的出光进行均匀,从而可以得到超小角度配光,实现均匀的照度,从而可以在照射面(例如,墙壁)上形成类似窗户的投影,提高了用户的视觉舒适性。
图2为本实施例中扩散透镜20对点状光源10发出的光束进行扩散的效果示意图,如图2所示,在本实施例中,点状光源10发出的光束在扩散透镜20的出光在第一目标面100上形成了预定形状的均匀光斑,即将点状光源10发出的光束扩散到一个截止清晰的预定区域内。
在具体应用中,预定形状的光斑可以用来模拟太阳光照射进窗户时,在窗户上形成的均匀光斑,因此,光束在第一目标面100上形成的光斑形状可以根据具体应用确定,例如,如果需要模拟出方形(包括长方形和正方形)的窗户,则光束在第一目标面100上形成的光斑形状为方形,如图2所示。如果需要模拟出圆形的窗户,则光束在第一目标面100上形成的光斑形状为圆形。当然,除了是方形和圆形以外,光束在第一目标面100上形成的光斑还可以是其它形状,具体本实施例不作限定。
在本实施例的一个可选实施方式中,为了便于控制扩散透镜20的出射光束的角度,可以将点状光源10设置在扩散透镜20的内曲面201的球心处,这样,点状光源10发出的光束在内曲面201的入光基本在内曲面201的法线上,因此,光线在进入到扩散透镜20角度基本不会改变,从而可以准确的确定光线到达外曲面202的入射角度。
在本实施例中,可以通过建模的方式确定扩散透镜20的外曲面202的形状,也可以采用基于能量划分和切面迭代的自由曲面的设计方式确定外曲面202的形状。其中,采用基于能量划分和切面迭代的自由曲面的设计方式可 以较快的得到出光效果符合需求的自由曲面,因此,在本实施例的一个可选实施方式中,采用基于能量划分和切面迭代的自由曲面设计方法确定扩散透镜20的外曲面202,通过扩散透镜20圆型的内曲面201发散点状光源10的出射光线,再通过外曲面202控制光线输出,实现较好的出光效果。在该可选实施方式中,扩散透镜20的外曲面202的形状通过以下方式确定。
步骤1、按照能量经纬划分的方式,对投射到所述外曲面202和第一目标面100的预定区域101的光束进行离散化,将所述外曲面202和所述第一目标面100的预定区域101划分为多个网格,其中,所述预定区域的位置和大小与所述预定形状的光斑的位置和大小相同。
步骤2、按照能量守恒定律,建立所述外曲面上的各个网格与所述第一目标面上的各个网格的对应关系。
由于点状光源10发出的光束是直射入扩散透镜20的,因此,该对应关系也相当于是外曲面202的若干根入射光线和出射光线的对应关系。
步骤3、根据所述点状光源的位置、以及所述外曲面上的各个网格与所述第一目标面上的各个网格的对应关系,并结合光的折射原理,通过切面迭代确定所述外曲面上的各个型值点,得到所述扩散透镜的外曲面的形状。
在步骤3中,可以根据上述对应关系,再结合斯涅尔定律(snell’s law),即光的折射原理,可确定自由曲面上若干个方向上的型值点处的曲面法矢量,然后通过切面迭代的方法求出整个曲面上所有型值点的三维坐标值。
在具体应用中,根据点状光源10和第一目标面100上的预定区域101的特点,对于自由曲面可以选取空间球坐标系。对于第一目标面100上的预定区域101,可以选取直角坐标系。在预定区域101为正方形或矩形等轴对称区域(即点状光源10发出的光束通过扩散透镜20后在第一目标面100上形成的光斑的形状为正方形或长方形等轴对称图形)的情况下,只需求解与其对应的四分之一自由曲面即可。因此,为求解第一目标面上各网格节点的坐标值,可以采用图3所示的坐标系,第一目标面为垂直于X轴的平面,点 状光源位于原点且主光轴取X轴,构造自由曲面的初始形状为以原点为球心的四分之一球面。对该球面进行经纬方向的均匀划分,即对θ和φ均分后,则球面上任一点坐标
Figure PCTCN2020126785-appb-000001
并采用图3中的阴影部分所示的对应关系:自由曲面上一个纬向微带的光线投射到第一目标面上一个平行于X轴的微带上,一个经向微带的光线投射到一个平行于Y轴的微带上。然后按照能量守恒定律,即点状光源辐射的总能量应等于第一目标面内的总能量,可以求得外曲面上的各个节点对应的第一目标面上的节点的坐标。
在确定第一目标面100和外曲面202上网格节点具体划分方式及对应关系后,通过切面迭代的方法求解自由曲面上的各节点坐标值。具体地,如图4所示,假设内表面201为普通球面且球心与点状光源10重合,初始选取自由曲面202上的一个网格节点S 0,根据其坐标确定入射光矢量I in_0,由该网格节点在第一目标面100对应的网格节点T 0可确定出射光矢量I out_0,将以上两矢量单位化,由snell's law可求得该网格节点处切面元法矢量N 0,同时确定该切面元方程。当网格划分足够细时,与该网格节点相邻的经线与纬线方向上的节点处的入射光线可近似看作与该点切面元相交于待求的自由曲面上。对经线方向而言,相邻节点坐标由该交点S 1确定,其入射光矢量I in_1也即确定,出射光矢量I out_1由该节点S 1与第一目标面相应节点T 1的坐标确定,则同理可得该网格节点处的法矢量N 1,进而确定该点切面元方程。按以上方法沿该经线方向一直迭代下去,即可求得该经线方向每个网络节点的坐标,且该经线方向上各节点是连续的。对纬线方向上每条网格线,选择求得的第一条纬线上相应的每一个网格节点为初始点,依照上述方法,沿该方向迭代可得到每条纬线上各节点的坐标。至此自由曲面上所有型值点的坐标都已求出,从而可以确定出外曲面202。
通过上述方式得到的扩散透镜20,点状光源10发出的光束通过扩散透镜20可以在第一目标面100上形成如图2所示的截止清晰的均匀预定形状的 光斑。
在本实施例中,扩散透镜20的高度可以根据预定形状的光斑的尺寸确定,在能得到预定形状的光斑的情况下,扩散透镜20尽可能的小。而预定形状的光斑的尺寸可以根据照明装置应用的室内环境确定,例如,如果照明装置应用到小汽车上,则可以根据与小汽车匹配的天窗的尺寸,来确定预定形状的光斑的尺寸。
图5为本实施例中的一种菲涅尔透镜30的后视图。如图1和5所示,片式结构的菲涅尔透镜30的第一面301为平面,朝向扩散透镜20的外曲面202,且与第一目标面100共面,第二面302与第一面301相对设置,且第二面301的母线为锯齿状,且各个锯齿角度不完全相同,菲涅尔透镜30对从扩散透镜20的外曲面出射的光束进行均匀化,使得光束从第二面302出射后,到达预设的第二目标面200的入射角在预定范围内。如图5所示,菲涅尔透镜30可以将从第一面301射入的入射光平行化,即将不同入射方向的入射光调整成平行光。在本实施例中,菲涅尔透镜的第一面与第一目标面共面,从而使得点状光源10发出的光束在经过扩散透镜20之后,在菲涅尔透镜的第一面上形成预定形状的光斑,从用户的视角来看,与太阳光照射进窗户时,在窗户上形成的光斑相近似。而菲涅尔透镜30将从第一面301射入的光束进行均匀化,使得光束从第二而302出射后,到达第二目标面的入射角在预定范围内,从而使得光束在第二目标面上形成的光斑的形状与光束照射到第一面301形成的光斑形状类似,从用户的视角来看,该光斑与太阳光从窗户照射进室内,打在墙壁或其它照射物上形成的光斑相近似,提高了用户的视觉舒适性。
在本实施例中,可以通过建模的方式得到菲涅尔透镜30的第二个面的形状,在建模优化时,优化的目标是出射光线到达第二目标面200的入射角为0,从而可以确定第二面301上的各个锯齿的面形。
在本实施例的一个可选实施方式中,为了得到比较好的出光效果,节约 菲涅尔透镜30的面积,在确定菲涅尔透镜30的位置时,可以使菲涅尔透镜30在第一目标面100上的投影与上述的预定形状的光斑居中对齐。
在本实施例的一个可选实施方式中,菲涅尔透镜30的第二面302的母线上的各个锯齿为贝塞尔(Bezier)曲线。即菲涅尔透镜30的第二面302上包括多个锯齿状的曲面,每个锯齿面都为一个贝塞尔(Bezier)曲面,每个锯齿面可以视为一个独立的贝塞尔曲面透镜。每个锯齿面可以通过bezier曲面建模确定,通过两点确定线性线条,4点确定曲面初始形状后,设置优化变量采用优化函数优化形状。例如,可以采用公式(1)所示的优化函数优化bezier曲面的形状。
B(t)=P 0(1-t) 3+3P 1t(1-t) 2+3P 2t 2(1-t)+P 3t 3,t∈[0,1]   (1)
其中,B(t)为贝塞尔函数;P 0为三次贝塞尔曲线的起始点坐标;P 1和P 2分别为控制点坐标;P 3为终止点坐标;t为曲线的速率。
由于在具体应用中,室内的窗户一般为轴对称的形状,即光束在第一目标面100上形成的预定形状的光斑为轴对称的形状。因此,在本实施例的一个可选实施方式中,如图5所示,菲涅尔透镜30的第二面302的中间部分可以为球面,形成球面准直透镜3021,而球面准直透镜3021两侧各个齿状曲面3022等高。采用该可选实施方式,第二面302的中间部分3021为球面,由于扩散透镜20在中间部分的出射光在第二面302的入射光的矢量基本与入射点与点状光源10的连线重合,因此,将第二面303的中间部分3021设置为球面,可以将入射光调整为平行光,而两侧的光线的入射角较大,因此,需要使用贝塞尔曲面透镜对入射光进行调整。
在上述可选实施方式中,点状光源10与菲涅尔透镜30的距离可以根据球面准直透镜3021的焦距,即点状光源10与菲涅尔透镜30的第二面302的距离等于球面准直透镜3021的焦距。
在本实施例的一个可选实施方式中,光束到达第二目标面的入射角的预定范围为±5度,如图6所示,从而可以实现超小角度发光的均匀平面光源。
在本实施例中,第一目标面100和第二目标面200的位置可以根据具体应用确定。例如,第一目标面100可以设置在距离点状光源10大约30mm的位置,而第二目标面200可以设置在距离点状光源10大约100mm的位置,第二目标面200的接受面大小可以设置为100mm*100mm,点状光源100在第二目标面200上的形成的均匀光斑的大小可以为70mm*70mm,具体本实施例不作限定。
在本实施例的一个可选实施方式中,菲涅尔透镜30在第一目标面100上的垂直投影为圆形,即在该可选实施方式中,如图7所示,菲涅尔透镜30的第一面301为圆形。通过该可选实施方式,得到一个可以实现超小角度发光的圆形的均匀平面光源。
实施例2
在本实施例中,提供了一种照明***。
图8为本实施例提供的一种照明***的示意图,如图8所示,在本实施例中,照明***包括多个实施例1中各个实施方式所述的照明装置,多个照明装置以阵列方式排布。例如,在图8中包括4个照明装置,按2行2列排布。
在本实施例的一个可选实施方式中,为了方便拼接,如图8所示,各个照明装置的菲涅尔透镜在第一目标面上的垂直投影可以为方形。即菲涅尔透镜的第一面为方形。
在具体应用中,如图9所示,本申请实施例提供的照明装置或照明***900可以设置在房间的天花板上,模拟均匀发光的“天窗”,照明装置或照明***可以提供超小角度配光901,照明装置或照明***发出的光束打在墙壁902上,从而形成方形均匀光斑,形成类似太阳光从窗户中射入打在墙壁上的效果。本申请实施例提供的照明装置或照明***也可以应用在汽车顶上,从而得到类似的效果。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵 盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (12)

  1. 一种照明装置,其中,包括:
    点状光源;
    扩散透镜,面对所述点状光源设置,并设置有收容点状光源的收容腔,所述扩散透镜包括内曲面和外曲面,所述内曲面为半球面,所述外曲面为自由曲面,所述扩散透镜的内曲面位于靠近所述点状光源的一侧,所述外曲面位于远离所述点状光源的一侧,所述扩散透镜对所述点状光源发出的光束进行扩散,使得所述光束从所述外曲面出射后,在预设的第一目标面上形成预定形状的光斑;
    菲涅尔透镜,其第一面为平面,朝向所述扩散透镜的外曲面,且与所述第一目标面共面,第二面与所述第一面相对设置,且所述第二面的母线为锯齿状,且各个锯齿角度不完全相同,所述菲涅尔透镜对从所述扩散透镜的外曲面出射的所述光束进行均匀化,使得所述光束从所述第二面出射后,到达预设的第二目标面的入射角在预定范围内。
  2. 根据权利要求1所述的照明装置,其中,所述预定形状包括:方形。
  3. 根据权利要求1所述的照明装置,其中,所述点状光源与所述扩散透镜的内曲面的球心重叠。
  4. 根据权利要求1所述的照明装置,其中,所述菲涅尔透镜在所述第一目标面上的垂直投影与所述预定形状的光斑居中对齐。
  5. 根据权利要求1至4任一项所述的照明装置,其中,所述扩散透镜的外曲面的形状通过以下方式确定:
    按照能量经纬划分的方式,对投射到所述外曲面和所述第一目标面的预定区域的光束进行离散化,将所述外曲面和所述第一目标面的预定区域划分为多个网格,其中,所述预定区域的位置和大小与所述预定形状的光斑的位置和大小相同;
    按照能量守恒定律,建立所述外曲面上的各个网格与所述第一目标面上 的各个网格的对应关系;
    根据所述点状光源的位置、以及所述外曲面上的各个网格与所述第一目标面上的各个网格的对应关系,并结合光的折射原理,通过切面迭代确定所述外曲面上的各个型值点,得到所述扩散透镜的外曲面的形状。
  6. 根据权利要求1至4任一项所述的照明装置,其中,所述菲涅尔透镜的第二面的母线上的各个锯齿为贝塞尔曲线。
  7. 根据权利要求1至4任一项所述的照明装置,其中,所述菲涅尔透镜的第二面的中间部分为球面,形成球面准直透镜,所述球面两侧各个齿状曲面等高。
  8. 根据权利要求7所述的照明装置,其中,所述点状光源与所述菲涅尔透镜的第二面的距离等于所述球面准直透镜的焦距。
  9. 根据权利要求1至4任一项所述的照明装置,其中,所述预定范围为±5度。
  10. 根据权利要求1至4任一项所述的照明装置,其中,所述菲涅尔透镜在所述第一目标面上的垂直投影为圆形。
  11. 一种照明***,其中,包括多个如权利要求1至9任一项所述的照明装置,多个所述照明装置以阵列方式排布。
  12. 根据权利要求11所述的照明***,其中,各个所述照明装置的菲涅尔透镜在所述第一目标面上的垂直投影为方形。
PCT/CN2020/126785 2019-11-11 2020-11-05 照明装置及照明*** WO2021093669A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201921932410.4U CN211600283U (zh) 2019-11-11 2019-11-11 一种照明装置及照明***
CN201911093751.1 2019-11-11
CN201921932410.4 2019-11-11
CN201911093751.1A CN110748806A (zh) 2019-11-11 2019-11-11 一种照明装置及照明***

Publications (1)

Publication Number Publication Date
WO2021093669A1 true WO2021093669A1 (zh) 2021-05-20

Family

ID=75911441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126785 WO2021093669A1 (zh) 2019-11-11 2020-11-05 照明装置及照明***

Country Status (1)

Country Link
WO (1) WO2021093669A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164906A (ja) * 1991-12-14 1993-06-29 Koito Mfg Co Ltd 灯具用レンズ及びその金型作製方法
CN101482652A (zh) * 2009-02-12 2009-07-15 复旦大学 一种针对点光源配光透镜的设计方法
CN102679265A (zh) * 2011-03-17 2012-09-19 中国科学院微电子研究所 一种利用自由曲面透镜实现光束匀光控制的方法
CN102890342A (zh) * 2012-10-23 2013-01-23 浙江大学 一种用于点光源配光的自由曲面光学元件的设计方法
CN103116197A (zh) * 2013-01-31 2013-05-22 中国科学技术大学 一种具有短距匀光效果的单自由曲面厚透镜及其阵列
CN105607164A (zh) * 2015-12-25 2016-05-25 天津中环电子照明科技有限公司 一种高出光效率的自由曲面透镜及设计方法
CN110748806A (zh) * 2019-11-11 2020-02-04 欧普照明股份有限公司 一种照明装置及照明***
CN211600283U (zh) * 2019-11-11 2020-09-29 欧普照明股份有限公司 一种照明装置及照明***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164906A (ja) * 1991-12-14 1993-06-29 Koito Mfg Co Ltd 灯具用レンズ及びその金型作製方法
CN101482652A (zh) * 2009-02-12 2009-07-15 复旦大学 一种针对点光源配光透镜的设计方法
CN102679265A (zh) * 2011-03-17 2012-09-19 中国科学院微电子研究所 一种利用自由曲面透镜实现光束匀光控制的方法
CN102890342A (zh) * 2012-10-23 2013-01-23 浙江大学 一种用于点光源配光的自由曲面光学元件的设计方法
CN103116197A (zh) * 2013-01-31 2013-05-22 中国科学技术大学 一种具有短距匀光效果的单自由曲面厚透镜及其阵列
CN105607164A (zh) * 2015-12-25 2016-05-25 天津中环电子照明科技有限公司 一种高出光效率的自由曲面透镜及设计方法
CN110748806A (zh) * 2019-11-11 2020-02-04 欧普照明股份有限公司 一种照明装置及照明***
CN211600283U (zh) * 2019-11-11 2020-09-29 欧普照明股份有限公司 一种照明装置及照明***

Similar Documents

Publication Publication Date Title
CN203731285U (zh) 与具有初级透镜的led光源一起使用的led路灯的透镜
US6273596B1 (en) Illuminating lens designed by extrinsic differential geometry
TWI432790B (zh) The collimating lens structure with free - form surface and its design method
JP5932823B2 (ja) 受動式ルーバーベース採光システム
US20110320024A1 (en) Optical element of lighting device and design method of the same
TWI639856B (zh) 自由曲面照明系統的設計方法
CN104566217B (zh) 用于超薄直下式led背光***的双自由曲面光学透镜
Fournier et al. Designing freeform reflectors for extended sources
CN103927421B (zh) 三维光学***的实现方法
CN108302380B (zh) 一种透镜式led黑板灯
CN110966533A (zh) 一种照明光学***及照明装置
Timinger et al. Designing tailored free-form surfaces for general illumination
CN108036281A (zh) 一种形成均匀方形光斑的led透镜阵列设计方法
WO2022007690A1 (zh) 照明装置
CN211600283U (zh) 一种照明装置及照明***
WO2021093669A1 (zh) 照明装置及照明***
CN110748806A (zh) 一种照明装置及照明***
CN114607963B (zh) 一种用于室内模拟蓝天光照的照明装置
Kudaev et al. Optimization of symmetrical free-shape non-imaging concentrators for LED light source applications
Fournier Freeform reflector design with extended sources
WO2022089641A1 (zh) 照明装置
CN213272223U (zh) 一种线条灯透镜、发光模块和线条灯
US9217554B1 (en) Optical element providing oblique illumination and apparatuses using same
Xu et al. Optical design of rectangular illumination with freeform lenses for the application of LED road lighting
TW201827863A (zh) 自由曲面照明系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886760

Country of ref document: EP

Kind code of ref document: A1