WO2021093387A1 - 一种p型局部背表面场钝化双面太阳电池及其制备工艺 - Google Patents

一种p型局部背表面场钝化双面太阳电池及其制备工艺 Download PDF

Info

Publication number
WO2021093387A1
WO2021093387A1 PCT/CN2020/108874 CN2020108874W WO2021093387A1 WO 2021093387 A1 WO2021093387 A1 WO 2021093387A1 CN 2020108874 W CN2020108874 W CN 2020108874W WO 2021093387 A1 WO2021093387 A1 WO 2021093387A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
silicon substrate
solar cell
silicon nitride
type
Prior art date
Application number
PCT/CN2020/108874
Other languages
English (en)
French (fr)
Inventor
王璞
谢毅
张鹏
珪山
Original Assignee
通威太阳能(成都)有限公司
通威太阳能(眉山)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通威太阳能(成都)有限公司, 通威太阳能(眉山)有限公司 filed Critical 通威太阳能(成都)有限公司
Priority to AU2020381626A priority Critical patent/AU2020381626B2/en
Priority to EP20888572.3A priority patent/EP4024475A4/en
Priority to US17/764,774 priority patent/US11949031B2/en
Publication of WO2021093387A1 publication Critical patent/WO2021093387A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the invention relates to the technical field of solar cells, and more specifically to a p-type partial back surface field passivation double-sided solar cell and a preparation process thereof.
  • the double-sided battery can be used in lakes to form a complementary fishing and light, and can also be used in highways, integrated photovoltaic buildings, snow, etc.
  • the back of the solar battery makes full use of diffuse reflected light to increase the power generation of the double-sided solar battery.
  • the lower surface uses a laminated film of aluminum oxide and silicon nitride.
  • the fill factor and open circuit voltage of the back cell of this double-sided solar cell are relatively low, resulting in The efficiency of the back cell of the double-sided solar cell is low, and the double-sided rate is also relatively low.
  • the purpose of the present invention is: in order to solve the existing technical problems, the present invention provides a p-type partial back surface field passivation double-sided solar cell and a preparation process thereof.
  • a p-type local back surface field passivation double-sided solar cell includes a p-type silicon substrate, and the bottom of the p-type silicon substrate is provided with a silicon oxide passivation layer, an aluminum oxide passivation layer and a back silicon nitride from top to bottom Anti-reflective layer, the bottom of the p-type silicon substrate is embedded with several boron source doped layers, and the bottom of the boron source doped layer is connected with the silicon oxide passivation layer, aluminum oxide passivation layer and backside silicon nitride anti-reflective layer at the same time.
  • the back metal electrode layer is provided.
  • the top of the p-type silicon substrate is sequentially provided with a phosphorus source doped layer and a front silicon nitride antireflection layer from bottom to top, and the upper surface of the phosphorus source doped layer is provided with a number of positions corresponding to the boron source doped layer. Both the front metal electrode layer and the front metal electrode layer penetrate the front silicon nitride anti-reflection layer.
  • the front metal electrode layer and the back metal electrode layer are both Ag or Ag alloy or an alloy formed by Cu or Cu and at least one of Mo, W, Ti, Ni, Al, Mg, Ta, and Sn.
  • the thickness of the p-type silicon substrate is 100-180um
  • the thickness of the phosphorus source doped layer is 300-500nm
  • the thickness of the front silicon nitride antireflection layer is 60-100nm
  • the thickness of the silicon oxide passivation layer is 1-5nm.
  • the thickness of the aluminum passivation layer is 2-10nm
  • the thickness of the backside silicon nitride antireflection layer is 100-150nm
  • the thickness of the boron source doped layer is 500-1500nm.
  • the width of the electrode grid lines of the back metal electrode layer and the front metal electrode layer are both 40-80um, and the heights are both 25-50um.
  • S1 Choose a p-type silicon substrate, clean the p-type silicon substrate, and perform surface polishing;
  • S7 Use a laser to cut a number of local grooves on the lower surface of the back surface of the silicon nitride antireflection layer.
  • the local grooves are all opened to the bottom of the p-type silicon substrate.
  • the depth of the grooves at the bottom of the p-type silicon substrate is 500-1500nm.
  • the distance between the two is 1-3um, and then the boron source doping layer is prepared by screen printing the boron source paste in the local groove until the lower surface of the boron source doping layer is flush with the lower surface of the p-type silicon substrate, and the boron source paste
  • the main ingredients include boric acid with a concentration of 50%-70% and tributyl borate with a purity of 60%-90%;
  • the doping concentration of the phosphorus source doping layer is 10 16 -10 20 /cm 3 .
  • step S3 the concentration of ozone during ozone oxidation is 2-20 g/m 3 .
  • step S4 the PECVD method is used to prepare the front silicon nitride antireflection layer, the nitrogen source is nitric oxide, and the plasma power density is 50-250 mW/cm 2
  • step S6 the back silicon nitride is prepared
  • the PECVD method is used for the anti-reflection layer, the nitrogen source is nitric oxide, and the plasma power density is 50-250 mW/cm 2 .
  • step S7 a green light source is used when laser grooving, the laser spot is 30-40 nm, and the scribing speed of laser grooving is 20-30 m/s.
  • the present invention uses a laser to cut a number of partial grooves.
  • the partial grooves penetrate through the backside silicon nitride anti-reflection layer, aluminum oxide passivation layer and silicon oxide passivation layer in turn, and open to the bottom of the p-type silicon substrate, and then in the groove
  • the area is filled with boron source paste to form a high-low junction structure of the back field, and the composition ratio of the boron source paste is reasonably formulated, which improves the open circuit voltage of the back cell of the double-sided solar cell, and the back metal electrode layer and laser slot printing phosphor paste
  • the heavily doped area of the material forms an ohmic contact, which reduces the series resistance of the battery, and increases the photoelectric conversion efficiency and the double-sided rate of the back cell of the double-sided solar cell while maintaining the front efficiency, thereby increasing the power generation of the battery module , It reduces the area occupied by the power station, makes full use of the limited space resources, and saves the silicon substrate material. Tests show that
  • FIG. 1 is a schematic diagram of the structure of a p-type partial back surface field passivation double-sided solar cell of the present invention
  • Example 2 is a schematic diagram of the structure of a p-type local back surface field passivation single-sided solar cell in Example 2.
  • this embodiment provides a p-type partial back surface field passivation double-sided solar cell, which includes a p-type silicon substrate 4, and the bottom of the p-type silicon substrate 4 is provided with silicon oxide passivation from top to bottom.
  • a number of boron source doping layers 5 are embedded at the bottom of the p-type silicon substrate 4 to form a back field high and low junction structure, which improves the open circuit voltage of the back cell of the double-sided solar cell, and the back metal electrode layer 9 is doped with the boron source.
  • the miscellaneous layer 5 forms an ohmic contact, reduces the series resistance of the battery, and increases the photoelectric conversion efficiency and the double-sided rate of the back cell of the double-sided solar cell while maintaining the frontal efficiency, which increases the power generation of the battery cell assembly and reduces
  • the power station covers an area, fully utilizes the limited space resources, and saves silicon substrate materials. After testing, the frontal efficiency of the battery prepared by the present invention is over 22.38%, the double-sided rate is over 78.4%, and the power generation gain is 5%-15%.
  • the top of the p-type silicon substrate 4 is sequentially provided with a phosphorus source doped layer 3 and a front silicon nitride antireflection layer 2 from bottom to top.
  • the upper surface of the phosphorus source doped layer 3 is provided with several positions that are aligned with the boron source doped layer 5.
  • a corresponding front metal electrode layer 1, and the front metal electrode layer 1 penetrates the front silicon nitride anti-reflection layer 2.
  • the front metal electrode layer 1 and the back metal electrode layer 9 are both Ag or Ag alloy or an alloy formed by Cu or Cu and at least one of Mo, W, Ti, Ni, Al, Mg, Ta, and Sn, and both meet the requirements for use.
  • the thickness of the p-type silicon substrate 4 is 100-180um
  • the thickness of the phosphorus source doped layer 3 is 300-500nm
  • the thickness of the front silicon nitride anti-reflection layer 2 is 60-100nm
  • the thickness of the silicon oxide passivation layer 6 is 1-5nm.
  • the thickness of the aluminum oxide passivation layer 7 is 2-10nm
  • the thickness of the back silicon nitride antireflection layer 8 is 100-150nm
  • the thickness of the boron source doped layer 5 is 500-1500nm
  • the width of the electrode grid line is 40-80um
  • the height is 25-50um, which optimizes the thickness of each layer and improves battery performance.
  • this embodiment provides a p-type partial back surface field passivation single-sided solar cell, which includes a p-type silicon substrate 4, and the bottom of the n-type silicon substrate is provided with a silicon oxide passivation layer from top to bottom. 6 and the intrinsic amorphous silicon layer 10, the bottom of the n-type silicon substrate is embedded with a number of boron source doped layers 5, and the bottom of the phosphorus source doped layer 3 is connected with the silicon oxide passivation layer 6 and intrinsic amorphous silicon at the same time.
  • the aluminum back field layer 11 of the silicon layer 10, and the aluminum back field layer 11 extends to cover the lower surface of the intrinsic amorphous silicon layer 10.
  • the top of the n-type silicon substrate is sequentially provided with a phosphorus source doped layer 3 and a front surface from bottom to top.
  • the silicon nitride anti-reflection layer 2, the phosphorus source doped layer 3 is provided with a number of front metal electrode layers 1 corresponding to the positions of the boron source doped layer 5 one-to-one, and the front metal electrode layer 1 penetrates the front silicon nitride anti-reflection layer Layer 2.
  • this embodiment provides a preparation process of a p-type partial back surface field passivation double-sided solar cell, which includes the following steps:
  • S1 Choose a p-type silicon substrate 4, clean the p-type silicon substrate 4, and perform surface polishing;
  • the doping concentration of the phosphorus source doping layer 3 is 10 16 -10 20 /cm 3 .
  • step S3 the concentration of ozone during ozone oxidation is 2-20 g/m 3 .
  • step S4 the PECVD method is used to prepare the front side silicon nitride antireflection layer 2, the nitrogen source is nitric oxide, and the plasma power density is 50-250 mW/cm 2.
  • step S6 the back side nitride layer is prepared.
  • the PECVD method is used for the silicon anti-reflection layer 8, the nitrogen source is nitric oxide, and the plasma power density is 50-250 mW/cm 2 .
  • step S7 a green light source is used when laser grooving, the laser spot is 30-40 nm, and the scribing speed of laser grooving is 20-30 m/s.
  • Example 2 The manufacturing process of the p-type local back surface field passivation single-sided solar cell in Example 2 is the same as that in Example 3 above.

Abstract

一种p型局部背表面场钝化双面太阳电池及其制备工艺,涉及太阳电池技术领域,太阳电池包括p型硅衬底(4),p型硅衬底(4)底部从上到下设置有氧化硅钝化层(4)、氧化铝钝化层(7)和背面氮化硅减反层(8),p型硅衬底(4)底部嵌设有若干条硼源掺杂层(5),硼源掺杂层(5)底部连接有同时贯穿氧化硅钝化层(6)、氧化铝钝化层(7)和背面氮化硅减反层(8)的背面金属电极层(9),制备时,在背面氮化硅减反层(8)下表面利用激光开出若干局部槽,局部槽均开至p型硅衬底(4)底部,开槽区域印刷硼源浆料形成高低结结构,提高了双面太阳电池的背面电池的开路电压,开槽硼源浆重掺杂区域与金属电极接触形成欧姆接触,降低串联电阻提高填充因子,在不降低正面效率的情况下,提高电池双面率。

Description

一种p型局部背表面场钝化双面太阳电池及其制备工艺 技术领域
本发明涉及太阳电池技术领域,更具体的是涉及一种p型局部背表面场钝化双面太阳电池及其制备工艺。
背景技术
近几年,可再生能源的大力发展日益增加,比较热门的可再生能源领域有太阳能、风能、潮汐能等。太阳能相比传统能源有着利用简单、安全、无污染等特点,成为可再生新能源领域研究的焦点。太阳能电池发电的基本原理是光生伏打效应,太阳电池是将太阳光转化为电能的新能源器件,随着太阳能发电的应用领域增加,新政策等优惠问题,光伏发电成本的需要大幅度的降低光伏发电的成本降低在电池制造领域需要提效降本。传统的单面发电电池的转化效率低,发电量低的问题,需要从事太阳能电池研究的科研人员研究双面太阳电池,节约硅衬底材料,增加发电量。双面电池可以应用在湖泊,形成渔光互补,也可以应用在高速公路、光伏建筑一体化、雪地等,太阳电池的背面充分地利用漫反射光,增加双面太阳电池的发电量。
针对现有的p型硅衬底双面太阳电池,其下表面用三氧化二铝和氮化硅的叠层薄膜,这种双面太阳电池的背面电池的填充因子和开路电压比较低,导致双面太阳电池背面电池效率低,双面率也比较低。
故如何解决上述技术问题,对于本领域技术人员来说很有现实意义。
发明内容
本发明的目的在于:为了解决现有的技术问题,本发明提供一种p型局部背表面场钝化双面太阳电池及其制备工艺。
本发明为了实现上述目的具体采用以下技术方案:
一种p型局部背表面场钝化双面太阳电池,包括p型硅衬底,p型硅衬底底部从上到下设置有氧化硅钝化层、氧化铝钝化层和背面氮化硅减反层,p型硅衬底底部嵌设有若干条硼源掺杂层,硼源掺杂层底部连接有同时贯穿氧化硅钝化层、氧化铝钝化层和背面氮化硅减反层的背面金属电极层。
进一步地,p型硅衬底顶部从下到上依次设置有磷源掺杂层和正面氮化硅减反层,磷源掺杂层上表面设置有若干与硼源掺杂层位置一一对应的正面金属电极层,正面金属电极层均贯穿正面氮化硅减反层。
进一步地,正面金属电极层和背面金属电极层均为Ag或Ag合金或Cu或Cu与Mo、W、Ti、Ni、 Al、Mg、Ta、Sn至少之一所形成的合金。
进一步地,p型硅衬底厚度为100-180um,磷源掺杂层厚度为300-500nm,正面氮化硅减反层厚度为60-100nm,氧化硅钝化层厚度为1-5nm,氧化铝钝化层厚度为2-10nm,背面氮化硅减反层厚度为100-150nm,硼源掺杂层的厚度为500-1500nm。
进一步地,背面金属电极层和正面金属电极层的电极栅线宽度均为40-80um,其高度均为25-50um。
一种p型局部背表面场钝化双面太阳电池的制备工艺,包括以下步骤:
S1:选用一块p型硅衬底,对p型硅衬底进行清洗,并进行表面抛光;
S2:在p型硅衬底的上表面进行低压热扩散,制备出磷源掺杂层;
S3:在p型硅衬底的下表面进行臭氧氧化,生长出氧化硅钝化层;
S4:在磷源掺杂层上表面制备正面氮化硅减反层;
S5:在氧化硅钝化层下表面制备氧化铝钝化层;
S6:在氧化铝钝化层下表面制备背面氮化硅减反层;
S7:在背面氮化硅减反层下表面利用激光开出若干局部槽,局部槽均开至p型硅衬底底部,在p型硅衬底底部开槽深度为500-1500nm,局部槽之间的间距为1-3um,然后在局部槽内通过丝网印刷硼源浆料制备硼源掺杂层,直到硼源掺杂层下表面与p型硅衬底下表面齐平,硼源浆料的主要成分包括浓度为50%-70%的硼酸和纯度为60%-90%的硼酸三丁酯;
S8:在局部槽内的硼源掺杂层下表面进行丝网印刷制备背面金属电极层,背面金属电极层依次穿过氧化硅钝化层、氧化铝钝化层和背面氮化硅减反层;
S9:最后在正面氮化硅减反层上表面进行丝网印刷制备正面金属电极层。
进一步地,在步骤S2中,磷源掺杂层的掺杂浓度10 16-10 20/cm 3
进一步地,在步骤S3中,臭氧氧化时臭氧的浓度为2-20g/m 3
进一步地,在步骤S4中,制备正面氮化硅减反层时采用PECVD法,氮源为一氧化氮,等离子体功率密度为50-250mW/cm 2,在步骤S6中,制备背面氮化硅减反层时采用PECVD法,氮源为一氧化氮,等离子体功率密度为50-250mW/cm 2
进一步地,在步骤S7中,激光开槽时采用绿光光源,激光的光斑为30-40nm,激光开槽的划线速度为20-30m/s。
本发明的有益效果如下:
1、本发明采用激光开出若干局部槽,局部槽依次贯通背面氮化硅减反层、氧化铝钝化层和氧化硅钝化层,开至p型硅衬底底部,然后在开槽的区域进行硼源浆料的填充形成背场高低结结构, 并合理配制硼源浆料成分比例,提高了双面太阳电池的背面电池的开路电压,且背面金属电极层与激光开槽印刷磷浆料的重掺杂区域形成欧姆接触,降低了电池的串联电阻,保持正面效率不降低的情况下,提高双面太阳电池背面电池的光电转化效率和双面率,增加了电池电池组件的发电量,减少了电站占地面积,充分的利用的有限的空间资源,节约了硅衬底材料。经测试得,本发明制得的电池正面效率22.38%以上,双面率78.4%以上,发电量增益5%-15%。
附图说明
图1是本发明一种p型局部背表面场钝化双面太阳电池的结构示意图;
图2是实施例2中p型局部背表面场钝化单面太阳电池的结构示意图。
附图标记:1-正面金属电极层,2-正面氮化硅减反层,3-磷源掺杂层,4-p型硅衬底,5-硼源掺杂层,6-氧化硅钝化层,7-氧化铝钝化层,8-背面氮化硅减反层,9-背面金属电极层,10-本征非晶硅层,11-铝背场层。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
以下结合实施例对本发明的特征和性能作进一步的详细描述。
实施例1
如图1所示,本实施例提供一种p型局部背表面场钝化双面太阳电池,包括p型硅衬底4,p型硅衬底4底部从上到下设置有氧化硅钝化层6、氧化铝钝化层7和背面氮化硅减反层8,p型硅衬底4底部嵌设有若干条硼源掺杂层5,硼源掺杂层5底部连接有同时贯穿氧化硅钝化层6、氧化铝钝化层7和背面氮化硅减反层8的背面金属电极层9。
在p型硅衬底4底部嵌设若干条硼源掺杂层5,从而形成背场高低结结构,提高了双面太阳电池的背面电池的开路电压,且背面金属电极层9与硼源掺杂层5形成欧姆接触,降低了电池的串联电阻,保持正面效率不降低的情况下,提高双面太阳电池背面电池的光电转化效率和双面率,增加了电池电池组件的发电量,减少了电站占地面积,充分的利用的有限的空间资源,节约了硅衬底材料。经测试得,本发明制得的电池正面效率22.38%以上,双面率78.4%以上,发电量增益5%-15%
作为本实施例的一种优选技术方案:
p型硅衬底4顶部从下到上依次设置有磷源掺杂层3和正面氮化硅减反层2,磷源掺杂层3上表面设置有若干与硼源掺杂层5位置一一对应的正面金属电极层1,正面金属电极层1均贯穿正面氮化硅减反层2。
作为本实施例的一种优选技术方案:
正面金属电极层1和背面金属电极层9均为Ag或Ag合金或Cu或Cu与Mo、W、Ti、Ni、Al、Mg、Ta、Sn至少之一所形成的合金,均满足使用要求。
作为本实施例的一种优选技术方案:
p型硅衬底4厚度为100-180um,磷源掺杂层3厚度为300-500nm,正面氮化硅减反层2厚度为60-100nm,氧化硅钝化层6厚度为1-5nm,氧化铝钝化层7厚度为2-10nm,背面氮化硅减反层8厚度为100-150nm,硼源掺杂层5的厚度为500-1500nm,背面金属电极层9和正面金属电极层1的电极栅线宽度均为40-80um,其高度均为25-50um,优化各层厚度,提高电池性能。
本发明原理也可运用在单面太阳电池上,如下实施例2:
实施例2
如图2所示,本实施例提供一种p型局部背表面场钝化单面太阳电池,包括p型硅衬底4,n型硅衬底底部从上到下设置有氧化硅钝化层6和本征非晶硅层10,n型硅衬底底部嵌设有若干条硼源掺杂层5,磷源掺杂层3底部连接有同时贯穿氧化硅钝化层6和本征非晶硅层10的铝背场层11,且铝背场层11延伸出来覆盖本征非晶硅层10下表面,n型硅衬底顶部从下到上依次设置有磷源掺杂层3和正面氮化硅减反层2,磷源掺杂层3上表面设置有若干与硼源掺杂层5位置一一对应的正面金属电极层1,正面金属电极层1均贯穿正面氮化硅减反层2。
实施例3
如图1所示,本实施例提供一种p型局部背表面场钝化双面太阳电池的制备工艺,包括以下步骤:
S1:选用一块p型硅衬底4,对p型硅衬底4进行清洗,并进行表面抛光;
S2:在p型硅衬底4的上表面进行低压热扩散,制备出磷源掺杂层3;
S3:在p型硅衬底4的下表面进行臭氧氧化,生长出氧化硅钝化层6;
S4:在磷源掺杂层3上表面制备正面氮化硅减反层2;
S5:在氧化硅钝化层6下表面制备氧化铝钝化层7;
S6:在氧化铝钝化层7下表面制备背面氮化硅减反层8;
S7:在背面氮化硅减反层8下表面利用激光开出若干局部槽,局部槽均开至p型硅衬底4底部,在p型硅衬底4底部开槽深度为500-1500nm,局部槽之间的间距为1-3um,然后在局部槽内通过丝 网印刷硼源浆料制备硼源掺杂层5,直到硼源掺杂层5下表面与p型硅衬底4下表面齐平,硼源浆料的主要成分包括浓度为50%-70%的硼酸和纯度为60%-90%的硼酸三丁酯;
S8:在局部槽内的硼源掺杂层5下表面进行丝网印刷制备背面金属电极层9,背面金属电极层9依次穿过氧化硅钝化层6、氧化铝钝化层7和背面氮化硅减反层8;
S9:最后在正面氮化硅减反层2上表面进行丝网印刷制备正面金属电极层1。
进一步地,在步骤S2中,磷源掺杂层3的掺杂浓度10 16-10 20/cm 3
进一步地,在步骤S3中,臭氧氧化时臭氧的浓度为2-20g/m 3
进一步地,在步骤S4中,制备正面氮化硅减反层2时采用PECVD法,氮源为一氧化氮,等离子体功率密度为50-250mW/cm 2,在步骤S6中,制备背面氮化硅减反层8时采用PECVD法,氮源为一氧化氮,等离子体功率密度为50-250mW/cm 2
进一步地,在步骤S7中,激光开槽时采用绿光光源,激光的光斑为30-40nm,激光开槽的划线速度为20-30m/s。
实施例2中的p型局部背表面场钝化单面太阳电池的制备工艺与上述实施例3原理相同。
以上所述,仅为本发明的较佳实施例,并不用以限制本发明,本发明的专利保护范围以权利要求书为准,凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明的保护范围内。

Claims (10)

  1. 一种p型局部背表面场钝化双面太阳电池,包括p型硅衬底(4),p型硅衬底(4)底部从上到下设置有氧化硅钝化层(6)、氧化铝钝化层(7)和背面氮化硅减反层(8),其特征在于,p型硅衬底(4)底部嵌设有若干条硼源掺杂层(5),硼源掺杂层(5)底部连接有同时贯穿氧化硅钝化层(6)、氧化铝钝化层(7)和背面氮化硅减反层(8)的背面金属电极层(9)。
  2. 根据权利要求1所述的一种p型局部背表面场钝化双面太阳电池,其特征在于,p型硅衬底(4)顶部从下到上依次设置有磷源掺杂层(3)和正面氮化硅减反层(2),磷源掺杂层(3)上表面设置有若干与硼源掺杂层(5)位置一一对应的正面金属电极层(1),正面金属电极层(1)均贯穿正面氮化硅减反层(2)。
  3. 根据权利要求2所述的一种p型局部背表面场钝化双面太阳电池及其制备工艺,其特征在于,正面金属电极层(1)和背面金属电极层(9)均为Ag或Ag合金或Cu或Cu与Mo、W、Ti、Ni、Al、Mg、Ta、Sn至少之一所形成的合金。
  4. 根据权利要求2所述的一种p型局部背表面场钝化双面太阳电池及其制备工艺,其特征在于,p型硅衬底(4)厚度为100-180um,磷源掺杂层(3)厚度为300-500nm,正面氮化硅减反层(2)厚度为60-100nm,氧化硅钝化层(6)厚度为1-5nm,氧化铝钝化层(7)厚度为2-10nm,背面氮化硅减反层(8)厚度为100-150nm,硼源掺杂层(5)的厚度为500-1500nm。
  5. 根据权利要求4所述的一种p型局部背表面场钝化双面太阳电池及其制备工艺,其特征在于,背面金属电极层(9)和正面金属电极层(1)的电极栅线宽度均为40-80um,其高度均为25-50um。
  6. 一种p型局部背表面场钝化双面太阳电池的制备工艺,其特征在于,包括以下步骤:
    S1:选用一块p型硅衬底(4),对p型硅衬底(4)进行清洗,并进行表面抛光;
    S2:在p型硅衬底(4)的上表面进行低压热扩散,制备出磷源掺杂层(3);
    S3:在p型硅衬底(4)的下表面进行臭氧氧化,生长出氧化硅钝化层(6);
    S4:在磷源掺杂层(3)上表面制备正面氮化硅减反层(2);
    S5:在氧化硅钝化层(6)下表面制备氧化铝钝化层(7);
    S6:在氧化铝钝化层(7)下表面制备背面氮化硅减反层(8);
    S7:在背面氮化硅减反层(8)下表面利用激光开出若干局部槽,局部槽均开至p型硅衬底(4)底部,在p型硅衬底(4)底部开槽深度为500-1500nm,局部槽之间的间距为1-3um,然后在局部槽内通过丝网印刷硼源浆料制备硼源掺杂层(5),直到硼源掺杂层(5)下表面与p型硅衬底(4)下表面齐平,硼源浆料的主要成分包括浓度为50%-70%的硼酸和纯度为60%-90%的硼酸三丁酯;
    S8:在局部槽内的硼源掺杂层(5)下表面进行丝网印刷制备背面金属电极层(9),背面金属电极层(9)依次穿过氧化硅钝化层(6)、氧化铝钝化层(7)和背面氮化硅减反层(8);
    S9:最后在正面氮化硅减反层(2)上表面进行丝网印刷制备正面金属电极层(1)。
  7. 根据权利要求6所述的一种p型局部背表面场钝化双面太阳电池的制备工艺,其特征在于,在步骤S2中,磷源掺杂层(3)的掺杂浓度10 16-10 20/cm 3
  8. 根据权利要求6所述的一种p型局部背表面场钝化双面太阳电池的制备工艺,其特征在于,在步骤S3中,臭氧氧化时臭氧的浓度为2-20g/m 3
  9. 根据权利要求6所述的一种p型局部背表面场钝化双面太阳电池的制备工艺,其特征在于,在步骤S4中,制备正面氮化硅减反层(2)时采用PECVD法,氮源为一氧化氮,等离子体功率密度为50-250mW/cm 2,在步骤S6中,制备背面氮化硅减反层(8)时采用PECVD法,氮源为一氧化氮,等离子体功率密度为50-250mW/cm 2
  10. 根据权利要求6所述的一种p型局部背表面场钝化双面太阳电池的制备工艺,其特征在于,在步骤S7中,激光开槽时采用绿光光源,激光的光斑为30-40nm,激光开槽的划线速度为20-30m/s。
PCT/CN2020/108874 2019-11-14 2020-08-13 一种p型局部背表面场钝化双面太阳电池及其制备工艺 WO2021093387A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2020381626A AU2020381626B2 (en) 2019-11-14 2020-08-13 P-type bifacial solar cell with partial rear surface field passivation and preparation method therefor
EP20888572.3A EP4024475A4 (en) 2019-11-14 2020-08-13 PARTIAL BACKSURFACE FIELD PASSIVATION P-TYPE BIFACE SOLAR CELL AND METHOD FOR PREPARING IT
US17/764,774 US11949031B2 (en) 2019-11-14 2020-08-13 P-type bifacial solar cell with partial rear surface field passivation and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911115821.9 2019-11-14
CN201911115821.9A CN110828584A (zh) 2019-11-14 2019-11-14 一种p型局部背表面场钝化双面太阳电池及其制备工艺

Publications (1)

Publication Number Publication Date
WO2021093387A1 true WO2021093387A1 (zh) 2021-05-20

Family

ID=69555267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108874 WO2021093387A1 (zh) 2019-11-14 2020-08-13 一种p型局部背表面场钝化双面太阳电池及其制备工艺

Country Status (5)

Country Link
US (1) US11949031B2 (zh)
EP (1) EP4024475A4 (zh)
CN (1) CN110828584A (zh)
AU (1) AU2020381626B2 (zh)
WO (1) WO2021093387A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114464686A (zh) * 2021-12-28 2022-05-10 浙江爱旭太阳能科技有限公司 一种新型隧穿钝化接触结构电池及其制备方法
CN114464687B (zh) * 2021-12-28 2024-05-10 浙江爱旭太阳能科技有限公司 一种局部双面隧穿钝化接触结构电池及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107403850B (zh) * 2017-07-07 2023-05-12 中山德华芯片技术有限公司 一种含嵌入式背场结构的多结太阳能电池及其制备方法
CN110828584A (zh) 2019-11-14 2020-02-21 通威太阳能(成都)有限公司 一种p型局部背表面场钝化双面太阳电池及其制备工艺
CN111816726B (zh) * 2020-06-15 2023-10-03 隆基绿能科技股份有限公司 背接触太阳电池及生产方法、背接触电池组件
CN112133764B (zh) * 2020-09-18 2021-11-26 江苏东鋆光伏科技有限公司 一种采用磁控溅射法制备的perc电池及其制备工艺
CN112509726B (zh) * 2020-12-01 2022-11-11 通威太阳能(成都)有限公司 背场掺杂用硼铝浆、太阳电池及其制备方法
CN113937170A (zh) * 2021-10-19 2022-01-14 通威太阳能(成都)有限公司 一种晶硅太阳能电池及其金属化的方法
CN117317040A (zh) * 2023-09-05 2023-12-29 天合光能股份有限公司 太阳能电池及其制备方法
CN117153953B (zh) * 2023-10-30 2024-01-02 常州亿晶光电科技有限公司 开膜式双面TOPCon电池的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130255765A1 (en) * 2012-03-30 2013-10-03 Applied Materials, Inc. Doped ai paste for local alloyed junction formation with low contact resistance
CN104091842A (zh) * 2014-07-07 2014-10-08 常州天合光能有限公司 分布式局域硼掺杂的双面感光晶体硅太阳电池及其制备方法
CN109888060A (zh) * 2019-03-15 2019-06-14 通威太阳能(合肥)有限公司 一种具有三层钝化层结构的太阳电池及其制备方法
CN109980022A (zh) * 2019-04-24 2019-07-05 通威太阳能(成都)有限公司 一种p型隧穿氧化物钝化接触太阳能电池及其制备方法
CN110828584A (zh) * 2019-11-14 2020-02-21 通威太阳能(成都)有限公司 一种p型局部背表面场钝化双面太阳电池及其制备工艺
CN210778616U (zh) * 2019-11-14 2020-06-16 通威太阳能(成都)有限公司 一种p型局部背表面场钝化双面太阳电池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8088675B2 (en) * 2008-09-19 2012-01-03 Applied Materials, Inc. Methods of making an emitter having a desired dopant profile
DE102010036893B4 (de) * 2010-08-06 2017-01-19 Hanwha Q.CELLS GmbH Herstellungsverfahren einer Halbleitervorrichtung
EP2472601A3 (en) * 2010-10-19 2013-05-01 BP Corporation North America Inc. Method Of Reducing Laser-Induced Damage In Forming Laser-Processed Contacts
US8883543B2 (en) * 2011-05-17 2014-11-11 Sumco Corporation Method of producing wafer for solar cell, method of producing solar cell, and method of producing solar cell module
EP3264446B1 (en) * 2015-02-25 2019-11-27 Toray Industries, Inc. P-type impurity diffusion composition, method for manufacturing semiconductor element using said composition, and method for manufacturing a solar cell
CN105261670B (zh) * 2015-08-31 2017-06-16 湖南红太阳光电科技有限公司 晶体硅电池的低压扩散工艺
CN106992229A (zh) * 2017-06-06 2017-07-28 通威太阳能(合肥)有限公司 一种perc电池背面钝化工艺
CN107394006B (zh) * 2017-07-19 2019-07-16 晶科能源有限公司 一种n型双面电池制备方法
CN107863419A (zh) 2017-11-02 2018-03-30 国家电投集团西安太阳能电力有限公司 一种双面perc晶体硅太阳能电池的制备方法
CN109585600A (zh) * 2018-11-23 2019-04-05 浙江昱辉阳光能源江苏有限公司 一种双面perc高效晶硅太阳能电池的制作方法
CN110233189A (zh) * 2019-06-10 2019-09-13 苏州腾晖光伏技术有限公司 一种背面局域重掺杂的太阳能电池及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130255765A1 (en) * 2012-03-30 2013-10-03 Applied Materials, Inc. Doped ai paste for local alloyed junction formation with low contact resistance
CN104091842A (zh) * 2014-07-07 2014-10-08 常州天合光能有限公司 分布式局域硼掺杂的双面感光晶体硅太阳电池及其制备方法
CN109888060A (zh) * 2019-03-15 2019-06-14 通威太阳能(合肥)有限公司 一种具有三层钝化层结构的太阳电池及其制备方法
CN109980022A (zh) * 2019-04-24 2019-07-05 通威太阳能(成都)有限公司 一种p型隧穿氧化物钝化接触太阳能电池及其制备方法
CN110828584A (zh) * 2019-11-14 2020-02-21 通威太阳能(成都)有限公司 一种p型局部背表面场钝化双面太阳电池及其制备工艺
CN210778616U (zh) * 2019-11-14 2020-06-16 通威太阳能(成都)有限公司 一种p型局部背表面场钝化双面太阳电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024475A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114464686A (zh) * 2021-12-28 2022-05-10 浙江爱旭太阳能科技有限公司 一种新型隧穿钝化接触结构电池及其制备方法
CN114464687B (zh) * 2021-12-28 2024-05-10 浙江爱旭太阳能科技有限公司 一种局部双面隧穿钝化接触结构电池及其制备方法
CN114464686B (zh) * 2021-12-28 2024-05-10 浙江爱旭太阳能科技有限公司 一种新型隧穿钝化接触结构电池及其制备方法

Also Published As

Publication number Publication date
CN110828584A (zh) 2020-02-21
EP4024475A1 (en) 2022-07-06
EP4024475A4 (en) 2022-07-06
AU2020381626A1 (en) 2022-04-21
AU2020381626B2 (en) 2024-01-11
US11949031B2 (en) 2024-04-02
US20220328702A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
WO2021093387A1 (zh) 一种p型局部背表面场钝化双面太阳电池及其制备工艺
CN102208486B (zh) 一种mwt太阳能电池的制备方法
CN103489951B (zh) 双面黑晶硅高效太阳能电池
CN106531816A (zh) 一种背结背接触太阳能电池
CN102683493A (zh) N型晶体硅双面背接触太阳电池的制备方法
CN110047952A (zh) 一种太阳能电池Al栅线结构及其制备方法
CN110459638A (zh) 一种Topcon钝化的IBC电池及其制备方法
CN111613688A (zh) 一种叉指型背接触太阳电池结构及其制造方法
CN110034193A (zh) 一种Topcon钝化结构的多细栅IBC电池及其制备方法
CN210349847U (zh) 一种p型隧穿氧化物钝化接触太阳能电池
CN103187482A (zh) 一种晶硅太阳能mwt电池的制造方法及其制造的电池
CN210805782U (zh) 一种n型局部高低结背表面场双面太阳电池
CN202513177U (zh) 太阳能光伏全黑式组件
CN103035771B (zh) N型mwt太阳能电池结构及其制造工艺
CN210778616U (zh) 一种p型局部背表面场钝化双面太阳电池
CN110718597A (zh) 一种n型局部高低结背表面场双面太阳电池及其制备工艺
CN102280501B (zh) 一种硅基埋栅薄膜太阳能电池
CN212874518U (zh) 太阳能电池
CN209658189U (zh) 一种具有透明导电层的单多晶p型单面perc电池
CN210628327U (zh) 一种ibc电池叉指状pn结的电池结构
CN206878022U (zh) 一种多晶硅薄膜太阳能电池
CN106340557B (zh) 一种太阳能电池片及其组件
CN106449847A (zh) 一种具有垂直pn异质结的太阳能电池及其制作方法
CN101866969A (zh) 太阳电池
CN217239477U (zh) 一种新型太阳能电池及其栅线结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888572

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020888572

Country of ref document: EP

Effective date: 20220329

ENP Entry into the national phase

Ref document number: 2020381626

Country of ref document: AU

Date of ref document: 20200813

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE