WO2021092856A1 - 摄像头模组及移动终端 - Google Patents

摄像头模组及移动终端 Download PDF

Info

Publication number
WO2021092856A1
WO2021092856A1 PCT/CN2019/118538 CN2019118538W WO2021092856A1 WO 2021092856 A1 WO2021092856 A1 WO 2021092856A1 CN 2019118538 W CN2019118538 W CN 2019118538W WO 2021092856 A1 WO2021092856 A1 WO 2021092856A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
magnet
camera module
coil
base
Prior art date
Application number
PCT/CN2019/118538
Other languages
English (en)
French (fr)
Inventor
瞿佳佳
李勇
安在煜
Original Assignee
南昌欧菲光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲光电技术有限公司 filed Critical 南昌欧菲光电技术有限公司
Priority to PCT/CN2019/118538 priority Critical patent/WO2021092856A1/zh
Publication of WO2021092856A1 publication Critical patent/WO2021092856A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets

Definitions

  • the present invention relates to the technical field of optical imaging, in particular to a camera module and a mobile terminal.
  • Optical image stabilization is a widely recognized anti-shake technology. It compensates for the vibration of the light path through movable parts, so as to achieve the effect of reducing the blur of the photo.
  • Optical image stabilization technology is mainly divided into two categories, namely, lens movable optical image stabilization, and photosensitive chip movable optical image stabilization.
  • the lens movable optical image stabilization structure is complex, and is generally not suitable for application to the camera module of a mobile terminal. Therefore, the mobile optical image stabilization of the photosensitive chip has received more and more attention.
  • the core principle of the mobile optical image stabilization of the photosensitive chip is: under the action of the driving force, the photosensitive chip can be displaced, thereby compensating for the shift of the optical axis of the lens caused by jitter.
  • a camera module and a mobile terminal are provided.
  • a camera module includes:
  • a lens carrier with lens components installed on the base A lens carrier with lens components installed on the base;
  • the drive assembly includes a magnet and a coil, the magnet is arranged on either the circuit board and the lens carrier, and the coil is arranged on the circuit board and the other of the lens carrier at a position opposite to the magnet
  • the energized coil interacts with the magnet to generate electromagnetic force to drive the circuit board to slide relative to the base.
  • a mobile terminal includes the camera module as described in any one of the above embodiments.
  • FIG. 1 is a schematic diagram of the structure of a camera module in a preferred embodiment of the present invention
  • Figure 2 is an exploded view of the camera module shown in Figure 1;
  • Fig. 3 is a cross-sectional view of the camera module shown in Fig. 1.
  • the present invention provides a mobile terminal (not shown) and a camera module 100.
  • the mobile terminal includes the camera module 100 to realize the shooting function.
  • the mobile terminal can be an electronic product such as a mobile phone, a PAD, and a camera.
  • the camera module 100 in the preferred embodiment of the present invention includes a base 110, a circuit board 120, a lens carrier 130, a lens assembly 140, and a driving assembly 150.
  • the base 110 plays a bearing role, and is generally integrally formed of a metal material. According to different styling requirements of the camera module 100, the outer contour of the base 110 can be in various shapes such as a circle or a rectangle.
  • the circuit board 120 is generally a PCB board on which many electronic components are integrated. Specifically, the circuit board 120 is provided with a photosensitive chip 121. The photosensitive chip 121 is used to convert light into electrical signals to realize digital imaging. In addition, in order to sense the jitter of the camera module 100 and achieve anti-shake, the circuit board 120 may also be integrated with a gyroscope (not shown), a driving chip (not shown), etc. The gyroscope detects the jitter and quantifies the degree of jitter. The drive chip generates a drive current according to the amount of jitter, and finally performs jitter compensation under the action of the drive current.
  • the camera module 100 further includes a filter 180 that can filter out invisible light, and the filter 180 is disposed on the surface of the photosensitive chip 121.
  • the filter 180 may be blue glass, which filters out invisible light to avoid interference, thereby preventing noise from being generated on the image.
  • the circuit board 120 is slidably mounted on the base 110.
  • the circuit board 120 slides relative to the base 110 under the action of the driving force, thereby driving the photosensitive chip 121 on the circuit board 120 to move, so as to realize the movable optical image stabilization of the photosensitive chip.
  • the camera module 100 further includes a plurality of balls 160 with the same diameter and a limiting member 170.
  • the ball 160 has a spherical shape and can roll relative to the base 110. Moreover, the ball 160 needs to have a relatively high hardness and is not easily deformed. Specifically, the ball 160 may be formed of a material with high hardness such as metal, ceramic, glass, sapphire and the like.
  • the plurality of balls 160 can jointly define a sliding plane, and the sliding plane is tangent to the plurality of balls 160.
  • the sliding plane is a virtual plane, and a plane is determined by three points. Therefore, the number of balls 160 is at least three.
  • the side of the circuit board 120 facing away from the photosensitive chip 121 is supported on the plurality of balls 160. At this time, the circuit board 120 is located on the sliding plane and can slide along the sliding plane when performing the anti-shake response.
  • the diameters of the plurality of balls 160 are generally the same and can be directly scattered on the base 110.
  • a plane can be provided on the base 110, and the ball 160 is directly placed in the plane and can roll in the plane.
  • the edge of the plane is provided with a boundary to prevent the ball 160 from rolling outside the range of the plane.
  • the ball 160 is confined to the base 110 by the pressing effect of the circuit board 120.
  • receiving structures such as grooves, holes, sleeves, etc. may be formed on the base 110 for accommodating the balls 160 to prevent the balls from being scattered, thereby facilitating assembly and improving the reliability of the camera module 100.
  • the position-limiting member 170 is used to provide a force directed to the ball 160 on the circuit board 120. That is, the position-limiting member 170 can press the circuit board 120 on the ball 160.
  • the force restricts the circuit board 120 in a direction perpendicular to the sliding plane, so that the circuit board 120 always keeps contact with the ball 160. Otherwise, a stable support cannot be formed between the circuit board 120 and the balls 160, and the circuit board 120 will be separated from the balls 160 when shaking or turning over.
  • the circuit board 120 and the ball 160 are in point contact, when the circuit board 120 slides, the ball 160 will also roll relative to the base 110 under the action of friction. Therefore, the friction force received by the circuit board 120 during the sliding process is relatively small. Therefore, only a small driving force is required to drive the circuit board 120 to slide, so the anti-shake response is fast, the sensitivity is higher, and the energy consumption is lower.
  • the ball 160 may roll with the sliding of the head 121.
  • the surface of the ball 160 is a spherical surface, and its rolling does not cause fluctuations in the height of the sliding plane. Therefore, the circuit board 120 will always remain on the same plane when sliding, that is, the flatness is better.
  • the circuit board 120 can also be slidably mounted on the base 110 by means of a suspension cable, an electric drive bracket, or the like.
  • the force provided by the limiting action member 170 may be pressure or pulling force; the limiting action member 170 can directly apply force to the circuit board 120 in contact or non-contact force.
  • the limiting effect member 170 can have various forms, as long as it does not interfere with the sliding of the circuit board 120.
  • the position limiting member 170 is a magnet provided on the base 110, and the circuit board 120 is provided with a ferromagnetic member 123 that can be attracted by the magnet.
  • the ferromagnetic member 123 may be a member formed of iron, nickel, or cobalt, and is attracted to the ferromagnetic member 123 by a magnet, thereby generating a pulling force directed to the ball 160 on the circuit board 120. Moreover, through the attraction of the magnet, the position-limiting member 170 exerts a force on the circuit board 120 in a non-contact manner. Therefore, the circuit board 120 will not receive the frictional force from the limiting member 170, so the sliding resistance of the circuit board 120 is smaller.
  • the circuit board 120 can also be automatically reset under the drive of the ferromagnetic component 123.
  • the position-limiting member 170 may also be in other forms. for example:
  • the position-limiting member 170 may be a stretched elastic cord, one end of which is fixed to the base 110 and the other end to the circuit board 120. Through the pulling force of the elastic cord, a force directed to the ball 160 can also be applied to the circuit board 120. Moreover, when the jitter is eliminated and the driving force acting on the circuit board 120 disappears, the elastic cord can also pull the circuit board 120 to automatically reset.
  • the limiting action member 170 may also be a structure composed of a sleeve, a spring, and a rolling ball (the structure may be the same as that of the rolling ball 160).
  • the spring and the rolling ball are contained in the sleeve, and the compression of the spring generates a force on the rolling ball.
  • the sleeve points to the surface of the circuit board 120 facing away from the ball 160 (ie, the upper surface shown in the figure), and the ball abuts against the upper surface.
  • the rolling ball exerts a force directed toward the rolling ball 160 on the circuit board 120.
  • the upper and lower surfaces of the circuit board 120 are supported by rolling, so its sliding is not affected.
  • the camera module 100 further includes a suspension wire 190 connected to the lens carrier 130 at one end and connected to the circuit board 120 at the other end, and the suspension wire 190 is elastically stretchable along its extension direction.
  • suspension wires 190 there are generally multiple suspension wires 190, and one end is generally connected to the edge of the circuit board 120.
  • the four suspension wires 190 are respectively connected to the four top corners of the circuit board 120.
  • the suspension wire 190 can be a common elastic rope, so it can be elastically stretched and deformed. In the initial state, the suspension wire 190 may be in a natural state or a stretched state.
  • the suspension wire 190 When the circuit board 120 deviates from the initial position, the suspension wire 190 will be elastically stretched, so a certain pulling force can be provided to the circuit board 120. Therefore, when the anti-shake response does not occur, the suspension wire 190 can prevent the circuit board 120 from moving randomly along the sliding plane. When the anti-shake response occurs, the suspension wire 190 can also play a traction effect on the circuit board 120.
  • the lens carrier 130 is used for mounting the lens assembly 140.
  • the lens carrier 130 is disposed on the base 110, and the optical axis of the lens assembly 140 points to the circuit board 120.
  • the optical axis of the lens assembly 140 is perpendicular to the sliding plane.
  • the light enters the photosensitive chip 121 through the lens assembly 140 to realize imaging.
  • the lens assembly 140 is generally formed by stacking a plurality of lenses with different focal lengths.
  • the optical axis generally coincides with the central axis of the lens assembly 140. For a circular lens, the optical axis passes through the center of the circle.
  • the lens carrier 130 is a voice coil motor, including a housing 131 and a movable carrier 133 installed in the housing 131 and retractable relative to the housing 131 along the optical axis of the lens assembly 140.
  • the lens assembly 140 is installed On the movable carrier 133, the housing 131 is installed on the base 110.
  • a mover coil and a magnet are generally integrated in the housing 131. After the mover coil is energized, an electromagnetic force will be generated between the mover coil and the magnet. The electromagnetic force drives the movable carrier 133 to expand and contract, thereby realizing the automatic zooming of the camera module 100.
  • the driving component 150 is used to provide driving force for the circuit board 120 to slide relative to the base 110.
  • the driving assembly 150 includes a magnet 151 and a coil 153.
  • the magnet 151 is disposed on any one of the circuit board 120 and the lens carrier 130, and the coil 153 is disposed at a position opposite to the magnet 151 on the other of the circuit board 120 and the lens carrier 130.
  • the magnet 151 can generate a magnetic field, and the direction of the magnetic field is substantially parallel to the optical axis of the lens assembly 140.
  • the magnet 151 may be a permanent magnet such as a magnet, or an electromagnet.
  • the magnet 151 is a permanent magnet, so it does not need to be energized during the working process, thereby reducing wiring and simplifying the structure.
  • the direction of the current in the coil 153 is substantially perpendicular to the optical axis of the lens assembly 140. According to the left-hand rule, the energized coil 153 interacts with the magnet 151 to generate electromagnetic force.
  • the direction of the electromagnetic force is also approximately perpendicular to the optical axis direction of the lens assembly 140 to drive the circuit board 120 to slide relative to the base 110 in the direction perpendicular to the optical axis of the lens assembly 140 to compensate for the deviation of the optical axis caused by jitter.
  • the direction of the electromagnetic force is parallel to the above-mentioned sliding plane.
  • the magnet 151 is arranged on the lens carrier 130 and the coil 153 is arranged on the circuit board 120.
  • the coil 153 needs to be energized. Therefore, if the coil 153 is directly integrated on the circuit board 120, additional wiring can be omitted, so that the structure of the camera module 100 can be further simplified.
  • the positions of the magnet 151 and the coil 153 are also interchangeable. That is, the magnet 151 is arranged on the circuit board 120 and the coil 153 is arranged on the lens carrier 130.
  • the electromagnetic force between the magnet 151 and the coil 153 can be used as a driving force to cause the circuit board 120 and the lens carrier 130 to move relative to each other. Since the lens carrier 130 is fixed to the base 110, the circuit board 120 will slide under the action of the above electromagnetic force, so as to achieve anti-shake.
  • the coil 153 includes a plurality of coils, wherein the direction of the current in the partial coil 153 is perpendicular to the direction of the current in the other partial coil 153. Therefore, when different coils 153 are energized, electromagnetic forces in two directions perpendicular to each other can be generated, thereby driving the circuit board 120 to slide in two directions perpendicular to each other, respectively.
  • the multiple driving components 150 are distributed around the photosensitive chip 121 at intervals in the circumferential direction.
  • the electromagnetic force generated by the driving component 150 can act around the circumference of the circuit board 120 carrying the photosensitive chip 121. Therefore, the force on the circuit board 120 is more balanced, and the anti-shake response process is smoother.
  • a plurality of coils 153 or magnets 151 can be distributed on the four top corners of the circuit board 120.
  • the coil 153 or the magnet 151 may also be distributed on two opposite edges of the circuit board 120.
  • the camera module 100 further includes a driving chip (not shown) electrically connected to the coil 153 and a position sensor (not shown) disposed on the circuit board 120 and electrically connected to the driving chip.
  • the driving chip is used to input current to the coil 153 to slide the driving circuit board 120 to a preset position.
  • the position sensor is used to compare the real-time position of the circuit board 120 with the preset position, and feedback the comparison result to the driving chip.
  • the driving chip controls the current of the input coil 153 according to the comparison result until the circuit board 120 slides to the preset position. Set location.
  • the preset position means that when the circuit board 120 is moved to this point, the displacement of the photosensitive chip 121 can just compensate for the deviation of the optical axis position caused by vibration.
  • the position sensor is generally a Hall chip, which can detect whether the photosensitive chip 121 is moved into position (ie, reaches a preset position). If it is not in place, the position sensor will feed back the current required to move to the preset position to the driving chip, and then the driving chip controls the current in the coil 153. Therefore, the movement amount of the circuit board 120 can be accurately controlled, and the accuracy of anti-shake is higher.
  • the coil 153 when the coil 153 is energized, it interacts with the magnet 151 to generate electromagnetic force.
  • the circuit board 120 can slide relative to the base 110 under the driving of the electromagnetic force, thereby driving the photosensitive chip 121 to move relative to the lens assembly 140 to compensate for the deviation of the optical axis of the lens assembly 140 caused by jitter, and achieve optical anti-corrosion. shake.
  • the magnet 151 and the coil 153 are simple in structure and low in cost, and can be installed separately, which is convenient for assembly. For camera modules 100 of different models and sizes, there is no need for additional design of the driving assembly 150, and only the magnet 151 and the coil 153 are set in appropriate positions. It can be seen that the aforementioned camera module 100 has a lower cost while realizing optical anti-shake.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

一种摄像头模组(100),线圈(153)通电时,与磁体(151)相互作用可产生电磁作用力。电路板(120)在电磁作用力的驱动下可相对于底座(110)发生滑动,从而带动感光芯片(121)相对于镜头组件(140)发生位移,以补偿因抖动而造成的镜头组件(140)的光轴偏移,实现光学防抖。磁体(151)及线圈(153)结构简单、成本较低,而且可以分开单独进行安装,组装方便。针对不同型号及尺寸的摄像头模组(100),也无需对驱动组件(150)进行额外设计,只需将磁体(151)及线圈(153)设置于合适的位置即可。可见,摄像头模组(100)在实现光学防抖的同时,还具有较低的成本。

Description

摄像头模组及移动终端 技术领域
本发明涉及光学成像技术领域,特别涉及一种摄像头模组及移动终端。
背景技术
光学防抖是被广泛认可的一种防抖技术,它通过可移动式的部件,对发生震动的光路进行补偿,从而达到减轻照片模糊程度的效果。光学防抖技术主要分为两大类,分别是镜片移动式光学防抖,以及感光芯片移动式光学防抖。
镜片移动式光学防抖结构复杂,一般不适合应用在移动终端的摄像头模组上。因此,感光芯片移动式光学防抖受到越来越多的重视。感光芯片移动式光学防抖的核心原理是:在驱动力的作用下,使得感光芯片能够发生位移,从而补偿因抖动而造成的镜头光轴的偏移。
目前,常见的做法是在感光芯片的四边设置马达,通过马达驱动感光芯片移动。这样,虽然能起到驱动感光芯片移动的作用,但成本相对较高。而且,针对不同型号的摄像头,需要采用不同尺寸及形状的马达,这导致供应链的成本增加。因此,在实现感光芯片移动式光学防抖时,现有摄像头模组的成本较高。
发明内容
根据本申请的各种实施例,提供一种摄像头模组及移动终端。
一种摄像头模组,包括:
底座;
电路板,其上设置有感光芯片,所述电路板可滑动地安装于所述底座;
安装有镜头组件的镜头载体,设置于所述底座;及
驱动组件,包括磁体及线圈,所述磁体设置于所述电路板及所述镜头载体任一个上,所述线圈设置于所述电路板及所述镜头载体另一个上与所述磁体相对的位置,通电的所述线圈与所述磁体相互作用,可产生电磁作用力以驱动所述电路板相对所述底座滑动。
一种移动终端,包括如上述实施例中任一项所述的摄像头模组。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
图1为本发明较佳实施例中摄像头模组的结构示意图;
图2为图1所示摄像头模组的***图;
图3为图1所示摄像头模组的剖视图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一 个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1,本发明提供了一种移动终端(图未示)及摄像头模组100。其中,移动终端包括该摄像头模组100,以实现拍摄功能。移动终端可以为手机、PAD及相机等电子产品。
请一并参阅图2及图3,本发明较佳实施例中的摄像头模组100包括底座110、电路板120、镜头载体130、镜头组件140及驱动组件150。
底座110起承载作用,一般由金属材料一体成型。根据摄像头模组100不同的造型需求,底座110的外部轮廓可相应呈圆形、矩形等各种形状。
电路板120一般为PCB板,其上集成有众多电子元件。具体的,电路板120设置有感光芯片121。感光芯片121用于将光线转化成电信号,以实现数码成像。此外,为了感测摄像头模组100的抖动并实现防抖,电路板120上还可集成陀螺仪(图未示)、驱动芯片(图未示)等。陀螺仪检测到抖动并将抖动程度量化,驱动芯片根据抖动量产生驱动电流,最终在驱动电流的作用下执行抖动补偿。
为了提升感光芯片121的成像效果,在本实施例中,摄像头模组100还 包括可滤除不可见光的滤光片180,滤光片180覆设于感光芯片121的表面。具体的,滤光片180可为蓝玻璃,滤除不可见光可避免干扰,从而防止在图像上生成噪点。
进一步的,电路板120可滑动地安装于底座110。执行抖动补偿时,电路板120在驱动力的作用下相对于底座110滑动,进而带动电路板120上的感光芯片121移动,实现感光芯片移动式光学防抖。
为了减小电路板120滑动过程中受到的阻力,在本实施例中,摄像头模组100还包括多个直径相同的滚珠160及限位作用件170。
滚珠160呈球形,可相对于底座110进行滚动。而且,滚珠160需具有较高的硬度而不易变形。具体的,滚珠160可以由金属、陶瓷、玻璃、蓝宝石等硬度较高的材料成型。
其中,多个滚珠160可共同限定一滑动平面,该滑动平面与多个滚珠160均相切。该滑动平面为虚拟的平面,由于三点确定一个平面。因此,滚珠160的数量至少为三个。电路板120背向感光芯片121的一侧承靠承靠于多个滚珠160上。此时,电路板120位于该滑动平面上,并在执行防抖响应时可沿该滑动平面滑动。
多个滚珠160的直径一般相同,可直接散布于底座110上。具体的,可在底座110上设置一平面,滚珠160直接置于该平面内并可在该平面内滚动。该平面的边缘设置有边界,以防止滚珠160滚动至该平面的范围之外。进一步的,通过电路板120的压持作用将滚珠160限位于底座110。此外,底座110上还可形成槽、孔、套筒等收容结构用于收纳滚珠160,以避免滚珠散落,从而便于装配并提升摄像头模组100可靠性。
限位作用件170用于对电路板120提供一指向滚珠160的作用力。即, 限位作用件170可将电路板120压持于滚珠160上。该作用力对电路板120在垂直于滑动平面的方向上进行限位,从而使电路板120始终与滚珠160保持接触。否则,电路板120与滚珠160之间将无法形成稳定的支撑,在抖动或翻转时,电路板120将与滚珠160分离。
由于电路板120与滚珠160之间为点接触,电路板120滑动时,滚珠160在摩擦力的作用下也会相对于底座110发生滚动。因此,电路板120在滑动过程中受到的摩擦力较小。所以,只需较小的驱动力即可驱动电路板120滑动,故防抖响应迅速、灵敏度更高且能耗较低。
而且,滚珠160虽然会随头部121滑动而进行滚动。但是,滚珠160的表面为球面,其滚动并不会造成滑动平面高度的波动。因此,电路板120滑动时也将始终保持在同一个平面,即平面度也更好。
需要指出的是,在其他实施例中,电路板120也可通过悬线吊装、电驱支架等方式可滑动地安装于底座110上。
限位作用件170提供的作用力可以是压力,也可以是拉力;限位作用件170可以直接对电路板120接触施力,也可以非接触施力。限位作用件170的形式可以是多种,只要不对电路板120的滑动造成干扰即可。
进一步的,在本实施例中,限位作用件170为设置于底座110上的磁铁,电路板120上设置有可供磁铁吸附的铁磁件123。
铁磁件123可以是铁、镍、钴成型的构件,通过磁铁与铁磁件123相吸附,从而对电路板120产生一指向滚珠160的拉力。而且,通过磁铁的吸附作用,限位作用件170对电路板120为非接触式施力。因此,电路板120并不会受到来自限位作用件170的摩擦力,故电路板120的滑动阻力更小。
而且,由于磁铁的磁场始终保持固定。因此,当铁磁件123因随电路板 120滑动而偏离初始位置后,磁铁对铁磁件123的吸附力将使铁磁件123具有复位的趋势。也就是说,当抖动消除而作用于电路板120的驱动力消失后,电路板120还可在铁磁件123的带动下自动复位。
需要指出的是,在其他实施例中,限位作用件170还可以为其他形式。譬如:
限位作用件170可以是被拉伸的弹性绳,其一端固定于底座110,另一端固定于电路板120。通过弹性绳的拉力,也可对电路板120施加一指向滚珠160的作用力。而且,当抖动消除而作用于电路板120的驱动力消失后,弹性绳也可拉动电路板120自动复位。又譬如:
限位作用件170还可以是套筒、弹簧及滚球(与滚珠160结构可以相同)共同构成的结构。其中,弹簧及滚球收容于套筒内,弹簧压缩对滚球产生作用力。套筒指向电路板120背向滚珠160的表面(即,图中所示上表面),且滚球与上表面抵接。在弹簧弹性力的作用下滚球对电路板120施加一指向滚珠160的作用力。此时,电路板120的上下表面均为滚动支撑,故不影响其滑动。
请再次参阅图2,在本实施例中,摄像头模组100还包括一端连接于镜头载体130,另一端连接于电路板120的悬线190,且悬线190沿其延伸方向可弹性拉伸。
具体的,悬线190一般为多个,且一端一般连接于电路板120的边缘。针对矩形的电路板120而言,4个悬线190分别连接于电路板120的四个顶角。悬线190可以为常见的弹性绳,故可被弹性拉伸并恢复形变。初始状态时,悬线190可处于自然状态或被拉伸状态。
电路板120偏移初始位置时,悬线190将被弹性拉伸,故可对电路板120 提供一定的拉力。因此,在不发生防抖响应时,悬线190可以防止电路板120沿滑动平面随机运动。而发生防抖响应时,悬线190还可对电路板120起到牵引作用。
镜头载体130用于安装镜头组件140。镜头载体130设置于底座110,且镜头组件140的光轴指向电路板120。具体在本实施例中,镜头组件140的光轴垂直于滑动平面。光线经镜头组件140进入感光芯片121,实现成像。镜头组件140一般由多块焦距不同的镜片层叠形成。光轴一般与镜头组件140中轴线重合,对于圆形的镜片而言,光轴穿过其圆心。
在本实施例中,镜头载体130为音圈马达,包括壳体131及安装于壳体131内且相对于壳体131沿镜头组件140的光轴方向可伸缩的活动载体133,镜头组件140安装于活动载体133,壳体131安装于底座110。
具体的,壳体131内一般还集成有动子线圈、磁铁,动子线圈通电后,动子线圈与磁铁之间将产生电磁作用力。该电磁作用力将驱动活动载体133伸缩,从而实现摄像头模组100自动变焦。
驱动组件150用于为电路板120相对于底座110滑动提供驱动力。其中,驱动组件150包括磁体151及线圈153。磁体151设置于电路板120及镜头载体130任一个上,线圈153设置于电路板120及镜头载体130另一个上与磁体151相对的位置。
磁体151可产生磁场,磁场方向大致平行于镜头组件140的光轴。磁体151可以是磁铁等永磁体、也可是电磁铁。具体在本实施例中,磁体151为永磁体,故其工作过程中无需通电,从而可减少走线简化了结构。线圈153中的电流方向大致垂直于镜头组件140的光轴。根据左手定则,通电的线圈153与磁体151相互作用,可产生电磁作用力。该电磁作用力的方向也大致 垂直于镜头组件140的光轴方向,以驱动电路板120相对于底座110沿垂直于镜头组件140光轴方的向滑动,从而补偿因抖动造成的光轴偏差。具体在本实施例中,该电磁作用力的方向平行于上述滑动平面。
在本实施例中,磁体151设置于镜头载体130上,线圈153设置于电路板120上。在执行防抖时,线圈153需要通电。因此,将线圈153直接集成于电路板120上,则可省略额外的走线,从而可进一步简化摄像头模组100的结构。
显然,在其他实施例中,磁体151与线圈153的位置也可调换。即,磁体151设置于电路板120上,线圈153设置于镜头载体130上。
磁体151与线圈153之间的电磁作用力可即作为驱动力,使电路板120与镜头载体130产生相对运动。由于镜头载体130与底座110固定,故电路板120将会在上述电磁作用力的作用下滑动,从而实现防抖。
为了使电路板120可实现各个方向均可滑动。具体在本实施例中,线圈153包含多个,其中部分线圈153中的电流方向垂直于另一部分线圈153中的电流方向。因此,不同的线圈153通电时,便可产生两个方向垂直的电磁作用力,从而分别驱动电路板120在相互垂直的两个方向上滑动。
为了使电路板120受力均衡,在本实施例中,驱动组件150为多个,且多个驱动组件150绕感光芯片121的周向间隔分布。
线圈153通电后,驱动组件150产生的电磁作用力可围绕承载感光芯片121的电路板120的周向对其施加作用。因此,电路板120受力更均衡,防抖响应的过程更平顺。以矩形电路板为例,多个线圈153或磁体151可分布于电路板120的四个顶角。此外,线圈153或磁体151也可分布于电路板120相对的两个边缘。
在本实施例中,摄像头模组100还包括与线圈153电连接的驱动芯片(图未示)及设置于电路板120上并与驱动芯片电连接的位置传感器(图未示)。驱动芯片用于向线圈153输入电流,以将驱动电路板120滑动至预设位置。位置传感器用于将电路板120的实时位置与预设位置比对,并将对比结果反馈至驱动芯片,驱动芯片根据比对结果控制输入线圈153的电流量,直至电路板120滑动至所述预设位置。
该预设位置指的是,电路板120移动至此时,感光芯片121的位移量刚好能够补偿振动造成的光轴位置的偏差。位置传感器一般为霍尔芯片,可检测感光芯片121是否移动到位(即,达到预设位置)。如没有移动到位,位置传感器会将移动到预设位置所需的电流反馈给驱动芯片,再由驱动芯片控制线圈153中电流的大小。因此,可对电路板120的移动量进行精确控制,防抖的精度更高。
上述摄像头模组100,线圈153通电时,与磁体151相互作用可产生电磁作用力。电路板120在该电磁作用力的驱动下可相对于底座110滑动,从而带动感光芯片121相对于镜头组件140发生位移,以补偿因抖动而造成的镜头组件140的光轴偏移,实现光学防抖。磁体151及线圈153结构简单、成本较低,而且可以分开单独进行安装,组装方便。针对不同型号及尺寸的摄像头模组100,也无需对驱动组件150进行额外设计,只需将磁体151及线圈153设置于合适的位置即可。可见,上述摄像头模组100在实现光学防抖的同时,还具有较低的成本。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这 些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种摄像头模组,其特征在于,包括:
    底座;
    电路板,其上设置有感光芯片,所述电路板可滑动地安装于所述底座;
    安装有镜头组件的镜头载体,设置于所述底座;及
    驱动组件,包括磁体及线圈,所述磁体设置于所述电路板及所述镜头载体任一个上,所述线圈设置于所述电路板及所述镜头载体另一个上与所述磁体相对的位置,通电的所述线圈与所述磁体相互作用,可产生电磁作用力以驱动所述电路板相对所述底座滑动。
  2. 根据权利要求1所述的摄像头模组,其特征在于,还包括:
    多个滚珠,设置于所述底座,所述电路板背向所述感光芯片的一侧承靠于所述多个滚珠上;
    限位作用件,对所述电路板提供一指向所述滚珠的作用力。
  3. 根据权利要求2所述的摄像头模组,其特征在于,所述限位作用件为设置于所述底座上的磁铁,所述电路板上设置有可供所述磁铁吸附的铁磁件。
  4. 根据权利要求1所述的摄像头模组,其特征在于,所述磁体为永磁体。
  5. 根据权利要求1所述的摄像头模组,其特征在于,所述磁体设置于所述镜头载体上,所述线圈设置于所述电路板上。
  6. 根据权利要求1所述的摄像头模组,其特征在于,所述磁体设置于所述电路板上,所述线圈设置于所述镜头载体上。
  7. 根据权利要求1所述的摄像头模组,其特征在于,所述驱动组件为多个,且多个所述驱动组件绕所述感光芯片的周向间隔分布。
  8. 根据权利要求1所述的摄像头模组,其特征在于,还包括一端连接于所述镜头载体,另一端连接于所述电路板的悬线,且所述悬线沿其延伸方向可弹性拉伸。
  9. 根据权利要求1所述的摄像头模组,其特征在于,还包括与所述线圈电连接的驱动芯片及设置于所述电路板并与所述驱动芯片电连接的位置传感器,所述位置传感器用于将所述电路板的实时位置与预设位置比对,并将对比结果反馈至所述驱动芯片,所述驱动芯片根据所述比对结果控制输入所述线圈的电流量,直至所述电路板滑动至所述预设位置。
  10. 一种移动终端,其特征在于,包括如上述权利要求1至9任一项所述的摄像头模组。
PCT/CN2019/118538 2019-11-14 2019-11-14 摄像头模组及移动终端 WO2021092856A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/118538 WO2021092856A1 (zh) 2019-11-14 2019-11-14 摄像头模组及移动终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/118538 WO2021092856A1 (zh) 2019-11-14 2019-11-14 摄像头模组及移动终端

Publications (1)

Publication Number Publication Date
WO2021092856A1 true WO2021092856A1 (zh) 2021-05-20

Family

ID=75911545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/118538 WO2021092856A1 (zh) 2019-11-14 2019-11-14 摄像头模组及移动终端

Country Status (1)

Country Link
WO (1) WO2021092856A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113301232A (zh) * 2021-05-21 2021-08-24 维沃移动通信(杭州)有限公司 拍摄装置及电子设备
CN113596201A (zh) * 2021-06-29 2021-11-02 新思考电机有限公司 一种防载体晃动组件、驱动模组及摄像头模组
CN114125236A (zh) * 2021-11-30 2022-03-01 新思考电机有限公司 一种驱动组件、摄像头模组及电子设备
CN114390177A (zh) * 2022-01-19 2022-04-22 广州市佳禾光电科技有限公司 一种超分辨率成像装置及电子产品
CN114401361A (zh) * 2021-12-28 2022-04-26 维沃移动通信有限公司 摄像头结构及电子设备
CN115442499A (zh) * 2021-06-04 2022-12-06 宁波舜宇光电信息有限公司 摄像模组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349942A (ja) * 2005-06-15 2006-12-28 Tamron Co Ltd 像振れ補正装置及びそれを備えた撮像装置
CN101964871A (zh) * 2009-07-21 2011-02-02 鸿富锦精密工业(深圳)有限公司 防抖装置以及手机
CN105900006A (zh) * 2014-01-10 2016-08-24 夏普株式会社 摄像机组件
CN205507322U (zh) * 2016-01-22 2016-08-24 南昌欧菲光电技术有限公司 具有对焦及防抖功能的摄像头模组
CN108600608A (zh) * 2018-03-16 2018-09-28 维沃移动通信有限公司 一种镜头座、镜头模组及电子设备
CN109698898A (zh) * 2019-01-22 2019-04-30 珠海格力电器股份有限公司 驱动器、摄像头模组及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349942A (ja) * 2005-06-15 2006-12-28 Tamron Co Ltd 像振れ補正装置及びそれを備えた撮像装置
CN101964871A (zh) * 2009-07-21 2011-02-02 鸿富锦精密工业(深圳)有限公司 防抖装置以及手机
CN105900006A (zh) * 2014-01-10 2016-08-24 夏普株式会社 摄像机组件
CN205507322U (zh) * 2016-01-22 2016-08-24 南昌欧菲光电技术有限公司 具有对焦及防抖功能的摄像头模组
CN108600608A (zh) * 2018-03-16 2018-09-28 维沃移动通信有限公司 一种镜头座、镜头模组及电子设备
CN109698898A (zh) * 2019-01-22 2019-04-30 珠海格力电器股份有限公司 驱动器、摄像头模组及电子设备

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113301232A (zh) * 2021-05-21 2021-08-24 维沃移动通信(杭州)有限公司 拍摄装置及电子设备
CN113301232B (zh) * 2021-05-21 2023-05-26 维沃移动通信(杭州)有限公司 拍摄装置及电子设备
CN115442499A (zh) * 2021-06-04 2022-12-06 宁波舜宇光电信息有限公司 摄像模组
CN113596201A (zh) * 2021-06-29 2021-11-02 新思考电机有限公司 一种防载体晃动组件、驱动模组及摄像头模组
CN113596201B (zh) * 2021-06-29 2023-09-19 新思考电机有限公司 一种防载体晃动组件、驱动模组及摄像头模组
CN114125236A (zh) * 2021-11-30 2022-03-01 新思考电机有限公司 一种驱动组件、摄像头模组及电子设备
CN114401361A (zh) * 2021-12-28 2022-04-26 维沃移动通信有限公司 摄像头结构及电子设备
CN114390177A (zh) * 2022-01-19 2022-04-22 广州市佳禾光电科技有限公司 一种超分辨率成像装置及电子产品

Similar Documents

Publication Publication Date Title
WO2021092856A1 (zh) 摄像头模组及移动终端
WO2021092855A1 (zh) 摄像头模组及移动终端
US10904455B2 (en) Lens moving apparatus and camera module and portable terminal including the same
WO2021092858A1 (zh) 摄像头模组及移动终端
CN112804415A (zh) 摄像头模组及移动终端
CN108027495B (zh) 磁性流体光学图像稳定
US20160054578A1 (en) Lens actuator
US20190020797A1 (en) Camera module
US10564516B2 (en) Iris module and camera module including the same
US10527817B2 (en) Lens drive device, camera module, and camera mounted device having autofocus function
US11199722B2 (en) Lens driver for camera
WO2021072821A1 (zh) 镜头模组
US11333951B2 (en) Actuator for camera
US10852458B2 (en) Camera device
WO2020243851A1 (zh) 镜头组件
CN108476283A (zh) 摄像单元、摄像头模组及移动终端
CN112804416A (zh) 摄像头模组及移动终端
CN112804417A (zh) 摄像头模组及移动终端
KR20210010033A (ko) 카메라용 액추에이터
JP2022541785A (ja) カメラモジュール
CN112804419A (zh) 摄像头模组底座、摄像头模组及移动终端
KR20190024443A (ko) 광학용 액추에이터
WO2021092857A1 (zh) 摄像头模组底座、摄像头模组及移动终端
WO2021092854A1 (zh) 电路板、摄像头模组及移动终端
CN112804418A (zh) 电路板、摄像头模组及移动终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952436

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19952436

Country of ref document: EP

Kind code of ref document: A1