WO2021092738A1 - 一种铝合金材料及其制造方法 - Google Patents

一种铝合金材料及其制造方法 Download PDF

Info

Publication number
WO2021092738A1
WO2021092738A1 PCT/CN2019/117313 CN2019117313W WO2021092738A1 WO 2021092738 A1 WO2021092738 A1 WO 2021092738A1 CN 2019117313 W CN2019117313 W CN 2019117313W WO 2021092738 A1 WO2021092738 A1 WO 2021092738A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
alloy material
manufacturing
cooling
casting
Prior art date
Application number
PCT/CN2019/117313
Other languages
English (en)
French (fr)
Inventor
陈蓉
Original Assignee
常德菲尔美化工技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常德菲尔美化工技术有限公司 filed Critical 常德菲尔美化工技术有限公司
Priority to PCT/CN2019/117313 priority Critical patent/WO2021092738A1/zh
Publication of WO2021092738A1 publication Critical patent/WO2021092738A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon

Definitions

  • the invention relates to the technical field of steel material processing, in particular to an aluminum alloy material and a manufacturing method thereof.
  • Aluminum alloy is an excellent material, which is often used as the shell of electronic components, and electronic components generate a large amount of heat, so aluminum alloys have higher thermal conductivity and rigidity requirements.
  • the thermal conductivity of existing aluminum alloys is usually between 100-160W/m ⁇ K, and in order to ensure thermal conductivity, it is usually at the expense of its rigidity. Therefore, an aluminum alloy is required to maintain high thermal conductivity for heat dissipation while ensuring Period rigidity.
  • the purpose of the present invention is to overcome the shortcomings of the prior art.
  • the present invention increases its yield strength by controlling the addition of Ti and Si, and prevents cracks in the interior by means of alternating water and air quenching, and increases its rigidity.
  • the miscellaneous Mg improves its thermal conductivity, so while ensuring the improvement of its thermal conductivity, it also improves the rigidity, yield strength and tensile strength of aluminum alloy.
  • An aluminum alloy material comprising: Si: 0.3 to 1.0wt.%, Mn: 0.2 to 0.6wt.%, Ti: 0.15 to 0.2w%, Ca: 0.01 to 0.1wt.%, Cu: 0.1 to 0.3wt. %, Mg1.56 ⁇ 2.38wt.%, the balance is Al and unavoidable impurities.
  • a manufacturing method of aluminum alloy material includes the following steps:
  • Step 1 Si: 0.3 to 1.0wt.%, Mn: 0.2 to 0.6wt.%, Ti: 0.15 to 0.2w%, Ca: 0.01 to 0.1wt.%, Cu: 0.1 to 0.3wt.%, Mg1. 56 ⁇ 2.38wt.%, the remaining Al is added to the electric heating furnace for smelting;
  • Step two casting and forming, cooling to obtain castings
  • Step 3 Heat the casting to 530 ⁇ 580°C, and then carry out air-water alternate quenching: first, air cooling is cooled to 460 to 500°C for 30-60s, then water cooling is cooled to 200-230°C for 30-60s, and the heating casting is added to 410 to 410°C. 430°C, then air cooling for 30-60s, cooling 350 to 370°C, water cooling for 10-30s to a temperature of 130-150°C, and then in the air until the casting reaches room temperature to obtain aluminum alloy material.
  • Si 0.6wt.%, Mn: 0.3wt.%, Ti: 0.18w%, Ca: 0.03wt.%, Cu: 0.2wt.%, Mg2.2wt.%,
  • the raw material with the balance of Al is added to the electric heating furnace for smelting.
  • the smelting temperature in the first step is 1660-1700°C.
  • An aluminum alloy material comprising: Si: 0.3wt.%, Mn: 0.2wt.%, Ti: 0.15w%, Ca: 0.01wt.%, Cu: 0.1wt.%, Mg1.56wt.%, the balance It is Al and unavoidable impurities.
  • the manufacturing method of the above aluminum alloy material includes the following steps:
  • Step 1 Raw material containing Si: 0.3wt.%, Mn: 0.2wt.%, Ti: 0.15w%, Ca: 0.01wt.%, Cu: 0.1wt.%, Mg 1.56wt.%, and the balance being Al Join the electric heating furnace for smelting;
  • Step two casting and forming, cooling to obtain castings
  • Step 3 Heat the casting to 530 ⁇ 580°C, and then carry out air-water alternate quenching: first, air cooling is cooled to 460 to 500°C for 30-60s, then water cooling is cooled to 200-230°C for 30-60s, and the heating casting is added to 410 to 410°C. 430°C, then air cooling for 30-60s, cooling 350 to 370°C, water cooling for 10-30s to a temperature of 130-150°C, and then in the air until the casting reaches room temperature to obtain aluminum alloy material.
  • step one Replace the raw materials in step one with Si: 0.6wt.%, Mn: 0.3wt.%, Ti: 0.18w%, Ca: 0.03wt.%, Cu: 0.2wt.%, Mg2.2wt.%, and the balance is
  • the raw material of Al is smelted in an electric heating furnace.
  • step one Replace the raw materials in step one with Si: 1.0wt.%, Mn: 0.6wt.%, Ti: 0.2w%, Ca: 0.1wt.%, Cu: 0.3wt.%, Mg2.38wt.%, the balance It is Al and unavoidable impurities.
  • the mechanical properties of the aluminum alloy prepared in Example 1-2 were tested.
  • the tensile strength of the aluminum alloy was 410.3-460 MPa, and the yield strength (elongation strength at a non-proportional elongation of 0.2%) was 397.5-434.7 MPa.
  • the elongation after breaking (elongation when the gauge length is 50mm) is 12-13.5%, and the thermal conductivity is 226W/m ⁇ K, which is far better than the existing aluminum alloy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

属于冶金领域,具体涉及一种铝合金材料及其制造方法,包括:Si:0.3~1.0wt.%,Mn:0.2~0.6wt.%,Ti:0.15~0.2w%,Ca:0.01~0.1wt.%,Cu:0.1~0.3wt.%,Mg1.56~2.38wt.%,余量为Al及不可避免的杂质。通过控制加入Ti和Si增加了其屈服强度,并且通过水空交替淬火的方法增加了其刚度,通过掺杂Mg提高了其导热性能,因此保证提高其导热性能的同时,提高了铝合金的刚性、屈服强度和抗拉强度。

Description

一种铝合金材料及其制造方法 技术领域
本发明涉及钢铁材料加工技术领域,特别涉及一种铝合金材料及其制造方法。
背景技术
铝合金是一种优异的材料,常常用作电子元器件的外壳使用,而电子元件发热量较大,因此对于铝合金有较高的导热和刚性要求。但是现有的铝合金导热率通常在100-160W/m·K之间,而且为了保证导热性,通常是以牺牲其刚性为代价,因此需要一种铝合金保持高导热率进行散热的同时保证期刚性。
发明内容
本发明的目的是克服现有技术的不足之外,本发明通过控制加入Ti和Si增加了其屈服强度,并且通过水空交替淬火的方法防止了其内部出现裂痕,增加了其刚度,通过掺杂Mg提高了其导热性能,因此保证提高其导热性能的同时,提高了铝合金的刚性、屈服强度和抗拉强度。
为实现上述目的,本发明采用的技术方案如下:
一种铝合金材料,包括:Si:0.3~1.0wt.%,Mn:0.2~0.6wt.%,Ti:0.15~0.2w%,Ca:0.01~0.1wt.%,Cu:0.1~0.3wt.%,Mg1.56~2.38wt.%,余量为Al及不可避免的杂质。
进一步的改进,包括Si:0.6wt.%,Mn:0.3wt.%,Ti:0.18w%Ca:0.03wt.%,Cu:0.2wt.%,Mg2.2wt.%,余量为Al及不可避免的杂质。
一种铝合金材料的制作方法,包括如下步骤:
步骤一、将Si:0.3~1.0wt.%,Mn:0.2~0.6wt.%,Ti:0.15~0.2w%,Ca:0.01~0.1wt.%,Cu:0.1~0.3wt.%,Mg1.56~2.38wt.%,余量为Al的原料加入电加热炉熔炼;
步骤二、浇铸成形,冷却得到铸件;
步骤三、将铸件加热到530~580℃,然后进行空水交替淬火:其中先空冷30-60s冷却至460至500℃,然后水冷30-60s冷却至200-230℃,加入升温铸件到410至430℃然后空冷30-60s冷却350至370℃,水冷10-30s至温度130-150℃,然后在空气中待铸件达到室温制得铝合金材料。
进一步的改进,所述步骤一中,将Si:0.6wt.%,Mn:0.3wt.%,Ti:0.18w%Ca:0.03wt.%,Cu:0.2wt.%,Mg2.2wt.%,余量为Al的原料加入电加热炉熔炼。
进一步的改进,所述步骤一的熔炼温度为1660-1700℃。
具体实施方式
实施例1
一种铝合金材料,包括:Si:0.3wt.%,Mn:0.2wt.%,Ti:0.15w%,Ca:0.01wt.%,Cu:0.1wt.%,Mg1.56wt.%,余量为Al及不可避免的杂质。
上述铝合金材料的制作方法,包括如下步骤:
步骤一、将Si:0.3wt.%,Mn:0.2wt.%,Ti:0.15w%,Ca:0.01wt.%,Cu:0.1wt.%,Mg1.56wt.%,余量为Al的原料加入电加热炉熔炼;
步骤二、浇铸成形,冷却得到铸件;
步骤三、将铸件加热到530~580℃,然后进行空水交替淬火:其中先空冷30-60s冷却至460至500℃,然后水冷30-60s冷却至200-230℃,加入升温铸 件到410至430℃然后空冷30-60s冷却350至370℃,水冷10-30s至温度130-150℃,然后在空气中待铸件达到室温制得铝合金材料。
实施例2
将步骤一中的原料替换为Si:0.6wt.%,Mn:0.3wt.%,Ti:0.18w%Ca:0.03wt.%,Cu:0.2wt.%,Mg2.2wt.%,余量为Al的原料加入电加热炉熔炼。
实施例3
将步骤一中的原料替换为Si:1.0wt.%,Mn:0.6wt.%,Ti:0.2w%,Ca:0.1wt.%,Cu:0.3wt.%,Mg2.38wt.%,余量为Al及不可避免的杂质。
将实施例1-2制得的铝合金进行力学性能测试,所述铝合金的抗拉强度为410.3-460MPa,屈服强度(非比例延伸率为0.2%时的延伸强度)为397.5-434.7MPa,断后延伸率(标距在50mm时候的延伸率)为12-13.5%,导热率为226W/m·K,性能远好于现有的铝合金。
上述实施例仅为最佳例举,而并非是对本发明的实施方式的限定。

Claims (5)

  1. 一种铝合金材料,其特征在于,包括:Si:0.3~1.0wt.%,Mn:0.2~0.6wt.%,Ti:0.15~0.2w%,Ca:0.01~0.1wt.%,Cu:0.1~0.3wt.%,Mg1.56~2.38wt.%,余量为Al及不可避免的杂质。
  2. 如权利要求1所述的铝合金材料,其特征在于,包括Si:0.6wt.%,Mn:0.3wt.%,Ti:0.18w%Ca:0.03wt.%,Cu:0.2wt.%,Mg2.2wt.%,余量为Al及不可避免的杂质。
  3. 一种铝合金材料的制作方法,其特征在于,包括如下步骤:
    步骤一、将Si:0.3~1.0wt.%,Mn:0.2~0.6wt.%,Ti:0.15~0.2w%,Ca:0.01~0.1wt.%,Cu:0.1~0.3wt.%,Mg1.56~2.38wt.%,余量为Al的原料加入电加热炉熔炼;
    步骤二、浇铸成形,冷却得到铸件;
    步骤三、将铸件加热到530~580℃,然后进行空水交替淬火:其中先空冷30-60s冷却至460至500℃,然后水冷30-60s冷却至200-230℃,加入升温铸件到410至430℃然后空冷30-60s冷却350至370℃,水冷10-30s至温度130-150℃,然后在空气中待铸件达到室温制得铝合金材料。
  4. 如权利要求3所述的铝合金材料的制作方法,其特征在于,所述步骤一中,将Si:0.6wt.%,Mn:0.3wt.%,Ti:0.18w%Ca:0.03wt.%,Cu:0.2wt.%,Mg2.2wt.%,余量为Al的原料加入电加热炉熔炼。
  5. 如权利要求3所述的铝合金材料的制作方法,其特征在于,所述步骤一的熔炼温度为1660-1700℃。
PCT/CN2019/117313 2019-11-12 2019-11-12 一种铝合金材料及其制造方法 WO2021092738A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/117313 WO2021092738A1 (zh) 2019-11-12 2019-11-12 一种铝合金材料及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/117313 WO2021092738A1 (zh) 2019-11-12 2019-11-12 一种铝合金材料及其制造方法

Publications (1)

Publication Number Publication Date
WO2021092738A1 true WO2021092738A1 (zh) 2021-05-20

Family

ID=75911546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117313 WO2021092738A1 (zh) 2019-11-12 2019-11-12 一种铝合金材料及其制造方法

Country Status (1)

Country Link
WO (1) WO2021092738A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130767A (ja) * 1996-10-30 1998-05-19 Furukawa Electric Co Ltd:The 高成形性のAl−Mg−Si系合金板材とその製造方法
JPH1161312A (ja) * 1997-08-28 1999-03-05 Nippon Steel Corp 押出用アルミニウム合金およびその製造方法
CN1555423A (zh) * 2001-07-25 2004-12-15 �Ѻ͵繤��ʽ���� 切削性优异的铝合金和铝合金材及其制造方法
CN102146540A (zh) * 2010-02-08 2011-08-10 株式会社神户制钢所 用于热交换器的铝合金包层材料及用于其的铝合金包层材料用芯材
CN103789577A (zh) * 2014-01-09 2014-05-14 马鞍山市恒毅机械制造有限公司 一种汽车轮毂用高强韧铝合金材料及其制备方法
CN104775062A (zh) * 2015-04-21 2015-07-15 宝山钢铁股份有限公司 一种高强度铝合金材料、铝合金板及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130767A (ja) * 1996-10-30 1998-05-19 Furukawa Electric Co Ltd:The 高成形性のAl−Mg−Si系合金板材とその製造方法
JPH1161312A (ja) * 1997-08-28 1999-03-05 Nippon Steel Corp 押出用アルミニウム合金およびその製造方法
CN1555423A (zh) * 2001-07-25 2004-12-15 �Ѻ͵繤��ʽ���� 切削性优异的铝合金和铝合金材及其制造方法
CN102146540A (zh) * 2010-02-08 2011-08-10 株式会社神户制钢所 用于热交换器的铝合金包层材料及用于其的铝合金包层材料用芯材
CN103789577A (zh) * 2014-01-09 2014-05-14 马鞍山市恒毅机械制造有限公司 一种汽车轮毂用高强韧铝合金材料及其制备方法
CN104775062A (zh) * 2015-04-21 2015-07-15 宝山钢铁股份有限公司 一种高强度铝合金材料、铝合金板及其制造方法

Similar Documents

Publication Publication Date Title
CN101587757B (zh) 一种含稀土元素钇的铝合金电缆线及其制备方法
WO2020237943A1 (zh) 一种高强高导铜合金管及其制备方法
WO2009049500A1 (fr) Alliage d'al à conductivité thermique et électrique élevées et haute résistance, procédé de fabrication et application associée
CN107829000B (zh) 一种压铸铝合金材料及其制备方法
CN102717205A (zh) 一种铝合金焊丝及其制备方法
CN111101034A (zh) 一种低稀土高性能的稀土铝合金及其制备方法
WO2018072368A1 (zh) 稀土铜合金玻璃模具及其制备方法
JP2013204087A (ja) 高強度高熱伝導性アルミニウム合金部材とその製造方法
CN112030045B (zh) 一种亚共晶铝硅合金及其制备方法
US11427903B2 (en) High-strength and high-conductivity Cu—Ag—Sc alloy and preparation method thereof
JPWO2008105066A1 (ja) 熱伝導用途用アルミニウム合金材
CN109468476B (zh) 一种采用磁悬浮工艺提高铜合金综合性能的方法
CN104131199A (zh) 一种电力设备用6101bt7铝合金厚壁管材导体的制造方法
TW201201925A (en) Method for manufacturing wire rod of copper alloy containing reactive element
CN103484722A (zh) 一种锌合金的压铸及热处理工艺
CN105861935A (zh) 一种热塑性优良的Fe-36Ni因瓦合金材料及其制备方法
CN107475561A (zh) 高铁铜基合金玻璃模具材料及其制备方法
CN113215448A (zh) 一种Al-Si-Fe-(Mg)系合金材料及其制备方法
WO2021092738A1 (zh) 一种铝合金材料及其制造方法
JP2021531412A (ja) 銅合金の使用
WO2019169861A1 (zh) 一种高铝含量的铁铬铝合金的制备方法
CN106636764A (zh) 一种超细晶6061铝合金及其制备方法
JP2011063884A (ja) 耐熱アルミニウム合金線
CN115198133A (zh) 一种高强耐热导电铜合金管材及其制备方法
WO2014142049A1 (ja) 伝熱管用銅合金継目無管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952334

Country of ref document: EP

Kind code of ref document: A1