WO2021090607A1 - 端末及び通信方法 - Google Patents

端末及び通信方法 Download PDF

Info

Publication number
WO2021090607A1
WO2021090607A1 PCT/JP2020/036678 JP2020036678W WO2021090607A1 WO 2021090607 A1 WO2021090607 A1 WO 2021090607A1 JP 2020036678 W JP2020036678 W JP 2020036678W WO 2021090607 A1 WO2021090607 A1 WO 2021090607A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
terminal
information
wireless communication
base station
Prior art date
Application number
PCT/JP2020/036678
Other languages
English (en)
French (fr)
Inventor
西尾 昭彦
鈴木 秀俊
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to JP2021554842A priority Critical patent/JPWO2021090607A5/ja
Priority to CN202311152548.3A priority patent/CN117375652A/zh
Priority to EP20885214.5A priority patent/EP4057530A4/en
Priority to US17/772,115 priority patent/US20220407546A1/en
Priority to CN202080074773.8A priority patent/CN114600378B/zh
Publication of WO2021090607A1 publication Critical patent/WO2021090607A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup

Definitions

  • This disclosure relates to terminals and communication methods.
  • NR New Radio access technology
  • the non-limiting embodiment of the present disclosure contributes to the provision of a terminal and a communication method capable of appropriately determining the polarization used for wireless communication.
  • the terminal according to an embodiment of the present disclosure is determined to be a control circuit for determining polarization used in at least one of a first wireless communication and a second wireless communication after the first wireless communication.
  • a communication circuit that performs at least one of the wireless communications using the polarized light is provided.
  • the polarization used for wireless communication can be appropriately determined.
  • Type Diagram showing an example of radio resource control (RRC) messages related to TCI state and QCL Diagram showing an example of Precoding information A flowchart showing an operation example of the terminal according to the second embodiment.
  • 5G NR system architecture and protocol stack> 3GPP is working towards the next release of fifth-generation mobile phone technology (also simply referred to as "5G"), including the development of new wireless access technology (NR) that operates in the frequency range up to 100 GHz.
  • 5G fifth-generation mobile phone technology
  • NR new wireless access technology
  • the system architecture assumes NG-RAN (Next Generation-Radio Access Network) equipped with gNB as a whole.
  • the gNB provides the UE-side termination of the NG radio access user plane (SDAP / PDCP / RLC / MAC / PHY) and control plane (RRC) protocols.
  • SDAP NG radio access user plane
  • RRC control plane
  • the gNBs are connected to each other by an Xn interface.
  • gNB is converted to NGC (Next Generation Core) by the Next Generation (NG) interface, and more specifically, AMF (Access and Mobility Management Function) by the NG-C interface (for example, a specific core entity that performs AMF).
  • NGC Next Generation Core
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • NG-U interface For example, a specific core entity that performs UPF
  • the NG-RAN architecture is shown in Figure 1 (see, for example, 3GPP TS 38.300 v15.6.0, section 4).
  • the NR user plane protocol stack (see, for example, 3GPP TS 38.300, section 4.4.1) is a PDCP (Packet Data Convergence Protocol (see Section 6.4 of TS 38.300)) sublayer, which is terminated on the network side in gNB. Includes RLC (RadioLinkControl (see Section 6.3 of TS38.300)) sublayer and MAC (Medium AccessControl (see Section 6.2 of TS38.300)) sublayer.
  • RLC RadioLinkControl
  • MAC Medium AccessControl
  • SDAP Service Data Adaptation Protocol
  • control plane protocol stack is defined for NR (see, for example, TS 38.300, section 4.4.2).
  • Layer 2 functionality is given in Section 6 of TS 38.300.
  • the functions of the PDCP sublayer, RLC sublayer, and MAC sublayer are listed in Sections 6.4, 6.3, and 6.2 of TS 38.300, respectively.
  • the functions of the RRC layer are listed in Section 7 of TS 38.300.
  • the Medium-Access-Control layer handles multiplexing of logical channels and scheduling and scheduling-related functions including handling various numerologies.
  • the physical layer is responsible for coding, PHY HARQ processing, modulation, multi-antenna processing, and mapping of signals to appropriate physical time-frequency resources.
  • the physical layer also handles the mapping of transport channels to physical channels.
  • the physical layer provides services to the MAC layer in the form of transport channels.
  • Physical channels correspond to a set of time-frequency resources used to transmit a particular transport channel, and each transport channel is mapped to a corresponding physical channel.
  • physical channels include PRACH (Physical Random Access Channel), PUSCH (Physical Uplink Shared Channel), and PUCCH (Physical Uplink Control Channel) as upstream physical channels, and PDSCH (Physical Downlink Shared Channel) as downlink physical channels.
  • PDCCH Physical Downlink Control Channel
  • PBCH Physical Broadcast Channel
  • NR use cases / deployment scenarios include enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine type communication (mMTC), which have diverse requirements in terms of data rate, latency, and coverage.
  • eMBB is expected to support peak data rates (20 Gbps on downlink and 10 Gbps on uplink) and user-experienced data rates, which are about three times the data rates provided by IMT-Advanced. ..
  • URLLC stricter requirements are imposed for ultra-low latency (0.5 ms for user plane latency, respectively for UL and DL) and high reliability (1-10-5 within 1 ms).
  • mMTC preferably high connection densities (1,000,000 units / km 2 equipment in urban environments), wide coverage in adverse environments, and extremely long-life batteries for low-cost equipment (15 years). Can be required.
  • OFDM numerology suitable for one use case for example, subcarrier interval, OFDM symbol length, cyclic prefix (CP) length, number of symbols per scheduling interval
  • CP cyclic prefix
  • a low latency service preferably requires a shorter symbol length (and therefore a larger subcarrier interval) and / or a smaller number of symbols per scheduling interval (also referred to as TTI) than the mMTC service. Can be done.
  • a longer CP length may preferably be required than in a scenario with a shorter delay spread.
  • the subcarrier spacing may be contextually optimized to maintain similar CP overhead.
  • the value of the subcarrier interval supported by NR may be one or more.
  • resource element can be used to mean the smallest resource unit consisting of one subcarrier for the length of one OFDM / SC-FDMA symbol.
  • resource grids of subcarriers and OFDM symbols are defined for each of the uplink and downlink.
  • Each element of the resource grid is called a resource element and is identified based on the frequency index in the frequency domain and the symbol position in the time domain (see 3GPP TS 38.211 v15.6.0).
  • FIG. 2 shows the functional separation between NG-RAN and 5GC.
  • the logical node of NG-RAN is gNB or ng-eNB.
  • the 5GC has logical nodes AMF, UPF, and SMF.
  • gNB and ng-eNB host the following main functions: -Radio Bearer Control, Radio Admission Control, Connection Mobility Control, Dynamic allocation of resources to UEs on both uplink and downlink (scheduling), etc. Radio Resource Management function; -Data IP header compression, encryption, and integrity protection; -Selection of AMF when attaching the UE when the routing to AMF cannot be determined from the information provided by the UE; -Routing user plane data towards UPF; -Routing control plane information towards AMF; -Setting up and disconnecting; -Scheduling and sending paging messages; -Scheduling and transmission of system notification information (sourced from AMF or Operation, Admission, Maintenance); -Measurement and measurement reporting settings for mobility and scheduling; -Transport level packet marking on the uplink; -Session management; -Network slicing support; -Management of QoS flows and mapping to data radio bearers; -Support for UEs in the RRC_INA
  • the Access and Mobility Management Function hosts the following key functions: -Ability to terminate Non-Access Stratum (NAS) signaling; -NAS signaling security; -Access Stratum (AS) security control; -Core Network (CN) node-to-node signaling for mobility between 3GPP access networks; -Reachability to UE in idle mode (including control and execution of paging retransmission); -Registration area management; -Support for in-system mobility and inter-system mobility; -Access authentication; -Access authorization including roaming permission check; -Mobility management control (subscription and policy); -Network slicing support; -Select Session Management Function (SMF).
  • NAS Non-Access Stratum
  • AS Access Stratum
  • CN Core Network
  • the User Plane Function hosts the following key functions: -Anchor point for intra-RAT mobility / inter-RAT mobility (if applicable); -External PDU (Protocol Data Unit) session point for interconnection with data networks; -Packet routing and forwarding; -Policy rule enforcement for packet inspection and user plane parts; -Traffic usage report; -Uplink classifier to support the routing of traffic flows to the data network; -Branching Point to support multi-homed PDU sessions; -Quos processing for the user plane (eg, packet filtering, gating, UL / DL rate enforcement); -Verification of uplink traffic (mapping of SDF to QoS flow); -Downlink packet buffering and downlink data notification trigger function.
  • -Anchor point for intra-RAT mobility / inter-RAT mobility if applicable
  • -External PDU Protocol Data Unit
  • Policy rule enforcement for packet inspection and user plane parts
  • -Traffic usage report -Uplink classifier to support the routing
  • Session Management Function hosts the following key functions: -Session management; -Assignment and management of IP addresses for UEs; -UPF selection and control; -Traffic steering setting function in the User Plane Function (UPF) for routing traffic to the appropriate destination; -Control policy enforcement and QoS; -Notification of downlink data.
  • FIG. 3 shows some of the NAS portion of the interaction between the UE, gNB, and AMF (5GC entity) as the UE transitions from RRC_IDLE to RRC_CONNECTED (see TS 38.300 v15.6.0).
  • RRC is a higher layer signaling (protocol) used to configure UEs and gNBs.
  • AMF prepares UE context data (which includes, for example, PDU session context, security key, UE RadioCapability, UESecurityCapabilities, etc.) and provides the initial context.
  • UE context data which includes, for example, PDU session context, security key, UE RadioCapability, UESecurityCapabilities, etc.
  • the gNB then activates AS security along with the UE. This is done by the gNB sending a SecurityModeCommand message to the UE and the UE responding to the gNB with a SecurityModeComplete message.
  • the gNB sends an RRC Reconfiguration message to the UE, and the gNB receives the RRC Reconfiguration Complete from the UE in response to the RRC Reconfiguration message to perform reconfiguration for setting up Signaling Radio Bearer 2 (SRB2) and Data Radio Bearer (DRB). ..
  • SRB2 Signaling Radio Bearer 2
  • DRB Data Radio Bearer
  • the steps for RRC Reconfiguration are omitted because SRB2 and DRB are not set up.
  • gNB notifies AMF that the setup procedure is completed by the initial context setup response (INITIALCONTEXTSETUPRESPONSE).
  • the control circuit that establishes the Next Generation (NG) connection with the gNodeB during operation and the signaling radio bearer between the gNodeB and the user equipment (UE: User Equipment) are set up so as to be NG during operation.
  • a 5th Generation Core (5GC) entity eg, AMF, SMF, etc.
  • RRC RadioResourceControl
  • IE Information Element
  • FIG. 4 shows some of the use cases for 5G NR.
  • the 3rd generation partnership project new radio (3GPP NR) is considering three use cases envisioned by IMT-2020 to support a wide variety of services and applications.
  • 3GPP NR 3rd generation partnership project new radio
  • eMBB enhanced mobile-broadband
  • URLLC ultra-reliable and low-latency communications
  • mMTTC multiple simultaneous machine type communications
  • Standardization for massive machine-type communications is included.
  • Figure 4 shows some examples of conceptual use scenarios for IMT since 2020 (see, eg, ITU-RM.2083 Figure 2).
  • URLLC use cases have strict performance requirements such as throughput, latency, and availability.
  • the URLLC use case is envisioned as one of the elemental technologies to realize these future applications such as wireless control of industrial production process or manufacturing process, telemedicine surgery, automation of power transmission and distribution in smart grid, traffic safety, etc. ing.
  • the ultra-reliability of URLLC is supported by identifying technologies that meet the requirements set by TR 38.913.
  • the NR URLLC in Release 15 includes that the target user plane latency is 0.5 ms for UL (uplink) and 0.5 ms for DL (downlink) as an important requirement.
  • the general requirement of URLLC for one packet transmission is that when the latency of the user plane is 1 ms, the block error rate (BLER: block error rate) is 1E-5 for a packet size of 32 bytes.
  • BLER block error rate
  • the technological enhancement aimed at by NR URLLC aims to improve latency and reliability.
  • Technology enhancements to improve latency include configurable numerology, non-slot-based scheduling with flexible mapping, grant-free (configured grant) uplinks, slot-level iterations in data channels, And includes pre-emption on the downlink. Preemption means that a transmission that has already been allocated a resource is stopped and the already allocated resource is used for other transmissions of later requested lower latency / higher priority requirements. Therefore, a transmission that has already been permitted will be replaced by a later transmission. Preemption is applicable regardless of the specific service type. For example, the transmission of service type A (URLLC) may be replaced by the transmission of service type B (eMBB, etc.).
  • Technology enhancements for reliability improvement include a dedicated CQI / MCS table for the 1E-5 goal BLER.
  • a feature of the mMTC (massive machine type communication) use case is that the number of connecting devices that transmit a relatively small amount of data, which is typically less susceptible to delays, is extremely large.
  • the device is required to be inexpensive and have a very long battery life. From an NR point of view, utilizing a very narrow bandwidth portion is one solution that saves power from the perspective of the UE and allows for longer battery life.
  • Strict requirements are high reliability (reliability up to 10-6 levels), high availability, packet size up to 256 bytes, time synchronization up to a few microseconds (values depending on the use case). It can be 1 ⁇ s or several ⁇ s depending on the frequency range and short latencies of about 0.5 ms to 1 ms (eg, 0.5 ms latency in the target user plane).
  • NR URLLC there may be some technical enhancements from the viewpoint of the physical layer.
  • These technological enhancements include enhancement of PDCCH (Physical Downlink Control Channel) for compact DCI, repetition of PDCCH, and increase of PDCCH monitoring.
  • the enhancement of UCI is related to the enhancement of enhanced HARQ (Hybrid Automatic Repeat Request) and CSI feedback.
  • PUSCH enhancements related to minislot level hopping and retransmission / repetition enhancements.
  • mini slot refers to a Transmission Time Interval (TTI) that contains fewer symbols than a slot (a slot comprises 14 symbols).
  • TTI Transmission Time Interval
  • QoS Quality of Service
  • GRR Guaranteed Bit Rate QoS flow
  • QoS flow is the finest granularity of QoS classification in a PDU session.
  • the quality of service ID (QFI) is identified in the PDU session by the quality of service ID (QFI) carried in the encapsulation header via the NG-U interface.
  • 5GC For each UE, 5GC establishes one or more PDU sessions. For each UE, the NG-RAN establishes at least one Data Radio Bearers (DRB) for the PDU session, eg, as shown above with reference to FIG. Also, an additional DRB for the QoS flow of the PDU session can be set later (when to set it depends on NG-RAN).
  • NG-RAN maps packets belonging to different PDU sessions to different DRBs.
  • the NAS level packet filter in the UE and 5GC associates the UL packet and DL packet with the QoS flow, while the AS level mapping rule in the UE and NG-RAN associates the UL QoS flow and the DL QoS flow with the DRB.
  • Figure 5 shows a non-roaming reference architecture of 5G NR (see TS 23.501 v16.1.0, section 4.23).
  • the Application Function (AF) (for example, the external application server that hosts the 5G service illustrated in FIG. 4) interacts with the 3GPP core network to provide the service. For example, accessing a Network Exposure Function (NEF) to support applications that affect traffic routing, or interacting with a policy framework for policy control (eg, QoS control) (Policy Control Function). (See (PCF)).
  • NEF Network Exposure Function
  • Policy Control Function Policy Control Function
  • PCF Policy Control Function
  • the Application Function which is considered to be trusted by the operator, can interact directly with the associated Network Function.
  • Application Functions that are not allowed direct access to Network Functions by the operator interact with related Network Functions using the release framework to the outside via NEF.
  • FIG. 5 shows a further functional unit of the 5G architecture, that is, Network Slice Selection Function (NSSF), Network Repository Function (NRF), Unified Data Management (UDM), Authentication Server Function (AUSF), Access and Mobility Management Function (AMF). , Session Management Function (SMF), and Data Network (DN, eg, service by operator, internet access, or service by a third party). All or part of the core network functions and application services may be deployed and operated in a cloud computing environment.
  • NSSF Network Slice Selection Function
  • NRF Network Repository Function
  • UDM Unified Data Management
  • AUSF Authentication Server Function
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • DN Data Network
  • a QoS requirement for at least one of the URLLC service, the eMMB service, and the mMTC service is set in operation.
  • a transmitter that transmits the including request to at least one of the 5GC functions eg, NEF, AMF, SMF, PCF, UPF, etc.
  • An application server eg, AF with a 5G architecture
  • NTN Non-Terrestrial Network
  • Rel. 15 is, for example, a specification for wireless access technology for terrestrial networks.
  • NR is being considered for extension to non-terrestrial networks (NTN: Non-Terrestrial Network) such as communications using satellites or high-altitude platform stations (HAPS) (for example, non-terrestrial networks).
  • HAPS high-altitude platform stations
  • a satellite coverage area (eg, one or more cells) for a ground terminal or an aircraft terminal is formed, for example, by a beam transmitted from the satellite. Further, for example, a plurality of cells having a divided coverage area are formed by transmitting a plurality of beams having sharp directivity from a satellite antenna. For example, when moving, the terminal switches cells by handover and communicates like terrestrial cellular communication.
  • one cell may be formed by bundling a plurality of beams from a satellite.
  • switching the beam based on the beam management mechanism of NR has been studied (see, for example, Non-Patent Document 2).
  • frequency reuse can be realized by using different frequencies (or channels) between adjacent (or peripheral) beams or cells.
  • frequency reuse for example, since different frequencies are used between adjacent beams or cells, inter-beam interference (in other words, inter-cell interference) can be reduced.
  • inter-beam interference in other words, inter-cell interference
  • FIG. 6 in the case where three frequencies (for example, F1, F2 and F3) are used, frequency reuse 3 (or reuse 3) can be realized.
  • circular polarization is applied.
  • inter-beam interference can be reduced by using different polarizations between adjacent beams in addition to frequency reuse.
  • two frequencies for example, F1 and F2
  • two polarizations for example, Right Handed Circular Polarization
  • LHCP left-handed circular polarization
  • reuse 4 can be realized.
  • the method of reusing polarized waves depends on, for example, network operations.
  • the receiving side for example, a terminal or a base station
  • the polarization to be used is known, even if it is a linear polarization antenna, the polarization is separated and a signal is received. it can.
  • the polarization used is unknown on the receiving side (for example, a terminal or a base station)
  • both polarizations for example, RHCP and LHCP
  • the signal can be received, but loss can occur.
  • the reception process can be performed based on the reception method according to the polarization, and the reception performance can be improved.
  • 5G NR for example, Rel. 15
  • a method for determining polarization or polarization to be used in a terminal for example, a notification method
  • a method for using circularly polarized waves for example, a notification method
  • the wireless communication system includes a base station 100 and a terminal 200.
  • the wireless communication system may be, for example, a satellite communication system in an NTN environment, or another wireless communication system.
  • the base station 100 and the terminal 200 are both examples of wireless communication devices.
  • FIG. 7 is a block diagram showing a partial configuration example of the base station 100 according to the embodiment of the present disclosure.
  • the control unit 11 (for example, corresponding to a control circuit) refers to the terminal 200 in at least one of a first phase in wireless communication and a second phase after the first phase. Determine the polarization of the radio signal.
  • the communication unit 12 (for example, corresponding to a communication circuit) transmits and receives at least one of radio signals based on the determined polarization.
  • the term “phase” may be replaced with other terms such as “wireless communication", "period” or "time interval” in wireless communication.
  • the "period” or “time interval” in wireless communication may be regarded as an example of "time resource”.
  • polarization is an example of a resource in wireless communication as well as a resource of frequency and time.
  • FIG. 8 is a block diagram showing a partial configuration example of the terminal 200 according to the embodiment of the present disclosure.
  • the control unit 21 (for example, corresponding to a control circuit) is a polarization of a radio signal in at least one of a first phase in wireless communication and a second phase after the first phase.
  • the communication unit 22 transmits and receives at least one of the radio signals based on the determined polarization.
  • FIG. 9 is a block diagram showing a configuration example of the base station 100.
  • the base station 100 shown in FIG. 9 includes, for example, a control unit 101, a data generation unit 102, a transmission data processing unit 103, a wireless transmission unit 104, an antenna 105, a wireless reception unit 106, and a reception data processing unit 107.
  • the control unit 101, the data generation unit 102, the transmission data processing unit 103, and the reception data processing unit 107 shown in FIG. 9 correspond to the control unit 11 shown in FIG. 7, and the antenna 105 and wireless transmission shown in FIG.
  • the unit 104 and the wireless receiving unit 106 may correspond to the communication unit 12 shown in FIG. 7.
  • the control unit 101 controls, for example, the setting of polarization in at least one of transmission (in other words, downlink) and reception (in other words, uplink). For example, the control unit 101 may set the polarization for each cell, beam, or terminal 200 (in other words, the user). Further, for example, the control unit 101 may set individual polarizations for each of the downlink and the uplink, or may set a common polarization for the downlink and the uplink.
  • the control unit 101 outputs, for example, information on polarization used for reception (hereinafter referred to as polarization information) to the reception data processing unit 107, outputs polarization information used for transmission to the transmission data processing unit 103, and terminals.
  • the polarization information notified to the 200 is output to the data generation unit 102.
  • the data generation unit 102 generates a downlink data signal such as user data, system information, or individual control information (for example, RRC signaling or downlink control information (DCI)) for each terminal 200, and generates the generated downlink data signal. Output to the transmission data processing unit 103.
  • the data generation unit 102 may generate a downlink data signal based on the polarization information input from the control unit 101, or may generate a downlink data signal including the polarization information.
  • the transmission data processing unit 103 encodes and modulates the downlink data signal input from the data generation unit 102. Further, the transmission data processing unit 103 performs transmission polarization processing (for example, right-handed circularly polarized wave, left-handed circularly polarized wave, or both) based on the polarization information input from the control unit 101, for example. The transmission data processing unit 103 outputs the signal after the transmission processing to the wireless transmission unit 104.
  • transmission polarization processing for example, right-handed circularly polarized wave, left-handed circularly polarized wave, or both
  • the wireless transmission unit 104 performs wireless transmission processing such as D / A conversion, up-conversion, and amplification on the signal input from the transmission data processing unit 103, and transmits the wireless signal after the wireless transmission processing from the antenna 105.
  • the wireless reception unit 106 performs wireless reception processing such as down-conversion and A / D conversion on the data signal from the terminal 200 received via the antenna 105, and receives the received signal after the wireless reception processing in the reception data processing unit. Output to 107.
  • the reception data processing unit 107 performs reception polarization processing of the received signal based on, for example, the polarization information input from the control unit 101. Further, the received data processing unit 107 demodulates and decodes the received signal and outputs the received data.
  • the received polarization process may include, for example, a process (de-polarization) of separating the polarized waves by multiplying the polarization vectors of the right-handed circularly polarized waves and the left-handed circularly polarized waves.
  • FIG. 10 is a block diagram showing a configuration example of the terminal 200.
  • the terminal 200 shown in FIG. 10 includes, for example, an antenna 201, a wireless reception unit 202, a reception data processing unit 203, a control unit 204, a data generation unit 205, a transmission data processing unit 206, and a wireless transmission unit 207.
  • the control unit 204, the data generation unit 205, the transmission data processing unit 206, and the reception data processing unit 203 shown in FIG. 10 correspond to the control unit 21 shown in FIG. 8, and the antenna 201 and wireless transmission shown in FIG.
  • the unit 207 and the wireless receiving unit 202 may correspond to the communication unit 22 shown in FIG.
  • the wireless reception unit 202 performs wireless reception processing such as down-conversion and A / D conversion on the data signal from the base station 100 received via the antenna 201, and receives the received signal after the wireless reception processing. Output to unit 203.
  • the reception data processing unit 203 performs reception polarization processing (for example, de-polarization) of the received signal based on the polarization information input from the control unit 204, for example. Further, the received data processing unit 203 demodulates and decodes the received signal, and outputs, for example, the polarization information included in the received data to the control unit 204.
  • reception polarization processing for example, de-polarization
  • the control unit 204 receives (in other words, downlink) and transmits (in other words, downlink) based on the polarization information input from the reception data processing unit 203 or the information specified in the standard (or specification). Determines the polarization set in at least one of the uplinks). Further, the control unit 204 is predetermined (in other words, set) in the period before receiving the notification of the polarization information from the base station 100, for example, at the time of initial access (or also referred to as initial connection). You may decide to use polarized light. For example, the control unit 204 outputs the polarization information used for reception to the reception data processing unit 203, and outputs the polarization information used for transmission to the transmission data processing unit 206.
  • the data generation unit 205 generates, for example, an uplink data signal including user data or feedback information, and outputs the generated downlink data signal to the transmission data processing unit 206.
  • the transmission data processing unit 206 encodes and modulates the downlink data signal input from the data generation unit 205. Further, the transmission data processing unit 206 performs transmission polarization processing (for example, right-handed rotation, left-handed rotation, or both) based on the polarization information input from the control unit 204, for example. The transmission data processing unit 206 outputs the signal after the transmission processing to the wireless transmission unit 207.
  • transmission polarization processing for example, right-handed rotation, left-handed rotation, or both
  • the wireless transmission unit 207 performs wireless transmission processing such as D / A conversion, up-conversion, and amplification on the signal input from the transmission data processing unit 206, and transmits the wireless signal after the wireless transmission processing from the antenna 201.
  • a predetermined polarization is set for at least the channel and the signal communicated in the initial access.
  • the polarization notified from the base station 100 to the terminal 200 is set. If there is no notification from the base station 100 to the terminal 200, the terminal 200 may set, for example, a predetermined polarization.
  • FIG. 11 is a sequence diagram showing an example of initial access.
  • the base station 100 transmits a synchronization signal block (SSB) to the terminal 200, and the terminal 200 acquires synchronization with the base station 100 and common cell parameters from the received SSB.
  • the SSB may include, for example, synchronization signals such as primary synchronization signal (PSS) and secondary synchronization signal (SSS), and a broadcast channel (physical broadcast channel (PBCH)).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • the terminal 200 receives the system information notified by the system information block (SIB) transmitted from the base station 100.
  • SIB system information block
  • the terminal 200 In the initial access (in other words, a random access procedure), the terminal 200 has a preamble signal (for example, also called Physical Random Access Channel (PRACH) or Msg.1) based on the resource specified in the system information. Is transmitted to the base station 100.
  • a preamble signal for example, also called Physical Random Access Channel (PRACH) or Msg.1
  • PRACH Physical Random Access Channel
  • Msg.1 Physical Random Access Channel
  • the base station 100 receives the PRACH and transmits a response signal to the PRACH (for example, RACH response or Msg.2) to the terminal 200.
  • the RACH response may be transmitted, for example, on a downlink data channel (eg, Physical Downlink Shared Channel (PDSCH)).
  • PDSCH Physical Downlink Shared Channel
  • the terminal 200 transmits, for example, an RRC message (or called Msg.3) including a connection request to the base station 100 based on the RACH response.
  • an RRC message or called Msg.3
  • the base station 100 transmits an RRC message (or called Msg.4) including a response signal to Msg.3 to the terminal 200.
  • RRC message or called Msg.4
  • fixed polarization is set for at least SSB and SIB at the initial access.
  • the terminal 200 determines, for example, the fixed polarization to the polarization of SSB and SIB.
  • the fixed polarization may be defined in advance in the standard (or specification), or may be set for each system.
  • the fixed polarization may be, for example, either one of right-handed circularly polarized waves and left-handed circularly polarized waves, or both.
  • the polarization for other channels and signals different from SSB and SIB may be determined (in other words, set or notified) based on the information from the base station 100 to the terminal 200, for example.
  • Method 1 polarization is controlled on a cell- or beam-by-beam basis. Further, in the method 1, the polarization information set for each cell or each beam is notified to the terminal 200 by the SIB.
  • the terminal 200 acquires polarization information from the SIB, and the polarization indicated in the acquired polarization information is polarized in communication after PRACH transmission (for example, at least one of transmission and reception). To decide.
  • the terminal 200 may be set with different polarizations for transmission (that is, uplink) and reception (that is, downlink).
  • FIG. 12 is a flow chart showing an example of processing of the terminal 200 according to the method 1.
  • the terminal 200 searches (in other words, detects) the SSB at the time of initial access, for example (S101). For example, when the polarization used for the SSB is known, the terminal 200 (for example, the reception data processing unit 203) searches the SSB based on the polarization (for example, the fixed polarization). On the other hand, when the polarization is not known, the terminal 200 may search for SSB (in other words, blind determination) by switching between no polarization, right-handed circularly polarized wave, and left-handed circularly polarized wave, and the terminal 200 may be biased. SSB may be searched by receiving wave diversity.
  • SSB may be searched by receiving wave diversity.
  • the terminal 200 If SSB is not detected (S102: No), the terminal 200 returns to the process of S101 and repeats the SSB search. On the other hand, when the SSB is detected (S102: Yes), the terminal 200 receives the SIB (S103). For example, the terminal 200 (for example, the reception data processing unit 203) may receive the SIB based on a fixed polarization. The terminal 200 acquires, for example, cell operation parameters and polarization information from the received SIB.
  • the terminal 200 sets the acquired polarization to, for example, the polarization used for reception processing (in other words, downlink processing) and transmission processing (in other words, uplink processing) (S104). For example, after acquiring the polarization information, the terminal 200 sets the polarization in the reception data processing unit 203 and the transmission data processing unit 206.
  • the terminal 200 may perform communication after receiving the SIB based on the fixed polarization.
  • the base station 100 may notify the polarization of each terminal group by SIB.
  • the terminal group is formed by, for example, the type of the terminal 200 or the terminal ID of the terminal 200 (for example, cell-radio network temporary identifier (C-RNTI)).
  • C-RNTI cell-radio network temporary identifier
  • the base station 100 may include information on the association between the SSB number and the polarization, for example, information on which polarization is used in which beam, in the SIB notified in the cell.
  • information on which polarization is used in which beam in the SIB notified in the cell.
  • the base station 100 may notify the polarization information of the peripheral cells or beams of a certain cell or beam by SIB in addition to the polarization information of a certain cell or beam. For example, since the terminal 200 can grasp the polarization used in the peripheral cell or the beam, the measurement for handover or beam switching can be performed quickly. Further, at the time of handover or beam switching, the polarization information to be used in the next cell or beam may be included in the handover notification in advance. As a result, the terminal 200 can obtain information on the polarization to be used next in advance, so that quick handover and beam switching are possible.
  • the terminal 200 determines, for example, the fixed polarization to be the polarization used for wireless communication until the reception of the SIB, and the SIB receives the polarization indicated by the SIB notified from the base station 100.
  • the polarization to be used for the subsequent wireless communication is determined.
  • the polarization notified by the SIB allows the base station 100 to flexibly set the polarization for each cell or beam, so that, for example, cell-cell interference (or beam-to-beam interference) can be suppressed.
  • throughput can be improved by polarization multiplexing based on this polarization.
  • the base station 100 can notify the polarization information to the plurality of terminals 200 at once by the SIB in units of cells or beams, the amount of resources required for the notification of polarization can be reduced.
  • the polarization can be notified to the terminal 200 in the RRC_IDLE state or the RRC_INACTIVE state by the notification of the polarization by the SIB, the data received by the terminal 200 in the RRC_IDLE state or the RRC_INACTIVE state (for example, Paging). Polarization for each cell or beam can also be set for data or RACH response).
  • the polarization information for PRACH which is the first channel to be transmitted at the time of initial access of the terminal, defines, for example, the RRC parameters IERACH-ConfigCommon, IERACH-ConfigDedicated, IERACH-ConfigCommonGeneric, or PRACH format. It may be notified in prach-ConfigurationIndex, which is a parameter to be used.
  • the terminal 200 can obtain polarization information at the same time as the PRACH format or transmission resource. It is also possible to notify different polarizations for each type of RACH processing such as competition-based RACH or non-competitive RACH (CFRA: Contention Free Random Access).
  • the base station 100 When the system band is divided into a plurality of frequencies by using Component Carrier (CC) or Bandwidth Part (BWP), the base station 100 notifies the terminal 200 of the polarization information for each CC or each BWP. You may.
  • the terminal 200 receives the SSB or SIB based on the fixed polarization in the frequency band including the CC or BWP, and in the CC or BWP assigned to the communication of the user data, the polarization notified by the SIB. User data may be received or transmitted based on.
  • the CC may also be referred to as Cell, primaryCell (PCell), secondaryCell (SCell), PrimarySCell (PSCell), MasterCellGroup (MCG), SecondaryCellGroup (SCG), or the like.
  • the base station 100 When CC or BWP is set for each terminal, the base station 100 notifies the terminal 200 of individual RRC control information including polarization information each time CC or BWP is set or changed. You may.
  • the base station 100 determines in advance the polarization of the beam covering each area on the ground (for example, the area defined by the coordinates of longitude and latitude), and the position information and the polarization information.
  • a plurality of beam information including the above may be notified to the terminal 200.
  • the terminal capable of acquiring the position information by GNSS or the like can know the polarization from its own position, it is not necessary to notify the polarization each time the beam is switched, and the amount of control information can be reduced.
  • the base station 100 may notify the terminal 200 of the polarization information for each terminal 200 by individual upper layer signaling (for example, individual RRC control information (Dedicated RRC signaling)) to each terminal 200.
  • individual upper layer signaling for example, individual RRC control information (Dedicated RRC signaling)
  • the terminal 200 acquires polarization information from Msg.4, and uses the polarization indicated in the acquired polarization information for communication (for example, transmission and reception) after reception of Msg.4. Determine the polarization in at least one).
  • the terminal 200 may be set with different polarizations for transmission and reception. Alternatively, different polarizations may be set for each physical channel.
  • the terminal 200 in the RRC_IDLE state or the RRC_INACTIVE state does not receive the individual RRC control information. Therefore, the terminal 200 may use, for example, a fixed polarization (for example, the same polarization as SSB or SIB) for the data received in the RRC_IDLE state or the RRC_INACTIVE state (for example, Paging data or RACH response).
  • a fixed polarization for example, the same polarization as SSB or SIB
  • FIG. 13 is a flow chart showing an example of processing of the terminal 200 according to the method 2.
  • the terminal 200 searches (in other words, detects) the SSB at the time of initial access, for example (S201). If SSB is not detected (S202: No), the terminal 200 returns to the process of S201 and repeats the SSB search. On the other hand, when the SSB is detected (S202: Yes), the terminal 200 receives the SIB (S203). Further, the terminal 200 performs RACH processing (for example, transmission / reception of Msg.1 to Msg.4) (S204).
  • RACH processing for example, transmission / reception of Msg.1 to Msg.4
  • the terminal 200 may perform communication based on a fixed polarization in the processing from S201 (search for SSB) to S204 (RACH processing), for example. Further, for example, the terminal 200 acquires polarization information from Msg.4.
  • the terminal 200 sets the acquired polarization to, for example, the polarization used for reception processing (in other words, downlink processing) and transmission processing (in other words, uplink processing) (S205). For example, after acquiring the polarization information, the terminal 200 sets the polarization in the reception data processing unit 203 and the transmission data processing unit 206.
  • the terminal 200 may perform communication after the reception of Msg.4 based on the fixed polarization. Further, for example, when the terminal 200 receives the individual RRC control information including the polarization information in the communication after Msg.4, the bias notified by the individual RRC control information in the communication after the reception of the individual RRC control information. Waves may be used.
  • the terminal 200 determines the fixed polarization (for example, the same polarization as SSB or SIB) as the polarization used for wireless communication up to Msg.4, and starts from the base station 100.
  • the polarization indicated by the received individual RRC control information is determined to be the polarization used for wireless communication after Msg.4 is received.
  • the polarization notified by the individual RRC control information allows the base station 100 to flexibly set the polarization for each terminal 200, so that, for example, cell-to-cell interference (or beam-to-beam interference) can be suppressed. Further, since the polarization of each terminal 200 can be set, the throughput can be improved by, for example, polarization multiplexing transmission between terminals 200 (for example, also referred to as interUE multiplexing).
  • circular polarization is set for the terminal 200 using satellite communication (for example, very small aperture terminal (VSAT) system) or Phased Array, and the capability is lower.
  • VSAT very small aperture terminal
  • Linearly polarized light may be set for a terminal 200 having a (for example, an internet of things (IoT) terminal).
  • IoT internet of things
  • the base station 100 may set the same polarization for a plurality of terminals 200 in the cell or the beam, for example.
  • the polarization can be set for each cell or beam, so that cell-cell interference (or beam-to-beam interference) can be suppressed.
  • the polarization of each terminal 200 may be notified by the MAC Control Element (MAC CE).
  • MAC CE MAC Control Element
  • FIG. 11 shows the case of 4-step RACH, but is not limited to this, and for example, when 2-step RACH introduced in Rel.16 is used, polarization is notified in Msg.B.
  • Msg.B is a response to PUSCH including PRACH and Msg.A, and is data including RACH response and RRC message.
  • the base station 100 may notify the terminal 200 of polarization information for each data of the terminal 200 by means of control information (for example, downlink control information (DCI)) for notifying the allocation of data to the terminal 200.
  • the terminal 200 acquires, for example, polarization information from DCI, and the polarization indicated in the acquired polarization information is polarized in communication (for example, at least one of transmission and reception) after reception of the DCI.
  • the polarization of the signal (for example, PDCCH) for transmitting DCI may be a fixed polarization (for example, a predetermined polarization or a polarization set for each cell).
  • FIG. 14 is a flow chart showing an example of processing of the terminal 200 according to the method 3.
  • the terminal 200 searches (in other words, detects) the SSB at the time of initial access, for example (S301). If SSB is not detected (S302: No), the terminal 200 returns to the process of S301 and repeats the SSB search. On the other hand, when the SSB is detected (S302: Yes), the terminal 200 receives the SIB (S303). Further, the terminal 200 receives DCI (S304).
  • the terminal 200 may perform communication based on a fixed polarization in the processing from S301 (search for SSB) to S304 (reception of DCI), for example. Further, for example, the terminal 200 acquires the polarization information included in the DCI.
  • the terminal 200 sets the acquired polarization to, for example, the polarization used for data reception processing (in other words, downlink processing) or data transmission processing (in other words, uplink processing) (S305).
  • the terminal 200 receives data or transmits data based on the set polarization (S306).
  • the terminal 200 may perform data communication after receiving the DCI based on the fixed polarization when the polarization information is not included in the DCI.
  • a method of notifying polarization by DCI for example, a method of adding a bit indicating polarization (for example, referred to as a polarization notification bit) in DCI to notify, and downlink transmission setting information (for example, transmission)
  • a method of notifying by configuration indication (TCI) state or a method of notifying by Precoding information (for example, transmitted precoding matrix indicator (TPMI)).
  • TCI configuration indication
  • TPMI transmitted precoding matrix indicator
  • a polarization notification bit may be added in the DCI notifying at least one of the downlink and uplink data allocations.
  • the downlink allocation DCI (or DCI format) includes DCI format 1_0, 1_1, and the uplink allocation DCI (or DCI format) includes DCI format 0_0, 0_1.
  • each DCI format may include a polarization notification bit.
  • some DCI formats (for example, DCI formats 1_1 and 0_1 corresponding to two or more layers) may include polarization notification bits. As a result, the overhead of control information can be reduced.
  • the DCI transmitted by the terminal individual search space may include the polarization notification bit, and the other DCI (for example, the DCI transmitted by the common search space) may not include the polarization notification bit.
  • the terminal 200 can acquire polarization information in a search space individual to the terminal 200.
  • the presence / absence of the polarization notification bit in each DCI may be specified in, for example, a standard (or specification), or may be notified to the terminal 200 by SIB or terminal individual RRC control information.
  • SIB a standard
  • terminal individual RRC control information For example, when the presence / absence of the polarization notification bit is notified by the SIB, it is possible to notify the polarization for transmission / reception of any of Msg.1 to Msg.4 in the RACH process. Further, for example, when the presence / absence of the polarization notification bit is notified by the terminal individual RRC control information, it is possible to notify the polarization for data transmission / reception after the reception of Msg.4 of the RACH process.
  • the presence / absence of the polarization notification bit may be set for each terminal 200.
  • the presence / absence of the polarization notification bit may be switched depending on the type of the terminal 200.
  • a terminal 200 having a fixed large antenna such as a parabolic antenna or Phased Array is set to have a polarization notification bit (in other words, polarization can be controlled), and a terminal having a portable small antenna such as a patch antenna.
  • the 200 may be set to have no polarization notification bit (in other words, the polarization is not controlled).
  • the notification of polarization by the polarization notification bit can avoid interference due to polarization in transmission for each terminal 200, for example.
  • the polarization can be set for each data transmission of the terminal 200, so that the polarization multiplex transmission between the terminals 200 (for example, interUEmultiplexing) or the same terminal Polarization multiplexing for 200 (for example, intraUEmultiplexing) can be applied more flexibly.
  • the polarization may be switched for each terminal 200 or for each data transmission of the terminal 200.
  • the terminal 200 located near the center of the cell or beam is subjected to polarization multiplex transmission, and the terminal 200 located at the cell end or beam end is subjected to system throughput by avoiding interference based on polarization different from that of the adjacent cell or beam. Can be improved.
  • the identification information for example, SSB ID or channel state information reference signal (CSI-RS)
  • CSI-RS channel state information reference signal
  • the base station 100 notifies the TCI state including the polarization information.
  • the channel characteristics for example, Doppler shift or delay
  • QCL channel characteristics
  • a plurality of QCL types are defined according to the types of channel characteristics that can be referred to.
  • polarization is added to the referenceable channel characteristics included in the QCL type.
  • the polarization can be set in the QCL type included in the TCI state transmitted from the base station 100 to the terminal 200.
  • the polarization used for the reference signal corresponding to SSBID or CSI-RSID is associated with the polarization used for the data.
  • QCL type E corresponding to polarization may be defined as one of the QCL types.
  • the QCL type for example, qcl-Type
  • the QCL type E for example, type E
  • the polarization set for the SSB corresponding to each SSB ID may be set by, for example, the present embodiment or a method based on the second or third embodiment described later. Further, the polarization set for the CSI-RS corresponding to each CSI-RS ID may be explicitly notified by, for example, an RRC message (for example, CSI-ResourceConfig) of the CSI-RS setting, which is implied. May be notified. For example, in the case of implicit notification, one of the right-handed circularly polarized wave and the left-handed circularly polarized wave may be notified by an even-numbered ID, and the other may be notified by an odd-numbered ID. It may be notified by the upper bit or the least significant bit.
  • the base station 100 can notify the terminal 200 of information on a plurality of QCLs (for example, a set of SSBID or CSI-RSID and QCL type) by the TCI state.
  • the polarization can be set more flexibly for the terminal 200 by the following notification.
  • Notification method A For example, when the polarization is set in beam units (or cell units), or when either polarization is used for each terminal, the base station 100 notifies the TCI state in which the SSB ID and the polarization are associated with each other. You can do it. That is, the base station 100 notifies the TCI state information including the polarization information in addition to the SSB ID.
  • Notification method B For example, when applying polarization multiplex transmission between terminals 200, base station 100 notifies, for example, a TCI state associated with one CSI-RS ID and polarization. That is, the base station 100 notifies the TCI state information including the polarization information in addition to the CSI-RS ID. At this time, the base station 100 notifies, for example, the CSI-RS ID associated with the different polarization to each of the plurality of terminals 200 that are subjected to the polarization multiplex transmission.
  • Notification method C For example, when applying polarization multiplex transmission in the same terminal 200, the base station 100 notifies, for example, the TCI state in which each of the two CSI-RS IDs and the polarization are associated. That is, the base station 100 notifies the TCI state information including the information on the plurality of CSI-RS IDs and their respective polarizations.
  • the terminal 200 has, for example, the number of sets of the reference signal (for example, SSB or CSI-RS) notified in the TCI state and the reference signal (for example, CSI-RS) notified in the TCI state and the QCL type. Based on this, any of the above-mentioned notification methods A to C may be determined. In other words, the terminal 200 may determine how to use polarized waves (for example, reuse or multiplex transmission of polarized waves) based on the TCI state.
  • the reference signal for example, SSB or CSI-RS
  • the reference signal for example, CSI-RS
  • the TCI state information may be notified by an RRC message (for example, RRC reconfiguration message) or MAC CE instead of DCI.
  • the terminal 200 operates to continue using the polarization notified by the MAC CE for a certain period of time.
  • the base station 100 may notify the TCI state by RRC message or MAC CE at the time of handover or beam (beam defined by SSB) switching, for example. Further, the base station 100 may notify, for example, a plurality of TCI state candidates that can be used in the RRC message, and activate the TCI state used by MAC CE. Further, the base station 100 may select a TCI state for each data allocation from a plurality of TCI states notified in the RRC message or MAC CE, and notify the terminal 200 by DCI.
  • the polarization is defined in the channel characteristic corresponding to at least one of the QCL Types A to D. May be included.
  • the polarization may be notified by "Precoding information" notified in DCI.
  • polarization may be notified in three states in Precoding Information (see, for example, FIG. 17) for two antenna ports specified in Table 7.3.1.1.2-4 in 3GPP TS 38.212 V15.6.0.
  • the terminal 200 determines, for example, the polarization corresponding to the value (bit value) notified in the bit field of Precoding information shown in FIG. 17 as the polarization of the radio signal. In other words, the terminal 200 replaces the information notified by the Precoding information with the polarization information.
  • the antenna port information is notified by DCI in 4 to 6 bits.
  • Polarization may be notified by the notification of this antenna port.
  • the antenna port number and the polarization may be associated with each other in advance, and the polarization may be notified by the notification of the antenna port number.
  • the polarization may be notified by the value of the “Antenna port (s)” field notified by DCI.
  • the notification information is determined in advance so that the first layer is right-handed circularly polarized wave (RHCP) and the second layer is left-handed circularly polarized wave (LHCP). The amount may be reduced.
  • the terminal 200 replaces the information of the antenna port with the polarization information and transmits using the specified polarization.
  • the above is an example of the notification method using the polarization notification bit, TCI state, Precoding information, and antenna port notification bit.
  • the base station 100 may notify the polarization by, for example, DCI (for example, transmitted in PDCCH) for notifying the allocation of Msg.2. With this notification, the terminal 200 can use the notified polarization in, for example, communication after Msg.2.
  • DCI for example, transmitted in PDCCH
  • the method of notifying polarization by DCI is not limited to these methods, and polarization information may be notified by other bits in DCI.
  • the polarization notification bit may be notified using, for example, a terminal group common DCI such as DCI format 2.
  • the base station 100 can simultaneously notify the terminal group of the polarization information, so that the control information overhead can be reduced.
  • the polarization information notified by DCI may be valid information for PDSCH or PUSCH assigned by DCI, and after the notification of DCI until the terminal 200 is notified of the polarization information having different contents. , May be valid information for the channel or signal assigned to the terminal 200.
  • the terminal 200 determines the fixed polarization to be the polarization used for wireless communication until the reception of DCI, and the polarization indicated by the DCI received from the base station 100 is DCI. Is determined to be the polarization used for wireless communication after being received.
  • the polarization notified by DCI allows the base station 100 to flexibly set the polarization for each terminal 200 or for each data, so that, for example, cell-to-cell interference (or beam-to-beam interference) can be suppressed. Further, since individual polarizations can be set for each terminal 200 or for each data, the throughput can be improved by, for example, polarization multiplex transmission between terminals 200 or polarization multiplex transmission between data in the same terminal 200.
  • the base station 100 and the terminal 200 are, for example, after at least a part of the initial access wireless communication (for example, corresponding to the first phase) and a part of the initial access.
  • the polarization used in wireless communication (for example, corresponding to the second phase) is determined.
  • the terminal 200 responds to a fixed polarization by determining the fixed polarization (eg, a predefined polarization) to the polarization of the channel or signal at the initial access (eg SSB and SIB).
  • the signal can be received depending on the receiving method. Therefore, in the terminal 200, for example, it is possible to suppress the complexity of communication processing, reduce the processing amount, and improve the reception performance. Further, for example, the terminal 200 can reduce the signaling for notifying the polarization information by being based on the fixed polarization.
  • the terminal 200 has a bias notified by the base station 100 with respect to a channel or signal used for user data that occupies more time resources or frequency resources as compared with the initial access. Set the wave.
  • the terminal 200 is based on a communication method (for example, at least one of transmission and reception) according to the polarization set in the terminal 200 by a predetermined polarization or a polarization notified from the base station 100. Communication processing can be performed, so that the communication performance of the terminal 200 can be improved.
  • a communication method for example, at least one of transmission and reception
  • the terminal 200 can determine the method of using the polarized light (for example, reuse or multiplex transmission of polarized light) by the notification of the polarized light, interference can be avoided by reusing the polarized light, and the polarized light can be multiplexed. Throughput can be improved by transmission.
  • the polarized light for example, reuse or multiplex transmission of polarized light
  • the resource (for example, polarization) used for communication in the terminal 200 can be appropriately determined.
  • the fixed polarization may be predetermined in the standard, for example, or may be freely set by the operation.
  • the terminal 200 may detect the polarization by a blind determination at the time of the first connection, and then listen for the signal with the same polarization.
  • the configuration of the base station and the terminal according to the present embodiment may be the same as the configuration of the base station 100 and the terminal 200 according to the first embodiment.
  • the polarization set in each cell is associated with the identification information of the cell (for example, also referred to as cell ID or PhysicalCell ID (PCI)).
  • cell ID for example, also referred to as cell ID or PhysicalCell ID (PCI)
  • the terminal 200 detects PSS and SSS in the SSB in the SSB search at the time of initial access, and specifies the cell ID. After that, the terminal 200 receives the PBCH in the SSB and acquires the system information notified in the cell.
  • the terminal 200 may set the polarization associated with the cell ID in, for example, the SSB search (or after the SSB search).
  • the even cell ID and the right-handed circularly polarized wave may be associated with each other, and the odd-numbered cell ID and the left-handed circularly polarized wave may be associated with each other.
  • the cell ID with the least significant bit 0 may be associated with the right-handed circularly polarized light (RHCP)
  • the cell ID with the least significant bit 1 may be associated with the left-handed circularly polarized light.
  • the association between even and odd cell IDs and RHCP and LHCP may be reversed.
  • the cell ID in the range having a smaller number is associated with the right-handed circularly polarized wave (RHCP), and the cell ID in the range having a higher number (for example, the second half) is associated.
  • Cell ID) may be associated with left-handed circularly polarized waves.
  • a cell ID having a most significant bit of 0 may be associated with a right-handed circularly polarized wave (RHCP), and a cell ID having a most significant bit of 1 may be associated with a left-handed circularly polarized light.
  • FIG. 18 is a flow chart showing an example of processing of the terminal 200 according to the present embodiment.
  • the terminal 200 performs reception using right-handed circularly polarized waves when searching for SSB, for example, when detecting PSS or SSS of a cell ID corresponding to right-handed circularly polarized waves (RHCP) (S401).
  • RHCP right-handed circularly polarized waves
  • S402 the terminal 200 receives the right-handed circularly polarized wave, for example, reception processing (in other words, downlink processing) and transmission processing.
  • reception processing in other words, downlink processing
  • transmission processing In other words, the polarization is set to be used for uplink processing
  • the terminal 200 is, for example, the PSS or SSS of the cell ID corresponding to the left-handed circularly polarized wave (LHCP).
  • reception using left-handed circularly polarized waves is performed (S403).
  • the terminal 200 transmits the left-handed circularly polarized wave, for example, reception processing (in other words, downlink processing) and transmission processing (in other words). Then, the polarization is set to be used for the uplink processing) (S405).
  • the terminal 200 when SSB is not detected (S404: No), the terminal 200 returns to the process of S401 and repeats the SSB search.
  • the terminal 200 receives the SIB based on the polarization set based on the cell ID, for example (S406).
  • the terminal 200 can determine the polarization associated with the cell ID by detecting the cell ID in the cell search. Therefore, since it is not necessary to notify the polarization information from the base station 100, the signaling overhead of the control information for notifying the polarization information can be reduced.
  • SSB can also be communicated based on the polarization based on the cell ID, so that interference can be avoided by the polarization in more channels.
  • the terminal 200 performs PSS or SSS reception processing (for example, processing of S401 or S404 in FIG. 18) based on the polarization associated with the cell ID to be searched during the SSB search.
  • PSS or SSS reception processing for example, processing of S401 or S404 in FIG. 18
  • the terminal 200 identifies the cell ID by the SSB search, and uses the polarization associated with the identified cell ID for communication after the detection of the cell ID (for example, after receiving the PBCH included in the SSB). It may be determined to be polarized.
  • fixed polarization for example, predetermined polarization
  • PSS and SSS which are channels for specifying the cell ID, as in the first embodiment.
  • the configuration of the base station and the terminal according to the present embodiment may be the same as the configuration of the base station 100 and the terminal 200 according to the first embodiment.
  • the polarization set for each beam is associated with the SSB identification information (also referred to as SSBID or SSBindex) corresponding to the beam.
  • SSBID also referred to as SSBID or SSBindex
  • the terminal 200 may set the polarization associated with the detected SSB ID of the SSB.
  • an even-numbered SSB ID may be associated with a right-handed circularly polarized wave (RHCP), and an odd-numbered SSB ID may be associated with a left-handed circularly polarized wave (LHCP).
  • RHCP right-handed circularly polarized wave
  • LHCP left-handed circularly polarized wave
  • the SSBID with the least significant bit 0 may be associated with the right-handed circularly polarized light (RHCP)
  • the SSBID with the least significant bit 1 may be associated with the left-handed circularly polarized light.
  • the association between even and odd SSB IDs and RHCP and LHCP may be reversed.
  • the SSB ID in the smaller number range (for example, the SSB ID in the first half) is associated with the right-handed circularly polarized wave (RHCP), and the SSB ID in the higher number range (for example, the second half) is associated.
  • SSB ID may be associated with left-handed circularly polarized waves.
  • the SSBID having the most significant bit of 0 may be associated with the right-handed circularly polarized light (RHCP), and the SSBID having the most significant bit of 1 may be associated with the left-handed circularly polarized light.
  • the SSB ID is notified by the PBCH DMRS (reference signal used for PBCH demodulation) on the upper bit (MSB: Most Significant Bit) side and the PBCH on the lower bit (LSB: Least Significant Bit) side. Notified by the data part of.
  • the terminal 200 can identify the MSB side of the SSB ID when the PBCH DMRS is detected.
  • the terminal 200 cannot specify the LSB of the SSB ID until the data portion of the PBCH is decoded and analyzed.
  • the notification of polarization may be associated with the high-order bit side (for example, MSB) of the SSB ID.
  • the terminal 200 can determine the polarization associated with the SSB ID before decoding the PBCH data part, so that the PBCH data part can be received based on the polarization peculiar to the cell or beam.
  • FIG. 19 is a flow chart showing an example of processing of the terminal 200 according to the present embodiment.
  • the terminal 200 searches (in other words, detects) PSS or SSS included in SSB, for example (S501).
  • the terminal 200 may be based on a fixed polarization, and searches by switching between no polarization, right-handed circularly polarized wave, and left-handed circularly polarized wave (in other words, blind determination).
  • the search may be performed by receiving polarization diversity.
  • the terminal 200 returns to the process of S501 and repeats the search for PSS or SSS.
  • the terminal 200 detects SSBID (or SSBindex) (S503).
  • the terminal 200 may detect the SSBID (for example, the upper bit of the SSBID) from the PBCH DMRS, or may detect the SSBID (for example, the lower bit of the SSBID) from the data unit of the PBCH.
  • the terminal 200 sets the polarization associated with the detected SSB ID to the polarization used for, for example, reception processing (in other words, downlink processing) and transmission processing (in other words, uplink processing) (S504). ).
  • the terminal 200 decodes the PBCH data (S505) and receives the SIB (S506), for example, based on the set polarization.
  • the terminal 200 can determine the polarization associated with the SSB ID by detecting the SSB ID. Therefore, since it is not necessary to notify the polarization information from the base station 100, the signaling overhead of the control information for notifying the polarization information can be reduced.
  • communication can be performed based on the polarization based on the SSB ID.
  • the terminal 200 can perform communication processing based on the polarization associated with the SSB ID in the processing after the reception of the data unit of the PBCH.
  • the terminal 200 can perform communication processing based on the polarization associated with the SSB ID in the processing after the reception of the SIB. Therefore, according to the present embodiment, interference can be avoided by polarization in more channels.
  • the function of the base station exists on the satellite "Regenerative type", and the function of the base station exists in the GW on the ground, and the satellite receives the signal from the GW, and performs frequency conversion and There is a "Transparent type” that amplifies and transmits.
  • a "Transparent type” that amplifies and transmits.
  • One embodiment of the present disclosure is applicable to both Regenerative type and Transparent type.
  • the cell may be an area defined by the received power of SSB or CSI-RS transmitted by a base station (for example, a satellite), or an area defined by a geographical position.
  • the polarized light is circularly polarized light
  • the polarized light is linearly polarized light (for example, at least one of vertically polarized light and horizontally polarized light) or elliptically polarized light.
  • Other polarizations such as waves may be used.
  • each embodiment may be combined.
  • the base station 100 may notify the polarization of each cell based on the second embodiment, and may further notify the polarization of each terminal 200 based on the method 3 of the first embodiment.
  • the base station 100 notifies the polarization information for the downlink data by the TCI state based on the method 3 as the polarization notification method based on the first embodiment, and provides the polarization information for the uplink data. It may be notified by Precoding information based on the method 3.
  • the downlink data may be set in cell units based on the second embodiment, and the uplink data may be set by the DCI notification based on the method 3 of the first embodiment.
  • the terminal 200 stores the polarization information detected by the blind determination or the notified polarization information at the time of the first access, and then, for example, when the power of the terminal 200 is turned off. Alternatively, when the RRC_IDLE state is reached, the terminal 200 may set the polarization used for transmission / reception based on the stored polarization information.
  • the NTN environment for example, satellite communication environment
  • the present disclosure is not limited to this.
  • the present disclosure may be applied to other communication environments (eg, LTE and / or NR terrestrial cellular environments).
  • the terminal 200 sets a fixed polarization in the period before receiving the notification of the polarization information, and sets the notification in the period after receiving the notification of the polarization information.
  • the terminal 200 may apply the polarization notified from the base station 100 to at least one channel or signal after receiving the notification of the polarization information.
  • the terminal 200 may set the polarization notified by the SIB for communication of user data without setting it for RACH processing.
  • the terminal 200 may set a fixed polarization in the RACH process, for example.
  • the terminal 200 may switch between fixed polarization and polarization notified from the base station 100 depending on the type of channel or signal.
  • the terminal 200 sets the polarization (for example, the fixed polarization and the polarization notified from the base station 100) in both the initial access and the processing after the initial access.
  • polarization may be applied in at least one of the initial access and the processing after the initial access.
  • the polarization may not be applied in the initial access, and the polarization may be applied in the processing after the initial access.
  • the polarization is not applied in the process until the polarization information is notified from the base station 100, and the polarization is applied in the process after the polarization information is notified from the base station 100. You may.
  • polarization information may be notified only by satellites, base stations or wireless systems that use polarization. Further, based on the notification of the terminal capability from the terminal, the notification may be made only to the terminal having NTN or satellite communication capability (Capability). The capability of the terminal may be notified from the terminal to the base station by UE capability, UE feature, Subscriber Profile ID, or the like.
  • terminal in each of the above-described embodiments may be replaced with the term "UE".
  • base station may be replaced by the terms "eNodeB”, [eNB], "gNodeB” or "gNB”.
  • Each functional block used in the description of the above embodiment is partially or wholly realized as an LSI which is an integrated circuit, and each process described in the above embodiment is partially or wholly. It may be controlled by one LSI or a combination of LSIs.
  • the LSI may be composed of individual chips, or may be composed of one chip so as to include a part or all of functional blocks.
  • the LSI may include data input and output.
  • LSIs may be referred to as ICs, system LSIs, super LSIs, and ultra LSIs depending on the degree of integration.
  • the method of making an integrated circuit is not limited to LSI, and may be realized by a dedicated circuit, a general-purpose processor, or a dedicated processor. Further, an FPGA (Field Programmable Gate Array) that can be programmed after the LSI is manufactured, or a reconfigurable processor that can reconfigure the connection and settings of the circuit cells inside the LSI may be used.
  • FPGA Field Programmable Gate Array
  • the present disclosure may be realized as digital processing or analog processing.
  • the communication device may include a wireless transceiver and a processing / control circuit.
  • the wireless transmitter / receiver may include a receiver and a transmitter, or those as functions.
  • the radio transmitter / receiver (transmitter, receiver) may include an RF (Radio Frequency) module and one or more antennas.
  • RF modules may include amplifiers, RF modulators / demodulators, or the like.
  • Non-limiting examples of communication devices include telephones (mobile phones, smartphones, etc.), tablets, personal computers (PCs) (laptops, desktops, notebooks, etc.), cameras (digital stills / video cameras, etc.).
  • Digital players digital audio / video players, etc.
  • wearable devices wearable cameras, smart watches, tracking devices, etc.
  • game consoles digital book readers
  • telehealth telemedicines remote health Care / medicine prescription
  • vehicles with communication functions or mobile transportation automobiles, airplanes, ships, etc.
  • combinations of the above-mentioned various devices can be mentioned.
  • Communication devices are not limited to those that are portable or mobile, but are all types of devices, devices, systems that are not portable or fixed, such as smart home devices (home appliances, lighting equipment, smart meters or Includes measuring instruments, control panels, etc.), vending machines, and any other "Things” that can exist on the IoT (Internet of Things) network.
  • smart home devices home appliances, lighting equipment, smart meters or Includes measuring instruments, control panels, etc.
  • vending machines and any other “Things” that can exist on the IoT (Internet of Things) network.
  • Communication includes data communication using a combination of these, in addition to data communication using a cellular system, wireless LAN system, communication satellite system, etc.
  • the communication device also includes a device such as a controller or a sensor that is connected or connected to a communication device that executes the communication function described in the present disclosure.
  • a device such as a controller or a sensor that is connected or connected to a communication device that executes the communication function described in the present disclosure.
  • it includes controllers and sensors that generate control and data signals used by communication devices that perform the communication functions of the communication device.
  • Communication devices also include infrastructure equipment that communicates with or controls these non-limiting devices, such as base stations, access points, and any other device, device, or system. ..
  • the terminal according to an embodiment of the present disclosure is determined to be a control circuit for determining polarization used in at least one of a first wireless communication and a second wireless communication after the first wireless communication.
  • a communication circuit that performs at least one of the wireless communications using the polarized light is provided.
  • control circuit determines a predetermined polarization to be the polarization used for the first wireless communication.
  • control circuit determines the polarization used for the second wireless communication based on the information received from the base station.
  • the information is system information
  • the control circuit uses the polarization indicated by the system information for the second wireless communication after the system information is received. Decide on a wave.
  • the information is terminal-specific upper layer signaling
  • the control circuit uses the polarization indicated by the upper layer signaling as the second layer signal after the upper layer signaling is received. Determine the polarization used for wireless communication.
  • the information is downlink control information
  • the control circuit is the second after receiving the downlink control information based on the polarization indicated by the downlink control information. Determine the polarization used for wireless communication.
  • the polarization indicated by the downlink control information is indicated by downlink transmission setting information or information related to precoding.
  • the information is cell identification information, and the identification information of the cell and the polarization are associated with each other.
  • the information is identification information of a synchronization signal corresponding to a beam, and the identification information of the synchronization signal and the polarization are associated with each other.
  • the bit included in the demodulation reference signal of the broadcast channel is associated with the polarization.
  • the terminal determines and determines the polarization used in at least one of the first wireless communication and the second wireless communication after the first wireless communication. At least one of the wireless communications is performed using the polarized light.
  • One aspect of the present disclosure is useful for wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末は、第1の無線通信、及び、第1の無線通信の後の第2の無線通信の少なくとも一方において用いる偏波を決定する制御回路と、決定された偏波を用いて少なくとも一方の無線通信を行う通信回路と、を具備する。

Description

端末及び通信方法
 本開示は、端末及び通信方法に関する。
 5Gの標準化において、新しい無線アクセス技術(NR:New Radio access technology)が3GPPで議論され、NRのRelease 15 (Rel.15)仕様が発行された。
3GPP, TR38.811 V15.2.0, "Study on New Radio (NR) to support non terrestrial networks (Release 15)," 2019-09 3GPP TSG RAN WG1 #98bis, R1-1911003, "On physical layer control procedures for NTN," October, 2019
 しかしながら、無線通信システムにおいて、無線通信に用いる偏波の決定方法については検討の余地がある。
 本開示の非限定的な実施例は、無線通信に用いる偏波を適切に決定できる端末及び通信方法の提供に資する。
 本開示の一実施例に係る端末は、第1の無線通信、及び、前記第1の無線通信の後の第2の無線通信の少なくとも一方において用いる偏波を決定する制御回路と、決定された前記偏波を用いて前記少なくとも一方の無線通信を行う通信回路と、を具備する。
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一実施例によれば、無線通信に用いる偏波を適切に決定できる。
 本開示の一実施例における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
3GPP NRシステムの例示的なアーキテクチャの図 NG-RAN(Next Generation - Radio Access Network)と5GC(5th Generation Core)との間の機能分離を示す概略図 RRC(Radio Resource Control)接続のセットアップ/再設定の手順のシーケンス図 大容量・高速通信(eMBB:enhanced Mobile BroadBand)、多数同時接続マシンタイプ通信(mMTC:massive Machine Type Communications)、および高信頼・超低遅延通信(URLLC:Ultra Reliable and Low Latency Communications)の利用シナリオを示す概略図 非ローミングシナリオのための例示的な5Gシステムアーキテクチャを示すブロック図 リソースのリユース方法の一例を示す図 実施の形態1に係る基地局の一部の構成を示すブロック図 実施の形態1に係る端末の一部の構成を示すブロック図 実施の形態1に係る基地局の構成の一例を示すブロック図 実施の形態1に係る端末の構成の一例を示すブロック図 初期アクセスの一例を示す図 実施の形態1の方法1に係る端末の動作例を示すフローチャート 実施の形態1の方法2に係る端末の動作例を示すフローチャート 実施の形態1の方法3に係る端末の動作例を示すフローチャート quasi co-location(QCL) Typeの一例を示す図 TCI state及びQCLに関するradio resource control(RRC)メッセージの一例を示す図 Precoding informationの一例を示す図 実施の形態2に係る端末の動作例を示すフローチャート 実施の形態3に係る端末の動作例を示すフローチャート
 以下、本開示の実施の形態について図面を参照して詳細に説明する。
 <5G NRのシステムアーキテクチャおよびプロトコルスタック>
 3GPPは、100GHzまでの周波数範囲で動作する新無線アクセス技術(NR)の開発を含む第5世代携帯電話技術(単に「5G」ともいう)の次のリリースに向けて作業を続けている。5G規格の初版は2017年の終わりに完成しており、これにより、5G NRの規格に準拠した端末(例えば、スマートフォン)の試作および商用展開に移ることが可能である。
 例えば、システムアーキテクチャは、全体としては、gNBを備えるNG-RAN(Next Generation - Radio Access Network)を想定する。gNBは、NG無線アクセスのユーザプレーン(SDAP/PDCP/RLC/MAC/PHY)および制御プレーン(RRC)のプロトコルのUE側の終端を提供する。gNBは、Xnインタフェースによって互いに接続されている。また、gNBは、Next Generation(NG)インタフェースによってNGC(Next Generation Core)に、より具体的には、NG-CインタフェースによってAMF(Access and Mobility Management Function)(例えば、AMFを行う特定のコアエンティティ)に、また、NG-UインタフェースによってUPF(User Plane Function)(例えば、UPFを行う特定のコアエンティティ)に接続されている。NG-RANアーキテクチャを図1に示す(例えば、3GPP TS 38.300 v15.6.0, section 4参照)。
 NRのユーザプレーンのプロトコルスタック(例えば、3GPP TS 38.300, section 4.4.1参照)は、gNBにおいてネットワーク側で終端されるPDCP(Packet Data Convergence Protocol(TS 38.300の第6.4節参照))サブレイヤ、RLC(Radio Link Control(TS 38.300の第6.3節参照))サブレイヤ、およびMAC(Medium Access Control(TS 38.300の第6.2節参照))サブレイヤを含む。また、新たなアクセス層(AS:Access Stratum)のサブレイヤ(SDAP:Service Data Adaptation Protocol)がPDCPの上に導入されている(例えば、3GPP TS 38.300の第6.5節参照)。また、制御プレーンのプロトコルスタックがNRのために定義されている(例えば、TS 38.300, section 4.4.2参照)。レイヤ2の機能の概要がTS 38.300の第6節に記載されている。PDCPサブレイヤ、RLCサブレイヤ、およびMACサブレイヤの機能は、それぞれ、TS 38.300の第6.4節、第6.3節、および第6.2節に列挙されている。RRCレイヤの機能は、TS 38.300の第7節に列挙されている。
 例えば、Medium-Access-Controlレイヤは、論理チャネル(logical channel)の多重化と、様々なニューメロロジーを扱うことを含むスケジューリングおよびスケジューリング関連の諸機能と、を扱う。
 例えば、物理レイヤ(PHY)は、符号化、PHY HARQ処理、変調、マルチアンテナ処理、および適切な物理的時間-周波数リソースへの信号のマッピングの役割を担う。また、物理レイヤは、物理チャネルへのトランスポートチャネルのマッピングを扱う。物理レイヤは、MACレイヤにトランスポートチャネルの形でサービスを提供する。物理チャネルは、特定のトランスポートチャネルの送信に使用される時間周波数リソースのセットに対応し、各トランスポートチャネルは、対応する物理チャネルにマッピングされる。例えば、物理チャネルには、上り物理チャネルとして、PRACH(Physical Random Access Channel)、PUSCH(Physical Uplink Shared Channel)、PUCCH(Physical Uplink Control Channel)があり、下り物理チャネルとして、PDSCH(Physical Downlink Shared Channel)、PDCCH(Physical Downlink Control Channel)、PBCH(Physical Broadcast Channel) がある。
 NRのユースケース/展開シナリオには、データレート、レイテンシ、およびカバレッジの点で多様な要件を有するenhanced mobile broadband(eMBB)、ultra-reliable low-latency communications(URLLC)、massive machine type communication(mMTC)が含まれ得る。例えば、eMBBは、IMT-Advancedが提供するデータレートの3倍程度のピークデータレート(下りリンクにおいて20Gbpsおよび上りリンクにおいて10Gbps)および実効(user-experienced)データレートをサポートすることが期待されている。一方、URLLCの場合、より厳しい要件が超低レイテンシ(ユーザプレーンのレイテンシについてULおよびDLのそれぞれで0.5ms)および高信頼性(1ms内において1-10-5)について課されている。最後に、mMTCでは、好ましくは高い接続密度(都市環境において装置1,000,000台/km)、悪環境における広いカバレッジ、および低価格の装置のための極めて寿命の長い電池(15年)が求められうる。
 そのため、1つのユースケースに適したOFDMのニューメロロジー(例えば、サブキャリア間隔、OFDMシンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長、スケジューリング区間毎のシンボル数)が他のユースケースには有効でない場合がある。例えば、低レイテンシのサービスでは、好ましくは、mMTCのサービスよりもシンボル長が短いこと(したがって、サブキャリア間隔が大きいこと)および/またはスケジューリング区間(TTIともいう)毎のシンボル数が少ないことが求められうる。さらに、チャネルの遅延スプレッドが大きい展開シナリオでは、好ましくは、遅延スプレッドが短いシナリオよりもCP長が長いことが求められうる。サブキャリア間隔は、同様のCPオーバーヘッドが維持されるように状況に応じて最適化されてもよい。NRがサポートするサブキャリア間隔の値は、1つ以上であってよい。これに対応して、現在、15kHz、30kHz、60kHz…のサブキャリア間隔が考えられている。シンボル長Tuおよびサブキャリア間隔Δfは、式Δf=1/Tuによって直接関係づけられている。LTEシステムと同様に、用語「リソースエレメント」を、1つのOFDM/SC-FDMAシンボルの長さに対する1つのサブキャリアから構成される最小のリソース単位を意味するように使用することができる。
 新無線システム5G-NRでは、各ニューメロロジーおよび各キャリアについて、サブキャリアおよびOFDMシンボルのリソースグリッドが上りリンクおよび下りリンクのそれぞれに定義される。リソースグリッドの各エレメントは、リソースエレメントと呼ばれ、周波数領域の周波数インデックスおよび時間領域のシンボル位置に基づいて特定される(3GPP TS 38.211 v15.6.0参照)。
 <5G NRにおけるNG-RANと5GCとの間の機能分離>
 図2は、NG-RANと5GCとの間の機能分離を示す。NG-RANの論理ノードは、gNBまたはng-eNBである。5GCは、論理ノードAMF、UPF、およびSMFを有する。
 例えば、gNBおよびng-eNBは、以下の主な機能をホストする:
 - 無線ベアラ制御(Radio Bearer Control)、無線アドミッション制御(Radio Admission Control)、接続モビリティ制御(Connection Mobility Control)、上りリンクおよび下りリンクの両方におけるリソースのUEへの動的割当(スケジューリング)等の無線リソース管理(Radio Resource Management)の機能;
 - データのIPヘッダ圧縮、暗号化、および完全性保護;
 - UEが提供する情報からAMFへのルーティングを決定することができない場合のUEのアタッチ時のAMFの選択;
 - UPFに向けたユーザプレーンデータのルーティング;
 - AMFに向けた制御プレーン情報のルーティング;
 - 接続のセットアップおよび解除;
 - ページングメッセージのスケジューリングおよび送信;
 - システム報知情報(AMFまたは運用管理保守機能(OAM:Operation, Admission, Maintenance)が発信源)のスケジューリングおよび送信;
 - モビリティおよびスケジューリングのための測定および測定報告の設定;
 - 上りリンクにおけるトランスポートレベルのパケットマーキング;
 - セッション管理;
 - ネットワークスライシングのサポート;
 - QoSフローの管理およびデータ無線ベアラに対するマッピング;
 - RRC_INACTIVE状態のUEのサポート;
 - NASメッセージの配信機能;
 - 無線アクセスネットワークの共有;
 - デュアルコネクティビティ;
 - NRとE-UTRAとの緊密な連携。
 Access and Mobility Management Function(AMF)は、以下の主な機能をホストする:
 - Non-Access Stratum(NAS)シグナリングを終端させる機能;
 - NASシグナリングのセキュリティ;
 - Access Stratum(AS)のセキュリティ制御;
 - 3GPPのアクセスネットワーク間でのモビリティのためのコアネットワーク(CN:Core Network)ノード間シグナリング;
 - アイドルモードのUEへの到達可能性(ページングの再送信の制御および実行を含む);
 - 登録エリアの管理;
 - システム内モビリティおよびシステム間モビリティのサポート;
 - アクセス認証;
 - ローミング権限のチェックを含むアクセス承認;
 - モビリティ管理制御(加入およびポリシー);
 - ネットワークスライシングのサポート;
 - Session Management Function(SMF)の選択。
 さらに、User Plane Function(UPF)は、以下の主な機能をホストする:
 - intra-RATモビリティ/inter-RATモビリティ(適用可能な場合)のためのアンカーポイント;
 - データネットワークとの相互接続のための外部PDU(Protocol Data Unit)セッションポイント;
 - パケットのルーティングおよび転送;
 - パケット検査およびユーザプレーン部分のポリシールールの強制(Policy rule enforcement);
 - トラフィック使用量の報告;
 - データネットワークへのトラフィックフローのルーティングをサポートするための上りリンククラス分類(uplink classifier);
 - マルチホームPDUセッション(multi-homed PDU session)をサポートするための分岐点(Branching Point);
 - ユーザプレーンに対するQoS処理(例えば、パケットフィルタリング、ゲーティング(gating)、UL/DLレート制御(UL/DL rate enforcement);
 - 上りリンクトラフィックの検証(SDFのQoSフローに対するマッピング);
 - 下りリンクパケットのバッファリングおよび下りリンクデータ通知のトリガ機能。
 最後に、Session Management Function(SMF)は、以下の主な機能をホストする:
 - セッション管理;
 - UEに対するIPアドレスの割当および管理;
 - UPFの選択および制御;
 - 適切な宛先にトラフィックをルーティングするためのUser Plane Function(UPF)におけるトラフィックステアリング(traffic steering)の設定機能;
 - 制御部分のポリシーの強制およびQoS;
 - 下りリンクデータの通知。
 <RRC接続のセットアップおよび再設定の手順>
 図3は、NAS部分の、UEがRRC_IDLEからRRC_CONNECTEDに移行する際のUE、gNB、およびAMF(5GCエンティティ)の間のやり取りのいくつかを示す(TS 38.300 v15.6.0参照)。
 RRCは、UEおよびgNBの設定に使用される上位レイヤのシグナリング(プロトコル)である。この移行により、AMFは、UEコンテキストデータ(これは、例えば、PDUセッションコンテキスト、セキュリティキー、UE無線性能(UE Radio Capability)、UEセキュリティ性能(UE Security Capabilities)等を含む)を用意し、初期コンテキストセットアップ要求(INITIAL CONTEXT SETUP REQUEST)とともにgNBに送る。そして、gNBは、UEと一緒に、ASセキュリティをアクティブにする。これは、gNBがUEにSecurityModeCommandメッセージを送信し、UEがSecurityModeCompleteメッセージでgNBに応答することによって行われる。その後、gNBは、UEにRRCReconfigurationメッセージを送信し、これに対するUEからのRRCReconfigurationCompleteをgNBが受信することによって、Signaling Radio Bearer 2(SRB2)およびData Radio Bearer(DRB)をセットアップするための再設定を行う。シグナリングのみの接続については、SRB2およびDRBがセットアップされないため、RRCReconfigurationに関するステップは省かれる。最後に、gNBは、初期コンテキストセットアップ応答(INITIAL CONTEXT SETUP RESPONSE)でセットアップ手順が完了したことをAMFに通知する。
 したがって、本開示では、gNodeBとのNext Generation(NG)接続を動作時に確立する制御回路と、gNodeBとユーザ機器(UE:User Equipment)との間のシグナリング無線ベアラがセットアップされるように動作時にNG接続を介してgNodeBに初期コンテキストセットアップメッセージを送信する送信部と、を備える、5th Generation Core(5GC)のエンティティ(例えば、AMF、SMF等)が提供される。具体的には、gNodeBは、リソース割当設定情報要素(IE: Information Element)を含むRadio Resource Control(RRC)シグナリングを、シグナリング無線ベアラを介してUEに送信する。そして、UEは、リソース割当設定に基づき上りリンクにおける送信または下りリンクにおける受信を行う。
 <2020年以降のIMTの利用シナリオ>
 図4は、5G NRのためのユースケースのいくつかを示す。3rd generation partnership project new radio(3GPP NR)では、多種多様なサービスおよびアプリケーションをサポートすることがIMT-2020によって構想されていた3つのユースケースが検討されている。大容量・高速通信(eMBB:enhanced mobile-broadband)のための第一段階の仕様の策定が終了している。現在および将来の作業には、eMBBのサポートを拡充していくことに加えて、高信頼・超低遅延通信(URLLC:ultra-reliable and low-latency communications)および多数同時接続マシンタイプ通信(mMTC:massive machine-type communicationsのための標準化が含まれる。図4は、2020年以降のIMTの構想上の利用シナリオのいくつかの例を示す(例えばITU-R M.2083 図2参照)。
 URLLCのユースケースには、スループット、レイテンシ(遅延)、および可用性のような性能についての厳格な要件がある。URLLCのユースケースは、工業生産プロセスまたは製造プロセスのワイヤレス制御、遠隔医療手術、スマートグリッドにおける送配電の自動化、交通安全等の今後のこれらのアプリケーションを実現するための要素技術の1つとして構想されている。URLLCの超高信頼性は、TR 38.913によって設定された要件を満たす技術を特定することによってサポートされる。リリース15におけるNR URLLCでは、重要な要件として、目標とするユーザプレーンのレイテンシがUL(上りリンク)で0.5ms、DL(下りリンク)で0.5msであることが含まれている。一度のパケット送信に対する全般的なURLLCの要件は、ユーザプレーンのレイテンシが1msの場合、32バイトのパケットサイズに対してブロック誤り率(BLER:block error rate)が1E-5であることである。
 物理レイヤの観点では、信頼性は、多くの採り得る方法で向上可能である。現在の信頼性向上の余地としては、URLLC用の別個のCQI表、よりコンパクトなDCIフォーマット、PDCCHの繰り返し等を定義することが含まれる。しかしながら、この余地は、NRが(NR URLLCの重要要件に関し)より安定しかつより開発されるにつれて、超高信頼性の実現のために広がりうる。リリース15におけるNR URLLCの具体的なユースケースには、拡張現実/仮想現実(AR/VR)、e-ヘルス、e-セイフティ、およびミッションクリティカルなアプリケーションが含まれる。
 また、NR URLLCが目標とする技術強化は、レイテンシの改善および信頼性の向上を目指している。レイテンシの改善のための技術強化には、設定可能なニューメロロジー、フレキシブルなマッピングによる非スロットベースのスケジューリング、グラントフリーの(設定されたグラントの)上りリンク、データチャネルにおけるスロットレベルでの繰り返し、および下りリンクでのプリエンプション(Pre-emption)が含まれる。プリエンプションとは、リソースが既に割り当てられた送信が停止され、当該既に割り当てられたリソースが、後から要求されたより低いレイテンシ/より高い優先度の要件の他の送信に使用されることを意味する。したがって、既に許可されていた送信は、後の送信によって差し替えられる。プリエンプションは、具体的なサービスタイプと無関係に適用可能である。例えば、サービスタイプA(URLLC)の送信が、サービスタイプB(eMBB等)の送信によって差し替えられてもよい。信頼性向上についての技術強化には、1E-5の目標BLERのための専用のCQI/MCS表が含まれる。
 mMTC(massive machine type communication)のユースケースの特徴は、典型的には遅延の影響を受けにくい比較的少量のデータを送信する接続装置の数が極めて多いことである。装置には、低価格であること、および電池寿命が非常に長いことが要求される。NRの観点からは、非常に狭い帯域幅部分を利用することが、UEから見て電力が節約されかつ電池の長寿命化を可能にする1つの解決法である。
 上述のように、NRにおける信頼性向上のスコープはより広くなることが予測される。あらゆるケースにとっての重要要件の1つであって、例えばURLLCおよびmMTCについての重要要件が高信頼性または超高信頼性である。いくつかのメカニズムが信頼性を無線の観点およびネットワークの観点から向上させることができる。概して、信頼性の向上に役立つ可能性がある2つ~3つの重要な領域が存在する。これらの領域には、コンパクトな制御チャネル情報、データチャネル/制御チャネルの繰り返し、および周波数領域、時間領域、および/または空間領域に関するダイバーシティがある。これらの領域は、特定の通信シナリオにかかわらず一般に信頼性向上に適用可能である。
 NR URLLCに関し、ファクトリーオートメーション、運送業、および電力の分配のような、要件がより厳しいさらなるユースケースが想定されている。厳しい要件とは、高い信頼性(10-6レベルまでの信頼性)、高い可用性、256バイトまでのパケットサイズ、数μs程度までの時刻同期(time synchronization)(ユースケースに応じて、値を、周波数範囲および0.5ms~1ms程度の短いレイテンシ(例えば、目標とするユーザプレーンでの0.5msのレイテンシ)に応じて1μsまたは数μsとすることができる)である。
 さらに、NR URLLCについては、物理レイヤの観点からいくつかの技術強化が有り得る。これらの技術強化には、コンパクトなDCIに関するPDCCH(Physical Downlink Control Channel)の強化、PDCCHの繰り返し、PDCCHのモニタリングの増加がある。また、UCI(Uplink Control Information)の強化は、enhanced HARQ(Hybrid Automatic Repeat Request)およびCSIフィードバックの強化に関係する。また、ミニスロットレベルのホッピングに関係するPUSCHの強化、および再送信/繰り返しの強化が有り得る。用語「ミニスロット」は、スロットより少数のシンボルを含むTransmission Time Interval(TTI)を指す(スロットは、14個のシンボルを備える)。
 <QoS制御>
 5GのQoS(Quality of Service)モデルは、QoSフローに基づいており、保証されたフロービットレートが求められるQoSフロー(GBR:Guaranteed Bit Rate QoSフロー)、および、保証されたフロービットレートが求められないQoSフロー(非GBR QoSフロー)をいずれもサポートする。したがって、NASレベルでは、QoSフローは、PDUセッションにおける最も微細な粒度のQoSの区分である。QoSフローは、NG-Uインタフェースを介してカプセル化ヘッダ(encapsulation header)において搬送されるQoSフローID(QFI:QoS Flow ID)によってPDUセッション内で特定される。
 各UEについて、5GCは、1つ以上のPDUセッションを確立する。各UEについて、PDUセッションに合わせて、NG-RANは、例えば図3を参照して上に示したように少なくとも1つのData Radio Bearers(DRB)を確立する。また、そのPDUセッションのQoSフローに対する追加のDRBが後から設定可能である(いつ設定するかはNG-RAN次第である)。NG-RANは、様々なPDUセッションに属するパケットを様々なDRBにマッピングする。UEおよび5GCにおけるNASレベルパケットフィルタが、ULパケットおよびDLパケットとQoSフローとを関連付けるのに対し、UEおよびNG-RANにおけるASレベルマッピングルールは、UL QoSフローおよびDL QoSフローとDRBとを関連付ける。
 図5は、5G NRの非ローミング参照アーキテクチャ(non-roaming reference architecture)を示す(TS 23.501 v16.1.0, section 4.23参照)。Application Function(AF)(例えば、図4に例示した、5Gのサービスをホストする外部アプリケーションサーバ)は、サービスを提供するために3GPPコアネットワークとやり取りを行う。例えば、トラフィックのルーティングに影響を与えるアプリケーションをサポートするために、Network Exposure Function(NEF)にアクセスすること、またはポリシー制御(例えば、QoS制御)のためにポリシーフレームワークとやり取りすること(Policy Control Function(PCF)参照)である。オペレーターによる配備に基づいて、オペレーターによって信頼されていると考えられるApplication Functionは、関連するNetwork Functionと直接やり取りすることができる。Network Functionに直接アクセスすることがオペレーターから許可されていないApplication Functionは、NEFを介することにより外部に対する解放フレームワークを使用して関連するNetwork Functionとやり取りする。
 図5は、5Gアーキテクチャのさらなる機能単位、すなわち、Network Slice Selection Function(NSSF)、Network Repository Function(NRF)、Unified Data Management(UDM)、Authentication Server Function(AUSF)、Access and Mobility Management Function(AMF)、Session Management Function(SMF)、およびData Network(DN、例えば、オペレーターによるサービス、インターネットアクセス、またはサードパーティーによるサービス)をさらに示す。コアネットワークの機能およびアプリケーションサービスの全部または一部がクラウドコンピューティング環境において展開されかつ動作してもよい。
 したがって、本開示では、QoS要件に応じたgNodeBとUEとの間の無線ベアラを含むPDUセッションを確立するために、動作時に、URLLCサービス、eMMBサービス、およびmMTCサービスの少なくとも1つに対するQoS要件を含む要求を5GCの機能(例えば、NEF、AMF、SMF、PCF、UPF等)の少なくとも1つに送信する送信部と、動作時に、確立されたPDUセッションを使用してサービスを行う制御回路と、を備える、アプリケーションサーバ(例えば、5GアーキテクチャのAF)が提供される。
 [地上以外のネットワーク(NTN:Non-Terrestrial Network)への拡張]
 Rel. 15は、例えば、地上ネットワーク向けの無線アクセス技術に関する仕様である。一方、NRは、衛星又は高高度疑似衛星(HAPS:High-altitude platform station)を用いた通信等の地上以外のネットワーク(NTN:Non-Terrestrial Network)への拡張が検討されている(例えば、非特許文献1)。
 NTN環境において、地上の端末または航空機の端末に対する衛星のカバーエリア(例えば、1つ以上のセル)は、例えば、衛星から送信されるビームによって形成される。また、例えば、衛星のアンテナからの鋭い指向性を有する複数ビームの送信によって、カバーエリアを分割した複数のセルが形成される。端末は、例えば、移動時には、地上セルラ通信のようにハンドオーバーによってセルを切り替えて通信する。
 また、衛星からの複数ビームを束ねて1つのセルが形成されてもよい。この場合、NTN環境において、例えば、NRのビーム管理(Beam management)の仕組みに基づいてビームを切り替えることが検討されている(例えば、非特許文献2を参照)。
 また、例えば、隣り合う(又は周辺の)ビーム又はセル間において異なる周波数(又はチャネル)を用いることにより、「周波数リユース」を実現できる。周波数リユースでは、例えば、隣り合うビーム又はセル間において異なる周波数が用いられるため、ビーム間干渉(換言すると、セル間干渉)を低減できる。例えば、図6に示すように、3つの周波数(例えば、F1,F2及びF3)を用いるケースでは、周波数リユース3(又は、リユース3)を実現できる。
 また、例えば、衛星通信では、円偏波(circular polarization)が適用されている。例えば、隣り合うビーム間において、周波数リユースに加えて、異なる偏波を用いることにより、ビーム間干渉を軽減できる。例えば、図6に示すように、2つの周波数(例えば、F1及びF2)と、2つの偏波(例えば、右旋円偏波(RHCP:Right Handed Circular Polarization)及び左旋円偏波(LHCP:Left Handed Circular Polarization))を用いるケースでは、リユース4を実現できる。
 偏波のリユース方法(例えば、偏波をどのように利用するか、又は、どの偏波を利用するか)については、例えば、ネットワークオペレーションに依る。ここで、例えば、受信側(例えば、端末又は基地局)では、利用される偏波が既知であれば、直線偏波(linear polarization)アンテナであっても、偏波を分離して信号を受信できる。一方、受信側(例えば、端末又は基地局)において、利用される偏波が未知であっても、例えば、ダイバーシチ合成によって信号を受信することにより、双方の偏波(例えば、RHCP及びLHCP)の信号を受信できるが、損失(ロス)が発生し得る。
 よって、例えば、端末は、下りリンク信号において利用される偏波を決定できれば、偏波に応じた受信方法に基づいて受信処理を行うことができ、受信性能を向上できる。
 また、例えば、右旋円偏波と左旋円偏波とは直交するので、異なる円偏波によって信号を多重(例えば、偏波多重送信とも呼ぶ)することにより、スループットを向上できる。換言すると、円偏波は、リソースのリユースに加え、偏波多重送信にも利用できる。
 しかしながら、5G NR(例えば、Rel. 15)には、端末において利用する偏波又は偏波のを決定する方法(例えば、通知方法)、又は、円偏波の利用方法について十分に検討されていない。
 そこで、本開示では、端末において偏波を決定する方法及び利用する方法について説明する。
 (実施の形態1)
 [無線通信システムの概要]
 本開示の一実施の形態に係る無線通信システムは、基地局100及び端末200を備える。無線通信システムは、例えば、NTN環境の衛星通信システムでもよく、他の無線通信システムでもよい。基地局100及び端末200は、何れも無線通信装置の一例である。
 図7は、本開示の実施の形態に係る基地局100の一部の構成例を示すブロック図である。図7に示す基地局100において、制御部11(例えば、制御回路に相当)は、無線通信における第1のフェーズ、及び、第1のフェーズ以後の第2のフェーズの少なくとも一方において、端末200に対する無線信号の偏波を決定する。通信部12(例えば、通信回路に相当)は、決定された偏波に基づいて、無線信号の送信及び受信の少なくとも一方を行う。なお、以下において、「フェーズ」という用語は、「無線通信」、無線通信における「期間」あるいは「時間区間」といった他の用語に相互に置き換えられてもよい。無線通信における「期間」あるいは「時間区間」は、「時間リソース」の一例と捉えてもよい。また、「偏波」は、周波数及び時間のリソースと同様、無線通信におけるリソースの一例である。
 図8は、本開示の実施の形態に係る端末200の一部の構成例を示すブロック図である。図8に示す端末200において、制御部21(例えば、制御回路に相当)は、無線通信における第1のフェーズ、及び、第1のフェーズ以後の第2のフェーズの少なくとも一方における無線信号の偏波を決定する。通信部22は、決定された偏波に基づいて、無線信号の送信及び受信の少なくとも一方を行う。
 [基地局の構成]
 図9は、基地局100の構成例を示すブロック図である。図9に示す基地局100は、例えば、制御部101と、データ生成部102と、送信データ処理部103と、無線送信部104と、アンテナ105と、無線受信部106と、受信データ処理部107と、を備える。なお、例えば、図9に示す制御部101、データ生成部102、送信データ処理部103及び受信データ処理部107は、図7に示す制御部11に相当し、図9に示すアンテナ105、無線送信部104及び無線受信部106は、図7に示す通信部12に相当してよい。
 制御部101は、例えば、送信(換言すると、下りリンク)及び受信(換言すると、上りリンク)の少なくとも一つにおける偏波の設定を制御する。例えば、制御部101は、セル、ビーム、又は、端末200(換言すると、ユーザ)毎の偏波を設定してもよい。また、例えば、制御部101は、下りリンク及び上りリンクのそれぞれに個別の偏波を設定してもよく、下りリンクと上りリンクとで共通の偏波を設定してもよい。制御部101は、例えば、受信に用いる偏波に関する情報(以下、偏波情報と呼ぶ)を受信データ処理部107に出力し、送信に用いる偏波情報を送信データ処理部103に出力し、端末200へ通知する偏波情報をデータ生成部102に出力する。
 データ生成部102は、例えば、ユーザデータ、システム情報、又は、端末200それぞれに関する個別制御情報(例えば、RRCシグナリング又はdownlink control information(DCI))といった下りデータ信号を生成し、生成した下りデータ信号を送信データ処理部103へ出力する。例えば、データ生成部102は、制御部101から入力される偏波情報に基づいて下りデータ信号を生成してもよく、偏波情報を含む下りデータ信号を生成してもよい。
 送信データ処理部103は、データ生成部102から入力される下りデータ信号を符号化及び変調する。また、送信データ処理部103は、例えば、制御部101から入力される偏波情報に基づいて、送信偏波処理(例えば、右旋円偏波、左旋円偏波、又は、双方)を行う。送信データ処理部103は、送信処理後の信号を無線送信部104へ出力する。
 無線送信部104は、送信データ処理部103から入力される信号に対して、D/A変換、アップコンバート、増幅といった無線送信処理を行い、無線送信処理後の無線信号をアンテナ105から送信する。
 無線受信部106は、アンテナ105を介して受信した、端末200からのデータ信号に対して、ダウンコンバート、A/D変換といった無線受信処理を行い、無線受信処理後の受信信号を受信データ処理部107へ出力する。
 受信データ処理部107は、例えば、制御部101から入力される偏波情報に基づいて、受信信号の受信偏波処理を行う。また、受信データ処理部107は、受信信号を復調及び復号し、受信データを出力する。なお、受信偏波処理には、例えば、右旋円偏波及び左旋円偏波それぞれの偏波ベクトルの乗算等によって、偏波を分離する処理(de-polarization)が含まれてよい。
 [端末の構成]
 図10は、端末200の構成例を示すブロック図である。図10に示す端末200は、例えば、アンテナ201と、無線受信部202と、受信データ処理部203と、制御部204と、データ生成部205と、送信データ処理部206と、無線送信部207と、を備える。なお、例えば、図10に示す制御部204、データ生成部205、送信データ処理部206及び受信データ処理部203は、図8に示す制御部21に相当し、図10に示すアンテナ201、無線送信部207及び無線受信部202は、図8に示す通信部22に相当してよい。
 無線受信部202は、アンテナ201を介して受信した、基地局100からのデータ信号に対して、ダウンコンバート、A/D変換といった無線受信処理を行い、無線受信処理後の受信信号を受信データ処理部203へ出力する。
 受信データ処理部203は、例えば、制御部204から入力される偏波情報に基づいて、受信信号の受信偏波処理(例えば、de-polarization)を行う。また、受信データ処理部203は、受信信号を復調及び復号し、例えば、受信データに含まれる偏波情報を制御部204へ出力する。
 制御部204は、例えば、受信データ処理部203から入力される偏波情報、又は、規格(又は仕様)に規定された情報に基づいて、受信(換言すると、下りリンク)及び送信(換言すると、上りリンク)の少なくとも一つにおいて設定される偏波を決定する。また、制御部204は、例えば、初期アクセス(又は、初期接続とも呼ぶ)時などの基地局100からの偏波情報の通知を受信する以前の期間では、予め規定(換言すると設定)されている偏波の使用を決定してもよい。制御部204は、例えば、受信に用いる偏波情報を受信データ処理部203に出力し、送信に用いる偏波情報を送信データ処理部206に出力する。
 データ生成部205は、例えば、ユーザデータ又はフィードバック情報を含む上りデータ信号を生成し、生成した下りデータ信号を送信データ処理部206へ出力する。
 送信データ処理部206は、データ生成部205から入力される下りデータ信号を符号化及び変調する。また、送信データ処理部206は、例えば、制御部204から入力される偏波情報に基づいて、送信偏波処理(例えば、右旋、左旋、又は、双方)を行う。送信データ処理部206は、送信処理後の信号を無線送信部207へ出力する。
 無線送信部207は、送信データ処理部206から入力される信号に対して、D/A変換、アップコンバート、増幅といった無線送信処理を行い、無線送信処理後の無線信号をアンテナ201から送信する。
 [基地局100及び端末200の動作例]
 上述した基地局100及び端末200の動作例について説明する。
 本実施の形態では、少なくとも初期アクセスにおいて通信されるチャネル及び信号に対して、予め規定された偏波が設定される。
 一方、初期アクセスと異なる処理において通信されるチャネル及び信号、例えば、ユーザ毎に割り当てられるチャネル及び信号に対して、例えば、基地局100から端末200へ通知される偏波が設定される。なお、基地局100から端末200への通知が無い場合、端末200は、例えば、予め規定された偏波を設定してもよい。
 図11は、初期アクセスの一例を示すシーケンス図である。
 例えば、基地局100は、synchronization signal block(SSB)を端末200へ送信し、端末200は、受信したSSBから、基地局100との同期及び共通のセルパラメータを取得する。SSBには、例えば、primary synchronization signal(PSS)及びsecondary synchronization signal(SSS)といった同期信号、及び、報知チャネル(physical broadcast channel(PBCH))が含まれてよい。
 次に、端末200は、基地局100から送信されるsystem information block(SIB)によって報知されるシステム情報を受信する。
 端末200は、例えば、初期アクセス(換言すると、ランダムアクセス手順)において、システム情報において指定されるリソースに基づいて、プリアンブル信号(例えば、Physical Random Access Channel(PRACH)、又は、Msg.1とも呼ぶ)を基地局100へ送信する。
 基地局100は、PRACHを受信し、PRACHに対する応答信号(例えば、RACH response、又は、Msg.2とも呼ぶ)を端末200へ送信する。RACH responseは、例えば、下りデータチャネル(例えば、Physical Downlink Shared Channel(PDSCH))において送信されてよい。
 次に、端末200は、RACH responseに基づいて、例えば、基地局100への接続要求を含むRRCメッセージ(又は、Msg.3と呼ぶ)を送信する。
 基地局100は、Msg.3に対する応答信号を含むRRCメッセージ(又は、Msg.4と呼ぶ)を端末200へ送信する。
 本実施の形態では、上述したように、初期アクセスにおいて、少なくともSSB及びSIBに対して固定の偏波が設定される。端末200は、例えば、固定の偏波を、SSB及びSIBの偏波に決定する。
 なお、固定の偏波は、例えば、規格(又は仕様)に予め規定されてもよく、システム毎に設定されてもよい。固定の偏波は、例えば、右旋円偏波及び左旋円偏波の何れか一方でもよく、両方でもよい。
 一方、本実施の形態では、SSB及びSIBと異なる他のチャネル及び信号に対する偏波は、例えば、基地局100から端末200への情報に基づいて決定(換言すると、設定又は通知)されてよい。
 以下、一例として、偏波を決定する方法1~方法3についてそれぞれ説明する。
 <方法1>
 方法1では、偏波は、セル又はビーム毎に制御される。また、方法1では、各セル又は各ビームに設定される偏波情報は、SIBによって端末200へ通知される。
 端末200は、例えば、図11において、SIBから偏波情報を取得し、取得した偏波情報に示される偏波を、PRACH送信以降の通信(例えば、送信及び受信の少なくとも一つ)における偏波に決定する。なお、端末200には、送信(つまり、上りリンク)と受信(つまり、下りリンク)とで異なる偏波が設定されてもよい。
 図12は、方法1に係る端末200の処理の一例を示すフロー図である。
 図12において、端末200は、例えば、初期アクセス時にSSBをサーチ(換言すると、検出)する(S101)。例えば、端末200(例えば、受信データ処理部203)は、SSBに用いられる偏波が既知の場合、その偏波(例えば、固定の偏波)に基づいてSSBをサーチする。一方、端末200は、偏波が既知でない場合、例えば、偏波無し、右旋円偏波、及び、左旋円偏波を切り替えてSSBをサーチ(換言すると、ブラインド判定)してもよく、偏波ダイバーシチ受信によりSSBをサーチしてもよい。
 端末200は、SSBが検出されない場合(S102:No)、S101の処理に戻り、SSBのサーチを繰り返す。一方、端末200は、SSBが検出される場合(S102:Yes)、SIBを受信する(S103)。例えば、端末200(例えば、受信データ処理部203)は、固定の偏波に基づいてSIBを受信してよい。端末200は、受信したSIBから、例えば、セルの動作パラメータ及び偏波情報を取得する。
 端末200は、取得した偏波を、例えば、受信処理(換言すると、下りリンクの処理)及び送信処理(換言すると、上りリンクの処理)に用いる偏波に設定する(S104)。例えば、端末200は、偏波情報を取得した後、その偏波を受信データ処理部203及び送信データ処理部206に設定する。
 なお、端末200は、SIBに偏波情報が含まれない場合、固定の偏波に基づいて、SIBの受信より後の通信を行ってもよい。
 また、基地局100は、端末グループ毎の偏波をSIBによって通知してもよい。端末グループは、例えば、端末200の種別又は端末200の端末ID(例えば、cell-radio network temporary identifier(C-RNTI)など)により形成される。端末グループ毎に異なる偏波を用いることにより、偏波による多重送信が可能となる。
 また、基地局100は、セル内に報知するSIBの中に、SSB番号と偏波との対応付けの情報、例えば、どのビームでどの偏波が用いられるかに関する情報を含めてもよい。これにより、端末200は、セル内のビームで使用されている偏波を把握できるため、隣接ビームのMeasurement(例えば、L1-RSRP等の測定)の際に適切な偏波を用いることができ、Measurementを迅速に行うことができる。
 また、基地局100は、或るセルまたはビームの偏波情報に加え、当該セルの周辺セルまたはビームの偏波情報をSIBによって通知してもよい。例えば、端末200は、周辺セルまたはビームにおいて用いられる偏波を把握できるため、ハンドオーバ又はビーム切り替えのためのMeasurementを迅速に行うことができる。また、ハンドオーバーまたはビーム切り替え時にハンドオーバー通知の中に前もって次のセルまたはビームで用いる偏波の情報を入れてもよい。これにより、端末200は、次に用いる偏波の情報をあらかじめ得られるため、迅速なハンドオーバーやビーム切り替えが可能となる。
 このように、端末200は、例えば、固定の偏波を、SIBの受信までの無線通信に用いる偏波に決定し、基地局100から通知されるSIBによって示される偏波を、SIBが受信された後の無線通信に用いる偏波に決定する。
 SIBによって通知される偏波によって、基地局100は、セル毎又はビーム毎に偏波を柔軟に設定できるので、例えば、セル間干渉(又はビーム間干渉と呼ぶ)を抑制できる。また、この偏波に基づく偏波多重によって、スループットを向上できる。
 また、方法1では、基地局100は、SIBによってセル又はビーム単位で複数の端末200に対して偏波情報を一度に通知できるため、偏波の通知にかかるリソース量を低減できる。
 また、方法1では、SIBによる偏波の通知により、RRC_IDLE状態又はRRC_INACTIVE状態の端末200へも偏波の通知が可能であるため、RRC_IDLE状態又はRRC_INACTIVE状態において端末200が受信するデータ(例えば、Pagingデータ又はRACH response)に対してもセル毎又はビーム毎の偏波を設定できる。
 なお、端末の初期アクセス時に最初に送信するチャネルであるPRACHに対する偏波の情報は、例えば、RRCパラメータであるIE RACH-ConfigCommon、IE RACH-ConfigDedicated、IE RACH-ConfigCommonGeneric、又は、PRACHのフォーマットを規定するパラメータであるprach-ConfigurationIndexの中で通知されてもよい。この場合、端末200は、PRACHのフォーマット又は送信リソースとともに偏波情報も同時に得ることができる。また、競合ベースのRACH又は非競合のRACH(CFRA: Contention Free Random Access)といったRACH処理の種類毎に異なる偏波を通知することもできる。
 なお、Component Carrier(CC)又はBandwidth Part(BWP)を用いてシステム帯域が複数の周波数に分割される場合、基地局100は、端末200に対して、CC毎又はBWP毎の偏波情報を通知してもよい。この場合、端末200は、CC又はBWPを含む周波数帯において、固定の偏波に基づいてSSB又はSIBを受信し、ユーザデータの通信に割り当てられたCC又はBWPでは、SIBによって通知された偏波に基づいて、ユーザデータを受信又は送信してもよい。なお、CCは、Cell、primary Cell(PCell)又は、secondary Cell(SCell)、Primary SCell (PSCell)、Master Cell Group (MCG)、Secondary Cell Group (SCG)などと呼ばれることもある。また、CC又はBWPが端末毎に設定される場合には、基地局100は、端末200に対して、CC又はBWPが設定あるいは変更される都度に偏波の情報を含む個別RRC制御情報を通知してもよい。
 また、基地局う100は、地上のエリア(例えば、経度と緯度の座標で定義されるエリア)ごとにそのエリアをカバーするビームの偏波をあらかじめ決めておき、位置の情報と偏波の情報を含む複数のビーム情報を端末200へ通知してもよい。この場合、GNSS等により位置情報を取得できる端末は、自らの位置により偏波を知ることができるため、ビームの切り替えの都度偏波を通知する必要がなくなり制御情報量を低減できる。
 <方法2>
 方法2では、偏波は、端末200毎に制御される。
 例えば、基地局100は、端末200毎の偏波情報を、端末200に個別の上位レイヤシグナリング(例えば、個別RRC制御情報(Dedicated RRC signaling))によって各端末200へ通知してよい。
 初期アクセスの際には、例えば、図11に示すMsg.4において、個別RRC制御情報が送信される。端末200は、例えば、図11において、Msg.4から偏波情報を取得し、取得した偏波情報に示される偏波を、Msg.4の受信よりも後の通信(例えば、送信及び受信の少なくとも一つ)における偏波に決定する。なお、端末200には、送信と受信とで異なる偏波が設定されてもよい。または、物理チャネル毎に異なる偏波が設定されてもよい。
 また、RRC_IDLE状態又はRRC_INACTIVE状態の端末200は個別RRC制御情報を受信しない。そこで、端末200は、RRC_IDLE状態又はRRC_INACTIVE状態において受信するデータ(例えば、Pagingデータ又はRACH response)には、例えば、固定の偏波(例えば、SSB又はSIBと同じ偏波)を用いてもよい。
 図13は、方法2に係る端末200の処理の一例を示すフロー図である。
 図13において、端末200は、例えば、初期アクセス時にSSBをサーチ(換言すると、検出)する(S201)。端末200は、SSBが検出されない場合(S202:No)、S201の処理に戻り、SSBのサーチを繰り返す。一方、端末200は、SSBが検出される場合(S202:Yes)、SIBを受信する(S203)。また、端末200は、RACH処理(例えば、Msg.1~Msg.4の送受信)を行う(S204)。
 端末200は、例えば、S201(SSBのサーチ)からS204(RACH処理)までの処理では、固定の偏波に基づいて通信を行ってよい。また、例えば、端末200は、Msg.4から偏波情報を取得する。
 端末200は、取得した偏波を、例えば、受信処理(換言すると、下りリンクの処理)及び送信処理(換言すると、上りリンクの処理)に用いる偏波に設定する(S205)。例えば、端末200は、偏波情報を取得した後、その偏波を受信データ処理部203及び送信データ処理部206に設定する。
 なお、端末200は、Msg.4(例えば、個別RRC制御情報)に偏波情報が含まれない場合、固定の偏波に基づいて、Msg.4の受信より後の通信を行ってもよい。また、端末200は、例えば、Msg.4の後の通信において偏波情報を含む個別RRC制御情報を受信した場合、個別RRC制御情報の受信以降の通信において、個別RRC制御情報によって通知された偏波を用いてもよい。
 このように、方法2では、例えば、端末200は、固定の偏波(例えば、SSB又はSIBと同じ偏波)を、Msg.4までの無線通信に用いる偏波に決定し、基地局100から受信した個別RRC制御情報によって示される偏波を、Msg.4が受信された後の無線通信に用いる偏波に決定する。
 個別RRC制御情報によって通知される偏波によって、基地局100は、端末200毎に偏波を柔軟に設定できるので、例えば、セル間干渉(又はビーム間干渉)を抑制できる。また、端末200個別の偏波を設定できるので、例えば、端末200間の偏波多重送信(例えば、inter UE multiplexingとも呼ぶ)によって、スループットを向上できる。
 端末200毎に設定される偏波の一例として、衛星通信(例えば、very small aperture terminal(VSAT)システム)又はPhased Arrayを用いる端末200に対して円偏波が設定され、より低い能力(capability)を有する端末200(例えば、internet of things(IoT)端末)に対して直線偏波が設定されてもよい。
 また、基地局100は、端末200毎の偏波の設定において、例えば、セル内又はビーム内の複数の端末200に対して同一の偏波を設定してもよい。この偏波の設定により、例えば、セル毎又はビーム毎の偏波の設定が可能になるので、セル間干渉(又はビーム間干渉)を抑制できる。
 また、方法2において、個別RRC制御情報の代わりに、MAC Control Element(MAC CE)によって、端末200毎の偏波が通知されてもよい。
 また、Msg.4において端末200毎の偏波が通知される場合について説明したが、これに限らず、例えば、Msg.2において端末200毎の偏波が通知されてもよい。また、図11は、4-step RACHの場合を示すが、これに限定されず、例えば、Rel.16で導入される2-step RACHを用いた場合に、Msg.Bにおいて偏波が通知されてもよい。Msg.Bは、PRACH及びMsg.Aを含むPUSCHに対する応答であり、RACH response及びRRC messageが含まれるデータである。
 <方法3>
 方法3では、偏波は、端末200のデータ毎に制御される。
 例えば、基地局100は、端末200へのデータの割り当てを通知する制御情報(例えば、downlink control information(DCI))によって、端末200のデータ毎の偏波情報を端末200へ通知してよい。端末200は、例えば、DCIから偏波情報を取得し、取得した偏波情報に示される偏波を、当該DCIの受信よりも後の通信(例えば、送信及び受信の少なくとも一つ)における偏波に決定する。なお、DCIを送信する信号(例えば、PDCCH)に対する偏波は、固定の偏波(例えば、予め規定された偏波、又は、セル毎に設定された偏波)でもよい。
 図14は、方法3に係る端末200の処理の一例を示すフロー図である。
 図14において、端末200は、例えば、初期アクセス時にSSBをサーチ(換言すると、検出)する(S301)。端末200は、SSBが検出されない場合(S302:No)、S301の処理に戻り、SSBのサーチを繰り返す。一方、端末200は、SSBが検出される場合(S302:Yes)、SIBを受信する(S303)。また、端末200は、DCIを受信する(S304)。
 端末200は、例えば、S301(SSBのサーチ)からS304(DCI受信)までの処理では、固定の偏波に基づいて通信を行ってよい。また、例えば、端末200は、DCIに含まれる偏波情報を取得する。
 端末200は、取得した偏波を、例えば、データ受信処理(換言すると、下りリンクの処理)又はデータ送信処理(換言すると、上りリンクの処理)に用いる偏波に設定する(S305)。
 そして、端末200は、設定した偏波に基づいて、データの受信又はデータの送信を行う(S306)。
 なお、端末200は、DCIに偏波情報が含まれない場合、固定の偏波に基づいて、DCIの受信より後のデータ通信を行ってもよい。
 ここで、DCIによる偏波の通知方法には、例えば、DCIにおいて偏波を示すビット(例えば、偏波通知ビットと呼ぶ)を追加して通知する方法、下りリンクの送信設定情報(例えば、transmission configuration indication(TCI) state)によって通知する方法、又は、Precoding information(例えば、transmitted precoding matrix indicator(TPMI))によって通知する方法がある。換言すると、DCIによって示される偏波は、例えば、偏波通知ビット、TCI state、Precoding information、又は、アンテナポート通知によって示される。
 以下、偏波通知ビット、TCI state、Precoding information、又は、アンテナポート通知による通知方法の一例についてそれぞれ説明する。
 <偏波通知ビットによる通知方法>
 例えば、下りリンク及び上りリンクの少なくとも一つのデータ割り当てを通知するDCIにおいて、偏波通知ビットが追加されてよい。
 例えば、下りリンク割り当てのDCI(又はDCIフォーマット)には、DCI format 1_0, 1_1があり、上りリンク割り当てのDCI(又はDCIフォーマット)には、DCI format 0_0, 0_1がある。
 例えば、各DCIフォーマットに偏波通知ビットが含まれてもよい。または、一部のDCIフォーマット(例えば、2レイヤ以上に対応するDCI format 1_1及び0_1)に偏波通知ビットが含まれてもよい。これにより、制御情報のオーバーヘッドを低減できる。
 または、端末個別サーチスペースによって送信されるDCIに偏波通知ビットが含まれ、他のDCI(例えば、共通サーチスペースによって送信されるDCI)には偏波通知ビットが含まれなくてもよい。これにより、端末200は、端末200に個別のサーチスペースにおいて偏波情報を取得できる。
 また、各DCIにおける偏波通知ビットの有無は、例えば、規格(又は仕様)において規定されてもよく、SIB又は端末個別RRC制御情報によって端末200に通知されてもよい。例えば、偏波通知ビットの有無がSIBによって通知される場合、RACH処理におけるMsg.1~Msg.4の何れかの送受信に対する偏波の通知が可能となる。また、例えば、偏波通知ビットの有無が端末個別RRC制御情報によって通知される場合には、RACH処理のMsg.4の受信より後のデータ送受信に対する偏波の通知が可能となる。
 また、例えば、端末200毎に偏波通知ビットの有無が設定されてもよい。例えば、端末200の種別によって偏波通知ビットの有無を切り替えてもよい。例えば、パラボラアンテナ又はPhased Arrayといった固定型の大型アンテナを有する端末200には、偏波通知ビット有り(換言すると、偏波を制御可能)に設定し、パッチアンテナといった可搬型の小型アンテナを有する端末200には偏波通知ビット無し(換言すると、偏波を制御しない)に設定してもよい。
 このように、偏波通知ビットによる偏波の通知により、例えば、端末200毎の送信において偏波による干渉を回避できる。
 また、偏波通知ビットによる偏波の通知により、例えば、端末200のデータ送信毎に偏波を設定できるため、端末200間での偏波多重送信(例えば、inter UE multiplexing)、又は、同一端末200に対する偏波多重送信(例えば、intra UE multiplexing)をより柔軟に適用できる。例えば、端末200の場所又は伝搬状況に応じて、端末200毎又は端末200のデータ送信毎に偏波を切り替えてもよい。例えば、セル又はビームの中心付近に位置する端末200には偏波多重送信を行い、セル端又はビーム端に位置する端末200には隣接セル又はビームと異なる偏波に基づく干渉回避により、システムスループットを向上できる。
 <TCI stateによる通知>
 Rel.15では、例えば、TCI stateによって、端末200がデータの送信又は受信の際に参照する信号(例えば、reference signal)の識別情報(例えば、SSB ID又はchannel state information reference signal(CSI-RS) ID)が通知される。
 そこで、本実施の形態では、基地局100は、TCI stateの中に偏波の情報を含めて通知する。
 TCI stateでは、端末200がデータの送信又は受信の際に参照可能なチャネル特性(例えば、ドップラシフト又は遅延)が「QCL」として定義される。例えば、参照可能なチャネル特性の種別に応じて複数のQCL typeが定義されている。
 方法3では、例えば、QCL typeに含まれる参照可能なチャネル特性に、偏波が追加される。例えば、基地局100から端末200へ送信されるTCI stateに含まれるQCL typeにおいて偏波が設定可能となる。この設定により、例えば、SSB ID又はCSI-RS IDに対応する参照信号に用いられる偏波と、データに用いられる偏波とが関連付けられる。
 例えば、図15に示すように、QCL typeの一つに、偏波に対応する「QCL type E」が定義されてもよい。また、図16に示すように、TCI state及びQCLに関するRRCメッセージにおいて、QCL type(例えば、qcl-Type)に、QCL type E(例えば、typeE)が設定されてもよい。
 なお、各SSB IDに対応するSSBに対して設定される偏波は、例えば、本実施の形態、又は、後述する実施の形態2又は3に基づく方法によって設定されてもよい。また、各CSI-RS IDに対応するCSI-RSに対して設定される偏波は、例えば、CSI-RS設定のRRCメッセージ(例えば、CSI-ResourceConfig)によって明示的に通知されてもよく、暗示的に通知されてもよい。例えば、暗示的に通知する場合、CSI-RS IDのうち、偶数IDによって右旋円偏波及び左旋円偏波の何れか一方が通知され、奇数IDによって他方が通知されてもよいし、最上位ビットあるいは最下位ビットにより通知されてもよい。
 また、基地局100は、TCI stateによって、複数のQCLに関する情報(例えば、SSB ID又はCSI-RS IDと、QCL typeとのセット)を端末200へ通知できる。例えば、次のような通知によって、端末200に対して偏波をより柔軟に設定できる。
 通知方法A:
 例えば、ビーム単位(又はセル単位)で偏波を設定する場合、あるいは、端末ごとにいずれかの偏波を用いる場合、基地局100は、SSB IDと偏波とが関連付けられたTCI stateを通知してよい。つまり、基地局100は、TCI stateの情報の中にSSB IDに加えて偏波の情報を含めて通知する。
 通知方法B:
 例えば、端末200間における偏波多重送信を適用する場合、基地局100は、例えば、1つのCSI-RS IDと偏波とが関連付けられたTCI stateを通知する。つまり、基地局100は、TCI stateの情報の中にCSI-RS IDに加えて偏波の情報を含めて通知する。この際、基地局100は、例えば、偏波多重送信される複数の端末200それぞれに対して、異なる偏波と関連付けられたCSI-RS IDを通知する。
 通知方法C:
 例えば、同一端末200における偏波多重送信を適用する場合、基地局100は、例えば、2つのCSI-RS IDそれぞれと偏波とが関連付けられたTCI stateを通知する。つまり、基地局100は、TCI stateの情報の中に複数のCSI-RS IDとそれぞれの偏波の情報を含めて通知する。
 端末200は、例えば、TCI stateにおいて通知される参照信号(例えば、SSB又はCSI-RS)、及び、TCI stateにおいて通知される参照信号(例えば、CSI-RS)とQCL typeとのセットの数に基づいて、上述した通知方法A~Cの何れかを決定してもよい。換言すると、端末200は、TCI stateに基づいて、偏波の利用方法(例えば、リユース又は偏波多重送信)を決定してもよい。
 なお、TCI stateの情報は、DCIではなく、RRCメッセージ(例えば、RRC reconfiguration message)又はMAC CEにおいて通知されてもよい。RRCメッセージ又はMAC CEにおいてTCI stateが通知される場合には、端末200は、或る期間において、MAC CEによって通知された偏波を使い続ける動作となる。基地局100は、例えば、ハンドオーバー又はビーム(SSBにより定義されるビーム)切り替え時にRRCメッセージ又はMAC CEによりTCI stateを通知してもよい。また、基地局100は、例えば、RRCメッセージにおいて使用可能な複数のTCI stateの候補を通知しておき、MAC CEにより使用するTCI stateを有効化(Activate)するようにしてもよい。また、基地局100は、RRCメッセージ又はMAC CEにおいて通知される複数のTCI stateの中から、データ割り当て毎にTCI stateを選択し、DCIによって端末200へ通知してもよい。
 また、図15に示す例では、偏波に対応するQCL Type Eを定義する場合について説明したが、例えば、QCL Type A~Dの少なくとも一つに対応するチャネル特性に、偏波(Polarization)が含まれてもよい。
 <Precoding informationによる通知>
 例えば、DCIにおいて通知される「Precoding information」によって偏波が通知されてもよい。
 例えば、3GPP TS 38.212 V15.6.0におけるTable 7.3.1.1.2-4に規定される2アンテナポート向けのPrecoding Information(例えば、図17を参照)における3つの状態において偏波が通知されてもよい。
 例えば、図17に示すように、ビットフィールド(Bit field mapped to index)が‘0’の場合には右旋円偏波(RHCP)を示し、‘1’の場合には左旋円偏波(LHCP)を示し、‘2’の場合には右旋円偏波(RHCP)及び左旋円偏波(LHCP)の双方の多重送信を示してもよい。
 端末200は、例えば、図17に示すPrecoding informationのビットフィールドにおいて通知される値(ビット値)に対応する偏波を、無線信号の偏波に決定する。換言すると、端末200は、Precoding informationによって通知される情報を、偏波情報に読み替える。
 <アンテナポートによる通知>
 例えば、3GPP TS 38.212 V15.6.0のTable 7.3.1.2.2-1からTable 7.3.1.2.2-4に規定されるようにDCIにてアンテナポートの情報が4から6ビットで通知される。このアンテナポートの通知により偏波が通知されてもよい。例えば、アンテナポート番号と偏波をあらかじめ対応づけておいてアンテナポート番号の通知により偏波を通知するようにしてもよい。或いは、DCIで通知される“Antenna port(s)”フィールドの値により偏波を通知するようにしてもよい。また、2つのレイヤのアンテナポートが通知された場合には第1レイヤは右旋円偏波(RHCP)で第2レイヤは左旋円偏波(LHCP)というようにあらかじめ決めておくことにより通知情報量を削減してもよい。端末200は、アンテナポートの情報を偏波情報に読み替えて指定された偏波を用いて送信する。
 以上、偏波通知ビット、TCI state、及び、Precoding information、アンテナポート通知ビットによる通知方法の一例について説明した。
 これらの通知方法により、例えば、既存の通知の仕組みを利用して偏波の通知を柔軟に行うことができる。
 また、基地局100は、例えば、Msg.2の割り当てを通知するDCI(例えば、PDCCHにおいて送信)によって偏波を通知してもよい。この通知により、端末200は、例えば、Msg.2以降の通信において、通知された偏波を用いることができる。
 また、DCIによる偏波の通知方法は、これらの方法に限定されず、DCI内の他のビットによって偏波情報が通知されてもよい。また、例えば、データ割り当てに用いるDCIの他に、例えば、DCI format 2などの端末グループ共通(Group Common)DCIを用いて偏波通知ビットが通知されてもよい。これにより、基地局100は、偏波情報を、端末グループへ同時に通知できるため、制御情報オーバーヘッドを低減できる。
 また、DCIによって通知される偏波情報は、DCIによって割り当てられるPDSCHまたはPUSCHに対して有効な情報としてもよく、DCIの通知以降、端末200に対して異なる内容の偏波情報の通知があるまで、端末200に割り当てられるチャネル又は信号に対して有効な情報としてもよい。
 このように、方法3では、例えば、端末200は、固定の偏波を、DCIの受信までの無線通信に用いる偏波に決定し、基地局100から受信したDCIによって示される偏波を、DCIが受信された後の無線通信に用いる偏波に決定する。
 DCIによって通知される偏波によって、基地局100は、端末200毎又はデータ毎に偏波を柔軟に設定できるので、例えば、セル間干渉(又はビーム間干渉)を抑制できる。また、端末200毎又はデータ毎に個別の偏波を設定できるので、例えば、端末200間の偏波多重送信又は同一端末200におけるデータ間の偏波多重送信によって、スループットを向上できる。
 以上、方法1~方法3について説明した。
 以上のように、本実施の形態では、基地局100及び端末200は、例えば、初期アクセスの少なくとも一部の無線通信(例えば、第1フェーズに相当)、及び、初期アクセスの一部よりも後の無線通信(例えば、第2フェーズに相当)において用いる偏波を決定する。
 例えば、端末200は、固定の偏波(例えば、予め規定された偏波)を、初期アクセス(例えばSSB及びSIB)におけるチャネル又は信号の偏波に決定することにより、固定の偏波に応じた受信方法によって信号を受信できる。よって、端末200では、例えば、通信処理の複雑化を抑制して処理量を低減でき、受信性能を向上できる。また、例えば、端末200は、固定の偏波に基づくことにより、偏波情報を通知するシグナリングを低減できる。
 また、本実施の形態では、例えば、端末200は、初期アクセスと比較してより多くの時間リソース又は周波数リソースを占めるユーザデータに用いられるチャネル又は信号に対して、基地局100から通知される偏波を設定する。
 端末200は、予め規定された偏波、又は、基地局100から通知される偏波によって、端末200に設定される偏波に応じた通信方法(例えば、送信及び受信の少なくとも一つ)に基づいて通信処理を行うことができるので、端末200の通信性能を向上できる。
 また、偏波の通知により、端末200では、偏波の利用方法(例えば、リユース及び偏波多重送信の何れか)を決定できるので、例えば、偏波のリユースによって干渉を回避でき、偏波多重送信によってスループットを向上できる。
 よって、本実施の形態によれば、端末200において通信に用いるリソース(例えば、偏波)を適切に決定できる。
 なお、固定の偏波は、例えば、規格において予め規定されてもよく、オペレーションによって自由に設定されてもよい。オペレーションによる設定の場合、端末200は、最初の接続時にはブラインド判定によって偏波を検出し、その後は同じ偏波で信号を待ち受けてもよい。
 (実施の形態2)
 本実施の形態に係る基地局及び端末の構成は、実施の形態1に係る基地局100及び端末200の構成と共通でよい。
 本実施の形態では、各セルに設定される偏波と、当該セルの識別情報(例えば、セルID、又は、Physical Cell ID(PCI)とも呼ぶ)とが関連付けられている。
 例えば、端末200は、初期アクセス時のSSBサーチにおいて、SSB内のPSS及びSSSを検出し、セルIDを特定する。その後、端末200は、SSB内のPBCHを受信し、セル内に報知されるシステム情報を取得する。
 本実施の形態では、端末200は、例えば、SSBサーチ(又は、SSBサーチ以降)において、セルIDと関連付けられた偏波を設定してもよい。
 例えば、セルIDと偏波との関連付けについては、例えば、偶数セルIDと右旋円偏波(RHCP)とを関連付け、奇数セルIDと左旋円偏波とを関連付けてもよい。換言すると、最下位ビットが0のセルIDと右旋円偏波(RHCP)とを関連付け、最下位ビットが1のセルIDと左旋円偏波とを関連付けてもよい。なお、偶数及び奇数のセルIDとRHCP及びLHCPとの関連付けは逆でもよい。
 または、例えば、セルIDのうち、より番号が小さい範囲のセルID(例えば、前半のセルID)と右旋円偏波(RHCP)とを関連付け、より番号が大きい範囲のセルID(例えば、後半のセルID)と左旋円偏波とを関連付けてもよい。換言すると、例えば、最上位ビットが0のセルIDと右旋円偏波(RHCP)とを関連付け、最上位ビットが1のセルIDと左旋円偏波とを関連付けてもよい。
 図18は、本実施の形態に係る端末200の処理の一例を示すフロー図である。
 端末200は、例えば、SSBのサーチの際、例えば、右旋円偏波(RHCP)に対応するセルIDのPSS又はSSSの検出では、右旋円偏波を用いた受信を行う(S401)。右旋円偏波(RHCP)に対応するセルIDを検出した場合(S402:Yes)、端末200は、右旋円偏波を、例えば、受信処理(換言すると、下りリンクの処理)及び送信処理(換言すると、上りリンクの処理)に用いる偏波に設定する(S405)。
 一方、右旋円偏波(RHCP)に対応するセルIDのPSS又はSSSを検出しない場合(S402:No)、端末200は、例えば、左旋円偏波(LHCP)に対応するセルIDのPSS又はSSSの検出において、左旋円偏波を用いた受信を行う(S403)。左旋円偏波(LHCP)に対応するセルIDを検出した場合(S404:Yes)、端末200は、左旋円偏波を、例えば、受信処理(換言すると、下りリンクの処理)及び送信処理(換言すると、上りリンクの処理)に用いる偏波に設定する(S405)。
 端末200は、例えば、SSBが検出されない場合(S404:No)、S401の処理に戻り、SSBのサーチを繰り返す。
 そして、端末200は、例えば、セルIDに基づいて設定された偏波に基づいて、SIBを受信する(S406)。
 このように、本実施の形態では、端末200は、セルサーチにおけるセルIDの検出により、当該セルIDに関連付けられた偏波を決定できる。よって、基地局100から偏波情報を通知しなくてもよいので、偏波情報の通知のための制御情報のシグナリングオーバーヘッドを低減できる。
 また、本実施の形態では、例えば、SSBに対しても、セルIDに基づく偏波に基づいて通信できるので、より多くのチャネルにおいて偏波によって干渉を回避できる。
 なお、図18では、端末200が、SSBサーチの際に、サーチ対象のセルIDに関連付けられた偏波に基づいてPSS又はSSSの受信処理(例えば、図18のS401又はS404の処理)を行う場合について説明したが、これに限定されない。例えば、端末200は、SSBサーチによってセルIDを特定し、特定したセルIDに関連付けられた偏波を、セルIDの検出よりも後の通信(例えば、SSBに含まれるPBCHの受信以降)に用いる偏波に決定してもよい。この場合、例えば、セルIDを特定するためのチャネルであるPSS及びSSSに対して、実施の形態1と同様に、固定の偏波(例えば、予め規定された偏波)が設定されてよい。また、PBCHについても、PSS及びSSSと同じブロックで送信されるため、PSS及びSSSと同じ偏波が設定されてもよい。
 (実施の形態3)
 本実施の形態に係る基地局及び端末の構成は、実施の形態1に係る基地局100及び端末200の構成と共通でよい。
 本実施の形態では、各ビームに設定される偏波と、当該ビームに対応するSSBの識別情報(例えば、SSB ID又はSSB indexとも呼ぶ)とが関連付けられている。
 例えば、本実施の形態では、端末200は、検出したSSBのSSB IDと関連付けられた偏波を設定してもよい。
 例えば、偶数番号のSSB IDと右旋円偏波(RHCP)とを関連付け、奇数番号のSSB IDと左旋円偏波(LHCP)とを関連付けてもよい。換言すると、最下位ビットが0のSSB IDと右旋円偏波(RHCP)とを関連付け、最下位ビットが1のSSB IDと左旋円偏波とを関連付けてもよい。なお、偶数及び奇数のSSB IDとRHCP及びLHCPとの関連付けは逆でもよい。
 または、例えば、SSB IDのうち、より番号が小さい範囲のSSB ID(例えば、前半のSSB ID)と右旋円偏波(RHCP)とを関連付け、より番号が大きい範囲のSSB ID(例えば、後半のSSB ID)と左旋円偏波とを関連付けてもよい。換言すると、例えば、最上位ビットが0のSSB IDと右旋円偏波(RHCP)とを関連付け、最上位ビットが1のSSB IDと左旋円偏波とを関連付けてもよい。
 ここで、例えば、NR Rel.15では、SSB IDは、上位ビット(MSB:Most Significant Bit)側がPBCH DMRS(PBCH復調に用いる参照信号)によって通知され、下位ビット(LSB:Least Significant Bit)側がPBCHのデータ部によって通知される。例えば、端末200は、PBCH DMRSを検出した時点でSSB IDのMSB側を特定できる。一方、端末200は、PBCHのデータ部を復号し、解析するまではSSB IDのLSBを特定できない。
 そこで、例えば、偏波の通知は、SSB IDの上位ビット側(例えば、MSB)と対応付けられてもよい。この対応付けにより、端末200は、PBCHのデータ部を復号する前に、SSB IDに関連付けられた偏波を決定できるので、セル又はビーム固有の偏波に基づいてPBCHのデータ部を受信できる。
 図19は、本実施の形態に係る端末200の処理の一例を示すフロー図である。
 端末200は、例えば、SSBに含まれるPSS又はSSSをサーチ(換言すると、検出)する(S501)。PSS又はSSSの検出では、端末200は、固定の偏波に基づいてもよく、偏波無し、右旋円偏波、及び、左旋円偏波を切り替えてサーチ(換言すると、ブラインド判定)してもよく、偏波ダイバーシチ受信によりサーチしてもよい。
 端末200は、例えば、PSS又はSSSが検出されない場合(S502:No)、S501の処理に戻り、PSS又はSSSのサーチを繰り返す。
 PSS又はSSSを検出した場合(S502:Yes)、端末200は、SSB ID(又はSSB index)を検出する(S503)。端末200は、例えば、PBCH DMRSからSSB ID(例えば、SSB IDの上位ビット)を検出してもよく、PBCHのデータ部からSSB ID(例えば、SSB IDの下位ビット)を検出してもよい。
 端末200は、検出したSSB IDに関連付けられた偏波を、例えば、受信処理(換言すると、下りリンクの処理)及び送信処理(換言すると、上りリンクの処理)に用いる偏波に設定する(S504)。
 そして、端末200は、例えば、設定された偏波に基づいて、PBCHのデータを復号し(S505)、SIBを受信する(S506)。
 このように、本実施の形態では、端末200は、SSB IDの検出により、当該SSB IDに関連付けられた偏波を決定できる。よって、基地局100から偏波情報を通知しなくてもよいので、偏波情報の通知のための制御情報のシグナリングオーバーヘッドを低減できる。
 また、本実施の形態では、例えば、SSB IDを検出後の初期アクセスの処理(例えば、PBCH又はSIBの受信)に対しても、SSB IDに基づく偏波に基づいて通信できる。例えば、SSB IDのMSBと偏波とが関連付けられる場合、端末200は、PBCHのデータ部の受信以降の処理において、SSB IDに関連付けられた偏波に基づいて通信処理を行うことができる。また、例えば、SSB IDのLSBと偏波とが関連付けられる場合、端末200は、SIBの受信以降の処理において、SSB IDに関連付けられた偏波に基づいて通信処理を行うことができる。よって、本実施の形態によれば、より多くのチャネルにおいて偏波によって干渉を回避できる。
 以上、本開示の各実施の形態について説明した。
 なお、衛星通信システムには、基地局の機能が衛星上に存在する「Regenerative型」、及び、基地局の機能が地上のGWに存在し、衛星がGWからの信号を受信し、周波数変換及び増幅して送信する「Transparent型」がある。本開示の一実施例は、Regenerative型及びTransparent型の何れにも適用可能である。
 また、上述した各実施の形態において、セルは基地局(例えば、衛星)が送信するSSB又はCSI-RSの受信電力によって定義されるエリアでもよく、地理的な位置により定義されるエリアでもよい。
 また、各実施の形態では、一例として、偏波が円偏波である例を記載したが、偏波は、直線偏波(例えば、垂直偏波及び水平偏波の少なくとも1つ)又は楕円偏波といった他の偏波でもよい。
 また、各実施の形態(及び各方法)を組み合わせてもよい。例えば、基地局100は、実施の形態2に基づいてセル毎の偏波を通知し、さらに、実施の形態1の方法3に基づいて端末200毎の偏波を通知してもよい。また、例えば、基地局100は、実施の形態1に基づく偏波の通知方法として、下りデータ向けの偏波情報を、方法3に基づくTCI stateによって通知し、上りデータ向けの偏波情報を、方法3に基づくPrecoding informationによって通知してもよい。また、例えば、下りデータは、実施の形態2に基づくセル単位で設定され、上りデータは、実施の形態1の方法3に基づくDCI通知によって設定されてもよい。
 また、各実施の形態において、端末200は、最初のアクセスの際に、ブラインド判定によって検出した偏波情報又は通知された偏波情報を保存し、その後、例えば端末200の電源を落とた場合、又は、RRC_IDLE状態になった場合に、端末200は保存した偏波情報に基づいて送受信に用いる偏波を設定してもよい。
 また、上述した各実施の形態では、NTN環境(例えば、衛星通信環境)を例に挙げて説明したが、本開示はこれに限定されない。本開示は、他の通信環境(例えば、LTEおよび/またはNRの地上セルラ環境)に適用されてもよい。
 また、上述した各実施の形態では、例えば、端末200が、偏波情報の通知を受信する以前の期間では固定の偏波を設定し、偏波情報の通知を受信した後の期間では通知に基づく偏波を設定する場合について説明したが、これに限定されない。例えば、端末200は、基地局100から通知される偏波を、偏波情報の通知を受信した後の少なくとも一つのチャネル又は信号に適用してもよい。一例として、端末200は、SIBによって通知された偏波を、RACH処理に設定せずに、ユーザデータの通信に設定してもよい。この場合、端末200は、例えば、RACH処理において固定の偏波を設定してもよい。また、例えば、端末200は、チャネル又は信号の種別によって、固定の偏波、及び、基地局100から通知された偏波を切り替えてもよい。
 また、上述した各実施の形態において、端末200において初期アクセス及び初期アクセスより後の処理の双方において偏波(例えば、固定の偏波、及び、基地局100から通知される偏波)を設定する場合について説明したが、これに限定されない。例えば、端末200において、初期アクセス、及び、初期アクセスより後の処理の少なくとも一方において偏波が適用されてもよい。一例として、初期アクセスでは、偏波が適用されずに、初期アクセスより後の処理では、偏波が適用されてもよい。他の例として、基地局100から偏波情報が通知されるまでの処理では、偏波が適用されずに、基地局100から偏波情報が通知された後の処理では、偏波が適用されてもよい。
 また、偏波の情報は偏波を用いる衛星、基地局または無線システムでのみ通知してもよい。また、端末からの端末能力の通知に基づいて、NTNあるいは衛星通信の能力(Capability)のある端末に対してのみ通知するようにしてもよい。端末の能力は、UE capability、UE feature、Subscriber Profile ID等により端末から基地局へ通知されてもよい。
 また、上述した各実施の形態における、「端末」という用語は、「UE」という用語に置き換えられてよい。また、「基地局」という用語は、「eNodeB」、[eNB]、「gNodeB」又は「gNB」という用語に置き換えられてよい。
 また、上述した実施の形態における「・・・部」という表記は、「・・・回路(circuitry)」、「・・・デバイス」、「・・・ユニット」、又は、「・・・モジュール」といった他の表記に置換されてもよい。
 本開示はソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 集積回路化の手法はLSIに限るものではなく、専用回路、汎用プロセッサ又は専用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 本開示は、通信機能を持つあらゆる種類の装置、デバイス、システム(通信装置と総称)において実施可能である。通信装置は無線送受信機(トランシーバー)と処理/制御回路を含んでもよい。無線送受信機は受信部と送信部、またはそれらを機能として、含んでもよい。無線送受信機(送信部、受信部)は、RF(Radio Frequency)モジュールと1または複数のアンテナを含んでもよい。RFモジュールは、増幅器、RF変調器/復調器、またはそれらに類するものを含んでもよい。通信装置の、非限定的な例としては、電話機(携帯電話、スマートフォン等)、タブレット、パーソナル・コンピューター(PC)(ラップトップ、デスクトップ、ノートブック等)、カメラ(デジタル・スチル/ビデオ・カメラ等)、デジタル・プレーヤー(デジタル・オーディオ/ビデオ・プレーヤー等)、着用可能なデバイス(ウェアラブル・カメラ、スマートウオッチ、トラッキングデバイス等)、ゲーム・コンソール、デジタル・ブック・リーダー、テレヘルス・テレメディシン(遠隔ヘルスケア・メディシン処方)デバイス、通信機能付きの乗り物又は移動輸送機関(自動車、飛行機、船等)、及び上述の各種装置の組み合わせがあげられる。
 通信装置は、持ち運び可能又は移動可能なものに限定されず、持ち運びできない又は固定されている、あらゆる種類の装置、デバイス、システム、例えば、スマート・ホーム・デバイス(家電機器、照明機器、スマートメーター又は計測機器、コントロール・パネル等)、自動販売機、その他IoT(Internet of Things)ネットワーク上に存在し得るあらゆる「モノ(Things)」をも含む。
 通信には、セルラーシステム、無線LANシステム、通信衛星システム等によるデータ通信に加え、これらの組み合わせによるデータ通信も含まれる。
 また、通信装置には、本開示に記載される通信機能を実行する通信デバイスに接続又は連結される、コントローラやセンサー等のデバイスも含まれる。例えば、通信装置の通信機能を実行する通信デバイスが使用する制御信号やデータ信号を生成するような、コントローラやセンサーが含まれる。
 また、通信装置には、上記の非限定的な各種装置と通信を行う、あるいはこれら各種装置を制御する、インフラストラクチャ設備、例えば、基地局、アクセスポイント、その他あらゆる装置、デバイス、システムが含まれる。
 本開示の一実施例に係る端末は、第1の無線通信、及び、前記第1の無線通信の後の第2の無線通信の少なくとも一方において用いる偏波を決定する制御回路と、決定された前記偏波を用いて前記少なくとも一方の無線通信を行う通信回路と、を具備する。
 本開示の一実施例において、前記制御回路は、予め規定された偏波を、前記第1の無線通信に用いる偏波に決定する。
 本開示の一実施例において、前記制御回路は、基地局から受信した情報に基づいて、前記第2の無線通信に用いる偏波を決定する。
 本開示の一実施例において、前記情報は、システム情報であり、前記制御回路は、前記システム情報によって示される偏波を、前記システム情報が受信された後の前記第2の無線通信に用いる偏波に決定する。
 本開示の一実施例において、前記情報は、端末個別の上位レイヤシグナリングであり、前記制御回路は、前記上位レイヤシグナリングによって示される偏波を、前記上位レイヤシグナリングが受信された後の前記第2の無線通信に用いる偏波に決定する。
 本開示の一実施例において、前記情報は、下り制御情報であり、前記制御回路は、前記下り制御情報によって示される偏波に基づいて、前記下り制御情報が受信された後の前記第2の無線通信に用いる偏波を決定する。
 本開示の一実施例において、前記下り制御情報によって示される偏波は、下りリンクの送信設定情報、又は、プリコーディングに関する情報によって示される。
 本開示の一実施例において、前記情報は、セルの識別情報であり、前記セルの前記識別情報と前記偏波とが関連付けられている。
 本開示の一実施例において、前記情報は、ビームに対応する同期信号の識別情報であり、前記同期信号の前記識別情報と前記偏波とが関連付けられている。
 本開示の一実施例において、前記同期信号の前記識別情報を構成する複数のビットのうち、報知チャネルの復調用参照信号に含まれるビットと、前記偏波とが関連付けられている。
 本開示の一実施例に係る通信方法において、端末は、第1の無線通信、及び、前記第1の無線通信より後の第2の無線通信の少なくとも一方において用いる偏波を決定し、決定された前記偏波を用いて前記少なくとも一方の無線通信を行う。
 2019年11月7日出願の特願2019-202108の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本開示の一態様は、無線通信システムに有用である。
 100 基地局
 101,204 制御部
 102,205 データ生成部
 103,206 送信データ処理部
 104,207 無線送信部
 105,201 アンテナ
 106,202 無線受信部
 107,203 受信データ処理部
 200 端末

Claims (11)

  1.  第1の無線通信、及び、前記第1の無線通信の後の第2の無線通信の少なくとも一方において用いる偏波を決定する制御回路と、
     決定された前記偏波を用いて前記少なくとも一方の無線通信を行う通信回路と、
     を具備する端末。
  2.  前記制御回路は、予め規定された偏波を、前記第1の無線通信に用いる偏波に決定する、
     請求項1に記載の端末。
  3.  前記制御回路は、基地局から受信した情報に基づいて、前記第2の無線通信に用いる偏波を決定する、
     請求項1に記載の端末。
  4.  前記情報は、システム情報であり、
     前記制御回路は、前記システム情報によって示される偏波を、前記システム情報が受信された後の前記第2の無線通信に用いる偏波に決定する、
     請求項3に記載の端末。
  5.  前記情報は、端末個別の上位レイヤシグナリングであり、
     前記制御回路は、前記上位レイヤシグナリングによって示される偏波を、前記上位レイヤシグナリングが受信された後の前記第2の無線通信に用いる偏波に決定する、
     請求項3に記載の端末。
  6.  前記情報は、下り制御情報であり、
     前記制御回路は、前記下り制御情報によって示される偏波に基づいて、前記下り制御情報が受信された後の前記第2の無線通信に用いる偏波を決定する、
     請求項3に記載の端末。
  7.  前記下り制御情報によって示される偏波は、下りリンクの送信設定情報、又は、プリコーディングに関する情報によって示される、
     請求項6に記載の端末。
  8.  前記情報は、セルの識別情報であり、
     前記セルの前記識別情報と前記偏波とが関連付けられている、
     請求項3に記載の端末。
  9.  前記情報は、ビームに対応する同期信号の識別情報であり、
     前記同期信号の前記識別情報と前記偏波とが関連付けられている、
     請求項3に記載の端末。
  10.  前記同期信号の前記識別情報を構成する複数のビットのうち、報知チャネルの復調用参照信号に含まれるビットと、前記偏波とが関連付けられている、
     請求項9に記載の端末。
  11.  端末は、
     第1の無線通信、及び、前記第1の無線通信より後の第2の無線通信の少なくとも一方において用いる偏波を決定し、
     決定された前記偏波を用いて前記少なくとも一方の無線通信を行う、
     通信方法。
PCT/JP2020/036678 2019-11-07 2020-09-28 端末及び通信方法 WO2021090607A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021554842A JPWO2021090607A5 (ja) 2020-09-28 端末、基地局、通信方法及び集積回路
CN202311152548.3A CN117375652A (zh) 2019-11-07 2020-09-28 集成电路
EP20885214.5A EP4057530A4 (en) 2019-11-07 2020-09-28 TERMINAL AND COMMUNICATION METHOD
US17/772,115 US20220407546A1 (en) 2019-11-07 2020-09-28 Terminal and communication method
CN202080074773.8A CN114600378B (zh) 2019-11-07 2020-09-28 终端、基站及通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019202108 2019-11-07
JP2019-202108 2019-11-07

Publications (1)

Publication Number Publication Date
WO2021090607A1 true WO2021090607A1 (ja) 2021-05-14

Family

ID=75849890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036678 WO2021090607A1 (ja) 2019-11-07 2020-09-28 端末及び通信方法

Country Status (4)

Country Link
US (1) US20220407546A1 (ja)
EP (1) EP4057530A4 (ja)
CN (2) CN114600378B (ja)
WO (1) WO2021090607A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022267061A1 (zh) * 2021-06-25 2022-12-29 北京小米移动软件有限公司 极化指示、极化确定方法和装置、通信装置和存储介质
WO2023050039A1 (zh) * 2021-09-28 2023-04-06 北京小米移动软件有限公司 信息传输方法、装置、通信设备和存储介质
WO2023058235A1 (ja) * 2021-10-08 2023-04-13 株式会社Nttドコモ 端末、無線通信方法及び基地局
WO2024015157A1 (en) * 2022-07-13 2024-01-18 Qualcomm Incorporated Antenna side combining or antenna side selection in an l-shaped antenna module
WO2024033868A1 (en) * 2022-08-10 2024-02-15 Lenovo (Singapore) Pte Limited Associating polarization to random access channel transmissions

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220109490A1 (en) * 2020-10-02 2022-04-07 Qualcomm Incorporated Polarization indications for synchronization signal block, coreset, and beam footprint
CN114599114A (zh) * 2020-12-07 2022-06-07 上海朗帛通信技术有限公司 一种被用于中继无线通信中的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013150268A (ja) * 2012-01-23 2013-08-01 Sharp Corp 通信装置、通信方法およびプログラム
WO2019159370A1 (ja) * 2018-02-19 2019-08-22 株式会社Nttドコモ ユーザ端末及び無線通信方法
JP2019202108A (ja) 2018-05-25 2019-11-28 光原科技股▲分▼有限公司 骨切り術用治具

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040203538A1 (en) * 2002-08-21 2004-10-14 Leppanen Kari J. Method and apparatus for transmission polarization selection for a cellular base station
FR2844119B1 (fr) * 2002-08-27 2005-02-18 Nortel Networks Ltd Procede d'emission de signaux radio en diversite de polarisation, station et terminal de radiocommunication pour la mise en oeuvre du procede
US7310379B2 (en) * 2002-12-30 2007-12-18 Motorola, Inc. Polarization state techniques for wireless communications
US7469152B2 (en) * 2004-11-30 2008-12-23 The Regents Of The University Of California Method and apparatus for an adaptive multiple-input multiple-output (MIMO) wireless communications systems
CN101931127B (zh) * 2009-06-23 2013-03-13 深圳富泰宏精密工业有限公司 天线组件及具有该天线组件的无线通信装置
GB2476252B (en) * 2009-12-17 2012-10-24 Socowave Technologies Ltd Communication unit, integrated circuit and method of diverse polarisation
JP2012065014A (ja) * 2010-09-14 2012-03-29 Hitachi Cable Ltd 移動通信用基地局アンテナ
JP5632530B2 (ja) * 2011-03-09 2014-11-26 株式会社日立製作所 偏波角度分割ダイバシチ無線送信機、無線受信機、および無線通信システム
US8879997B2 (en) * 2011-03-25 2014-11-04 Quintel Technology Limited Method and apparatus for antenna radiation cross polar suppression
US8774303B2 (en) * 2011-06-29 2014-07-08 Electronics And Telecommunications Research Institute Wireless communication method and apparatus using adaptive transmission polarization control
CN103620995A (zh) * 2011-07-01 2014-03-05 日本电气株式会社 交叉极化波干扰去除***、无线站装置、无线通信方法
JP5992850B2 (ja) * 2013-03-18 2016-09-14 パナソニック株式会社 アンテナ切換装置
US20150215013A1 (en) * 2014-01-28 2015-07-30 Cambium Networks Limited Method and apparatus for a multi-user multiple input multiple output (mu-mimo) network with single transceiver subscriber modules
US20150381282A1 (en) * 2014-06-27 2015-12-31 Qualcomm Incorporated Polarization assisted wireless transmission
JP2017011689A (ja) * 2015-06-19 2017-01-12 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 送信方法、受信方法、送信装置、及び受信装置
US10505600B2 (en) * 2016-03-31 2019-12-10 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for quantizing beam phases for a precoder
US10631159B2 (en) * 2016-09-01 2020-04-21 Qualcomm Incorporated UE capability reporting for dual-polarization wireless communication
MX2022003482A (es) * 2019-09-25 2022-04-25 Ericsson Telefon Ab L M Metodos para configurar modos de polarizacion en una red no terrestre (ntn).

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013150268A (ja) * 2012-01-23 2013-08-01 Sharp Corp 通信装置、通信方法およびプログラム
WO2019159370A1 (ja) * 2018-02-19 2019-08-22 株式会社Nttドコモ ユーザ端末及び無線通信方法
JP2019202108A (ja) 2018-05-25 2019-11-28 光原科技股▲分▼有限公司 骨切り術用治具

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"On physical layer control procedures for NTN", 3GPP TSG RAN WG1 #98BIS, RI - 1911003, October 2019 (2019-10-01)
"Study on New Radio (NR) to support non terrestrial networks (Release 15", 3GPP, TR38.811, September 2019 (2019-09-01)
3GPP TS 38.211
3GPP TS 38.212
3GPP TS 38.300
See also references of EP4057530A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022267061A1 (zh) * 2021-06-25 2022-12-29 北京小米移动软件有限公司 极化指示、极化确定方法和装置、通信装置和存储介质
WO2023050039A1 (zh) * 2021-09-28 2023-04-06 北京小米移动软件有限公司 信息传输方法、装置、通信设备和存储介质
WO2023058235A1 (ja) * 2021-10-08 2023-04-13 株式会社Nttドコモ 端末、無線通信方法及び基地局
WO2024015157A1 (en) * 2022-07-13 2024-01-18 Qualcomm Incorporated Antenna side combining or antenna side selection in an l-shaped antenna module
WO2024033868A1 (en) * 2022-08-10 2024-02-15 Lenovo (Singapore) Pte Limited Associating polarization to random access channel transmissions

Also Published As

Publication number Publication date
CN114600378B (zh) 2023-10-03
EP4057530A1 (en) 2022-09-14
CN117375652A (zh) 2024-01-09
EP4057530A4 (en) 2023-01-04
US20220407546A1 (en) 2022-12-22
JPWO2021090607A1 (ja) 2021-05-14
CN114600378A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2021090607A1 (ja) 端末及び通信方法
US20230156752A1 (en) Control resource set zero for reduced capability new radio devices
WO2021219283A1 (en) User equipment and base station
US20230147138A1 (en) Mobile station, base station, reception method, and transmission method
CN114503451A (zh) 基于组的scell波束故障恢复
US20230362796A1 (en) Optimising system information acquisition for nr devices
WO2021131307A1 (ja) 通信装置及び通信方法
WO2024100924A1 (ja) 端末、基地局、及び、通信方法
WO2023053562A1 (ja) 端末、基地局及び通信方法
WO2023139852A1 (ja) 端末、基地局、及び、通信方法
WO2022209110A1 (ja) 端末、基地局、および通信方法
WO2022153595A1 (ja) 端末及び通信方法
WO2023013204A1 (ja) 端末、基地局、及び、通信方法
WO2022024427A1 (ja) 端末及び通信方法
US20240178979A1 (en) Base station, terminal, and communication method
WO2023203938A1 (ja) 端末、基地局、通信方法及び集積回路
WO2023053564A1 (ja) 端末、基地局、及び、通信方法
WO2024095677A1 (ja) 端末、基地局、通信方法及び集積回路
WO2022030075A1 (ja) 端末、基地局、及び、通信方法
US20240188061A1 (en) Terminal, base station, and communication method
WO2024024259A1 (ja) 端末、基地局、及び、通信方法
WO2023181556A1 (ja) 端末、基地局及び通信方法
WO2024100918A1 (ja) 端末、基地局及び通信方法
WO2022014281A1 (ja) 端末、基地局及び通信方法
WO2023181579A1 (ja) 端末、基地局及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885214

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554842

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020885214

Country of ref document: EP

Effective date: 20220607