WO2021088822A1 - 通信方法和用户设备 - Google Patents

通信方法和用户设备 Download PDF

Info

Publication number
WO2021088822A1
WO2021088822A1 PCT/CN2020/126235 CN2020126235W WO2021088822A1 WO 2021088822 A1 WO2021088822 A1 WO 2021088822A1 CN 2020126235 W CN2020126235 W CN 2020126235W WO 2021088822 A1 WO2021088822 A1 WO 2021088822A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
antenna
carriers
capability information
carrier
Prior art date
Application number
PCT/CN2020/126235
Other languages
English (en)
French (fr)
Inventor
邝奕如
丁仁天
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021088822A1 publication Critical patent/WO2021088822A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method and user equipment for reporting sounding reference signal (Sounding Reference Signal, SRS) capability information.
  • Sounding Reference Signal Sounding Reference Signal, SRS
  • the user equipment can report the conversion capability information of the sounding reference signal (Sounding reference signals, SRS) of the user antenna conversion through the capability message (UE Capability Information) and the assistance message (UE Assistance Information), and the network equipment According to the SRS antenna switching capability information, corresponding SRS resources are configured for the UE.
  • SRS Sounding reference signals
  • Some embodiments of the present application provide a communication method and user equipment.
  • the following describes the application from multiple aspects, and the implementations and beneficial effects of the following multiple aspects can be referred to each other.
  • the overheating problem can be solved by reducing the UE capability or configuration to cool down.
  • the UE can report the assistance information (UE Assistance Information) to notify the network equipment (e.g., base station)
  • the UE expects the reduced capability or configuration for the base station to refer to and perform reconfiguration.
  • the auxiliary information related to overheating includes the number of multiple input multiple output (MIMO) layers of the UE
  • the network device can reconfigure the number of low-capacity MIMO layers for the UE, which is used for the UE according to the low-capability
  • the number of MIMO layers closes some radio frequency links and antenna ports to reduce the power consumption of the UE and solve the overheating problem.
  • the network device lowers the number of MIMO layers for the UE, if the network device does not reconfigure the sounding reference signal (SRS) resources for the user antenna conversion accordingly, the ability will appear when the antenna port is converted.
  • SRS sounding reference signal
  • the embodiments of the present application provide a communication method for user equipment (UE) for associating the backed-off SRS antenna switching capability information with the carrier.
  • the method includes: determining back-off channel sounding reference signal (SRS) antenna switching capability information for the UE, for example, the back-off SRS antenna switching capability information indicates the antenna port switching capability for transmitting SRS supported by the UE,
  • the antenna port switching capability includes at least one of the number of antennas and antenna ports through which the UE can transmit SRS, and the fallback SRS antenna switching capability information means that the above capability is equal to or less than the preset antenna and antenna port for transmitting SRS At least one of the number; wherein, the back-off SRS antenna switching capability information corresponds to one or more carriers and/or at least one cell supported by the UE.
  • the SRS antenna switching capability information that can be backed out is sent to the network device.
  • the SRS antenna switching capability information that is determined to correspond to the carrier and the backable according to the carrier supported by the UE and/or the currently configured carrier is reported to the network device to realize the SRS capability with the UE's carrier as the granularity.
  • the signaling overhead of the network communication between the UE and the network device is smaller, and the configuration process is more in line with the actual situation of the UE working on the carrier.
  • the antennas and antenna ports that the UE can transmit SRS include: the antennas and antenna ports that the UE can transmit SRS through one or more carriers and/or at least one cell.
  • the SRS antenna switching capability information that can be backed out further indicates: corresponding to each of the one or more carriers, the effect of the switching antenna port on the uplink carrier of the other carriers in the one or more carriers , And/or the effect of changing the antenna port on the downlink carrier among the other carriers in one or more carriers.
  • the above influence is indicated by a bitmap, and the correspondence between each element and the carrier/cell in the bitmap is arranged in a predetermined order. For example, corresponding to each of one or more carriers, at least one of the influence of the uplink carrier and the influence of the downlink carrier includes one or more bits, wherein one or more bits are the same as one or more carriers.
  • One correspondence is possible.
  • the backed-out SRS antenna switching capability information may be combined with multiple carriers and/or multiple carriers.
  • the backed-out SRS antenna switching capability information includes multiple back-off SRS antenna capability information packets, where multiple back-off SRS antenna capability information packets are associated with multiple carriers and/or multiple carriers and/or multiple back-off SRS antenna capability information packets.
  • the cells have a one-to-one correspondence, and each of the multiple back-off SRS antenna capability information packets indicates at least one of the antenna port switching capability, the influence on the uplink carrier, and the influence on the downlink carrier.
  • the information packet may be corresponding to the carrier.
  • a plurality of SRS antenna capability information packets that can be backed out are arranged in the order of the corresponding carrier and/or cell identification information.
  • the SRS antenna switching capability information that can be backed out is associated with the identification information of each carrier.
  • the identification information of each carrier is associated with the identification information of at least one of the affected uplink carrier and the downlink carrier.
  • the number of carriers corresponding to the backable SRS antenna switching capability information is equal to or less than the preset number of carriers.
  • the UE sends the backable SRS antenna switching capability information after receiving the request of the network device.
  • the method may further include: receiving a radio resource control (RRC) connection from the network device The reconfiguration message, where the RRC connection reconfiguration information includes the preset number of antennas used for SRS transmission and the preset number of antenna ports used for SRS transmission.
  • RRC radio resource control
  • the method further includes: in response to a UE capability request from the network device, sending UE capability information of the UE to the network device, where the UE capability information includes a preset antenna for transmitting SRS. The number and the preset number of antenna ports used to transmit SRS.
  • the same capabilities can be set for all carriers/cells.
  • the antenna port conversion capability indicated by the back-off SRS antenna conversion capability information corresponds to multiple carriers and / Or multiple cells.
  • the embodiments of the present application provide a communication method for user equipment (UE).
  • the method includes: determining channel sounding reference signal (SRS) antenna switching capability information for the UE, wherein the SRS antenna switching capability information Corresponding to one or more carriers and/or one or more cells supported by the UE and indicating the antenna port switching capability for transmitting SRS supported by the UE, where the antenna port switching capability includes the ability of the UE to pass through one or more carriers and/or At least one of the number of antennas and antenna ports for transmitting SRS in one or more cells;
  • SRS channel sounding reference signal
  • the SRS antenna switching capability information also indicates: corresponding to each of the one or more carriers, the effect of the switching antenna port on the uplink carrier in the other carriers of the one or more carriers, and/or The effect of changing the antenna port on the downlink carrier in the other carriers in one or more carriers.
  • the SRS antenna switching capability information corresponding to the carrier determined according to the carrier supported by the UE and/or the currently configured carrier is reported to the network device to implement the relevant configuration of the SRS capability with the UE's carrier as the granularity.
  • the signaling overhead of the network communication between the UE and the network device is smaller, and the configuration process is more in line with the actual situation of the UE working on the carrier.
  • the present application provides a user equipment UE.
  • the UE includes: a control unit configured to determine back-off channel sounding reference signal (SRS) antenna switching capability information for the UE, where the back-off
  • SRS antenna conversion capability information indicates the antenna port conversion capability for transmitting SRS supported by the UE.
  • the antenna port conversion capability includes at least one of the number of antennas and antenna ports through which the UE can transmit SRS, and is equal to or less than the preset number of antenna ports for transmission.
  • At least one of the number of antennas and antenna ports of the SRS a transceiving unit for sending back-to-back SRS antenna conversion capability information to the network device; wherein the back-to-back SRS antenna conversion capability information is the same as one or more supported by the UE One carrier and/or at least one cell corresponds.
  • the present application provides a user equipment UE, including a memory, a processor, and a program stored in the memory and running on the processor.
  • the processor implements any one of claims 1 to 14 when the program is executed. Communication method.
  • this application provides a communication system, including user equipment UE and network equipment.
  • the UE is used to determine the back-off channel sounding reference signal (SRS) antenna switching capability information for the UE, where the back-off
  • the SRS antenna conversion capability information indicates the antenna port conversion capability for transmitting SRS supported by the UE.
  • the antenna port conversion capability includes at least one of the number of antennas and antenna ports through which the UE can transmit SRS, and is equal to or less than the preset number of antenna ports for transmission. At least one of the number of antennas and antenna ports of the SRS, and
  • the network equipment is used to receive the SRS antenna conversion capability information that is backable from the UE; configure the UE according to the backable SRS antenna conversion capability information, and send a configuration message to the UE.
  • the present application provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method described in any one of the foregoing aspects or embodiments.
  • the present application provides a computer program product, including instructions, which when run on a computer, cause the computer to execute the method described in any one of the foregoing aspects or embodiments.
  • the present application provides a chip system, including: the chip system includes a processor and a memory, and instructions are stored in the memory; when the instructions are executed by the processor, the method as described in any one of the foregoing aspects or embodiments is implemented.
  • the effects of this application include, but are not limited to:
  • the SRS antenna conversion capability information corresponding to the carrier determined according to the carrier supported by the UE and/or the currently configured carrier and/or the SRS antenna conversion capability information that can be backed out are reported to the network device to achieve The relevant configuration of the SRS capability with the UE's carrier as the granularity.
  • the signaling overhead of the network communication between the UE and the network device is smaller, and the configuration process is more in line with the actual situation of the UE working on the carrier.
  • the network device when the UE works according to the current carrier configuration, can perform related configuration for the UE based on the fallback carrier configuration and/or fallback SRS antenna switching capability information reported by the UE.
  • the mailbox can reduce the power consumption of the UE, solve the problem of overheating of the UE, and extend the usage time of the UE.
  • Fig. 1 shows a schematic diagram of a communication system implementing an exemplary embodiment of the present application.
  • Fig. 2 shows a schematic flowchart of a communication method of an exemplary communication system according to an embodiment of the present application.
  • Fig. 3 shows a schematic flowchart of another communication method of an exemplary communication system according to an embodiment of the present application.
  • Fig. 4 shows a schematic flowchart of another communication method of an exemplary communication system according to an embodiment of the present application.
  • Fig. 5 shows a schematic flowchart of a communication method of a user equipment according to an embodiment of the present application.
  • Fig. 6 shows a schematic structural diagram of a user equipment according to an embodiment of the present application.
  • Fig. 7 shows a schematic structural diagram of a communication device according to an embodiment of the present application.
  • module or “unit” can refer to, be, or include: application specific integrated circuit (ASIC), electronic circuit, (shared, dedicated, or group) processing that executes one or more software or firmware programs And/or memories, combinational logic circuits, and/or other suitable components that provide the described functions.
  • ASIC application specific integrated circuit
  • electronic circuit shared, dedicated, or group
  • processing that executes one or more software or firmware programs And/or memories, combinational logic circuits, and/or other suitable components that provide the described functions.
  • the disclosed embodiments may be implemented in hardware, firmware, software, or any combination thereof.
  • the disclosed embodiments can also be implemented as instructions carried by or stored on one or more transient or non-transitory machine-readable (eg, computer-readable) storage media, which can be executed by one or more processors. Read and execute.
  • the instructions can be distributed via a network or via other computer-readable media. Therefore, a machine-readable medium may include any mechanism for storing or transmitting information in a form readable by a machine (for example, a computer), but is not limited to, a floppy disk, an optical disk, an optical disk, a read-only memory (CD-ROM), and a magneto-optical disk.
  • ROM Read-only memory
  • RAM random access memory
  • EPROM erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • magnetic or optical card flash memory
  • a machine-readable medium includes any type of machine-readable medium suitable for storing or transmitting electronic instructions or information in a form readable by a machine (for example, a computer).
  • first, second, etc. may be used herein to describe various units or data, these units or data should not be limited by these terms. These terms are used only to distinguish one feature from another.
  • first feature may be referred to as the second feature, and similarly the second feature may be referred to as the first feature.
  • module or unit may refer to or include an application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated or group) that executes one or more software or firmware programs, and/or Memory (shared, dedicated or group), combinational logic circuit, and/or other suitable components that provide the described functions, or may be an application specific integrated circuit (ASIC), electronic circuit, executing one or more software or firmware
  • ASIC application specific integrated circuit
  • the program is part of the processor (shared, dedicated or group) and/or memory (shared, dedicated or group), combinational logic circuit, and/or other suitable components that provide the described functions.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as the third-generation (3rd-Generation, 3G) mobile communication network, and the fourth-generation (4th-Generation, 3G) mobile communication network Long Term Evolution (Long Term Evolution). , LTE) network, the fifth-generation (5th-Generation, 5G) mobile communication system New Radio (NR) network.
  • LTE Long Term Evolution
  • NR New Radio
  • the technical solutions of the embodiments of the present application can also be applied to the next-generation cellular mobile communication system and other subsequent mobile communication systems, which is not limited in this application.
  • SRS antenna conversion capability information It can indicate the SRS antenna conversion capability, the impact on other downlink carriers, and the impact on other uplink carriers.
  • SRS antenna conversion capability SRS transmission port conversion mode that the UE can support. If the SRS antenna conversion capability indicated by the UE is xTyR, it means that the UE can transmit SRS on x antenna ports through y antennas. y corresponds to all or a subset of the receiving antennas of the UE.
  • Maximum number of antenna ports the maximum number of antenna ports that the UE can support.
  • SRS resources time domain resources and/or frequency domain resources used to send SRS.
  • FIG. 1 is a schematic diagram of a communication system 100 implementing an exemplary embodiment of the present application.
  • the communication system 100 may include at least one UE 10 (only one is shown) and at least one network device 12 (only one is shown).
  • the UE 10 may be communicatively coupled with the network device 12 based on a cellular communication protocol.
  • the cellular communication protocol may be, for example, a global system for mobile communication (GSM) protocol, a code division multiple access (CDMA) network protocol, a push-to-talk (PTT) protocol, Cellular PTT (POC) protocol, Universal Mobile Telecommunications System (UMTS) protocol, 3GPP Long Term Evolution (LTE) protocol, fifth generation (5G) protocol, new radio (NR) protocol, etc.
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • PTT push-to-talk
  • POC Cellular PTT
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • 5G fifth generation
  • NR new radio
  • UE 10 may include terminal devices used by users, such as mobile phones, cellular phones, cordless phones, session initiation protocol (SIP) phones, and wireless local loop (wireless local loop, WLL) stations.
  • terminal devices used by users such as mobile phones, cellular phones, cordless phones, session initiation protocol (SIP) phones, and wireless local loop (wireless local loop, WLL) stations.
  • PDA Personal digital assistant
  • handheld devices with wireless communication functions computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or public utilities that evolve in the future
  • the terminal equipment in the land mobile communication network public land mobile network, PLMN), etc., are not limited in the embodiment of the present application.
  • the UE 10 further includes a processor 102, a communication module 104, and a memory 106, and these modules are communicatively coupled through a bus.
  • the processor 102 may include, but is not limited to, a central processing unit (CPU) (Central Processing Unit), an image processing unit (GPU) (Graphics Processing Unit), a digital signal processor DSP, a microprocessor MCU (Micro-programmed Control Unit), and AI (Artificial Intelligence Unit). ) Processing modules or processing circuits such as processors or programmable logic devices FPGA (Field Programmable Gate Array).
  • the processor 102 may be configured to execute one or more of the various embodiments described below.
  • the processor 102 may run the operating system of the UE 10, for example, Android, iOS, Windows OS, Linux, and Hongmeng operating systems. In other possible implementation manners, the processor 102 may run a specific application program.
  • the memory 106 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 106 may further include a memory remotely provided with respect to the processor 102, and these remote memories may be connected to the UE 10 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the communication module 104 may include a control unit 1041 and a transceiver unit 1042.
  • the control unit 1041 may process the wireless signal received from the transceiving unit 1042 and generate a wireless signal for the transceiving unit 1042 to send.
  • the control unit 1041 may include a third-generation (3G) baseband processor, a fourth-generation (4G) baseband processor, a fifth-generation (5G) baseband processor, and/or used in other existing generations. , Other baseband processor(s) of the generation (for example, the sixth generation (6G), etc.) under development or to be developed in the future.
  • the control unit 1041 can process various radio control functions for communicating with one or more radio networks via the transceiving unit 1042.
  • the communication module 104 may provide communication compatible with one or more radio technologies.
  • the transceiver unit 1042 may include a radio frequency link, for example, a three-stage radio frequency integrated circuit, a power amplifier, and a duplexer/filter.
  • the network device 12 may include a network side device for communicating with the UE, for example, a macro base station, a micro base station, or a distributed unit-control unit (DU-CU).
  • the base station may be an evolved Node B (eNB or e-NodeB) in LTE, or a gNB in NR.
  • the base station can also be a wireless controller in the cloud radio access network (CRAN) scenario, or it can be a relay station, access point, vehicle-mounted device, wearable device, or a public land mobile network that will evolve in the future (public land mobile network).
  • CRAN cloud radio access network
  • DU-CU is a device that is deployed in a wireless access network and can communicate with user equipment wirelessly. The embodiment of the present application does not limit this.
  • the UE can report UE Assistance Information (UE Assistance Information) to notify the network equipment of the UE's expected reduced capabilities or configuration for the base station's reference, Perform reconfiguration.
  • UE Assistance Information UE Assistance Information
  • the network device 12 sends an RRC (Radio Resource Control, radio resource control) connection reconfiguration message to the UE 10.
  • the RRC connection reconfiguration message may include: configuration information related to overheating.
  • the configuration information related to overheating may indicate whether the UE 10 can send auxiliary information related to overheating to the network device 12, and the value of a prohibition timer related to overheating.
  • the network device 12 configures the UE 10 to send auxiliary information related to overheating, when the UE 10 has an overheating problem and the prohibition timer related to overheating is not running, the UE 10 sends an auxiliary information message to the network device.
  • the auxiliary information message includes auxiliary information related to overheating, which is used by the network device 12 to solve the overheating problem of the UE 10.
  • the content of the auxiliary information related to overheating can be configured according to actual requirements, which is not specifically limited in the embodiment of the present application.
  • the auxiliary information related to overheating includes the UE type or the number of MIMO layers, which is used to indicate that the UE desires to reduce the number of MIMO layers
  • the network device can reconfigure the appropriate number of MIMO layers for the UE according to the UE type or the number of MIMO layers reported by the UE.
  • the network device only reconfigures the number of MIMO layers according to the report of the UE.
  • the reduced number of MIMO layers of the UE has disadvantages in closing the radio link and antenna ports, which will affect the SRS capability of the UE under normal capabilities. For example, if the network equipment configures the UE to reduce the maximum number of uplink MIMO layers, the UE will close the transmit radio link. At this time, the UE cannot support the SRS transmission of the antenna under the normal capability, resulting in a waste of some SRS resources.
  • the network equipment configures the UE to reduce the maximum number of downlink MIMO layers, and the UE expects to close part of the receiving radio link, the UE still transmits SRS according to the antenna rotation under normal capabilities, which will cause the network equipment to schedule physical downlinks based on the channel quality estimated by the SRS
  • the downlink channel quality of the physical downlink shared channel (PDSCH) transmission is inconsistent. Therefore, even if the network device reconfigures the low-capacity MIMO layer number for the UE, in order to achieve the SRS antenna conversion capability, the UE still has to maintain the original number of radio frequency links and antenna ports. The power consumption of the UE cannot be reduced, and the network device reconfigures the UE for the UE.
  • the configured low-capacity MIMO layer number can not play the role of cooling down.
  • the UE 10 needs to report the backable SRS antenna conversion capability information it supports to the network device 12, so that the network device 12 can configure according to the backable SRS antenna conversion capability information reported by the UE 10 The corresponding SRS resource.
  • the UE 10 reports the SRS antenna conversion capability information that can be backed out to the network device 12.
  • the implementation method of this application can be applied to any scenario where the UE needs to report a rollback SRS capability.
  • the overheating problem of the UE or the need to reduce power consumption are just examples of application scenarios, not to the application scenarios of the solution of this application. The specific limitation of the following content will not be explained one by one.
  • the network device 12 sends a capability request (UE Capability Enquiry) message to the UE 10 for requesting the UE to send the UE's radio access capability in a certain RAT/RAT.
  • UE Capability Enquiry UE Capability Enquiry
  • the UE 10 determines its own radio capability (radio capability), and reports its own radio capability (radio capability) to the network device 12 through a capability message (UE Capability Information).
  • the UE capability message may include the UE's capability in multiple radio access technologies (Radio Access Technology, RAT).
  • the capability message may be reported when the UE 10 accesses the cell where the network device 12 is located, or when the network device 12 needs to know the wireless capabilities of the UE 10, the UE 10 may be instructed to report.
  • the capability message of the UE 10 may be generated by the control unit 1041 of the communication module 104, and sent to the network device 12 via the transceiver unit 1042. It can be understood that, in one or more embodiments of the present application, the communication module 104 may perform various wireless communication-related configurations on the UE 10.
  • the capability message may include the SRS antenna switching/rotating (sounding reference signal antenna switch) capability preset by the UE 10, that is, the capability that the UE 10 expects to be configured.
  • this capability indicates the number of antennas and the number of antenna ports that the UE 10 can support when sending SRS to the network device 12.
  • the capability message may also include the backable SRS antenna switching capability supported by the UE 10.
  • the network device 12 does not clearly know how many radio frequency links the UE 10 has, but uses the term antenna for description. For example, when the UE 10 actually has two transmitting radio frequency links, the UE 10 supports up to two antennas for uplink communication with the network device 12 at the same time. If the UE 10 uses two antennas to communicate with the network device 12, in fact, each radio frequency link corresponds to one antenna. If the UE 10 uses one antenna to communicate with the network device 12, the UE 10 can use any uplink radio link to correspond to this antenna, or use two radio links at the same time to simulate one antenna, which depends on the specifics of the UE 10. Realization is transparent to the network device 12. The network device 12 only needs to schedule which antenna or antennas the UE 10 transmits data on.
  • one UE 10 supports one transmit radio frequency link (transmit, T), and two receive radio frequency links (receive, R) are referred to as t1r2.
  • a UE 10 supports 2 transmit radio frequency links and 4 receive radio frequency links called t2r4.
  • the number of receiving RF links in the UE 10 will be greater than or equal to the number of transmitting RF links, and each receiving RF link is connected to an antenna (ie, electromagnetic wave radiation unit), so t1r2 can also be understood as this
  • the UE 10 has a transmitting radio frequency link and two antennas.
  • t2r4 can also be understood as the UE 10 has two transmitting radio frequency links and four antennas.
  • the number of antennas in the SRS capability information can also be understood as the number of receiving radio frequency links/receiving antennas, and the number of antenna ports can also be understood as the number of transmitting radio frequency links/transmitting antennas.
  • the antenna described here has the ability to transmit electromagnetic waves and receive electromagnetic waves. Therefore, the antenna, the transmitting antenna, and the receiving antenna in the embodiments of the present application can be regarded as the same thing.
  • the SRS antenna rotation capability is specified as follows: t1r2, t1r4, t2r4, t1r4-t2r4, t1r1, t2r2, or t4r4, etc.
  • t1r2 means that there is a transmitting radio link and two antennas in the UE. At this time, the UE can use a single port to transmit one SRS at a time.
  • t2r4 means that the UE has two transmit radio frequency links and four antennas. At this time, the UE can use dual ports to transmit one SRS each time. To complete the round transmission, it needs to transmit twice, that is, the first time the SRS is transmitted, the first transmit radio frequency link and The second transmitting radio frequency link and the first antenna and the second antenna, and the second transmitting SRS uses the first transmitting radio frequency link and the second transmitting radio frequency link, the third antenna and the fourth antenna.
  • t1r4-t2r4 means that the UE supports both t1r4 SRS antenna rotation and t2r4 SRS antenna rotation.
  • the preset SRS antenna conversion capability of the UE 10 and the backable SRS antenna conversion capability for the preset SRS antenna conversion capability may be configured and reported for the carrier of the UE 10.
  • the communication system 100 herein may support operation of multiple cells or carriers, and this feature may be referred to as carrier aggregation (CA) or multi-carrier operation.
  • the carrier may also be referred to as a component carrier (CC), layer, channel, and so on.
  • CC component carrier
  • the terms “carrier”, “component carrier”, and “cell” in the scenario where there is no uplink supplementary link Supplementary UL, SUL) may be used interchangeably herein.
  • the carrier waves may or may not be adjacent to each other.
  • the allocation of carriers may be asymmetric with respect to DL and UL (for example, more or fewer carriers may be allocated for DL compared to UL).
  • the component carrier may include a primary component carrier (primary carrier for short) and one or more secondary component carriers (secondary carrier for short).
  • the primary component carrier may be referred to as a primary cell (PCell), and the secondary component carrier may be referred to as a secondary cell (SCell).
  • PCell primary cell
  • SCell secondary cell
  • the UE 10 can use one or more carriers, that is, the UE 10 can work on the one or more carriers.
  • the SRS antenna switching mechanism can be configured for each carrier supported by the UE 10.
  • the identification information indicating the carrier includes, for example, a carrier identification (identity, ID), and/or a secondary cell index (SCellIndex) of the carrier.
  • the UE 10 may report the SRS antenna switching capability and/or the backable SRS antenna switching capability for one or more supported carriers and/or one or more cells.
  • the SRS antenna switching capabilities and/or the backable SRS antenna switching capabilities corresponding to one or more carriers are arranged .
  • the SRS antenna switching capability information does not need to reflect the corresponding relationship between the SRS antenna switching capability and/or the backable SRS antenna switching capability and the carrier.
  • the network device 12 can determine the correspondence between the above capabilities and the carrier according to the default sequence of the UE 10's carrier. The relationship is to determine which carrier the UE 10 supports the SRS antenna switching capability and the fallbackable SRS antenna switching capability.
  • the default order may be the order of pre-defined supportable carriers, or the order of carrier reporting in the capability information of the UE 10, for example, sorted by the carrier ID, or sorted by the carrier's secondary cell index.
  • the order and sorting can be performed according to the size of the ID and/or index or other methods, which are not specifically limited in the embodiment of the present application.
  • the SRS antenna conversion capability corresponding to each carrier can be reported in a collective or list manner.
  • the SRS antenna conversion capability information may be ⁇ UE 10 supports on carrier 1 SRS antenna conversion capability 1, SRS antenna conversion capability supported by UE 10 on carrier 2, 2, SRS antenna conversion capability supported by UE 10 on carrier 3 3 ⁇ .
  • the identification information indicating the carrier may be in a one-to-one correspondence with the SRS antenna switching capability of the carrier.
  • the SRS antenna switching capability information can include multiple information packets, and each information packet corresponds to a carrier, for example: information packet 1 ⁇ SCellIndex 0, UE 10 SRS antenna conversion capability supported by carrier 1 1 ⁇ , information packet 2 ⁇ SCellIndex 1.
  • the SRS antenna conversion capability corresponding to each carrier may be reported in a collective or list manner.
  • the SRS antenna conversion capability information may be ⁇ SCellIndex 0, SRS antenna conversion capability 1 supported by the UE 10 on carrier 1; SCellIndex 1, the SRS antenna conversion capability 2 supported by the UE 10 on carrier 2; SCellIndex 3, the SRS antenna conversion capability supported by the UE 10 on carrier 3 3 ⁇ .
  • the rollback SRS antenna switching capability supported by the UE 10 can be reported in the same corresponding manner as the above-mentioned SRS antenna switching capability, and the network device 12 can determine that the UE 10 is on each carrier according to the above-mentioned method. What is the supported SRS antenna switching capability that can be rolled back? The process of reporting back-off SRS antenna switching capability information will be described with reference to FIG. 3.
  • the SRS antenna switching capability information and/or the backable SRS antenna switching capability information may only include the SRS of the carrier with the SRS antenna switching capability Antenna switching capability and/or corresponding fallback capability.
  • the SRS antenna switching capability information and the fallback SRS antenna switching capability information may also include one or more carriers supported by the UE 10/antenna switching capabilities of one or more cells/backoff information.
  • the UE 10 reports the SRS antenna conversion capability information supported by the UE 10 to the network device 12, and the information is configured according to one or more carriers/one or more cells supported by the UE 10.
  • the network device 12 receives the SRS antenna switching capability information sent by the UE 10.
  • the content received by the network device 12 is the content described in the foregoing block 202, and will not be repeated here.
  • the network device 12 sends configuration information to the UE 10 according to the SRS antenna switching capability information sent by the UE 10.
  • the network device 12 may configure SRS resources for the UE 10. For example, when the network device 12 configures/reconfigures the SRS antenna conversion capability for the UE 10, the above information sent by the UE 10 can be referred to to configure the SRS resource for the antenna port conversion for the UE 10 correspondingly.
  • the network device 12 may also be configured with others, which is not specifically limited in this application, and the specific configuration process will not be described in detail.
  • the UE 10 receives and executes the configuration information.
  • the following describes an example in which the UE 10 reports backable SRS antenna switching capability information when it wants to reduce the SRS antenna switching capability with reference to FIG. 3.
  • FIG. 3 shows an example in which the UE 10 reports backable SRS antenna switching capability information through UE Assistance Information (UE Assistance Information).
  • UE Assistance Information UE Assistance Information
  • the network device 12 sends an RRC connection reconfiguration message to the UE 10.
  • the UE 10 determines whether the SRS antenna switching capability needs to be reduced. In the case where the capability needs to be reduced, in block 303, the UE 10 sends auxiliary information to the network device 12.
  • the RRC message may include the SRS antenna switching capability information pre-configured by the network device 12 for the UE 10, and may also include the carrier configuration of the UE 10, for example, the configuration information received by the UE 10 in the above block 205.
  • the RRC message can include the configuration information related to overheating described above, corresponding to the RRC connection reconfiguration message and auxiliary information.
  • the RRC connection reconfiguration message can include the configuration information related to overheating described above, corresponding to the RRC connection reconfiguration message and auxiliary information.
  • the UE 10 may report the SRS antenna switching capability information of the carrier that the UE 10 is currently configured with.
  • the capability may be determined and reported by the UE 10 according to its hardware configuration and/or current SRS resource configuration.
  • the current SRS antenna conversion capability of UE 10 is configured as 2T4R, that is, UE 10 can transmit SRS on 2 antenna ports through 4 antennas; correspondingly, the SRS antenna conversion capability supported by UE 10 can be 1T4R and /Or 1T2R, that is, the SRS antenna conversion capability of UE 10 is to transmit SRS on one antenna port through 4 antennas and/or the SRS antenna conversion capability of UE 10 is to transmit SRS on one antenna port through 2 antennas.
  • the backed-back SRS antenna switching capability information may include one or more types of backed-back SRS capabilities expected by the UE 10. For example, the maximum value of the fallback capability expected by the UE 10, or the absolute value of the fallback capability expected by the UE 10.
  • the UE 10 may request the network device 12 to configure it with a fallback capability less than or equal to t2r4, that is, the configurable fallback capability of the UE 10 includes t1r4 and/or t1r2. In this way, the number of antenna ports and antennas expected by the UE 10 is one type Or multiple.
  • the UE 10 can request the network device 12 to configure it with a fallback capability equal to t2r4, that is, the UE 10 can be configured There is only one kind of fallback capability.
  • the UE may determine the number of antenna ports and antennas to fall back according to network requirements or scenario requirements, and then determine SRS antenna conversion capability information.
  • the embodiment of the present application does not specifically limit this process.
  • the expected power consumption value can be obtained, and then according to the mapping relationship between the preset power consumption and the SRS antenna conversion capability, the antenna port and the antenna port to be backed off can be determined. Quantity, and then confirm the SRS antenna switching capability information.
  • the mapping relationship between the preset power consumption and the SRS antenna conversion capability, the antenna port and the antenna port to be backed off can be determined. Quantity, and then confirm the SRS antenna switching capability information.
  • the UE 10 may only report a fallback expected by the UE 10 in the fallback SRS antenna switching capability information.
  • the value of the fallback capability can be used for all carriers supported by the UE 10.
  • the back-off SRS antenna switching capability information does not need to reflect the corresponding relationship between the back-off capability and the carrier. It can be understood that the value of the backed SRS antenna conversion capability needs to be less than or equal to the smallest capability value among all the SRS antenna conversion capabilities reported by the UE 10.
  • the value of the fallback capability may also be the maximum value of the fallback capability expected by the UE 10, or the absolute value of the fallback capability expected by the UE 10, which will not be repeated here.
  • the SRS antenna switching capability information and the fallback SRS antenna switching capability information may also include one or more carriers supported by the UE 10/antenna switching capabilities of one or more cells/backoff information.
  • 1-32 integers can be used to reflect the impact of the backed-out antenna switching capability on other downlink carriers.
  • a maximum of 32 carriers can be configured, so 1-32 can be used.
  • Integer to represent all configurable carriers. For example, also assuming that the UE 10 supports 3 carriers, namely (primary) carrier 1, (secondary) carrier 2, and 3, then an integer of 1-3 can be used at most to indicate the influence between carriers. If the value of the influence of other downlink carriers of carrier 1 is set to 1, and if carrier 1 has no influence on carrier 2, and carrier 1 has influence on carrier 3, then the value of the influence of other downlink carriers of carrier 3 needs to be set to 1. That is, the set value is the same as the value of the influence of other downlink carriers of carrier 1, and the value of the influence of other downlink carriers of carrier 2 can be set to a value other than 1, for example, 2 or 3.
  • the influence of the back-off antenna switching capability of each carrier on other downlink carriers can also be reported to the network device 12 through the correspondence between various carriers and capabilities described in the foregoing embodiments. For example, according to the default order of one or more carriers reported by the UE 10, the impact of one or more carriers on other downlink carriers is arranged, and the identification information of the indicated carrier and the back-off antenna switching capability of the carrier are compared to other downlink carriers. There is a one-to-one correspondence with the influence of the downlink carrier. For details, please refer to the foregoing description, which will not be repeated here.
  • the impact of the backed-out antenna switching capability on other downlink carriers can also be reflected by bits.
  • the impact on other downlink carriers is represented by a bitmap.
  • the bitmap of each carrier according to the default order of one or more carriers reported by the UE 10, the bits are set, and each bit in the bitmap represents one Carrier, where bit 0 means no impact, bit 1 means impact. It is still assumed that UE 10 supports 3 carriers, namely (primary) carrier 1, (secondary) carrier 2 and 3, if UE 10 reports carriers 1-3 in the order of the secondary carrier index from small to large, then the bitmap of each carrier Is ⁇ carrier 1, carrier 2, carrier 3 ⁇ .
  • the back-off antenna switching capability of carrier 1 has an effect on carrier 3 but has no effect on carrier 2, then the bitmap of carrier 1 can be ⁇ 1, 0, 1 ⁇ , and correspondingly, the bitmap of carrier 2 is ⁇ 0 , 0, 0 ⁇ , the bitmap of carrier 3 is ⁇ 1, 0, 1 ⁇ .
  • the identification information used to indicate the carrier may also be used to indicate the impact of the SRS antenna switching capability of the carrier's fallback on other uplink/downlink carriers.
  • the back-off antenna switching capability of carrier 1 has an impact on carrier 3 and no impact on carrier 2, so in the back-off antenna switching capability information, the impact on other uplink/downlink carriers can include ⁇ SCellIndex 0, SCellIndex 1 ⁇ , Indicating that carrier 1 has an effect on carrier 3.
  • the SRS antenna switching capability information that can be rolled back can also use the information packet described above, and each information packet corresponds to each carrier one-to-one through the identification information of the carrier. Not only includes the antenna port switching capability described above, but may also include at least one of the influence on the uplink carrier and the influence on the downlink carrier.
  • the information packet of carrier 1 may be ⁇ SCellIndex 0, the SRS antenna switching capability supported by UE 10 on carrier 1, the influence of carrier 1 on other downlink carriers, the influence of carrier 1 on other uplink carriers ⁇ , the above information packet
  • the format of is only used as an example for illustration, not as any limitation on the information package of this application.
  • the UE 10 reports backable SRS antenna switching capability information for one or more carriers currently configured, that is, the carrier currently used by the UE 10.
  • the fallbackable SRS antenna switching capability information the fallback SRS antenna switching capability of each carrier currently configured by the UE 10 and/or the impact on other uplink/downlink carriers can be in one-to-one correspondence, and the corresponding method can be Refer to the above description, which will not be repeated here.
  • the network device 12 can configure the carrier for the UE 10 when required by any UE 10 according to the rules configured by itself.
  • the rules can be based on existing standards. This application does not deal with the configuration method of the rules and the content of the rules. Make specific restrictions.
  • FIG. 4 provides another method for reporting the reversible SRS antenna conversion capability.
  • the network device 12 sends an RRC connection reconfiguration message to the UE 10.
  • the content in this embodiment is similar to that of block 301, and will not be repeated here.
  • the UE 10 determines whether the SRS antenna switching capability needs to be reduced. In the case where the capability needs to be reduced, in block 403, the UE 10 sends auxiliary information to the network device 12. In the auxiliary information, the UE 10 may report the backed-out carrier configuration of the UE 10 for the currently configured carrier and the backed-out SRS antenna switching capability information of the backed-out carrier configuration.
  • the UE 10 is currently configured with 3 carriers, which are carrier 1, carrier 2, and carrier 3.
  • the UE 10 can arbitrarily back off up to n-1 carriers according to the current overheating situation and configuration rules, where n is the maximum number of carriers currently configured, and generate back off carrier configuration information.
  • the configuration rules of the UE 10 may be based on existing standards, and this application does not specifically limit the configuration method and the content of the rules.
  • the backed-off carrier configuration information may include carrier identity (ID), number of carriers, frequency point information of the carrier, and/or bandwidth information of the carrier.
  • ID carrier identity
  • Any information that can be used to indicate a back-off carrier can be included in the carrier configuration information referred to herein, for example, the secondary cell index (SCellIndex) of the carrier, and the secondary cell index of the primary carrier/primary cell can be configured as an index
  • SCellIndex the secondary cell index of the primary carrier/primary cell
  • the UE 10 may further provide back-off SRS antenna switching capability information corresponding to the carrier for the back-off carrier.
  • back-off SRS antenna switching capability information corresponding to the carrier reference may be made to the detailed description of the foregoing implementation manner, which is not repeated here.
  • the network device 12 receives the backed-off carrier configuration and the back-off SRS antenna switching capability information corresponding to the carrier configuration.
  • the content in this embodiment is similar to that of block 304, and will not be repeated here.
  • the network device 12 sends configuration information to the UE 10 according to the backed-off carrier configuration and the back-off SRS antenna switching capability information sent by the UE 10. For example, when the network device 12 reconfigures the carrier and SRS antenna switching capabilities for the UE 10, it can refer to the above information sent by the UE 10 to configure the backed-off carrier and the SRS for antenna port conversion corresponding to the backed-off carrier. Resources.
  • the UE 10 receives and executes the configuration information.
  • the SRS antenna conversion capability information corresponding to the carrier determined according to the carrier supported by the UE and/or the currently configured carrier and/or the SRS antenna conversion capability information that can be backed out are reported to the network device to achieve The relevant configuration of the SRS capability with the UE's carrier as the granularity.
  • the signaling overhead of the network communication between the UE and the network device is smaller, and the configuration process is more in line with the actual situation of the UE working on the carrier.
  • the network device when the UE works according to the current carrier configuration, can perform related configuration for the UE based on the fallback carrier configuration and/or fallback SRS antenna switching capability information reported by the UE.
  • the mailbox can reduce the power consumption of the UE, solve the problem of overheating of the UE, and extend the usage time of the UE.
  • the foregoing mainly introduces the solution provided by the embodiment of the present application from the perspective of interaction between various network elements.
  • the above-mentioned UE and network equipment include hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the UE and the network device into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • Fig. 5 shows a flowchart of an exemplary communication method of the UE according to the above-mentioned embodiment.
  • the method 500 may be executed by the control unit 1041 and the transceiver unit 1042.
  • the control unit 1041 and the transceiver unit 1042 may be executed by the control unit 1041 and the transceiver unit 1042.
  • the control unit 1041 determines the SRS antenna switching capability information corresponding to the carrier in response to the capability request from the network device 12.
  • the content in this embodiment is similar to that of block 202, and will not be repeated here.
  • the transceiver unit 1042 sends the determined SRS antenna switching capability information to the network device 12.
  • the transceiver unit 1042 receives the configuration information sent by the network device 12, the configuration information includes the configuration of the SRS antenna conversion capability information determined by the reference control unit 1041.
  • control unit 1041 executes the configuration information of the network device 12.
  • the transceiver unit 1042 may also receive an RRC connection reconfiguration message from the network device 12.
  • the configuration information related to overheating in the RRC connection reconfiguration message may instruct the UE 10 to send auxiliary information related to overheating to the network device 12 when it is overheated.
  • the RRC connection reconfiguration message received in block 505 may also be received in block 503, that is, the RRC connection reconfiguration message may be sent by the network device 12 at any time together with any other messages.
  • control unit 1041 executes block 507.
  • the control unit 1041 may determine the fallback SRS antenna switching capability information corresponding to the currently configured carrier, or the control unit 1041 may first determine the fallback carrier configuration, and then determine the fallback corresponding to the fallback carrier based on the fallback carrier configuration SRS antenna conversion capability information that has been retired.
  • the transceiver unit 1042 sends the backed-off SRS antenna conversion capability information corresponding to the currently configured carrier to the network device 12, or sends back-off carrier configuration and back-off SRS antenna conversion corresponding to the back-off carrier.
  • Ability information corresponding to the currently configured carrier to the network device 12, or sends back-off carrier configuration and back-off SRS antenna conversion corresponding to the back-off carrier.
  • the transceiver unit 1042 receives configuration information from the network device, which is configured by the network device 12 with reference to the backed-off carrier configuration and/or back-off SRS antenna switching capability information.
  • configuration information For the configuration process of the configuration information, refer to the description in block 405.
  • control unit 1041 executes the configuration information from the network device.
  • the control unit 1041 is used to determine the fallbackable channel sounding reference signal (SRS) antenna switching capability information for the UE, where the fallbackable SRS antenna switching capability information indicates the UE Supported antenna port conversion capability for SRS transmission.
  • the antenna port conversion capability includes at least one of the number of antennas and antenna ports through which the UE can transmit SRS, and is equal to or less than the preset antenna and antenna ports for SRS transmission. At least one of the quantity;
  • the transceiver unit 1042 is used for the network device to send backable SRS antenna switching capability information
  • the SRS antenna switching capability information that can be backed out corresponds to one or more carriers and/or at least one cell supported by the UE.
  • the antennas and antenna ports that the UE can transmit SRS include: the antennas and antenna ports that the UE can transmit SRS through one or more carriers and/or at least one cell.
  • the SRS antenna switching capability information that can be backed out further indicates: corresponding to each of the one or more carriers, the effect of the switching antenna port on the uplink carrier of the other carriers in the one or more carriers , And/or the effect of changing the antenna port on the downlink carrier among the other carriers in one or more carriers.
  • At least one of the influence of the uplink carrier and the influence of the downlink carrier includes one or more bits, wherein one or more bits are associated with one or Multiple carriers correspond one to one.
  • the back-off SRS antenna conversion capability information includes multiple back-off SRS antennas Capability information packets, where multiple back-off SRS antenna capability information packets correspond to multiple carriers and/or multiple cells one-to-one, and each of the multiple back-off SRS antenna capability information packets indicates an antenna port Conversion capability, at least one of the influence on the uplink carrier and the influence on the downlink carrier.
  • a plurality of SRS antenna capability information packets that can be backed out are arranged in the order of the corresponding carrier and/or cell identification information.
  • the SRS antenna switching capability information that can be backed out is associated with the identification information of each carrier.
  • the identification information of each carrier is associated with the identification information of at least one of the affected uplink carrier and the downlink carrier.
  • the number of carriers corresponding to the backable SRS antenna switching capability information is equal to or less than the preset number of carriers.
  • the transceiving unit 1042 further includes: receiving a radio resource control (RRC) connection reconfiguration message from the network device, where the RRC connection reconfiguration information includes a preset number of antennas used to transmit SRS and a preset The number of antenna ports used to transmit SRS.
  • RRC radio resource control
  • the transceiving unit 1042 further includes: in response to a UE capability request from the network device, sending UE capability information of the UE to the network device, where the UE capability information includes the preset number and preset number of antennas used to transmit SRS. Set the number of antenna ports used to transmit SRS.
  • the antenna port conversion capability indicated by the backable SRS antenna conversion capability information simultaneously corresponds to Multiple carriers and/or multiple cells.
  • the SRS antenna conversion capability information corresponding to the carrier determined according to the carrier supported by the UE and/or the currently configured carrier and/or the SRS antenna conversion capability information that can be backed out are reported to the network device to achieve The relevant configuration of the SRS capability with the UE's carrier as the granularity.
  • the signaling overhead of the network communication between the UE and the network device is smaller, and the configuration process is more in line with the actual situation of the UE working on the carrier.
  • the network device when the UE works according to the current carrier configuration, can perform related configuration for the UE based on the fallback carrier configuration and/or fallback SRS antenna switching capability information reported by the UE.
  • the mailbox can reduce the power consumption of the UE, solve the problem of overheating of the UE, and extend the usage time of the UE.
  • Fig. 6 shows a schematic block diagram of a user equipment 600 according to an embodiment of the present application.
  • the device 600 may include at least an application circuit 602, a baseband circuit 604, a radio frequency (RF) circuit 606, a front end module (FEM) circuit 608, and one or more antennas 610 coupled together as shown.
  • the components of the device 600 shown may be included in the UE.
  • the application circuit 602 may be included in the processor 102 of the UE 10, a baseband circuit 604, a radio frequency (RF) circuit 606, a front-end module (FEM) circuit 608, and one or Multiple antennas 610 may be included in the communication module 104 of the UE 10.
  • the device 600 may include fewer elements.
  • the device 600 may include additional elements, such as a memory/storage device, display, camera, sensor, or input/output (I/O) interface.
  • the application circuit 602 may include one or more application processors.
  • the application circuit 602 may include a circuit, such as but not limited to: one or more single-core or multi-core processors.
  • the processor(s) may include any combination of general-purpose processors and special-purpose processors (eg, graphics processors, application processors, etc.).
  • the processor may be coupled with the memory/storage device or may include the memory/storage device, and may be configured to execute instructions stored in the memory/storage device to enable various applications and/or operating systems to run on the device 600.
  • the baseband circuit 604 may include circuits, such as but not limited to: one or more single-core or multi-core processors.
  • the baseband circuit 604 may include one or more baseband processors or control logic to process baseband signals received from the receive signal path of the RF circuit 606 and generate baseband signals for the transmit signal path of the RF circuit 606.
  • the baseband processing circuit 604 may interface with the application circuit 602 to generate and process baseband signals and control the operation of the RF circuit 606.
  • the baseband circuit 604 may include a third-generation (3G) baseband processor 604A, a fourth-generation (4G) baseband processor 604B, a fifth-generation (5G) baseband processor 604C, or other Other baseband processor(s) 604D of the current generation, the generation under development, or the generation to be developed in the future (for example, the sixth generation (6G), etc.).
  • the baseband circuit 604 eg, one or more of the baseband processors 604A-D
  • some or all of the functions of the baseband processors 604A-D may be included in a module stored in the memory 604G and these functions may be executed via a central processing unit (CPU) 604E.
  • Radio control functions can include, but are not limited to: signal modulation/demodulation, encoding/decoding, radio frequency shifting, and so on.
  • the modulation/demodulation circuit of the baseband circuit 604 may include fast Fourier transform (FFT), precoding, and/or constellation mapping/demapping functions.
  • the encoding/decoding circuit of the baseband circuit 604 may include convolution, tail-biting convolution, turbo, Viterbi and/or low density parity check (LDPC) encoder/ Decoder function.
  • FFT fast Fourier transform
  • the encoding/decoding circuit of the baseband circuit 604 may include convolution, tail-biting convolution, turbo, Viterbi and/or low density parity check (LDPC) encoder/ Decoder function.
  • LDPC low density parity
  • the baseband circuit 604 may include one or more audio digital signal processors (DSP) 604F.
  • the audio DSP(s) 604F may include elements for compression/decompression and echo cancellation, and may include other appropriate processing elements in other embodiments.
  • the components of the baseband circuit may be appropriately combined in a single chip, a single chipset, or arranged on the same circuit board.
  • some or all of the constituent components of the baseband circuit 604 and the application circuit 602 may be implemented together on a system on chip (SOC), for example.
  • SOC system on chip
  • the baseband circuit 604 may provide communications compatible with one or more radio technologies.
  • the baseband circuit 604 may support communication with Evolved Universal Terrestrial Radio Access Network (EUTRAN) or other wireless metropolitan area networks (WMAN), wireless local area networks (WLAN), and wireless personal area networks (WPAN).
  • EUTRAN Evolved Universal Terrestrial Radio Access Network
  • WMAN wireless metropolitan area networks
  • WLAN wireless local area networks
  • WPAN wireless personal area networks
  • Embodiments in which the baseband circuit 604 is configured to support radio communication of more than one wireless protocol may be referred to as a multimode baseband circuit.
  • the RF circuit 606 may support communication with a wireless network using modulated electromagnetic radiation through a non-solid medium.
  • the RF circuit 606 may include switches, filters, amplifiers, etc. to assist in communication with the wireless network.
  • the RF circuit 606 may include a receiving signal path, which may include a circuit that down-converts the RF signal received from the FEM circuit 608 and provides the baseband signal to the baseband circuit 604.
  • the RF circuit 606 may further include a transmission signal path, which may include a circuit that up-converts the baseband signal provided by the baseband circuit 604 and provides the RF output signal to the FEM circuit 608 for transmission.
  • the receive signal path of the RF circuit 606 may include a mixer circuit 606a, an amplifier circuit 606b, and a filter circuit 606c.
  • the transmit signal path of the RF circuit 606 may include a filter circuit 606c and a mixer circuit 606a.
  • the RF circuit 606 may also include a synthesizer circuit 606d for synthesizing frequencies used by the mixer circuit 606a of the receive signal path and the transmit signal path.
  • the mixer circuit 606a of the receive signal path may be configured to down-convert the RF signal received from the FEM circuit 608 based on the synthesized frequency provided by the synthesizer circuit 606d.
  • the amplifier circuit 606b may be configured to amplify the down-converted signal
  • the filter circuit 606c may be a low-pass filter (LPF) or a low-pass filter (LPF) configured to remove unwanted signals from the down-converted signal to generate an output baseband signal.
  • Band pass filter (BPF) Band pass filter
  • the output baseband signal may be provided to the baseband circuit 604 for further processing.
  • the output baseband signal may be a zero frequency baseband signal, but this is not required.
  • the mixer circuit 606a of the receive signal path may include a passive mixer, but the scope of the embodiment is not limited in this regard.
  • the mixer circuit 606a of the transmit signal path may be configured to up-convert the input baseband signal based on the synthesized frequency provided by the synthesizer circuit 606d to generate the RF output signal for the FEM circuit 608.
  • the baseband signal may be provided by the baseband circuit 604, and may be filtered by the filter circuit 606c.
  • the mixer circuit 606a of the receive signal path and the mixer circuit 606a of the transmit signal path may include two or more mixers, and may be arranged to be used for quadrature downconversion and / Or upconversion.
  • the mixer circuit 606a of the receive signal path and the mixer circuit 606a of the transmit signal path may include two or more mixers, and may be arranged for image suppression (e.g., Hartley mirror inhibition). In some embodiments, the mixer circuit 606a of the receive signal path and the mixer circuit 606a of the transmit signal path may be arranged for direct down-conversion and/or direct up-conversion, respectively. In some embodiments, the mixer circuit 606a of the receive signal path and the mixer circuit 606a of the transmit signal path may be configured for superheterodyne operation.
  • the output baseband signal and the input baseband signal may be analog baseband signals, but the scope of the embodiment is not limited in this respect.
  • the output baseband signal and the input baseband signal may be digital baseband signals.
  • the RF circuit 606 may include analog-to-digital converter (ADC) and digital-to-analog converter (DAC) circuits, and the baseband circuit 604 may include a digital baseband interface to communicate with the RF circuit 606.
  • ADC analog-to-digital converter
  • DAC digital-to-analog converter
  • a separate radio IC circuit may be provided to process signals of each spectrum, but the scope of the embodiment is not limited in this respect.
  • the synthesizer circuit 606d may be a fractional N type synthesizer or a fractional N/N+1 type synthesizer, but the scope of the embodiment is not limited in this respect, because other types of frequency synthesizers may be suitable of.
  • the synthesizer circuit 606d may be a delta-sigma synthesizer, a frequency multiplier, or a synthesizer including a phase locked loop with a frequency divider.
  • the synthesizer circuit 606d may be configured to synthesize the output frequency for use by the mixer circuit 606a of the RF circuit 606 based on the frequency input and the divider control input. In some embodiments, the synthesizer circuit 606d may be a fractional N/N+1 type synthesizer.
  • the frequency input may be provided by a voltage controlled oscillator (VCO), but this is not required.
  • VCO voltage controlled oscillator
  • the frequency divider control input can be provided by the baseband circuit 604 or the application processor 602 according to the desired output frequency.
  • the divider control input (eg, N) may be determined from a look-up table based on the channel indicated by the application processor 602.
  • the synthesizer circuit 606d of the RF circuit 606 may include a frequency divider, a delay locked loop (DLL), a multiplexer, and a phase accumulator.
  • the frequency divider may be a dual-mode frequency divider (DMD)
  • the phase accumulator may be a digital phase accumulator (DPA).
  • the DMD may be configured to divide the input signal by N or N+1 (e.g., based on the carry output) to provide a fractional division ratio.
  • the DLL may include a set of cascaded tunable delay elements, phase detectors, charge pumps, and D-type flip-flops.
  • the delay element may be configured to decompose the VCO cycle into Nd equal phase groups at most, where Nd is the number of delay elements in the delay line.
  • Nd is the number of delay elements in the delay line.
  • the synthesizer circuit 606d may be configured to generate the carrier frequency as the output frequency, while in other embodiments, the output frequency may be a multiple of the carrier frequency (for example, twice the carrier frequency, four times the carrier frequency). Times) and used with a quadrature generator and frequency divider circuit to generate multiple signals with multiple phases different from each other at the carrier frequency.
  • the output frequency may be the LO frequency (fLO).
  • the RF circuit 606 may include an IQ/polarity converter.
  • the FEM circuit 608 may include a received signal path, which may include a received signal path configured to manipulate the RF signal received from one or more antennas 610, amplify the received signal, and provide an amplified version of the received signal to RF circuit 606 is a circuit for further processing.
  • the FEM circuit 608 may also include a transmission signal path, which may include a circuit configured to amplify a signal for transmission provided by the RF circuit 606 for transmission by one or more of the one or more antennas 610.
  • the amplification through the transmit signal path or the receive signal path may be completed only in the RF circuit 606, only in the FEM 608, or in both the RF circuit 606 and the FEM 608.
  • the FEM circuit 608 may include a TX/RX switch to switch between transmit mode and receive mode operation.
  • the FEM circuit may include a receiving signal path and a transmitting signal path.
  • the receive signal path of the FEM circuit may include a low noise amplifier (LNA) to amplify the received RF signal and provide the amplified received RF signal as an output (for example, to the RF circuit 606).
  • the transmission signal path of the FEM circuit 608 may include a power amplifier (PA) for amplifying the input RF signal (for example, provided by the RF circuit 606) and a power amplifier (PA) for generating (for example, through one of the one or more antennas 610). (Or multiple antennas) one or more filters for subsequent transmission of RF signals.
  • PA power amplifier
  • PA power amplifier
  • the device 700 may include one or more processors 702, a system control logic 708 connected to at least one of the processors 702, a system memory 704 connected to the system control logic 708, and a non-volatile memory connected to the system control logic 708 (NVM) 706, and a network interface 710 connected to the system control logic 708.
  • processors 702 a system control logic 708 connected to at least one of the processors 702, a system memory 704 connected to the system control logic 708, and a non-volatile memory connected to the system control logic 708 (NVM) 706, and a network interface 710 connected to the system control logic 708.
  • NVM non-volatile memory
  • the processor 702 may include one or more single-core or multi-core processors.
  • the processor 702 may include any combination of a general-purpose processor and a special-purpose processor (for example, a graphics processor, an application processor, a baseband processor, etc.).
  • the processor 702 may be configured to execute one or more embodiments according to the various embodiments shown in FIGS. 2-5.
  • system control logic 708 may include any suitable interface controller to provide any suitable interface to at least one of the processors 702 and/or any suitable device or component in communication with the system control logic 708.
  • system control logic 708 may include one or more memory controllers to provide an interface to the system memory 704.
  • the system memory 704 can be used to load and store data and/or instructions.
  • the memory 704 of the device 700 may include any suitable volatile memory, such as a suitable dynamic random access memory (DRAM).
  • DRAM dynamic random access memory
  • the NVM/memory 706 may include one or more tangible, non-transitory computer-readable media for storing data and/or instructions.
  • the NVM/memory 706 may include any suitable non-volatile memory such as flash memory and/or any suitable non-volatile storage device, such as HDD (Hard Disk Drive, hard disk drive), CD (Compact Disc , At least one of an optical disc drive and a DVD (Digital Versatile Disc, digital versatile disc) drive.
  • the NVM/memory 706 may include a part of storage resources installed on the device of the device 700, or it may be accessed by the device, but not necessarily a part of the device.
  • the NVM/storage 706 can be accessed through the network via the network interface 710.
  • system memory 704 and the NVM/memory 706 may respectively include: a temporary copy and a permanent copy of the instruction 720.
  • the instructions 720 may include instructions that, when executed by at least one of the processors 702, cause the device 700 to implement the method shown in FIGS. 2-5.
  • the instructions 720, hardware, firmware, and/or software components thereof may additionally/alternatively be placed in the system control logic 708, the network interface 710, and/or the processor 702.
  • the network interface 710 may include a transceiver, which is used to provide a radio interface for the device 700 to communicate with any other suitable devices (such as a front-end module, an antenna, etc.) through one or more networks.
  • the network interface 710 may be integrated with other components of the device 700.
  • the network interface 710 may be integrated in at least one of the processor 702, the system memory 704, the NVM/storage 706, and a firmware device (not shown) with instructions.
  • the processor 702 executes the When instructed, the device 700 implements one or more of the various embodiments shown in FIGS. 2-5.
  • the network interface 710 may further include any suitable hardware and/or firmware to provide a multiple input multiple output radio interface.
  • the network interface 710 may be a network adapter, a wireless network adapter, a telephone modem, and/or a wireless modem.
  • At least one of the processors 702 may be packaged with the logic of one or more controllers for the system control logic 708 to form a system in package (SiP). In one embodiment, at least one of the processors 702 may be integrated on the same die with the logic of one or more controllers for the system control logic 708 to form a system on chip (SoC).
  • SiP system in package
  • SoC system on chip
  • the device 700 may further include: an input/output (I/O) device 712.
  • the I/O device 712 may include a user interface to enable a user to interact with the device 700; the design of the peripheral component interface enables the peripheral components to also interact with the device 700.
  • the device 700 further includes a sensor for determining at least one of environmental conditions and location information related to the device 700.
  • the user interface may include, but is not limited to, a display (e.g., liquid crystal display, touch screen display, etc.), speakers, microphones, one or more cameras (e.g., still image cameras and/or video cameras), flashlights (e.g., LED flash) and keyboard.
  • a display e.g., liquid crystal display, touch screen display, etc.
  • speakers e.g., speakers, microphones, one or more cameras (e.g., still image cameras and/or video cameras), flashlights (e.g., LED flash) and keyboard.
  • peripheral component interfaces may include, but are not limited to, non-volatile memory ports, audio jacks, and power interfaces.
  • the sensors may include, but are not limited to, a gyroscope sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit.
  • the positioning unit may also be part of or interact with the network interface 710 to communicate with components of the positioning network (eg, global positioning system (GPS) satellites).
  • GPS global positioning system
  • Program code can be applied to input instructions to perform the functions described in this article and generate output information.
  • the output information can be applied to one or more output devices in a known manner.
  • a processing system includes any system having a processor such as, for example, a digital signal processor (DSP), a microcontroller, an application specific integrated circuit (ASIC), or a microprocessor.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • the program code can be implemented in a high-level programming language or an object-oriented programming language to communicate with the processing system.
  • assembly language or machine language can also be used to implement the program code.
  • the mechanisms described in this article are not limited to the scope of any particular programming language. In either case, the language can be a compiled language or an interpreted language.
  • IP cores can be stored on a tangible computer-readable storage medium and provided to multiple customers or production facilities to be loaded into the manufacturing machine that actually manufactures the logic or processor.
  • the instruction converter can be used to convert instructions from the source instruction set to the target instruction set.
  • the instruction converter may transform (for example, use static binary transformation, dynamic binary transformation including dynamic compilation), deform, emulate, or otherwise convert instructions into one or more other instructions to be processed by the core.
  • the instruction converter can be implemented by software, hardware, firmware, or a combination thereof.
  • the instruction converter can be on the processor, off the processor, or part on the processor and part off the processor.
  • Example 1 A communication method for user equipment (UE), wherein the method includes:
  • the back-off SRS antenna switching capability information for the UE, where the back-off SRS antenna switching capability information at least partially indicates the antenna supported by the UE for SRS transmission Port switching capability, where the antenna port switching capability includes at least one of the antennas capable of transmitting the SRS and the number of antenna ports, and is equal to or less than the preset antennas and antennas for transmitting the SRS At least one of the number of ports;
  • the SRS antenna switching capability information that can be backed out corresponds to one or more carriers and/or at least one cell supported by the UE.
  • Example 2 The communication method according to example 1, wherein the antenna and the antenna port through which the UE can transmit the SRS include: the UE can pass the one or more carriers and/or the At least one cell, an antenna and an antenna port for transmitting the SRS.
  • Example 3 The method according to example 1, wherein the backable SRS antenna conversion capability information further indicates that corresponding to each of the one or more carriers, the antenna port is converted to the The influence of the uplink carrier in the other of the one or more carriers, and/or the influence of the antenna port on the downlink carrier of the other of the one or more carriers.
  • Example 4 The method according to example 3, wherein, corresponding to each of the one or more carriers, at least one of the influence of the uplink carrier and the influence of the downlink carrier includes one or A plurality of bits, wherein the one or more bits correspond to the one or more carriers in a one-to-one correspondence.
  • Example 5 The method according to any one of Examples 3-4, wherein, in the case where the back-off SRS antenna switching capability information corresponds to the multiple carriers and/or the multiple cells
  • the SRS antenna switching capability information that can be backed-out includes multiple back-off SRS antenna capability information packets, wherein the multiple back-off SRS antenna capability information packets are related to the multiple carriers and/or the Multiple cells have a one-to-one correspondence, and each of the multiple back-off SRS antenna capability information packets indicates the antenna port switching capability, the influence on the uplink carrier and the influence on the downlink carrier At least one of them.
  • Example 6 The method according to example 5, wherein the multiple back-off SRS antenna capability information packets are arranged in the order of the corresponding carrier and/or cell identification information.
  • Example 7 The method according to any one of examples 1-6, wherein, corresponding to each of the one or more carriers, the backed-out SRS antenna switching capability information and each of the The identification information of the carrier is associated.
  • Example 8 The method according to any one of examples 3-6, wherein, corresponding to each of the one or more carriers, the identification information of each carrier and the affected uplink The carrier is associated with identification information of at least one of the downlink carriers.
  • Example 9 The method according to any one of Examples 1-8, wherein the number of the carriers corresponding to the back-off SRS antenna switching capability information is equal to or less than a preset number of carriers.
  • Example 10 The method according to any one of Examples 1-9, wherein the method further comprises:
  • RRC connection reconfiguration information includes the preset number of antennas used to transmit the SRS and the preset The number of the antenna ports used to transmit the SRS.
  • Example 11 The method according to any one of examples 1-9, wherein the method further comprises: in response to a UE capability request from a network device, sending UE capability information of the UE to the network device, wherein The UE capability information includes the preset number of antennas used for transmitting the SRS and the preset number of antenna ports used for transmitting the SRS.
  • Example 12 The method according to example 1, wherein, in the case that the back-off SRS antenna switching capability information corresponds to the multiple carriers and/or multiple cells, the back-off SRS The antenna port conversion capability indicated by the antenna conversion capability information corresponds to the multiple carriers and/or multiple cells at the same time.
  • Example 13 A communication method for user equipment (UE), wherein the method includes:
  • SRS channel sounding reference signal
  • Example 14 The method of example 13, wherein the SRS antenna switching capability information further indicates that corresponding to each of the one or more carriers, the antenna port is switched to the one or more carriers.
  • Example 15 A communication method for user equipment (UE), wherein the method includes:
  • the back-off SRS antenna switching capability information is related to one or more carriers and/or one or more cells Corresponding to, and at least partially indicating the antenna port conversion capability for SRS transmission supported by the UE, where the antenna port conversion capability includes the ability of the UE to pass through the one or more carriers and/or the one or more cells At least one of the number of antennas and antenna ports for transmitting the SRS, and is equal to or less than at least one of the preset number of antennas and antenna ports for transmitting the SRS; and
  • Example 16 The method of example 15, wherein the backable SRS antenna conversion capability information further indicates: corresponding to each of the one or more carriers, the antenna port is converted to the The influence of the uplink carrier in the other of the one or more carriers, and/or the influence of the antenna port on the downlink carrier of the other of the one or more carriers.
  • Example 17 A communication method for user equipment (UE), including:
  • the backing off SRS antenna switching capability information corresponds to one or more carriers supported by the UE, and At least partially indicating the antenna port switching capability for transmitting SRS corresponding to the one or more carriers, wherein the number of the one or more carriers is less than the preset number of carriers;
  • Example 18 The communication method according to example 17, wherein the antenna port conversion capability includes at least one of an antenna capable of transmitting the SRS and the number of the antenna port, and is equal to or less than a preset At least one of the number of antennas and antenna ports used to transmit the SRS.
  • Example 19 A user equipment UE, wherein the UE includes:
  • the control unit is configured to determine the fallbackable channel sounding reference signal (SRS) antenna switching capability information for the UE, wherein the fallbackable SRS antenna switching capability information at least partly indicates the usage supported by the UE.
  • the antenna port conversion capability for transmitting the SRS includes at least one of the antenna capable of transmitting the SRS and the number of the antenna ports, and is equal to or less than a preset antenna port for transmitting the SRS. At least one of the number of antennas and antenna ports of the SRS;
  • a transceiving unit configured to send the backable SRS antenna conversion capability information to the network device
  • the SRS antenna switching capability information that can be backed out corresponds to one or more carriers and/or at least one cell supported by the UE.
  • Example 20 The device according to example 19, wherein the antenna and the antenna port through which the UE can transmit the SRS include: the UE can pass the one or more carriers and/or the At least one cell, an antenna and an antenna port for transmitting the SRS.
  • Example 21 The device according to example 19, wherein the backable SRS antenna conversion capability information further indicates that corresponding to each of the one or more carriers, the antenna port is converted to the The influence of the uplink carrier in the other of the one or more carriers, and/or the influence of the antenna port on the downlink carrier of the other of the one or more carriers.
  • Example 22 The device of example 21, wherein, corresponding to each of the one or more carriers, at least one of the influence of the uplink carrier and the influence of the downlink carrier includes one or A plurality of bits, wherein the one or more bits correspond to the one or more carriers in a one-to-one correspondence.
  • Example 23 The device according to any one of Examples 19-22, wherein, in the case where the back-off SRS antenna switching capability information corresponds to the multiple carriers and/or the multiple cells
  • the SRS antenna switching capability information that can be backed-out includes multiple back-off SRS antenna capability information packets, wherein the multiple back-off SRS antenna capability information packets are related to the multiple carriers and/or the Multiple cells have a one-to-one correspondence, and each of the multiple back-off SRS antenna capability information packets indicates the antenna port switching capability, the influence on the uplink carrier and the influence on the downlink carrier At least one of them.
  • Example 24 The device according to example 23, wherein the multiple back-off SRS antenna capability information packets are arranged in an order of the corresponding carrier and/or cell identification information.
  • Example 25 The device according to any one of Examples 19-24, wherein, corresponding to each of the one or more carriers, the backed-out SRS antenna switching capability information is identical to that of each carrier.
  • the identification information of the carrier is associated.
  • Example 26 The device according to any one of Examples 21-24, wherein, corresponding to each of the one or more carriers, the identification information of each carrier and the affected uplink The carrier is associated with identification information of at least one of the downlink carriers.
  • Example 27 The device according to any one of Examples 19-26, wherein the number of the carriers corresponding to the back-off SRS antenna switching capability information is equal to or less than a preset number of carriers.
  • Example 28 The device according to any one of Examples 19-27, wherein the transceiving unit further includes:
  • RRC connection reconfiguration information includes the preset number of antennas used to transmit the SRS and the preset The number of the antenna ports used to transmit the SRS.
  • Example 29 The device according to any one of Examples 19-27, wherein the transceiving unit further comprises: in response to a UE capability request from a network device, sending UE capability information of the UE to the network device, wherein The UE capability information includes the preset number of antennas used for transmitting the SRS and the preset number of antenna ports used for transmitting the SRS.
  • Example 30 The device according to example 19, wherein, in the case that the back-off SRS antenna switching capability information corresponds to the multiple carriers and/or multiple cells, the back-off SRS The antenna port conversion capability indicated by the antenna conversion capability information corresponds to the multiple carriers and/or multiple cells at the same time.
  • Example 31 A user equipment (UE), wherein the device includes:
  • the control unit is configured to determine channel sounding reference signal (SRS) antenna switching capability information for the UE, where the SRS antenna switching capability information is related to one or more carriers and/or one or more supported by the UE.
  • the cell corresponds to and at least partially indicates the antenna port conversion capability for sending SRS supported by the UE, wherein the antenna port conversion capability includes the UE being able to pass the one or more carriers and/or the one or more At least one of the number of antennas and the number of antenna ports for transmitting the SRS in each cell;
  • the transceiver unit is configured to send the SRS antenna conversion capability information to the network device.
  • Example 32 The device according to example 31, wherein the SRS antenna conversion capability information further indicates that corresponding to each of the one or more carriers, the antenna port is converted to the one or more The influence of the uplink carrier in other carriers in the carrier, and/or the influence of the antenna port on the downlink carrier in the other carrier in the one or more carriers.
  • Example 33 A user equipment (UE), wherein the device includes:
  • the control unit is configured to determine the back-off channel sounding reference signal (SRS) antenna switching capability information for the UE, wherein the back-off SRS antenna switching capability information is associated with one or more carriers and/or one Or multiple cells corresponding to, and at least partially indicate the antenna port conversion capability of the SRS transmission supported by the UE, wherein the antenna port conversion capability includes the UE being able to pass the one or more carriers and/or the At least one of the number of antennas and antenna ports for transmitting the SRS in one or more cells, and is equal to or less than at least one of the preset number of antennas and antenna ports for transmitting the SRS; and
  • SRS back-off channel sounding reference signal
  • the transceiver unit is configured to send the backable SRS antenna conversion capability information to the network device.
  • Example 34 The device according to example 33, wherein the backable SRS antenna conversion capability information further indicates: corresponding to each of the one or more carriers, the antenna port is converted to the The influence of the uplink carrier in the other of the one or more carriers, and/or the influence of the antenna port on the downlink carrier of the other of the one or more carriers.
  • Example 35 A user equipment (UE), including:
  • the control unit is configured to determine the back-off channel sounding reference signal (SRS) antenna switching capability information for the UE, wherein the back-off SRS antenna switching capability information is the same as one or more supported by the UE
  • the carrier corresponds to, and at least partially indicates the antenna port switching capability for transmitting SRS corresponding to the one or more carriers, wherein the number of the one or more carriers is less than the preset number of carriers;
  • the transceiver unit is configured to send the backable SRS antenna conversion capability information to the network device.
  • Example 36 The device of example 35, wherein the antenna port conversion capability includes at least one of an antenna capable of transmitting the SRS and the number of the antenna port, and is equal to or less than a preset usage At least one of the number of antennas and antenna ports for transmitting the SRS.
  • Example 37 A user equipment UE, comprising a memory, a processor, and a program stored on the memory and capable of being run on the processor, wherein the processor executes the program in Examples 1 to 18 Any one of the communication methods.
  • Example 38 A communication system, including user equipment UE and network equipment, wherein,
  • the UE is configured to determine back-off channel sounding reference signal (SRS) antenna switching capability information for the UE, where the back-off SRS antenna switching capability information at least partially indicates that the UE supports
  • SRS channel sounding reference signal
  • the antenna port conversion capability for transmitting SRS where the antenna port conversion capability includes at least one of the antenna through which the UE can transmit the SRS and the number of antenna ports, and is equal to or less than the preset antenna port for transmitting the SRS. At least one of the number of antennas and antenna ports of the SRS, and
  • the network equipment is configured to receive the SRS antenna switching capability information that is backable to be sent by the UE; configure the UE according to the SRS antenna switching capability information that is backable to send a configuration message to the UE.
  • Example 39 A computer-readable storage medium comprising instructions, which when run on a computer, cause the computer to execute the communication method according to any one of Examples 1-18.
  • Example 40 A computer program product, including instructions, which when run on a computer, cause the computer to execute the communication method according to any one of Examples 1 to 18.
  • Example 41 A chip system, including: the chip system includes a processor and a memory, and instructions are stored in the memory; when the instructions are executed by the processor, the implementation is as in any one of Examples 1 to 18. The communication method described in the item.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种用于用户设备(UE)的通信方法和对应的用户设备,方法包括:确定用于UE的可回退的信道探测参考信号(SRS)天线转换能力信息,例如,可回退的SRS天线转换能力信息至少部分地指示UE支持的用于传输SRS的天线端口转换能力,天线端口转换能力包括UE能够传输SRS的天线和天线端口的数量中的至少一个,并且等于或小于预设的用于传输SRS的天线和天线端口的数量中的至少一个;向网络设备发送可回退的SRS天线转换能力信息;其中,可回退的SRS天线转换能力信息与UE支持的一个或多个载波和/或至少一个小区对应。通过该方法使得在相关配置的过程中,UE和网络设备之间的网络通信的信令开销更小,并且配置过程更加符合UE在载波上工作的实际情况。

Description

通信方法和用户设备
本申请要求于2019年11月7日提交中国专利局、申请号为201911083130.5、申请名称为“通信方法和用户设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种上报探测参考信号(Sounding Reference Signal,SRS)能力信息的通信方法和用户设备。
背景技术
目前,用户设备(User equipment,简称UE)可以通过能力消息(UE Capability Information)和辅助消息(UE Assistance Information)上报用户天线转换的探测参考信号(Sounding reference signals,SRS)的转换能力信息,网络设备根据SRS天线转换能力信息为UE配置相应的SRS资源。
发明内容
本申请的一些实施方式提供了一种通信方法和用户设备。以下从多个方面介绍本申请,以下多个方面的实施方式和有益效果可互相参考。
当用户设备(User equipment,简称UE)出现设备内部过热问题,可以通过降低UE能力或配置来降温解决过热问题,此时,UE可以上报辅助信息(UE Assistance Information)通知网络设备(例如,基站)UE期望降低的能力或配置,供基站参考、进行重配。例如,当过热相关的辅助信息包括UE的多输入多输出(multiple input multiple output,MIMO)层(layer)数时,网络设备可以为UE重新配置低能力的MIMO layer数,用于UE按低能力的MIMO layer数关闭部分射频链路及天线端口,以降低UE的功耗解决过热问题。但是,在网络设备为UE调低MIMO layer数后,如果网络设备不相应的重配用于用户天线转换的探测参考信号(Sounding reference signals,SRS)资源,在进行天线端口转换时,会出现能力不匹配的问题,从而导致UE无法真正降温,浪费某些SRS资源,和/或影响通话质量的问题。
为了应对上述场景,第一方面,本申请的实施方式提供了一种用于用户设备(UE)的通信方法,用于将回退的SRS天线转换能力信息和载波关联起来。该方法包括:确定用于UE的可回退的信道探测参考信号(SRS)天线转换能力信息,例如,可回退的SRS天线转换能力信息指示UE支持的用于传输SRS的天线端口转换能力,天线端口转换能力包括UE能够传输SRS的天线和天线端口的数量中的至少一个,并且可回退的SRS天线转换能力信息意味着上述能力等于或小于预设的用于传输SRS的天线和天线端口的数量中的至少一个;其中,可回退的SRS天线转换能力信息与UE支持的一 个或多个载波和/或至少一个小区对应。
之后,向网络设备发送可回退的SRS天线转换能力信息。
根据本申请的实施方式,将根据UE支持的载波和/或当前配置的载波确定与载波对应的可回退的SRS天线转换能力信息上报在网络设备,实现以UE的载波为粒度的SRS能力的相关配置。使得在相关配置的过程中,UE和网络设备之间的网络通信的信令开销更小,并且配置过程更加符合UE在载波上工作的实际情况。
在一些实施方式中,具体来说,UE能够传输SRS的天线和天线端口包括:UE能够通过一个或多个载波和/或至少一个小区,传输SRS的天线和天线端口。
在一些实施方式中,可回退的SRS天线转换能力信息还指示:对应于一个或多个载波中的每一个载波,转换天线端口对于一个或多个载波中的其他载波中的上行载波的影响,和/或转换天线端口对于一个或多个载波中的其他载波中的下行载波的影响。
在一些实施方式中,通过比特图指示上述影响,在比特图中每一元素与载波/小区的对应关系按照预先确定好的顺序排列。例如,对应于一个或多个载波中的每一个载波,上行载波的影响和下行载波的影响中的至少一个包括一个或多个比特位,其中一个或多个比特位与一个或多个载波一一对应。
在一些实施方式中,还可以通过信息包的方式对每个载波的可回退的SRS天线转换能力信息打包,例如,在可回退的SRS天线转换能力信息与多个载波和/或多个小区相对应的情况下,可回退的SRS天线转换能力信息包括多个可回退的SRS天线能力信息包,其中多个可回退的SRS天线能力信息包与多个载波和/或多个小区一一对应,并且,多个可回退的SRS天线能力信息包中的每一个指示天线端口转换能力,对上行载波的影响和对下行载波的影响中的至少一个。
在一些实施方式中,可以将信息包与载波对应,例如,多个可回退的SRS天线能力信息包按照对应的载波和/或小区的标识信息的顺序排列。
在一些实施方式中,对应于一个或多个载波中的每一个载波,可回退的SRS天线转换能力信息与每一个载波的标识信息相关联。
在一些实施方式中,对应于一个或多个载波中的每一个载波,每一个载波的标识信息与影响的上行载波和下行载波中的至少一个的标识信息相关联。
在一些实施方式中,与可回退的SRS天线转换能力信息相对应的载波的数量等于或小于预设的载波数量。
结合第一方面,在一些实施方式中,UE在接收到网络设备的请求后才发送可回退的SRS天线转换能力信息,例如方法还可以包括:接收来自网络设备的无线资源控制(RRC)连接重配消息,其中RRC连接重配信息包括预设的用于传输SRS的天线的数量和预设的用于传输SRS的天线端口的数量。
结合第一方面,在一些实施方式中,方法还包括:响应于来自网络设备的UE能力请求,向网络设备发送UE的UE能力信息,其中UE能力信息包括预设的用于传输SRS的天线的数量和预设的用于传输SRS的天线端口的数量。
在一些实施方式中,可以针对所有载波/小区设置相同的能力。例如,在可回退的SRS天线转换能力信息与多个载波和/或多个小区相对应的情况下,可回退的SRS天线转换能力信息指示的天线端口转换能力同时对应于多个载波和/或多个小区。
第二方面,本申请的实施方式提供了一种用于用户设备(UE)的通信方法,方法包括:确定用于UE的信道探测参考信号(SRS)天线转换能力信息,其中SRS天线转换能力信息与UE支持的一个或多个载波和/或一个或多个小区对应并且指示UE支持的用于发送SRS的天线端口转换能力,其中天线端口转换能力包括UE能够通过一个或多个载波和/或一个或多个小区传输SRS的天线和天线端口的数量中的至少一个;
向网络设备发送SRS天线转换能力信息。
在一些实施方式中,SRS天线转换能力信息还指示:对应于一个或多个载波中的每一个载波,转换天线端口对于一个或多个载波中的其他载波中的上行载波的影响,和/或转换天线端口对于一个或多个载波中的其他载波中的下行载波的影响。
根据本申请的实施方式,将根据UE支持的载波和/或当前配置的载波确定与载波对应的SRS天线转换能力信息上报在网络设备,实现以UE的载波为粒度的SRS能力的相关配置。使得在相关配置的过程中,UE和网络设备之间的网络通信的信令开销更小,并且配置过程更加符合UE在载波上工作的实际情况。
第三方面,本申请提供了一种一种用户设备UE,UE包括:控制单元,用于确定用于UE的可回退的信道探测参考信号(SRS)天线转换能力信息,其中可回退的SRS天线转换能力信息指示UE支持的用于传输SRS的天线端口转换能力,天线端口转换能力包括UE能够传输SRS的天线和天线端口的数量中的至少一个,并且等于或小于预设的用于传输SRS的天线和天线端口的数量中的至少一个;收发单元,用于向网络设备发送可回退的SRS天线转换能力信息;其中,可回退的SRS天线转换能力信息与UE支持的一个或多个载波和/或至少一个小区对应。
第四方面,本申请提供了一种用户设备UE,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,处理器执行程序时实现权利要求1至14中任一项的通信方法。
第五方面,本申请提供了一种通信***,包括用户设备UE及网络设备,UE用于确定用于UE的可回退的信道探测参考信号(SRS)天线转换能力信息,其中可回退的SRS天线转换能力信息指示UE支持的用于传输SRS的天线端口转换能力,天线端口转换能力包括UE能够传输SRS的天线和天线端口的数量中的至少一个,并且等于或小于预设的用于传输SRS的天线和天线端口的数量中的至少一个,以及
向网络设备发送可回退的SRS天线转换能力信息;
网络设备用于接收UE发送的可回退的SRS天线转换能力信息;根据可回退的SRS天线转换能力信息配置UE,向UE发送配置消息。
第六方面,本申请提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如前述任意一个方面或实施方式所描述的方法。
第七方面,本申请提供了一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行如前述任意一个方面或实施方式所描述的方法。
第八方面,本申请提供了一种芯片***,包括:芯片***包括处理器、存储器,存储器中存储有指令;指令被处理器执行时,实现如前述任意一个方面或实施方式所描述的方法。
本申请根据本申请的一些方面,其效果包括,但不局限于:
根据本申请的各种实施方式,将根据UE支持的载波和/或当前配置的载波确定与载波对应的SRS天线转换能力信息和/或可回退的SRS天线转换能力信息上报在网络设备,实现以UE的载波为粒度的SRS能力的相关配置。使得在相关配置的过程中,UE和网络设备之间的网络通信的信令开销更小,并且配置过程更加符合UE在载波上工作的实际情况。
此外,根据本申请的各种实施方式,还可以实现UE根据当前载波配置工作时,网络设备基于UE上报的回退载波配置和/或可回退的SRS天线转换能力信息为UE进行相关配置,能够邮箱降低UE的功耗,解决UE过热问题,并延长UE使用时间。
附图说明
图1示出了实施本申请示意性的实施例的通信***的示意图。
图2示出了根据本申请实施例的示例通信***的通信方法的流程示意图。
图3示出根据本申请实施例的示例通信***的另一个通信方法的流程示意图。
图4示出根据本申请实施例的示例通信***的另一个通信方法的流程示意图。
图5示出根据本申请实施例的用户设备的通信方法的流程示意图。
图6示出根据本申请实施例的用户设备的结构示意图。
图7示出了根据本申请实施例的通信设备的结构示意图。
具体实施方式
下面结合具体实施例和附图对本申请做进一步说明。可以理解的是,本公开的说明性实施例包括但不限于语音活动检测的方法、***和装置,此处描述的具体实施例仅仅是为了解释本申请,而非对本申请的限定。此外,为了便于描述,附图中仅示出了与本申请相关的部分而非全部的结构或过程。
以下由特定的具体实施例说明本申请的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本申请的其他优点及功效。虽然本申请的描述将结合较佳实施例一起介绍,但这并不代表此发明的特征仅限于该实施方式。恰恰相反,结合实施方式作发明介绍的目的是为了覆盖基于本申请的权利要求而有可能延伸出的其它选择或改造。为了提供对本申请的深度了解,以下描述中将包含许多具体的细节。本申请也可以不使用这些细节实施。此外,为了避免混乱或模糊本申请的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
此外,各种操作将以最有助于理解说明性实施例的方式被描述为多个离散操作;然而,描述的顺序不应被解释为暗示这些操作必须依赖于顺序。特别是,这些操作不需要按呈现顺序执行。
除非上下文另有规定,否则术语“包含”,“具有”和“包括”是同义词。短语“A/B”表示“A或B”。短语“A和/或B”表示“(A和B)或者(A或B)”。
如这里所使用的,术语“模块”或“单元”可以指代、是或者包括:专用集成电路(ASIC)、电子电路、执行一个或多个软件或固件程序的(共享、专用或组)处理器和/或存储器、组合逻辑电路和/或提供所描述的功能的其他合适的组件。
在一些情况下,所公开的实施例可以以硬件、固件、软件或其任何组合来实现。所公开的实施例还可以被实现为由一个或多个暂时或非暂时性机器可读(例如,计算机可读)存储介质承载或存储在其上的指令,其可以由一个或多个处理器读取和执行。例如,指令可以通过网络或通过其他计算机可读介质的途径分发。因此,机器可读介质可以包括用于以机器(例如,计算机)可读的形式存储或传输信息的任何机制、但不限于、软盘、光盘、光盘、只读存储器(CD-ROM)、磁光盘、只读存储器(ROM)、随机存取存储器(RAM)、可擦除可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)、磁卡或光卡、闪存、或用于通过电、光、声或其他形式的传播信号(例如,载波、红外信号、数字信号等)通过因特网传输信息的有形的机器可读存储器。因此,机器可读介质包括适合于以机器(例如,计算机)可读的形式存储或传输电子指令或信息的任何类型的机器可读介质。
在附图中,以特定布置和/或顺序示出一些结构或方法特征。然而,应该理解,可以不需要这样的特定布置和/或排序。在一些实施例中,这些特征可以以不同于说明性附图中所示的方式和/或顺序来布置。另外,在特定图中包含结构或方法特征并不意味着暗示在所有实施例中都需要这样的特征,并且在一些实施例中,可以不包括这些特征或者可以与其他特征组合。
应当理解的是,虽然在这里可能使用了术语“第一”、“第二”等等来描述各个单元或是数据,但是这些单元或数据不应当受这些术语限制。使用这些术语仅仅是为了将一个特征与另一个特征进行区分。举例来说,在不背离示例性实施例的范围的情况下,第一特征可以被称为第二特征,并且类似地第二特征可以被称为第一特征。
应注意的是,在本说明书中,相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的实施方式作进一步地详细描述。
如本文所使用的,术语“模块或单元”可以指或者包括专用集成电路(ASIC)、电子电路、执行一个或多个软件或固件程序的处理器(共享的、专用的或组)和/或存储器(共享的、专用的或组)、组合逻辑电路、和/或提供所描述的功能的其他合适的组件,或者可以是专用集成电路(ASIC)、电子电路、执行一个或多个软件或固件程序的处理器(共享的、专用的或组)和/或存储器(共享的、专用的或组)、组合逻辑电路、和/或提供所描述的功能的其他合适的组件的一部分。
本申请实施例的技术方案可以应用于各种通信***,例如:第三代(3rd-Generation,3G)移动通信网络,***(4th-Generation,3G)移动通信网络长期演进(Long Term Evolution,LTE)网络,第五代(5th-Generation,5G)移动通信***新无线(New Radio,NR)网络中。此外,本申请实施例的技术方案还可以应用于下一代蜂窝移动通信***中,以及后续的其他移动通信***中,本申请对此不作限定。
以下对本申请中的一些术语进行解释:
SRS天线转换能力信息:可以指示SRS天线转换能力、对其他下行载波的影响和对其他上行载波的影响。
SRS天线转换能力:UE可以支持的SRS传输端口转换模式。如果UE指示的SRS天线转换能力为xTyR,则表示UE能够通过y个天线在x个天线端口上传输SRS。y对应UE的全部接收天线或者接收天线的子集。
最大天线端口数:UE可以支持的最大的天线端口的数目。
SRS资源:用于发送SRS的时域资源和/或频域资源。
图1实施本申请示意性的实施例的通信***100的示意图。该通信***100可以包括至少一个UE 10(仅示出一个)和至少一个网络设备12(仅示出一个)。例如UE10可以基于蜂窝通信协议与网络设备12通信地耦接,蜂窝通信协议例如可以是全球移动通信***(GSM)协议、码分多址(CDMA)网络协议、即按即说(PTT)协议、蜂窝PTT(POC)协议、通用移动电信***(UMTS)协议、3GPP长期演进(LTE)协议、第五代(5G)协议、新无线电(NR)协议等。
如图1所示,UE 10可以包括用户使用的终端设备,例如,手机、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
UE 10还包括:处理器102、通信模块104和存储器106,这些模块通过总线通信地耦接。处理器102可以包括但不限于中央处理器CPU(Central Processing Unit)、图像处理器GPU(Graphics Processing Unit)、数字信号处理器DSP、微处理器MCU(Micro-programmed Control Unit)、AI(Artificial Intelligence)处理器或可编程逻辑器件FPGA(Field Programmable Gate Array)等的处理模块或处理电路。在一些实施例中,处理器102可以被配置为执行下文描述的各种实施例的一个或多个实施例。
在一种可能的实施方式中处理器102可以运行UE 10的操作***,例如,Android、iOS、Windows OS、Liunix和鸿蒙操作***等。在另一些可能的实施方式中,处理器102可以运行特定的应用程序。
存储器106可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器106可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至UE 10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
通信模块104可以包括控制单元1041和收发单元1042。控制单元1041可以处理从收发单元1042接收的无线信号,并生成用于收发单元1042发送的无线信号。在一些实施方式中,控制单元1041可以包括第三代(3G)基带处理器、***(4G)基带处理器、第五代(5G)基带处理器,和/或用于其他现有代、在开发中或未来将要开发的代(例如,第六代(6G)等)的(一个或多个)其他基带处理器。控制单元1041可以处理经由收发单元1042与一个或多个无线电网络进行通信的各种无线电控制功能。在一些实施方式中,通信模块104可以提供与一个或多个无线电技术兼容的通信。收发单元1042可以包括射频链路,例如,包含三级射频集成电路、功率放大器以及双工器/ 滤波器等。
网络设备12可以包括用于与UE通信的网络侧设备,例如,宏基站、微基站或者分散单元-控制单元(distribute unit-control unit,DU-CU)等。其中,基站可以是LTE中的演进型基站(evolutional Node B,eNB或e-NodeB,),也可以是NR中的gNB等。基站还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者可以为中继站、接入点、车载设备、可穿戴设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的网络设备等,DU-CU是一种部署在无线接入网中能够和用户设备进行无线通信的设备。本申请实施例对此并不限定。
在通信***100中,例如UE 10出现过热问题或需要降低功耗节省电池寿命的时候,UE可以上报UE辅助信息(UE Assistance Information)通知网络设备该UE期望降低的能力或配置,供基站参考、进行重配。以UE 10过热为例:
通常,网络设备12向UE 10发送RRC(Radio Resource Control,无线资源控制)连接重配消息。其中,该RRC连接重配置消息可以包括:过热相关的配置信息。例如,过热相关的配置信息可以指示UE 10是否可以发送过热相关的辅助信息给网络设备12,以及过热相关的禁止定时器的取值等。
若网络设备12配置UE 10可以发送过热相关的辅助信息,当UE 10出现过热问题,且过热相关的禁止定时器不在运行状态,UE 10向网络设备发送辅助信息消息。其中,该辅助信息消息中包括过热相关的辅助信息,用于网络设备12解决UE 10的过热问题。
可以理解,过热相关的辅助信息的内容可以根据实际需求配置,本申请实施例对此并不进行具体限定。当过热相关的辅助信息包括UE类型或MIMO layer数,即用于指示UE期望降低MIMO layer数时,网络设备可以根据UE上报的UE类型或MIMO layer数,给UE重新配置合适的MIMO layer数。
在上述降低UE能力或配置的过程中,网络设备根据UE的上报仅重新配置MIMO layer数,UE降低的MIMO layer数关闭射频链路及天线端口存在弊端,会影响UE正常能力下的SRS能力。比如,若网络设备配置UE降低上行最大MIMO layer数,UE会关闭发射射频链路,这时,UE无法支持正常能力下的天线轮发SRS,从而导致某些SRS资源的浪费。若网络设备配置UE降低下行最大MIMO layer数,UE期望关闭部分接收射频链路,这时UE仍然按照正常能力下的天线轮发SRS,就会导致网络设备根据SRS估计的信道质量与调度物理下行共享信道(physical downlink shared channel,PDSCH)传输的下行信道质量不一致。因此,即使网络设备为UE重配了低能力的MIMO layer数,UE为了实现SRS天线转换能力,仍然要保持原来的射频链路及天线端口数目,UE的功耗无法降低,网络设备为UE重新配置的低能力的MIMO layer数也无法发挥降温的作用。
因此,在通信***100中,UE 10需要将自身支持的可回退的SRS天线转换能力信息上报给网络设备12,以便网络设备12可以根据UE 10上报的可回退的SRS天线转换能力信息配置对应的SRS资源。以下参见图2具体描述UE 10上报可回退的SRS天线转换能力信息上报给网络设备12。
可以理解,本申请的实施方法可以应用于任一UE需上报可回退的SRS能力的场景中,UE发生过热问题或者需降低功耗仅是示例的应用场景,并不是对本申请方案的应用场景的具体限定,后续内容对此不再一一说明。
以下参考图2描述根据本申请实施例的示例通信***100的通信方法的流程示意图。
如图2所示,在块201,网络设备12向UE 10发送能力请求(UE Capability Enquiry)消息,用于请求UE发送UE在某一/些RAT的无线接入能力。
在块202,响应于网络设备12的能力请求消息,UE 10确定自身的无线能力(radio capability),并通过能力消息(UE Capability Information)向网络设备12上报自身的无线能力(radio capability)。UE的能力消息中可以包含该UE在多种无线接入技术(Radio Access Technology,RAT)中的能力。能力消息可以在UE 10接入网络设备12所在的小区时进行上报,也可以在网络设备12需要了解UE 10的无线能力时,指令UE 10进行上报。
在一些实施方式中,UE 10的能力消息可以由通信模块104的控制单元1041生成,并经由收发单元1042发送给网络设备12。可以理解,在本申请的一个或多个实施方式中,通信模块104可以对UE 10进行各种与无线通信相关的配置。
在一些实施方式中,能力消息中可以包括UE 10预设的SRS天线转换/轮发(sounding reference signal antenna switch)能力,即UE 10期望被配置的能力。其中,该能力指示了UE 10向网络设备12发送SRS时可以支持的天线数量和天线端口数量。
在可选的或附加的一些实施方式中,能力消息中还可以包括UE 10支持的可回退的SRS天线转换能力。
在现有标准中,网络设备12并不明确知道UE 10有多少射频链路,而是采用天线这一术语进行描述。比如当UE 10实际有两个发射射频链路的时候,该UE 10最多支持同时使用2个天线与网络设备12进行上行通信。如果UE 10使用2个天线与网络设备12进行通信,则在实际上每个射频链路会对应一个天线。如果UE 10使用1个天线与网络设备12进行通信,UE 10可以使用任意一个上行射频链路对应到这个天线,也可以同时使用两个射频链路模拟成一个天线,这取决于UE 10的具体实现,对网络设备12而言是透明的。网络设备12只需要调度UE 10在哪个或哪些天线上发送数据即可。下面为了简化描述,将一个UE 10支持一个发射射频链路(transmit,T),两个接收射频链路(receive,R)称为t1r2。以此类推,一个UE 10支持2个发射射频链路和4个接收射频链路称为t2r4。通常情况下,UE 10中的接收射频链路数量会大于或等于发射射频链路数量,并且每一个接收射频链路与一根天线(即电磁波的辐射单元)连接,因此t1r2也可以理解为该UE 10中有一个发射射频链路与两根天线。以此类推,t2r4也可以理解为该UE 10中有两个发射射频链路与四根天线。因此,SRS能力信息中的天线数量也可以理解为接收射频链路/接收天线的数量,天线端口数量也可以理解为发射射频链路/发射天线的数量。这里所述的天线具有发射电磁波与接收电磁波的能力,因此本申请实施例中的天线、发送天线以及接收天线可视为同一事物。
对于UE 10的SRS天线转换能力而言,由于不同的UE硬件配置不相同,基于硬件配置,UE的天线轮发能力也是不一样的。在NR中规定SRS天线轮发能力如下:t1r2、 t1r4、t2r4、t1r4-t2r4、t1r1、t2r2或t4r4等。下面举例说明,t1r2为UE中有一个发射射频链路与两根天线,此时UE每次可以使用单端口发送一个SRS,完成轮发需要发送两次,即第一次发送SRS使用第一发射射频链路与第一天线,第二次发送SRS使用第一发射射频链路与第二天线。t2r4为UE有两个发射射频链路与四根天线,此时UE每次可以使用双端口发送一个SRS,完成轮发需要发送两次,即第一次发送SRS使用第一发射射频链路与第二发射射频链路以及第一天线与第二天线,第二次发送SRS使用第一发射射频链路与第二发射射频链路以及第三天线与第四天线。t1r4-t2r4为该UE既支持t1r4的SRS天线轮发也支持t2r4的SRS天线轮发。
根据本申请的各种实施方式,UE 10预设的SRS天线转换能力和针对预设的SRS天线转换能力的可回退的SRS天线转换能力可以针对UE 10的载波进行配置和上报。
可以理解,本文的通信***100可以支持多个小区或载波的操作,此特征可以被称为载波聚合(Carrier Aggregation,CA)或多载波操作。载波还可以被称为分量载波(component carrier,CC)、层、信道等。本申请中,术语“载波”、“分量载波”、和“小区”(在没有上行补充链路Supplementary UL,SUL的场景中)在本文中可以可互换地使用。载波可以或可以不与彼此相邻。载波的分配可以是关于DL和UL不对称的(例如,与UL相比,可以为DL分配更多或更少的载波)。分量载波可以包括主分量载波(简称主载波)和一个或多个辅分量载波(简称辅载波)。主分量载波可以被称为主小区(PCell),并且辅分量载波可以被称为辅小区(SCell)。
在无线通信中,UE 10可以使用一个或多个载波,即UE 10可以在该一个或多个载波上工作。根据可以用于指示载波的标识信息,可以为UE 10支持的每个载波配置SRS天线转换机制。指示载波的标识信息例如包括:载波标识(identity,ID),和/或载波的辅小区索引(SCellIndex)。作为一个示例,对于主载波/主小区的辅小区索引可以配置为索引值为SCellIndex=0,而辅载波/辅小区的辅小区索引的索引值可以依次设置为没有被其他辅载波/辅小区占用的值,例如,SCellIndex=1,SCellIndex=3等等,如此,载波可以由辅小区索引指示。
在一些实施方式中,UE 10可以上报针对支持的一个或多个载波和/或一个或多个小区的SRS天线转换能力和/或可回退的SRS天线转换能力。
作为一个示例,在SRS天线转换能力信息中,按照UE 10上报支持的一个或多个载波的默认顺序,排列一个或多个载波对应的SRS天线转换能力和/或可回退的SRS天线转换能力。SRS天线转换能力信息中无需体现SRS天线转换能力和/或可回退的SRS天线转换能力与载波的对应关系,网络设备12根据UE 10的载波的默认顺序,即可确定上述能力与载波的对应关系,即确定UE 10在哪个载波上支持的SRS天线转换能力和可回退的SRS天线转换能力分别是什么。
默认顺序可以为预先规定的可支持的载波的顺序,或者也可以是UE 10的能力信息中载波上报的顺序,例如,按照载波的ID排序后的顺序,或者按照载波的辅小区索引排序后的顺序,排序可以根据ID和/或索引的大小或其他方式进行,本申请实施例对此不进行具体限定。
在一些实施方式中,例如,假设UE 10支持3个载波,分别为(主)载波1、(辅)载波2和3,其中,主载波1的SCellIndex=0,辅载波2的SCellIndex=1,辅载波3的 SCellIndex=3。那么如果,UE 10按照辅载波索引从小到大的顺序上报载波1-3,则与载波对应的SRS天线转换能力信息的顺序可以为:UE 10在载波1支持的SRS天线转换能力1、UE 10在载波2支持的SRS天线转换能力2、UE10在载波3支持的SRS天线转换能力3。作为另一个示例,UE 10的SRS天线转换能力信息中每个载波对应的SRS天线转换能力可以以集合或列表的方式统一上报,例如,SRS天线转换能力信息可以是{UE 10在载波1支持的SRS天线转换能力1、UE 10在载波2支持的SRS天线转换能力2、UE10在载波3支持的SRS天线转换能力3}。
在另一些实施方式中,可以将指示载波的标识信息与载波的SRS天线转换能力一一对应。例如,同样假设UE 10支持3个载波,分别为(主)载波1、(辅)载波2和3,其中,主载波1的SCellIndex=0,辅载波2的SCellIndex=1,辅载波3的SCellIndex=3。在SRS天线转换能力信息中可以包括多个信息包,每个信息包对应一个载波,例如:信息包1{SCellIndex 0,UE 10在载波1支持的SRS天线转换能力1}、信息包2{SCellIndex 1,UE 10在载波2支持的SRS天线转换能力2}、信息包3{SCellIndex 3,UE 10在载波3支持的SRS天线转换能力3}。作为另一个示例,每个载波对应的SRS天线转换能力可以以集合或列表的方式统一上报,例如,SRS天线转换能力信息可以是{SCellIndex 0,UE 10在载波1支持的SRS天线转换能力1;SCellIndex 1,UE 10在载波2支持的SRS天线转换能力2;SCellIndex 3,UE 10在载波3支持的SRS天线转换能力3}。
需要说明的是,上述示例只是通过举例的形式描述SRS天线转换能力信息与载波的对应关系,并不是对SRS天线转换能力信息内容的限定。
类似地,对于UE 10支持的可回退的SRS天线转换能力可以按照与上述SRS天线转换能力相同的对应方式进行上报,网络设备12根据如上所述的方式即可以确定UE 10在每个载波上支持的可回退的SRS天线转换能力是什么。可回退的SRS天线转换能力信息的上报过程将参考图3描述。
可以理解,在上述各个实施方式中,在UE 10支持的一个或多个载波中可能存在不支持SRS能力的载波,例如,UE 10支持的主载波1支持SRS天线转换能力,但存在辅载波2和3其中至少一个载波不支持SRS天线转换能力的情况,在这种情况下,SRS天线转换能力信息和/或可回退的SRS天线转换能力信息可以仅包括具备SRS天线转换能力的载波的SRS天线转换能力和/或相应的回退能力。
根据本申请的另一些实施方式,SRS天线转换能力信息和可回退的SRS天线转换能力信息还可以包括UE 10支持的一个或多个载波/一个或多个小区的天线转换能力/回退的天线转换能力对其他下行载波的影响和/或对其他上行载波的影响。以下参考图3具体描述这些影响。
在上述实施方式中,UE 10向网络设备12上报UE 10支持的SRS天线转换能力信息,该信息根据UE 10支持的一个或多个载波/一个或多个小区来配置。
在块203,网络设备12接收UE 10发送的SRS天线转换能力信息。网络设备12接收的内容即为上述块202中描述的内容,在此不再赘述。
在块204,网络设备12根据UE 10发送的SRS天线转换能力信息,向UE 10发送配置信息。网络设备12可以为UE 10配置SRS资源。例如,网络设备12为UE 10 配置/重配置SRS天线转换能力时,可以参考UE 10发送的上述信息为UE 10对应地配置用于天线端口转换的SRS资源。当然,网络设备12也可以配置其他,本申请对此不进行具体限定,对于配置的具体过程不进行赘述。
在块205,UE 10接收并执行配置信息。
根据本申请的另一些实施方式,以下参考图3描述UE 10想要降低SRS天线转换能力的时候,上报可回退的SRS天线转换能力信息的示例。
图3示出了UE 10通过UE辅助信息(UE Assistance Information)上报可回退的SRS天线转换能力信息的示例。
在块301,网络设备12向UE 10发送RRC连接重配消息。在块302,UE 10确定是否需要降低SRS天线转换能力。在需要降低能力的情况下,在块303,UE 10向网络设备12发送辅助信息。在一些实施方式中,在RRC消息中可以包括网络设备12为UE 10预先配置的SRS天线转换能力信息,也可能包括UE 10的载波配置,例如,在上述块205中UE 10接收的配置信息。在另一些实施方式中,例如UE 10出现过热问题或需要降低功耗节省电池寿命的时候,在RRC消息中可以包括上文描述的过热相关的配置信息,对应RRC连接重配消息和辅助信息的其他内容可以参考上文的内容,在此不再赘述。
在辅助信息中UE 10可以上报UE 10当前配置的载波的可回退的SRS天线转换能力信息。
在一些实施方式中,对于UE 10的可回退的SRS天线转换能力而言,该能力可以由UE 10根据其硬件配置和/或当前SRS资源配置情况确定上报。例如,UE 10当前的SRS天线转换能力配置为2T4R,即UE 10能够通过4个天线在2个天线端口上传输SRS;相应的,UE 10支持的可回退的SRS天线转换能力可以为1T4R和/或1T2R,即UE 10的SRS天线转换能力为通过4个天线在1个天线端口上传输SRS和/或UE 10的SRS天线转换能力为通过2个天线在1个天线端口上传输SRS。
根据本申请的实施方式,可回退的SRS天线转换能力信息可以包括一种或多种UE 10期望的回退的SRS能力。例如,UE 10期望的回退的能力的最大值,或者UE 10期望的回退的能力的绝对值。
作为一个示例,例如,在UE 10上报的SRS天线转换能力为t4r4的情况下,如果在可回退的SRS天线转换能力信息中,UE 10期望的回退的能力的最大值为t2r4,则UE 10可以请求网络设备12向其配置小于或等于t2r4的回退能力,即,UE 10可配置的回退能力包括t1r4和/或t1r2,这样,UE 10期望的天线端口和天线的数量为一种或多种。如果在可回退的SRS天线转换能力信息中,UE 10期望的回退的能力的绝对值为t2r4,则UE 10可以请求网络设备12向其配置等于t2r4的回退能力,即UE 10可配置的回退能力仅有一种。
需要说明的是,UE可以根据网络需求或者场景需求,来确定回退的天线端口和天线的数量,进而确定SRS天线转换能力信息,本申请实施例对于该过程不进行具体限定。
例如,UE可以在发生过热时,根据当前设备温度以及理想温度,得到期望降低的功耗值,再按照预设的功耗与SRS天线转换能力的映射关系,确定回退的天线端口和 天线的数量,进而确SRS天线转换能力信息。当然,此处只是以过热场景下的一种实现举例,并不对应用场景以及实现方式构成限定。
根据本申请的一些实施方式,针对UE 10支持的每个载波的可回退的SRS天线转换能力,UE 10可以仅在可回退的SRS天线转换能力信息中上报一个UE 10期望的回退的SRS能力的值,该回退的能力的值可以用于UE 10支持的所有载波。在这种情况下,可回退的SRS天线转换能力信息中无需体现该回退能力与载波的对应关系。可以理解,该回退的SRS天线转换能力的值需要小于或等于UE 10上报的所有SRS天线转换能力中最小的能力的值。此外,该回退的能力的值也可以是UE 10期望的回退的能力的最大值,或者UE 10期望的回退的能力的绝对值,在此不再赘述。
根据本申请的另一些实施方式,SRS天线转换能力信息和可回退的SRS天线转换能力信息还可以包括UE 10支持的一个或多个载波/一个或多个小区的天线转换能力/回退的天线转换能力对其他下行载波的影响和/或对其他上行载波的影响。针对回退的天线转换能力对其他下行载波的影响为例,描述如何在可回退的SRS天线转换能力信息中表示该影响。可以理解,以下描述同样可用于可回退的SRS天线转换能力信息中对其他上行载波的影响以及在SRS天线转换能力信息中对其他下/上行载波影响,以下不一一列举。
在一些实施方式中,可以通过1-32个整数来体现回退的天线转换能力对其他下行载波的影响,其中,在现有标准中,最多可以配置32个载波,因此可以使用1-32个整数来表示可配置的全部载波。例如,同样假设UE 10支持3个载波,分别为(主)载波1、(辅)载波2和3,那么可以最多使用1-3的整数表示载波间的影响。如果将载波1的其他下行载波的影响的值设置为1,并且假如载波1对载波2没有影响,载波1对载波3有影响,那么载波3的其他下行载波的影响的值需要设置为1,即设置的值与载波1的其他下行载波的影响的值相同,载波2的其他下行载波的影响的值可以设置为1以外的值,例如,2或3。
每个载波的回退的天线转换能力对其他下行载波的影响也可以通过前述实施方式中描述的各种的载波与能力的对应关系来上报给网络设备12。例如,按照UE 10上报支持的一个或多个载波的默认顺序,排列一个或多个载波对应的对其他下行载波的影响,以及将指示载波的标识信息与载波的回退的天线转换能力对其他下行载波的影响一一对应,具体参见前述描述,在此不再赘述。
在另一些实施方式中,还可以通过比特位体现回退的天线转换能力对其他下行载波的影响。例如,对其他下行载波的影响通过比特图表示,在每个载波的比特图中,按照UE 10上报支持的一个或多个载波的默认顺序,设置比特位,比特图中的每一位表示一个载波,其中比特0表示无影响,比特1表示有影响。还是假设UE 10支持3个载波,分别为(主)载波1、(辅)载波2和3,如果UE 10按照辅载波索引从小到大的顺序上报载波1-3,那么每个载波的比特图为{载波1,载波2,载波3}。例如,载波1的回退的天线转换能力对载波3有影响,对载波2没有影响,那么载波1的比特图可以为{1,0,1},相应地,载波2的比特图为{0,0,0},载波3的比特图为{1,0,1}。作为另一个示例,还可以在每个载波的可回退的SRS天线转换能力信息中仅使用比特图{1,0,1}表示每个载波的对其他下行载波的影响。
在另一些实施方式中,还可以通过用于指示载波的标识信息,例如载波ID、辅小区索引等表示载波的回退的SRS天线转换能力对其他上/下行载波的影响。在这种情况下,假设UE 10支持3个载波,分别为(主)载波1、(辅)载波2和3,其中,主载波1的SCellIndex=0,辅载波2的SCellIndex=1,辅载波3的SCellIndex=3。载波1的回退的天线转换能力对载波3有影响,对载波2没有影响,那么在可回退的天线转换能力信息中,对其他上/下行载波的影响可以包括{SCellIndex 0,SCellIndex 1},指示载波1对载波3有影响。
在可选的或附加的实施方式中,可回退的SRS天线转换能力信息还可以采用在上文描述的信息包,每个信息包通过载波的标识信息与各个载波一一对应,在信息包中不仅包括上文中描述的天线端口转换能力,还可以包括对上行载波的影响和对下行载波的影响中的至少一个。作为一个示例,载波1的信息包可以为{SCellIndex 0,UE 10在载波1支持的SRS天线转换能力1,载波1对其他下行载波的影响,载波1对其他上行载波的影响},以上信息包的格式仅作为示例用于说明,并不作为本申请对信息包的任何限定。
UE 10针对当前配置的一个或多个载波,即UE 10当前使用的载波上报可回退的SRS天线转换能力信息。其中,在可回退的SRS天线转换能力信息中,UE 10当前配置的每个载波的回退的SRS天线转换能力和/或对其他上/下行载波的影响可以一一对应,对应的方式可以参考上述描述,在此不再赘述。
对于UE 10当前配置的载波,网络设备12可以根据自身配置的规则在任意UE 10所需的时候为UE 10配置载波,该规则可以基于现有标准,本申请对于规则的配置方法以及规则内容不进行具体限定。
块304-306中描述的内容与块203-205类似,在此不再赘述。
以下参考图4描述示例通信***100的另一种通信方法。
根据本申请的实施方式,图4提供另一种上报可回退SRS天线转换能力相关的方法。在块401,网络设备12向UE 10发送RRC连接重配消息。本实施方式中的内容与块301相似,此处不再赘述。
在块402,UE 10确定是否需要降低SRS天线转换能力。在需要降低能力的情况下,在块403,UE 10向网络设备12发送辅助信息。在辅助信息中UE 10可以上报UE 10针对当前配置的载波的可回退的载波配置,以及回退的载波配置的可回退的SRS天线转换能力信息。
作为一个示例,假设UE 10当前配置有3个载波,分别为载波1、载波2和载波3。UE 10可以根据当前的过热情况和配置规则,任意回退最多n-1个载波,其中n为当前配置的最大载波数,生成回退的载波配置信息。可以理解,UE 10的配置规则可以基于现有标准,本申请对于规则的配置方法以及规则内容不进行具体限定。
可以理解,回退的载波配置信息可以包括载波标识(identity,ID),载波数量,载波的频点信息,和/或载波的带宽信息等。凡是可以用于指示回退的载波的信息,都可以包括在本文所称的载波配置信息中,例如,载波的辅小区索引(SCellIndex),对于主载波/主小区的辅小区索引可以配置为索引值为SCellIndex=0,而辅载波/辅小区的辅小区索引的索引值可以依次设置为没有被其他辅载波/辅小区占用的值,例如, SCellIndex=1,SCellIndex=3等等。
之后,根据该回退的载波配置信息,UE 10可以进一步为回退的载波提供与载波对应的可回退的SRS天线转换能力信息。与载波对应的可回退的SRS天线转换能力信息可以参考前述实施方式的详细描述,在此不再赘述。
在块404,网络设备12接收回退的载波配置和与载波配置对应的可回退的SRS天线转换能力信息。本实施方式中的内容与块304相似,此处不再赘述。
在块405,网络设备12根据UE 10发送的回退的载波配置和可回退的SRS天线转换能力信息,向UE 10发送配置信息。例如,网络设备12为UE 10重配置载波和SRS天线转换能力时,可以参考UE 10发送的上述信息,为UE 10配置回退的载波以及与回退的载波对应的用于天线端口转换的SRS资源。
在块406,UE 10接收并执行配置信息。
需要说明的是,本申请实施例提供的上报SRS能力的方法所包括的上述一个或多个块,可以根据实际需求配置执行顺序,图2-图4中仅示意了一种可能的执行顺序,并不是对此的具体限定。
根据本申请的各种实施方式,将根据UE支持的载波和/或当前配置的载波确定与载波对应的SRS天线转换能力信息和/或可回退的SRS天线转换能力信息上报在网络设备,实现以UE的载波为粒度的SRS能力的相关配置。使得在相关配置的过程中,UE和网络设备之间的网络通信的信令开销更小,并且配置过程更加符合UE在载波上工作的实际情况。
此外,根据本申请的各种实施方式,还可以实现UE根据当前载波配置工作时,网络设备基于UE上报的回退载波配置和/或可回退的SRS天线转换能力信息为UE进行相关配置,能够邮箱降低UE的功耗,解决UE过热问题,并延长UE使用时间。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,上述UE、网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对UE、网络设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图5示出了根据上述实施方式的UE的示例性的通信方法的流程图。如图5所示,方法500可以通过控制单元1041和收发单元1042执行。对于上述***和方法实施方式中未描述的内容,可以参见下述方法实施方式;同样地,对于方法实施方式中未描述的内容,可参见上述***和方法实施方式。
具体地,在UE 10接入网络后,在块501,控制单元1041响应于来自网络设备12 的能力请求,确定与载波对应的SRS天线转换能力信息。本实施方式中的内容与块202相似,此处不再赘述。
接下来,在块502,收发单元1042向网络设备12发送确定的SRS天线转换能力信息。之后,在块503,收发单元1042接收网络设备12发送的配置信息,该配置信息包括参考控制单元1041确定的SRS天线转换能力信息的配置。
在块504,控制单元1041执行网络设备12的配置信息。
在UE 10与网络设备12通信的过程中,在块505,收发单元1042还可以接收来自网络设备12的RRC连接重配消息。RRC连接重配置消息中与过热相关的配置信息可以指示UE 10在过热时发送过热相关的辅助信息给网络设备12。作为另一些示例,块505中接收的RRC连接重配消息也可以在块503中接收,即RRC连接重配消息可以由网络设备12在任意时刻,与任意其他消息一起发送,本申请在此仅为示例性描述,并非具体的限定。
在块506,如果UE 10出现需要降低SRS天线转换能力的情况,例如,UE 10过热,UE 10想要降低功耗延长电池使用时间的情况,控制单元1041执行块507,在块507,控制单元1041可以确定与当前配置的载波相对应的回退的SRS天线转换能力信息,或者,控制单元1041可以先确定回退的载波配置,然后基于回退的载波配置确定与回退的载波对应的回退的SRS天线转换能力信息。
在块508,收发单元1042向网络设备12发送与当前配置的载波相对应的回退的SRS天线转换能力信息,或者发送回退的载波配置和与回退的载波对应的回退的SRS天线转换能力信息。
然后,在块509,收发单元1042接收来自网络设备的配置信息,该配置信息是网络设备12参考回退的载波配置和/或回退的SRS天线转换能力信息来配置的。该配置信息的配置过程可以参考块405中的描述。
最后,在块510,控制单元1041执行来自网络设备的配置信息。
基于上述各种实施方式,在本申请中,控制单元1041用于确定用于UE的可回退的信道探测参考信号(SRS)天线转换能力信息,其中可回退的SRS天线转换能力信息指示UE支持的用于传输SRS的天线端口转换能力,天线端口转换能力包括UE能够传输SRS的天线和天线端口的数量中的至少一个,并且等于或小于预设的用于传输SRS的天线和天线端口的数量中的至少一个;
收发单元1042用于网络设备发送可回退的SRS天线转换能力信息;
其中,可回退的SRS天线转换能力信息与UE支持的一个或多个载波和/或至少一个小区对应。
在一些实施方式中,UE能够传输SRS的天线和天线端口包括:UE能够通过一个或多个载波和/或至少一个小区,传输SRS的天线和天线端口。
在一些实施方式中,可回退的SRS天线转换能力信息还指示:对应于一个或多个载波中的每一个载波,转换天线端口对于一个或多个载波中的其他载波中的上行载波的影响,和/或转换天线端口对于一个或多个载波中的其他载波中的下行载波的影响。
在一些实施方式中,对应于一个或多个载波中的每一个载波,上行载波的影响和下行载波的影响中的至少一个包括一个或多个比特位,其中一个或多个比特位与一个 或多个载波一一对应。
在一些实施方式中,在可回退的SRS天线转换能力信息与多个载波和/或多个小区相对应的情况下,可回退的SRS天线转换能力信息包括多个可回退的SRS天线能力信息包,其中多个可回退的SRS天线能力信息包与多个载波和/或多个小区一一对应,并且,多个可回退的SRS天线能力信息包中的每一个指示天线端口转换能力,对上行载波的影响和对下行载波的影响中的至少一个。
在一些实施方式中,多个可回退的SRS天线能力信息包按照对应的载波和/或小区的标识信息的顺序排列。
在一些实施方式中,对应于一个或多个载波中的每一个载波,可回退的SRS天线转换能力信息与每一个载波的标识信息相关联。
在一些实施方式中,对应于一个或多个载波中的每一个载波,每一个载波的标识信息与影响的上行载波和下行载波中的至少一个的标识信息相关联。
在一些实施方式中,与可回退的SRS天线转换能力信息相对应的载波的数量等于或小于预设的载波数量。
在一些实施方式中,收发单元1042还包括:接收来自网络设备的无线资源控制(RRC)连接重配消息,其中RRC连接重配信息包括预设的用于传输SRS的天线的数量和预设的用于传输SRS的天线端口的数量。
在一些实施方式中,收发单元1042还包括:响应于来自网络设备的UE能力请求,向网络设备发送UE的UE能力信息,其中UE能力信息包括预设的用于传输SRS的天线的数量和预设的用于传输SRS的天线端口的数量。
在一些实施方式中,在可回退的SRS天线转换能力信息与多个载波和/或多个小区相对应的情况下,可回退的SRS天线转换能力信息指示的天线端口转换能力同时对应于多个载波和/或多个小区。
根据本申请的各种实施方式,将根据UE支持的载波和/或当前配置的载波确定与载波对应的SRS天线转换能力信息和/或可回退的SRS天线转换能力信息上报在网络设备,实现以UE的载波为粒度的SRS能力的相关配置。使得在相关配置的过程中,UE和网络设备之间的网络通信的信令开销更小,并且配置过程更加符合UE在载波上工作的实际情况。
此外,根据本申请的各种实施方式,还可以实现UE根据当前载波配置工作时,网络设备基于UE上报的回退载波配置和/或可回退的SRS天线转换能力信息为UE进行相关配置,能够邮箱降低UE的功耗,解决UE过热问题,并延长UE使用时间。
图6示出了根据本申请实施方式的用户设备600的示意性模块图。
在一些实施例中,设备600可以包括至少如图所示耦合在一起的应用电路602、基带电路604、射频(RF)电路606、前端模块(FEM)电路608、和一个或多个天线610。所示设备600的组件可以包括于UE中,例如,应用电路602可以包括于UE 10的处理器102中,基带电路604、射频(RF)电路606、前端模块(FEM)电路608、和一个或多个天线610可以包括在UE 10的通信模块104中。在一些实施例中,设备600可以包括更少的元件。在一些实施例中,设备600可以包括附加元件,例如存储器/存储设备、显示器、相机、传感器、或输入/输出(I/O)接口。
应用电路602可以包括一个或多个应用处理器。例如,应用电路602可以包括电路,例如但不限于:一个或多个单核或多核处理器。(一个或多个)处理器可以包括通用处理器和专用处理器(例如,图形处理器、应用处理器等)的任意组合。处理器可以与存储器/存储装置相耦合或者可以包括存储器/存储装置,并且可以被配置为运行在存储器/存储装置中存储的指令以使得各种应用和/或操作***能够在设备600上运行。
基带电路604可以包括电路,例如但不限于:一个或多个单核或多核处理器。基带电路604可以包括一个或多个基带处理器或控制逻辑,以处理从RF电路606的接收信号路径接收的基带信号,并生成用于RF电路606的发送信号路径的基带信号。基带处理电路604可以与应用电路602相接口,以生成和处理基带信号并且控制RF电路606的操作。例如,在一些实施例中,基带电路604可以包括第三代(3G)基带处理器604A、***(4G)基带处理器604B、第五代(5G)基带处理器604C、或用于其他现有代、在开发中或未来将要开发的代(例如,第六代(6G)等)的(一个或多个)其他基带处理器604D。基带电路604(例如,基带处理器604A-D中的一个或多个)可以处理支持经由RF电路606与一个或多个无线电网络进行通信的各种无线电控制功能。在其他实施例中,基带处理器604A-D的一些或所有功能可被包括在存储器604G所存储的模块中并且这些功能可经由中央处理单元(CPU)604E来执行。无线电控制功能可以包括但不限于:信号调制/解调、编码/解码、无线电频移等。在一些实施例中,基带电路604的调制/解调电路可以包括快速傅立叶变换(FFT)、预编码、和/或星座映射/解映射功能。在一些实施例中,基带电路604的编码/解码电路可以包括卷积、咬尾(tail-biting)卷积、turbo、维特比(Viterbi)和/或低密度奇偶校验(LDPC)编码器/解码器功能。调制/解调和编码器/解码器功能的实施例不限于这些示例,并且在其他实施例中可以包括其他适当的功能。
在一些实施例中,基带电路604可以包括一个或多个音频数字信号处理器(DSP)604F。(一个或多个)音频DSP 604F可以包括用于压缩/解压缩和回声消除的元件,并且在其他实施例中可以包括其他适当的处理元件。在一些实施例中,基带电路的组件可以被适当地组合在单个芯片、单个芯片组中、或者被布置在同一电路板上。在一些实施例中,基带电路604和应用电路602的一些或全部组成组件可例如在片上***(SOC)上被一起实现。
在一些实施例中,基带电路604可以提供与一个或多个无线电技术兼容的通信。例如,在一些实施例中,基带电路604可以支持与演进通用陆地无线电接入网络(EUTRAN)或其他无线城域网(WMAN)、无线局域网(WLAN)、无线个人区域网络(WPAN)的通信。基带电路604被配置为支持多于一个无线协议的无线电通信的实施例可以被称为多模基带电路。
RF电路606可支持通过非固态介质使用经调制的电磁辐射与无线网络进行通信。在各种实施例中,RF电路606可以包括开关、滤波器、放大器等以辅助与无线网络的通信。RF电路606可以包括接收信号路径,该接收信号路径可以包括对从FEM电路608接收到的RF信号进行下变频并将基带信号提供给基带电路604的电路。RF电路606还可以包括发送信号路径,该发送信号路可以包括对基带电路604所提供的基带信号进行上变频并将RF输出信号提供给FEM电路608以用于传输的电路。
在一些实施例中,RF电路606的接收信号路径可以包括混频器电路606a、放大器电路606b、以及滤波器电路606c。在一些实施例中,RF电路606的发送信号路径可以包括滤波器电路606c和混频器电路606a。RF电路606还可以包括合成器电路606d,该合成器电路用于合成供接收信号路径和发送信号路径的混频器电路606a使用的频率。在一些实施例中,接收信号路径的混频器电路606a可以被配置为基于由合成器电路606d所提供的合成频率来对从FEM电路608接收到的RF信号进行下变频。放大器电路606b可以被配置为放大经下变频的信号,以及滤波器电路606c可以是被配置为从经下变频的信号移除不想要的信号以生成输出基带信号的低通滤波器(LPF)或带通滤波器(BPF)。输出基带信号可被提供给基带电路604以供进一步处理。在一些实施例中,输出基带信号可以是零频率基带信号,但这不是必需的。在一些实施例中,接收信号路径的混频器电路606a可以包括无源混频器,但是实施例的范围在此方面不受限制。
在一些实施例中,发送信号路径的混频器电路606a可以被配置为基于合成器电路606d所提供的合成频率对输入基带信号进行上变频,以生成用于FEM电路608的RF输出信号。基带信号可以由基带电路604提供,并且可以由滤波器电路606c滤波。
在一些实施例中,接收信号路径的混频器电路606a和发送信号路径的混频器电路606a可以包括两个或更多个混频器,并且可以被布置为分别用于正交下变频和/或上变频。
在一些实施例中,接收信号路径的混频器电路606a和发送信号路径的混频器电路606a可以包括两个或更多个混频器,并且可以被布置用于镜像抑制(例如,Hartley镜像抑制)。在一些实施例中,接收信号路径的混频器电路606a和发送信号路径的混频器电路606a可以被布置为分别用于直接下变频和/或直接上变频。在一些实施例中,接收信号路径的混频器电路606a和发送信号路径的混频器电路606a可以被配置用于超外差操作。
在一些实施例中,输出基带信号和输入基带信号可以是模拟基带信号,但是实施例的范围在此方面不受限制。在一些替代实施例中,输出基带信号和输入基带信号可以是数字基带信号。在这些替代实施例中,RF电路606可以包括模数转换器(ADC)和数模转换器(DAC)电路,并且基带电路604可以包括数字基带接口以与RF电路606进行通信。
在一些双模实施例中,可以提供单独的无线电IC电路来处理每个频谱的信号,但是实施例的范围在此方面不受限制。
在一些实施例中,合成器电路606d可以是分数N型合成器或分数N/N+1型合成器,但是实施例的范围在此方面不受限制,因为其他类型的频率合成器可能是合适的。例如,合成器电路606d可以是delta-sigma合成器、倍频器、或包括具有分频器的锁相环的合成器。
合成器电路606d可以被配置为基于频率输入和分频器控制输入来合成供RF电路606的混频器电路606a使用的输出频率。在一些实施例中,合成器电路606d可以是分数N/N+1型合成器。
在一些实施例中,频率输入可以由压控振荡器(VCO)提供,但这不是必需的。分 频器控制输入可以由基带电路604或应用处理器602根据所需的输出频率来提供。在一些实施例中,可以基于应用处理器602所指示的信道从查找表确定分频器控制输入(例如,N)。
RF电路606的合成器电路606d可以包括分频器、延迟锁定环(DLL)、复用器、以及相位累加器。在一些实施例中,分频器可以是双模分频器(DMD),并且相位累加器可以是数字相位累加器(DPA)。在一些实施例中,DMD可以被配置为将输入信号除以N或N+1(例如,基于进位输出)以提供分数除法比。在一些示例实施例中,DLL可以包括一组级联的可调谐的延迟元件、相位检测器、电荷泵、以及D型触发器。在这些实施例中,延迟元件可以被配置为将VCO周期最多分解成Nd个相等的相位分组,其中,Nd是延迟线中的延迟元件的数目。以这种方式,DLL提供负反馈以帮助确保通过延迟线的总延迟是一个VCO周期。
在一些实施例中,合成器电路606d可以被配置为生成作为输出频率的载波频率,而在其他实施例中,输出频率可以是载波频率的倍数(例如,载波频率的两倍、载波频率的四倍)并与正交发生器和分频器电路一起使用,以在载波频率处生成具有多个彼此不同相位的多个信号。在一些实施例中,输出频率可以是LO频率(fLO)。在一些实施例中,RF电路606可以包括IQ/极性转换器。
FEM电路608可以包括接收信号路径,该接收信号路径可以包括被配置为操作从一个或多个天线610接收到的RF信号、放大接收到的信号、并将所接收到的信号的放大版本提供给RF电路606以供进一步处理的电路。FEM电路608还可以包括发送信号路径,该发送信号路径可以包括被配置为放大RF电路606所提供的用于传输的信号以由一个或多个天线610中的一个或多个天线传输的电路。在各个实施例中,经过发送信号路径或接收信号路径的放大可以仅在RF电路606、仅在FEM 608中完成,或者在RF电路606和FEM 608二者中完成。
在一些实施例中,FEM电路608可以包括TX/RX开关,以在发送模式和接收模式操作之间切换。FEM电路可以包括接收信号路径和发送信号路径。FEM电路的接收信号路径可以包括低噪声放大器(LNA)以放大接收到的RF信号,并且提供经放大的接收到的RF信号作为(例如,到RF电路606的)输出。FEM电路608的发送信号路径可以包括用于放大(例如,由RF电路606提供的)输入RF信号的功率放大器(PA)以及用于生成用于(例如,通过一个或多个天线610中的一个或多个天线)后续传输的RF信号的一个或多个滤波器。
现在参考图7,所示为根据本申请的一个实施例的通信设备700的框图。设备700可以包括一个或多个处理器702,与处理器702中的至少一个连接的***控制逻辑708,与***控制逻辑708连接的***内存704,与***控制逻辑708连接的非易失性存储器(NVM)706,以及与***控制逻辑708连接的网络接口710。
处理器702可以包括一个或多个单核或多核处理器。处理器702可以包括通用处理器和专用处理器(例如,图形处理器,应用处理器,基带处理器等)的任何组合。在本文的实施例中,处理器702可以被配置为执行根据如图2-5所示的各种实施例的一个或多个实施例。
在一些实施例中,***控制逻辑708可以包括任意合适的接口控制器,以向处理 器702中的至少一个和/或与***控制逻辑708通信的任意合适的设备或组件提供任意合适的接口。
在一些实施例中,***控制逻辑708可以包括一个或多个存储器控制器,以提供连接到***内存704的接口。***内存704可以用于加载以及存储数据和/或指令。在一些实施例中设备700的内存704可以包括任意合适的易失性存储器,例如合适的动态随机存取存储器(DRAM)。
NVM/存储器706可以包括用于存储数据和/或指令的一个或多个有形的、非暂时性的计算机可读介质。在一些实施例中,NVM/存储器706可以包括闪存等任意合适的非易失性存储器和/或任意合适的非易失性存储设备,例如HDD(Hard Disk Drive,硬盘驱动器),CD(Compact Disc,光盘)驱动器,DVD(Digital Versatile Disc,数字通用光盘)驱动器中的至少一个。
NVM/存储器706可以包括安装在设备700的装置上的一部分存储资源,或者它可以由设备访问,但不一定是设备的一部分。例如,可以经由网络接口710通过网络访问NVM/存储706。
特别地,***内存704和NVM/存储器706可以分别包括:指令720的暂时副本和永久副本。指令720可以包括:由处理器702中的至少一个执行时导致设备700实施如图2-5所示的方法的指令。在一些实施例中,指令720、硬件、固件和/或其软件组件可另外地/替代地置于***控制逻辑708,网络接口710和/或处理器702中。
网络接口710可以包括收发器,用于为设备700提供无线电接口,进而通过一个或多个网络与任意其他合适的设备(如前端模块,天线等)进行通信。在一些实施例中,网络接口710可以集成于设备700的其他组件。例如,网络接口710可以集成于处理器702的,***内存704,NVM/存储器706,和具有指令的固件设备(未示出)中的至少一种,当处理器702中的至少一个执行所述指令时,设备700实现图2-5所示的各种实施例的一个或多个实施例。
网络接口710可以进一步包括任意合适的硬件和/或固件,以提供多输入多输出无线电接口。例如,网络接口710可以是网络适配器,无线网络适配器,电话调制解调器和/或无线调制解调器。
在一个实施例中,处理器702中的至少一个可以与用于***控制逻辑708的一个或多个控制器的逻辑封装在一起,以形成***封装(SiP)。在一个实施例中,处理器702中的至少一个可以与用于***控制逻辑708的一个或多个控制器的逻辑集成在同一管芯上,以形成片上***(SoC)。
设备700可以进一步包括:输入/输出(I/O)设备712。I/O设备712可以包括用户界面,使得用户能够与设备700进行交互;***组件接口的设计使得***组件也能够与设备700交互。在一些实施例中,设备700还包括传感器,用于确定与设备700相关的环境条件和位置信息的至少一种。
在一些实施例中,用户界面可包括但不限于显示器(例如,液晶显示器,触摸屏显示器等),扬声器,麦克风,一个或多个相机(例如,静止图像照相机和/或摄像机),手电筒(例如,发光二极管闪光灯)和键盘。
在一些实施例中,***组件接口可以包括但不限于非易失性存储器端口、音频插 孔和电源接口。
在一些实施例中,传感器可包括但不限于陀螺仪传感器,加速度计,近程传感器,环境光线传感器和定位单元。定位单元还可以是网络接口710的一部分或与网络接口710交互,以与定位网络的组件(例如,全球定位***(GPS)卫星)进行通信。
本申请的各方法实施方式均可以以软件、磁件、固件等方式实现。
可将程序代码应用于输入指令,以执行本文描述的各功能并生成输出信息。可以按已知方式将输出信息应用于一个或多个输出设备。为了本申请的目的,处理***包括具有诸如例如数字信号处理器(DSP)、微控制器、专用集成电路(ASIC)或微处理器之类的处理器的任何***。
程序代码可以用高级程序化语言或面向对象的编程语言来实现,以便与处理***通信。在需要时,也可用汇编语言或机器语言来实现程序代码。事实上,本文中描述的机制不限于任何特定编程语言的范围。在任一情形下,该语言可以是编译语言或解释语言。
至少一个实施例的一个或多个方面可以由存储在计算机可读存储介质上的表示性指令来实现,指令表示处理器中的各种逻辑,指令在被机器读取时使得该机器制作用于执行本文所述的技术的逻辑。被称为“IP核”的这些表示可以被存储在有形的计算机可读存储介质上,并被提供给多个客户或生产设施以加载到实际制造该逻辑或处理器的制造机器中。
在一些情况下,指令转换器可用来将指令从源指令集转换至目标指令集。例如,指令转换器可以变换(例如使用静态二进制变换、包括动态编译的动态二进制变换)、变形、仿真或以其它方式将指令转换成将由核来处理的一个或多个其它指令。指令转换器可以用软件、硬件、固件、或其组合实现。指令转换器可以在处理器上、在处理器外、或者部分在处理器上且部分在处理器外。
结合以上,本申请还提供如下的实施例:
示例1.一种用于用户设备(UE)的通信方法,其中,所述方法包括:
确定用于所述UE的可回退的信道探测参考信号(SRS)天线转换能力信息,其中所述可回退的SRS天线转换能力信息至少部分地指示所述UE支持的用于传输SRS的天线端口转换能力,所述天线端口转换能力包括所述UE能够传输所述SRS的天线和所述天线端口的数量中的至少一个,并且等于或小于预设的用于传输所述SRS的天线和天线端口的数量中的至少一个;
向所述网络设备发送所述可回退的SRS天线转换能力信息;
其中,所述可回退的SRS天线转换能力信息与所述UE支持的一个或多个载波和/或至少一个小区对应。
示例2.如示例1所述的通信方法,其中,所述UE能够传输所述SRS的所述天线和所述天线端口包括:所述UE能够通过所述一个或多个载波和/或所述至少一个小区,传输所述SRS的天线和天线端口。
示例3.如示例1所述的方法,其中,所述可回退的SRS天线转换能力信息还指示:对应于所述一个或多个载波中的每一个载波,转换所述天线端口对于所述一个或多个载波中的其他载波中的上行载波的影响,和/或转换所述天线端口对于所述一个或 多个载波中的其他载波中的下行载波的影响。
示例4.如示例3所述的方法,其中,对应于所述一个或多个载波中的所述每一个载波,所述上行载波的影响和所述下行载波的影响中的至少一个包括一个或多个比特位,其中所述一个或多个比特位与所述一个或多个载波一一对应。
示例5.如示例3-4中任一项所述的方法,其中,在所述可回退的SRS天线转换能力信息与所述多个载波和/或所述多个小区相对应的情况下,所述可回退的SRS天线转换能力信息包括多个可回退的SRS天线能力信息包,其中所述多个可回退的SRS天线能力信息包与所述多个载波和/或所述多个小区一一对应,并且,所述多个可回退的SRS天线能力信息包中的每一个指示所述天线端口转换能力,所述对上行载波的影响和所述对下行载波的影响中的至少一个。
示例6.如示例5所述的方法,其中,所述多个可回退的SRS天线能力信息包按照所述对应的载波和/或小区的标识信息的顺序排列。
示例7.如示例1-6中任一项所述的方法,其中,对应于所述一个或多个载波中的每一个载波,所述可回退的SRS天线转换能力信息与所述每一个载波的标识信息相关联。
示例8.如示例3-6中任一项所述的方法,其中,对应于所述一个或多个载波中的所述每一个载波,所述每一个载波的标识信息与影响的所述上行载波和所述下行载波中的至少一个的标识信息相关联。
示例9.如示例1-8任一项所述的方法,其中,与所述可回退的SRS天线转换能力信息相对应的所述载波的数量等于或小于预设的载波数量。
示例10.如示例1-9任一项所述的方法,其中,所述方法还包括:
接收来自所述网络设备的无线资源控制(RRC)连接重配消息,其中所述RRC连接重配信息包括所述预设的用于传输所述SRS的所述天线的数量和所述预设的用于传输所述SRS的所述天线端口的数量。
示例11.如示例1-9任一项所述的方法,其中,所述方法还包括:响应于来自网络设备的UE能力请求,向所述网络设备发送所述UE的UE能力信息,其中所述UE能力信息包括所述预设的用于传输所述SRS的所述天线的数量和所述预设的用于传输所述SRS的所述天线端口的数量。
示例12.如示例1所述的方法,其中,在所述可回退的SRS天线转换能力信息与所述多个载波和/或多个小区相对应的情况下,所述可回退的SRS天线转换能力信息指示的所述天线端口转换能力同时对应于所述多个载波和/或多个小区。
示例13.一种用于用户设备(UE)的通信方法,其中,所述方法包括:
确定用于所述UE的信道探测参考信号(SRS)天线转换能力信息,其中所述SRS天线转换能力信息与所述UE支持的一个或多个载波和/或一个或多个小区对应并且至少部分地指示所述UE支持的用于发送SRS的天线端口转换能力,其中所述天线端口转换能力包括所述UE能够通过所述一个或多个载波和/或所述一个或多个小区传输所述SRS的天线和所述天线端口的数量中的至少一个;
向网络设备发送所述SRS天线转换能力信息。
示例14.如示例13所述的方法,其中,所述SRS天线转换能力信息还指示:对 应于所述一个或多个载波中的每一个载波,转换所述天线端口对于所述一个或多个载波中的其他载波中的上行载波的影响,和/或转换所述天线端口对于所述一个或多个载波中的其他载波中的下行载波的影响。
示例15.一种用于用户设备(UE)的通信方法,其中,所述方法包括:
确定用于所述UE的可回退的信道探测参考信号(SRS)天线转换能力信息,其中所述可回退的SRS天线转换能力信息与一个或多个载波和/或一个或多个小区相对应,并且至少部分地指示所述UE支持的传输SRS的天线端口转换能力,其中所述天线端口转换能力包括所述UE能够通过所述一个或多个载波和/或所述一个或多个小区传输所述SRS的天线和所述天线端口的数量中的至少一个,并且等于或小于预设的用于传输所述SRS的天线和天线端口的数量中的至少一个;和
向所述网络设备发送所述可回退的SRS天线转换能力信息。
示例16.如示例15所述的方法,其中,所述可回退的SRS天线转换能力信息还指示:对应于所述一个或多个载波中的每一个载波,转换所述天线端口对于所述一个或多个载波中的其他载波中的上行载波的影响,和/或转换所述天线端口对于所述一个或多个载波中的其他载波中的下行载波的影响。
示例17.一种用于用户设备(UE)的通信方法,其中,包括:
确定用于所述UE的可回退的信道探测参考信号(SRS)天线转换能力信息,其中所述可回退的SRS天线转换能力信息与所述UE支持的一个或多个载波相对应,并且至少部分地指示与所述一个或多个载波对应的用于传输SRS的天线端口转换能力,其中所述一个或多个载波的数量小于预设的载波数量;
向所述网络设备发送所述可回退的SRS天线转换能力信息。
示例18.如示例17所述的通信方法,其中,所述天线端口转换能力包括所述UE能够传输所述SRS的天线和所述天线端口的数量中的至少一个,并且等于或小于预设的用于传输所述SRS的天线和天线端口的数量中的至少一个。
示例19.一种用户设备UE,其中,所述UE包括:
控制单元,用于确定用于所述UE的可回退的信道探测参考信号(SRS)天线转换能力信息,其中所述可回退的SRS天线转换能力信息至少部分地指示所述UE支持的用于传输SRS的天线端口转换能力,所述天线端口转换能力包括所述UE能够传输所述SRS的天线和所述天线端口的数量中的至少一个,并且等于或小于预设的用于传输所述SRS的天线和天线端口的数量中的至少一个;
收发单元,用于向所述网络设备发送所述可回退的SRS天线转换能力信息;
其中,所述可回退的SRS天线转换能力信息与所述UE支持的一个或多个载波和/或至少一个小区对应。
示例20.如示例19所述的设备,其中,其中所述UE能够传输所述SRS的所述天线和所述天线端口包括:所述UE能够通过所述一个或多个载波和/或所述至少一个小区,传输所述SRS的天线和天线端口。
示例21.如示例19所述的设备,其中,所述可回退的SRS天线转换能力信息还指示:对应于所述一个或多个载波中的每一个载波,转换所述天线端口对于所述一个或多个载波中的其他载波中的上行载波的影响,和/或转换所述天线端口对于所述一个 或多个载波中的其他载波中的下行载波的影响。
示例22.如示例21所述的设备,其中,对应于所述一个或多个载波中的所述每一个载波,所述上行载波的影响和所述下行载波的影响中的至少一个包括一个或多个比特位,其中所述一个或多个比特位与所述一个或多个载波一一对应。
示例23.如示例19-22中任一项所述的设备,其中,在所述可回退的SRS天线转换能力信息与所述多个载波和/或所述多个小区相对应的情况下,所述可回退的SRS天线转换能力信息包括多个可回退的SRS天线能力信息包,其中所述多个可回退的SRS天线能力信息包与所述多个载波和/或所述多个小区一一对应,并且,所述多个可回退的SRS天线能力信息包中的每一个指示所述天线端口转换能力,所述对上行载波的影响和所述对下行载波的影响中的至少一个。
示例24.如示例23所述的设备,其中,所述多个可回退的SRS天线能力信息包按照所述对应的载波和/或小区的标识信息的顺序排列。
示例25.如示例19-24中任一项所述的设备,其中,对应于所述一个或多个载波中的每一个载波,所述可回退的SRS天线转换能力信息与所述每一个载波的标识信息相关联。
示例26.如示例21-24中任一项所述的设备,其中,对应于所述一个或多个载波中的所述每一个载波,所述每一个载波的标识信息与影响的所述上行载波和所述下行载波中的至少一个的标识信息相关联。
示例27.如示例19-26任一项所述的设备,其中,与所述可回退的SRS天线转换能力信息相对应的所述载波的数量等于或小于预设的载波数量。
示例28.如示例19-27任一项所述的设备,其中,所述收发单元还包括:
接收来自所述网络设备的无线资源控制(RRC)连接重配消息,其中所述RRC连接重配信息包括所述预设的用于传输所述SRS的所述天线的数量和所述预设的用于传输所述SRS的所述天线端口的数量。
示例29.如示例19-27任一项所述的设备,其中,所述收发单元还包括:响应于来自网络设备的UE能力请求,向所述网络设备发送所述UE的UE能力信息,其中所述UE能力信息包括所述预设的用于传输所述SRS的所述天线的数量和所述预设的用于传输所述SRS的所述天线端口的数量。
示例30.如示例19所述的设备,其中,在所述可回退的SRS天线转换能力信息与所述多个载波和/或多个小区相对应的情况下,所述可回退的SRS天线转换能力信息指示的所述天线端口转换能力同时对应于所述多个载波和/或多个小区。
示例31.一种用户设备(UE),其中,所述设备包括:
控制单元,用于确定用于所述UE的信道探测参考信号(SRS)天线转换能力信息,其中所述SRS天线转换能力信息与所述UE支持的一个或多个载波和/或一个或多个小区对应并且至少部分地指示所述UE支持的用于发送SRS的天线端口转换能力,其中所述天线端口转换能力包括所述UE能够通过所述一个或多个载波和/或所述一个或多个小区传输所述SRS的天线和所述天线端口的数量中的至少一个;
收发单元,用于向网络设备发送所述SRS天线转换能力信息。
示例32.如示例31所述的设备,其中,所述SRS天线转换能力信息还指示:对 应于所述一个或多个载波中的每一个载波,转换所述天线端口对于所述一个或多个载波中的其他载波中的上行载波的影响,和/或转换所述天线端口对于所述一个或多个载波中的其他载波中的下行载波的影响。
示例33.一种用户设备(UE),其中,所述设备包括:
控制单元,用于确定用于所述UE的可回退的信道探测参考信号(SRS)天线转换能力信息,其中所述可回退的SRS天线转换能力信息与一个或多个载波和/或一个或多个小区相对应,并且至少部分地指示所述UE支持的传输SRS的天线端口转换能力,其中所述天线端口转换能力包括所述UE能够通过所述一个或多个载波和/或所述一个或多个小区传输所述SRS的天线和所述天线端口的数量中的至少一个,并且等于或小于预设的用于传输所述SRS的天线和天线端口的数量中的至少一个;和
收发单元,用于向所述网络设备发送所述可回退的SRS天线转换能力信息。
示例34.如示例33所述的设备,其中,所述可回退的SRS天线转换能力信息还指示:对应于所述一个或多个载波中的每一个载波,转换所述天线端口对于所述一个或多个载波中的其他载波中的上行载波的影响,和/或转换所述天线端口对于所述一个或多个载波中的其他载波中的下行载波的影响。
示例35.一种用户设备(UE),其中,包括:
控制单元,用于确定用于所述UE的可回退的信道探测参考信号(SRS)天线转换能力信息,其中所述可回退的SRS天线转换能力信息与所述UE支持的一个或多个载波相对应,并且至少部分地指示与所述一个或多个载波对应的用于传输SRS的天线端口转换能力,其中所述一个或多个载波的数量小于预设的载波数量;
收发单元,用于向所述网络设备发送所述可回退的SRS天线转换能力信息。
示例36.如示例35所述的设备,其中,所述天线端口转换能力包括所述UE能够传输所述SRS的天线和所述天线端口的数量中的至少一个,并且等于或小于预设的用于传输所述SRS的天线和天线端口的数量中的至少一个。
示例37.一种用户设备UE,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述处理器执行所述程序时实现示例1至18中任一项所述的通信方法。
示例38.一种通信***,其中,包括用户设备UE及网络设备,其中,
所述UE用于,确定用于所述UE的可回退的信道探测参考信号(SRS)天线转换能力信息,其中所述可回退的SRS天线转换能力信息至少部分地指示所述UE支持的用于传输SRS的天线端口转换能力,所述天线端口转换能力包括所述UE能够传输所述SRS的天线和所述天线端口的数量中的至少一个,并且等于或小于预设的用于传输所述SRS的天线和天线端口的数量中的至少一个,以及
向所述网络设备发送所述可回退的SRS天线转换能力信息;
所述网络设备用于,接收所述UE发送的所述可回退的SRS天线转换能力信息;根据所述可回退的SRS天线转换能力信息配置所述UE,向所述UE发送配置消息。
示例39.一种计算机可读存储介质,其中,包括指令,当其在计算机上运行时,使得计算机执行如示例1至18中任一项所述的通信方法。
示例40.一种计算机程序产品,其中,包括指令,当其在计算机上运行时,使得 计算机执行如示例1至18中任一项所述的通信方法。
示例41.一种芯片***,其中,包括:所述芯片***包括处理器、存储器,所述存储器中存储有指令;所述指令被所述处理器执行时,实现如示例1至18中任一项所述的通信方法。

Claims (30)

  1. 一种用于用户设备(UE)的通信方法,其特征在于,所述方法包括:
    确定用于所述UE的可回退的信道探测参考信号(SRS)天线转换能力信息,其中所述可回退的SRS天线转换能力信息至少部分地指示所述UE支持的用于传输SRS的天线端口转换能力,所述天线端口转换能力包括所述UE能够传输所述SRS的天线和所述天线端口的数量中的至少一个,并且等于或小于预设的用于传输所述SRS的天线和天线端口的数量中的至少一个;
    向所述网络设备发送所述可回退的SRS天线转换能力信息;
    其中,所述可回退的SRS天线转换能力信息与所述UE支持的一个或多个载波和/或至少一个小区对应。
  2. 如权利要求1所述的通信方法,其特征在于,所述UE能够传输所述SRS的所述天线和所述天线端口包括:所述UE能够通过所述一个或多个载波和/或所述至少一个小区,传输所述SRS的天线和天线端口。
  3. 如权利要求1所述的方法,其特征在于,所述可回退的SRS天线转换能力信息还指示:对应于所述一个或多个载波中的每一个载波,转换所述天线端口对于所述一个或多个载波中的其他载波中的上行载波的影响,和/或转换所述天线端口对于所述一个或多个载波中的其他载波中的下行载波的影响。
  4. 如权利要求3所述的方法,其特征在于,对应于所述一个或多个载波中的所述每一个载波,所述上行载波的影响和所述下行载波的影响中的至少一个包括一个或多个比特位,其中所述一个或多个比特位与所述一个或多个载波一一对应。
  5. 如权利要求3-4中任一项所述的方法,其特征在于,在所述可回退的SRS天线转换能力信息与所述多个载波和/或所述多个小区相对应的情况下,所述可回退的SRS天线转换能力信息包括多个可回退的SRS天线能力信息包,其中所述多个可回退的SRS天线能力信息包与所述多个载波和/或所述多个小区一一对应,并且,所述多个可回退的SRS天线能力信息包中的每一个指示所述天线端口转换能力,所述对上行载波的影响和所述对下行载波的影响中的至少一个。
  6. 如权利要求5所述的方法,其特征在于,所述多个可回退的SRS天线能力信息包按照所述对应的载波和/或小区的标识信息的顺序排列。
  7. 如权利要求1-6中任一项所述的方法,其特征在于,对应于所述一个或多个载波中的每一个载波,所述可回退的SRS天线转换能力信息与所述每一个载波的标识信息相关联。
  8. 如权利要求3-6中任一项所述的方法,其特征在于,对应于所述一个或多个载波中的所述每一个载波,所述每一个载波的标识信息与影响的所述上行载波和所述下行载波中的至少一个的标识信息相关联。
  9. 如权利要求1-8任一项所述的方法,其特征在于,与所述可回退的SRS天线转换能力信息相对应的所述载波的数量等于或小于预设的载波数量。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的无线资源控制(RRC)连接重配消息,其中所述RRC连接重配信息包括所述预设的用于传输所述SRS的所述天线的数量和所述预设的用于传输所述SRS的所述天线端口的数量。
  11. 如权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:响应于来自网络设备的UE能力请求,向所述网络设备发送所述UE的UE能力信息,其中所述UE能力信息包括所述预设的用于传输所述SRS的所述天线的数量和所述预设的用 于传输所述SRS的所述天线端口的数量。
  12. 如权利要求1所述的方法,其特征在于,在所述可回退的SRS天线转换能力信息与所述多个载波和/或多个小区相对应的情况下,所述可回退的SRS天线转换能力信息指示的所述天线端口转换能力同时对应于所述多个载波和/或多个小区。
  13. 一种用于用户设备(UE)的通信方法,其特征在于,所述方法包括:
    确定用于所述UE的信道探测参考信号(SRS)天线转换能力信息,其中所述SRS天线转换能力信息与所述UE支持的一个或多个载波和/或一个或多个小区对应并且至少部分地指示所述UE支持的用于发送SRS的天线端口转换能力,其中所述天线端口转换能力包括所述UE能够通过所述一个或多个载波和/或所述一个或多个小区传输所述SRS的天线和所述天线端口的数量中的至少一个;
    向网络设备发送所述SRS天线转换能力信息。
  14. 如权利要求13所述的方法,其特征在于,所述SRS天线转换能力信息还指示:对应于所述一个或多个载波中的每一个载波,转换所述天线端口对于所述一个或多个载波中的其他载波中的上行载波的影响,和/或转换所述天线端口对于所述一个或多个载波中的其他载波中的下行载波的影响。
  15. 一种用于用户设备(UE)的通信方法,其特征在于,包括:
    确定用于所述UE的可回退的信道探测参考信号(SRS)天线转换能力信息,其中所述可回退的SRS天线转换能力信息与所述UE支持的一个或多个载波相对应,并且至少部分地指示与所述一个或多个载波对应的用于传输SRS的天线端口转换能力,其中所述一个或多个载波的数量小于预设的载波数量;
    向所述网络设备发送所述可回退的SRS天线转换能力信息。
  16. 如权利要求15所述的通信方法,其中,所述天线端口转换能力包括所述UE能够传输所述SRS的天线和所述天线端口的数量中的至少一个,并且等于或小于预设的用于传输所述SRS的天线和天线端口的数量中的至少一个。
  17. 一种用户设备UE,其特征在于,所述UE包括:
    控制单元,用于确定用于所述UE的可回退的信道探测参考信号(SRS)天线转换能力信息,其中所述可回退的SRS天线转换能力信息至少部分地指示所述UE支持的用于传输SRS的天线端口转换能力,所述天线端口转换能力包括所述UE能够传输所述SRS的天线和所述天线端口的数量中的至少一个,并且等于或小于预设的用于传输所述SRS的天线和天线端口的数量中的至少一个;
    收发单元,用于向所述网络设备发送所述可回退的SRS天线转换能力信息;
    其中,所述可回退的SRS天线转换能力信息与所述UE支持的一个或多个载波和/或至少一个小区对应。
  18. 如权利要求17所述的设备,其特征在于,其中所述UE能够传输所述SRS的所述天线和所述天线端口包括:所述UE能够通过所述一个或多个载波和/或所述至少一个小区,传输所述SRS的天线和天线端口。
  19. 如权利要求17所述的设备,其特征在于,所述可回退的SRS天线转换能力信息还指示:对应于所述一个或多个载波中的每一个载波,转换所述天线端口对于所述一个或多个载波中的其他载波中的上行载波的影响,和/或转换所述天线端口对于所述一个或多个载波中的其他载波中的下行载波的影响。
  20. 如权利要求19所述的设备,其特征在于,对应于所述一个或多个载波中的所述每一个载波,所述上行载波的影响和所述下行载波的影响中的至少一个包括一个或多个比特位,其中所述一个或多个比特位与所述一个或多个载波一一对应。
  21. 如权利要求17-20中任一项所述的设备,其特征在于,在所述可回退的SRS 天线转换能力信息与所述多个载波和/或所述多个小区相对应的情况下,所述可回退的SRS天线转换能力信息包括多个可回退的SRS天线能力信息包,其中所述多个可回退的SRS天线能力信息包与所述多个载波和/或所述多个小区一一对应,并且,所述多个可回退的SRS天线能力信息包中的每一个指示所述天线端口转换能力,所述对上行载波的影响和所述对下行载波的影响中的至少一个。
  22. 如权利要求21所述的设备,其特征在于,所述多个可回退的SRS天线能力信息包按照所述对应的载波和/或小区的标识信息的顺序排列。
  23. 如权利要求17-22中任一项所述的设备,其特征在于,对应于所述一个或多个载波中的每一个载波,所述可回退的SRS天线转换能力信息与所述每一个载波的标识信息相关联。
  24. 如权利要求19-22中任一项所述的设备,其特征在于,对应于所述一个或多个载波中的所述每一个载波,所述每一个载波的标识信息与影响的所述上行载波和所述下行载波中的至少一个的标识信息相关联。
  25. 如权利要求17-24任一项所述的设备,其特征在于,与所述可回退的SRS天线转换能力信息相对应的所述载波的数量等于或小于预设的载波数量。
  26. 如权利要求17-25任一项所述的设备,其特征在于,所述收发单元还包括:
    接收来自所述网络设备的无线资源控制(RRC)连接重配消息,其中所述RRC连接重配信息包括所述预设的用于传输所述SRS的所述天线的数量和所述预设的用于传输所述SRS的所述天线端口的数量。
  27. 如权利要求17-25任一项所述的设备,其特征在于,所述收发单元还包括:响应于来自网络设备的UE能力请求,向所述网络设备发送所述UE的UE能力信息,其中所述UE能力信息包括所述预设的用于传输所述SRS的所述天线的数量和所述预设的用于传输所述SRS的所述天线端口的数量。
  28. 如权利要求17所述的设备,其特征在于,在所述可回退的SRS天线转换能力信息与所述多个载波和/或多个小区相对应的情况下,所述可回退的SRS天线转换能力信息指示的所述天线端口转换能力同时对应于所述多个载波和/或多个小区。
  29. 一种用户设备UE,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其特征在于,所述处理器执行所述程序时实现权利要求1至16中任一项所述的通信方法。
  30. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至16中任一项所述的通信方法。
PCT/CN2020/126235 2019-11-07 2020-11-03 通信方法和用户设备 WO2021088822A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911083130.5 2019-11-07
CN201911083130.5A CN112787779B (zh) 2019-11-07 2019-11-07 通信方法和用户设备

Publications (1)

Publication Number Publication Date
WO2021088822A1 true WO2021088822A1 (zh) 2021-05-14

Family

ID=75747920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126235 WO2021088822A1 (zh) 2019-11-07 2020-11-03 通信方法和用户设备

Country Status (2)

Country Link
CN (1) CN112787779B (zh)
WO (1) WO2021088822A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210329508A1 (en) * 2020-04-06 2021-10-21 Qualcomm Incorporated Managing fifth generation (5g) new radio (nr) antenna-switching concurrency

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116633384A (zh) * 2022-02-14 2023-08-22 大唐移动通信设备有限公司 信息传输方法、装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019037026A1 (en) * 2017-08-24 2019-02-28 Qualcomm Incorporated METHOD FOR SAMPLE REFERENCE SIGNAL TRANSMISSION FOR USER EQUIPMENT WITH ASYMMETRIC TRANSMISSION / RECEPTION
CN110650485A (zh) * 2018-06-26 2020-01-03 维沃移动通信有限公司 用于srs的天线切换传输方式指示方法、终端设备和网络设备
CN111757477A (zh) * 2019-03-28 2020-10-09 华为技术有限公司 一种上报能力的方法及用户设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505485B (zh) * 2008-02-05 2014-11-05 三星电子株式会社 Lte tdd***中发送srs的方法和装置
US10735156B2 (en) * 2016-03-24 2020-08-04 Qualcomm Incorporated Sounding reference signal transmission for enhanced carrier aggregation
US10938529B2 (en) * 2018-02-14 2021-03-02 Qualcomm Incorporated Sounding reference signal antenna switching in scheduled entities having at least four antennas
CN110351040B (zh) * 2018-04-03 2020-08-14 维沃移动通信有限公司 探测参考信号传输、配置方法、用户设备及网络侧设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019037026A1 (en) * 2017-08-24 2019-02-28 Qualcomm Incorporated METHOD FOR SAMPLE REFERENCE SIGNAL TRANSMISSION FOR USER EQUIPMENT WITH ASYMMETRIC TRANSMISSION / RECEPTION
CN110650485A (zh) * 2018-06-26 2020-01-03 维沃移动通信有限公司 用于srs的天线切换传输方式指示方法、终端设备和网络设备
CN111757477A (zh) * 2019-03-28 2020-10-09 华为技术有限公司 一种上报能力的方法及用户设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "UE dynamic adaptation to the maximum number of MIMO layer", 3GPP DRAFT; R1-1912916, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 22 November 2019 (2019-11-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 3, XP051823679 *
QUALCOMM INCORPORATED: "SRS antenna switching for 1T4R and 2T4R", 3GPP DRAFT; R1-1804937, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 20 April 2018 (2018-04-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 8, XP051414275 *
VIVO: "Discussion on UE adaptation to maximum number of MIMO layers", 3GPP DRAFT; R1-1910235-DISCUSSION ON UE ADAPTATION TO MAXIMUM NUMBER OF MIMO LAYERS-FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051789040 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210329508A1 (en) * 2020-04-06 2021-10-21 Qualcomm Incorporated Managing fifth generation (5g) new radio (nr) antenna-switching concurrency

Also Published As

Publication number Publication date
CN112787779B (zh) 2022-10-04
CN112787779A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
US11690020B2 (en) Power scaling for uplink full power transmissions in new radio systems
US10015203B2 (en) Apparatus, system and method of differentiating between an IMS connection and a non-IMS connection
EP3403465A1 (en) CELLULAR INTERNET OF THINGS (CIoT) OPTIMIZATIONS FOR NARROWBAND (NB) AND NON-NB IoT NETWORKS
US10980008B2 (en) Determining resources for uplink control information on physical uplink shared channel and physical uplink control channel with frequency hopping
US9955453B2 (en) Evolved Node-B, user equipment, and methods for paging using a bitmap of paging indicators
TW201724897A (zh) 用於具彈性之無線資源管理的傳訊方法
WO2020069359A1 (en) Physical uplink shared channel (pusch) repetition termination for new radio (nr)
WO2018192566A1 (en) Method and apparatus for numerology configuration in non-coherent joint transmission
WO2021088822A1 (zh) 通信方法和用户设备
CN106717067B (zh) 用户设备(ue)的无线局域网(wlan)设置的装置、***和方法
US20200382181A1 (en) Phase-tracking reference signal (ptrs) operations for full power uplink transmissions in new radio (nr) systems
WO2020086514A1 (en) Measurement gap enhancements
WO2020092199A1 (en) Connectivity enhancement
WO2017026976A1 (en) Apparatus, system and method of cellular-assisted fine time measurement
EP4270796A2 (en) Multiradio interface for software reconfiguration
WO2021238782A1 (zh) 一种无线通信方法
WO2018031927A1 (en) Narrowband definitions, resource allocation, and frequency hopping for user equipment
US10630336B1 (en) Apparatus and method for operating with a radio frequency circuitry and wireless transmission and reception in a millimeter wave range
US11968574B2 (en) 5G new radio (NR) network controlled small gap (NCSG)
US20230300742A1 (en) Power efficient communication with wireless smart repeater
CN112868199B (zh) 下行链路相位跟踪参考信号资源映射
WO2023206003A1 (en) Sidelink co-channel coexistence with inter-ue coordination
US20240215014A1 (en) Fr2 ul gap configuration
CN116830756A (zh) 用于利用ue特定参考信号的辅小区激活的***、方法和设备
EP3434056A1 (en) Method, apparatus and system of splitting control plane and user plane for media access control in a radio access network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886015

Country of ref document: EP

Kind code of ref document: A1