WO2021088572A1 - 天线阵列及电子设备 - Google Patents

天线阵列及电子设备 Download PDF

Info

Publication number
WO2021088572A1
WO2021088572A1 PCT/CN2020/118890 CN2020118890W WO2021088572A1 WO 2021088572 A1 WO2021088572 A1 WO 2021088572A1 CN 2020118890 W CN2020118890 W CN 2020118890W WO 2021088572 A1 WO2021088572 A1 WO 2021088572A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
curved
antenna array
radiators
curved lens
Prior art date
Application number
PCT/CN2020/118890
Other languages
English (en)
French (fr)
Inventor
杨帆
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021088572A1 publication Critical patent/WO2021088572A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism

Definitions

  • This application relates to the field of communication technology, and in particular to an antenna array and electronic equipment.
  • Electronic devices such as smart phones are usually equipped with antennas, such as cellular network antennas, wireless fidelity (Wireless Fidelity, Wi-Fi) antennas, and global positioning system (Global Positioning System, GPS) antennas.
  • antennas such as cellular network antennas, wireless fidelity (Wireless Fidelity, Wi-Fi) antennas, and global positioning system (Global Positioning System, GPS) antennas.
  • the electronic device can realize communication with the base station, other electronic devices, or satellites.
  • the embodiments of the present application provide an antenna array and an electronic device, which can adjust the radiation direction of the antenna array to the free space radiation beam, thereby improving the flexibility and efficiency of communication between the antenna array and other devices.
  • An embodiment of the present application provides an antenna array, including:
  • the curved lens includes a curved surface and a flat surface opposite to each other, and the curved surface forms a convex portion on the curved lens;
  • a meta-material lens is arranged on one side of the plane of the curved lens, the meta-material lens includes a dielectric layer, and the dielectric layer includes a first surface facing the curved lens and a second surface facing away from the curved lens , Both the first surface and the second surface are provided with a metal layer;
  • a plurality of radiators arranged in an array are arranged on the curved surface side of the curved lens or on the side of the metamaterial lens away from the curved lens, and the radiation beam of the radiator passes through the curved lens And the metamaterial lens adjusts the beam shape and then radiates to the free space.
  • An embodiment of the present application also provides an electronic device, including:
  • a housing, an accommodating space is formed on the housing
  • the antenna array is arranged in the accommodating space of the housing, the radiation beam direction of the antenna array faces the outside of the housing, and the antenna array includes:
  • the curved lens includes a curved surface and a flat surface opposite to each other, and the curved surface forms a convex portion on the curved lens;
  • a meta-material lens is arranged on one side of the plane of the curved lens, the meta-material lens includes a dielectric layer, and the dielectric layer includes a first surface facing the curved lens and a second surface facing away from the curved lens , Both the first surface and the second surface are provided with a metal layer;
  • a plurality of radiators arranged in an array are arranged on the curved surface side of the curved lens or on the side of the metamaterial lens away from the curved lens, and the radiation beam of the radiator passes through the curved lens And the metamaterial lens adjusts the beam shape and then radiates to the free space.
  • FIG. 1 is a schematic diagram of the first structure of an antenna array provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of a second structure of an antenna array provided by an embodiment of the application.
  • FIG. 3 is a first plan view of the metal layer in the antenna array shown in FIG. 1.
  • FIG. 4 is a second plan schematic view of the metal layer in the antenna array shown in FIG. 1.
  • FIG. 4 is a second plan schematic view of the metal layer in the antenna array shown in FIG. 1.
  • Fig. 5 is a first plan schematic view of a waveguide unit of the metal layer shown in Fig. 3.
  • FIG. 6 is a second plan schematic view of a waveguide unit of the metal layer shown in FIG. 3.
  • FIG. 7 is a schematic diagram of a third structure of an antenna array provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of a fourth structure of an antenna array provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of a fifth structure of an antenna array provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of the first structure of an electronic device provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of the housing and the antenna array in the electronic device shown in FIG. 10.
  • FIG. 12 is a schematic diagram of a second structure of an electronic device provided by an embodiment of this application.
  • the radiation direction of the antenna in the electronic device is usually fixed, so the direction of the outward radiation beam of the electronic device is fixed. As a result, the flexibility and efficiency of communication between the electronic device and other devices are reduced.
  • An embodiment of the present application provides an antenna array, including:
  • the curved lens includes a curved surface and a flat surface opposite to each other, and the curved surface forms a convex portion on the curved lens;
  • a meta-material lens is arranged on one side of the plane of the curved lens, the meta-material lens includes a dielectric layer, and the dielectric layer includes a first surface facing the curved lens and a second surface facing away from the curved lens , Both the first surface and the second surface are provided with a metal layer;
  • a plurality of radiators arranged in an array are arranged on the curved surface side of the curved lens or on the side of the metamaterial lens away from the curved lens, and the radiation beam of the radiator passes through the curved lens And the metamaterial lens adjusts the beam shape and then radiates to the free space.
  • the metal layer includes a plurality of waveguide units arranged in an array, the plurality of waveguide units are used to conduct the radiation beam, and the size of the plurality of waveguide units in the first direction changes from a central position to two. The sides are gradually reduced, and the dimensions of the plurality of waveguide units remain unchanged in the second direction, wherein the second direction is perpendicular to the first direction.
  • each of the waveguide units includes a first subunit and a second subunit arranged outside the first subunit, the first subunit and the second subunit are arranged concentrically, so A gap of equal interval is formed between the first subunit and the second subunit.
  • the curved lens has a focal point formed on one side of the plane, among the plurality of radiators, the center of the first radiator is opposite to the focal point, and the first radiator outside the first radiator is opposite to the focal point.
  • the two radiators are arranged in an array along both sides of the first radiator.
  • the curved surface is a hyperboloid, and the plurality of radiators are arranged on one side of the curved surface of the curved lens.
  • the arc surface is a circular arc curved surface or an elliptical arc curved surface, and the plurality of radiators are arranged on a side of the metamaterial lens away from the curved lens.
  • the radiation beams of the multiple radiators are all horizontally polarized beams or all are vertically polarized beams.
  • At least one radiation beam is a horizontally polarized beam, and at least one radiation beam is a vertically polarized beam.
  • the antenna array further includes:
  • the first metal sheet is arranged on the curved lens and the metamaterial lens, and the first metal sheet is connected to the arc surface, the plane, and the dielectric layer;
  • a second metal sheet is arranged on the curved lens and the metamaterial lens, the second metal sheet is arranged opposite to the first metal sheet, and the second metal sheet is connected to the curved surface and the flat surface. , The dielectric layer is connected;
  • the plurality of radiator arrays are arranged between the first metal sheet and the second metal sheet.
  • the antenna array further includes:
  • a switch is electrically connected to the signal source and each of the radiators, and the switch is used to control the signal source to switch on one of the multiple radiators to control the connection with the signal source
  • the radiator radiates the beam.
  • the switch controls the signal source to turn on one of the radiators in turn, so as to control the multiple radiators to radiate beams sequentially, so that the antenna array realizes radiation beam scanning in different directions.
  • FIG. 1 is a schematic diagram of the first structure of an antenna array provided by an embodiment of the application.
  • the antenna array 100 includes a curved lens 12, a metamaterial lens 14 and a plurality of radiators 16.
  • the curved lens 12 includes a curved surface 122 and a flat surface 124.
  • the arc surface 122 is opposite to the flat surface 124.
  • the curved surface 122 and the flat surface 124 can be understood as two opposite surfaces of the curved lens 12.
  • the curved surface 122 forms a convex portion on the curved lens 12. That is, the curved lens 12 protrudes outward on the side of the curved surface 122.
  • the flat surface 124 forms a flat surface on the curved lens 12. That is, the curved lens 12 is a flat surface on the side of the plane 124.
  • the lens 12 can transmit electromagnetic waves, that is, can transmit wireless signals.
  • the lens 12 can adjust the transmitted electromagnetic wave beam, for example, converge the electromagnetic wave beam or change the direction of the beam.
  • the material of the lens 12 may be an insulating material, such as plastic, glass, etc.
  • the metamaterial lens 14 is arranged on the plane 124 side of the curved lens 12. Wherein, there may be a small gap between the metamaterial lens 14 and the curved lens 12, for example, a gap of several millimeters. Alternatively, the metamaterial lens 14 can also be directly attached to the plane 124 of the curved lens 12.
  • the metamaterial lens 14 includes a dielectric layer 142.
  • the material of the dielectric layer 142 may be an insulating material, such as plastic, glass, etc.
  • the dielectric layer 142 includes a first surface 142a and a second surface 142b opposite to each other.
  • the first surface 142 a faces the curved lens 12, and the second surface 142 b faces away from the curved lens 12.
  • the first surface 142a and the second surface 142b are both provided with a metal layer 144.
  • both the dielectric layer 142 and the metal layer 144 can transmit electromagnetic waves, that is, can transmit wireless signals.
  • the metal layer 144 can adjust the transmitted electromagnetic wave beam, for example, converge the electromagnetic wave beam or change the direction of the beam.
  • the material of the metal layer 144 may be copper, silver, aluminum, etc., for example. It should be noted that the structure of the metal layer 144 may be a metamaterial structure, so that the metal layer 144 can change the transmission law of electromagnetic waves in the metal.
  • the plurality of radiators 16 are arranged in an array. Wherein, the plurality of radiators 16 are arranged on the side of the curved surface 122 of the curved lens 12 or on the side of the metamaterial lens 14 away from the curved lens 12.
  • the number of the radiators 16 is 2 or more.
  • FIG. 1 shows that the antenna array 100 includes three radiators 16, the radiator shown in FIG. 1 is only an example. The radiators included in the antenna array 100 are shown in FIG. The number of 16 can also be other numbers, such as 5, 6, 8, and so on.
  • the radiator 16 is used to radiate a beam.
  • the radiation beam passes through the curved lens 12 and the metamaterial lens 14 to adjust the beam shape and radiates to a free space.
  • the free space is the space outside the antenna array 100.
  • the curved lens 12 and the metamaterial lens 14 are used to jointly adjust the shape of the radiation beam of the radiator 16.
  • the curved lens 12 and the metamaterial lens 14 can converge the shape of the radiation beam of the radiator 16, so that the radiation direction of the radiation beam is more concentrated, so as to increase the gain of the signal radiated from the antenna array 100 to the free space. .
  • the curved lens 12 and the metamaterial lens 14 can diverge the shape of the radiation beam of the radiator 16, so that the radiation direction of the radiation beam covers a larger angle, so as to improve the radiation of the antenna array 100 to the free space. Signal coverage.
  • the curved lens 12 and the metamaterial lens 14 can change the direction of the radiation beam of the radiator 16 to make the radiation beam radiate in different directions, so as to realize the scanning of the antenna array 100 in different radiation directions.
  • the beam may carry one of wireless signals such as cellular network signals, Wi-Fi signals, and GPS signals.
  • the beam may carry 5G (The 5th Generation mobile communication technology) cellular network signal.
  • the frequency range of the 5G cellular network signal may include 24.25 GHz to 52.6 GHz.
  • 5G cellular network signals with a frequency range of 24.25 GHz to 52.6 GHz are usually also called millimeter wave signals.
  • the millimeter wave signal may include 4 frequency bands, such as n257 (26.5GHz ⁇ 29.5GHz), n258 (24.25GHz ⁇ 27.5GHz), n261 (27.5GHz ⁇ 28.35GHz), n260 (37GHz ⁇ 40GHz).
  • the radiation beams of the multiple radiators 16 may all be horizontally polarized beams or all vertically polarized beams, so that the antenna array 100 can radiate horizontally polarized wireless signals or vertically polarized beams to free space.
  • Wireless signal to improve the anti-interference performance of the radiated wireless signal.
  • the antenna array 100 can simultaneously radiate wireless signals of the same frequency to free space through the horizontally polarized beam and the vertically polarized beam, so as to increase the bandwidth of the radiated wireless signal.
  • the arc surface 122 of the curved lens 12 is a hyperboloid, so that the curved lens 12 can form a hyperboloid lens.
  • the plurality of radiators 16 are arranged on the curved surface 122 side of the curved lens 12. The radiation beams of the plurality of radiators 16 are radiated from the curved surface 122 to the curved lens 12, and radiated from the flat surface 124 of the curved lens 12 to the metamaterial lens 14, and then by the super The side of the material lens 14 away from the curved lens 12 radiates to the free space.
  • the curved surface 122 of the curved lens 12 is a hyperboloid, and the plurality of radiators 16 are arranged on the side of the curved surface 122, the curved lens 12 and the metamaterial lens can be 14 achieves a better adjustment effect on the radiation beam of the radiator 16.
  • FIG. 2 is a schematic diagram of a second structure of the antenna array provided by an embodiment of the application.
  • the arc surface 122 of the curved lens 12 is a circular arc curved surface or an elliptical arc curved surface, so that the curved lens 12 can form a circular arc curved surface.
  • the plurality of radiators 16 are arranged on the side of the metamaterial lens 14 away from the curved lens 12.
  • the radiation beams of the plurality of radiators 16 are radiated from the side of the metamaterial lens 14 away from the curved lens 12 to the metamaterial lens 14, and are directed from the metamaterial lens 14 toward the curved lens 12
  • One side radiates to the curved lens 12, and then radiates to the free space from the side of the curved surface 122 of the curved lens 12.
  • the arc surface 122 of the curved lens 12 is a circular arc curved surface or an elliptical arc curved surface
  • the plurality of radiators 16 are arranged on the side of the metamaterial lens 14 away from the curved lens 12, The metamaterial lens 14 and the curved lens 12 can achieve a better adjustment effect on the radiation beam of the radiator 16.
  • FIG. 3 is a first plan schematic view of the metal layer in the antenna array shown in FIG. 1.
  • the metal layer 144 of the metamaterial lens 14 includes a plurality of waveguide units 1442.
  • the plurality of waveguide units 1442 are arranged in an array.
  • the plurality of waveguide units 1442 may be arranged in a rectangular array, or arranged in a circular array, and so on.
  • the plurality of waveguide units 1442 are used for conducting the radiation beam of the radiator 16.
  • the size of the plurality of waveguide units 1442 gradually decreases from the center position of the array to both sides in the first direction, and the size of the plurality of waveguide units 1442 remains unchanged in the second direction. It is perpendicular to the first direction.
  • the first direction may be the X direction
  • the second direction may be the Y direction. Therefore, when the radiation beam of the radiator 16 passes through the plurality of waveguide units 1442 of the metal layer 144, the phase delay of the radiation beam gradually decreases from the center position of the array to both sides, so that the metal layer 144 The effect of adjusting the shape of the radiation beam can be realized.
  • the size of the waveguide unit 1442 is the outer contour size.
  • the outer contour of the waveguide unit 1442 may be square, circular, rectangular, elliptical, or the like. As shown in FIG. 3, when the outer contour of the waveguide unit 1442 is square, the size of the waveguide unit 1442 is the side length D1 of the square. As shown in FIG. 4, FIG. 4 is a second plan view of the metal layer in the antenna array shown in FIG. 1. When the outer contour of the waveguide unit 1442 is circular, the size of the waveguide unit 1442 is circular The diameter D2. When the outer contour of the waveguide unit 1442 is rectangular, the size of the waveguide unit 1442 is the length of the long side and the length of the short side of the rectangle. When the outer contour of the waveguide unit 1442 is elliptical, the size of the waveguide unit 1442 is the length of the major axis and the length of the minor axis of the ellipse.
  • FIG. 5 is a first plan schematic view of a waveguide unit of the metal layer shown in FIG. 3.
  • Each waveguide unit 1442 includes a first subunit 1442a and a second subunit 1442b.
  • the second subunit 1442b is arranged outside the first subunit 1442a.
  • the first subunit 1442a and the second subunit 1442b are arranged concentrically. That is, the center of the first subunit 1442a coincides with the center of the second subunit 1442b.
  • a gap 1442c with equal intervals is formed between the first subunit 1442a and the second subunit 1442b.
  • the first subunit 1442a and the second subunit 1442b form a concentric ring shape.
  • the first subunit 1442a and the second subunit 1442b both form a waveguide loop, and the waveguide loop may or may not be closed.
  • the first subunit 1442a and the second subunit 1442b both form a closed square loop.
  • a closed annular gap 1442c of equal width is formed between the first subunit 1442a and the second subunit 1442b.
  • FIG. 6 is a second plan schematic view of a waveguide unit of the metal layer shown in FIG. 3.
  • the first subunit 1442a and the second subunit 1442b both form a closed square loop.
  • a non-closed, constant-width annular gap 1442c is formed between the first subunit 1442a and the second subunit 1442b. That is, the annular gap 1442c has an opening.
  • FIG. 7 is a schematic diagram of a third structure of an antenna array provided by an embodiment of this application.
  • the curved lens 12 has a focal point 126 formed on one side of the plane 124. It can be understood that the focal point 126 is objectively determined by the shape of the curved lens 12, but there is no such a visible point in free space.
  • the plurality of radiators 16 includes a first radiator 16a, and a second radiator 16b other than the first radiator 16a. Wherein, the center of the first radiator 16a is opposite to the focal point 126, and the second radiator 16b is arranged in an array along both sides of the first radiator 16a. For example, the second radiator 16b may be arranged in a linear array along both sides of the first radiator 16a.
  • the curved lens 12 and the metamaterial lens 14 can adjust the radiation beam of the first radiator 16a to a parallel beam; the second radiator 16b radiates When beaming, the curved lens 12 and the metamaterial lens 14 can converge the radiation beam of the second radiator 16b, but they are not adjusted to be parallel beams. Therefore, when the antenna array 100 radiates beams to free space, the radiated beams include both parallel beams and non-parallel beams. The radiation direction of the parallel beams has stronger wireless signal strength, and the non-parallel beams can cover a larger range. . Therefore, the signal strength of the radiation beam of the antenna array 100 to the free space can be improved, and the radiation beam can cover a larger area.
  • FIG. 8 is a schematic diagram of a fourth structure of an antenna array provided by an embodiment of this application.
  • the antenna array 100 further includes a first metal sheet 182 and a second metal sheet 184.
  • the first metal sheet 182 is disposed on the curved lens 12 and the metamaterial lens 14.
  • the first metal sheet 182 is connected to the curved surface 122 of the curved lens 12, the flat surface 124 of the curved lens 12, and the dielectric layer 142 of the metamaterial lens 14.
  • the second metal sheet 184 is also arranged on the curved lens 12 and the metamaterial lens 14.
  • the second metal sheet 184 and the first metal sheet 182 are disposed opposite to each other.
  • the second metal sheet 184 is also connected to the curved surface 122 of the curved lens 12, the flat surface 124 of the curved lens 12, and the dielectric layer 142 of the metamaterial lens 14.
  • the curved lens 12 further includes a first side surface 123 and a second side surface 125 opposite to each other.
  • the first side surface 123 is connected to the arc surface 122 and the flat surface 124
  • the second side surface 125 is also connected to the arc surface 122 and the flat surface 124.
  • the first side surface 123 and the second side surface 125 may both be flat.
  • the dielectric layer 142 of the metamaterial lens 14 further includes a third side surface 142c and a fourth side surface 142d opposite to each other.
  • the third side surface 142c is connected to the first surface 142a and the second surface 142b, and the fourth side surface 142d is also connected to the first surface 142a and the second surface 142b.
  • the third side surface 142c and the fourth side surface 142d may both be flat.
  • the third side surface 142c and the first side surface 123 of the curved lens 12 are located on the same plane, and the fourth side surface 142d and the second side surface 125 of the curved lens 12 are located on the same plane.
  • the first metal sheet 182 is provided on the first side surface 123 and the third side surface 142c, and the second metal sheet 184 is provided on the second side surface 125 and the fourth side surface 142d.
  • the curved lens 12 and the metamaterial lens 14 are arranged between the first metal sheet 182 and the second metal sheet 184.
  • the arc surface 122 and the flat surface 124 of the curved lens 12 and the dielectric layer 142 of the metamaterial lens 14 are all connected to the first metal sheet 182 and the second metal sheet 184. That is, the first side surface 123 of the curved lens 12 and the third side surface 142c of the dielectric layer 142 are both attached to the first metal sheet 182, and the second side surface of the curved lens 12 Both the side surface 125 and the fourth side surface 142d of the dielectric layer 142 are attached to the second metal sheet 184.
  • the arc surface 122 and the flat surface 124 of the curved lens 12 can be understood as the surface connected between the first metal sheet 182 and the second metal sheet 184, and the arc surface 122 and the flat surface 124 Both are perpendicular to the first metal sheet 182, and the arc surface 122 and the plane 124 are both perpendicular to the second metal sheet 184.
  • the plurality of radiators 16 are arranged in an array between the first metal sheet 182 and the second metal sheet 184. Moreover, each of the radiators 16 may be connected to the first metal sheet 182 and the second metal sheet 184. It can be understood that the plurality of radiators 16 are electrically insulated from the first metal sheet 182 and the second metal sheet 184.
  • first metal sheet 182 and the second metal sheet 184 protrude from the curved lens 12 on the side where the curved surface 122 of the curved lens 12 is located, thereby forming an accommodating space 183.
  • the plurality of radiators 16 are arrayed in the accommodating space 183.
  • first metal sheet 182 and the second metal sheet 184 may provide support for the curved lens 12, the metamaterial lens 14, and the plurality of radiators 16, so as to facilitate the curved lens 12. Installation and fixing of the metamaterial lens 14 and the plurality of radiators 16. At the same time, the radiation beams of the plurality of radiators 16 can be conducted between the first metal sheet 182 and the second metal sheet 184 without being transmitted. That is, the first metal sheet 182 and the second metal sheet 184 can function as a wave guide.
  • first metal sheet 182 and the second metal sheet 184 may form the outer frame of the antenna array 100, or it may be understood that the first metal sheet 182 and the second metal sheet 184 form the antenna array 100. ⁇ The shell.
  • the antenna array 100 can form an integral sealing structure.
  • FIG. 9 is a schematic diagram of a fifth structure of an antenna array provided by an embodiment of the application.
  • the antenna array 100 further includes a signal source 186 and a switch 188.
  • the signal source 186 is used to generate electrical signals carrying communication data. When the signal source 186 outputs the generated electrical signal to the radiator 16, the radiator 16 can radiate a beam. It can be understood that the signal source 186 may be integrated on a circuit board, or the signal source 186 may be understood as a signal processing circuit provided on the circuit board.
  • the switch 188 is electrically connected to the signal source 186 and each of the radiators 16.
  • the switch 188 is used to control the signal source 186 to switch on one of the plurality of radiators 16 to control the radiation beam of the radiator 16 connected with the signal source 186. That is, the switch 188 is used to select a radiator from the plurality of radiators 16 to be connected to the signal source 186, so that the selected radiator 16 can radiate the beam without being connected to the signal source 186.
  • the other radiators connected by the source 186 do not radiate beams.
  • the switch 188 may include a single-pole multi-throw switch, or include multiple single-pole single-throw switches.
  • the switch 188 can switch the multiple radiators 16 to make the antenna array 100 realizes radiation beam scanning in different directions.
  • the switch 188 can control the signal source 186 to turn on one of the radiators 16 in turn to control the multiple radiators 16 to radiate beams sequentially, so that the antenna array 100 realizes radiation beam scanning in different directions. . That is, the switch 188 controls only one radiator 16 to turn on the signal source 186 at a time, and controls the other radiators 16 to be disconnected from the signal source 186, so that only one radiator 16 can be controlled. Radiates the beam, and controls other radiators 16 to stop the radiating beam. Therefore, the antenna array 100 only radiates beams in one direction of free space at each time, and can radiate beams in different directions at different times, so as to realize radiation beam scanning in different directions.
  • the curved lens 12 and the metamaterial lens 14 can adjust the radiation beam shape of the radiator 16, so that when the antenna array 100 radiates the beam to free space, the radiation beam
  • the radiation direction can be adjusted so that the radiation direction with the strongest wireless signal can be selected to radiate the beam, so the flexibility and efficiency of communication between the antenna array 100 and other devices can be improved.
  • the embodiment of the present application also provides an electronic device.
  • the electronic device can be a smart phone, a tablet computer, etc., or a game device, AR (Augmented Reality) device, automobile device, data storage device, audio playback device, video playback device, notebook computer, desktop computing Equipment, etc.
  • AR Augmented Reality
  • An embodiment of the present application also provides an electronic device, including:
  • a housing, an accommodating space is formed on the housing
  • the antenna array is arranged in the accommodating space of the housing, the radiation beam direction of the antenna array faces the outside of the housing, and the antenna array includes:
  • the curved lens includes a curved surface and a flat surface opposite to each other, and the curved surface forms a convex portion on the curved lens;
  • a meta-material lens is arranged on one side of the plane of the curved lens, the meta-material lens includes a dielectric layer, and the dielectric layer includes a first surface facing the curved lens and a second surface facing away from the curved lens , Both the first surface and the second surface are provided with a metal layer;
  • a plurality of radiators arranged in an array are arranged on the curved surface side of the curved lens or on the side of the metamaterial lens away from the curved lens, and the radiation beam of the radiator passes through the curved lens And the metamaterial lens adjusts the beam shape and then radiates to the free space.
  • the electronic device further includes a processor electrically connected to the antenna array, and the processor is configured to control the antenna array to sequentially scan the radiation beam toward different directions to determine the radiation signal The strongest radiation direction, and control the antenna array to radiate beams toward the radiation direction with the strongest radiation signal.
  • the metal layer includes a plurality of waveguide units arranged in an array, the plurality of waveguide units are used to conduct the radiation beam, and the size of the plurality of waveguide units in the first direction changes from a central position to two. The sides are gradually reduced, and the dimensions of the plurality of waveguide units remain unchanged in the second direction, wherein the second direction is perpendicular to the first direction.
  • each of the waveguide units includes a first subunit and a second subunit arranged outside the first subunit, the first subunit and the second subunit are arranged concentrically, so A gap of equal interval is formed between the first subunit and the second subunit.
  • the curved lens has a focal point formed on one side of the plane, among the plurality of radiators, the center of the first radiator is opposite to the focal point, and the first radiator outside the first radiator is opposite to the focal point.
  • the two radiators are arranged in an array along both sides of the first radiator.
  • the curved surface is a hyperboloid, and the plurality of radiators are arranged on one side of the curved surface of the curved lens.
  • the arc surface is a circular arc curved surface or an elliptical arc curved surface, and the plurality of radiators are arranged on a side of the metamaterial lens away from the curved lens.
  • the radiation beams of the multiple radiators are all horizontally polarized beams or all are vertically polarized beams.
  • the antenna array further includes:
  • the first metal sheet is arranged on the curved lens and the metamaterial lens, and the first metal sheet is connected to the arc surface, the plane, and the dielectric layer;
  • a second metal sheet is arranged on the curved lens and the metamaterial lens, the second metal sheet is arranged opposite to the first metal sheet, and the second metal sheet is connected to the curved surface and the flat surface. , The dielectric layer is connected;
  • the plurality of radiator arrays are arranged between the first metal sheet and the second metal sheet.
  • FIG. 10 is a schematic diagram of a first structure of an electronic device provided by an embodiment of the application.
  • the electronic device 200 includes a display screen 22, a housing 24, a circuit board 26, a battery 28, and an antenna array 100.
  • the display screen 22 is arranged on the housing 24 to form a display surface of the electronic device 200 for displaying information such as images and texts.
  • the display screen 22 may include a liquid crystal display (Liquid Crystal Display, LCD) or an Organic Light-Emitting Diode (OLED) display screen.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • a cover plate may also be provided on the display screen 22 to protect the display screen 22 and prevent the display screen 22 from being scratched or damaged by water.
  • the cover plate may be a transparent glass cover plate, so that the user can observe the content displayed on the display screen 22 through the cover plate.
  • the cover plate may be a glass cover plate made of sapphire.
  • the housing 24 is used to form the outer contour of the electronic device 200 so as to accommodate the electronic devices and functional components of the electronic device 200, while sealing and protecting the electronic devices and functional components inside the electronic device.
  • functional components such as a camera, a circuit board, and a vibration motor of the electronic device 200 may all be arranged inside the housing 24.
  • the housing 24 may include a middle frame and a battery cover.
  • the middle frame may have a thin plate or sheet-like structure, or a hollow frame structure.
  • the middle frame is used to provide support for the electronic devices or functional components in the electronic device 200 so as to install the electronic devices and functional components of the electronic device 200 together.
  • structures such as grooves, protrusions, and through holes may be provided on the middle frame to facilitate the installation of electronic devices or functional components of the electronic device 200.
  • the material of the middle frame may include metal or plastic.
  • the battery cover is connected to the middle frame.
  • the battery cover may be attached to the middle frame through an adhesive such as double-sided tape to realize the connection with the middle frame.
  • the battery cover is used to seal the electronic devices and functional components of the electronic device 200 inside the electronic device 200 together with the middle frame and the display screen 22 to protect the electronic devices and functional components of the electronic device 200.
  • the battery cover can be integrally formed. During the molding process of the battery cover, a rear camera mounting hole and other structures can be formed on the battery cover. It is understandable that the material of the battery cover may also include metal or plastic.
  • the circuit board 26 is arranged inside the housing 24.
  • the circuit board 26 can be installed on the middle frame of the housing 24 for fixing, and the circuit board 26 can be sealed inside the electronic device through a battery cover.
  • the circuit board 26 may be the main board of the electronic device 200.
  • the circuit board 26 may also be integrated with one or more of functional components such as a processor, a camera, an earphone interface, an acceleration sensor, a gyroscope, and a motor.
  • the display screen 22 may be electrically connected to the circuit board 26 to control the display of the display screen 22 through a processor on the circuit board 26.
  • the battery 28 is provided inside the housing 24.
  • the battery 28 can be installed on the middle frame of the housing 24 for fixing, and the battery 28 can be sealed inside the electronic device through a battery cover.
  • the battery 28 is electrically connected to the circuit board 26 to realize that the battery 28 supplies power to the electronic device 200.
  • the circuit board 26 may be provided with a power management circuit.
  • the power management circuit is used to distribute the voltage provided by the battery 28 to various electronic devices in the electronic device 200.
  • the antenna array 100 is the antenna array 100 described in any of the foregoing embodiments.
  • the antenna array 100 is arranged inside the housing 24.
  • the antenna array 100 is used to radiate beams to free space outside the electronic device 200 to realize the wireless communication function of the electronic device 200. It can be understood that the direction of the radiation beam of the antenna array 100 is toward the outside of the housing 24, so that the antenna array 100 can radiate the beam to the outside of the electronic device 200.
  • the electronic device 200 further includes a processor 262.
  • the processor 262 may be arranged on the circuit board 26.
  • the processor 262 is electrically connected to the antenna array 100, so that the antenna array 100 can be controlled by the processor 262.
  • the processor 262 may be used to control the antenna array 100 to scan the radiation beam in different directions in order to determine the radiation direction with the strongest radiation signal, and to control the antenna array 100 to face the strongest radiation signal.
  • the radiation direction radiates the beam, thereby increasing the wireless signal strength of the electronic device 200.
  • the processor 262 may control the switch 188 of the antenna array 100 so that the switch 188 controls each of the plurality of radiators 16 to radiate beams in turn, so that the antenna array 100 sequentially scans the radiation beam in different directions, thereby determining the radiation direction with the strongest radiation signal. Subsequently, the processor 262 may control the antenna array 100 to radiate the beam toward the radiation direction with the strongest radiation signal.
  • FIG. 11 is a schematic diagram of the housing and the antenna array in the electronic device shown in FIG. 10.
  • an accommodating space 242 is formed on the housing 24.
  • the accommodating space 242 may be formed at the side of the housing 24, for example. It can be understood that the accommodating space 242 may be a groove or an opening opened on the housing 24.
  • the antenna array 100 may be arranged in the accommodating space 242 of the housing 24 to realize the installation of the antenna array 100 on the housing 24 to form a fixing and protective effect on the antenna array 100.
  • FIG. 12 is a schematic diagram of a second structure of an electronic device provided by an embodiment of this application.
  • the electronic device 200 may include a plurality of antenna arrays 100 arranged at intervals. Among them, more than one is 2 or more. For example, as shown in FIG. 12, the electronic device 200 may include two antenna arrays 100 arranged at intervals, and each of the antenna arrays 100 is arranged at one side of the housing 24.
  • Multiple antenna arrays 100 are provided on the electronic device 200, on the one hand, it can enhance the wireless signal strength when the electronic device 200 radiates beams outward, on the other hand, it can also expand the coverage of the wireless signal, thereby improving the wireless signal strength of the electronic device 200 And wireless signal coverage.
  • the electronic device 200 provided by the embodiment of the present application includes an antenna array 100.
  • a curved lens and a metamaterial lens can adjust the shape of the radiation beam of the radiator, so that when the antenna array 100 radiates the beam to free space At this time, the radiation direction of the radiation beam can be adjusted, and then the radiation direction with the strongest wireless signal can be selected to radiate the beam. Therefore, the flexibility and efficiency of communication between the antenna array 100 and other devices can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请实施例提供一种天线阵列及电子设备,天线阵列包括:曲面透镜;超材料透镜;多个阵列设置的辐射体,设置在曲面透镜的弧面一侧或者设置在超材料透镜背离曲面透镜的一侧,辐射体的辐射波束经过曲面透镜和超材料透镜调节波束形状后辐射至自由空间。

Description

天线阵列及电子设备
本申请要求于2019年11月05日提交中国专利局、申请号为201911072551.8、申请名称为“天线阵列及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种天线阵列及电子设备。
背景技术
诸如智能手机等电子设备中通常都设置有天线,例如蜂窝网络天线、无线保真(Wireless Fidelity,Wi-Fi)天线、全球定位***(Global Positioning System,GPS)天线等。从而,电子设备可以实现与基站、其它电子设备或者卫星之间的通信。
发明内容
本申请实施例提供一种天线阵列及电子设备,可以对天线阵列向自由空间辐射波束的辐射方向进行调节,从而提高天线阵列与其它设备之间通信的灵活性和效率。
本申请实施例提供一种天线阵列,包括:
曲面透镜,包括相对的一弧面及一平面,所述弧面在所述曲面透镜上形成凸出部;
超材料透镜,设置在所述曲面透镜的所述平面一侧,所述超材料透镜包括介质层,所述介质层包括朝向所述曲面透镜的第一表面以及背离所述曲面透镜的第二表面,所述第一表面、所述第二表面均设置有金属层;
多个阵列设置的辐射体,设置在所述曲面透镜的所述弧面一侧或者设置在所述超材料透镜背离所述曲面透镜的一侧,所述辐射体的辐射波束经过所述曲面透镜和所述超材料透镜调节波束形状后辐射至自由空间。
本申请实施例还提供一种电子设备,包括:
壳体,所述壳体上形成有容置空间;
天线阵列,设置在所述壳体的容置空间内,所述天线阵列的辐射波束方向朝向所述壳体外部,所述天线阵列,包括:
曲面透镜,包括相对的一弧面及一平面,所述弧面在所述曲面透镜上形成 凸出部;
超材料透镜,设置在所述曲面透镜的所述平面一侧,所述超材料透镜包括介质层,所述介质层包括朝向所述曲面透镜的第一表面以及背离所述曲面透镜的第二表面,所述第一表面、所述第二表面均设置有金属层;
多个阵列设置的辐射体,设置在所述曲面透镜的所述弧面一侧或者设置在所述超材料透镜背离所述曲面透镜的一侧,所述辐射体的辐射波束经过所述曲面透镜和所述超材料透镜调节波束形状后辐射至自由空间。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的天线阵列的第一种结构示意图。
图2为本申请实施例提供的天线阵列的第二种结构示意图。
图3为图1所示天线阵列中的金属层的第一种平面示意图。
图4为图1所示天线阵列中的金属层的第二种平面示意图。
图5为图3所示金属层的一个波导单元的第一种平面示意图。
图6为图3所示金属层的一个波导单元的第二种平面示意图。
图7为本申请实施例提供的天线阵列的第三种结构示意图。
图8为本申请实施例提供的天线阵列的第四种结构示意图。
图9为本申请实施例提供的天线阵列的第五种结构示意图。
图10为本申请实施例提供的电子设备的第一种结构示意图。
图11为图10所示电子设备中的壳体和天线阵列的示意图。
图12为本申请实施例提供的电子设备的第二种结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
电子设备中天线的辐射方向通常都是固定的,因此电子设备向外辐射波束的方向是固定不变的。从而,导致电子设备与其它设备之间通信的灵活性和效率降低。
本申请实施例提供一种天线阵列,包括:
曲面透镜,包括相对的一弧面及一平面,所述弧面在所述曲面透镜上形成凸出部;
超材料透镜,设置在所述曲面透镜的所述平面一侧,所述超材料透镜包括介质层,所述介质层包括朝向所述曲面透镜的第一表面以及背离所述曲面透镜的第二表面,所述第一表面、所述第二表面均设置有金属层;
多个阵列设置的辐射体,设置在所述曲面透镜的所述弧面一侧或者设置在所述超材料透镜背离所述曲面透镜的一侧,所述辐射体的辐射波束经过所述曲面透镜和所述超材料透镜调节波束形状后辐射至自由空间。
在一些实施例中,所述金属层包括多个阵列设置的波导单元,所述多个波导单元用于传导所述辐射波束,所述多个波导单元的尺寸在第一方向由居中位置向两侧逐渐减小,并且所述多个波导单元的尺寸在第二方向维持不变,其中,所述第二方向与所述第一方向垂直。
在一些实施例中,每一所述波导单元包括第一子单元以及设置在所述第一子单元外侧的第二子单元,所述第一子单元与所述第二子单元同心设置,所述第一子单元与所述第二子单元之间形成有等间距的间隙。
在一些实施例中,所述曲面透镜在所述平面一侧形成有焦点,所述多个辐射体中,第一辐射体的中心与所述焦点相对,所述第一辐射体之外的第二辐射体沿所述第一辐射体的两侧阵列设置。
在一些实施例中,所述弧面为双曲面,所述多个辐射体设置在所述曲面透镜的所述弧面一侧。
在一些实施例中,所述弧面为圆弧曲面或椭圆弧曲面,所述多个辐射体设置在所述超材料透镜背离所述曲面透镜的一侧。
在一些实施例中,所述多个辐射体的辐射波束均为水平极化波束或者均为垂直极化波束。
在一些实施例中,所述多个辐射体的辐射波束中,至少一个辐射波束为水平极化波束,至少一个辐射波束为垂直极化波束。
在一些实施例中,所述天线阵列还包括:
第一金属片,设置在所述曲面透镜和所述超材料透镜上,所述第一金属片与所述弧面、所述平面、所述介质层连接;
第二金属片,设置在所述曲面透镜和所述超材料透镜上,所述第二金属片与所述第一金属片相对设置,所述第二金属片与所述弧面、所述平面、所述介质层连接;其中
所述多个辐射体阵列设置在所述第一金属片与所述第二金属片之间。
在一些实施例中,所述天线阵列还包括:
信号源;
切换开关,与所述信号源以及每一所述辐射体电连接,所述切换开关用于控制所述信号源接通所述多个辐射体中的一个,以控制与所述信号源接通的辐射体辐射波束。
在一些实施例中,所述切换开关控制所述信号源依次接通一个所述辐射体,以控制所述多个辐射体依次辐射波束,使得所述天线阵列实现不同方向的辐射波束扫描。
参考图1,图1为本申请实施例提供的天线阵列的第一种结构示意图。
其中,天线阵列100包括曲面透镜12、超材料透镜14以及多个辐射体16。
所述曲面透镜12包括一弧面122及一平面124。所述弧面122与所述平面124相对设置。所述弧面122和所述平面124可以理解为所述曲面透镜12的两个相对表面。其中,所述弧面122在所述曲面透镜12上形成凸出部。也即,所述曲面透镜12在所述弧面122一侧向外凸出。所述平面124在所述曲面透镜12上形成平整的表面。也即,所述曲面透镜12在所述平面124一侧为平整的表面。
其中,所述透镜12可以供电磁波透过,也即可以供无线信号透过。所述透镜12可以对透过的电磁波的波束进行调节,例如对电磁波的波束进行汇聚或者改变波束的方向等。所述透镜12的材质可以为绝缘材料,例如塑胶、玻璃等。
所述超材料透镜14设置在所述曲面透镜12的平面124一侧。其中,所述超材料透镜14与所述曲面透镜12之间可以具有较小的间隙,例如间隙为几毫米。或者,所述超材料透镜14也可以直接贴合设置在所述曲面透镜12的平面 124上。
所述超材料透镜14包括介质层142。所述介质层142的材质可以为绝缘材料,例如塑胶、玻璃等。所述介质层142包括相对的第一表面142a和第二表面142b。所述第一表面142a朝向所述曲面透镜12,所述第二表面142b背离所述曲面透镜12。其中,所述第一表面142a、所述第二表面142b均设置有金属层144。
其中,所述介质层142、所述金属层144都可以供电磁波透过,也即可以供无线信号透过。所述金属层144可以对透过的电磁波的波束进行调节,例如对电磁波的波束进行汇聚或者改变波束的方向等。所述金属层144的材质例如可以为铜、银、铝等。需要说明的是,所述金属层144的结构可以为超材料结构,以使得所述金属层144可以改变电磁波在金属中的传输规律。
所述多个辐射体16呈阵列设置。其中,所述多个辐射体16设置在所述曲面透镜12的所述弧面122一侧,或者设置在所述超材料透镜14背离所述曲面透镜12的一侧。所述辐射体16的数量为2个或2个以上,尽管图1中示出了天线阵列100包括3个辐射体16,但图1所示仅仅是一种示例,天线阵列100包括的辐射体16的数量还可以为其它数量,例如5个、6个、8个等等。
所述辐射体16用于辐射波束。所述辐射波束经过所述曲面透镜12和所述超材料透镜14调节波束形状后辐射至自由空间。其中,自由空间即为所述天线阵列100外部的空间。所述曲面透镜12和所述超材料透镜14用于共同调节所述辐射体16的辐射波束的形状。例如,所述曲面透镜12和所述超材料透镜14可以对辐射体16的辐射波束的形状进行汇聚,使辐射波束的辐射方向更为集中,以提高天线阵列100向自由空间辐射的信号的增益。再例如,所述曲面透镜12和所述超材料透镜14可以对辐射体16的辐射波束的形状进行发散,使辐射波束的辐射方向覆盖更大的角度,以提高天线阵列100向自由空间辐射的信号的覆盖范围。再例如,所述曲面透镜12和所述超材料透镜14可以改变辐射体16的辐射波束的朝向,使辐射波束朝向不同方向进行辐射,以实现天线阵列100对不同辐射方向的扫描。
可以理解的,所述波束可以携带蜂窝网络信号、Wi-Fi信号、GPS信号等无线信号中的一种。例如,所述波束可以携带5G(The 5th Generation mobile communication technology,第五代移动通信技术)蜂窝网络信号。所述5G蜂 窝网络信号的频率范围可以包括24.25GHz~52.6GHz。其中,频率范围为24.25GHz~52.6GHz的5G蜂窝网络信号通常也称为毫米波信号。毫米波信号可以包括n257(26.5GHz~29.5GHz)、n258(24.25GHz~27.5GHz)、n261(27.5GHz~28.35GHz)、n260(37GHz~40GHz)等4个频段。
其中,所述多个辐射体16的辐射波束可以均为水平极化波束或者均为垂直极化波束,从而所述天线阵列100可以实现向自由空间辐射水平极化的无线信号或者垂直极化的无线信号,以提高辐射的无线信号的抗干扰性能。
可以理解的,所述多个辐射体16的辐射波束中,一部分辐射波束可以为水平极化波束,另一部分辐射波束可以为垂直极化波束。也即,至少一个辐射波束为水平极化波束,至少一个辐射波束为垂直极化波束。从而,天线阵列100可以同时通过水平极化波束和垂直极化波束向自由空间辐射相同频率的无线信号,以提高辐射的无线信号的带宽。
继续参考图1,其中,所述曲面透镜12的弧面122为双曲面,从而所述曲面透镜12可以形成双曲面透镜。所述多个辐射体16设置在所述曲面透镜12的所述弧面122一侧。所述多个辐射体16的辐射波束由所述弧面122辐射至所述曲面透镜12,并由所述曲面透镜12的所述平面124辐射至所述超材料透镜14,随后由所述超材料透镜14背离所述曲面透镜12的一侧辐射至自由空间。
可以理解的,当所述曲面透镜12的弧面122为双曲面时,所述多个辐射体16设置在所述弧面122一侧时,能够使得所述曲面透镜12和所述超材料透镜14对所述辐射体16的辐射波束取得较好的调节效果。
在本申请的描述中,需要理解的是,诸如“第一”、“第二”等术语仅用于区分类似的对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
参考图2,图2为本申请实施例提供的天线阵列的第二种结构示意图。
其中,图2所示天线阵列100与图1所示天线阵列100的区别在于:所述曲面透镜12的弧面122为圆弧曲面或者椭圆弧曲面,从而所述曲面透镜12可以形成圆弧曲面透镜或者椭圆弧曲面透镜。所述多个辐射体16设置在所述超材料透镜14背离所述曲面透镜12的一侧。所述多个辐射体16的辐射波束由所述超材料透镜14背离所述曲面透镜12的一侧辐射至所述超材料透镜14, 并由所述超材料透镜14朝向所述曲面透镜12的一侧辐射至所述曲面透镜12,随后由所述曲面透镜12的弧面122一侧辐射至自由空间。
可以理解的,当所述曲面透镜12的弧面122为圆弧曲面或者椭圆弧曲面时,所述多个辐射体16设置在所述超材料透镜14背离所述曲面透镜12的一侧时,能够使得所述超材料透镜14和所述曲面透镜12对所述辐射体16的辐射波束取得较好的调节效果。
参考图3,图3为图1所示天线阵列中的金属层的第一种平面示意图。
所述超材料透镜14的金属层144包括多个波导单元1442。所述多个波导单元1442呈阵列设置。例如,所述多个波导单元1442可以呈矩形阵列设置,或者呈圆形阵列设置,等等。所述多个波导单元1442用于传导所述辐射体16的辐射波束。
其中,所述多个波导单元1442的尺寸在第一方向由阵列的居中位置向两侧逐渐减小,并且所述多个波导单元1442的尺寸在第二方向维持不变,所述第二方向与所述第一方向垂直。例如,如图3的平面示意图所示,所述第一方向可以为X方向,所述第二方向可以为Y方向。从而,当所述辐射体16的辐射波束从所述金属层144的多个波导单元1442中透过时,辐射波束的相位延迟由阵列的居中位置向两侧逐渐减小,使得所述金属层144可以实现对辐射波束的形状进行调节的作用。
可以理解的,所述波导单元1442的尺寸为外部轮廓尺寸。所述波导单元1442的外部轮廓可以呈方形、圆形、矩形、椭圆形等。如图3所示,当所述波导单元1442的外部轮廓呈方形时,所述波导单元1442的尺寸为方形的边长D1。如图4所示,图4为图1所示天线阵列中的金属层的第二种平面示意图,当所述波导单元1442的外部轮廓呈圆形时,所述波导单元1442的尺寸为圆形的直径D2。当所述波导单元1442的外部轮廓呈矩形时,所述波导单元1442的尺寸为矩形长边的长度和短边的长度。当所述波导单元1442的外部轮廓呈椭圆形时,所述波导单元1442的尺寸为椭圆形长轴的长度和短轴的长度。
参考图5,图5为图3所示金属层的一个波导单元的第一种平面示意图。
每一所述波导单元1442包括第一子单元1442a以及第二子单元1442b。所述第二子单元1442b设置在所述第一子单元1442a的外侧。所述第一子单元1442a与所述第二子单元1442b同心设置。也即,所述第一子单元1442a的中 心与所述第二子单元1442b的中心重合。所述第一子单元1442a与所述第二子单元1442b之间形成有等间距的间隙1442c。或者也可以理解为,所述第一子单元1442a与所述第二子单元1442b形成同心的环状。
其中,所述第一子单元1442a、所述第二子单元1442b均形成波导回路,所述波导回路可以闭合也可以不闭合。
例如,如图5所示,所述第一子单元1442a、所述第二子单元1442b均形成闭合的方形回路。所述第一子单元1442a与所述第二子单元1442b之间形成闭合的等宽度环状间隙1442c。
再例如,如图6所示,图6为图3所示金属层的一个波导单元的第二种平面示意图。所述第一子单元1442a、所述第二子单元1442b均形成非闭合的方形回路。所述第一子单元1442a与所述第二子单元1442b之间形成非闭合的等宽度环状间隙1442c。也即,所述环状间隙1442c具有开口。
参考图7,图7为本申请实施例提供的天线阵列的第三种结构示意图。
所述曲面透镜12在所述平面124一侧形成有焦点126。可以理解的,所述焦点126是由所述曲面透镜12的形状所确定的客观存在的,但是自由空间中并不存在这样一个可见的点。
所述多个辐射体16包括一个第一辐射体16a,以及除了所述第一辐射体16a之外的第二辐射体16b。其中,所述第一辐射体16a的中心与所述焦点126相对,所述第二辐射体16b沿所述第一辐射体16a的两侧阵列设置。例如,所述第二辐射体16b可以沿所述第一辐射体16a的两侧呈直线阵列设置。
从而,所述第一辐射体16a辐射波束时,所述曲面透镜12和所述超材料透镜14可以将所述第一辐射体16a的辐射波束调节为平行波束;所述第二辐射体16b辐射波束时,所述曲面透镜12和所述超材料透镜14可以对所述第二辐射体16b的辐射波束进行汇聚,但并不会调节为平行波束。因此,所述天线阵列100向自由空间辐射波束时,辐射的波束既包括平行波束,又包括非平行波束,平行波束朝向的辐射方向的无线信号强度更强,非平行波束可以覆盖更大的范围。因此,既可以提高天线阵列100向自由空间辐射波束的信号强度,又可以保证辐射波束覆盖较大的范围。
参考图8,图8为本申请实施例提供的天线阵列的第四种结构示意图。
其中,天线阵列100还包括第一金属片182和第二金属片184。所述第一 金属片182设置在所述曲面透镜12和所述超材料透镜14上。并且,所述第一金属片182与所述曲面透镜12的所述弧面122、所述曲面透镜12的所述平面124、所述超材料透镜14的所述介质层142连接。所述第二金属片184也设置在所述曲面透镜12和所述超材料透镜14上。并且,所述第二金属片184与所述第一金属片182相对设置。所述第二金属片184也与所述曲面透镜12的所述弧面122、所述曲面透镜12的所述平面124、所述超材料透镜14的所述介质层142连接。
可以理解的,所述曲面透镜12还包括相对的第一侧面123和第二侧面125。所述第一侧面123与所述弧面122、所述平面124连接,所述第二侧面125也与所述弧面122、所述平面124连接。所述第一侧面123、所述第二侧面125可以都为平面。
所述超材料透镜14的介质层142还包括相对的第三侧面142c和第四侧面142d。所述第三侧面142c与所述第一表面142a、所述第二表面142b连接,所述第四侧面142d也与所述第一表面142a、所述第二表面142b连接。所述第三侧面142c、所述第四侧面142d可以都为平面。其中,所述第三侧面142c与所述曲面透镜12的第一侧面123位于同一平面,所述第四侧面142d与所述曲面透镜12的第二侧面125位于同一平面。
其中,所述第一金属片182设置在所述第一侧面123和所述第三侧面142c上,所述第二金属片184设置在所述第二侧面125和所述第四侧面142d上。
也可以理解为,所述曲面透镜12、所述超材料透镜14设置在所述第一金属片182与所述第二金属片184之间。并且,所述曲面透镜12的弧面122、平面124以及所述超材料透镜14的介质层142均与所述第一金属片182、所述第二金属片184连接。也即,所述曲面透镜12的所述第一侧面123、所述介质层142的所述第三侧面142c均与所述第一金属片182贴合,所述曲面透镜12的所述第二侧面125、所述介质层142的所述第四侧面142d均与所述第二金属片184贴合。其中,所述曲面透镜12的弧面122、平面124可以理解为连接在所述第一金属片182和所述第二金属片184之间的表面,并且所述弧面122、所述平面124均与所述第一金属片182垂直,以及所述弧面122、所述平面124均与所述第二金属片184垂直。
其中,所述多个辐射体16阵列设置在所述第一金属片182与所述第二金 属片184之间。并且,每一所述辐射体16可以与所述第一金属片182、所述第二金属片184连接。可以理解的,所述多个辐射体16与所述第一金属片182、所述第二金属片184之间为电绝缘的。
可以理解的,所述第一金属片182、所述第二金属片184在所述曲面透镜12的所述弧面122所在的一侧凸出于所述曲面透镜12,从而形成一容置空间183。所述多个辐射体16阵列设置在所述容置空间183中。
可以理解的,所述第一金属片182、所述第二金属片184可以为所述曲面透镜12、所述超材料透镜14以及所述多个辐射体16提供支撑作用,便于所述曲面透镜12、所述超材料透镜14以及所述多个辐射体16的安装和固定。同时,可以使所述多个辐射体16的辐射波束在所述第一金属片182与所述第二金属片184之间进行传导而不会透射出去。也即,所述第一金属片182、所述第二金属片184可以起到导波的作用。
此外,所述第一金属片182、所述第二金属片184可以形成天线阵列100的外部框架,或者理解为所述第一金属片182、所述第二金属片184形成所述天线阵列100的外壳。从而,所述天线阵列100可以形成一个整体的密封结构。
参考图9,图9为本申请实施例提供的天线阵列的第五种结构示意图。
其中,天线阵列100还包括信号源186以及切换开关188。所述信号源186用于产生携带通信数据的电信号。当所述信号源186将产生的电信号输出至所述辐射体16时,所述辐射体16即可辐射波束。其中,可以理解的,所述信号源186可以集成在电路板上,或者所述信号源186可以理解为设置在电路板上的信号处理电路。
所述切换开关188与所述信号源186以及每一所述辐射体16电连接。所述切换开关188用于控制所述信号源186接通所述多个辐射体16中的一个,以控制与所述信号源186接通的辐射体16辐射波束。也即,所述切换开关188用于从所述多个辐射体16中选择一个辐射体与所述信号源186接通,从而选择的所述辐射体16可以辐射波束,而未与所述信号源186接通的其它辐射体则不辐射波束。
可以理解的,所述切换开关188可以包括单刀多掷开关,或者包括多个单刀单掷开关。
所述天线阵列100中,由于曲面透镜12和超材料透镜14可以对辐射体 16的辐射波束形状进行调节,因此可以通过所述切换开关188对所述多个辐射体16的切换来使得天线阵列100实现不同方向的辐射波束扫描。
其中,所述切换开关188可以控制所述信号源186依次接通一个所述辐射体16,以控制所述多个辐射体16依次辐射波束,使得所述天线阵列100实现不同方向的辐射波束扫描。也即,每一时刻所述切换开关188只控制一个辐射体16接通所述信号源186,并控制其它的辐射体16与所述信号源186之间断开,从而可以只控制一个辐射体16辐射波束,并控制其它的辐射体16停止辐射波束。因此,每一时刻所述天线阵列100只向自由空间的一个方向辐射波束,在不同的时刻可以向不同的方向辐射波束,从而实现不同方向的辐射波束扫描。
本申请实施例提供的天线阵列100中,曲面透镜12和超材料透镜14可以对辐射体16的辐射波束形状进行调节,从而当所述天线阵列100向自由空间辐射波束时,可以对辐射波束的辐射方向进行调节,进而可以选择无线信号最强的辐射方向来辐射波束,因此可以提高天线阵列100与其它设备之间通信的灵活性和效率。
本申请实施例还提供一种电子设备。所述电子设备可以是智能手机、平板电脑等设备,还可以是游戏设备、AR(Augmented Reality,增强现实)设备、汽车装置、数据存储装置、音频播放装置、视频播放装置、笔记本电脑、桌面计算设备等。
本申请实施例还提供一种电子设备,包括:
壳体,所述壳体上形成有容置空间;
天线阵列,设置在所述壳体的容置空间内,所述天线阵列的辐射波束方向朝向所述壳体外部,所述天线阵列,包括:
曲面透镜,包括相对的一弧面及一平面,所述弧面在所述曲面透镜上形成凸出部;
超材料透镜,设置在所述曲面透镜的所述平面一侧,所述超材料透镜包括介质层,所述介质层包括朝向所述曲面透镜的第一表面以及背离所述曲面透镜的第二表面,所述第一表面、所述第二表面均设置有金属层;
多个阵列设置的辐射体,设置在所述曲面透镜的所述弧面一侧或者设置在所述超材料透镜背离所述曲面透镜的一侧,所述辐射体的辐射波束经过所述曲面透镜和所述超材料透镜调节波束形状后辐射至自由空间。
在一些实施例中,所述电子设备还包括处理器,所述处理器与所述天线阵列电连接,所述处理器用于控制所述天线阵列依次朝向不同方向进行辐射波束扫描,以确定辐射信号最强的辐射方向,并控制所述天线阵列朝向所述辐射信号最强的辐射方向辐射波束。
在一些实施例中,所述金属层包括多个阵列设置的波导单元,所述多个波导单元用于传导所述辐射波束,所述多个波导单元的尺寸在第一方向由居中位置向两侧逐渐减小,并且所述多个波导单元的尺寸在第二方向维持不变,其中,所述第二方向与所述第一方向垂直。
在一些实施例中,每一所述波导单元包括第一子单元以及设置在所述第一子单元外侧的第二子单元,所述第一子单元与所述第二子单元同心设置,所述第一子单元与所述第二子单元之间形成有等间距的间隙。
在一些实施例中,所述曲面透镜在所述平面一侧形成有焦点,所述多个辐射体中,第一辐射体的中心与所述焦点相对,所述第一辐射体之外的第二辐射体沿所述第一辐射体的两侧阵列设置。
在一些实施例中,所述弧面为双曲面,所述多个辐射体设置在所述曲面透镜的所述弧面一侧。
在一些实施例中,所述弧面为圆弧曲面或椭圆弧曲面,所述多个辐射体设置在所述超材料透镜背离所述曲面透镜的一侧。
在一些实施例中,所述多个辐射体的辐射波束均为水平极化波束或者均为垂直极化波束。
在一些实施例中,所述天线阵列还包括:
第一金属片,设置在所述曲面透镜和所述超材料透镜上,所述第一金属片与所述弧面、所述平面、所述介质层连接;
第二金属片,设置在所述曲面透镜和所述超材料透镜上,所述第二金属片与所述第一金属片相对设置,所述第二金属片与所述弧面、所述平面、所述介质层连接;其中
所述多个辐射体阵列设置在所述第一金属片与所述第二金属片之间。
参考图10,图10为本申请实施例提供的电子设备的第一种结构示意图。
其中,电子设备200包括显示屏22、壳体24、电路板26、电池28以及天线阵列100。
显示屏22设置在壳体24上,以形成电子设备200的显示面,用于显示图像、文本等信息。其中,显示屏22可以包括液晶显示屏(Liquid Crystal Display,LCD)或有机发光二极管显示屏(Organic Light-Emitting Diode,OLED)等类型的显示屏。
可以理解的,显示屏22上还可以设置盖板,以对显示屏22进行保护,防止显示屏22被刮伤或者被水损坏。其中,所述盖板可以为透明玻璃盖板,从而用户可以透过盖板观察到显示屏22显示的内容。可以理解的,所述盖板可以为蓝宝石材质的玻璃盖板。
壳体24用于形成电子设备200的外部轮廓,以便于容纳电子设备200的电子器件、功能组件等,同时对电子设备内部的电子器件和功能组件形成密封和保护作用。例如,电子设备200的摄像头、电路板、振动马达等功能组件都可以设置在壳体24内部。可以理解的,所述壳体24可以包括中框和电池盖。
其中,所述中框可以为薄板状或薄片状的结构,也可以为中空的框体结构。中框用于为电子设备200中的电子器件或功能组件提供支撑作用,以将电子设备200的电子器件、功能组件安装到一起。例如,所述中框上可以设置凹槽、凸起、通孔等结构,以便于安装电子设备200的电子器件或功能组件。可以理解的,中框的材质可以包括金属或塑胶等。
所述电池盖与所述中框连接。例如,所述电池盖可以通过诸如双面胶等粘接剂贴合到中框上以实现与中框的连接。其中,电池盖用于与所述中框、所述显示屏22共同将电子设备200的电子器件和功能组件密封在电子设备200内部,以对电子设备200的电子器件和功能组件形成保护作用。可以理解的,电池盖可以一体成型。在电池盖的成型过程中,可以在电池盖上形成后置摄像头安装孔等结构。可以理解的,电池盖的材质也可以包括金属或塑胶等。
电路板26设置在所述壳体24内部。例如,电路板26可以安装在壳体24的中框上,以进行固定,并通过电池盖将电路板26密封在电子设备内部。其中,电路板26可以为电子设备200的主板。其中,所述电路板26上还可以集成有处理器、摄像头、耳机接口、加速度传感器、陀螺仪、马达等功能组件中的一个或多个。同时,显示屏22可以电连接至电路板26,以通过电路板26上的处理器对显示屏22的显示进行控制。
电池28设置在壳体24内部。例如,电池28可以安装在壳体24的中框上, 以进行固定,并通过电池盖将电池28密封在电子设备内部。同时,电池28电连接至所述电路板26,以实现电池28为电子设备200供电。其中,电路板26上可以设置有电源管理电路。所述电源管理电路用于将电池28提供的电压分配到电子设备200中的各个电子器件。
所述天线阵列100为上述任一实施例所述的天线阵列100。所述天线阵列100设置在所述壳体24内部。其中,所述天线阵列100用于向电子设备200外部的自由空间辐射波束,以实现电子设备200的无线通信功能。可以理解的,所述天线阵列100的辐射波束方向朝向所述壳体24外部,从而所述天线阵列100可以向电子设备200外部辐射波束。
可以理解的,所述电子设备200还包括处理器262。所述处理器262可以设置在所述电路板26上。所述处理器262与所述天线阵列100电连接,从而可以通过所述处理器262对所述天线阵列100进行控制。
其中,所述处理器262可以用于控制所述天线阵列100依次朝向不同方向进行辐射波束扫描,以确定辐射信号最强的辐射方向,并控制所述天线阵列100朝向所述辐射信号最强的辐射方向辐射波束,从而提高电子设备200的无线信号强度。
例如,所述处理器262可以对所述天线阵列100的切换开关188进行控制,使所述切换开关188控制所述多个辐射体16中的每一个辐射体依次辐射波束,使得所述天线阵列100依次朝向不同方向进行辐射波束扫描,从而确定出辐射信号最强的辐射方向。随后,所述处理器262可以控制所述天线阵列100朝向所述辐射信号最强的辐射方向辐射波束。
同时参考图11,图11为图10所示电子设备中的壳体和天线阵列的示意图。
其中,所述壳体24上形成有容置空间242。所述容置空间242例如可以形成在壳体24的侧边处。可以理解的,所述容置空间242可以为所述壳体24上开设的凹槽或者开口等结构。所述天线阵列100可以设置在所述壳体24的容置空间242内,以实现将所述天线阵列100安装到壳体24上,从而对所述天线阵列100形成固定和保护作用。
参考图12,图12为本申请实施例提供的电子设备的第二种结构示意图。
可以理解的,电子设备200可以包括多个间隔设置的天线阵列100。其中, 多个即为2个或2个以上。例如,如图12所示,电子设备200可以包括间隔设置的2个天线阵列100,每一所述天线阵列100设置在壳体24的一个侧边处。
电子设备200上设置多个天线阵列100,一方面可以增强电子设备200向外辐射波束时的无线信号强度,另一方面也可以扩大无线信号的覆盖范围,从而可以提高电子设备200的无线信号强度和无线信号的覆盖范围。
本申请实施例提供的电子设备200包括天线阵列100,所述天线阵列100中,曲面透镜和超材料透镜可以对辐射体的辐射波束形状进行调节,从而当所述天线阵列100向自由空间辐射波束时,可以对辐射波束的辐射方向进行调节,进而可以选择无线信号最强的辐射方向来辐射波束,因此可以提高天线阵列100与其它设备之间通信的灵活性和效率。
以上对本申请实施例提供的天线阵列及电子设备进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种天线阵列,其中,包括:
    曲面透镜,包括相对的一弧面及一平面,所述弧面在所述曲面透镜上形成凸出部;
    超材料透镜,设置在所述曲面透镜的所述平面一侧,所述超材料透镜包括介质层,所述介质层包括朝向所述曲面透镜的第一表面以及背离所述曲面透镜的第二表面,所述第一表面、所述第二表面均设置有金属层;
    多个阵列设置的辐射体,设置在所述曲面透镜的所述弧面一侧或者设置在所述超材料透镜背离所述曲面透镜的一侧,所述辐射体的辐射波束经过所述曲面透镜和所述超材料透镜调节波束形状后辐射至自由空间。
  2. 根据权利要求1所述的天线阵列,其中,所述金属层包括多个阵列设置的波导单元,所述多个波导单元用于传导所述辐射波束,所述多个波导单元的尺寸在第一方向由居中位置向两侧逐渐减小,并且所述多个波导单元的尺寸在第二方向维持不变,其中,所述第二方向与所述第一方向垂直。
  3. 根据权利要求2所述的天线阵列,其中,每一所述波导单元包括第一子单元以及设置在所述第一子单元外侧的第二子单元,所述第一子单元与所述第二子单元同心设置,所述第一子单元与所述第二子单元之间形成有等间距的间隙。
  4. 根据权利要求1所述的天线阵列,其中,所述曲面透镜在所述平面一侧形成有焦点,所述多个辐射体中,第一辐射体的中心与所述焦点相对,所述第一辐射体之外的第二辐射体沿所述第一辐射体的两侧阵列设置。
  5. 根据权利要求1所述的天线阵列,其中,所述弧面为双曲面,所述多个辐射体设置在所述曲面透镜的所述弧面一侧。
  6. 根据权利要求1所述的天线阵列,其中,所述弧面为圆弧曲面或椭圆弧曲面,所述多个辐射体设置在所述超材料透镜背离所述曲面透镜的一侧。
  7. 根据权利要求1所述的天线阵列,其中,所述多个辐射体的辐射波束均为水平极化波束或者均为垂直极化波束。
  8. 根据权利要求1所述的天线阵列,其中,所述多个辐射体的辐射波束中,至少一个辐射波束为水平极化波束,至少一个辐射波束为垂直极化波束。
  9. 根据权利要求1所述的天线阵列,其中,还包括:
    第一金属片,设置在所述曲面透镜和所述超材料透镜上,所述第一金属片与所述弧面、所述平面、所述介质层连接;
    第二金属片,设置在所述曲面透镜和所述超材料透镜上,所述第二金属片与所述第一金属片相对设置,所述第二金属片与所述弧面、所述平面、所述介质层连接;其中
    所述多个辐射体阵列设置在所述第一金属片与所述第二金属片之间。
  10. 根据权利要求1所述的天线阵列,其中,还包括:
    信号源;
    切换开关,与所述信号源以及每一所述辐射体电连接,所述切换开关用于控制所述信号源接通所述多个辐射体中的一个,以控制与所述信号源接通的辐射体辐射波束。
  11. 根据权利要求10所述的天线阵列,其中,所述切换开关控制所述信号源依次接通一个所述辐射体,以控制所述多个辐射体依次辐射波束,使得所述天线阵列实现不同方向的辐射波束扫描。
  12. 一种电子设备,其中,包括:
    壳体,所述壳体上形成有容置空间;
    天线阵列,设置在所述壳体的容置空间内,所述天线阵列的辐射波束方向朝向所述壳体外部,所述天线阵列,包括:
    曲面透镜,包括相对的一弧面及一平面,所述弧面在所述曲面透镜上形成凸出部;
    超材料透镜,设置在所述曲面透镜的所述平面一侧,所述超材料透镜包括介质层,所述介质层包括朝向所述曲面透镜的第一表面以及背离所述曲面透镜的第二表面,所述第一表面、所述第二表面均设置有金属层;
    多个阵列设置的辐射体,设置在所述曲面透镜的所述弧面一侧或者设置在所述超材料透镜背离所述曲面透镜的一侧,所述辐射体的辐射波束经过所述曲面透镜和所述超材料透镜调节波束形状后辐射至自由空间。
  13. 根据权利要求12所述的电子设备,其中,还包括处理器,所述处理器与所述天线阵列电连接,所述处理器用于控制所述天线阵列依次朝向不同方向进行辐射波束扫描,以确定辐射信号最强的辐射方向,并控制所述天线阵列朝向所述辐射信号最强的辐射方向辐射波束。
  14. 根据权利要求12所述的电子设备,其中,所述金属层包括多个阵列设置的波导单元,所述多个波导单元用于传导所述辐射波束,所述多个波导单元的尺寸在第一方向由居中位置向两侧逐渐减小,并且所述多个波导单元的尺寸在第二方向维持不变,其中,所述第二方向与所述第一方向垂直。
  15. 根据权利要求14所述的电子设备,其中,每一所述波导单元包括第一子单元以及设置在所述第一子单元外侧的第二子单元,所述第一子单元与所述第二子单元同心设置,所述第一子单元与所述第二子单元之间形成有等间距的间隙。
  16. 根据权利要求12所述的电子设备,其中,所述曲面透镜在所述平面一侧形成有焦点,所述多个辐射体中,第一辐射体的中心与所述焦点相对,所述第一辐射体之外的第二辐射体沿所述第一辐射体的两侧阵列设置。
  17. 根据权利要求12所述的电子设备,其中,所述弧面为双曲面,所述多个辐射体设置在所述曲面透镜的所述弧面一侧。
  18. 根据权利要求12所述的电子设备,其中,所述弧面为圆弧曲面或椭圆弧曲面,所述多个辐射体设置在所述超材料透镜背离所述曲面透镜的一侧。
  19. 根据权利要求12所述的电子设备,其中,所述多个辐射体的辐射波束均为水平极化波束或者均为垂直极化波束。
  20. 根据权利要求12所述的电子设备,其中,所述天线阵列还包括:
    第一金属片,设置在所述曲面透镜和所述超材料透镜上,所述第一金属片与所述弧面、所述平面、所述介质层连接;
    第二金属片,设置在所述曲面透镜和所述超材料透镜上,所述第二金属片与所述第一金属片相对设置,所述第二金属片与所述弧面、所述平面、所述介质层连接;其中
    所述多个辐射体阵列设置在所述第一金属片与所述第二金属片之间。
PCT/CN2020/118890 2019-11-05 2020-09-29 天线阵列及电子设备 WO2021088572A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911072551.8 2019-11-05
CN201911072551.8A CN110783692B (zh) 2019-11-05 2019-11-05 天线阵列及电子设备

Publications (1)

Publication Number Publication Date
WO2021088572A1 true WO2021088572A1 (zh) 2021-05-14

Family

ID=69389287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118890 WO2021088572A1 (zh) 2019-11-05 2020-09-29 天线阵列及电子设备

Country Status (2)

Country Link
CN (1) CN110783692B (zh)
WO (1) WO2021088572A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110783692B (zh) * 2019-11-05 2021-03-23 Oppo广东移动通信有限公司 天线阵列及电子设备
LU101574B1 (en) * 2019-12-23 2021-06-28 Univ Of New South Wales Occupancy Detection System
US11831795B2 (en) * 2020-04-16 2023-11-28 Htc Corporation Wireless transceiving device
JP7351417B2 (ja) * 2020-05-26 2023-09-27 株式会社村田製作所 アンテナ装置並びにそれを用いたレーダ装置および車両
CN112103624B (zh) * 2020-09-16 2022-11-15 Oppo(重庆)智能科技有限公司 天线装置及电子设备
CN114637120A (zh) * 2022-03-31 2022-06-17 天津山河光电科技有限公司 一种多功能超表面分束器
CN117791101A (zh) * 2022-09-20 2024-03-29 华为技术有限公司 天线装置及通信设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090213022A1 (en) * 2008-02-25 2009-08-27 Lockheed Martin Corporation Horn antenna, waveguide or apparatus including low index dielectric material
US20100328779A1 (en) * 2009-06-30 2010-12-30 California Institute Of Technolology Dielectric covered planar antennas
CN102683892A (zh) * 2011-03-15 2012-09-19 深圳光启高等理工研究院 一种超材料电磁透镜天线
CN102738595A (zh) * 2011-03-31 2012-10-17 深圳光启高等理工研究院 一种具有电磁波汇聚功能的透镜天线
CN102751585A (zh) * 2011-04-20 2012-10-24 深圳光启高等理工研究院 电磁波透镜、波束扫描装置及方法
CN102891366A (zh) * 2011-05-04 2013-01-23 深圳光启高等理工研究院 一种电磁透镜天线
CN103094712A (zh) * 2011-10-31 2013-05-08 深圳光启高等理工研究院 基于超材料的透镜天线
CN103296476A (zh) * 2012-02-29 2013-09-11 深圳光启创新技术有限公司 一种多波束透镜天线
CN204067583U (zh) * 2014-09-25 2014-12-31 湖北三江航天险峰电子信息有限公司 一种介质透镜天线
CN110783692A (zh) * 2019-11-05 2020-02-11 Oppo广东移动通信有限公司 天线阵列及电子设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5103241A (en) * 1989-07-28 1992-04-07 Hughes Aircraft Company High Q bandpass structure for the selective transmission and reflection of high frequency radio signals
US5307077A (en) * 1990-12-14 1994-04-26 Hughes Missile Systems Company Multi-spectral seeker antenna
US8130171B2 (en) * 2008-03-12 2012-03-06 The Boeing Company Lens for scanning angle enhancement of phased array antennas
CN203013936U (zh) * 2013-01-18 2013-06-19 厦门大学 一种多波束平面贴片透镜天线
GB2525862A (en) * 2014-05-06 2015-11-11 Univ Bedfordshire Lens array and imaging device
CN105742824A (zh) * 2016-04-13 2016-07-06 中国电子科技集团公司第五十四研究所 一种可宽角扫描的低剖面透镜天线
CN109643839B (zh) * 2016-09-07 2021-02-19 康普技术有限责任公司 适合用于蜂窝和其它通信***的多频带多波束透镜式天线
CN108258434A (zh) * 2016-12-28 2018-07-06 南京理工大学 基于射线跟踪原理和超材料结构的超低剖面透镜天线

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090213022A1 (en) * 2008-02-25 2009-08-27 Lockheed Martin Corporation Horn antenna, waveguide or apparatus including low index dielectric material
US20100328779A1 (en) * 2009-06-30 2010-12-30 California Institute Of Technolology Dielectric covered planar antennas
CN102683892A (zh) * 2011-03-15 2012-09-19 深圳光启高等理工研究院 一种超材料电磁透镜天线
CN102738595A (zh) * 2011-03-31 2012-10-17 深圳光启高等理工研究院 一种具有电磁波汇聚功能的透镜天线
CN102751585A (zh) * 2011-04-20 2012-10-24 深圳光启高等理工研究院 电磁波透镜、波束扫描装置及方法
CN102891366A (zh) * 2011-05-04 2013-01-23 深圳光启高等理工研究院 一种电磁透镜天线
CN103094712A (zh) * 2011-10-31 2013-05-08 深圳光启高等理工研究院 基于超材料的透镜天线
CN103296476A (zh) * 2012-02-29 2013-09-11 深圳光启创新技术有限公司 一种多波束透镜天线
CN204067583U (zh) * 2014-09-25 2014-12-31 湖北三江航天险峰电子信息有限公司 一种介质透镜天线
CN110783692A (zh) * 2019-11-05 2020-02-11 Oppo广东移动通信有限公司 天线阵列及电子设备

Also Published As

Publication number Publication date
CN110783692A (zh) 2020-02-11
CN110783692B (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
WO2021088572A1 (zh) 天线阵列及电子设备
US11355831B2 (en) Antenna system and mobile terminal
EP3944413A1 (en) Antenna device and electronic apparatus
CN210805993U (zh) 天线辐射体及电子设备
KR102568207B1 (ko) 5g 안테나를 구비하는 전자 기기
CN108463922B (zh) 具有漏波相控阵天线的无线通信装置
WO2021088637A1 (zh) 天线阵列及电子设备
JP4976477B2 (ja) 平面再構成可能アンテナ
CN209843935U (zh) 电子设备
KR102596294B1 (ko) 안테나를 구비하는 전자 기기
CN210668661U (zh) 电子设备
CN111129736B (zh) 电子设备
JP2015231062A (ja) アンテナ装置
CN112736453A (zh) 电子设备
CN112787077B (zh) 天线辐射体及电子设备
CN112103624A (zh) 天线装置及电子设备
EP2525440A1 (en) Display device having directional antenna
TWI769878B (zh) 天線結構及具有該天線結構之電子設備
CN117060051A (zh) 天线馈入耦合模块及电子装置
CN112310655B (zh) 电子设备
JP2000201014A (ja) マイクロストリップアンテナ
CN112310653B (zh) 电子设备
WO2021088736A1 (zh) 天线辐射体及电子设备
TWI845937B (zh) 天線饋入耦合模組及電子裝置
US20230361450A1 (en) Microminiaturized antenna feed module and electronic device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885915

Country of ref document: EP

Kind code of ref document: A1