WO2021088387A1 - 一种插芯、光连接器、光通信元件、通信设备及制备方法 - Google Patents

一种插芯、光连接器、光通信元件、通信设备及制备方法 Download PDF

Info

Publication number
WO2021088387A1
WO2021088387A1 PCT/CN2020/099462 CN2020099462W WO2021088387A1 WO 2021088387 A1 WO2021088387 A1 WO 2021088387A1 CN 2020099462 W CN2020099462 W CN 2020099462W WO 2021088387 A1 WO2021088387 A1 WO 2021088387A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrule
reflective film
hole
mating
optical
Prior art date
Application number
PCT/CN2020/099462
Other languages
English (en)
French (fr)
Inventor
郭丹
王保启
赵俊英
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202090000925.5U priority Critical patent/CN218240470U/zh
Priority to JP2022526168A priority patent/JP7338058B2/ja
Priority to EP20837919.8A priority patent/EP3845940B1/en
Priority to KR1020227017398A priority patent/KR20220092538A/ko
Priority to US17/147,930 priority patent/US11536911B2/en
Publication of WO2021088387A1 publication Critical patent/WO2021088387A1/zh
Priority to US18/064,452 priority patent/US12038612B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3818Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres of a low-reflection-loss type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3845Details of mounting fibres in ferrules; Assembly methods; Manufacture ferrules comprising functional elements, e.g. filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3813Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres for transmission of high energy beam
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3814Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres with cooling or heat dissipation means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3818Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres of a low-reflection-loss type
    • G02B6/382Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres of a low-reflection-loss type with index-matching medium between light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources

Definitions

  • This application relates to the field of communication technology, and in particular to a ferrule, an optical connector, an optical communication element, a communication device and a preparation method.
  • optical communications will be widely used as an important means of mass data transmission. Due to the substantial increase in the amount of data transmission, the energy density of optical transmission carriers (such as single-mode optical fibers and waveguides, etc.) is very high.
  • the optical transmission carrier is built into the ferrule base as a part of the connector ferrule. Through the pairing of the ferrules of the two connectors, the optical transmission carrier in the two ferrules realizes optical communication, and the optical transmission carrier in one ferrule emits The light irradiates the surface of the ferrule substrate of another ferrule, and the light energy is absorbed and converted into heat energy on the surface. As the heat energy accumulates, the ferrule substrate of the latter ferrule burns.
  • This application provides a ferrule, an optical connector, an optical communication component, a communication device, and a preparation method thereof, which are used to reduce the probability of burnout of the ferrule matrix or the optical transmission carrier in the ferrule, so as to ensure the stability of the data transmission of the optical communication system Sex.
  • a ferrule in the first aspect, can be used in optical connectors such as optical fiber connectors or optical waveguide connectors. Optical communication between the connectors.
  • the ferrule provided in the present application includes: a ferrule base, a light transmission carrier, and a reflective film.
  • the ferrule base has a first surface. When the ferrule is matched with a corresponding mating ferrule, the first surface faces the mating insert.
  • the ferrule base has a receiving through hole, one end of the receiving through hole is located on the first surface of the ferrule base, the light transmission carrier is arranged in the receiving through hole, and the light transmission carrier has a second surface.
  • the second surface of the light transmission carrier faces the mating ferrule corresponding to the ferrule, and the second surface is the light transmission surface;
  • the reflective film covers the first surface of the ferrule base, and the reflection band of the reflective film includes For at least part of the communication band of the optical transmission carrier, when the ferrule is paired with the mating ferrule, the light emitted by the mating ferrule toward the first surface is reflected by the reflective film on the first surface to other directions to slow down the light
  • the first surface of the ferrule base body is converted into heat energy, the probability of the ferrule base body being burnt is reduced.
  • the second surface of the light transmission carrier is easily contaminated with impurities such as dust.
  • impurities such as dust.
  • the above-mentioned reflective film also covers a partial area of the second surface.
  • the reflective film has a through hole, and the orthographic projection of the through hole on the second surface covers the light core on the second surface.
  • the reflective film can reflect the light emitted by the mating ferrule toward the second surface to other directions, and the remaining light energy converted into heat energy is not enough to make the impurities on the second surface reach the ignition point and burn, thereby reducing the burning of the light transmission carrier The probability.
  • the reflective film prevents the reflective film from blocking the optical fiber emitted from the light core area, and on the other hand, it prevents the mating ferrule from scratching the bottom surface of the groove structure enclosed by the side wall of the through hole.
  • the second surface has a main optical path area.
  • the through hole is formed on the second surface.
  • the orthographic projection covers the main optical path area.
  • the optical transmission carrier is a single-mode fiber as an example, and the through hole is between the edge of the orthographic projection on the second surface and the edge of the main optical path area.
  • the gap width is greater than or equal to 12.5 ⁇ m and less than or equal to 42.5 ⁇ m.
  • the ferrule further includes an anti-reflection coating on the side of the light transmission carrier facing the mating ferrule, and the anti-reflection coating is on the second surface
  • the orthographic projection covers the orthographic projection of the through-hole on the second surface, wherein the anti-reflection band of the anti-reflection coating includes at least part of the communication band of the optical transmission carrier, and the anti-reflection coating is used to reduce the aforementioned Fresnel reflection.
  • the anti-reflection film is located between the reflection film and the light transmission carrier; in another specific embodiment, the anti-reflection film is formed in the through hole of the reflection film, and in order to avoid the anti-reflection film The surface is scratched.
  • the surface of the anti-reflection coating facing the mating ferrule may be concave relative to the surface of the reflecting film facing the mating ferrule, for example, the surface of the anti-reflection coating facing the mating ferrule and the reflecting film facing the mating ferrule The height difference between the surfaces is greater than or equal to 0.8 ⁇ m and less than or equal to 2.8 ⁇ m.
  • the reflectivity of the anti-reflection coating of the light wave in the anti-reflection band is less than or equal to 0.25% to ensure that the transmission loss rate of the optical signal meets the standard. More specifically, the reflectivity of the anti-reflection coating to the light waves in the anti-reflection band is less than or equal to 0.1%.
  • the reflectivity of the reflective film to the light wave in the reflection band is greater than or equal to 80%.
  • a temperature resistant film is also provided on the inner side of the reflective film.
  • the reflective film is located on the side of the filler facing the mating ferrule and is arranged opposite to the filler to avoid The filling was burned.
  • the orthographic projection of the reflective film on the reference surface covers the orthographic projection of the filler on the reference surface, wherein the reference surface is perpendicular to the axial direction of the receiving through hole.
  • the setting form of the reflective film can be various, as long as the reflective film can block and reflect the light originally directed to the filler.
  • the second surface protrudes from the first surface, and the reflective film covers the circumferential side of the light transmission carrier; in another specific embodiment, the second surface is recessed in the first surface, and the reflective film covers the receiving through hole In another specific embodiment, the second surface is flat with the first surface, and the reflective film covers the gap between the inner wall of the receiving through hole and the corresponding circumferential side of the light transmission carrier.
  • the present application also provides a connector, which may be an optical connector such as an optical fiber connector or an optical waveguide connector, the connector includes a housing and the ferrule provided by the above technical solution, and the ferrule is arranged In the above housing, the ferrule is paired with a mating ferrule provided in another connector to realize the transmission of optical signals between the two connectors.
  • the ferrule provided by the above technical solution the light from the mating ferrule is reduced to heat energy on the first surface of the ferrule base body, thereby reducing the probability of the ferrule base body being burnt.
  • the present application provides an optical communication element
  • the optical communication element includes the ferrule provided by the above technical solution and the optical communication element body, the ferrule and the optical communication element body are connected, and the optical communication element body may be an optical backplane or an optical fiber bundle.
  • Backplane, chip light emitting module or WSS module, etc. by adopting the ferrule provided by the above technical solution, the light from the mating ferrule is reduced to heat energy on the first surface of the ferrule base, thereby reducing the burning of the ferrule base. Probability.
  • the present application also provides a communication device.
  • the communication device may be, for example, a router or a switch.
  • the communication device includes a paired optical communication element and the optical communication element provided in the above technical solution.
  • the paired optical communication element has a mating ferrule, and The ferrule in the communication element is connected to the mating ferrule in the counterpart optical communication element. Since the optical communication element includes the ferrule provided by the above technical solution, when the ferrule in the optical communication element is connected to the mating ferrule in the mating optical communication element, the light from the mating ferrule can be slowed down on the ferrule base.
  • the first surface is converted into heat energy, thereby reducing the probability of the ferrule base body being burned.
  • the gap between the bottom surface of the groove surrounded by the side wall of the through hole of the ferrule and the light-emitting surface of the mating ferrule cannot be If it is too large, it will easily cause excessive optical signal loss.
  • the gap is less than or equal to 5 ⁇ m.
  • the present application also provides a method for preparing a ferrule.
  • the ferrule includes a ferrule base and a light transmission carrier, the ferrule base has a receiving through hole, and one end of the receiving through hole is located on the first surface,
  • the ferrule is used in conjunction with the mating ferrule, the first surface faces the mating ferrule, the light transmission carrier is disposed in the receiving through hole, the light transmission carrier has a second surface, and the ferrule is used in conjunction with the mating ferrule
  • the second surface faces the mating ferrule, the second surface is a light transmission surface, and there is a filler in the gap between the inner wall of the through hole and the circumferential side of the corresponding light transmission carrier, and the inner wall of the through hole and the corresponding
  • a reflection film is formed on the side of the ferrule base body facing the mating ferrule, wherein the reflection film covers the first surface, and the reflection waveband of the reflection film includes at least part of the communication waveband of the optical transmission carrier.
  • the light emitted to the first surface of the mating ferrule is reflected by the reflective film of the first surface to other directions, which slows the conversion of the above-mentioned light into heat on the first surface of the ferrule base, thereby reducing the probability of the ferrule base being burnt.
  • the formed reflective film simultaneously covers a part of the area on the second surface of the light transmission carrier, and the reflective film has a through hole, and the orthographic projection of the through hole on the second surface covers the second surface In this way, the reflective film can reflect the light from the mating ferrule to the second surface to other directions, reducing the probability of the ferrule matrix being burned.
  • the second surface has a main optical path area.
  • the formed reflective film penetrates through The orthographic projection of the hole on the second surface covers the main optical path area.
  • a reflective film on the side of the ferrule base body facing the mating ferrule there are many ways to form a reflective film on the side of the ferrule base body facing the mating ferrule.
  • a reflective film is formed on the side of the carrier facing the mating ferrule, wherein the reflective film covers the sacrificial layer and the second surface; then the sacrificial layer and the film on the surface of the sacrificial layer are removed to form the through-hole; or, in another embodiment
  • the reflective film is first formed on the side of the light transmission carrier facing the mating ferrule, and then the reflective film is patterned to form the through hole on the reflective film.
  • the method for preparing the ferrule further includes matching the ferrule base body toward the A reflective film is formed on one side of the ferrule, and the orthographic projection of the anti-reflection film on the second surface covers the orthographic projection of the through hole on the second surface.
  • the anti-reflection band of the anti-reflection film includes at least part of the communication of the optical transmission carrier. Wave band, the use of anti-reflection coating to reduce the above Fresnel reflection.
  • an antireflection film is formed on the side of the light transmission carrier facing the mating ferrule; or another specific.
  • an antireflection film is formed in the through hole.
  • the reflective film is located on the side of the filler facing the mating ferrule And set opposite to the filler.
  • the orthographic projection of the reflective film on the reference surface covers the filler on the reference surface.
  • a temperature-resistant film is first formed on the side of the ferrule substrate facing the mating ferrule.
  • Figure 1 exemplarily shows an exploded view of a pair of MPO connectors when mating
  • FIG. 2 shows an enlarged view of the view of the MPO connector on the left side when viewed from the direction A in FIG. 1;
  • Figure 3 shows an exemplary longitudinal cross-sectional view of the ferrule provided by the embodiment of the present application
  • Fig. 4 shows an enlarged view of an exemplary cross-section of the optical fiber in Fig. 3;
  • Fig. 5 shows a partial schematic diagram of the ferrule base body and the optical fiber viewed in the negative direction of the X-axis in Fig. 3;
  • FIG. 6 shows a schematic diagram of the orthographic projection distribution of the dielectric reflective film on the first surface and the second surface on the basis of FIG. 5;
  • FIG. 7 shows a schematic diagram when the ferrule 001 and the ferrule 001' provided in an embodiment of the present application are matedly connected
  • FIG. 8 shows a schematic diagram of a device for high-power testing when the ferrule 001 and the ferrule 001' in FIG. 7 are paired and used;
  • Fig. 9a shows another exemplary schematic diagram of the ferrule provided in the embodiment of the present application.
  • Figure 9b shows a partial enlarged view of F in Figure 9a
  • FIG. 10 shows another exemplary schematic diagram of the ferrule provided by the embodiment of the present application.
  • FIG. 11 shows an exemplary schematic diagram of cooperation between an optical backplane and a single board in an embodiment of the present application
  • FIG. 12a shows an exemplary schematic diagram of paired use of a ferrule and a mating ferrule in a communication device provided in an embodiment of the present application
  • FIG. 12b shows another exemplary schematic diagram of paired use of the ferrule and the mating ferrule in the communication device provided by the embodiment of the present application;
  • FIG. 13a shows a schematic diagram of the ferrule base body and the optical fiber before step S100 in the ferrule preparation method provided by the embodiment of the present application;
  • FIG. 13b shows a schematic diagram of the ferrule after step S100 in the method for preparing the ferrule provided in the embodiment of the present application;
  • FIG. 13c shows a schematic diagram of the ferrule after step S200 in the method for manufacturing the ferrule provided in the embodiment of the present application;
  • FIG. 13d shows a schematic diagram of the ferrule after step S300 in the method for manufacturing the ferrule provided in the embodiment of the present application;
  • FIG. 13e shows a schematic diagram of the ferrule after step S400 in the method for manufacturing the ferrule provided in the embodiment of the present application;
  • FIG. 13f shows a schematic diagram of the ferrule after step S500 in the method for manufacturing the ferrule provided in the embodiment of the present application.
  • Fig. 1 exemplarily shows an exploded view of a pair of MPO (Multi-fiber Pull Off) connectors when mated
  • Fig. 2 shows an enlarged view of the MPO connector 20 on the left when viewed in the direction A in Fig.
  • the MPO connector 20 includes a housing 21, the ferrule 22 is located in the housing 21, the optical fiber ribbon 25 extends into the ferrule 22, the front end surface a of the ferrule 22 has a For the guide pin 23, and the multi-fiber 24 in the optical fiber ribbon 25 extends to the front end face a of the ferrule 22, the MPO connector 30 has a similar structure to the MPO connector 20, except that the guide pin at the front end face a 23 is replaced by a guide hole recessed in the front end surface a, and is used to coordinate and locate with the guide pin 23 of the MPO connector 20.
  • the adapter 10 has a connection through hole inside; when the connection is made, the front end surface a of the MPO connector 20 One entrance of the connection through hole of the adapter 10 is inserted into the adapter 10, the MPO connector 30 is inserted into the adapter 10 from the other entrance of the connection through hole of the adapter 10 in the opposite direction, and the guide pin 23 of the MPO connector 20 is inserted into the MPO. Positioning is performed in the guide hole of the connector 30, and the optical fibers 24 at the front end face a of the ferrule 22 of the MPO connector 20 and the optical fibers at the front end face of the ferrule of the MPO connector 30 are arranged one by one for optical transmission. .
  • the ferrule provided in the embodiment of the present application may be the ferrule 22 of the MPO connector 20 or the ferrule of the MPO connector 30 described above. However, it should be noted that the ferrule provided in the embodiments of the present application is not limited to the above application scenarios. It may also be an OB connector (Optical Backplane, optical backplane side connector), an array MT connector, an HBMT connector or other multi-core connectors.
  • the ferrule in the optical connector can also be the ferrule in the single-core optical fiber connector such as FC (Ferrule Connector), LC (Latch Connector), SC (Square Connector), ST (Spring Tension), or it can be an optical fiber connector.
  • the ferrule in the waveguide connector may alternatively be the ferrule in the optical fiber array connector, or the ferrule in other MT connectors (Mechanical Transfer Connectors).
  • Fig. 3 shows an exemplary longitudinal cross-sectional view of the ferrule provided by the embodiment of the present application (for example, refer to the cross-sectional view of the ferrule 22 in Fig. 2 along the BB direction), wherein the size ratio of each component in Fig. 3 is not To reflect the actual size ratio, it is only to express the relative positional relationship between the components.
  • the ferrule 001 provided in the embodiment of the present application includes a ferrule base 100 and an optical fiber 200, and the ferrule base 100
  • the material includes but is not limited to ceramic or plastic.
  • the ferrule base 100 has one (or more) containing through holes 101 extending along the axial direction of the ferrule base 100, and a part of the optical fiber 200 is disposed in the containing through hole 200.
  • one side of the ferrule base 100 in the X direction has a first surface 102, and the first surface 102 is when the ferrule 001 and the mating ferrule in other connectors (the “mating ferrule” mentioned in the embodiment of this application "All refer to the ferrule used to emit light to the ferrule provided in the embodiment of the application) when the ferrule base 100 faces the surface of the mating ferrule;
  • FIG. 4 shows an exemplary optical fiber 200 in FIG.
  • the light 200 includes a core 201, a cladding 203, and a coating 204 arranged concentrically from the inside to the outside.
  • the core 201 performs optical transmission, the light is not limited to the fiber.
  • a small part of the light will be scattered to the cladding 203 in the annular space around the core 201.
  • the part of the core 201 and the cladding 203 with light transmission is collectively called the main optical path 202, in other words, the optical fiber 200 All the transmitted light is concentrated in the main optical path 202.
  • the outer diameter of the core 201 is 9 ⁇ m
  • the outer diameter of the cladding 203 is 125 ⁇ m
  • the outer diameter of the main optical path 202 is generally 25 ⁇ m;
  • the receiving through hole 200 includes a first segment e and a second segment f adjacent in the positive direction of the X-axis, and the opening of the first segment e is exemplarily located at the X-axis of the ferrule base 100
  • the end face in the negative direction, the end in the positive X-axis direction of the second section f is located on the first surface 102, the inner diameter of the first section e is greater than the inner diameter of the second section f; in the first section e, the optical fiber
  • the coating layer 204 is not stripped off in the part of the 200, the outer diameter of the coating layer 204 of the optical fiber 200 in the first section e matches the inner diameter of the first section e, and the outer surface of the coating layer 204 and the first section Fill the inner wall of e with a filler 208 such as glue (see Figures 5 and 6) for fixing.
  • the part of the optical fiber 200 located in the second segment f is stripped of the coating layer 204, and the optical fiber 200 is stripped of the coating layer
  • the part 204 is called a bare fiber.
  • the bare fiber protrudes from a part of the first surface 102 (for example, it is greater than or equal to 1 ⁇ m and less than or equal to 3.5 ⁇ m).
  • the outer diameter of the cladding 203 in the bare fiber and the second segment f For example, when the outer diameter of the cladding layer 203 is 125 ⁇ m, the inner diameter of the second section f may be 127 ⁇ m, and the gap between the outer wall of the cladding layer 203 and the inner wall of the second section f is filled Fillers such as viscose 208 is fixed;
  • Figure 5 shows a partial schematic view of the ferrule base 100 and the optical fiber 200 viewed in the negative direction of the X-axis in Figure 3, please refer to Figure 5, the optical fiber 200 protruding from the first surface 102 has a part facing X
  • the second surface 205 in the positive axis direction, the second surface 205 is when the ferrule 001 is mated with the mating ferrule in other connectors, the bare fiber part of the optical fiber 200 faces the mating ferrule, which is also called the optical transmission surface ( That is, the light from the ferrule 001 exits the optical fiber 200 from
  • the optical path area 206, and the core 201 is used as the core functional component (ie Core area) for transmitting light.
  • the optical core area 207 is formed on the second surface 205.
  • the optical core area 207 is located inside the main optical path area 206, and the area is usually smaller than the main optical path area 206;
  • the above description (such as material and size) of the ferrule 001 may be a commonly used prior art known in the art, and will not be repeated here.
  • the first surface 102 of the ferrule base 100 is sequentially covered with an antireflection film 301, a connecting layer 302, and a dielectric reflective film along the positive X-axis direction.
  • 303 where the connecting layer 302 is used to connect the anti-reflection film 301 and the dielectric reflection film 303; refer to Figures 3 and 5 at the same time (the anti-reflection film 301, the connection layer 302 and the dielectric reflection film 303 are not shown in FIG. 5, for reference only The relative positions of the first surface 102, the second surface 205 and the main optical path area 206 in FIG.
  • the anti-reflection coating 301 covers the first surface 102, the second surface 205 and the bare fiber portion of the optical fiber 200 at the same time.
  • the circumferential side surface of the part outside the first surface 102 refers to the surface of the light transmission carrier surrounding the light path, as here, the "circumferential side” is Refers to the circumferential surface of the bare fiber part).
  • the orthographic projection of the AR coating 301 on the first surface 102 completely covers the first surface 102
  • the orthographic projection of the AR coating 301 on the second surface 205 completely covers the second surface 205
  • the dielectric reflective film 303 has a through hole 303h
  • the dielectric reflective film 303 covers the first surface 102
  • the orthographic projection of the dielectric reflective film 303 on the reference plane M covers the first surface 102 on the reference plane M
  • the reference plane M is perpendicular to the axial direction of the receiving through hole 101, for example, in FIG.
  • the receiving through hole 101 extends along the X axis direction, and the reference plane M is perpendicular to the X axis), and the dielectric reflective film 303 covers the optical fiber 200
  • the bare fiber part protrudes from the circumferential surface of the part outside the first surface 102, and the dielectric reflective film 303 covers a part of the second surface 205 (that is, the orthographic projection of the dielectric reflective film 303 on the reference plane M covers the second surface 205 in the Part of the orthographic projection on the reference plane M).
  • the dielectric reflective film 303 covers the gap between the circumferential side of the bare fiber portion of the optical fiber 200 and the ferrule base 100 (that is, the orthographic projection of the gap on the reference plane M).
  • FIG. 6 shows that the dielectric reflective film 303 is on the basis of FIG. 5 The distribution of orthographic projections on a surface 102 and a second surface 205.
  • the shaded part of the grid in FIG. 6 is the orthographic projection of the dielectric reflection film 303 on the first surface 102 and the second surface 205. Please refer to FIG.
  • the orthographic projection of the film 303 on the first surface 102 covers the first surface 102
  • the orthographic projection of the dielectric reflective film 303 on the second surface 205 covers a part of the second surface 205
  • the through hole 303h is opposite to the main optical path area 206.
  • the orthographic projection 303hs of the through hole 303h on the second surface 205 covers the main optical path area 206, and the orthographic projection 303hs of the through hole 303h on the reference plane M (see Figure 3) completely falls on the second surface 205 in the reference Within the range of the orthographic projection on the plane M, through
  • the edge of the orthographic projection 303hs of the through hole 303h on the second surface 205 may be exactly the gap width between the edge of the main optical path area 206 and greater than or equal to 0 ⁇ m and less than or equal to 50 ⁇ m to ensure that the dielectric reflective film 303 can block the filler 208, while not blocking the main light path area 206, and more specifically, the edge of the orthographic projection 303hs of the through-hole 303h on the second surface 205 may just have a gap width greater than or equal to the edge of the main light path area 206 12.5 ⁇ m and less than or equal to 42.5 ⁇ m, for example, it can be 12.5 ⁇ m, 15 ⁇ m
  • the through hole 303h is not required to be on the second surface 205
  • the edge of the orthographic projection 303hs is too close to the edge of the main optical path area 206 or the edge of the second surface 205, which is beneficial to improve production efficiency and facilitate mass production;
  • the outer diameter of the core 201 is 9 ⁇ m
  • the outer diameter of the cladding 203 ie The diameter of the second surface 205) is 125 ⁇ m
  • the main optical path area 206 is a circle with an outer diameter of 25 ⁇ m.
  • the orthographic projection 303hs of the through hole 303h on the second surface 205 may be greater than or equal to 50 ⁇ m in diameter and less than or equal to 110 ⁇ m circle (exemplarily, the circle is concentric with the main optical path area 206), or as long as the orthographic projection 303hs of the through hole 303h on the second surface 205 is not a circle, but it just falls on the above-mentioned diameter of 50 ⁇ m
  • the production process The requirement is lower, which is conducive to mass production.
  • the edge of the orthographic projection 303hs of the through-hole 303h on the second surface 205 can also be located within the main optical path area 206 and outside the optical core area 207.
  • the connecting layer 302 is filled between the anti-reflection film 301 and the dielectric reflection film 303 to connect the anti-reflection film 301 and the dielectric reflective film 303, thereby ensuring the cohesion between the anti-reflection film 301 and the dielectric reflective film 303, smooth transition between the anti-reflection film 301 and the dielectric reflective film 303, avoiding the delamination of the anti-reflection film 301 and the dielectric reflective film 303
  • the layer of the anti-reflection film 301 close to the dielectric reflection film 303 is made of SiO2 material, the layer of the dielectric reflection film 303 close to the anti-
  • the structure and composition of the antireflection film 301 can be in the form of Mg compound/SiO2, Ta compound/SiO2, Ti compound/SiO2, or Hf compound/SiO2, etc.; the thickness of the antireflection film 301
  • the structure and composition of the anti-reflection coating 301 can also be other known and commonly used existing technologies;
  • the anti-reflection band of the anti-reflection coating 301 includes the optical fiber 200' At least part of the communication waveband, in order to make the loss of the optical signal into the main optical path 202 meet the standard, the reflectance of the antireflection film 301 to the light wave in the anti-reflection waveband is less than or equal to 0.25%, for example, the reflectance is 0.25% , 0.22%, 0.20%, 0.17%, 0.15%, 0.1%, 0.08%, and 0.05%.
  • the reflectance of the anti-reflection coating 301 to the light waves in the anti-reflection band is less than or equal to 0.1%.
  • the loss of the optical signal when it enters the main optical path 202 can be significantly reduced; in addition, each layer constituting the anti-reflection coating 301 can be made of a material with a higher LIDT (Laser Induced Damage Threshold, laser damage threshold).
  • the material of the antireflection coating 301 can withstand at least 600mw/cm2 of energy (a laser beam with a wavelength of 1064nm and a diameter of 0.53mm is used to irradiate the material of the antireflection coating 301, and the light power is continuously increased to test the performance of the antireflection coating 301.
  • the material can withstand the maximum energy), so that the antireflection coating 301 has better temperature resistance, which can reduce the probability of the ferrule 001 being burnt to a certain extent. Without changing the materials of the ferrule base 100 and the optical fiber 200, Improve the high-power tolerance of the two.
  • the structural composition of the dielectric reflective film 303 can be in the form of Si/SiO2, Ag compound/SiO2, Al compound/SiO2, Au compound/SiO2, or Ti compound/SiO2, etc.
  • the structural composition of the dielectric reflective film 303 It can also be a known and commonly used prior art; the reflection waveband of the dielectric reflection film 303 includes at least part of the communication waveband of the optical fiber 200. In order to ensure that the first surface 102, the second surface 205 and the filler 208 are not burnt, the dielectric reflection The reflectance of the film 303 to the light waves in the reflection band is greater than or equal to 80%, for example, the reflectance is 80%, 85%, 90%, 95% or 98%.
  • each layer constituting the dielectric reflective film 303 can be The material of higher LIDT, for example, the material constituting the dielectric reflective film 303 can withstand at least 600mw/cm2 of energy (a laser beam with a wavelength of 1064nm and a diameter of 0.53mm is used to irradiate the material of the dielectric reflective film 303, continuously Increase the optical power to test the maximum energy tolerance of the material of the antireflection coating 301), and improve the high-power tolerance of the ferrule substrate 100 and the optical fiber 200.
  • a laser beam with a wavelength of 1064nm and a diameter of 0.53mm is used to irradiate the material of the dielectric reflective film 303, continuously Increase the optical power to test the maximum energy tolerance of the material of the antireflection coating 301), and improve the high-power tolerance of the ferrule substrate 100 and the optical fiber 200.
  • FIG. 7 shows a schematic diagram when the ferrule 001 and the ferrule 001' provided in the embodiment of the present application are paired and used.
  • the ferrule 001' includes a ferrule base 100' and an optical fiber 200' inserted in the ferrule base 100',
  • the ferrule 001' is placed on the side of the positive X-axis of the ferrule 001, the first surface 102 faces the ferrule base 100', and the second surface 205 and
  • the light-emitting end faces of the optical fiber 200' in the negative X-axis direction are opposed to each other, and the light is emitted from the main optical path in the optical fiber 200' in the negative X-axis direction to the main optical path area 206 of the second surface 205, and the light continues to transmit along the main optical path 202; Since the second surface 205 is covered with the anti-reflection film 301, the anti-re
  • the light emitted from the main optical path of the optical fiber 200' may also be deflected due to refraction and other reasons.
  • the above reasons cause the light from the optical fiber 200' to be directed to the area of the second surface 205 except the main optical path area 206 and the first surface 102.
  • the first The dielectric reflection film 303 on the surface 205 reflects light to other directions, and only a small part of the light is absorbed by the dielectric reflection film 303 and converted into heat energy. This part of the heat energy is not enough to burn the first surface 102 of the ferrule substrate 100.
  • the dielectric reflective film 303 on the second surface 205 is contaminated with impurities such as dust, since this part of the dielectric reflective film 303 reflects most of the light, the heat converted by the remaining light energy is not enough to burn the impurities. Similarly, the filling 208 is not easy to burn.
  • Figure 8 shows a schematic diagram of the device for high-power testing when the ferrule 001 and the ferrule 001' are paired and used.
  • the light source 401, the optical attenuator 402 and the ferrule 001' are connected by optical fibers in sequence, and the ferrule 001' cooperates with the ferrule 001, the output end of the ferrule 001 is connected to the optical power meter 403 through an optical fiber; the light source 401 outputs 17dBm, 17.5dBm, 18dBm, 18.5dBm,..., 25dBm, 27dBm and 30dBm, respectively, through the terminal
  • the tester separately detects the first surface 102 and the second surface 205 of the ferrule 001.
  • the experimental results show that the ferrule 001 does not burn when receiving 30dBm (corresponding to the capacity of 1000mw), which is generally comparable to the traditional MT ferrule. When receiving a power exceeding 17dBm (corresponding to 50mw energy), it will burn out, and the anti-burnout performance of the ferrule 001 is significantly improved.
  • the orthographic projection of the through-hole 303h on the second surface 205 only covers a part of the area of the second surface 205, when the ferrule 001' is mated with the ferrule 001, the same outer diameter ( Or larger outer diameter) of the optical fiber 200', the light-emitting end face of the optical fiber 200' can only be pushed onto the dielectric reflective film 303, and cannot enter the through hole 303h, which is equivalent to the dielectric reflective film 303 pads the optical fiber 200'
  • the light-emitting end face of the optical fiber 200' is not easy to directly contact the anti-reflection coating 301 at the bottom of the through hole 303h, and the anti-reflection coating 301 is not easily damaged by the light-emitting end face of the optical fiber 200'.
  • the transparent film 301 is located on the optical signal transmission route, thereby ensuring that the loss of the optical signal is reduced during transmission; for example, the thickness of the dielectric reflective film 303 is greater than or equal to 1.0 ⁇ m and less than or equal to 3.0 ⁇ m, for example, it may be 1.0 ⁇ m , 1.2 ⁇ m, 1.5 ⁇ m, 1.7 ⁇ m, 2.0 ⁇ m, 2.2 ⁇ m, 2.5 ⁇ m, 2.8 ⁇ m or 3.0 ⁇ m, when the thickness of the dielectric reflective film 303 is less than 1.0 ⁇ m, the through hole 303h caused by the dielectric reflective film 303 is too thin Too shallow, foreign objects (such as the edges and corners of the optical fiber 200') are easy to scratch the AR coating 301 at the bottom of the through hole 303h.
  • the thickness of the dielectric reflective film 303 is greater than or equal to 1.0 ⁇ m and less than or equal to 3.0 ⁇ m, for example, it may be 1.0 ⁇ m , 1.2 ⁇ m, 1.5 ⁇ m, 1.7 ⁇ m,
  • the thickness of the dielectric reflective film 303 is greater than 3.0 ⁇ m, the through-through caused by the dielectric reflective film 303 is too thick.
  • the hole 303h is too deep, and the internal space of the through-hole 303h is large. Dust can easily enter the through-hole 303h, which is not easy to clean, which affects the optical signal transmission.
  • the thickness of the dielectric reflection film 303 is greater than or equal to 1.0 ⁇ m and less than or equal to 3.0 ⁇ m. The above two problems can be avoided at the same time.
  • the dielectric reflective film 303 can have good reflectivity within the above thickness range; after testing, the ferrule 001 and the ferrule 001' are plugged and unplugged 1000 times without cleaning the through-hole
  • the IL Insertion Loss
  • the loss change is less than 0.05dB; it should be noted that although the light-emitting end face of the optical fiber 200' is the same as that of the optical fiber 200 There is a certain gap between the second surfaces 205, but due to the existence of the anti-reflection film 301, the optical signal loss caused by Fresnel reflection can be eliminated to a certain extent.
  • the light-emitting end face of the optical fiber 200' and the second surface 205 of the optical fiber 200 are not in direct contact, a small optical signal loss can be achieved, and the ferrule 001 and the ferrule 001' do not need to use a large force to remove the optical fiber.
  • the light-emitting end face of 200' and the second surface 205 of the optical fiber 200 are squeezed together to eliminate air gaps to alleviate Fresnel reflection.
  • the ferrule 001 can be formed by adding a dielectric reflective film 303 and an antireflection film 301 on the basis of a traditional MT ferrule, without changing the structure of the traditional MT ferrule, the ferrule provided in the embodiment of the present application Core 001 can be directly mixed with traditional MT ferrules. When matched with a traditional MT ferrule, mechanical docking is directly used without heating welding, so that it is not easy to cause damage to temperature-sensitive devices.
  • the ferrule 001 provided in the embodiment of the present application is convenient to be applied to some temperature-sensitive components.
  • the anti-reflection film 301 can also be eliminated.
  • the dielectric reflection film 303 directly contacts the first surface 102 and the second surface 205.
  • the dielectric reflective film 303 may not cover the second surface 205.
  • the dielectric reflective film 303 may only cover the first surface 102 (that is, the orthographic projection of the dielectric reflective film 303 on the reference plane M only covers the first surface 102.
  • the dielectric reflective film 303 only covers the first surface 102 and the circumferential side of the portion of the optical fiber 200 protruding from the first surface 301; or, the dielectric reflective film 303 may only cover the first surface 301 A non-main light path area in a surface 102 and a second surface 205.
  • the ferrule provided by the embodiment of the present application is not limited to the specific form of the ferrule 1 shown in FIG. 3, for example, the anti-reflection film 301 in FIG. 3 may only cover the second surface 205, It can also alleviate the Fresnel reflection at the second surface 205 to a certain extent;
  • Fig. 9a shows another exemplary schematic diagram of the ferrule provided in the embodiment of the present application, and Fig. 9b shows the position F in Fig. 9a Please refer to Figure 9a and Figure 9b for the partial enlarged view.
  • the ferrule 001 shown in Figures 9a and 9b differs from the ferrule 001 shown in Figure 3 in that the anti-reflection film 301 and the dielectric reflective film 303 are arranged in the same layer, increasing The transparent film 301 is arranged in the through hole 303h, and the anti-reflection film 301 is arranged close to the second surface 205 to ensure that there is no intermediate medium such as air between the anti-reflection film 301 and the second surface 205, thereby eliminating light to a certain extent Fresnel reflection when incident on the second surface 205; in addition, the thickness of the anti-reflection film 301 can be made smaller than the thickness of the dielectric reflection film 303, so that the surface of the anti-reflection film 301 facing the mating ferrule is opposite to the dielectric reflection film 303 The surface facing the mating ferrule is concave, that is, there is a certain height difference h between the surface of the dielectric reflective film 303 and the surface of the anti-reflection film
  • FIG. 10 shows another exemplary schematic diagram of the ferrule 001 provided by the embodiment of the present application. Please refer to FIG. 10.
  • the difference between the ferrule 001 shown in FIG. 10 and the ferrule 001 shown in FIG. 3 is:
  • the middle of the first surface 102 is recessed toward the interior of the ferrule base 100, and the second surface 205 is level with the bottom surface of the first surface 102.
  • the ferrule 001 shown in FIG. 10 can be paired with the ferrule 001 shown in FIG. 3, and the part of the optical fiber 200 of the ferrule 001 shown in FIG. 3 protruding from the first surface 102 is fitted to the ferrule shown in FIG.
  • the second surface 205 of the optical fiber 200 is flat with the first surface 102, or the first surface 102 is recessed.
  • the inner side of the dielectric reflective film 303 in FIG. 3 (for example, between the dielectric reflective film 303 and the anti-reflection film 301) can be filled with a temperature resistant film with higher temperature resistance such as ceramic or metal. The coverage of the film can be adjusted with the dielectric reflective film 303, where the ceramic reflective film or the metal reflective film is formed on the surface of the anti-reflection film 301 by electroplating.
  • the ceramic film and the metal film (metal film materials such as Al, Ag, Ti, Au or Cr, etc., but because these metals are easy to oxidize, a protective layer such as SiO2, MgF2, etc. is generally coated on the surface, which can be made by PVD physical vapor deposition) and other temperature resistant films have a temperature above 1700°C
  • the temperature resistance can greatly improve the temperature resistance of the reflective film.
  • a layer of dielectric reflective film and ceramic can also be formed on the surface of the temperature resistant film.
  • the reflective film or metal reflective film is used as a reflective film to reflect light and prevent the temperature-resistant film from burning.
  • the bare fiber portion of the optical fiber 200 can also be recessed in the first surface 102, and a dielectric reflective film 303 is provided on the inner wall of the receiving through hole 101, or the second surface 205 is flush with the first surface 102
  • the dielectric reflection film 303 covers the gap between the circumferential side surface of the bare fiber portion of the optical fiber 200 and the receiving through hole 101.
  • the ferrule provided in the above embodiments of the present application is only an example of using an optical fiber ferrule, and for the ferrule in the optical waveguide connector, the ferrule base is no longer an optical fiber, but an optical waveguide.
  • the optical waveguide has a core channel (ie Core area) with a larger refractive index relative to the substrate.
  • the core channel extends to the end face of the waveguide to form an optical core area on the end face of the waveguide.
  • the light in the optical core channel A small part of it will also be emitted into the matrix around the core channel to form the main optical path.
  • the main optical path forms the main optical path area on the end face of the optical waveguide.
  • the reflective film avoids the optical core area to avoid blocking most of the optical fibers, or the reflective film can avoid the main optical path area at the same time to ensure that all the light emitted from the main optical path is not blocked, and an antireflection film can also be installed on the light incident end.
  • the antireflection film and the reflection film please refer to the corresponding film arrangement in the embodiment of the optical fiber ferrule; in addition, the ferrule in the optical fiber array connector includes a ferrule base and is arranged in the ferrule base. The cover plate and the optical fibers arranged in the array fixed between the cover plates can be referred to the ferrule structure of the existing optical fiber array connector.
  • a reflective film is set on the light incident end of the optical fiber, and the reflective film avoids the optical core area of the optical fiber. , Or avoid the main optical path area of the optical fiber at the same time, the reflective film can cover the end face of the cover plate at the same time; in short, the optical transmission carrier in the ferrule matrix is not limited to the optical fiber, but also other forms of optical transmission carrier such as optical waveguide to form Different forms of ferrules only need to form a reflective film that avoids the light core area (or at the same time avoids the main optical path area) on the end surface of the light transmission carrier (that is, the end surface facing the mating ferrule, such as the light incident end surface).
  • an embodiment of the present application also provides a connector, which includes a housing and the ferrule provided in the foregoing embodiment of the present application.
  • the connector provided by the embodiment of the present application For an exemplary form, refer to the MPO connector 20 in FIG. 1, which includes a housing 21 and a ferrule 22.
  • the ferrule 22 is located in the housing 21.
  • the ferrule 22 may adopt the embodiments of FIGS. 3 to 10 Supplied with insert 001.
  • the embodiments of the present application also provide an optical communication element, the optical communication element includes an optical communication element body and the ferrule provided in the above embodiments of the present application, and the ferrule is connected to the optical communication element body; some
  • the optical communication element includes an optical communication element body and a connector.
  • the connector has the ferrule provided in the above-mentioned embodiment of the present application, and the ferrule is connected to the optical communication element body.
  • the optical communication element body may be, for example, a single board.
  • 11 shows an exemplary schematic diagram of the cooperation between an optical backplane and a single board. Referring to FIG. 11, exemplarily, an optical communication component includes a single board 010 and a connector 020.
  • the single board 010 serves as the body of the optical communication component, and the connector 020 has the ferrule provided in the above-mentioned embodiment of the application, the connector 020 is fixed on the single board 010, and the ferrule is connected to the communication line in the single board 010; other optical communication components need to be assembled with other optical communication components , It is necessary to assemble the ferrule into an optical connector.
  • the optical communication element body can be an optical backplane, an optical fiber bundle backplane, a chip light emitting module or a WSS module.
  • another optical communication element It includes an optical backplane 030 and a ferrule 040.
  • the optical backplane 030 serves as the body of the optical communication element, and the ferrule 040 is connected to the optical backplane 030 through a shared optical fiber.
  • the embodiments of the present application also provide a communication device, such as a router and a switch, etc.
  • the communication device includes a paired optical communication element (the paired optical communication element includes an optical backplane 030 and Ferrule 040) and at least one optical communication element provided in the above-mentioned embodiments, the mating optical communication element has a mating ferrule (the ferrule 040 in FIG. 11), and the optical communication element (the optical communication element includes the optical communication element as shown in FIG. 11).
  • the ferrule (the ferrule in the connector 020 in FIG. 11) of the single board 010 and the connector 020) is connected to the mating ferrule (the ferrule 040 in FIG. 11).
  • Figure 12a shows an exemplary schematic diagram of the mating connection between the ferrule and the mating ferrule in the communication device provided by an embodiment of the present application, wherein the ferrule 001a in FIG. 12a is the same as the ferrule 001 in FIG.
  • the ferrule 001b has the same structure as the ferrule 001 in Figure 10, and the ferrule 001a and the ferrule 001b are matched with each other; when the ferrule 001b is used as a mating ferrule, the optical fiber is directed to the second surface of the ferrule 001a
  • the anti-reflection coating emits light
  • the bottom surface of the groove surrounded by the sidewall of the through-hole of the ferrule 001a (the anti-reflection coating of the ferrule 001a is exposed on the surface of the through-hole, if the anti-reflection coating of the ferrule 001a is removed, then
  • the bottom surface of the through hole is the second surface of the ferrule 001a) and the light emitting surface of the ferrule 001b (the antireflection coating of the ferrule 001b is exposed on the surface of the through hole, if the ferrule 001b has no antireflection coating, the light will be emitted Face refer
  • Figure 12b shows another exemplary schematic diagram of the ferrule and the mating ferrule in the communication device provided by the embodiment of the present application.
  • the ferrule 001 has the same structure.
  • the gap gap in Figure 12b has the same gap as the gap gap in Figure 12a. Requirements.
  • the gap gap is less than or equal to 5 ⁇ m.
  • FIG. 13a shows a schematic diagram of the ferrule base body and the optical fiber mating before step S100 in the ferrule preparation method provided by the embodiment of the present application. Please refer to FIG. 13a.
  • the optical fiber 200 is disposed in the mating through hole 101 of the ferrule base body 100, except
  • the configuration relationship between the optical fiber 200 and the ferrule base 100 can refer to the corresponding in the ferrule 001 shown in FIG. 3 Description;
  • Figure 13b shows a schematic diagram of the ferrule after step S100 in the ferrule manufacturing method provided by the embodiment of the present application, and then proceed to step S100, referring to Figure 13b, an antireflection film 301 is formed on the surface of the second surface 205 to increase The transparent film 301 can cover the first surface 102 at the same time;
  • step S200 is performed to form a sacrifice on the surface of the antireflection film 301.
  • Layer 305, the orthographic projection of the sacrificial layer 305 on the corresponding second surface 205 covers the main optical path area in the second surface 205 (in some cases, as long as it covers the optical core area on the second surface 205), and sacrifice
  • the orthographic area of the layer 305 on the corresponding second surface 205 is smaller than the area of the second surface 205, and the orthographic area of the sacrificial layer 305 on the first surface 102 is zero.
  • the sacrificial layer 305 may be a material that is easy to remove.
  • FIG. 13d Shows a schematic diagram of the ferrule after step S300 in the ferrule manufacturing method provided by the embodiment of the present application. Referring to FIG. 13d, step S300 is then performed to form a connecting layer 302 on the surface of the sacrificial layer 301; FIG. 13e shows this A schematic diagram of the ferrule after step S400 in the ferrule manufacturing method provided in the application embodiment. Referring to FIG.
  • the next step S400 is to form a dielectric reflective film 303 on the surface of the connecting layer 302, and the dielectric reflective film covers the first surface 102 and the second surface.
  • FIG. 13f shows a schematic diagram of the ferrule after step S500 in the ferrule manufacturing method provided by the embodiment of the present application. Referring to FIG.
  • step S500 is performed to remove the sacrificial layer 305, that is, make the sacrificial layer 305 and increase
  • the transparent film 301 is separated, the connecting layer 302 and the part of the dielectric reflection film 303 located on the upper part of the sacrificial layer 305 fall off together with the sacrificial layer 305, and through holes 303h are formed in the parts of the dielectric reflection film 303 opposite to the main optical path area of the second surface 205. .
  • the orthographic projection of the dielectric reflective film 303 on the reference plane M covers the orthographic projection of the first surface 102 on the reference plane M
  • the specific coverage and form of the dielectric reflective film 303 can be referred to the insert provided in the above embodiment.
  • the through-hole 303h can also be formed in the following form: firstly form the entire layer of the dielectric reflective film 303, and then pattern the dielectric reflective film 303 at a position opposite to the main optical path area of the second surface 205 to form
  • the through hole 303h is formed by etching with a mask, or another method is used to form the through hole 303h; in other cases, before the dielectric reflective film 303 is formed, a through hole 303h may also be formed.
  • the sacrificial layer is removed to form a through hole penetrating the temperature resistant film and the dielectric reflective film (For the position and size, please refer to the through hole 303h); in other cases, the step of forming the antireflection film 300 in step S100 may be eliminated, and after the through hole 303h is formed, the through hole 303h is deposited in the through hole 303h.
  • the anti-reflection coating as long as the anti-reflection coating is located on the side of the second surface 205 of the optical fiber 200, and the orthographic projection of the second surface 205 covers the main optical path area on the second surface.
  • optical fiber 200 can also be replaced with other forms of optical transmission carriers such as waveguides to form different forms of ferrules, as long as the surface of the optical transmission carrier facing the mating ferrule has a main optical path area, and the reflective film faces the mating optical transmission carrier.
  • the orthographic projection of the surface of the ferrule should avoid the main optical path area.
  • the above-mentioned other parameters (such as material, size, and position) of the anti-reflection film 301, the connecting layer 302, and the dielectric reflective film 303 can refer to the ferrule provided in the above-mentioned embodiment of this application.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

一种插芯(001)、光连接器(20,30)、光通信元件、通信设备及制备方法,插芯(001)包括插芯基体(100)、光纤(200)和介质反射膜(303),其中,光纤(200)设置于插芯基体(100)的容纳通孔(101)中,介质反射膜(303)覆盖插芯基体(100)朝向配对插芯(001')的表面和光纤(200)的光传输表面,并且介质反射膜(303)具有贯穿通孔(303h),以使介质反射膜(303)避开光纤(200)的光传输表面的主光路区域,介质反射膜(303)的反射波段包括光纤的至少部分通信波段;当来自配对插芯(001')的光线射向插芯基体(100)和光纤(200)时,介质反射膜(303)将光线反射出去,在一定程度上防止光能转化成的热能使插芯基体(100)或光纤(200)烧毁。

Description

一种插芯、光连接器、光通信元件、通信设备及制备方法
相关申请的交叉引用
本申请要求在2019年11月08日提交中国专利局、申请号为201911086437.0、申请名称为“一种插芯、光连接器、光通信元件、通信设备及制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及到通信技术领域,尤其涉及到一种插芯、光连接器、光通信元件、通信设备及制备方法。
背景技术
随着大数据时代的来临,光通信将作为大量数据传输的重要手段得到广泛应用。由于数据传输量大幅增加,光传输载体(如单模光纤和波导等)的能量密度非常高。光传输载体作为连接器插芯的一部分内置于插芯基体中,通过两个连接器的插芯配对,使两个插芯中的光传输载体实现光通信,一个插芯中的光传输载体射出的光线照射到另一个插芯的插芯基体表面,光能在该表面被吸收转化为热能,随着热能的累积,引起后一插芯的插芯基体烧毁。
发明内容
本申请提供了一种插芯、光连接器、光通信元件、通信设备及制备方法,用以减少插芯中插芯基体或者光传输载体的烧毁概率,以确保光通信***的数据传输的稳定性。
第一方面,提供了一种插芯,该插芯可应用于光纤连接器或者光波导连接器等光连接器中,与另一个光连接器中的配对插芯配对使用,以使两个光连接器之间进行光通信。本申请提供的插芯包括:插芯基体、光传输载体和反射膜,其中,插芯基体具有第一表面,在本插芯与对应的配对插芯配合时,该第一表面朝向上述配对插芯,插芯基体具有容纳通孔,该容纳通孔的一端位于插芯基体的第一表面,光传输载体设置在容纳通孔中,光传输载体具有第二表面,在本插芯与对应的配对插芯配合时,光传输载体的第二表面朝向本插芯对应的配对插芯,该第二表面为光传输表面;反射膜覆盖插芯基体的第一表面,该反射膜的反射波段包括所述光传输载体的至少部分通信波段,当本插芯与上述配对插芯配对使用时,配对插芯射向第一表面的光线被第一表面的反射膜反射至其他其它方向,减缓上述光线在插芯基体的第一表面转化为热能的情况,从而,降低插芯基体烧毁的概率。
光传输载体的第二表面容易沾染灰尘等杂质,来自配对插芯的光线照射至第二表面上时,光线转化为热能,第二表面的杂质在热能的作用下烧毁,导致光传输载体烧毁。为此,在一个具体的实施方式中,使上述反射膜也覆盖第二表面的部分区域,该反射膜具有贯穿通孔,贯穿通孔在第二表面的正投影覆盖第二表面上的光核心区域,这样,反射膜能够将配对插芯射向第二表面的光线反射至其他方向,剩余的光能转化的热能不足以使第二表面的杂质达到着火点并燃烧,进而,降低光传输载体烧毁的概率。其中,通过在反射膜设置 贯穿通孔,一方面,避免反射膜遮挡光核心区域射出的光纤,另一方面,避免配对插芯对贯穿通孔侧壁围成的凹槽结构的底面造成剐蹭而增加光信号损耗率,特别地,当反射膜的厚度大于或等于1.0μm且小于或等于3.0μm时,即确保贯穿通孔侧壁围成的凹槽结构的底面不易被剐蹭,又容易清洁贯穿通孔中的灰尘。
在一种具体实施方式中,第二表面具有主光路区域,为了使配对插芯射出的光线都能够进入所述插芯的光传输载体中,降低信号损耗率,贯穿通孔在第二表面的正投影覆盖主光路区域。
为了降低生产工艺难度,便于量产,在一个具体的实施方式中,以光传输载体为单模光纤为例,贯穿通孔在第二表面上的正投影的边缘和主光路区域边缘之间的间隙宽度大于或等于12.5μm且小于或等于42.5μm。
本申请提供的插芯在与配对插芯配对使用时,由于反射膜及其中贯穿通孔的存在,造成反射膜表面和贯穿通孔侧壁围成的槽结构底面之间的高度差,贯穿通孔中存在空气,容易产生菲涅尔反射,为此,在一个具体的实施方式中,插芯还包括位于光传输载体朝向配对插芯的一侧的增透膜,增透膜在第二表面的正投影覆盖贯穿通孔在第二表面的正投影,其中,增透膜的抗反射波段包括光传输载体的至少部分通信波段,利用增透膜减少上述菲涅尔反射。
其中,增透膜的设置方式可以有多种。例如,在一个具体的实施方式中,增透膜位于反射膜和光传输载体之间;在另一个具体的实施方式中,增透膜形成于反射膜的贯穿通孔中,而为了避免增透膜表面被剐蹭,在具体实施时,增透膜朝向配对插芯的表面可以相对于反射膜朝向配对插芯的表面内凹,例如,增透膜朝向配对插芯的表面与反射膜朝向配对插芯的表面之间的高度差大于或等于0.8μm且小于或等于2.8μm。
在一个具体的实施方式中,增透膜对抗反射波段内光波的反射率小于或等于0.25%,确保光信号传输损耗率达到标准。更具体地,增透膜对所述抗反射波段内光波的反射率小于或等于0.1%。
为了确保上述填充物不被烧毁,在一个具体的实施方式中,反射膜对该反射波段内光波的反射率大于或等于80%。
为了进一步提升插芯朝向配对插芯的表面(第一表面或第二表面)的抗烧毁能力,反射膜的内侧面一侧还具有耐温膜。
容纳通孔的内壁和光传输载体的周向侧面之间的缝隙中具有填充物;在一个具体的实施方式中,反射膜位于填充物朝向配对插芯的一侧且与填充物相对设置,以避免填充物被烧毁。
在一个具体的实施方式中,反射膜在参考面上的正投影覆盖填充物在参考面上的正投影,其中,参考面垂直于容纳通孔的轴向。
在具体设置时,根据光传输载体与插芯配合的形式不同,反射膜的设置形式可以有多种,只要确保反射膜能将原本射向填充物的光线遮挡并反射即可,在一个具体的实施方式中,第二表面凸出于第一表面,反射膜覆盖光传输载体的周向侧面;在另一个具体的实施方式中,第二表面内凹于第一表面,反射膜覆盖容纳通孔的内壁;在另一个具体的实施方式中,第二表面与第一表面持平,反射膜覆盖容纳通孔的内壁和对应的光传输载体周向侧面之间的缝隙。
第二方面,本申请还提供了一种连接器,该连接器可以是光纤连接器或者光波导连接 器等光连接器,该连接器包括壳体和上述技术方案提供的插芯,插芯设置在上述壳体中,通过该插芯与另一个连接器中提供的配对插芯配对使用,实现光信号在两个连接器之间传输。通过采用上述技术方案提供的插芯,减缓来自配对插芯的光线在插芯基体的第一表面转化为热能的情况,从而,降低插芯基体烧毁的概率。
第三方面,本申请提供了一种光通信元件,该光通信元件包括上述技术方案提供的插芯和光通信元件本体,插芯和光通信元件本体连接,光通信元件本体可以是光背板、光纤束背板、芯片出光模块或者WSS模块等,通过采用上述技术方案提供的插芯,减缓来自配对插芯的光线在插芯基体的第一表面转化为热能的情况,从而,降低插芯基体烧毁的概率。
第四方面,本申请还提供了一种通信设备,该通信设备例如可以是路由器或者交换机等,包括配对光通信元件和上述技术方案提供的光通信元件,配对光通信元件具有配对插芯,光通信元件的中的插芯与配对光通信元件的中的配对插芯连接。由于该光通信元件包括上述技术方案提供的插芯,当光通信元件的中的插芯与配对光通信元件的中的配对插芯连接时,可以减缓来自配对插芯的光线在插芯基体的第一表面转化为热能的情况,从而,降低插芯基体烧毁的概率。
当光通信元件的中的插芯与配对光通信元件的中的配对插芯配合时,插芯的贯穿通孔的侧壁围成的槽的底面与配对插芯的出光面之间的间隙不能过大,否则容易造成光信号损耗过大,在一个具体的实施方式中,该间隙小于或等于5μm。
第五方面,本申请还提供了一种插芯的制备方法,该插芯包括:插芯基体和光传输载体,该插芯基体具有容纳通孔,该容纳通孔的一个一端位于第一表面,在该插芯与配对插芯配合使用时,第一表面朝向配对插芯,光传输载体设置在所述容纳通孔中,光传输载体具有第二表面,在该插芯与配对插芯配合使用时,第二表面朝向配对插芯,该第二表面为光传输表面,容纳通孔的内壁和对应的光传输载体的周向侧面之间缝隙中具有填充物,容纳通孔的内壁和对应的光传输载体的周向侧面之间缝隙中具有填充物,填充物将容纳通孔的内壁和对应的光传输载体表面相对固定,该插芯的制备方法包括:
在插芯基体朝向配对插芯的一侧形成反射膜,其中,反射膜覆盖第一表面,反射膜的反射波段包括光传输载体的至少部分通信波段。配对插芯射向第一表面的光线被第一表面的反射膜反射至其他其它方向,减缓上述光线在插芯基体的第一表面转化为热能的情况,从而,降低插芯基体烧毁的概率。
在一个具体的实施方式中,所形成的反射膜同时覆盖光传输载体的第二表面上的部分区域,且反射膜具有贯穿通孔,贯穿通孔在第二表面的正投影覆盖第二表面上的光核心区域,这样,反射膜能够将配对插芯射向第二表面的光线反射至其他方向,降低插芯基体烧毁的概率。
在一种具体实施方式中,第二表面具有主光路区域,为了使配对插芯射出的光线都能够进入所述插芯的光传输载体中,降低信号损耗率,所形成的反射膜上贯穿通孔在第二表面的正投影覆盖主光路区域。
在插芯基体朝向配对插芯的一侧形成反射膜的方式可以有多种,在一种具体的实施方式中:先在光传输载体朝向配对插芯的一侧形成牺牲层;再在光传输载体朝向配对插芯的一侧形成反射膜,其中,反射膜覆盖牺牲层和第二表面;随后去除牺牲层和牺牲层表面的膜层,形成所述贯穿通孔;或者,在另一种具体的实施方式中,先在光传输载体朝向配对 插芯的一侧形成反射膜,然后对反射膜图案化,在反射膜上形成所述贯穿通孔。
为了减轻贯穿通孔侧壁围成的槽结构底面与贯穿通孔中的空气直接接触造成菲涅尔反射,在一个具体的实施方式中,该插芯的制备方法还包括在插芯基体朝向配对插芯的一侧形成反射膜,增透膜在所述第二表面的正投影覆盖贯穿通孔在第二表面的正投影,其中,增透膜的抗反射波段包括光传输载体的至少部分通信波段,利用增透膜减少上述菲涅尔反射。
形成上述增透膜的方式可以有多种。例如,在一个具体的实施方式中,在步骤在插芯基体朝向配对插芯的一侧形成反射膜之前,先在光传输载体朝向配对插芯的一侧形成增透膜;或者另一个具体的实施方式中,在步骤在插芯基体朝向配对插芯的一侧形成反射膜之后,在贯穿通孔内形成增透膜。
在另一个具体的实施方式中,容纳通孔的内壁和光传输载体的周向侧面之间的缝隙中具有填充物;为了降低填充物烧毁的概率,反射膜位于填充物朝向配对插芯的一侧且与填充物相对设置。
在具体设置时,为了确保填充物能够完全被反射膜遮挡,而使光线无法直接照射到该填充物,在一个具体的实施方式中,反射膜在参考面上的正投影覆盖填充物在参考面上的正投影,其中,参考面垂直于容纳通孔的轴向。
为了进一步提升插芯朝向配对插芯的表面的抗烧毁能力,在一个具体的实施方案中,在形成反射膜之前,先在插芯基体朝向配对插芯的一侧形成耐温膜。
附图说明
图1示例性地表示出了一对MPO连接器配合时的***图;
图2表示出了图1中沿A方向观察左侧的MPO连接器时的视图的放大图;
图3表示出了本申请实施例提供的插芯的一种示例性的纵向剖面图;
图4表示出了图3中光纤的一个示例性的截面的放大图;
图5表示出了图3中沿X轴的负方向观察插芯基体和光纤的局部示意图;
图6表示出了在图5的基础上介质反射膜在第一表面和第二表面上的正投影分布示意图;
图7表示出了当本申请实施例提供的插芯001与插芯001'配合连接时的示意图;
图8表示出了在对图7中的插芯001和插芯001'配对使用时进行大功率测试的装置示意图;
图9a表示出了本申请实施例提供的插芯的另一种示例性的示意图;
图9b表示出了图9a中F处的局部放大图;
图10表示出了本申请实施例提供的插芯的另一种示例性的示意图;
图11表示出了本申请实施例中一种光背板与单板配合的示例性的示意图;
图12a表示出了本申请实施例提供的通信设备中的插芯与配对插芯配对使用的一种示例性的示意图;
图12b表示出了本申请实施例提供的通信设备中的插芯与配对插芯配对使用的另一种示例性的示意图;
图13a表示出了本申请实施例提供的插芯制备方法中经过步骤S100之前插芯基体与光纤配合的示意图;
图13b表示出了本申请实施例提供的插芯的制备方法中经过步骤S100后插芯的示意图;
图13c表示出了本申请实施例提供的插芯的制备方法中经过步骤S200后插芯的示意图;
图13d表示出了本申请实施例提供的插芯的制备方法中经过步骤S300后插芯的示意图;
图13e表示出了本申请实施例提供的插芯的制备方法中经过步骤S400后插芯的示意图;
图13f表示出了本申请实施例提供的插芯的制备方法中经过步骤S500后插芯的示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
为了方便理解本申请实施例提供的插芯,首先说明一下其应用场景。图1示例性地表示出了一对MPO(Multi-fiber Pull Off)连接器配合时的***图,图2表示出了图1中沿A方向观察时左侧的MPO连接器20的视图的放大图,结合图1和图2,示例性地,MPO连接器20包括壳体21,插芯22位于壳体21内,光纤带25延伸至插芯22内,插芯22的前端面a具有一对导引针23,并且光纤带25中的多跟光纤24延伸至插芯22的前端面a,MPO连接器30具有与MPO连接器20类似的结构,只是将前端面a处的导引针23替换为向前端面a内凹陷的导引孔,用于与MPO连接器20的导引针23配合定位,适配器10内部具有连接通孔;在进行连接时,MPO连接器20的前端面a朝向适配器10的连接通孔的一个入口***适配器10内,MPO连接器30沿相反的方向从适配器10的连接通孔的另一个入口***适配器10内,MPO连接器20的导引针23***MPO连接器30的导引孔内进行定位,MPO连接器20的插芯22的前端面a处的光纤24与MPO连接器30的插芯的前端面处的光纤一一相对设置,以进行光传输。本申请实施例提供的插芯可以是上述MPO连接器20的插芯22或者MPO连接器30的插芯。但需要说明的是,本申请实施例提供的插芯不限于上述应用场景,其还可以是OB连接器(Optical Backplane,光背板侧连接器)、阵列MT连接器、HBMT连接器或者其它多芯光连接器中的插芯,也可以是FC(Ferrule Connector)、LC(Latch Connector)、SC(Square Connector)、ST(Spring Tension)等单芯光纤连接器中的插芯,或者,可以是光波导连接器中的插芯,或者,可以是光纤阵列连接器中的插芯,或者,其他MT连接器(Mechanical transfer连接器,机械式对接传输连接器)中的插芯。
图3表示出了本申请实施例提供的插芯的一种示例性的纵向剖面图(例如可以参考图2中插芯22沿B-B方向的剖面图),其中,图3中各部件尺寸比例不反映真实的尺寸比例,只是为了表达清楚各部件之间的相对位置关系,请参考图3,示例性地,本申请实施例提供的插芯001包括插芯基体100和光纤200,插芯基体100的材料包括但不限于是陶瓷或者塑料,插芯基体100中具有一个(也可以是多个)沿插芯基体100的轴向延伸的容纳通孔101,光纤200的部分配置于容纳通孔200中,插芯基体100位于X方向上的一侧面具有第一表面102,第一表面102为当插芯001与其他连接器中的配对插芯(本申请实施例中提到的“配对插芯”均是指用于向本申请实施例提供的插芯射出光线的插芯)配合时, 插芯基体100朝向配对插芯的表面;图4表示出了图3中光纤200的一个示例性的截面的放大图,参考图4,光线200包括由内至外依次同心设置的纤芯201、包层203和涂覆层204,此时,在纤芯201进行光传输时,光线不止局限于纤芯201中,还会有少部分光线散射至包层203位于纤芯201周围的环状空间内,纤芯201和包层203有光线传输的部分统称为主光路202,换句话说,光纤200传输的所有光线都集中于主光路202内,以光纤200是单模光纤为例,纤芯201的外径为9μm,包层203的外径为125μm,主光路202的外径一般为25μm;继续回到图3,容纳通孔200包括沿X轴正方向相邻的第一分段e和第二分段f,第一分段e的开口示例性地位于插芯基体100的X轴的负方向上的一端面,第二分段f的X轴正方向上的一端位于第一表面102,第一分段e的内径大于第二分段f的内径;在第一分段e内,光纤200的部分不剥除涂覆层204,第一分段e内光纤200的涂覆层204的外径与第一分段e的内径相匹配,涂覆层204的外表面和第一分段e的内壁之间填充黏胶等填充物208(见图5和图6)进行固定,光纤200位于第二分段f内的部分剥除掉涂覆层204,光纤200剥除掉涂覆层204的部分称为裸光纤,裸光纤凸出于第一表面102一部分(示例性地为大于或等于1μm且小于或等于3.5μm),裸光纤中包层203的外径与第二分段f的内径相匹配,示例性地,包层203的外径为125μm时,第二分段f的内径可以为127μm,包层203周向外壁和第二分段f的内壁之间的缝隙中填充黏胶等填充物208进行固定;图5表示出了图3中沿X轴的负方向观察插芯基体100和光纤200的局部示意图,请参考图5,光纤200凸出于第一表面102的部分的具有朝向X轴正方向的第二表面205,第二表面205为当插芯001与其他连接器中的配对插芯配合时,光纤200中裸光纤部分朝向配对插芯的表面,也称为光传输表面(即插芯001光线从该第二表面射出光纤200,或者配对插芯的射出的光线从该第二表面射入光纤200),图3和图4中的主光路202在第二表面205形成主光路区域206,而纤芯201作为传输光线的核心功能部件(即Core区),在第二表面205形成光核心区域207,光核心区域207位于主光路区域206内部,且面积通常小于主光路区域206;上述关于插芯001的说明(例如材料和尺寸)可以是本领域已知的常用的现有技术,在此不再赘述。
继续参考图3,在上述已经介绍的插芯001的结构的基础上,插芯基体100的第一表面102上沿X轴正方向还依次覆盖有增透膜301、衔接层302和介质反射膜303,其中,衔接层302用于连接增透膜301和介质反射膜303;同时参考图3和图5(图5中未示出增透膜301、衔接层302和介质反射膜303,仅参考图5中第一表面102和第二表面205和主光路区域206的相对位置),示例性地,增透膜301同时覆盖在第一表面102、第二表面205以及光纤200的裸光纤部分凸出于第一表面102外的部分的周向侧面(本申请实施例中的“周向侧面”一词是指光传输载体的环绕其中的光路的表面,如此处,该“周向侧面”是指裸光纤部分的圆周面),此时,增透膜301在第一表面102上的正投影完全覆盖第一表面102,增透膜301在第二表面205上的正投影完全覆盖第二表面205;而介质反射膜303具有贯穿通孔303h,介质反射膜303覆盖第一表面102(此时,介质反射膜303在参考面M上的正投影覆盖第一表面102在参考面M上的正投影,该参考面M垂直于容纳通孔101的轴向,例如在图3中,容纳通孔101沿X轴方向延伸,而参考面M垂直于X轴),且介质反射膜303覆盖光纤200的裸光纤部分凸出于第一表面102外的部分的圆周面,介质反射膜303覆盖第二表面205的部分区域(即介质反射膜303在参考面M上的正投影覆盖第二表面205在参考面M上的正投影的一部分),同时,介质反射膜303覆盖住 光纤200的裸光纤部分的周向侧面与插芯基体100之间的缝隙(即该缝隙在参考面M上的正投影完全被介质反射膜303在参考面M上的正投影覆盖),以使介质反射膜303遮挡住该缝隙中的填充物208,图6表示出了在图5的基础上介质反射膜303在第一表面102和第二表面205上的正投影分布情况,图6中的方格阴影部分为介质反射膜303在第一表面102和第二表面205上的正投影,请参考图6,介质反射膜303在第一表面102上的正投影覆盖第一表面102,介质反射膜303在第二表面205上的正投影覆盖第二表面205的部分区域,贯穿通孔303h与主光路区域206相对设置,贯穿通孔303h在第二表面205上的正投影303hs覆盖主光路区域206,并且,贯穿通孔303h在参考面M(见图3)上的正投影303hs完全落在第二表面205在参考面M上的正投影的范围以内,贯穿通孔303h在第二表面205上的正投影303hs的边缘可以恰好与主光路区域206的边缘之间的间隙宽度大于或等于0μm且小于或等于50μm,以确保介质反射膜303能够遮挡住填充物208,同时又不至于遮挡主光路区域206,而更具体地,贯穿通孔303h在第二表面205上的正投影303hs的边缘可以恰好与主光路区域206的边缘之间的间隙宽度大于或等于12.5μm且小于或等于42.5μm,例如,可以是12.5μm、15μm、17μm、20μm、23μm、25μm、30μm、35μm、40μm或者42.5μm,这样,不要求贯穿通孔303h在第二表面205上的正投影303hs的边缘与主光路区域206的边缘或者第二表面205边缘距离过近,有利于提高生产效率,便于量产;以纤芯201的外径为9μm,包层203的外径(即第二表面205的直径)为125μm,且主光路区域206为外径25μm的圆形为例,贯穿通孔303h在第二表面205上的正投影303hs可以为直径大于或等于50μm且小于或等于110μm的圆形(示例性地,该圆形与主光路区域206同圆心),或者,只要贯穿通孔303h在第二表面205上的正投影303hs不是圆形,但是正好落在上述直径为50μm和110μm的两个同心圆之间,以确保介质反射膜303既能够遮挡填充物208,又能够避开主光路区域206,并且相对于正投影303hs与主光路区域206完全重叠的情况,生产工艺要求更低,有利于量产;而在另外一些情况下,贯穿通孔303h在第二表面205上的正投影303hs的边缘也可以位于主光路区域206以内且光核心区域207以外,这样,虽然介质反射膜303会遮挡一部分进入主光路202的光线,但是,大部分光线仍然会集中进入纤芯201中;衔接层302填充于增透膜301和介质反射膜303之间,以连接增透膜301和介质反射膜303,从而,保障增透膜301和介质反射膜303之间衔接力,增透膜301和介质反射膜303之间平稳过渡,避免增透膜301和介质反射膜303分层,例如:增透膜301靠近介质反射膜303的一层为SiO2材料,介质反射膜303靠近增透膜的一层为SiO2材料,衔接层302也选用SiO2材料,利用相似相溶的原理,将增透膜301和介质反射膜303紧密连接。
图3所示的插芯001中,增透膜301的结构组成可以是如下形式Mg化合物/SiO2、Ta化合物/SiO2、Ti化合物/SiO2,或者,Hf化合物/SiO2等;增透膜301的厚度大于或等于400nm且小于或等于800nm之间,除此之外,增透膜301的结构组成也可以是其他已知的常用的现有技术;增透膜301的抗反射波段包括光纤200’的至少部分通信波段,为了使光信号进入主光路202内后的损耗符合标准,增透膜301的对上述抗反射波段内的光波的反射率小于或等于0.25%,例如,该反射率为0.25%、0.22%、0.20%、0.17%、0.15%、0.1%、0.08%和0.05%,在一些情况下,增透膜301的对上述抗反射波段内的光波的反射率小于或等于0.1%,此时,可以显著降低光信号进入主光路202时的损耗;此外,构成增透膜301的各膜层可以采用具有较高LIDT(Laser Induced Damage Threshold,激光损伤阈值)的材 料,示例性地,构成增透膜301的材料至少能够耐受600mw/cm2的能量(采用波长为1064nm,直径为0.53mm的激光光束照射到增透膜301的材料上,不断增加光功率,来测试增透膜301的材料最大耐受能量),以使增透膜301具有较好的耐温性,可以在一定程度上降低插芯001烧毁的概率,在不改变插芯基体100和光纤200的材料的情况下,提高了二者的大功率耐受性。介质反射膜303的结构组成可以是如下形式Si/SiO2、Ag化合物/SiO2、Al化合物/SiO2、Au化合物/SiO2、或者,Ti化合物/SiO2等,除此之外,介质反射膜303的结构组成也可以是已知的常用的现有技术;介质反射膜303的反射波段包括光纤200的至少部分通信波段,为了确保上述第一表面102、第二表面205和填充物208不被烧毁,介质反射膜303对反射波段内光波的反射率大于或等于80%,例如该反射率为80%、85%、90%、95%或者98%,此外,构成介质反射膜303的各膜层可以采用具有较高LIDT的材料,示例性地,构成介质反射膜303的材料至少能够耐受600mw/cm2的能量(采用波长为1064nm,直径为0.53mm的激光光束照射到介质反射膜303的材料上,不断增加光功率,来测试增透膜301的材料最大耐受能量),提高插芯基体100和光纤200的大功率耐受性。
图7表示出了当本申请实施例提供的插芯001与插芯001'配对使用时的示意图,插芯001'包括插芯基体100’和穿插于插芯基体100’中的光纤200’,当插芯001'作为配对插芯与插芯001配合时,插芯001'放置于插芯001的X轴正方向上的一侧,第一表面102朝向插芯基体100’,第二表面205与光纤200’的X轴负方向上出光端面相对而置,光线从光纤200’中的主光路沿X轴负方向射向第二表面205的主光路区域206,光线沿主光路202继续传输;其中,由于第二表面205覆盖有增透膜301,增透膜301可以减弱第二表面205直接与空气接触时的菲涅尔反射,因此,降低光信号在传输过程中的损耗;而由于在实际操作过程中(如对插芯001和插芯001’进行插拔时),光纤200’的主光路射出的光难以完全落在主光路区域206内,例如,光纤200’的主光路与主光路区域206发生错位,或者,光纤200’的主光路和光纤200的主光路202不沿同一条直线延伸,另外,由于从光纤200’的主光路射出的光线也会因折射等原因导致光路发生偏移,以上原因导致由光纤200’出来的光线会射向第二表面205中除主光路区域206以外的区域和第一表面102,来自光纤200’的光线射向第一表面205时,第一表面205上的介质反射膜303将光线反射至其他方向,仅有少部分的光线在被介质反射膜303吸收转化为热能,这部分热能不足以使插芯基体100的第一表面102烧毁,此外,即便第二表面205上的介质反射膜303沾染了灰尘等杂质,由于这部分的介质反射膜303将大部分光线反射,剩余的光能转化的热量不足以使杂质燃烧,类似地,填充物208也不易烧毁。
图8表示出了在对插芯001和插芯001'配对使用时进行大功率测试的装置示意图,请参考图8,光源401、光衰器402和插芯001'依次通过光纤连通,插芯001'与插芯001配合,插芯001的输出端通过光纤与光功率计403连通;光源401分别输出17dBm、17.5dBm、18dBm、18.5dBm、……、25dBm、27dBm和30dBm的功率,通过端检仪分别对插芯001的第一表面102和第二表面205进行检测,实验结果显示,插芯001在接受30dBm(约对应于1000mw能力)的功率时不烧毁,相对于传统MT插芯一般在接收超过17dBm的功率(约对应于50mw能量)时即烧毁,插芯001的抗烧毁性能显著提升。
继续回到图7,由于贯穿通孔303h在第二表面205上的正投影仅覆盖第二表面205的部分面积,当插芯001'与插芯001对接时,采用与光纤200同样外径(或者更大外径)的光纤200’时,光纤200’的出光端面也只能顶到介质反射膜303上,而不能进入到贯穿通孔 303h内,相当于介质反射膜303将光纤200’垫高,光纤200’的出光端面不易与贯穿通孔303h底部的增透膜301直接接触,增透膜301也就不容易被光纤200’的出光端面剐蹭损伤,而位于贯穿通孔303h底部的增透膜301位于光信号传输路线上,从而,确保光信号在传输过程中降低损耗;示例性地,介质反射膜303的厚度大于或等于1.0μm且小于或等于3.0μm,例如,可以是1.0μm、1.2μm、1.5μm、1.7μm、2.0μm、2.2μm、2.5μm、2.8μm或者3.0μm,当介质反射膜303的厚度小于1.0μm时,因介质反射膜303太薄导致的贯穿通孔303h太浅,异物(如光纤200’的棱角)容易剐蹭到贯穿通孔303h的底部的增透膜301,当介质反射膜303的厚度大于3.0μm时,因介质反射膜303太厚导致的贯穿通孔303h太深,贯穿通孔303h内部空间较大,灰尘容易进入贯穿通孔303h内,不容易清洁,影响光信号传输,而介质反射膜303的厚度大于或等于1.0μm且小于或等于3.0μm可以既可以同时避免上述两个问题,此外,介质反射膜303在上述厚度范围内能够具有较好的反射率;经测试,插芯001和插芯001'插拔1000次,无需清洁贯穿通孔303h底部的增透膜301的表面,从测试开始到最后,IL(Insertion Loss,***损耗)小于0.25dB,损耗变化小于0.05dB;需要说明的是,虽然光纤200’的出光端面与光纤200的第二表面205之间具有一定间隙,但由于增透膜301的存在,可在一定程度上消除菲涅尔反射造成的光信号损耗。
此外,由于光纤200’的出光端面和光纤200的第二表面205非直接接触即可实现较小的光信号损耗,插芯001和插芯001'在配合时不需要使用较大的力将光纤200’的出光端面和光纤200的第二表面205挤压在一起消除空气间隙来缓解菲涅尔反射。另外,由于插芯001可在传统MT插芯的基础上增加介质反射膜303和增透膜301等膜层形成,而无需改变传统MT插芯的本身结构,所以,本申请实施例提供的插芯001能够直接与传统MT插芯混配。在与传统MT插芯配合时,直接采用机械对接,无需加热熔接,从而不易对温度敏感的器件造成损伤,本申请实施例提供的插芯001便于在一些对温度较为敏感的部件上应用。
而在一些情况下,如采用其他手段消除了第二表面205处的菲涅尔反射时,也可以取消设置增透膜301,如介质反射膜303直接与第一表面102和第二表面205接触。在另外一些情况下,介质反射膜303可以不覆盖第二表面205,如介质反射膜303可以仅覆盖第一表面102(即介质反射膜303在参考面M上的正投影仅覆盖第一表面102在参考面M上的正投影),或者,介质反射膜303仅覆盖第一表面102和光纤200凸出于第一表面301的部分的周向侧面;再或者,介质反射膜303可以仅覆盖第一表面102和第二表面205中的非主光路区域。
需要说明的是,本申请实施例提供的插芯并不局限于在图3中所示的插芯1的具体形式,例如,可以使图3中的增透膜301仅覆盖第二表面205,同样能够在一定程度上缓解第二表面205处的菲涅尔反射;图9a表示出了本申请实施例提供的插芯的另一种示例性的示意图,图9b表示出了图9a中F处的局部放大图,请参考图9a和图9b,图9a和图9b所示的插芯001与图3所示的插芯001区别在于,增透膜301与介质反射膜303同层设置,增透膜301设置于贯穿通孔303h中,且增透膜301紧贴第二表面205设置,确保增透膜301和第二表面205之间无空气等中间介质,从而,在一定程度上消除光线入射至第二表面205时的菲涅尔反射;此外,可以使增透膜301的厚度比介质反射膜303的厚度小,如此,增透膜301朝向配对插芯的表面相对于介质反射膜303朝向配对插芯的表面内凹,即 介质反射膜303的表面与增透膜301的表面存在一定高度差h,这样可以同时避免增透膜301被剐蹭,介质反射膜303的表面与增透膜301的表面存在一定高度差h大于或等于0.8μm且小于或等于2.8μm,例如,可以是0.8μm、1.0μm、1.2μm、1.5μm、1.7μm、2.0μm、2.3μm、2.5μm或者2.8μm,如此,可以同时避免增透膜301被剐蹭以及灰尘存留于贯穿通孔303h中。
图10表示出了本申请实施例提供的插芯001的另一种示例性的示意图,请参考图10,图10中所示的插芯001与图3所示的插芯001的区别在于,第一表面102中部向插芯基体100内部凹陷,第二表面205与第一表面102的底部表面持平。图10所示的插芯001可与图3所示的插芯001配对使用,图3所示的插芯001的光纤200凸出于第一表面102的部分配合于图10所示的插芯001中第一表面102内凹所形成的凹陷内,一方面有利于防止两个插芯横向错位,另一方面有利于避免两个插芯中的第二表面之间距离过大(该距离要求小于或等于5μm,如1μm、2μm、3μm、4μm和5μm),导致光信号损耗较大。
此外,在图3中所示的插芯001的基础上,还可以做如下变形,如光纤200的第二表面205与第一表面102持平,或者,内凹于第一表面102。再如,图3中的介质反射膜303的内侧面一侧(如介质反射膜303和增透膜301之间)可以填充陶瓷或者金属等具有较高温度耐受性的耐温膜,耐温膜的覆盖范围可以随着介质反射膜303调整,其中,陶瓷反射膜或者金属反射膜采用电镀的方式形成于增透膜301表面,通常情况下,陶瓷膜和金属膜(金属膜材质如Al、Ag、Ti、Au或Cr等,但是因为这些金属易氧化,一般还会在其表面镀一层保护层如SiO2、MgF2等,可采用PVD物理气相沉积制作)等耐温膜均具有1700℃以上的温度耐受性,可以较大程度的提升反射膜的耐温性能,为了进一步提升反射膜的激光损伤阈值和耐温性,还可以在耐温膜的表面再形成一层介质反射膜、陶瓷反射薄膜或者金属反射薄膜等作为反射膜用来反射光线,防止耐温膜烧毁。作为另一种变形,光纤200的裸光纤部分也可以内凹于第一表面102,并且在容纳通孔101的内壁上设置介质反射膜303,再或者,第二表面205与第一表面102持平,介质反射膜303覆盖光纤200的裸光纤部分的周向侧面和容纳通孔101之间的缝隙。
需要说明的是,以上本申请实施例提供的插芯仅仅是采用光纤插芯进行举例,而对于光波导连接器中的插芯,插芯基体中设置的不再是光纤,而是光波导,光波导中具有相对于基体折射率较大的核心通道(即Core区),核心通道延伸至波导端面在波导端面形成光核心区域,与前面所述的光纤200类似的,光核心通道中的光也会有少部分射至核心通道周围的基体中,从而形成主光路,主光路在光波导的端面形成主光路区域,这些结构可以是现有技术,在此基础上,在波导的端面形成反射膜,反射膜避开光核心区域,以避免遮挡大部分光纤,或者,反射膜可以同时避开主光路区域,以确保不遮挡主光路射出的所有光线,还可以在入光端面设置增透膜,增透膜和反射膜的设置方式可以参考前述光纤插芯的实施例中的对应膜层设置方式;此外,光纤阵列连接器中的插芯包括插芯基体和配置于插芯基体中相对设置的盖板以及固定在盖板之间的阵列排布的光纤,具体可以参考现有光纤阵列连接器的插芯结构,在光纤的入光端面设置反射膜,反射膜避开光纤的光核心区域,或者同时避开光纤的主光路区域,反射膜可以同时覆盖盖板的端面;总之,插芯基体中的光传输载体不限于光纤,还可以是光波导等其他形式的光传输载体,以形成不同形式的插芯,只要在该光传输载体的端面(即朝向配对插芯的端面,如入光端面)形成避开光核心区域(或者同时避开主光路区域)的反射膜即可。
基于相同的发明构思,本申请实施例还提供了一种连接器,该连接器包括壳体和本申请上述实施例中提供的插芯,以图1为例,本申请实施例提供的连接器的一种示例性的形式可以参考图1中的MPO连接器20,包括壳体21和插芯22,插芯22位于壳体21内,该插芯22可以采用图3至图10的实施例提供的插芯001。
基于相同的发明构思,本申请实施例还提供了一种光通信元件,该光通信元件包括光通信元件本体和本申请上述实施例中提供的插芯,插芯与光通信元件本体连接;一些光通信元件包括光通信元件本体和连接器,连接器中具有本申请上述实施例中提供的插芯,插芯与光通信元件本体连接,此时,光通信元件本体例如可以是单板,图11表示出了一种光背板与单板配合的示例性的示意图,参考图11,示例性地,一个光通信元件包括单板010和连接器020,单板010作为光通信元件本体,连接器020中具有本申请上述实施例中提供的插芯,连接器020固定于单板010上,插芯与单板010中的通信线路连接;另一些光通信元件在需要与其它光通信元件组装时,才需要将插芯组装成光连接器,此时,光通信元件本体可以为光背板、光纤束背板、芯片出光模块或者WSS模块,继续参考图11,示例性地,另一个光通信元件包括光背板030和插芯040,光背板030作为光通信元件本体,插芯040通过共用光纤与光背板030连接。
基于相同的发明构思,本申请实施例还提供了一种通信设备,例如可以是路由器和交换机等,该通信设备包括配对光通信元件(该配对光通信元件包括如图11中的光背板030和插芯040)和至少一个上述实施例提供的光通信元件,该配对光通信元件中具有配对插芯(如图11中的插芯040),光通信元件(该光通信元件包括如图11中的单板010和连接器020)中的插芯(如图11中连接器020中的插芯)与配对插芯(如图11中的插芯040)连接。
图12a表示出了本申请实施例提供的通信设备中的插芯与配对插芯配对连接的一种示例性的示意图,其中,图12a中的插芯001a与图3中的插芯001具有相同的结构,插芯001b与图10中的插芯001具有相同的结构,插芯001a与插芯001b相互配合;当插芯001b作为配对插芯,其中的光纤向插芯001a的第二表面的增透膜出射光线时,插芯001a的贯穿通孔的侧壁围成的槽的底面(插芯001a的增透膜暴露于贯穿通孔处的表面,若插芯001a去除增透膜,则贯穿通孔的底面是插芯001a的第二表面)与插芯001b的出光面(插芯001b的增透膜暴露于贯穿通孔处的表面,若插芯001b没有增透膜,则该出光面指插芯001b的第二表面)之间的间隙gap小于或等于5μm,例如,1μm、2μm、3μm、4μm或者5μm,避免间隙gap过大导致的光信号传输效率降低;与之类似地,若以插芯001a作为配对插芯向插芯001b发射光信号,图12a中间隙gap的要求不变。图12b表示出了本申请实施例提供的通信设备中的插芯与配对插芯配对使用的另一种示例性的示意图,图12b中的插芯001c和插芯001d均具有与图3中的插芯001相同的结构,当插芯001c和插芯001d配合时,无论二者中的哪一个插芯作为配对插芯发射光信号,图12b中的间隙gap与图12a中的间隙gap具有相同的要求。总之,当光通信元件的中的插芯与配对光通信元件的中的配对插芯配合时,插芯的贯穿通孔的侧壁围成的槽的底面与配对插芯的出光面之间的间隙gap小于或等于5μm。
基于相同的发明构思,本申请实施例还提供了一种插芯的制备方法,该插芯的形式可以参考前述图3至图10所示的插芯的具体实施形式。图13a表示出了本申请实施例提供的插芯制备方法中经过步骤S100之前插芯基体与光纤配合的示意图,请参考图13a,光纤 200配置于插芯基体100的配合通孔101中,除光纤200的第二表面205与插芯基体100的第一表面102持平(也可以不持平)外,光纤200和插芯基体100的配置关系可参考对图3所示的插芯001中对应的描述;图13b表示出了本申请实施例提供的插芯制备方法中经过步骤S100后插芯的示意图,接下来进行步骤S100,参考图13b,在第二表面205表面形成增透膜301,增透膜301可以同时覆盖第一表面102;图13c表示出了本申请实施例提供的插芯制备方法中经过步骤S200后插芯的示意图,接下来进行步骤S200,在增透膜301表面形成牺牲层305,牺牲层305在对应的第二表面205上的正投影覆盖第二表面205内的主光路区域(在一些情况下,只要覆盖第二表面205上的光核心区域也可以),且牺牲层305在对应的第二表面205上的正投影面积小于第二表面205的面积,牺牲层305在第一表面102上的正投影面积为零,其中,牺牲层305可以是容易去除的材料,如加热后粘性变差而与增透膜301分离的材料或者微孔材料,牺牲层305的具体材料可以是本领域中已知的常用来作为牺牲层的材料,在此不再赘述;图13d表示出了本申请实施例提供的插芯制备方法中经过步骤S300后插芯的示意图,参考图13d,接下来进行步骤S300,在牺牲层301的表面形成衔接层302;图13e表示出了本申请实施例提供的插芯制备方法中经过步骤S400后插芯的示意图,参考图13e,接下来进行步骤S400,在衔接层302表面形成介质反射膜303,介质反射膜覆盖第一表面102和第二表面205;图13f表示出了本申请实施例提供的插芯制备方法中经过步骤S500后插芯的示意图,参考图13f,执行步骤S500,去除牺牲层305,即,使牺牲层305与增透膜301分离,衔接层302和介质反射膜303位于牺牲层305上部的部分随牺牲层305一起脱落,在介质反射膜303分别与第二表面205中主光路区域相对的部分形成贯穿通孔303h。
此外,只要保证介质反射膜303在参考面M上的正投影覆盖第一表面102在参考面M上的正投影,具体介质反射膜303的覆盖范围和形式等,可参考上述实施例提供的插芯中的描述;当介质反射膜303和增透膜301相互靠近的表面能够具有较好的粘合性时,可以取消步骤S300形成衔接层302的步骤;在另外一些情况下,除了采用设置牺牲层305方法,贯穿通孔303h的形成方式还可以是以下形式:先形成整层的介质反射膜303,再在与第二表面205的主光路区域相对的位置对介质反射膜303图案化,形成贯穿通孔303h,如采用掩膜版遮挡进行刻蚀形成贯穿通孔303h,或者,采用其他方式形成贯穿通孔303h;在另外一些情况下,在形成介质反射膜303之前,也可以先形成一层陶瓷膜和金属膜等具有较高温度耐受性的耐温膜,在耐温膜表面形成介质反射膜303后,随后再去除牺牲层,形成贯穿耐温膜和介质反射膜的贯穿通孔(位置和大小可参考贯穿通孔303h);在另外一些情况下,也可以取消步骤S100形成增透膜300的步骤,并在形成贯穿通孔303h后,在贯穿通孔303h内通过沉积等形式形成增透膜,只要增透膜位于光纤200的第二表面205一侧,且在第二表面205的正投影覆盖第二表面上的主光路区域即可。并且,光纤200也可以替换为波导等其他形式的光传输载体,以构成不同形式的插芯,只要该光传输载体朝向配对插芯的表面具有主光路区域,并且反射膜在光传输载体朝向配对插芯的表面的正投影避开主光路区域即可。
除此之外,以上关于增透膜301、衔接层302和介质反射膜303等各膜层的其他各项参数(如材料、尺寸和位置等特征)可以参考本申请上述实施例提供的插芯中的对应的结构描述。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本 技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (29)

  1. 一种插芯,其特征在于,包括:
    插芯基体,包括容纳通孔,所述容纳通孔的一端位于所述插芯基体的第一表面,其中,所述第一表面为所述插芯基体朝向与所述插芯对应的配对插芯的表面;
    光传输载体,具有第二表面,所述第二表面朝向所述配对插芯,所述第二表面为光传输表面,所述光传输载体设置在所述容纳通孔中;以及
    反射膜,所述反射膜覆盖所述第一表面,所述反射膜的反射波段包括所述光传输载体的至少部分通信波段。
  2. 根据权利要求1所述的插芯,其特征在于,所述第二表面具有光核心区域;
    所述反射膜具有贯穿通孔,且所述反射膜覆盖所述第二表面,所述贯穿通孔在所述第二表面的正投影覆盖所述光核心区域。
  3. 根据权利要求2所述的插芯,其特征在于,所述第二表面具有主光路区域,所述贯穿通孔在所述第二表面的正投影覆盖所述主光路区域。
  4. 根据权利要求2或3所述的插芯,其特征在于,所述插芯还包括:
    位于所述光传输载体朝向所述配对插芯的一侧的增透膜,所述增透膜在所述第二表面的正投影覆盖所述贯穿通孔在所述第二表面的正投影,其中,所述增透膜的抗反射波段包括所述光传输载体的至少部分通信波段。
  5. 根据权利要求4所述的插芯,其特征在于,所述增透膜位于所述反射膜和所述光传输载体之间,且所述增透膜还覆盖所述第一表面中的至少一部分区域。
  6. 根据权利要求4所述的插芯,其特征在于,所述增透膜位于所述贯穿通孔中。
  7. 根据权利要求6所述的插芯,其特征在于,所述增透膜朝向所述配对插芯的表面相对于所述反射膜朝向所述配对插芯的表面内凹。
  8. 根据权利要求4至7任一项所述的插芯,其特征在于,所述增透膜对所述抗反射波段内光波的反射率小于或等于0.25%。
  9. 根据权利要求1至8任一项所述的插芯,其特征在于,所述反射膜对所述反射波段内光波的反射率大于或等于80%。
  10. 根据权利要求1至9任一项所述的插芯,其特征在于,所述容纳通孔的内壁和所述光传输载体的周向侧面之间的缝隙中具有填充物;
    所述反射膜位于所述填充物朝向所述配对插芯的一侧且与所述填充物相对设置。
  11. 根据权利要求10所述的插芯,其特征在于,所述反射膜在参考面上的正投影覆盖所述填充物在所述参考面上的正投影,其中,所述参考面垂直于所述容纳通孔的轴向。
  12. 根据权利要求10或11所述的插芯,其特征在于,所述第二表面凸出于所述第一表面,所述反射膜覆盖所述光传输载体的周向侧面。
  13. 根据权利要求10或11所述的插芯,其特征在于,所述第二表面内凹于所述第一表面,所述反射膜覆盖所述容纳通孔的内壁。
  14. 根据权利要求10或11所述的插芯,其特征在于,所述第二表面与所述第一表面持平,所述反射膜覆盖所述容纳通孔的内壁和对应的光传输载体的周向侧面之间缝隙。
  15. 根据权利要求1至14任一项所述的插芯,其特征在于,所述反射膜的内侧面一侧还具有耐温膜。
  16. 一种连接器,其特征在于,包括壳体和权利要求1至15任一项所述的插芯,其中,所述插芯位于所述壳体内。
  17. 一种光通信元件,其特征在于,包括光通信元件本体和如权利要求1至15任一项所述的插芯,所述插芯与所述光通信元件本体连接。
  18. 一种通信设备,其特征在于,包括配对光通信元件和如权利要求17所述的光通信元件,所述配对光通信元件具有所述配对插芯,所述光通信元件的中的插芯与所述配对光通信元件的中的配对插芯连接。
  19. 一种插芯的制备方法,所述插芯包括:插芯基体,包括容纳通孔,所述容纳通孔的一端位于所述插芯基体的第一表面,其中所述第一表面为所述插芯基体朝向与所述插芯对应的配对插芯的表面;光传输载体,具有第二表面,所述第二表面朝向所述配对插芯,所述第二表面为光传输表面,所述光传输载体设置在所述容纳通孔中,所述容纳通孔的内壁和所述光传输载体的周向侧面之间的缝隙中具有填充物;其特征在于,所述方法包括:
    在插芯基体朝向所述配对插芯的一侧形成反射膜,其中,所述反射膜覆盖所述第一表面,所述反射膜的反射波段包括所述光传输载体的至少部分通信波段。
  20. 根据权利要求19所述的方法,其特征在于,所述第二表面具有光核心区域;所述反射膜具有贯穿通孔,且所述反射膜还覆盖所述第二表面,所述贯穿通孔在所述第二表面的正投影覆盖所述光核心区域。
  21. 根据权利要求20所述的方法,其特征在于,所述第二表面具有主光路区域,所述贯穿通孔在所述第二表面的正投影覆盖所述主光路区域。
  22. 根据权利要求20或21所述的方法,其特征在于,所述在插芯基体朝向所述配对插芯的一侧形成反射膜,具体包括:
    在光传输载体朝向配对插芯的一侧形成牺牲层;
    在光传输载体朝向配对插芯的一侧形成反射膜,其中,反射膜覆盖牺牲层和第二表面;
    去除牺牲层和牺牲层表面的反射膜,形成所述贯穿通孔。
  23. 根据权利要求20或21所述的方法,其特征在于,所述在插芯基体朝向所述配对插芯的一侧形成反射膜,具体包括:
    在光传输载体朝向配对插芯的一侧形成反射膜,并对反射膜图案化,在反射膜上形成所述贯穿通孔。
  24. 根据权利要求20至23任一项所述的方法,其特征在于,还包括:在光传输载体朝向配对插芯的一侧形成增透膜,增透膜的抗反射波段包括光传输载体的至少部分通信波段,其中,所述增透膜在第二表面的正投影覆盖所述贯穿通孔在所述第二表面的正投影。
  25. 根据权利要求24所述的方法,其特征在于,所述在光传输载体朝向配对插芯的一侧形成增透膜,具体包括:
    在所述在插芯基体朝向所述配对插芯的一侧形成反射膜之前,在光传输载体朝向配对插芯的一侧形成所述增透膜。
  26. 根据权利要求24所述的方法,其特征在于,所述在光传输载体朝向配对插芯的一侧形成增透膜,具体包括:
    在所述在插芯基体朝向所述配对插芯的一侧形成反射膜之后,在所述贯穿通孔内形成所述增透膜。
  27. 根据权利要求19所述的方法,其特征在于,所述容纳通孔的内壁和所述光传输 载体的周向侧面之间的缝隙中具有填充物;
    所述反射膜位于所述填充物朝向所述配对插芯的一侧且与所述填充物相对设置。
  28. 根据权利要求27所述的方法,其特征在于,所述反射膜在参考面上的正投影覆盖所述填充物在所述参考面上的正投影,其中,所述参考面垂直于所述容纳通孔的轴向。
  29. 根据权利要求19至28任一项所述的方法,其特征在于,还包括:在所述在插芯基体朝向所述配对插芯的一侧形成反射膜之前,在插芯基体朝向配对插芯的一侧形成耐温膜。
PCT/CN2020/099462 2019-11-08 2020-06-30 一种插芯、光连接器、光通信元件、通信设备及制备方法 WO2021088387A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202090000925.5U CN218240470U (zh) 2019-11-08 2020-06-30 一种插芯、光连接器、光通信元件及通信设备
JP2022526168A JP7338058B2 (ja) 2019-11-08 2020-06-30 フェルール、光コネクタ、光通信素子、通信装置、及び準備方法
EP20837919.8A EP3845940B1 (en) 2019-11-08 2020-06-30 Ferrule, optical communication element and preparation method
KR1020227017398A KR20220092538A (ko) 2019-11-08 2020-06-30 페룰, 광 커넥터들, 광 통신 소자, 통신 디바이스, 및 준비 방법
US17/147,930 US11536911B2 (en) 2019-11-08 2021-01-13 Ferrule, optical connector, optical communication element, communications device, and preparation method
US18/064,452 US12038612B2 (en) 2019-11-08 2022-12-12 Ferrule, optical connector, optical communication element, communications device, and preparation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911086437.0A CN112782807B (zh) 2019-11-08 2019-11-08 一种插芯、光连接器、光通信元件、通信设备及制备方法
CN201911086437.0 2019-11-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/147,930 Continuation US11536911B2 (en) 2019-11-08 2021-01-13 Ferrule, optical connector, optical communication element, communications device, and preparation method

Publications (1)

Publication Number Publication Date
WO2021088387A1 true WO2021088387A1 (zh) 2021-05-14

Family

ID=74873480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099462 WO2021088387A1 (zh) 2019-11-08 2020-06-30 一种插芯、光连接器、光通信元件、通信设备及制备方法

Country Status (6)

Country Link
US (1) US12038612B2 (zh)
EP (1) EP3845940B1 (zh)
JP (1) JP7338058B2 (zh)
KR (1) KR20220092538A (zh)
CN (3) CN115657219A (zh)
WO (1) WO2021088387A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113985532A (zh) * 2021-10-26 2022-01-28 中山市博顿光电科技有限公司 Mt插芯及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597312A (ja) * 1982-07-02 1984-01-14 Nec Corp 光アイソレ−タ
CN101178464A (zh) * 2007-12-13 2008-05-14 北京理工大学 微透镜光纤法布里-珀罗干涉仪
CN101183163A (zh) * 2007-11-21 2008-05-21 北京理工大学 一种可调谐光纤法布里-珀罗滤波器
CN101788700A (zh) * 2010-01-09 2010-07-28 常州南方通信科技有限公司 非本征型法布里-珀罗传感器及其制作方法
CN203025388U (zh) * 2013-01-25 2013-06-26 青岛海信宽带多媒体技术有限公司 具有反射功能的光纤适配器及光纤传输设备
CN203054268U (zh) * 2012-12-29 2013-07-10 深圳日海通讯技术股份有限公司 一种光纤插头
CN108490550A (zh) * 2018-02-11 2018-09-04 华为技术有限公司 插芯、光纤连接器以及插芯的制作方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6948862B2 (en) * 2002-02-22 2005-09-27 Brown Joe D Apparatus and method for coupling laser energy into small core fibers
JP4470799B2 (ja) 2005-04-14 2010-06-02 住友電気工業株式会社 光モジュール
JP4737611B2 (ja) 2005-10-26 2011-08-03 日亜化学工業株式会社 光部品、光ファイバ、発光装置、および光部品の製造方法
EP2232656A4 (en) * 2007-12-17 2014-04-16 Ii Vi Laser Entpr Gmbh LASER MASTER MODULES AND ASSEMBLY METHOD
JP5166295B2 (ja) 2009-01-14 2013-03-21 日本電信電話株式会社 光ファイバアレイおよびその製造方法
CN101539666B (zh) * 2009-01-22 2013-05-15 福州高意通讯有限公司 减少激光散斑效应的光学结构的制造方法
JP2011033784A (ja) 2009-07-31 2011-02-17 Tomoegawa Paper Co Ltd 光ファイバ付フェルール及びこれを使用した光コネクタ
US8137001B2 (en) * 2009-11-02 2012-03-20 Harris Corporation Repeatable optical waveguide interconnection including an index matching elastomeric solid layer and related methods
US8231281B2 (en) 2009-11-02 2012-07-31 Harris Corporation Repeatable optical waveguide interconnection including an index matching elastomeric solid layer providing core and cladding index of refraction matching and related methods
US9477041B2 (en) * 2010-07-30 2016-10-25 Kla-Tencor Corporation Low stray light beam dump with fiber delivery
CN102255653B (zh) * 2011-03-29 2014-10-08 华为技术有限公司 光信号控制方法、光信号控制***和光背板***
US8905648B2 (en) 2011-06-29 2014-12-09 Cinch Connectivity Solutions, Inc. Expanded beam fiber optic connector
CN107561650B (zh) * 2011-12-22 2021-07-23 艾瑞得光导纤维公司 非接触多纤光纤连接器
CN202975393U (zh) 2012-07-26 2013-06-05 上海拜安实业有限公司 高功率光纤连接器
US9110246B2 (en) 2013-05-29 2015-08-18 Ipg Photonics Corporation High power spatial filter
JP6147341B2 (ja) 2013-05-30 2017-06-14 古河電気工業株式会社 半導体レーザモジュール
US10598866B2 (en) 2015-11-18 2020-03-24 Lumasense Technologies Holdings, Inc. Low reflection fiber-optic connector
US20190199051A1 (en) * 2016-06-29 2019-06-27 Csem Centre Suisse D'electronique Et De Microtechnique Sa - Recherche Et Developpement Optical Resonator, Method of Manufacturing the Optical Resonator and Applications Thereof
US20180039023A1 (en) * 2016-08-02 2018-02-08 Dicon Fiberoptics, Inc. Techniques for Reducing Polarization, Wavelength and Temperature Dependent Loss, and Wavelength Passband Width in Fiberoptic Components
JP2018194671A (ja) 2017-05-17 2018-12-06 コニカミノルタ株式会社 光コネクタ
CN207268795U (zh) 2017-07-07 2018-04-24 大族激光科技产业集团股份有限公司 一种激光传输装置
CN109633824B (zh) 2019-02-21 2021-10-08 武汉光迅科技股份有限公司 一种光纤连接器及其制作方法
US11536911B2 (en) * 2019-11-08 2022-12-27 Huawei Technologies Co., Ltd. Ferrule, optical connector, optical communication element, communications device, and preparation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597312A (ja) * 1982-07-02 1984-01-14 Nec Corp 光アイソレ−タ
CN101183163A (zh) * 2007-11-21 2008-05-21 北京理工大学 一种可调谐光纤法布里-珀罗滤波器
CN101178464A (zh) * 2007-12-13 2008-05-14 北京理工大学 微透镜光纤法布里-珀罗干涉仪
CN101788700A (zh) * 2010-01-09 2010-07-28 常州南方通信科技有限公司 非本征型法布里-珀罗传感器及其制作方法
CN203054268U (zh) * 2012-12-29 2013-07-10 深圳日海通讯技术股份有限公司 一种光纤插头
CN203025388U (zh) * 2013-01-25 2013-06-26 青岛海信宽带多媒体技术有限公司 具有反射功能的光纤适配器及光纤传输设备
CN108490550A (zh) * 2018-02-11 2018-09-04 华为技术有限公司 插芯、光纤连接器以及插芯的制作方法

Also Published As

Publication number Publication date
CN218240470U (zh) 2023-01-06
EP3845940A1 (en) 2021-07-07
CN112782807A (zh) 2021-05-11
JP2023500144A (ja) 2023-01-04
US20230109022A1 (en) 2023-04-06
EP3845940A4 (en) 2021-10-06
CN112782807B (zh) 2022-09-16
JP7338058B2 (ja) 2023-09-04
KR20220092538A (ko) 2022-07-01
CN115657219A (zh) 2023-01-31
US12038612B2 (en) 2024-07-16
EP3845940B1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
JP2572402B2 (ja) 光ファイバ回線のアクセス方法及びそのコネクタプラグ
US9638873B2 (en) Receptacle ferrule assemblies with gradient index lenses and fiber optic connectors using same
US10025050B2 (en) Receptacle ferrules with monolithic lens system and fiber optic connectors using same
CN108957631B (zh) 光连接器
JP2014149523A (ja) 光接合部をクリーニングし、光学的な後方反射を低減するアダプタ、及び方法
JP2002124687A (ja) 双方向光通信器および双方向光通信装置並びに双方向光通信器の組み立て方法
US11536911B2 (en) Ferrule, optical connector, optical communication element, communications device, and preparation method
WO2021088387A1 (zh) 一种插芯、光连接器、光通信元件、通信设备及制备方法
JPS63191111A (ja) 光結合器
CN110542960A (zh) 一种光模块
US6892010B2 (en) Photodetector/optical fiber apparatus with enhanced optical coupling efficiency and method for forming the same
US5754721A (en) Fiberoptic connector
WO2019105048A1 (zh) 光发射次模块及光收发组件
JP3879521B2 (ja) 光学素子及び当該光学素子を用いた光トランシーバその他の光学装置
CN214795316U (zh) 一种光模块
WO2021218462A1 (zh) 一种光模块
WO2021248955A1 (zh) 一种光模块
CN111694114A (zh) 一种光模块
CN210775921U (zh) 一种光模块
CN111694111B (zh) 一种光模块
WO2021042775A1 (zh) 一种光模块
TW202215087A (zh) 光學傳輸構件的端部結構
CN117471625A (zh) 用于将光纤对准连接到芯片的封装结构及其制作方法
TW201331656A (zh) 光電模組
CN112332923A (zh) 一种小型化短距无线光传输组件

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020837919

Country of ref document: EP

Effective date: 20210119

ENP Entry into the national phase

Ref document number: 2022526168

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227017398

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE