WO2021085426A1 - Apparatus for producing carbon monoxide - Google Patents

Apparatus for producing carbon monoxide Download PDF

Info

Publication number
WO2021085426A1
WO2021085426A1 PCT/JP2020/040287 JP2020040287W WO2021085426A1 WO 2021085426 A1 WO2021085426 A1 WO 2021085426A1 JP 2020040287 W JP2020040287 W JP 2020040287W WO 2021085426 A1 WO2021085426 A1 WO 2021085426A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
catalyst
carbon monoxide
solid electrolyte
production apparatus
Prior art date
Application number
PCT/JP2020/040287
Other languages
French (fr)
Japanese (ja)
Inventor
篤 宇根本
晃平 吉川
杉政 昌俊
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2021085426A1 publication Critical patent/WO2021085426A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a carbon monoxide production apparatus.
  • Carbon monoxide (CO) can extract heat by burning it. Further, electric energy can be extracted by using the fuel gas of the solid oxide fuel cell. Further, since it can be used as a raw material for a liquid fuel such as methanol, an apparatus for efficiently producing CO is required.
  • Patent Document 1 describes oxygen ions and hydrogen (H 2 ) by reducing oxygen-containing molecules such as water (H 2 O), carbon dioxide (CO 2), or a mixture thereof.
  • oxygen-containing molecules such as water (H 2 O), carbon dioxide (CO 2), or a mixture thereof.
  • CO 2 carbon dioxide
  • a cell having a perovskite crystalline structure which is an electron conductive phase or a structure similar thereto has been proposed.
  • Patent Document 1 it is an apparatus for producing H 2 and CO by simultaneously electrolyzing CO 2 and H 2 O.
  • This reaction has a large electrode reaction resistance in order to directly electrolyze CO 2, and needs to be operated at a high temperature of, for example, 750 ° C. or higher. Therefore, there is room for improvement from the viewpoint of heat utilization efficiency. Further, at such a high temperature, the products CO and H 2 O react on the electrode surface to produce CO 2 and H 2 . Therefore, there was room for improvement from the viewpoint of conversion efficiency to CO.
  • the carbon monoxide production apparatus for solving the above problems is between the catalyst electrode layer, the counter electrode layer electrically connected to the catalyst electrode layer by wiring, and the catalyst electrode layer and the counter electrode layer.
  • the solid electrolyte layer comprises an ionic conductor
  • the catalyst electrode layer is an electrode that produces H 2 and a reverse shift reaction catalyst that selectively proceeds the reverse shift reaction. It is characterized in that CO is generated by energizing.
  • FIG. 1 is a cross-sectional view of a CO manufacturing apparatus according to an embodiment of the present invention.
  • the CO manufacturing apparatus includes a catalyst electrode layer 101, a counter electrode layer 102, and a solid electrolyte layer 103 arranged between the catalyst electrode layer 101 and the counter electrode layer 102.
  • the catalyst electrode layer 101 and the counter electrode layer 102 are electrically connected by a wiring 104.
  • the catalyst electrode layer 101 has an electrode that produces H 2 and a reverse shift reaction catalyst that selectively advances the reverse shift reaction.
  • the solid electrolyte layer 103 is an ionic conductor.
  • an electrochemical reaction accompanied by generation of hydrogen selectively occurs at the electrode, and a reverse shift reaction selectively occurs at the reverse shift reaction catalyst.
  • the reverse shift reaction is a reaction that produces carbon monoxide and water vapor (water) from carbon dioxide and hydrogen represented by the reaction formula CO 2 + H 2 ⁇ CO + H 2 O.
  • a catalyst that selectively advances a reverse shift reaction is referred to as a reverse shift reaction catalyst.
  • the CO manufacturing apparatus proposed in the present invention needs to include at least a solid electrolyte layer 103, a catalyst electrode layer 101 including a reverse shift reaction catalyst and an electrode, and a counter electrode layer 102, and needs to have a configuration that maintains mechanical strength. There is.
  • the solid electrolyte layer 103 If the solid electrolyte layer 103 is too thick, the ionic conduction resistance will increase and the amount of CO produced may decrease. On the other hand, if the solid electrolyte layer 103 is too thin, the mechanical strength is weakened, and there is a high possibility that damage such as cracks will occur due to changes in gas composition, temperature, vibration, and the like.
  • As a configuration for thinning the solid electrolyte layer 103 there is a method of applying the solid electrolyte layer 103 to the surface of the thick catalyst electrode layer 101 or the counter electrode layer 102 by a dip coating method or the like.
  • the catalyst electrode layer 101 If the catalyst electrode layer 101 is made too thick, the exchange of gas between the gas phase and the catalyst electrode layer 101 will be delayed, and the amount of CO produced may decrease. On the other hand, if the catalyst electrode layer 101 is made too thin, the current collecting resistance at the electrode becomes large, or the residence time of the gas for sufficiently promoting the reverse shift reaction becomes short, so that the amount of CO produced may decrease. There is.
  • the counter electrode layer 102 If the counter electrode layer 102 is made too thick, the release of oxygen gas from the electrode surface to the gas phase will be delayed, and the amount of CO produced may decrease. On the other hand, if the counter electrode layer 102 is made too thin, the current collecting resistance becomes large, the generation rate of oxygen gas becomes slow, and the amount of CO produced may decrease.
  • a porous support layer may be introduced separately from the solid electrolyte layer 103, the catalyst electrode layer 101, and the counter electrode layer 102.
  • the material used for the support layer is not particularly limited, but it needs to be a porous body in order to improve gas permeability.
  • this support layer is arranged on the catalyst electrode layer 101, the counter electrode layer 102, or both layers, the support layer and the catalyst electrode layer 101, and the support layer and the counter electrode layer 102 during the sintering process or operation. It is desirable to select a material that does not form a resistance layer between them.
  • the solid electrolyte layer 103 needs to be dense so that gases having different compositions introduced into the catalyst electrode layer 101 and the counter electrode layer 102 are not mixed.
  • FIG. 2 shows a schematic diagram illustrating the reaction of the CO production apparatus when an oxide ion conductor is used for the solid electrolyte layer.
  • the electrode contained in the catalyst electrode layer 101 reductive decomposition of water by the electrochemical reaction (H 2 O + 2e - ⁇ H 2 + O 2-) are.
  • a reaction CO 2 + H 2 ⁇ CO + H 2 O
  • the oxide ion O 2- conducts the solid electrolyte layer 103 and is supplied to the counter electrode layer 102.
  • oxygen is generated (O 2- ⁇ 1 / 2O 2 + 2e -).
  • FIG. 3 shows a schematic diagram illustrating the reaction of the CO production apparatus when a proton conductor is used for the solid electrolyte layer.
  • the counter electrode layer 102 water is decomposed to generate oxygen by an electrochemical reaction (H 2 O ⁇ 2H + + 2e ⁇ + 1 / 2O 2 ).
  • the protons generated by this reaction are conducted through the solid electrolyte layer 103 and supplied to the catalyst electrode layer 101.
  • the electrode catalyst electrode layer 101 by an electrochemical reaction, hydrogen is produced from the protons and electrons (2H + + 2e - ⁇ H 2).
  • the reverse shift reaction catalyst of the catalyst electrode layer 101 promotes the reaction of producing carbon monoxide and water from carbon dioxide and hydrogen generated at the electrode (CO 2 + H 2 ⁇ CO + H 2 O).
  • the CO manufacturing apparatus proposed in the present invention is operated at 700 ° C. or lower and 200 ° C. or higher, more preferably 450 ° C. or lower and 300 ° C. or higher. This is because when the temperature is high, the CO 2 gas is decomposed on the electrode surface of the catalyst electrode layer 101 to cause caulking, which reduces the electrochemical reaction activity. Further, the generated CO and H 2 O react with each other to form CO 2 , and the CO production efficiency is lowered. This is because if the operating temperature is too low, the reverse shift reaction does not proceed sufficiently, so that CO cannot be produced efficiently.
  • the solid electrolyte layer 103 is an oxide ion (O 2- ) conductor, a proton (H + ) conductor, and a proton (H +) conductor that conducts oxide ions by energizing between the electrode (catalyst electrode layer 101) and the counter electrode layer 102.
  • oxide ion conductors typically introduce oxygen deficiency into the crystal structure by replacing metal elements of oxides with a fluorite-like structure, such as ZrO 2 and CeO 2, with low valence cations.
  • Oxide ion conductors typically introduce oxygen deficiency into the crystal structure by replacing metal elements of oxides with a fluorite-like structure, such as ZrO 2 and CeO 2, with low valence cations.
  • substitution element for example, an alkaline earth metal, a group 3 element including a lanthanoid, or the like can be selected.
  • Specific examples thereof include (Zr, Y) O 2 in which the Zr site of ZrO 2 is replaced with Y, (Ce, Sm) O 2 in which the Ce site of CeO 2 is replaced with Sm, and the like.
  • Zr, Y Zr, Y
  • Ce, Sm Ce site of CeO 2
  • the chemical formula is Zr 0.84 Y 0.16 O 1.92
  • 0.08 mol of oxygen deficiency is introduced per 1 ml. It becomes an oxide ion carrier.
  • a material having a crystal structure of ZrO 2 and containing a substituent is referred to as a ZrO 2 system.
  • Two or more types having a fluorite-type structure may be solid-solved. Further, the number of substitution elements may be two or more.
  • oxide ion conductors such as LaGaO 3
  • Oxide ion carriers can be introduced by substituting low valence cations for La sites, Ga sites, or both of these sites.
  • substitution element of La site and Ga site for example, alkaline earth metal and the like can be selected. Specific examples thereof include (La, Sr) (Ga, Mg) O 3 in which the La site of LaGaO 3 is replaced with Sr and the Ga site is replaced with Mg.
  • the chemical formula is La 0.95 Sr 0.05 Ga 0.95 Mg 0.05 O 2 It is .95 , and 0.05 mL of oxygen deficiency is introduced per 1 mL to become an oxide ion carrier.
  • the perovskite-type oxides such as LaGaO 3
  • La site A site but the Ga site called the B-site
  • either A-site and B-site may be made relatively excessive composition.
  • Proton conductor is typically such SrZrO 3
  • the B-site element of the oxide has a crystalline structure of perovskite type containing an alkaline earth metal, by replacing low-valent cations, the oxygen deficiency in the crystal structure
  • a Group 3 element including a lanthanoid can be selected.
  • Specific examples thereof include Sr (Zr, Y) O 3 in which the Zr site of SrZrO 3 is replaced with Y.
  • Sr (Zr, Y) O 3 in which the Zr site of SrZrO 3 is replaced with Y.
  • the chemical formula is SrZr 0.9 Y 0.1 O 2.95 , and there is an oxygen deficiency of 0.05 mL per 1 ml. be introduced.
  • water dissolves in this oxygen deficiency 2 mol of proton carriers are introduced per 1 mol of water. This introduction reaction is shown in the Kröger-Vink notation table. H 2 O + V O ...
  • O O X 2 (OH) O ⁇ It is expressed by.
  • V O ⁇ ⁇ is the oxygen deficiency
  • O O X is oxygen ions present in the oxygen site
  • (OH) O ⁇ represent respectively the protons defects present in the oxygen site.
  • proton conductors include rare earth phosphates (LaPO 4 , LaP 3 O 9 , LaP 5 O 14 ), rare earth borates (LaBO 4 ), and Li 1-x Sr x NbO 4 with a shaleite-type structure (LaPO 4). 0 ⁇ x ⁇ 1), LaNbO 4 , LaWO 4, and the like can be mentioned.
  • Proton carriers can be introduced by substituting these rare earth sites with alkaline earth metals. When CO 2 is present in the atmosphere and the alkaline earth metal is contained as the main constituent element, the alkaline earth metal forms a carbonate and decomposes.
  • a proton conductor that does not contain alkaline earth metals as the main constituent material.
  • the water dissolved in the proton conductor is desorbed to reduce the proton defect concentration, and the oxide ion conduction becomes dominant.
  • the movable species is a mixed conduction of protons and oxide ions.
  • Two or more of the above having the same crystal structure may be solid-solved. Further, two or more kinds of these ion conductors may be mixed.
  • La 2 ZrO 2 O 7 based pyrochlore like Form a high resistance layer.
  • a layered structure of two or more layers may be used, such as using another solid electrolyte as a reaction barrier layer.
  • CeO 2 based solid electrolyte may be porous.
  • an oxide ion conductor In order to produce CO with high purity, it is desirable to use an oxide ion conductor.
  • an oxide ion conductor, and electrolyte of H 2 O which is the reaction product of the reverse shift reaction catalyst electrode layer 101 it is possible to using H 2 produced by electrolysis as the raw material for the reverse shift reaction, This is because the concentration of H 2 O, which is an impurity, can be reduced to further increase the CO concentration.
  • the catalyst electrode layer 101 includes a reverse shift reaction catalyst and an electrode.
  • the reverse shift reaction catalyst selectively proceeds the chemical reaction between CO 2 and H 2.
  • the reverse shift reaction catalyst of the catalyst electrode layer 101 is composed of a mixture of a transition metal and an oxide serving as a carrier.
  • the transition metal include V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Ru, Rh and the like. Of these, it is desirable to combine Mn, Co, and Cu, which are D-block elements of the 4th period, which enhance the catalytic activity for the reverse shift reaction.
  • the metal catalyst may be an alloy containing at least one of these metals, or a mixture thereof.
  • the oxide as the carrier it is desirable to select an oxide that is unlikely to react with other constituent materials at the firing or sintering temperature and is stable even in a reducing atmosphere.
  • composite oxides such as CeO 2 , ZrO 2 , Al 2 O 3 , MgO, and LaAlO 3.
  • CeO 2 , ZrO 2 , and Al 2 O 3 which further enhance the catalytic activity for the reverse shift reaction by combining with the transition metal.
  • Some of these oxides may be replaced with other elements. Further, it may be a mixture containing at least one of these oxides.
  • the electrode of the catalyst electrode layer 101 selectively reduces and decomposes water by the following electrochemical reaction. H 2 O + 2e - ⁇ H 2 + O 2-
  • the electrode examples include transition metals such as V, Cr, Mn, Fe, Co, Ni, and Cu, Group 10 elements such as Pt, and Group 11 elements such as Au. Of these, it is desirable to use Ni, Pt or the like, which promotes the reduction decomposition reaction of water.
  • the metal contained in the electrode may be an alloy containing at least one of these metals.
  • the electrode When a proton conductor is used as the solid electrolyte, the electrode selectively generates hydrogen by the following electrochemical reaction. 2H + + 2e - ⁇ H 2
  • the electrode examples include platinum group elements such as Pd and Pt, Au and the like. Of these, it is desirable to use Pd, which has a high activity of hydrogen generation reaction and a high solubility of hydrogen.
  • the metal contained in the electrode may be an alloy containing at least one of these metals. Further, in order to increase the contact area with the solid electrolyte and reduce the reaction resistance, it is desirable to use the mixture in combination with the solid electrolyte.
  • the metal element of the reverse shift reaction catalyst, the metal element of the electrode, and the solid electrolyte particles may be mixed to form one layer. good. Further, a laminated structure having two or more layers in which different metals and oxides are combined may be used.
  • Examples of the counter electrode layer 102 include perovskite-type oxides containing rare earth elements and transition metal elements and having electron conductivity.
  • rare earth elements such as LaMnO 3 , LaCoO 3 , LaFeO 3 , and SmCoO 3 are replaced with alkaline earth metal elements, and the chemical formulas are (La, Sr) MnO 3 , La 1-x Sr x MnO. It is expressed as 3 (0 ⁇ x ⁇ 1) or the like.
  • the substitution element may contain two or more kinds of other alkaline earth metal elements such as Ca and Ba. Further, two or more kinds of transition metal elements may be contained. Further, it may be a mixture containing two or more kinds of these oxides.
  • Examples of the counter electrode layer 102 include platinum group elements such as Pd and Pt, Au and the like. Of these, it is desirable to use Pt, which has a high activity of oxygen evolution reaction.
  • the metal contained in the counter electrode layer 102 may be an alloy containing at least one of these metals. Further, in order to increase the contact area with the solid electrolyte layer 103 and reduce the reaction resistance, it is desirable to use the mixture in combination with the solid electrolyte layer 103.
  • Example 1> ⁇ Preparation of solid electrolyte layer 103>
  • Commercially available Zr 0.84 Y 0.16 O 1.92 (hereinafter, YSZ) powder was weighed to a predetermined weight and pressed with a hydraulic press. By heat-treating this in air at 1350 ° C. for 3 hours, a dense electrolyte membrane having a diameter of 13 mm could be obtained. Both sides of the electrolyte membrane were polished with water-resistant abrasive paper to a thickness of 500 ⁇ m.
  • the electrode slurry was applied to the surface of the solid electrolyte layer 103 with a diameter of 8 mm using a screen printing machine, dried, and then the reverse shift reaction catalyst was further applied to the electrode surface with a diameter of 8 mm. This was heat treated at 1200 ° C. in air for 1 hour. By observing the cross section by SEM, the thickness of the reverse shift reaction catalyst layer and the electrode was 50 ⁇ m, respectively.
  • LSM La 0.8 Sr 0.2 MnO 3- ⁇
  • La 2 CO 3 , SrCO 3 , and Mn 2 O 3 were used as starting materials. These were weighed at a constant ratio composition, mixed with a zirconia mortar and pestle, and heat-treated in air at 1200 ° C. for 5 hours to obtain LSM. The crystal structure was evaluated by X-ray diffraction measurement, and it was confirmed that there was no diffraction peak derived from impurities. LSM was dispersed in a solvent to form a slurry.
  • a slurry of counter electrode was applied using a screen printing machine to a diameter of 8 mm, dried, and then heat-treated in air at 1000 ° C. for 1 hour.
  • the thickness of the counter electrode was 100 ⁇ m.
  • Examples 2 to 8 and Comparative Examples 1 to 6 A CO production cell was prepared in the same manner as in Example 1 except that the compositions of the catalyst electrode layer 101 and the counter electrode layer 102, the introduced gas composition, and the amount of energization were adjusted as shown in Table 1, and the downstream side of the catalyst electrode layer 101 was prepared.
  • the gas composition was analyzed by gas chromatography and the CO concentration was measured.
  • Example 1 a reverse shift reaction catalyst and an electrode were introduced into the catalyst electrode layer 101, and a cell in which the YSZ layer, which is an oxygen ion conductor, was sandwiched between the reverse shift reaction catalyst and the electrode was formed by the oxygen gas generating electrode.
  • a mixed gas of CO 2 and H 2 O was introduced into 101 and energized, CO was detected in the outlet gas of the catalyst electrode layer 101, and the concentration was 0.04%.
  • CO was not detected when the power was not applied.
  • H 2 O when energized, H 2 O is electrochemically reduced and decomposed at the electrode contained in the catalyst electrode layer 101 to produce H 2 and O 2- , and H 2 undergoes a reverse shift reaction with CO 2 to cause CO.
  • O 2- moved the solid electrolyte to reach the counter electrode, indicating that it was released into the gas phase as O 2.
  • Example 2 From Comparative Example 2, in the cell in which the electrode was not introduced into the catalyst electrode layer, the internal resistance increased and energization could not be performed. Since H 2 O electrolysis reaction does not proceed, CO was not detected. In Example 2, the CO concentration was 0.04%, which was about the same as in Example 1. From this, it was found that even if the Ce site of CeO 2 contained in the reverse shift reaction catalyst of the catalyst electrode layer 101 is partially replaced with another element, the catalytic activity is not impaired.
  • Example 3 the CO concentration was 0.081%, which was more than twice that of Example 1.
  • Example 4 the operating temperature was set to 300 ° C. Since the amount of electric current is the same as in Example 1, water electrolysis of H 2 O, i.e., the amount of generated H 2 is the same as in Example 1, CO concentration was reduced to 0.017%. From this, it was found that the higher the operating temperature, the easier the reverse shift reaction to proceed.
  • Example 5 and Example 6 the metal elements contained in the reverse shift reaction catalyst were Mn and Co, respectively.
  • the CO concentrations in Examples 5 and 6 were 0.028% and 0.04%, respectively, depending on the metal element composition. Since CO could be produced, it was found that Cu, Mn, and Co are desirable as the metal elements to be used.
  • Example 7 Ce 0.9 Gd 0.1 O 1.95 (hereinafter referred to as GDC) was used for the solid electrolyte layer 103. Since the CO concentration was 0.04%, which was the same as that of the cell using YSZ (Example 1), it was found that the oxygen ion conductor used as the solid electrolyte layer 103 can be applied regardless of the composition. It was.
  • Example 1 the reverse shift reaction catalyst of the catalyst electrode layer 101 and the electrode have a two-layer structure, whereas in Example 8, the reverse shift reaction catalyst, the metal element contained in the electrode, and GDC are mixed to form one layer. Although it was structured, 0.014% CO was detected. Therefore, the catalyst electrode layer 101 was found that oxide to a metal element to promote the reverse shift reaction and H 2 O electrolyte may be contained in the same layer.
  • Comparative Example 4 although the metal elements contained in the electrode catalyst electrode layer was Cu, H 2 O electrolysis activity is low, the cell can not be energized by high resistance. This is, H 2 O electrolysis activity depends on the metal elements in the electrode, it has been found that it is desirable to use Ni.
  • Comparative Example 5 CeO 2 was used as the oxide in the electrode, but the concentration of the oxide ion carrier was very small because it did not contain a substituent, and the cell resistance was low because the oxide ion conductivity was poor. It was too big to energize. Therefore, in order to increase of H 2 O electrolysis activity it was found to be desirable to use an oxygen ion conductor in the oxide in the electrode.
  • Example 9 when the solid electrolyte layer 103 was energized as the LSN of the proton conductor, 0.008% of CO could be detected. On the other hand, in Comparative Example 7 which was not energized, the CO concentration was less than 0.002%. In Comparative Example 8 the counter electrode layer 102 was lower Au electrode of H 2 O decomposition activity, large cell resistance, it could not be energized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Abstract

An apparatus for producing carbon monoxide is characterized by comprising a catalyst electrode layer (101), a counter electrode layer (102) electrically connected to the catalyst electrode layer (101) by wiring (104), and a solid electrolyte layer (103) positioned between the catalyst electrode layer (101) and the counter electrode layer (102), the solid electrolyte including an ion conductor, the catalyst electrode layer (101) having an electrode for generating H2 and a reverse shift reaction catalyst for selectively accelerating a reverse shift reaction, and CO being generated by supplying of electricity to the catalyst electrode layer (101).

Description

一酸化炭素製造装置Carbon monoxide production equipment
 本発明は、一酸化炭素製造装置に関する。 The present invention relates to a carbon monoxide production apparatus.
 一酸化炭素(CO)は、燃焼させることで熱を取り出すことができる。また、固体酸化物形燃料電池の燃料ガスとすることで電気エネルギーを取り出すことができる。さらに、メタノール等の液体燃料の原料とすることができるため、効率良くCOを製造する装置が求められている。 Carbon monoxide (CO) can extract heat by burning it. Further, electric energy can be extracted by using the fuel gas of the solid oxide fuel cell. Further, since it can be used as a raw material for a liquid fuel such as methanol, an apparatus for efficiently producing CO is required.
 従来電解セルの技術として、特許文献1には、水(HO)、二酸化炭素(CO)、または、これらの混合物などの含酸素分子を還元して、酸素イオンと水素(H)、COまたは、これらの混合物などの燃料分子を製造する電解セルを提供するため、電子伝導相であるペロブスカイト結晶性構造、またはそれに類似する構造を有するセルが提案されている。 As a conventional electrolytic cell technology, Patent Document 1 describes oxygen ions and hydrogen (H 2 ) by reducing oxygen-containing molecules such as water (H 2 O), carbon dioxide (CO 2), or a mixture thereof. In order to provide an electrolytic cell for producing fuel molecules such as CO or a mixture thereof, a cell having a perovskite crystalline structure which is an electron conductive phase or a structure similar thereto has been proposed.
特表2009-544843号公報Special Table 2009-544843
 上記特許文献1では、COとHOを同時に電気分解してHとCOを製造する装置である。この反応は、COを直接電気分解するために電極反応抵抗が大きく、例えば750℃以上といった高温で動作させる必要があるため、熱利用効率の観点から、改善の余地があった。さらに、このような高温では、生成物であるCOとHOが電極表面で反応してCOとHが生成する。このため、COへの変換効率の観点から、改善の余地があった。 In Patent Document 1, it is an apparatus for producing H 2 and CO by simultaneously electrolyzing CO 2 and H 2 O. This reaction has a large electrode reaction resistance in order to directly electrolyze CO 2, and needs to be operated at a high temperature of, for example, 750 ° C. or higher. Therefore, there is room for improvement from the viewpoint of heat utilization efficiency. Further, at such a high temperature, the products CO and H 2 O react on the electrode surface to produce CO 2 and H 2 . Therefore, there was room for improvement from the viewpoint of conversion efficiency to CO.
 このような観点から、本発明は、効率良くCOを製造する装置を提供することを課題とする。 From this point of view, it is an object of the present invention to provide an apparatus for efficiently producing CO.
 上記課題を解決するための本発明に係る一酸化炭素製造装置は、触媒極層と、前記触媒極層と配線により電気的に接続される対極層と、前記触媒極層と前記対極層の間に配置される固体電解質層と、を備え、前記固体電解質層はイオン伝導体を含み、前記触媒極層は、Hを生成する電極と、逆シフト反応を選択的に進行させる逆シフト反応触媒とを有し、通電することによりCOが生成することを特徴とする。 The carbon monoxide production apparatus according to the present invention for solving the above problems is between the catalyst electrode layer, the counter electrode layer electrically connected to the catalyst electrode layer by wiring, and the catalyst electrode layer and the counter electrode layer. The solid electrolyte layer comprises an ionic conductor, and the catalyst electrode layer is an electrode that produces H 2 and a reverse shift reaction catalyst that selectively proceeds the reverse shift reaction. It is characterized in that CO is generated by energizing.
 本発明によれば、効率よくCOを製造する装置を提供することができる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。 According to the present invention, it is possible to provide an apparatus for efficiently producing CO. Issues, configurations and effects other than those described above will be clarified by the following description of the embodiments.
一実施形態に係るCO製造装置の断面図である。It is sectional drawing of the CO manufacturing apparatus which concerns on one Embodiment. 一実施形態に係るCO製造装置の反応を説明する図である。It is a figure explaining the reaction of the CO production apparatus which concerns on one Embodiment. 一実施形態に係るCO製造装置の反応を説明する図である。It is a figure explaining the reaction of the CO production apparatus which concerns on one Embodiment.
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更及び修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to drawings and the like. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions, and various works by those skilled in the art will be made within the scope of the technical ideas disclosed in the present specification. It can be changed and modified. Further, in all the drawings for explaining the present invention, those having the same function may be designated by the same reference numerals, and the repeated description thereof may be omitted.
 図1は、本発明の一実施形態に係るCO製造装置の断面図である。CO製造装置は、触媒極層101と、対極層102と、触媒極層101と対極層102の間に配置される固体電解質層103とを備える。触媒極層101と対極層102とは、配線104により電気的に接続されている。 FIG. 1 is a cross-sectional view of a CO manufacturing apparatus according to an embodiment of the present invention. The CO manufacturing apparatus includes a catalyst electrode layer 101, a counter electrode layer 102, and a solid electrolyte layer 103 arranged between the catalyst electrode layer 101 and the counter electrode layer 102. The catalyst electrode layer 101 and the counter electrode layer 102 are electrically connected by a wiring 104.
 触媒極層101は、Hを生成する電極と、逆シフト反応を選択的に進行させる逆シフト反応触媒とを有する。固体電解質層103は、イオン伝導体である。外部電源105を用いて通電することにより、触媒極層101においては、電極では、水素の発生を伴う電気化学反応が選択的におこり、逆シフト反応触媒では、逆シフト反応が選択的におこりCOが生成する。ここで、逆シフト反応とは、反応式CO+H→CO+HOで表される二酸化炭素と水素から一酸化炭素と水蒸気(水)を生成する反応である。本明細書において、逆シフト反応を選択的に進行させる触媒を逆シフト反応触媒という。 The catalyst electrode layer 101 has an electrode that produces H 2 and a reverse shift reaction catalyst that selectively advances the reverse shift reaction. The solid electrolyte layer 103 is an ionic conductor. By energizing using the external power source 105, in the catalyst electrode layer 101, an electrochemical reaction accompanied by generation of hydrogen selectively occurs at the electrode, and a reverse shift reaction selectively occurs at the reverse shift reaction catalyst. Is generated. Here, the reverse shift reaction is a reaction that produces carbon monoxide and water vapor (water) from carbon dioxide and hydrogen represented by the reaction formula CO 2 + H 2 → CO + H 2 O. In the present specification, a catalyst that selectively advances a reverse shift reaction is referred to as a reverse shift reaction catalyst.
 <各層の配置>
 本発明で提案するCO製造装置では、固体電解質層103と、逆シフト反応触媒と電極を含む触媒極層101と、対極層102を少なくとも含む必要があり、機械的強度を保った構成にする必要がある。
<Arrangement of each layer>
The CO manufacturing apparatus proposed in the present invention needs to include at least a solid electrolyte layer 103, a catalyst electrode layer 101 including a reverse shift reaction catalyst and an electrode, and a counter electrode layer 102, and needs to have a configuration that maintains mechanical strength. There is.
 固体電解質層103が厚すぎると、イオン伝導抵抗が大きくなり、CO製造量が少なくなる可能性がある。一方、固体電解質層103が薄すぎると、機械強度が弱くなり、ガス組成や温度の変化、振動などによってわれ等の破損が起こる可能性が高くなる。固体電解質層103を薄くするための構成として、厚みのある触媒極層101、あるいは対極層102の表面にディップコート法などで塗布する方法がある。 If the solid electrolyte layer 103 is too thick, the ionic conduction resistance will increase and the amount of CO produced may decrease. On the other hand, if the solid electrolyte layer 103 is too thin, the mechanical strength is weakened, and there is a high possibility that damage such as cracks will occur due to changes in gas composition, temperature, vibration, and the like. As a configuration for thinning the solid electrolyte layer 103, there is a method of applying the solid electrolyte layer 103 to the surface of the thick catalyst electrode layer 101 or the counter electrode layer 102 by a dip coating method or the like.
 触媒極層101を厚くしすぎると、気相と触媒極層101内のガスの交換が遅くなり、CO製造量が少なくなる可能性がある。一方、触媒極層101を薄くしすぎると、電極での集電抵抗が大きくなる、あるいは、逆シフト反応を十分に促すためのガスの滞留時間が短くなるため、CO製造量が少なくなる可能性がある。 If the catalyst electrode layer 101 is made too thick, the exchange of gas between the gas phase and the catalyst electrode layer 101 will be delayed, and the amount of CO produced may decrease. On the other hand, if the catalyst electrode layer 101 is made too thin, the current collecting resistance at the electrode becomes large, or the residence time of the gas for sufficiently promoting the reverse shift reaction becomes short, so that the amount of CO produced may decrease. There is.
 対極層102を厚くしすぎると、電極表面からの気相への酸素ガスの放出が遅くなり、CO製造量が少なくなる可能性がある。一方、対極層102を薄くしすぎると、集電抵抗が大きくなり、酸素ガスの発生速度が遅くなって、CO製造量が少なくなる可能性がある。 If the counter electrode layer 102 is made too thick, the release of oxygen gas from the electrode surface to the gas phase will be delayed, and the amount of CO produced may decrease. On the other hand, if the counter electrode layer 102 is made too thin, the current collecting resistance becomes large, the generation rate of oxygen gas becomes slow, and the amount of CO produced may decrease.
 いずれの層も薄膜化した上で機械強度を高めるためには、固体電解質層103、触媒極層101および対極層102とは別に、多孔質の支持層を導入しても良い。支持層に用いる材料に特に制約はないが、ガス通気性を高めるため、多孔質体である必要がある。また、この支持層を、触媒極層101、対極層102、あるいはこの両方の層上に配置する場合、焼結プロセスや運転中に、支持層と触媒極層101、支持層と対極層102の間で抵抗層の形成が起こらない材料を選定することが望ましい。固体電解質層103は、触媒極層101と対極層102にそれぞれ導入される、組成の異なるガスが混合しないよう、緻密である必要がある。 In order to increase the mechanical strength after thinning each layer, a porous support layer may be introduced separately from the solid electrolyte layer 103, the catalyst electrode layer 101, and the counter electrode layer 102. The material used for the support layer is not particularly limited, but it needs to be a porous body in order to improve gas permeability. Further, when this support layer is arranged on the catalyst electrode layer 101, the counter electrode layer 102, or both layers, the support layer and the catalyst electrode layer 101, and the support layer and the counter electrode layer 102 during the sintering process or operation. It is desirable to select a material that does not form a resistance layer between them. The solid electrolyte layer 103 needs to be dense so that gases having different compositions introduced into the catalyst electrode layer 101 and the counter electrode layer 102 are not mixed.
 <動作原理>
 以下、本発明の一実施形態に係るCO製造装置のCO生成原理を説明する。図2に固体電解質層に酸化物イオン伝導体を用いた場合のCO製造装置の反応を説明する模式図を示す。
<Principle of operation>
Hereinafter, the CO generation principle of the CO production apparatus according to the embodiment of the present invention will be described. FIG. 2 shows a schematic diagram illustrating the reaction of the CO production apparatus when an oxide ion conductor is used for the solid electrolyte layer.
 固体電解質層103に酸化物イオン伝導体を用いた場合、触媒極層101に含まれる電極では、電気化学反応により水を還元分解(HO+2e→H+O2-)する。逆シフト反応触媒では、二酸化炭素と水の電気分解により生成された水素とから、一酸化炭素と水を生成する反応(CO+H→CO+HO)が進行する。触媒極層101において、逆シフト反応触媒により生成された水は、電極での水の電気分解に利用される。酸化物イオンO2-は、固体電解質層103を伝導し、対極層102に供給される。対極層102では、電気化学反応により、酸素が生成する(O2-→1/2O+2e)。 If the solid electrolyte layer 103 using an oxide ion conductor, the electrode contained in the catalyst electrode layer 101, reductive decomposition of water by the electrochemical reaction (H 2 O + 2e - → H 2 + O 2-) are. In the reverse shift reaction catalyst, a reaction (CO 2 + H 2 → CO + H 2 O) for producing carbon monoxide and water from carbon dioxide and hydrogen produced by electrolysis of water proceeds. In the catalyst electrode layer 101, the water produced by the reverse shift reaction catalyst is used for electrolysis of water at the electrode. The oxide ion O 2- conducts the solid electrolyte layer 103 and is supplied to the counter electrode layer 102. In the counter electrode layer 102, by the electrochemical reaction, oxygen is generated (O 2- → 1 / 2O 2 + 2e -).
 図3に固体電解質層にプロトン伝導体を用いた場合のCO製造装置の反応を説明する模式図を示す。対極層102では、電気化学反応により、水が分解して酸素が発生する(HO→2H+2e+1/2O)。この反応により生成したプロトンは、固体電解質層103を伝導し、触媒極層101に供給される。触媒極層101の電極では、電気化学反応により、プロトンと電子とから水素が生成する(2H+2e→H)。触媒極層101の逆シフト反応触媒は、二酸化炭素と電極で生成した水素とから一酸化炭素と水とを生成する反応を促進する(CO+H→CO+HO)。 FIG. 3 shows a schematic diagram illustrating the reaction of the CO production apparatus when a proton conductor is used for the solid electrolyte layer. In the counter electrode layer 102, water is decomposed to generate oxygen by an electrochemical reaction (H 2 O → 2H + + 2e + 1 / 2O 2 ). The protons generated by this reaction are conducted through the solid electrolyte layer 103 and supplied to the catalyst electrode layer 101. The electrode catalyst electrode layer 101, by an electrochemical reaction, hydrogen is produced from the protons and electrons (2H + + 2e - → H 2). The reverse shift reaction catalyst of the catalyst electrode layer 101 promotes the reaction of producing carbon monoxide and water from carbon dioxide and hydrogen generated at the electrode (CO 2 + H 2 → CO + H 2 O).
 図2、図3に係るCO製造装置では、上記反応が一段で起こる。電気化学反応と化学反応とを用いることにより、COの還元反応は高温で動作させる必要があるが、高温動作が必要な電気化学反応(COの還元反応)に代り、化学反応(CO+H→CO+HO)を利用することにより、低温動作が可能となり、熱利用効率が向上する。 In the CO manufacturing apparatus according to FIGS. 2 and 3, the above reaction occurs in one stage. The use of the electrochemical reaction and a chemical reaction, reduction reaction of CO 2 it is necessary to operate at high temperatures, instead the high temperature operation is necessary electrochemical reactions (reduction reaction of CO 2), the chemical reaction (CO 2 By using + H 2 → CO + H 2 O), low temperature operation becomes possible and heat utilization efficiency is improved.
 本発明で提案するCO製造装置では、700℃以下200℃以上、より望ましくは450℃以下300℃以上で動作させる。温度が高いとCOガスが触媒電極層101の電極表面で分解してコーキングが起こり、電気化学反応活性を低下させるためである。また、生成したCOとHOが反応してCOとなり、CO製造効率が低下するためである。動作温度が低すぎると、逆シフト反応が十分に進行しないため、効率良くCOが製造できないためである。 The CO manufacturing apparatus proposed in the present invention is operated at 700 ° C. or lower and 200 ° C. or higher, more preferably 450 ° C. or lower and 300 ° C. or higher. This is because when the temperature is high, the CO 2 gas is decomposed on the electrode surface of the catalyst electrode layer 101 to cause caulking, which reduces the electrochemical reaction activity. Further, the generated CO and H 2 O react with each other to form CO 2 , and the CO production efficiency is lowered. This is because if the operating temperature is too low, the reverse shift reaction does not proceed sufficiently, so that CO cannot be produced efficiently.
 <固体電解質層>
 固体電解質層103は、電極(触媒極層101)と対極層102間に通電することにより、酸化物イオンを伝導する酸化物イオン(O2-)伝導体、プロトン(H)伝導体、および酸化物イオンとプロトンの混合伝導体がある。酸化物イオン伝導体は、代表的には、ZrOやCeOなど、蛍石型構造を有する酸化物の金属元素を、低原子価カチオンで置き換えることで、結晶構造に酸素欠損を導入し、この酸素欠損が酸化物イオンキャリアとなる酸化物の材料群がある。
<Solid electrolyte layer>
The solid electrolyte layer 103 is an oxide ion (O 2- ) conductor, a proton (H + ) conductor, and a proton (H +) conductor that conducts oxide ions by energizing between the electrode (catalyst electrode layer 101) and the counter electrode layer 102. There is a mixed conductor of oxide ions and protons. Oxide ion conductors typically introduce oxygen deficiency into the crystal structure by replacing metal elements of oxides with a fluorite-like structure, such as ZrO 2 and CeO 2, with low valence cations. There is a group of oxide materials in which this oxygen deficiency becomes an oxide ion carrier.
 置換元素としては、例えば、アルカリ土類金属や、ランタノイドを含む、第3族元素などを選ぶことができる。具体的には、ZrOのZrサイトをYで置換した(Zr,Y)Oや、CeOのCeサイトをSmで置換した(Ce,Sm)O等が挙げられる。例えば、ZrOに0.08mоlのYを固溶させた場合、化学式はZr0.840.161.92であり、1mоlあたり、0.08mоlの酸素欠損が導入されて酸化物イオンキャリアとなる。以降、ZrOの結晶構造を有しつつ、置換元素を含む材料をZrO系と称する。蛍石型構造を有するものを2種類以上、固溶させても良い。また、置換元素は2種類以上であっても良い。 As the substitution element, for example, an alkaline earth metal, a group 3 element including a lanthanoid, or the like can be selected. Specific examples thereof include (Zr, Y) O 2 in which the Zr site of ZrO 2 is replaced with Y, (Ce, Sm) O 2 in which the Ce site of CeO 2 is replaced with Sm, and the like. For example, when 0.08 mol of Y 2 O 3 is dissolved in ZrO 2 , the chemical formula is Zr 0.84 Y 0.16 O 1.92 , and 0.08 mol of oxygen deficiency is introduced per 1 ml. It becomes an oxide ion carrier. Hereinafter, a material having a crystal structure of ZrO 2 and containing a substituent is referred to as a ZrO 2 system. Two or more types having a fluorite-type structure may be solid-solved. Further, the number of substitution elements may be two or more.
 他の酸化物イオン伝導体として、LaGaOなど、希土類元素を含むペロブスカイト型構造を有するものもある。Laサイト、Gaサイト、あるいは、これらの両サイトに低原子価カチオンを置換することで、酸化物イオンキャリアを導入することができる。LaサイトおよびGaサイトの置換元素として、例えば、アルカリ土類金属などを選ぶことができる。具体的には、LaGaOのLaサイトをSrで、GaサイトをMgで置換した(La,Sr)(Ga,Mg)O等が挙げられる。例えば、LaGaOのLaサイトに0.05mоlのSrOを、Gaサイトに0.05mоlのMgOを固溶させた場合、化学式はLa0.95Sr0.05Ga0.95Mg0.052.95であり、1mоlあたり、0.05mоlの酸素欠損が導入されて酸化物イオンキャリアとなる。また、LaGaOのようなペロブスカイト型酸化物の場合、LaサイトをAサイト、GaサイトをBサイトと呼ぶが、AサイトとBサイトのいずれかが相対的に過剰組成になっていても良い。 Other oxide ion conductors, such as LaGaO 3 , have a perovskite-type structure containing rare earth elements. Oxide ion carriers can be introduced by substituting low valence cations for La sites, Ga sites, or both of these sites. As the substitution element of La site and Ga site, for example, alkaline earth metal and the like can be selected. Specific examples thereof include (La, Sr) (Ga, Mg) O 3 in which the La site of LaGaO 3 is replaced with Sr and the Ga site is replaced with Mg. For example, when 0.05 mol SrO is dissolved in the La site of LaGaO 3 and 0.05 mol of MgO is dissolved in the Ga site, the chemical formula is La 0.95 Sr 0.05 Ga 0.95 Mg 0.05 O 2 It is .95 , and 0.05 mL of oxygen deficiency is introduced per 1 mL to become an oxide ion carrier. In addition, in the case of the perovskite-type oxides such as LaGaO 3, La site A site, but the Ga site called the B-site, either A-site and B-site may be made relatively excessive composition.
 プロトン伝導体は、代表的には、SrZrOなど、アルカリ土類金属を含むペロブスカイト型の結晶構造をとる酸化物のBサイト元素を、低原子価カチオンで置き換えることで、結晶構造に酸素欠損を導入し、さらに、この酸素欠損に雰囲気水蒸気(HO)が溶解することでプロトンキャリアが導入される酸化物の材料群がある。 Proton conductor is typically such SrZrO 3, the B-site element of the oxide has a crystalline structure of perovskite type containing an alkaline earth metal, by replacing low-valent cations, the oxygen deficiency in the crystal structure There is a group of oxide materials that are introduced and further, proton carriers are introduced by dissolving atmospheric water vapor (H 2 O) in this oxygen deficiency.
 置換元素としては、例えば、ランタノイドを含む、第3族元素などを選ぶことができる。具体的には、SrZrOのZrサイトをYで置換したSr(Zr,Y)O等が挙げられる。例えば、SrZrOのZrサイトに0.05mоlのYを溶解させた場合、化学式は、SrZr0.90.12.95であり、1mоlあたり、0.05mоlの酸素欠損が導入される。さらに、この酸素欠損に水が溶解することで水1molあたり、2molのプロトンキャリアが導入される。この導入反応は、Kroger-Vinkの表記表で、
        HO+V ・・+O  = 2(OH)
で表現される。なお、V ・・は、酸素欠損を、O は、酸素サイトに存在する酸素イオンを、(OH) は、酸素サイトに存在するプロトン欠陥をそれぞれ表す。
As the substitution element, for example, a Group 3 element including a lanthanoid can be selected. Specific examples thereof include Sr (Zr, Y) O 3 in which the Zr site of SrZrO 3 is replaced with Y. For example, when 0.05 mL of Y 2 O 3 is dissolved in the Zr site of SrZrO 3 , the chemical formula is SrZr 0.9 Y 0.1 O 2.95 , and there is an oxygen deficiency of 0.05 mL per 1 ml. be introduced. Further, when water dissolves in this oxygen deficiency, 2 mol of proton carriers are introduced per 1 mol of water. This introduction reaction is shown in the Kröger-Vink notation table.
H 2 O + V O ... + O O X = 2 (OH) O
It is expressed by. Incidentally, V O · · is the oxygen deficiency, O O X is oxygen ions present in the oxygen site, (OH) O · represent respectively the protons defects present in the oxygen site.
 他のプロトン伝導体として、希土類リン酸塩(LaPO、LaP、LaP14)や希土類ホウ酸塩(LaBO)、シェーライト型構造を有するLi1-xSrNbO(0<x≦1)、LaNbO、LaWO等が挙げられる。これらの希土類サイトをアルカリ土類金属で置換することにより、プロトンキャリアを導入することができる。雰囲気にCOが存在する場合、主構成元素としてアルカリ土類金属が含まれると、アルカリ土類金属が炭酸塩を形成して分解する。製造装置の長寿命化の観点から、アルカリ土類金属を主構成材料として含まないプロトン伝導体を用いるのが望ましい。また、プロトン伝導体は、例えば600℃以上の高温領域では、プロトン伝導体に溶解した水が脱離してプロトン欠陥濃度が減少し、酸化物イオン伝導が支配的になるものもあるが、本発明においては、可動種がプロトンと酸化物イオンの混合伝導であっても成立する。上記、同一結晶構造を有するものを2種類以上固溶させても良い。また、これらイオン伝導体を2種類以上混合させても良い。 Other proton conductors include rare earth phosphates (LaPO 4 , LaP 3 O 9 , LaP 5 O 14 ), rare earth borates (LaBO 4 ), and Li 1-x Sr x NbO 4 with a shaleite-type structure (LaPO 4). 0 <x ≦ 1), LaNbO 4 , LaWO 4, and the like can be mentioned. Proton carriers can be introduced by substituting these rare earth sites with alkaline earth metals. When CO 2 is present in the atmosphere and the alkaline earth metal is contained as the main constituent element, the alkaline earth metal forms a carbonate and decomposes. From the viewpoint of extending the life of the manufacturing equipment, it is desirable to use a proton conductor that does not contain alkaline earth metals as the main constituent material. Further, in some proton conductors, for example, in a high temperature region of 600 ° C. or higher, the water dissolved in the proton conductor is desorbed to reduce the proton defect concentration, and the oxide ion conduction becomes dominant. In, even if the movable species is a mixed conduction of protons and oxide ions. Two or more of the above having the same crystal structure may be solid-solved. Further, two or more kinds of these ion conductors may be mixed.
 例えば、ZrO系固体電解質を用いる場合、後述の対極層102とZrO界面において、焼結過程、あるいは、長時間の動作によって構成元素が相互拡散し、LaZr系パイロクロア等の高抵抗層を形成する。このような劣化を促す反応を抑制するため、他の固体電解質を反応バリア層とするなど、2層以上の層状構造としても良い。具体的には、ZrO系固体電解質層と対極層102の間に、CeO系固体電解質を配置する方法である。この場合、CeO系固体電解質は、多孔質であっても良い。 For example, when a ZrO 2 based solid electrolyte, the counter electrode layer 102 and the ZrO 2 surface will be described later, the sintering process or constitute elements interdiffusion after a long-term operation, La 2 Zr 2 O 7 based pyrochlore like Form a high resistance layer. In order to suppress such a reaction that promotes deterioration, a layered structure of two or more layers may be used, such as using another solid electrolyte as a reaction barrier layer. Specifically, it is a method of arranging a CeO 2 system solid electrolyte between the ZrO 2 system solid electrolyte layer and the counter electrode layer 102. In this case, CeO 2 based solid electrolyte may be porous.
 COを高純度で製造するためには、酸化物イオン伝導体を用いるのが望ましい。酸化物イオン伝導体を用いる場合、触媒極層101の逆シフト反応の反応生成物であるHOを電解し、電解によって生じたHを逆シフト反応の原料として使用することができるので、不純物であるHOの濃度を低減してよりCO濃度を高めることができるためである。 In order to produce CO with high purity, it is desirable to use an oxide ion conductor. When using an oxide ion conductor, and electrolyte of H 2 O which is the reaction product of the reverse shift reaction catalyst electrode layer 101, it is possible to using H 2 produced by electrolysis as the raw material for the reverse shift reaction, This is because the concentration of H 2 O, which is an impurity, can be reduced to further increase the CO concentration.
 <触媒極層>
 触媒極層101は、前記のとおり、逆シフト反応触媒と電極とを含む。逆シフト反応触媒は、COとHの化学反応を選択的に進行させる。
        CO + H → CO + H
<Catalyst electrode layer>
As described above, the catalyst electrode layer 101 includes a reverse shift reaction catalyst and an electrode. The reverse shift reaction catalyst selectively proceeds the chemical reaction between CO 2 and H 2.
CO 2 + H 2 → CO + H 2 O
 触媒極層101の逆シフト反応触媒は、遷移金属と担体となる酸化物の混合物からなる。遷移金属としては、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Ru、Rh等が挙げられる。このうち、逆シフト反応に対する触媒活性を高める、第4周期のDブロック元素であるMn、Co、Cuを組み合わせるのが望ましい。金属触媒はこれらの金属を少なくとも1種類以上含む合金、あるいは、混合物としても良い。また、担体となる酸化物としては、焼成や焼結温度において他の構成材料との反応が起こりにくく、還元雰囲気でも安定な酸化物を選ぶのが望ましい。具体的には、CeO、ZrO、Al、MgOや、LaAlO等の複合酸化物等が挙げられる。このうち、遷移金属との組み合わせにより、逆シフト反応に対する触媒活性をより高める、CeO、ZrO、Alを組み合わせるのが望ましい。これら酸化物は、一部が他の元素に置換されていても良い。また、これら酸化物を少なくとも1種類以上含む混合物としても良い。 The reverse shift reaction catalyst of the catalyst electrode layer 101 is composed of a mixture of a transition metal and an oxide serving as a carrier. Examples of the transition metal include V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Ru, Rh and the like. Of these, it is desirable to combine Mn, Co, and Cu, which are D-block elements of the 4th period, which enhance the catalytic activity for the reverse shift reaction. The metal catalyst may be an alloy containing at least one of these metals, or a mixture thereof. Further, as the oxide as the carrier, it is desirable to select an oxide that is unlikely to react with other constituent materials at the firing or sintering temperature and is stable even in a reducing atmosphere. Specific examples thereof include composite oxides such as CeO 2 , ZrO 2 , Al 2 O 3 , MgO, and LaAlO 3. Of these, it is desirable to combine CeO 2 , ZrO 2 , and Al 2 O 3 , which further enhance the catalytic activity for the reverse shift reaction by combining with the transition metal. Some of these oxides may be replaced with other elements. Further, it may be a mixture containing at least one of these oxides.
 触媒極層101の電極は、固体電解質に酸化物イオン伝導体を用いる場合、以下の電気化学反応により、選択的に水を還元分解する。
        HO + 2e → H + O2-
When an oxide ion conductor is used as the solid electrolyte, the electrode of the catalyst electrode layer 101 selectively reduces and decomposes water by the following electrochemical reaction.
H 2 O + 2e - → H 2 + O 2-
 電極としては、V、Cr、Mn、Fe、Co、Ni、Cu等の遷移金属や、Pt等の第10族元素やAu等の第11族元素等が挙げられる。このうち、水の還元分解反応を促進する、NiやPt等を用いるのが望ましい。電極に含まれる金属は、これらの金属を少なくとも1種類以上含む合金としても良い。 Examples of the electrode include transition metals such as V, Cr, Mn, Fe, Co, Ni, and Cu, Group 10 elements such as Pt, and Group 11 elements such as Au. Of these, it is desirable to use Ni, Pt or the like, which promotes the reduction decomposition reaction of water. The metal contained in the electrode may be an alloy containing at least one of these metals.
 また、電極は、固体電解質にプロトン伝導体を用いる場合、以下の電気化学反応により、選択的に水素を発生する。
        2H + 2e → H
When a proton conductor is used as the solid electrolyte, the electrode selectively generates hydrogen by the following electrochemical reaction.
2H + + 2e - → H 2
 電極としては、PdやPt等の白金族元素やAu等が挙げられる。このうち、水素発生反応の活性が高く、水素の溶解度が高いPdを用いるのが望ましい。電極に含まれる金属は、これらの金属を少なくとも1種類以上含む合金としても良い。さらに、固体電解質との接触面積を増やし、反応抵抗を低減するため、固体電解質と混合して使用するのが望ましい。 Examples of the electrode include platinum group elements such as Pd and Pt, Au and the like. Of these, it is desirable to use Pd, which has a high activity of hydrogen generation reaction and a high solubility of hydrogen. The metal contained in the electrode may be an alloy containing at least one of these metals. Further, in order to increase the contact area with the solid electrolyte and reduce the reaction resistance, it is desirable to use the mixture in combination with the solid electrolyte.
 触媒極層101は、逆シフト反応と電気化学反応を選択的に進行させれば良いため、逆シフト反応触媒の金属元素と、電極の金属元素と、固体電解質粒子を混合して1層としても良い。また、異なる金属と酸化物を組み合わせた2層以上の積層構造としても良い。 Since the catalyst electrode layer 101 may selectively proceed with the reverse shift reaction and the electrochemical reaction, the metal element of the reverse shift reaction catalyst, the metal element of the electrode, and the solid electrolyte particles may be mixed to form one layer. good. Further, a laminated structure having two or more layers in which different metals and oxides are combined may be used.
 <対極層>
 対極層102は、固体電解質に酸化物イオン伝導体を用いる場合、以下の電気化学反応により、酸素ガスが発生する。
        O2- → 1/2O + 2e
<Polar layer>
When an oxide ion conductor is used as the solid electrolyte in the counter electrode layer 102, oxygen gas is generated by the following electrochemical reaction.
O 2- → 1 / 2O 2 + 2e -
 対極層102としては、希土類元素と遷移金属元素を含み、電子伝導性を有するペロブスカイト型酸化物等が挙げられる。例えば、LaMnO、LaCoO、LaFeO、SmCoO等の希土類元素をアルカリ土類金属元素に置換したものが挙げられ、化学式としては、(La,Sr)MnO、La1-xSrMnO(0<x≦1)等で表記される。置換元素は、CaやBa等、他のアルカリ土類金属元素を2種類以上含んでいても良い。また、遷移金属元素を2種類以上含んでいても良い。また、これら酸化物を2種類以上含む混合物であっても良い。 Examples of the counter electrode layer 102 include perovskite-type oxides containing rare earth elements and transition metal elements and having electron conductivity. For example, rare earth elements such as LaMnO 3 , LaCoO 3 , LaFeO 3 , and SmCoO 3 are replaced with alkaline earth metal elements, and the chemical formulas are (La, Sr) MnO 3 , La 1-x Sr x MnO. It is expressed as 3 (0 <x ≦ 1) or the like. The substitution element may contain two or more kinds of other alkaline earth metal elements such as Ca and Ba. Further, two or more kinds of transition metal elements may be contained. Further, it may be a mixture containing two or more kinds of these oxides.
 固体電解質層103にプロトン伝導体を用いる場合、以下の電気化学反応により、酸素が発生する。
        HO → 2H + 2e + 1/2O
When a proton conductor is used for the solid electrolyte layer 103, oxygen is generated by the following electrochemical reaction.
H 2 O → 2H + + 2e - + 1 / 2O 2
 対極層102としては、PdやPt等の白金族元素やAu等が挙げられる。このうち、酸素発生反応の活性が高いPtを用いるのが望ましい。対極層102に含まれる金属は、これらの金属を少なくとも1種類以上含む合金としても良い。さらに、固体電解質層103との接触面積を増やし、反応抵抗を低減するため、固体電解質層103と混合して使用するのが望ましい。 Examples of the counter electrode layer 102 include platinum group elements such as Pd and Pt, Au and the like. Of these, it is desirable to use Pt, which has a high activity of oxygen evolution reaction. The metal contained in the counter electrode layer 102 may be an alloy containing at least one of these metals. Further, in order to increase the contact area with the solid electrolyte layer 103 and reduce the reaction resistance, it is desirable to use the mixture in combination with the solid electrolyte layer 103.
 以下、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、(適宜図1~図3を参照)本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples (see FIGS. 1 to 3 as appropriate).
 <実施例1>
 <固体電解質層103の作製>
 市販のZr0.840.161.92(以下、YSZ)粉末を所定の重量で秤量し、油圧プレス機にてプレスした。これを、1350℃、空気中で3時間熱処理することで、直径13mmのち密な電解質膜を得ることができた。この電解質膜両面を、耐水研磨紙で研磨して厚み500μmとした。
<Example 1>
<Preparation of solid electrolyte layer 103>
Commercially available Zr 0.84 Y 0.16 O 1.92 (hereinafter, YSZ) powder was weighed to a predetermined weight and pressed with a hydraulic press. By heat-treating this in air at 1350 ° C. for 3 hours, a dense electrolyte membrane having a diameter of 13 mm could be obtained. Both sides of the electrolyte membrane were polished with water-resistant abrasive paper to a thickness of 500 μm.
 <触媒極層101の作製>
 触媒極層101の逆シフト反応触媒の出発原料として、CuOとCeOを用いた。これらの粉末を、CuとCeOの体積比が5:5となるよう秤量し、遊星ボールミルにてエタノール中で300rpmで3時間処理した(以降、50vоl%Cu/CeOと表記する)。また、電極の出発原料として、NiOとYSZを用いた。これらの粉末を、NiとYSZの体積比が4:6となるよう秤量し、遊星ボールミルにてエタノール中で300rpmで3時間処理した。これら粉末を乾燥後、溶媒と混合してスラリーとした。固体電解質層103表面に、電極のスラリーをスクリーン印刷機を用いて直径8mmで塗布、乾燥後、さらに、電極表面に逆シフト反応触媒を直径8mmで塗布した。これを1200℃、空気中で1時間熱処理した。なお、断面SEM観察により、逆シフト反応触媒層と電極の厚みはそれぞれ50μmであった。
<Preparation of catalyst electrode layer 101>
CuO and CeO 2 were used as starting materials for the reverse shift reaction catalyst of the catalyst electrode layer 101. These powders were weighed so that the volume ratio of Cu and CeO 2 was 5: 5, and treated with a planetary ball mill in ethanol at 300 rpm for 3 hours (hereinafter referred to as 50 vol% Cu / CeO 2 ). In addition, NiO and YSZ were used as starting materials for the electrodes. These powders were weighed so that the volume ratio of Ni and YSZ was 4: 6, and treated with a planetary ball mill in ethanol at 300 rpm for 3 hours. After drying these powders, they were mixed with a solvent to prepare a slurry. The electrode slurry was applied to the surface of the solid electrolyte layer 103 with a diameter of 8 mm using a screen printing machine, dried, and then the reverse shift reaction catalyst was further applied to the electrode surface with a diameter of 8 mm. This was heat treated at 1200 ° C. in air for 1 hour. By observing the cross section by SEM, the thickness of the reverse shift reaction catalyst layer and the electrode was 50 μm, respectively.
 <対極層102の作製>
 対極層102には、La0.8Sr0.2MnO3-δ(以下、LSM)を用いた。出発原料として、LaCO、SrCO、Mnを用いた。これらを定比組成で秤量し、ジルコニア製の乳鉢と乳棒で混合し、空気中、1200℃で5時間熱処理することでLSMを得た。結晶構造は、X線回折測定で評価し、不純物に由来する回折ピークがないことを確認した。LSMを溶媒中に分散してスラリーとした。固体電解質層103の表面の、触媒極層101の逆側に、対極のスラリーをスクリーン印刷機を用いて直径8mmで塗布、乾燥後、1000℃、空気中で1時間熱処理した。なお、断面SEM観察の結果、対極の厚みは100μmであった。
<Preparation of counter electrode layer 102>
For the counter electrode layer 102, La 0.8 Sr 0.2 MnO 3-δ (hereinafter, LSM) was used. La 2 CO 3 , SrCO 3 , and Mn 2 O 3 were used as starting materials. These were weighed at a constant ratio composition, mixed with a zirconia mortar and pestle, and heat-treated in air at 1200 ° C. for 5 hours to obtain LSM. The crystal structure was evaluated by X-ray diffraction measurement, and it was confirmed that there was no diffraction peak derived from impurities. LSM was dispersed in a solvent to form a slurry. On the opposite side of the catalyst electrode layer 101 on the surface of the solid electrolyte layer 103, a slurry of counter electrode was applied using a screen printing machine to a diameter of 8 mm, dried, and then heat-treated in air at 1000 ° C. for 1 hour. As a result of cross-sectional SEM observation, the thickness of the counter electrode was 100 μm.
 <CO製造速度の評価>
 作製したセルの表面に、集電体として金のリード線を取り付けた金メッシュを、触媒極層と対極層表面にそれぞれ配置し、触媒極層101と対極層102で異なるガスを導入できる2室型の評価装置にセッティングした。シーリング材として、パイレックスガラスを使用した。パイレックスガラスを溶解して気密性を付与するため、セルを900℃で保持した。このとき、触媒極層101に還元ガスを導入し、触媒極層101内のCuOとNiOを還元処理してCuとNiとした。セルを徐冷して450℃にした後、触媒極層101へは3%CO-1.7%HO-Arを20ccmで、対極層102へはArを20ccmで導入した。セルに500mA/cmで通電し、触媒極層101の下流側ガス組成をガスクロマトグラフでガス組成を分析してCO濃度を計測した。
<Evaluation of CO production speed>
Two chambers in which a gold mesh having a gold lead wire attached as a current collector is arranged on the surface of the produced cell on the surface of the catalyst electrode layer and the surface of the counter electrode layer, respectively, and different gases can be introduced into the catalyst electrode layer 101 and the counter electrode layer 102. It was set on the mold evaluation device. Pyrex glass was used as the sealing material. The cell was held at 900 ° C. to melt the Pyrex glass and impart airtightness. At this time, a reducing gas was introduced into the catalyst electrode layer 101, and CuO and NiO in the catalyst electrode layer 101 were reduced to obtain Cu and Ni. After the cell was slowly cooled to 450 ° C., 3% CO 2 -1.7% H 2 O-Ar was introduced into the catalyst electrode layer 101 at 20 ccm, and Ar was introduced into the counter electrode layer 102 at 20 ccm. The cell was energized at 500 mA / cm 2 , and the gas composition on the downstream side of the catalyst electrode layer 101 was analyzed by a gas chromatograph to measure the CO concentration.
 <実施例2~8、及び比較例1~6>
 触媒極層101と対極層102の組成、導入ガス組成、通電量を表1に示すように調整した以外は、実施例1と同様にしてCO製造セルを作製し、触媒極層101の下流側ガス組成をガスクロマトグラフで分析してCO濃度を計測した。
<Examples 2 to 8 and Comparative Examples 1 to 6>
A CO production cell was prepared in the same manner as in Example 1 except that the compositions of the catalyst electrode layer 101 and the counter electrode layer 102, the introduced gas composition, and the amount of energization were adjusted as shown in Table 1, and the downstream side of the catalyst electrode layer 101 was prepared. The gas composition was analyzed by gas chromatography and the CO concentration was measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <実施例9>
 <固体電解質層103の作製>
 固体電解質層103には、プロトン伝導体であるLa0.95Sr0.05NbO4-δ(以下、LSN)を用いた。出発原料として、La、Nb、SrCOを用いた。これらを定比組成で秤量し、ジルコニア製の乳鉢と乳棒で混合し、空気中、1000℃で15時間熱処理した。得られた粉末を、遊星ボールミルにてエタノール中で300rpmで3時間処理した。乾燥後、油圧プレス機にてプレスした。1500℃、空気中で5時間熱処理することで、直径13mmのち密な電解質膜を得ることができた。この電解質膜両面を、耐水研磨紙で研磨して厚み1mmとした。
<Example 9>
<Preparation of solid electrolyte layer 103>
For the solid electrolyte layer 103, La 0.95 Sr 0.05 NbO 4-δ (hereinafter referred to as LSN), which is a proton conductor, was used. La 2 O 3 , Nb 2 O 5 , and SrCO 3 were used as starting materials. These were weighed at a constant ratio composition, mixed with a zirconia mortar and pestle, and heat-treated in air at 1000 ° C. for 15 hours. The obtained powder was treated with a planetary ball mill in ethanol at 300 rpm for 3 hours. After drying, it was pressed with a hydraulic press. By heat-treating at 1500 ° C. in air for 5 hours, a dense electrolyte membrane having a diameter of 13 mm could be obtained. Both sides of the electrolyte membrane were polished with water-resistant abrasive paper to a thickness of 1 mm.
 <触媒極層101の作製>
 逆シフト反応触媒は、実施例1と同じものを使用した。電極は、PdペーストとLSNの混合物を用いた。PdとLSNの体積比が4:6となるよう秤量し、溶媒とともに混錬してスラリーとした。熱処理方法および、逆シフト反応触媒と電極の厚みはそれぞれ実施例1と同じであった。
<Preparation of catalyst electrode layer 101>
The same reverse shift reaction catalyst as in Example 1 was used. As the electrode, a mixture of Pd paste and LSN was used. Weighed so that the volume ratio of Pd and LSN was 4: 6, and kneaded with a solvent to obtain a slurry. The heat treatment method and the thickness of the reverse shift reaction catalyst and the electrode were the same as in Example 1, respectively.
 <対極層102の作製>
 対極層102には、Ptペーストを用いた。スクリーン印刷機にて、直径8mmで塗布した後、900℃で3時間熱処理することで対極層を固体電解質表面に焼結した。断面SEM観察の結果、対極の厚みは50μmであった。
<Preparation of counter electrode layer 102>
Pt paste was used for the counter electrode layer 102. After coating with a screen printing machine having a diameter of 8 mm, the counter electrode layer was sintered on the surface of the solid electrolyte by heat treatment at 900 ° C. for 3 hours. As a result of cross-sectional SEM observation, the thickness of the counter electrode was 50 μm.
 <CO製造速度の評価>
 対極層102への導入ガス組成を1.7%HO-Arとした以外は、実施例1と同様にCO濃度を計測した。
<Evaluation of CO production speed>
The CO concentration was measured in the same manner as in Example 1 except that the gas composition introduced into the counter electrode layer 102 was 1.7% H 2 O-Ar.
 <比較例7>
 セルに通電しなかった以外は、実施例9と同様にした。
<Comparative Example 7>
The procedure was the same as in Example 9 except that the cell was not energized.
 <比較例8>
 対極にAuペーストを使用した以外は、実施例9と同様にした。
<Comparative Example 8>
The same procedure as in Example 9 was carried out except that Au paste was used as the counter electrode.
 <結果と考察>
 実施例1より、触媒極層101に逆シフト反応触媒と電極を導入し、これと酸素ガス発生電極で酸素イオン伝導体であるYSZ層をサンドイッチしたセルを構成し、450℃において、触媒極層101にCOとHO混合ガスを導入して通電した場合、触媒極層101の出口ガスでCOが検出され、その濃度は0.04%であった。一方、比較例1より、通電しない場合には、COは検出されなかった。このことは、通電により、触媒極層101に含まれる電極でHOが電気化学的に還元分解してHとO2-を生じ、HはCOと逆シフト反応を起こしてCOとHOに変換されると同時に、O2-は固体電解質を移動して対極に到達し、Oとして気相に放出されたことを示している。
<Results and discussion>
From Example 1, a reverse shift reaction catalyst and an electrode were introduced into the catalyst electrode layer 101, and a cell in which the YSZ layer, which is an oxygen ion conductor, was sandwiched between the reverse shift reaction catalyst and the electrode was formed by the oxygen gas generating electrode. When a mixed gas of CO 2 and H 2 O was introduced into 101 and energized, CO was detected in the outlet gas of the catalyst electrode layer 101, and the concentration was 0.04%. On the other hand, from Comparative Example 1, CO was not detected when the power was not applied. This means that when energized, H 2 O is electrochemically reduced and decomposed at the electrode contained in the catalyst electrode layer 101 to produce H 2 and O 2- , and H 2 undergoes a reverse shift reaction with CO 2 to cause CO. At the same time as being converted to H 2 O, O 2- moved the solid electrolyte to reach the counter electrode, indicating that it was released into the gas phase as O 2.
 比較例2より、触媒極層に電極を導入しないセルでは、内部抵抗が増大して通電することができなかった。HO電解反応が進行しないため、COは検出されなかった。
 実施例2では、CO濃度は0.04%であり、実施例1と同程度であった。このことから、触媒極層101の逆シフト反応触媒に含まれるCeOのCeサイトを他の元素で部分置換しても、触媒活性は損なわれないことがわかった。
From Comparative Example 2, in the cell in which the electrode was not introduced into the catalyst electrode layer, the internal resistance increased and energization could not be performed. Since H 2 O electrolysis reaction does not proceed, CO was not detected.
In Example 2, the CO concentration was 0.04%, which was about the same as in Example 1. From this, it was found that even if the Ce site of CeO 2 contained in the reverse shift reaction catalyst of the catalyst electrode layer 101 is partially replaced with another element, the catalytic activity is not impaired.
 実施例3では、CO濃度は0.081%であり、実施例1の2倍以上であった。触媒極層101に導入するガスの流速を低減させることで、COの逆シフト反応触媒表面での滞留時間が長くなり、逆シフト反応が促進されたことを示している。 In Example 3, the CO concentration was 0.081%, which was more than twice that of Example 1. By reducing the flow rate of the gas introduced into the catalyst electrode layer 101 , the residence time of CO 2 on the surface of the reverse shift reaction catalyst is lengthened, indicating that the reverse shift reaction is promoted.
 実施例4では、動作温度を300℃とした。通電電流量が実施例1と同じであることから、HOの水電解量、すなわち、Hの発生量も実施例1と同じであるが、CO濃度は0.017%まで低下した。このことから、動作温度が高いほど、逆シフト反応が進行しやすいことが分かった。 In Example 4, the operating temperature was set to 300 ° C. Since the amount of electric current is the same as in Example 1, water electrolysis of H 2 O, i.e., the amount of generated H 2 is the same as in Example 1, CO concentration was reduced to 0.017%. From this, it was found that the higher the operating temperature, the easier the reverse shift reaction to proceed.
 実施例5と実施例6では、逆シフト反応触媒に含まれる金属元素をそれぞれ、MnとCoとした。実施例5と実施例6におけるCO濃度はそれぞれ、0.028%、0.04%と金属元素組成に依存した。COが製造できたことから、使用する金属元素は、Cu、Mn、Coが望ましいことが分かった。 In Example 5 and Example 6, the metal elements contained in the reverse shift reaction catalyst were Mn and Co, respectively. The CO concentrations in Examples 5 and 6 were 0.028% and 0.04%, respectively, depending on the metal element composition. Since CO could be produced, it was found that Cu, Mn, and Co are desirable as the metal elements to be used.
 実施例7では、固体電解質層103にCe0.9Gd0.11.95(以降、GDCと表記する)を使用した。CO濃度は、YSZを使用するセル(実施例1)と同じ0.04%であったことから、固体電解質層103として使用する酸素イオン伝導体は、組成に依らず適用可能であることが分かった。 In Example 7, Ce 0.9 Gd 0.1 O 1.95 (hereinafter referred to as GDC) was used for the solid electrolyte layer 103. Since the CO concentration was 0.04%, which was the same as that of the cell using YSZ (Example 1), it was found that the oxygen ion conductor used as the solid electrolyte layer 103 can be applied regardless of the composition. It was.
 比較例3では、逆シフト反応触媒をCeOのみとしたが、Cuを含まないために集電抵抗が大きくなり、通電できなかった。 In Comparative Example 3, the reverse shift reaction catalyst was only CeO 2, but since it did not contain Cu, the current collecting resistance became large and energization could not be performed.
 実施例1では、触媒極層101の逆シフト反応触媒と電極を2層構造としたのに対し、実施例8では、逆シフト反応触媒と電極に含まれる金属元素とGDCを混合して1層構造としたが、0.014%のCOが検出された。このことから、触媒極層101には逆シフト反応とHO電解を促す金属元素と酸化物が同一層内に含まれていても良いことがわかった。 In Example 1, the reverse shift reaction catalyst of the catalyst electrode layer 101 and the electrode have a two-layer structure, whereas in Example 8, the reverse shift reaction catalyst, the metal element contained in the electrode, and GDC are mixed to form one layer. Although it was structured, 0.014% CO was detected. Therefore, the catalyst electrode layer 101 was found that oxide to a metal element to promote the reverse shift reaction and H 2 O electrolyte may be contained in the same layer.
 比較例4では、触媒極層内の電極に含まれる金属元素をCuとしたが、HO電解活性が低く、セルが高抵抗化して通電できなかった。このことは、HO電解活性は、電極内の金属元素に依存し、Niを使用するのが望ましいことが分かった。
 比較例5では、電極内の酸化物にCeOを使用したが、置換元素を含まないために酸化物イオンキャリアの濃度がごく微量であり、酸化物イオン伝導率の乏しいために、セル抵抗が大きく、通電できなかった。このことから、HO電解活性を高めるためには、電極内の酸化物に酸素イオン伝導体を使用するのが望ましいことが分かった。
In Comparative Example 4, although the metal elements contained in the electrode catalyst electrode layer was Cu, H 2 O electrolysis activity is low, the cell can not be energized by high resistance. This is, H 2 O electrolysis activity depends on the metal elements in the electrode, it has been found that it is desirable to use Ni.
In Comparative Example 5, CeO 2 was used as the oxide in the electrode, but the concentration of the oxide ion carrier was very small because it did not contain a substituent, and the cell resistance was low because the oxide ion conductivity was poor. It was too big to energize. Therefore, in order to increase of H 2 O electrolysis activity it was found to be desirable to use an oxygen ion conductor in the oxide in the electrode.
 比較例6では、対極にOガス化反応活性の低いAuを使用したが、セルの内部抵抗が大きく、通電できなかった。 In Comparative Example 6, but using a low O 2 gasification reaction activity Au counter electrode, the internal resistance of the cell is large, it could not be energized.
 実施例9では、固体電解質層103をプロトン伝導体のLSNとして通電した場合、0.008%のCOが検出できた。これに対し、通電しない比較例7では、CO濃度は0.002%未満であった。さらに、対極層102をHO分解活性の低いAu電極とした比較例8では、セル抵抗が大きく、通電ができなかった。 In Example 9, when the solid electrolyte layer 103 was energized as the LSN of the proton conductor, 0.008% of CO could be detected. On the other hand, in Comparative Example 7 which was not energized, the CO concentration was less than 0.002%. In Comparative Example 8 the counter electrode layer 102 was lower Au electrode of H 2 O decomposition activity, large cell resistance, it could not be energized.
 以上より、適切な触媒、電極、固体電解質と対極を組み合わせ、低温で通電した場合、COが製造できることが分かった。さらに、触媒極層で水を生成するプロトン伝導体を用いるセルよりも、水を消費してCOをより高濃度化する酸素イオン伝導体を用いるセルの方が、高純度でCOを製造できることが分かった。 From the above, it was found that CO can be produced when an appropriate catalyst, electrode, solid electrolyte and counter electrode are combined and energized at a low temperature. Furthermore, it is possible to produce CO with higher purity in a cell using an oxygen ion conductor that consumes water to increase the concentration of CO than a cell using a proton conductor that produces water in the catalyst electrode layer. Do you get it.
 101   触媒極層
 102   対極層
 103   固体電解質層
 104   配線
 105   外部電源
101 Catalytic electrode layer 102 Counter electrode layer 103 Solid electrolyte layer 104 Wiring 105 External power supply

Claims (13)

  1.  触媒極層と、前記触媒極層と配線により電気的に接続される対極層と、前記触媒極層と前記対極層の間に配置される固体電解質層と、を備え、
     前記固体電解質層はイオン伝導体を含み、
     前記触媒極層は、Hを生成する電極と、逆シフト反応を選択的に進行させる逆シフト反応触媒とを有し、
     通電することによりCOが生成することを特徴とする一酸化炭素製造装置。
    A catalyst electrode layer, a counter electrode layer electrically connected to the catalyst electrode layer by wiring, and a solid electrolyte layer arranged between the catalyst electrode layer and the counter electrode layer are provided.
    The solid electrolyte layer contains an ionic conductor and contains
    The catalyst electrode layer has an electrode for producing H 2 and a reverse shift reaction catalyst for selectively advancing the reverse shift reaction.
    A carbon monoxide production apparatus characterized in that CO is generated by energizing.
  2.  前記固体電解質層が酸化物イオン伝導体であり、
     前記電極では、
     HO + 2e → H + O2-
     が選択的起こり、
     前記逆シフト反応触媒では、
     CO + H → CO + H
     が選択的に起こり、
     前記対極層では、
     O2- → 1/2O + 2e
     が起こることを特徴とする請求項1に記載の一酸化炭素製造装置。
    The solid electrolyte layer is an oxide ion conductor,
    With the electrode
    H 2 O + 2e - → H 2 + O 2-
    Occurs selectively,
    In the reverse shift reaction catalyst,
    CO 2 + H 2 → CO + H 2 O
    Occurs selectively
    In the opposite electrode layer
    O 2- → 1 / 2O 2 + 2e -
    The carbon monoxide production apparatus according to claim 1, wherein
  3.  前記固体電解質層が、蛍石型構造あるいはペロブスカイト型構造を有する酸化物イオン伝導体を少なくとも1種類以上含むことを特徴とする請求項2に記載の一酸化炭素製造装置。 The carbon monoxide production apparatus according to claim 2, wherein the solid electrolyte layer contains at least one type of oxide ion conductor having a fluorite-type structure or a perovskite-type structure.
  4.  前記逆シフト反応触媒は、遷移金属と、担体となる酸化物と、を含む混合物であって、
     前記遷移金属はCu、Mn、Coを少なくとも1種類以上含み、
     前記担体となる酸化物はCeO、ZrO、Al、及び、これらの一部が他の元素に置換されたものを少なくとも1種類以上含むことを特徴とする請求項2又は請求項3に記載の一酸化炭素製造装置。
    The reverse shift reaction catalyst is a mixture containing a transition metal and an oxide serving as a carrier.
    The transition metal contains at least one kind of Cu, Mn, and Co, and contains at least one kind.
    Claim 2 or claim, wherein the oxide serving as the carrier contains at least one or more of CeO 2 , ZrO 2 , Al 2 O 3 , and those in which a part thereof is replaced with another element. The carbon monoxide production apparatus according to 3.
  5.  前記電極は、Ni、Pt、又は、これらのいずれかを含む合金を含むことを特徴とする請求項2に記載の一酸化炭素製造装置。 The carbon monoxide production apparatus according to claim 2, wherein the electrode contains Ni, Pt, or an alloy containing any of these.
  6.  前記対極層は、電子伝導性を有するペロブスカイト型酸化物を含むことを特徴とする請求項2に記載の一酸化炭素製造装置。 The carbon monoxide production apparatus according to claim 2, wherein the counter electrode layer contains a perovskite-type oxide having electron conductivity.
  7.  前記対極層は、La1-xSrMnO(0<x≦1)であることを特徴とする請求項2に記載の一酸化炭素製造装置。 The carbon monoxide production apparatus according to claim 2, wherein the counter electrode layer is La 1-x Sr x MnO 3 (0 <x ≦ 1).
  8.  前記固体電解質層がプロトン伝導体であり、
     前記電極では、
     2H + 2e → H
     が選択的に起こり、
     前記逆シフト反応触媒では、
     CO + H → CO + H
     が選択的に起こり、
     前記対極層では、
     HO → 2H + 2e + 1/2O
     が起こることを特徴とする請求項1に記載の一酸化炭素製造装置。
    The solid electrolyte layer is a proton conductor and
    With the electrode
    2H + + 2e - → H 2
    Occurs selectively
    In the reverse shift reaction catalyst,
    CO 2 + H 2 → CO + H 2 O
    Occurs selectively
    In the opposite electrode layer
    H 2 O → 2H + + 2e - + 1 / 2O 2
    The carbon monoxide production apparatus according to claim 1, wherein
  9.  前記固体電解質層が、シェーライト型構造を有するプロトン伝導体を少なくとも1種類以上含むことを特徴とする請求項8に記載の一酸化炭素製造装置。 The carbon monoxide production apparatus according to claim 8, wherein the solid electrolyte layer contains at least one type of proton conductor having a shaleite type structure.
  10.  前記固体電解質層が、Li1-xSrNbO(0<x≦1)であることを特徴とする請求項8又は請求項9に記載の一酸化炭素製造装置。 The carbon monoxide production apparatus according to claim 8 or 9, wherein the solid electrolyte layer is Li 1-x Sr x NbO 4 (0 <x ≦ 1).
  11.  前記逆シフト反応触媒は、遷移金属と、担体となる酸化物と、を含む混合物であって、
     前記遷移金属がCu、Mn、Coを少なくとも1種類以上含み、
     前記担体となる酸化物がCeO、ZrO、Al、及び、これらの一部が他の元素に置換されたものを少なくとも1種類以上含むことを特徴とする請求項8に記載の一酸化炭素製造装置。
    The reverse shift reaction catalyst is a mixture containing a transition metal and an oxide serving as a carrier.
    The transition metal contains at least one type of Cu, Mn, and Co.
    The eighth aspect of the present invention, wherein the oxide serving as the carrier contains at least one or more of CeO 2 , ZrO 2 , Al 2 O 3 , and a part thereof substituted with another element. Carbon monoxide production equipment.
  12.  前記電極は、Pd、Pt、Au、又は、これらのいずれかを含む合金、を含むことを特徴とする請求項8に記載の一酸化炭素製造装置。 The carbon monoxide production apparatus according to claim 8, wherein the electrode contains Pd, Pt, Au, or an alloy containing any of these.
  13.  前記対極層は、Pd、Pt、Au、又は、これらのいずれかを含む合金、を含むことを特徴とする請求項8に記載の一酸化炭素製造装置。 The carbon monoxide production apparatus according to claim 8, wherein the counter electrode layer contains Pd, Pt, Au, or an alloy containing any of these.
PCT/JP2020/040287 2019-10-30 2020-10-27 Apparatus for producing carbon monoxide WO2021085426A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019196899A JP2021070598A (en) 2019-10-30 2019-10-30 Carbon monoxide production apparatus
JP2019-196899 2019-10-30

Publications (1)

Publication Number Publication Date
WO2021085426A1 true WO2021085426A1 (en) 2021-05-06

Family

ID=75712647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040287 WO2021085426A1 (en) 2019-10-30 2020-10-27 Apparatus for producing carbon monoxide

Country Status (2)

Country Link
JP (1) JP2021070598A (en)
WO (1) WO2021085426A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7121163B1 (en) 2021-05-27 2022-08-17 日本碍子株式会社 electrolytic cell
JP7140883B1 (en) 2021-05-27 2022-09-21 日本碍子株式会社 electrolytic cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544072A (en) * 1991-08-07 1993-02-23 Hisakazu Ezaki Low hydrogen overvoltage electrode material using metal superfine particulate
US20080023338A1 (en) * 2006-07-31 2008-01-31 Battelle Energy Alliance, Llc High temperature electrolysis for syngas production
JP2018202332A (en) * 2017-06-06 2018-12-27 積水化学工業株式会社 Catalyst for manufacturing synthetic gas, manufacturing method of synthetic gas, reactor, and synthetic gas manufacturing system
JP2019035102A (en) * 2017-08-10 2019-03-07 東京瓦斯株式会社 Carbon monoxide production system
JP2019151870A (en) * 2018-03-01 2019-09-12 株式会社豊田中央研究所 Oxygen generating electrode, oxygen generating device, and method of producing oxygen generating electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544072A (en) * 1991-08-07 1993-02-23 Hisakazu Ezaki Low hydrogen overvoltage electrode material using metal superfine particulate
US20080023338A1 (en) * 2006-07-31 2008-01-31 Battelle Energy Alliance, Llc High temperature electrolysis for syngas production
JP2018202332A (en) * 2017-06-06 2018-12-27 積水化学工業株式会社 Catalyst for manufacturing synthetic gas, manufacturing method of synthetic gas, reactor, and synthetic gas manufacturing system
JP2019035102A (en) * 2017-08-10 2019-03-07 東京瓦斯株式会社 Carbon monoxide production system
JP2019151870A (en) * 2018-03-01 2019-09-12 株式会社豊田中央研究所 Oxygen generating electrode, oxygen generating device, and method of producing oxygen generating electrode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FONTAINE, M. -L. ET AL.: "Novel high temperature proton conducting fuel cells: Production of La0.995Sr0.005Nb04-delta electrolyte thin films and compatible cathode architectures", JOURNAL OF POWER SOURCES, vol. 188, 17 October 2008 (2008-10-17), pages 106 - 113 *

Also Published As

Publication number Publication date
JP2021070598A (en) 2021-05-06

Similar Documents

Publication Publication Date Title
Zhang et al. (La0. 75Sr0. 25) 0.95 (Cr0. 5Mn0. 5) O3-δ-Ce0. 8Gd0. 2O1. 9 scaffolded composite cathode for high temperature CO2 electroreduction in solid oxide electrolysis cell
Kharton et al. Mixed conductivity and electrochemical behavior of (La0. 75Sr0. 25) 0.95 Cr0. 5Mn0. 5O3− δ
Yang et al. Electrical conductivity and electrochemical performance of cobalt-doped BaZr0. 1Ce0. 7Y0. 2O3− δ cathode
Fan et al. Infiltration of La0· 6Sr0· 4FeO3-δ nanoparticles into YSZ scaffold for solid oxide fuel cell and solid oxide electrolysis cell
US20110195342A1 (en) Solid oxide fuel cell reactor
Zhang et al. Recent progress in design and fabrication of SOFC cathodes for efficient catalytic oxygen reduction
Kammer Electrochemical DeNOx in solid electrolyte cells—an overview
Xu et al. Electrochemical performance of highly active ceramic symmetrical electrode La0. 3Sr0. 7Ti0. 3Fe0. 7O3-δ-CeO2 for reversible solid oxide cells
WO2021085426A1 (en) Apparatus for producing carbon monoxide
Ding et al. Double perovskite Ba2FeMoO6− δ as fuel electrode for protonic-ceramic membranes
EP3537524B1 (en) Composite particle powder, electrode material for solid oxide cell, and electrode for solid oxide cell made thereof
Ullah et al. Tri-doped ceria (M0. 2Ce0. 8O2-δ, M= Sm0. 1, Ca0. 05, Gd0. 05) electrolyte for hydrogen and ethanol-based fuel cells
JP7231431B2 (en) electrochemical cell
Wu et al. Spinel-based oxide cathode used for high temperature CO2/H2O co-electrolysis
Guo et al. Performance of SrSc0. 2Co0. 8O3− δ+ Sm0. 5Sr0. 5CoO3− δ mixed-conducting composite electrodes for oxygen reduction at intermediate temperatures
Park et al. High-performance Ruddlesden–Popper perovskite oxide with in situ exsolved nanoparticles for direct CO 2 electrolysis
Bao et al. Characterization of one-step co-fired BaZr0. 8Y0. 2O3-δ-La2Ce2O7 composite electrolyte for low-temperature solid oxide fuel cells
Zhang et al. Electrochemical characteristics of Ca3Co4O9+ δ oxygen electrode for reversible solid oxide cells
Tsipis et al. Mixed conducting components of solid oxide fuel cell anodes
Dai et al. Manipulating Nb-doped SrFeO 3-δ with excellent performance for proton-conducting solid oxide fuel cells.
JP6805054B2 (en) Steam electrolysis cell
Zhong et al. Tailoring dual redox pairs strategy on a defective spinel Mg0. 4NixMn2. 6− xO4+ δ cathode for the boosting of SOFCs performance
Hu et al. Enhancing puncture voltage of La0. 8Sr0. 2Ga0. 8Mg0. 2O3-δ solid electrolyte membrane by improving CO2 reduction kinetics
JP6625855B2 (en) Cell for steam electrolysis and method for producing the same
Ishihara et al. High temperature CO2 electrolysis on La (Sr) Fe (Mn) O3 oxide cathode by using LaGaO3 based electrolyte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20882750

Country of ref document: EP

Kind code of ref document: A1