WO2021085066A1 - Motor drive device and refrigerator using same - Google Patents

Motor drive device and refrigerator using same Download PDF

Info

Publication number
WO2021085066A1
WO2021085066A1 PCT/JP2020/038070 JP2020038070W WO2021085066A1 WO 2021085066 A1 WO2021085066 A1 WO 2021085066A1 JP 2020038070 W JP2020038070 W JP 2020038070W WO 2021085066 A1 WO2021085066 A1 WO 2021085066A1
Authority
WO
WIPO (PCT)
Prior art keywords
dead center
compressor
bottom dead
motor
piston
Prior art date
Application number
PCT/JP2020/038070
Other languages
French (fr)
Japanese (ja)
Inventor
義典 竹岡
堀尾 好正
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021554256A priority Critical patent/JPWO2021085066A1/ja
Priority to CN202080053325.XA priority patent/CN114175494A/en
Publication of WO2021085066A1 publication Critical patent/WO2021085066A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/04Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for damping motor oscillations, e.g. for reducing hunting

Definitions

  • the present disclosure relates to a motor drive device for driving a brushless DC motor of a compressor and a refrigerator using the motor drive device.
  • Patent Document 1 discloses a motor drive device for a refrigerator that drives a brushless DC motor of a conventional compressor.
  • Refrigerators such as refrigerators equipped with a compressor driven by a motor drive device divide the refrigeration cycle into a high-pressure side and a low-pressure side in a cycle when the cooling operation is stopped to prevent the inflow of refrigerant and save energy. I'm trying.
  • the position of the piston of the compressor before starting is set to the upper dead center between the top dead center and the bottom dead center (in a predetermined position, above). Move to the position closest to the top dead center, which is not the dead center). Then, the motor drive device is started from the position next to the top dead center.
  • the piston of the compressor is greatly accelerated, energy is stored, the compression step is overcome, and the compressor is started.
  • FIG. 6 is a block diagram of the conventional motor drive device described in Patent Document 1.
  • the conventional motor drive device includes a brushless DC motor 201, a compressor 203, a control unit 204, an inverter 205, and the like.
  • the compressor 203 has a brushless DC motor 201 and a piston 202 connected to the rotor of the brushless DC motor 201.
  • the control unit 204 has an initial alignment step of moving the motor to the bottom dead center, a forced alignment step of moving the starting position next to the top dead center in the suction step, an acceleration step of accelerating the rotor of the brushless DC motor 201, and the like. Including the control operation of.
  • the inverter 205 supplies electric power to the brushless DC motor 201 based on the drive signal from the control unit 204.
  • the control unit 204 sends a signal to the inverter 205 in which the piston 202 is in phase at the bottom dead center in the initial alignment stage. Then, the inverter 205 causes a current to flow through the stator of the brushless DC motor 201 to rotate the rotor of the brushless DC motor 201. As a result, the piston 202 moves to the bottom dead center.
  • control unit 204 sends a signal to the inverter 205 that sequentially switches from the phase of the bottom dead center of the piston 202 in the reverse direction. As a result, the position of the piston 202 is moved to the position next to the top dead center on the suction step side.
  • the control unit 204 starts the brushless DC motor 201 in the acceleration stage and sends a signal for accelerating to the inverter 205.
  • the brushless DC motor 201 rotates. That is, since the piston 202 is accelerated from the vicinity of top dead center, the speed in the compression step increases. As a result, the compression step can be overcome and the motor drive device for driving the compressor can be easily started.
  • the present disclosure provides a motor drive device that is inexpensive and can be stably started while suppressing vibration even in a compressor having a large fluctuation in load torque, which has a difference between suction pressure and discharge pressure.
  • the motor drive device of the present disclosure includes a compressor and a brushless DC motor as a drive source for the compressor to perform a compression operation.
  • the motor drive device is configured to determine the starting torque and rotation start position of the brushless DC motor so that the vibration at the start of operation of the compressor and the vibration due to the decrease in load torque cancel each other out.
  • the motor drive device of the present disclosure is configured to cancel the peak of the vibration amplitude generated at the start of operation and the peak of the vibration amplitude generated by sudden acceleration due to a decrease in load torque. Therefore, the peaks of the vibration amplitudes are canceled out and become smaller than the case where the peaks of the respective vibration amplitudes are generated independently. As a result, a motor drive device capable of stably starting the compressor at low cost by suppressing vibration generated from the compressor to a small extent is provided.
  • FIG. 1 is a block diagram of a motor drive device according to an embodiment.
  • FIG. 2A is a schematic diagram showing the relationship with the rotor at the bottom dead center of the piston of the compressor as the driven body in the same embodiment.
  • FIG. 2B is a schematic diagram showing the relationship between the piston and the rotor in a state where the piston of the compressor as the driven body is rotated 90 degrees in the normal rotation direction from the bottom dead center in the same embodiment.
  • FIG. 2C is a schematic diagram showing the relationship with the rotor at the top dead center of the piston of the compressor as the driven body in the same embodiment.
  • FIG. 2A is a schematic diagram showing the relationship with the rotor at the bottom dead center of the piston of the compressor as the driven body in the same embodiment.
  • FIG. 2B is a schematic diagram showing the relationship between the piston and the rotor in a state where the piston of the compressor as the driven body is rotated 90 degrees in the normal rotation direction from the bottom dead center in the same embodiment.
  • FIG. 2C
  • FIG. 2D is a schematic diagram showing the relationship between the piston and the rotor in a state where the piston of the compressor as the driven body is rotated 90 degrees in the normal rotation direction from the top dead center in the same embodiment.
  • FIG. 3A is a waveform diagram showing the vibration of the compressor as the driven body generated at the start of operation in the same embodiment.
  • FIG. 3B is a waveform diagram showing vibration of the compressor as a driven body generated when the compression step is first overcome from the start of operation in the same embodiment.
  • FIG. 3C is a waveform diagram showing the vibration of the compressor as the driven body, which is a combination of the vibration at the start of operation and the vibration when the compression step is overcome in the same embodiment.
  • FIG. 3A is a waveform diagram showing the vibration of the compressor as the driven body generated at the start of operation in the same embodiment.
  • FIG. 3B is a waveform diagram showing vibration of the compressor as a driven body generated when the compression step is first overcome from the start of operation in the same embodiment.
  • FIG. 4A shows the vibration of the compressor as the driven body generated at the start of operation when the time to reach the top dead center in the same embodiment is out of phase by 30 degrees from the vibration cycle at the start of operation. It is a waveform diagram.
  • FIG. 4B shows a driven drive generated when the compression step is first overcome from the start of operation when the time to reach top dead center in the same embodiment is out of phase by 30 degrees from the vibration cycle at the start of operation. It is a waveform diagram which shows the vibration of a compressor as a body.
  • FIG. 4C shows compression as a driven body at the start of operation and when the compression step is overcome when the time to reach top dead center in the same embodiment is out of phase by 30 degrees from the vibration cycle at the start of operation. It is a waveform diagram which shows the synthetic vibration generated in the machine.
  • FIG. 5 is a flowchart in which the bottom dead center search unit in the same embodiment searches for the bottom dead center.
  • FIG. 6 is a block diagram of a conventional motor drive device.
  • the present disclosure provides a motor drive device that can start stably while suppressing vibration even in a compressor having a large fluctuation in load torque.
  • FIG. 1 is a block diagram of the motor drive device 30 according to the present embodiment.
  • 2A to 2D are schematic views showing the positional relationship between the piston 17b of the compressor 17, which is the driven body of the same embodiment, and the rotor 5a.
  • the motor drive device 30 of the present embodiment is connected to the AC power supply 1 and drives the brushless DC motor 5.
  • the rotor 5a of the brushless DC motor 5 constitutes a reciprocating compressor 17 with a crankshaft 17a, a piston 17b, a cylinder 17c, and the like.
  • the compressor 17 is mounted on the refrigerator 22 and constitutes a part of the refrigeration cycle.
  • the AC power supply 1 is a general commercial power supply, and in Japan, it is a 50 Hz or 60 Hz power supply with an effective value of 100 V.
  • the motor drive device 30 of the present embodiment has a rectifier circuit 2, a smoothing unit 3, an inverter 4, a position detection unit 6, a speed detection unit 7, a voltage detection unit 8, a drive unit 9, and an output determination. It is composed of a unit 10, a bottom dead center search unit 11, a torque determination unit 12, and the like.
  • the rectifier circuit 2 takes the AC power supply 1 as an input and rectifies the input AC power into DC power.
  • the rectifier circuit 2 is composed of four bridge-connected rectifier diodes 2a, 2b, 2c, and 2d.
  • the smoothing unit 3 is connected to the output side of the rectifier circuit 2 and smoothes the output of the rectifier circuit 2.
  • the smoothing portion 3 is composed of a smoothing capacitor 3e, a reactor 3f, and the like.
  • the output from the smoothing unit 3 is input to the inverter 4.
  • the reactor 3f is inserted between the AC power supply 1 and the smoothing capacitor 3e, it may be provided before or after the rectifying diodes 2a to 2d. Further, when the common mode filter constituting the high frequency removing section is provided in the circuit, it is desirable that the reactor 3f is configured in consideration of the combined component with the reactance component of the high frequency removing section.
  • the inverter 4 sequentially switches the DC power containing a large ripple component to the voltage input from the smoothing unit 3 at a cycle twice the power supply cycle of the AC power supply 1 and converts it into three-phase AC power.
  • the inverter 4 is composed of six switching elements 4a, 4b, 4c, 4d, 4e, and 4f connected by a three-phase bridge. At this time, six recirculation current diodes 4g, 4h, 4i, 4j, 4k, and 4l are connected to the respective switching elements 4a to 4f in opposite directions.
  • the brushless DC motor 5 is composed of a rotor 5a having a permanent magnet, a stator 5b having a three-phase winding, and the like. Then, the three-phase alternating current generated by the inverter 4 is supplied to the three-phase winding of the stator 5b of the brushless DC motor 5. As a result, the rotor 5a of the brushless DC motor 5 rotates.
  • the position detection unit 6 determines the magnetic pole position of the stator 5b of the brushless DC motor 5 from the induced voltage generated in the three-phase winding of the stator 5b, the current flowing in the three-phase winding of the stator 5b, the applied voltage, and the like. Is detected.
  • the position detection unit 6 acquires the terminal voltage of the brushless DC motor 5 and detects the relative position of the magnetic poles of the rotor 5a of the brushless DC motor 5. Specifically, the position detection unit 6 detects the relative rotation position of the rotor 5a based on the induced voltage generated in the three-phase winding of the stator 5b. Further, the position detection unit 6 compares the induced voltage with the reference voltage and detects the zero cross.
  • the voltage that serves as a reference for zero crossing of the induced voltage may be a voltage at the virtual midpoint created from the terminal voltages for three phases and used as the voltage. Further, the DC bus voltage may be acquired and the voltage may be used as a reference voltage for zero crossing of the induced voltage. In the present embodiment, the voltage at the virtual midpoint is used as a reference voltage for zero crossing of the induced voltage.
  • the position detection unit 6 describes a method of detecting the relative position of the magnetic poles of the stator 5b of the brushless DC motor 5 by an induced voltage as an example, but the present invention is not limited to this.
  • the relative position of the magnetic poles may be detected from the current flowing through the brushless DC motor 5.
  • the voltage generated in the shunt resistance arranged on the DC bus of the inverter 4 is detected, the current flowing through the DC bus is calculated from the resistance value of the shunt resistance, and each phase is further measured from the energized state of the motor.
  • a method of separating and detecting the current flowing through the inverter may also be used.
  • a method of individually detecting the current of each of the three phases by arranging a sensor, a shunt resistor, or the like may be used.
  • the method of detecting from the current value of the DC bus has an inexpensive configuration, but the waveform may be distorted in order to separate the currents of each phase. Therefore, when detecting the relative position of the magnetic poles of the rotor 5a, the method of detecting by the induced voltage is more preferable than the method of estimating the position from the current. This is because the method of detecting from the induced voltage requires a small amount of calculation, is simple in configuration, and can be realized at a lower cost. Further, the method of detecting the current of each of the three phases individually has many circuit parts and the cost is high, and the method of detecting the induced voltage can be configured at a lower cost.
  • the speed detection unit 7 calculates the current drive speed of the brushless DC motor 5 from the position information of the magnetic poles detected by the position detection unit 6. Specifically, in the present embodiment, the speed detection unit 7 measures the time from the detection of the zero cross of the induced voltage, and calculates the current speed from the measured time. As a result, the speed detection unit 7 calculates the drive speed of the brushless DC motor 5.
  • the voltage detection unit 8 detects the voltage between the DC bus of the inverter 4. Generally, first, the voltage between the DC buses of the inverter 4 is divided by a resistor, and the detected voltage is divided into a voltage within a range that can be handled by the microcomputer, which is about 140 V to 5 V or less. Then, from the voltage detected by the voltage division, the microcomputer back-calculates and calculates the voltage between the original DC bus. In this embodiment, for example, a value obtained by dividing the voltage by 1/100 is used.
  • the bottom dead center search unit 11 drives the brushless DC motor 5 when the target speed input from the outside changes from 0 (zero) to a value other than 0 (zero), and under the piston 17b of the compressor 17. Search for the dead center. Specifically, the bottom dead center search unit 11 outputs a drive waveform of a predetermined pattern to the brushless DC motor 5 in order to search for the bottom dead center, and moves the piston 17b to the vicinity of the bottom dead center. That is, the energization pattern corresponding to the bottom dead center is output to the brushless DC motor 5 to move the piston 17b to the bottom dead center.
  • the bottom dead center search unit 11 outputs a pattern for moving the piston 17b to the position where the start is started to the brushless DC motor 5.
  • the start-up start position is set as the bottom dead center, it is not necessary to particularly provide a step of moving the piston 17b to the start-up position after the bottom dead center is moved.
  • the bottom dead center search unit 11 stops the output to the brushless DC motor 5 until the target speed changes from 0 (zero) to a value other than 0 (zero).
  • the torque determination unit 12 When the target speed input from the outside changes from 0 (zero) to other than 0 (zero), the torque determination unit 12 first uses the bottom dead center search unit 11 to find the bottom dead center of the piston 17b of the compressor 17. Outputs the torque required when searching for. The movement in the bottom dead center direction is hardly affected by the load condition because the piston 17b does not perform the compression work. Therefore, the torque required for movement in the bottom dead center direction is smaller than the torque at the start of operation and is a constant torque. Finally, when the piston 17b is moved to the bottom dead center, the torque determination unit 12 outputs the torque to the brushless DC motor 5 so that the torque is larger than that for searching for the bottom dead center.
  • the torque determination unit 12 outputs the torque required for that period to the brushless DC motor 5 if there is time to move the piston 17b of the compressor 17 to the starting position after the bottom dead center search. That is, in the present embodiment, the motor drive device 30 controls the piston 17b to start from the bottom dead center. Therefore, the torque determination unit 12 determines the torque (corresponding to the starting torque) required for starting the operation from the bottom dead center when the output time to the bottom dead center ends. At this time, the torque determining unit 12 starts the piston 17b from the bottom dead center and outputs the torque determined so that the time until reaching the top dead center coincides with the period of vibration generated at the time of starting.
  • the torque determination unit 12 also determines the torque for performing normal operation after the time when the output from the bottom dead center search unit 11 is stopped has elapsed. At that time, the torque is determined by comparing the current speed of the brushless DC motor 5 input from the speed detection unit 7 with the target speed input from the outside. That is, if the current speed is insufficient with respect to the target speed, the output torque is increased. On the other hand, if the current speed is higher than the target speed, the output torque is reduced. As a result, the speed of the brushless DC motor 5 is brought to the target speed.
  • the output determination unit 10 determines the applied voltage from the torque determined by the torque determination unit 12 from the torque constant, the induced voltage constant, the resistance value, and the like of the brushless DC motor 5. Then, the output determination unit 10 calculates the PWM duty width for driving the inverter 4 based on the determined applied voltage and the voltage between the DC buses detected by the voltage detection unit 8.
  • phase of the three-phase brushless DC motor 5 is energized by the output determination unit 10 based on the information from the position detection unit 6 and the speed detection unit 7 or the output from the bottom dead center search unit 11.
  • the output determination unit 10 determines the phase to be energized by using the signal input from the bottom dead center search unit 11.
  • the output determination unit 10 determines the signal to be output based on the position information of the position detection unit 6 and the speed information of the speed detection unit 7.
  • the drive waveform for driving the brushless DC motor 5 includes, for example, a rectangular wave and a sine wave, but is not particularly limited.
  • a square wave since it has a simple configuration and simple calculation, it can be handled by an inexpensive microcomputer. Therefore, the output determination unit 10 can be realized at low cost.
  • the brushless DC motor 5 is driven by adopting a rectangular wave drive that can be realized at a lower cost.
  • the motor drive device 30 is driven by a rectangular wave energized at 120 degrees. Therefore, the switching elements 4a, 4c, and 4e of the upper arm of the inverter 4 are energized with a drive waveform shifted by 120 degrees, respectively. Similarly, the switching elements 4b, 4d, and 4f of the lower arm of the inverter 4 are also energized with a drive waveform shifted by 120 degrees, respectively. As a result, the switching elements 4a and 4b, 4c and 4d, and 4e and 4f each have an off period of 60 degrees between the energization periods of each other.
  • the drive unit 9 transmits a drive signal to each switching element of the inverter 4 based on the on ratio determined by the output determination unit 10, the power supply timing of the brushless DC motor 5, and the PWM cycle determined in advance. Output.
  • the drive signal turns on or off the switching elements 4a to 4f of the inverter 4.
  • the optimum AC power is applied to the stator 5b of the brushless DC motor 5.
  • the rotor 5a of the brushless DC motor 5 rotates, and the piston 17b is driven.
  • the motor drive device 30 is configured.
  • the refrigerator 22 using the motor drive device 30 of the present embodiment will be described with reference to FIGS. 1 to 2D.
  • the refrigerator 22 will be described as an example, but the same applies to the refrigerating apparatus.
  • the refrigerator 22 is equipped with a compressor 17.
  • the compressor 17 is composed of a reciprocating type. That is, the compressor 17 is composed of a compression mechanism including a brushless DC motor 5, a crankshaft 17a, a piston 17b, a cylinder 17c, and the like.
  • the rotary motion of the rotor 5a of the brushless DC motor 5 is converted into a reciprocating motion by the crankshaft 17a.
  • the piston 17b connected to the crankshaft 17a reciprocates in the cylinder 17c.
  • the refrigerant is sucked into the cylinder 17c, and the sucked refrigerant is compressed.
  • the refrigerant compressed by the compressor 17 passes through the condenser 19, the two-way valve 18, the decompressor 20, and the evaporator 21 in this order, and returns to the compressor 17 in a refrigerating cycle. At this time, heat is dissipated in the condenser 19, and heat is absorbed in the evaporator 21. As a result, the inside of the refrigerator 22 can be cooled and heated. That is, the refrigerator 22 is configured by mounting the compressor 17 that realizes the refrigeration cycle.
  • the two-way valve 18 an electromagnetic valve or the like that can be opened and closed by energization is used.
  • the two-way valve 18 is opened during the operation of the compressor 17, and the condenser 19 and the decompressor 20 are communicated with each other to allow the refrigerant to flow.
  • the two-way valve 18 is closed and the space between the condenser 19 and the decompressor 20 is closed to prevent the refrigerant from flowing.
  • the refrigerator 22 using the motor drive device 30 is configured.
  • the horizontal axis represents time
  • the vertical axis represents the vibration amplitude in the direction perpendicular to the reciprocating direction of the piston 17b and perpendicular to the rotation axis of the brushless DC motor 5.
  • the piston 17b reciprocates in the cylinder 17c in the same manner. Therefore, when the piston 17b rotates in the forward or reverse direction from the bottom dead center state, the refrigerant compression / discharge step is similarly executed. Further, when the piston 17b rotates in the forward or reverse direction from the top dead center state, the suction step of sucking the refrigerant into the piston 17b is similarly executed.
  • the motor drive device 30 of the present embodiment utilizes the above characteristics, and first, the bottom dead center search unit 11 sets a pattern of rotating 180 degrees in the normal rotation direction from the top dead center to the bottom dead center. Output to the brushless DC motor 5. After that, the bottom dead center search unit 11 outputs a pattern of rotating 180 degrees from the top dead center to the bottom dead center in the reverse direction to the brushless DC motor 5.
  • the torque determination unit 12 determines in advance the torque when the bottom dead center search unit 11 is performing the bottom dead center search. That is, the torque determination unit 12 is stopped under the pressure condition when the inside of the refrigerator 22 is sufficiently cooled, and when the refrigerator 22 is started, the rotor 5a of the piston 17b is less than 60 degrees from the bottom dead center. Only the torque that rotates in the compression direction is determined.
  • the torque determined by the torque determination unit 12 cannot rotate in the forward rotation direction because it is in the compression direction.
  • torque is almost unnecessary because it is a suction step. Therefore, even with a small torque determined by the torque determination unit 12, the piston 17b can be rotated in the bottom dead center direction and moved to the bottom dead center.
  • the piston 17b moves to the bottom dead center.
  • the piston 17b rotates to a position of 60 degrees from the bottom dead center and stops.
  • the output determination unit 10 outputs the phase corresponding to the bottom dead center.
  • the rotor 5a near the bottom dead center rotates to a position where the piston 17b moves to the bottom dead center. That is, when the output determination unit 10 outputs a phase corresponding to the bottom dead center, the piston 17b rotates in a direction close to the bottom dead center.
  • the phases for moving to the top dead center and the bottom dead center are the same.
  • the piston 17b since the piston 17b is located near the bottom dead center, it moves to the bottom dead center side.
  • the same phase as the bottom dead center is a position rotated 120 degrees from the bottom dead center in the direction of the top dead center. Therefore, since the rotor 5a rotates only to less than 60 degrees, the piston 17b moves in the bottom dead center direction.
  • the brushless DC motor 5 having an 8-pole configuration
  • the range of rotation of the rotor 5a is less than the value obtained by dividing 360 by the number of poles.
  • the piston 17b can be similarly moved in the direction of the bottom dead center.
  • the compressor 17 has vibration generated at the start of operation as a factor of vibration generation. Further, in the operation of switching from compression to discharge and switching to suction after the start of operation of the compressor 17, acceleration may occur due to a rapid decrease in torque, and vibration may occur.
  • the kinetic energy of the rotor 5a of the brushless DC motor 5 is proportional to the square of the angular velocity. Therefore, the lower the speed of the rotor 5a, the larger the decrease and increase in the speed, and the larger the vibration generated.
  • the compressor 17 is subjected to a large torque at the start when there is a pressure difference between suction and discharge. Therefore, by increasing the speed of the rotor 5a and increasing the kinetic energy, the vibration generated from the start of operation to the speed at which normal operation is performed can be suppressed to some extent. However, when the top dead center is exceeded for the first time from the start of operation of the compressor 17, the speed of the rotor 5a is the lowest, so that vibration is most likely to occur.
  • crankshaft 17a is connected to the rotor 5a. Therefore, when the piston 17b starts rotating from the bottom dead center, vibration is generated by the inertia in the direction perpendicular to the reciprocating direction of the piston 17b and the direction perpendicular to the rotation axis of the brushless DC motor 5. Further, when the piston 17b gets over the top dead center, sudden acceleration occurs. Therefore, the inertia causes vibration in the direction perpendicular to the reciprocating direction of the piston 17b and in the direction perpendicular to the rotation axis of the brushless DC motor 5.
  • the vibration generated from the bottom dead center of the piston 17b and the rotation direction of the rotor 5a from the top dead center is in the same direction.
  • the crankshaft 17a is located symmetrically with respect to the rotation axis of the rotor 5a, so that the generated vibration is in the opposite direction.
  • FIG. 3A is a diagram showing vibration generated at the start of operation from the bottom dead center of the piston 17b.
  • FIG. 3B is a diagram showing vibration generated when the top dead center of the piston 17b is exceeded. That is, as shown in FIGS. 3A and 3B, the directions of vibration generation start are opposite in the rotation from the bottom dead center of the piston 17b and the rotation from the top dead center of the piston 17b.
  • the torque determination unit 12 determines the torque so as to overcome the top dead center at the timing of the vibration cycle when the piston 17b is started from the bottom dead center. At this time, the period of vibration of the start from the bottom dead center of the piston 17b is determined by the complex natural vibration of the parts constituting the compressor 17. The natural vibration is examined in advance by, for example, a hammering test.
  • the time to reach is calculated based on the compression work of the compressor 17, the torque generated in the brushless DC motor 5, and the inertia of the rotor 5a and the parts connected to the rotor 5a. At this time, the inertia is fixed (constant), and the compression work of the compressor 17 changes.
  • the torque generated in the brushless DC motor 5 can be determined by selecting the central load condition in the normal operation range in a state where the inside of the refrigerator 22 is sufficiently cooled. Specifically, the torque applied to the brushless DC motor 5 is calculated and held in advance under the selected load condition. As a result, the load on the control system that calculates the torque in real time can be reduced. Therefore, even with a low-performance microcomputer, the time required to reach the above can be easily calculated. As a result, the cost related to the control system can be reduced.
  • the waveform of FIG. 3A which is the vibration when the piston 17b is started from the bottom dead center
  • the waveform of FIG. 3B which is the vibration when the piston 17b is overcome by the torque determined in advance by the above method
  • the start positions of the vibration cycles coincide with each other, and the phases are opposite to each other. Therefore, the vibration of FIG. 3A and the vibration of FIG. 3B cancel each other out.
  • the combined vibration of the vibration at the start of operation and the vibration when the top dead center is exceeded is about 50% as compared with the peak of the vibration at the start shown in FIG. 3A. To a degree, it is suppressed.
  • the vibration cycles do not match at a constant torque.
  • the load when the refrigerator is sufficiently cooled has a small change as compared with when the power is turned on, and the change in the vibration phase is within ⁇ 30 degrees.
  • FIG. 4A is a diagram showing the vibration amplitude when the piston 17b is started from the bottom dead center, as in FIG. 3A.
  • FIG. 4B is a diagram showing vibration when the piston 17b gets over the top dead center. Note that FIG. 4B shows a waveform when the phase is delayed by +30 degrees from the vibration cycle at the start of operation.
  • FIG. 4C is a diagram showing a combined vibration waveform of FIGS. 4A and 4B.
  • the start of vibration when the piston 17b crosses the top dead center is shifted by 30 degrees.
  • the vibration peak value is about 60% of the vibration peak in FIG. 4A. Therefore, even if the phase shift occurs, a sufficient vibration suppressing effect can be obtained.
  • FIG. 5 is a flowchart in which the bottom dead center search unit 11 searches for the bottom dead center.
  • the bottom dead center search unit 11 confirms whether or not the target speed input from the outside when entering this process last time was 0 (zero) (STEP201). At this time, if the target speed is 0 (zero) (Yes in STEP201), the process proceeds to STEP202, and if the target speed is other than 0 (zero) (No in STEP201), the process proceeds to STEP203. Here, assuming that the previous target speed is 0 (zero), the process proceeds to STEP202.
  • Step202 check whether the current target speed input from the outside is other than 0 (STEP202). At this time, if the target speed is other than 0 (Yes in STEP202), the process proceeds to STEP204, and if the target speed is 0 (No in STEP201), the process proceeds to STEP203. That is, it is determined whether or not the target speed has changed so as to start from the stopped state between the previous process and the current process. Here, assuming that the current target speed is other than 0, the process proceeds to STEP204.
  • the bottom dead center search unit 11 sets 0 (zero) to the phase change amount for recording how much the rotor 5a is rotated for bottom dead center search, and sets the current output phase to top dead center. Initialize as a point (STEP204).
  • the bottom dead center search unit 11 determines whether or not the phase change amount, which is the amount obtained by rotating the rotor 5a for bottom dead center search, is less than 180 (STEP205). At this time, if the phase change amount is less than 180 (Yes in STEP205), the process proceeds to STEP206, and if the phase change amount is 180 or more (No in STEP205), the process proceeds to STEP207.
  • the phase rotated 30 degrees in the forward rotation direction from the current output phase is output as a new output phase (STEP206). Further, 30 which is equal to the rotated angle is added to the phase change amount recorded by how much the rotor 5a is rotated by the bottom dead center search unit 11 (STEP206). Then, after waiting for 100 ms, the process proceeds to STEP205.
  • the waiting time of 100 ms is the time waiting for the rotor 5a to rotate reliably. For this waiting time, a predetermined value is used while actually checking the operation.
  • STEP205 and STEP206 are executed 6 times each. After that, when returning to STEP205, the phase change amount is 180 (No of STEP205), so the process shifts from STEP205 to STEP207.
  • the phase rotated 180 degrees from the top dead center is output.
  • the connecting portion between the crankshaft 17a and the rotor 5a is between the top dead center and the bottom dead center in the normal rotation direction
  • the normal rotation corresponds to the suction step. Therefore, it is possible to rotate the rotor 5a in the forward rotation direction even with a small torque. As a result, the piston 17b moves to the bottom dead center.
  • the connecting portion between the crankshaft 17a and the rotor 5a is between the bottom dead center and the top dead center in the normal rotation direction, it corresponds to the compression / discharge step. Therefore, except when the piston 17b is near the bottom dead center, it can hardly rotate in the forward rotation direction. As a result, the piston 17b stays between the bottom dead center and the top dead center.
  • the brushless DC motor 5 since the brushless DC motor 5 is driven by a rectangular wave of 4 poles and 120 degrees, the amount of change in the output phase is rotated by 30 degrees. This corresponds to electrically changing the phase of a 120-degree square wave by 60 degrees, and makes one rotation with six types of output patterns. Further, since the brushless DC motor 5 has a 4-pole configuration, one rotation of the rotor electrically outputs 360 degrees in two cycles equal to the logarithm of the poles. That is, the output phase change of the 120-degree rectangular wave becomes 30 degrees when converted to the rotor angle. On the other hand, in the case of the 6-pole configuration, in order for the rotor to make one rotation, 360 degrees is electrically output for 3 cycles equal to the logarithm of the poles. Therefore, the rotor rotates 20 degrees for one change of the output phase. That is, the amount of change in STEP 206 shown in FIG. 5 is the result of dividing 360 by the number of pole pairs of the motor and the number of commutation patterns 6.
  • phase change amount is set to 0 and the current output phase is top dead.
  • initialization is performed (STEP207).
  • the bottom dead center search unit 11 determines whether or not the phase change amount, which records how much the rotor 5a is rotated in reverse for the bottom dead center search, is less than 180 (STEP208). If the phase change amount is less than 180 (Yes in STEP208), the process proceeds to STEP209, and if the phase change amount is 180 or more (No in STEP208), the process proceeds to STEP210. Here, since it is immediately after the phase change amount is initialized to 0 in STEP 207, the process shifts to STEP 209.
  • the phase rotated 30 degrees in the reverse direction from the current output phase is output as a new output phase (STEP209). Further, 30 equal to the rotation angle is added to the phase change amount recorded by the bottom dead center search unit 11 how much the rotor 5a is rotated in the opposite direction (STEP 209). Then, after waiting for 100 ms, the process proceeds to STEP208.
  • STEP208 and STEP209 are executed 6 times each. After that, when returning to STEP205, the phase change amount is 180 (No of STEP208), so the process shifts from STEP208 to STEP210.
  • the current target speed is recorded as the previous target speed, and the process is completed (STEP211).
  • the refrigerator 22 stops the refrigeration cycle when the inside of the refrigerator is sufficiently cooled. Therefore, the target speed becomes 0 (zero). If the process shown in FIG. 5 is executed again in this state, the previous target speed is not 0 (zero), so STEP201, STEP203, STEP211 shown in FIG. 5 and the same process as the flow during operation are executed. To. Therefore, in STEP211, when the previous target speed is updated, the target speed is recorded as 0 (zero).
  • the piston 17b is moved to the bottom dead center in the synchronous operation in which the current flowing through the brushless DC motor 5 and the induced voltage are not detected. , Can be activated. As a result, even if there is a difference between the suction and discharge pressures of the compressor 17, the peak of the vibration generated by the compressor 17 can be suppressed and the vibration can be reduced.
  • the two-way valve 18 is opened and the decompressor 20 and the condenser 19 are communicated with each other.
  • the example in which the two-way valve 18 is opened at the same time as the compressor 17 is started has been described, but there is no problem even if the time is slightly changed.
  • the condenser 19 becomes high pressure.
  • the evaporator 21 is decompressed by the decompressor 20 to become a low pressure.
  • the discharge side connected to the condenser 19 of the compressor 17 has a high pressure
  • the suction side connected to the evaporator 21 has a low pressure.
  • the two-way valve 18 is closed while the compressor 17 is stopped, and the pressure difference is maintained and the pressure is increased. Compare with the case of starting from a balanced state. In this case, if the two-way valve 18 is closed and the compressor 17 is started while maintaining the pressure difference, the electric power for providing the pressure difference again between the condenser 19 and the evaporator 21 is smaller. Become. Therefore, energy saving of the refrigerator 22 can be realized.
  • the motor drive device 30 can be started only when the pressure difference between the suction side and the discharge side of the compressor 17 is 0.05 MPa or less. Therefore, in the above state, it is necessary to wait for the motor drive device 30 to start until 10 minutes have passed.
  • the refrigerator 22 of the present embodiment can start the motor drive device 30 even with a differential pressure larger than 0.05 MPa. Therefore, when the temperature inside the refrigerator rises, the motor drive device 30 can be started at a timing when the compressor 17 needs to be operated. As a result, the electric power for providing a pressure difference between the condenser 19 and the evaporator 21 can be reduced as compared with the case where the compressor 17 is started in a state where the pressures on the suction side and the discharge side are balanced. Therefore, it is possible to further save energy in the refrigerator 22.
  • the two-way valve 18 can simplify the system configuration such as a refrigerator as compared with the three-way valve or the four-way valve. Further, the two-way valve 18 can more reliably maintain the pressure difference between the suction side and the discharge side of the compressor 17.
  • the compressor 17 may be arranged above the refrigerator 22.
  • the refrigerator 22 is arranged at the position farthest from the compressor 17, which is the vibration source. Therefore, in the refrigerator 22, the vibration of the compressor 17 is easily transmitted by the principle of leverage with the floor as a fulcrum.
  • the refrigerator 22 of the present embodiment can effectively suppress the peak of vibration of the compressor 17. Therefore, even if the compressor 17 is arranged at the upper part, the vibration and noise generated from the refrigerator 22 can be reduced.
  • the motor drive device 30 of the present embodiment includes a compressor 17 and a brushless DC motor 5 for the compressor 17 to perform a compression operation.
  • the motor drive device is configured to determine the starting torque and the rotation start position of the brushless DC motor 5 so that the vibration at the start of operation of the compressor 17 and the vibration due to the decrease in load torque cancel each other out.
  • the motor drive device 30 is configured to cancel the peak of the vibration amplitude generated at the start of operation and the peak of the vibration amplitude generated by the sudden acceleration due to the decrease of the load torque. Therefore, the peak of the vibration amplitude becomes smaller than the case where the peak of each of the above vibration amplitudes is generated independently. As a result, the vibration generated from the compressor 17 can be suppressed to be small.
  • the motor drive device 30 of the present embodiment includes a bottom dead center search unit 11 that searches for and moves the bottom dead center of the piston 17b of the compressor 17, and the bottom dead center search unit 11 causes the piston 17b to die down.
  • the brushless DC motor 5 is configured to move to the rotation start position.
  • the motor drive device 30 can grasp the position of the piston 17b of the compressor 17 and secure an acceleration period for obtaining a sufficient speed in order to overcome the compression step. As a result, the compressor 17 can be started stably.
  • the motor drive device 30 of the present embodiment includes 12 torque determination units, and the torque determination unit 12 determines the starting torque with the rotation start position determined by the bottom dead center search unit 11 as the bottom dead center. ..
  • the direction of vibration generated at the start of operation and the direction of start of vibration due to a decrease in load torque at top dead center are opposite to each other. Therefore, the vibrations of each other cancel each other out. As a result, the vibration generated by the compressor 17 can be suppressed more effectively.
  • the motor drive device 30 does not need to move the piston 17b to the bottom dead center and then to the operation start position. As a result, the motor drive device 30 can have a simpler configuration. Therefore, it is possible to configure with an inexpensive microcomputer having low capacity, and the cost of the product can be reduced.
  • the starting position of the piston 17b of the motor driving device 30 is fixed. Therefore, the calculation for determining the starting torque becomes simple. As a result, the development period can be shortened when the starting torque is determined in advance. On the other hand, even when the starting torque is determined in real time, it can be calculated in a short time with an inexpensive microcomputer.
  • both forward rotation and reverse rotation are uncompressed steps
  • both and reversal include compression steps.
  • the bottom dead center search unit 11 is configured to have a step of rotating the brushless DC motor 5 in the forward and reverse directions.
  • the motor drive device 30 does not need to detect the position of the brushless DC motor 5 at a low speed, which is difficult to detect, from the current, the induced voltage, or the like. That is, the motor drive device 30 can move the piston 17b to the bottom dead center by rotating the brushless DC motor 5 in synchronous operation. As a result, the position of the piston 17b of the compressor 17 can be reliably grasped by an inexpensive microcomputer.
  • the refrigerator 22 of the present embodiment is configured to include the motor driving device 30.
  • the compressor 17 can be started from a state in which the load torque fluctuates greatly. Therefore, there is no need to wait until the suction pressure and the discharge pressure of the compressor 17 are balanced between the time when the refrigerator 22 is stopped and the time when the operation is restarted again. As a result, when the power supply is restored from the power failure due to a power failure or the movement of the refrigerator 22, the cooling inside the refrigerator 22 can be restarted immediately.
  • the refrigerator 22 of the present embodiment is configured by providing a compressor 17 on the upper part of the housing.
  • the vibration is transmitted to the housing by driving the motor driving device 30. Is suppressed.
  • the refrigerator 22 having high quietness can be provided.
  • the compressor is arranged in a portion of the upper part of the housing that tends to be a dead space. Therefore, the storage volume in the refrigerator that can be actually used is expanded. This makes it possible to provide an easy-to-use refrigerator having a large effective storage volume.
  • the present disclosure can be used for a motor drive device for starting a compressor in which the load torque fluctuates greatly. Therefore, it can be suitably applied to refrigerators, freezers, showcases, and other various refrigerating devices using a compressor activated by a motor drive device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

In the present invention, a start-up torque and a rotation start position of a brushless DC motor (5) are determined such that vibration when operation of a compressor (17) is started and vibration due to a decrease in load torque cancel each other out. As a result of this configuration, a motor drive device (30) can suppress vibrations generated by the compressor (17) because a vibration amplitude peak generated when the operation is started and a vibration amplitude peak generated by a sudden acceleration due to the decrease in load torque are lower than when either vibration amplitude peak occurs alone. The present invention thereby provides a motor drive device (30) capable of stable start-up while suppressing vibrations even in a compressor (17) having large variations in torque.

Description

モータ駆動装置およびこれを用いた冷蔵庫Motor drive device and refrigerator using it
 本開示は、圧縮機のブラシレスDCモータを駆動するモータ駆動装置およびこれを用いた冷蔵庫に関する。 The present disclosure relates to a motor drive device for driving a brushless DC motor of a compressor and a refrigerator using the motor drive device.
 特許文献1は、従来の圧縮機のブラシレスDCモータを駆動する冷蔵庫用のモータ駆動装置を開示する。モータ駆動装置で駆動する圧縮機を搭載した冷蔵庫などの冷凍装置は、冷却運転停止時、冷凍サイクルを高圧側と低圧側とにサイクル上分離して、冷媒の流れ込みを防いで、省エネルギ化を図っている。 Patent Document 1 discloses a motor drive device for a refrigerator that drives a brushless DC motor of a conventional compressor. Refrigerators such as refrigerators equipped with a compressor driven by a motor drive device divide the refrigeration cycle into a high-pressure side and a low-pressure side in a cycle when the cooling operation is stopped to prevent the inflow of refrigerant and save energy. I'm trying.
 しかしながら、上記構成の場合、圧縮機の内部で、吸入圧力と吐出圧力とに大きな差が残る。そのため、圧縮機の起動時、圧縮ステップを乗り越えるために大きなエネルギが必要となる。 However, in the case of the above configuration, a large difference remains between the suction pressure and the discharge pressure inside the compressor. Therefore, when the compressor is started, a large amount of energy is required to overcome the compression step.
 そこで、従来の圧縮機駆動用のモータ駆動装置は、起動前の圧縮機のピストンの位置を、上死点から下死点の間の、上死点隣(あらかじめ決められた位置中で、上死点ではない上死点に最も近づく位置に相当)まで移動させる。そして、上死点隣の位置から、モータ駆動装置を起動させる。これにより、圧縮機のピストンに大きな加速を与え、エネルギを蓄えて、圧縮ステップを乗り越え、圧縮機の起動を行うように構成される。 Therefore, in the conventional motor drive device for driving a compressor, the position of the piston of the compressor before starting is set to the upper dead center between the top dead center and the bottom dead center (in a predetermined position, above). Move to the position closest to the top dead center, which is not the dead center). Then, the motor drive device is started from the position next to the top dead center. As a result, the piston of the compressor is greatly accelerated, energy is stored, the compression step is overcome, and the compressor is started.
 以下、上記特許文献1に記載の従来のモータ駆動装置について、図6を用いて、説明する。 Hereinafter, the conventional motor drive device described in Patent Document 1 will be described with reference to FIG.
 図6は、上記特許文献1に記載の従来のモータ駆動装置のブロック図である。 FIG. 6 is a block diagram of the conventional motor drive device described in Patent Document 1.
 図6に示すように、従来のモータ駆動装置は、ブラシレスDCモータ201と、圧縮機203と、制御部204と、インバータ205などから構成される。圧縮機203は、ブラシレスDCモータ201、およびブラシレスDCモータ201のロータに連結されたピストン202を有する。制御部204は、モータを下死点に移動させる初期整列段階と、吸入ステップ内の上死点隣に起動位置を移動させる強制整列段階と、ブラシレスDCモータ201の回転子を加速させる加速段階などの制御動作を含む。インバータ205は、制御部204からの駆動信号に基づいて、ブラシレスDCモータ201に電力を供給する。 As shown in FIG. 6, the conventional motor drive device includes a brushless DC motor 201, a compressor 203, a control unit 204, an inverter 205, and the like. The compressor 203 has a brushless DC motor 201 and a piston 202 connected to the rotor of the brushless DC motor 201. The control unit 204 has an initial alignment step of moving the motor to the bottom dead center, a forced alignment step of moving the starting position next to the top dead center in the suction step, an acceleration step of accelerating the rotor of the brushless DC motor 201, and the like. Including the control operation of. The inverter 205 supplies electric power to the brushless DC motor 201 based on the drive signal from the control unit 204.
 上記構成のモータ駆動装置は、圧縮機203の停止時において、ピストン202が圧縮ステップ手前で停止する確率が高く、下死点付近にピストン202が停止しやすい。そのため、制御部204は、初期整列段階において、ピストン202が下死点の位相となる信号をインバータ205に送る。そして、インバータ205は、電流をブラシレスDCモータ201のステータに流して、ブラシレスDCモータ201のロータを回転させる。これにより、ピストン202が、下死点に移動する。 In the motor drive device having the above configuration, when the compressor 203 is stopped, the piston 202 has a high probability of stopping before the compression step, and the piston 202 tends to stop near the bottom dead center. Therefore, the control unit 204 sends a signal to the inverter 205 in which the piston 202 is in phase at the bottom dead center in the initial alignment stage. Then, the inverter 205 causes a current to flow through the stator of the brushless DC motor 201 to rotate the rotor of the brushless DC motor 201. As a result, the piston 202 moves to the bottom dead center.
 つぎに、制御部204は、強制整列段階において、ピストン202の下死点の位相から、逆転方向に、順次切り替わるような信号を、インバータ205に送る。これにより、ピストン202の位置を、吸入ステップ側の上死点隣まで移動させる。 Next, in the forced alignment stage, the control unit 204 sends a signal to the inverter 205 that sequentially switches from the phase of the bottom dead center of the piston 202 in the reverse direction. As a result, the position of the piston 202 is moved to the position next to the top dead center on the suction step side.
 そして、制御部204は、加速段階において、ブラシレスDCモータ201を起動して、加速させるための信号をインバータ205に送る。これにより、ブラシレスDCモータ201が回転する。つまり、ピストン202を上死点近傍から加速させるため、圧縮ステップでの速度が大きくなる。その結果、圧縮ステップを乗り越え、圧縮機駆動用のモータ駆動装置の容易な起動が可能となる。 Then, the control unit 204 starts the brushless DC motor 201 in the acceleration stage and sends a signal for accelerating to the inverter 205. As a result, the brushless DC motor 201 rotates. That is, since the piston 202 is accelerated from the vicinity of top dead center, the speed in the compression step increases. As a result, the compression step can be overcome and the motor drive device for driving the compressor can be easily started.
特開2007-107523号公報JP-A-2007-107523
 本開示は、吸入圧力と吐出圧力との差がある負荷トルクの変動が大きな圧縮機でも、安価で、かつ、振動を抑制しながら安定した起動が可能なモータ駆動装置を提供する。 The present disclosure provides a motor drive device that is inexpensive and can be stably started while suppressing vibration even in a compressor having a large fluctuation in load torque, which has a difference between suction pressure and discharge pressure.
 本開示のモータ駆動装置は、圧縮機と、圧縮機が圧縮動作を行う駆動源となるブラシレスDCモータを備える。そして、モータ駆動装置は、圧縮機の運転開始時の振動と、負荷トルク減少による振動とが、打ち消しあうようにブラシレスDCモータの起動トルクと回転開始位置を決定するように構成される。 The motor drive device of the present disclosure includes a compressor and a brushless DC motor as a drive source for the compressor to perform a compression operation. The motor drive device is configured to determine the starting torque and rotation start position of the brushless DC motor so that the vibration at the start of operation of the compressor and the vibration due to the decrease in load torque cancel each other out.
 本開示のモータ駆動装置は、運転開始時に発生する振動振幅のピークと、負荷トルクの減少による急加速によって発生する振動振幅のピークと、を打ち消すように構成される。そのため、上記それぞれの振動振幅のピークが単独で発生する場合と比べて、振動振幅のピークが打ち消されて、小さくなる。これにより、圧縮機から発生する振動を小さく抑制して、安価で、安定して圧縮機を起動できるモータ駆動装置を提供する。 The motor drive device of the present disclosure is configured to cancel the peak of the vibration amplitude generated at the start of operation and the peak of the vibration amplitude generated by sudden acceleration due to a decrease in load torque. Therefore, the peaks of the vibration amplitudes are canceled out and become smaller than the case where the peaks of the respective vibration amplitudes are generated independently. As a result, a motor drive device capable of stably starting the compressor at low cost by suppressing vibration generated from the compressor to a small extent is provided.
図1は、実施の形態におけるモータ駆動装置のブロック図である。FIG. 1 is a block diagram of a motor drive device according to an embodiment. 図2Aは、同実施の形態において、被駆動体となる圧縮機のピストンの下死点における回転子との関係を表す略式図である。FIG. 2A is a schematic diagram showing the relationship with the rotor at the bottom dead center of the piston of the compressor as the driven body in the same embodiment. 図2Bは、同実施の形態において、被駆動体となる圧縮機のピストンが下死点から正転方向に90度回転した状態のピストンと回転子との関係を表す略式図である。FIG. 2B is a schematic diagram showing the relationship between the piston and the rotor in a state where the piston of the compressor as the driven body is rotated 90 degrees in the normal rotation direction from the bottom dead center in the same embodiment. 図2Cは、同実施の形態において、被駆動体となる圧縮機のピストンの上死点における回転子との関係を表す略式図である。FIG. 2C is a schematic diagram showing the relationship with the rotor at the top dead center of the piston of the compressor as the driven body in the same embodiment. 図2Dは、同実施の形態において、被駆動体となる圧縮機のピストンが上死点から正転方向に90度回転した状態のピストンと回転子との関係を表す略式図である。FIG. 2D is a schematic diagram showing the relationship between the piston and the rotor in a state where the piston of the compressor as the driven body is rotated 90 degrees in the normal rotation direction from the top dead center in the same embodiment. 図3Aは、同実施の形態において、運転開始時に発生する被駆動体としての圧縮機の振動を表す波形図である。FIG. 3A is a waveform diagram showing the vibration of the compressor as the driven body generated at the start of operation in the same embodiment. 図3Bは、同実施の形態において、運転開始から最初に圧縮ステップを乗り越えた際に発生する被駆動体としての圧縮機の振動を表す波形図である。FIG. 3B is a waveform diagram showing vibration of the compressor as a driven body generated when the compression step is first overcome from the start of operation in the same embodiment. 図3Cは、同実施の形態において、運転開始時の振動と圧縮ステップを乗り越えた際の振動を合成した被駆動体としての圧縮機の振動を表す波形図である。FIG. 3C is a waveform diagram showing the vibration of the compressor as the driven body, which is a combination of the vibration at the start of operation and the vibration when the compression step is overcome in the same embodiment. 図4Aは、同実施の形態における上死点到達までの時間が運転開始時の振動の周期より30度位相がずれた際の、運転開始時に発生する被駆動体としての圧縮機の振動を表す波形図である。FIG. 4A shows the vibration of the compressor as the driven body generated at the start of operation when the time to reach the top dead center in the same embodiment is out of phase by 30 degrees from the vibration cycle at the start of operation. It is a waveform diagram. 図4Bは、同実施の形態における上死点到達までの時間が運転開始時の振動の周期より30度位相がずれた際の、運転開始時から最初に圧縮ステップを乗り越える際に発生する被駆動体としての圧縮機の振動を表す波形図である。FIG. 4B shows a driven drive generated when the compression step is first overcome from the start of operation when the time to reach top dead center in the same embodiment is out of phase by 30 degrees from the vibration cycle at the start of operation. It is a waveform diagram which shows the vibration of a compressor as a body. 図4Cは、同実施の形態における上死点到達までの時間が運転開始時の振動の周期より30度位相がずれた際の、運転開始時と圧縮ステップを乗り越える際に被駆動体としての圧縮機に発生する合成の振動を表す波形図である。FIG. 4C shows compression as a driven body at the start of operation and when the compression step is overcome when the time to reach top dead center in the same embodiment is out of phase by 30 degrees from the vibration cycle at the start of operation. It is a waveform diagram which shows the synthetic vibration generated in the machine. 図5は、同実施の形態における下死点探索部が下死点を探索するフローチャートである。FIG. 5 is a flowchart in which the bottom dead center search unit in the same embodiment searches for the bottom dead center. 図6は、従来のモータ駆動装置のブロック図である。FIG. 6 is a block diagram of a conventional motor drive device.
 (本開示の基礎となった知見等)
 発明者らが本開示に想到するに至った当時、特許文献1に記載されたモータ駆動装置があった。モータ駆動装置は、圧縮機の吸入圧力と吐出圧力とに差があるため、負荷トルクの変動が大きく、振動を抑制しながら、安定して起動することが困難であった。すなわち、特許文献1の構成の場合、圧縮ステップを乗り越える速度は、十分に出るが、圧縮ステップを乗り越え、吸入ステップになった際に、急加速するため、振動が発生しやすい。また、モータ駆動装置は、圧縮機の停止時において、ピストンが下死点付近に停止することを前提に、圧縮機に電圧を印加する。これにより、ピストンが下死点へ移動される。そのため、ブラシレスDCモータの極数が2極以外の構成の場合、ピストンが上死点付近に停止した場合、想定したピストンの位置から円滑に起動できず、振動の発生や起動不良などが発生する、という課題があった。発明者らは、上記課題を見出し、その課題を解決するために、本開示の主題を構成するに至った。
(Knowledge, etc. that was the basis of this disclosure)
At the time when the inventors came up with the present disclosure, there was a motor drive device described in Patent Document 1. Since there is a difference between the suction pressure and the discharge pressure of the compressor, the motor drive device has a large fluctuation in the load torque, and it is difficult to start the motor drive device stably while suppressing the vibration. That is, in the case of the configuration of Patent Document 1, the speed of overcoming the compression step is sufficiently high, but when the compression step is overcome and the suction step is reached, the speed is rapidly accelerated, so that vibration is likely to occur. Further, the motor drive device applies a voltage to the compressor on the assumption that the piston stops near the bottom dead center when the compressor is stopped. This moves the piston to bottom dead center. Therefore, when the number of poles of the brushless DC motor is other than 2 poles, if the piston stops near the top dead center, it cannot be started smoothly from the assumed piston position, and vibration or start failure occurs. There was a problem. The inventors have found the above-mentioned problems and have come to construct the subject matter of the present disclosure in order to solve the problems.
 つまり、本開示は、負荷トルクの変動が大きな圧縮機でも、振動を抑制しながら、安定して起動できるモータ駆動装置を提供する。 That is, the present disclosure provides a motor drive device that can start stably while suppressing vibration even in a compressor having a large fluctuation in load torque.
 以下、図面を参照しながら、実施の形態、この場合は冷蔵庫に搭載した圧縮機のモータ駆動装置を例に説明する。但し、必要以上に詳細な説明は、省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が必要以上に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, the embodiment, in this case, the motor drive device of the compressor mounted on the refrigerator will be described as an example with reference to the drawings. However, an unnecessarily detailed description may be omitted. For example, detailed explanations of already well-known matters or duplicate explanations for substantially the same configuration may be omitted. This is to prevent the following explanation from becoming unnecessarily redundant and to facilitate the understanding of those skilled in the art.
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより請求の範囲に記載の主題を限定することを意図していない。 It should be noted that the accompanying drawings and the following description are provided for those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.
 (実施の形態)
 以下、本実施の形態のモータ駆動装置について、項分けして、説明する。
(Embodiment)
Hereinafter, the motor drive device of the present embodiment will be described by dividing it into items.
 [1-1.構成]
 まず、本実施の形態のモータ駆動装置30の構成について、図1から図2Dを参照しながら、説明する。
[1-1. Constitution]
First, the configuration of the motor drive device 30 of the present embodiment will be described with reference to FIGS. 1 to 2D.
 図1は、本実施の形態におけるモータ駆動装置30のブロック図である。図2Aから図2Dは、同実施の形態の被駆動体となる圧縮機17のピストン17bと回転子5aとの位置関係を表す略式図である。 FIG. 1 is a block diagram of the motor drive device 30 according to the present embodiment. 2A to 2D are schematic views showing the positional relationship between the piston 17b of the compressor 17, which is the driven body of the same embodiment, and the rotor 5a.
 図1に示すように、本実施の形態のモータ駆動装置30は、交流電源1に接続され、ブラシレスDCモータ5を駆動する。ブラシレスDCモータ5の回転子5aは、図2Aから図2Dに示すように、クランクシャフト17a、ピストン17bおよびシリンダ17cなどと、レシプロ型の圧縮機17を構成する。圧縮機17は、本実施の形態では、冷蔵庫22に搭載され、冷凍サイクルの一部を構成する。 As shown in FIG. 1, the motor drive device 30 of the present embodiment is connected to the AC power supply 1 and drives the brushless DC motor 5. As shown in FIGS. 2A to 2D, the rotor 5a of the brushless DC motor 5 constitutes a reciprocating compressor 17 with a crankshaft 17a, a piston 17b, a cylinder 17c, and the like. In the present embodiment, the compressor 17 is mounted on the refrigerator 22 and constitutes a part of the refrigeration cycle.
 交流電源1は、一般的な商用電源で、日本においては、実効値100Vの50Hzまたは60Hzの電源である。 The AC power supply 1 is a general commercial power supply, and in Japan, it is a 50 Hz or 60 Hz power supply with an effective value of 100 V.
 以下、モータ駆動装置30の構成について、具体的に、説明する。 Hereinafter, the configuration of the motor drive device 30 will be specifically described.
 図1に示すように、本実施の形態のモータ駆動装置30は、整流回路2、平滑部3、インバータ4、位置検出部6、速度検出部7、電圧検出部8、ドライブ部9、出力決定部10、下死点探索部11、トルク決定部12などから構成される。 As shown in FIG. 1, the motor drive device 30 of the present embodiment has a rectifier circuit 2, a smoothing unit 3, an inverter 4, a position detection unit 6, a speed detection unit 7, a voltage detection unit 8, a drive unit 9, and an output determination. It is composed of a unit 10, a bottom dead center search unit 11, a torque determination unit 12, and the like.
 整流回路2は、交流電源1を入力として、入力される交流電力を、直流電力に整流する。整流回路2は、ブリッジ接続された4個の整流ダイオード2a、2b、2c、2dで構成される。 The rectifier circuit 2 takes the AC power supply 1 as an input and rectifies the input AC power into DC power. The rectifier circuit 2 is composed of four bridge-connected rectifier diodes 2a, 2b, 2c, and 2d.
 平滑部3は、整流回路2の出力側に接続され、整流回路2の出力を平滑する。平滑部3は、平滑コンデンサ3eと、リアクタ3fなどから構成される。平滑部3からの出力は、インバータ4に入力される。 The smoothing unit 3 is connected to the output side of the rectifier circuit 2 and smoothes the output of the rectifier circuit 2. The smoothing portion 3 is composed of a smoothing capacitor 3e, a reactor 3f, and the like. The output from the smoothing unit 3 is input to the inverter 4.
 なお、リアクタ3fは、交流電源1と平滑コンデンサ3eとの間に挿入されるため、整流ダイオード2a~2dの前後のどちらに設けてもよい。また、リアクタ3fは、高周波除去部を構成するコモンモードフィルタが回路に設けられる場合、高周波除去部のリアクタンス成分との合成成分を考慮して構成することが望ましい。 Since the reactor 3f is inserted between the AC power supply 1 and the smoothing capacitor 3e, it may be provided before or after the rectifying diodes 2a to 2d. Further, when the common mode filter constituting the high frequency removing section is provided in the circuit, it is desirable that the reactor 3f is configured in consideration of the combined component with the reactance component of the high frequency removing section.
 インバータ4は、平滑部3からの入力される電圧に、交流電源1の電源周期の2倍周期で大きなリプル成分を含んだ直流電力を、順次切り替えて、3相の交流電力に変換する。インバータ4は、6個のスイッチング素子4a、4b、4c、4d、4e、4fを、3相のブリッジ接続により構成される。このとき、6個の還流電流用ダイオード4g、4h、4i、4j、4k、4lが、それぞれのスイッチング素子4a~4fに、逆方向に接続される。 The inverter 4 sequentially switches the DC power containing a large ripple component to the voltage input from the smoothing unit 3 at a cycle twice the power supply cycle of the AC power supply 1 and converts it into three-phase AC power. The inverter 4 is composed of six switching elements 4a, 4b, 4c, 4d, 4e, and 4f connected by a three-phase bridge. At this time, six recirculation current diodes 4g, 4h, 4i, 4j, 4k, and 4l are connected to the respective switching elements 4a to 4f in opposite directions.
 なお、上記ブラシレスDCモータ5は、永久磁石を有する回転子5aと、3相巻線を有する固定子5bなどから構成される。そして、インバータ4により作られた3相交流電流は、ブラシレスDCモータ5の固定子5bの3相巻線に供給される。これにより、ブラシレスDCモータ5の回転子5aが回転する。 The brushless DC motor 5 is composed of a rotor 5a having a permanent magnet, a stator 5b having a three-phase winding, and the like. Then, the three-phase alternating current generated by the inverter 4 is supplied to the three-phase winding of the stator 5b of the brushless DC motor 5. As a result, the rotor 5a of the brushless DC motor 5 rotates.
 位置検出部6は、固定子5bの3相巻線に発生する誘起電圧、ならびに、固定子5bの3相巻線に流れる電流および印加電圧などから、ブラシレスDCモータ5の固定子5bの磁極位置を検出する。 The position detection unit 6 determines the magnetic pole position of the stator 5b of the brushless DC motor 5 from the induced voltage generated in the three-phase winding of the stator 5b, the current flowing in the three-phase winding of the stator 5b, the applied voltage, and the like. Is detected.
 本実施の形態では、位置検出部6は、ブラシレスDCモータ5の端子電圧を取得し、ブラシレスDCモータ5の回転子5aの磁極の相対位置を検出する。具体的には、位置検出部6は、固定子5bの3相巻線に発生する誘起電圧に基づいて、回転子5aの相対的な回転位置を検出する。さらに、位置検出部6は、誘起電圧と、基準となる電圧とを比較し、ゼロクロスを検出する。なお、誘起電圧のゼロクロスの基準となる電圧は、3相分の端子電圧から仮想中点の電圧を作り、その電圧としてもよい。また、直流母線電圧を取得し、その電圧を、誘起電圧のゼロクロスの基準となる電圧としてもよい。本実施の形態では、仮想中点の電圧を、誘起電圧のゼロクロスの基準となる電圧とする。 In the present embodiment, the position detection unit 6 acquires the terminal voltage of the brushless DC motor 5 and detects the relative position of the magnetic poles of the rotor 5a of the brushless DC motor 5. Specifically, the position detection unit 6 detects the relative rotation position of the rotor 5a based on the induced voltage generated in the three-phase winding of the stator 5b. Further, the position detection unit 6 compares the induced voltage with the reference voltage and detects the zero cross. The voltage that serves as a reference for zero crossing of the induced voltage may be a voltage at the virtual midpoint created from the terminal voltages for three phases and used as the voltage. Further, the DC bus voltage may be acquired and the voltage may be used as a reference voltage for zero crossing of the induced voltage. In the present embodiment, the voltage at the virtual midpoint is used as a reference voltage for zero crossing of the induced voltage.
 なお、本実施の形態では、位置検出部6は、ブラシレスDCモータ5の固定子5bの磁極の相対位置を、誘起電圧で検出する方式を例に説明しているが、これに限られない。例えば、ブラシレスDCモータ5に流れる電流から、磁極の相対的な位置を検出してもよい。この場合、電流は、インバータ4の直流母線に配されたシャント抵抗に生じる電圧を検出し、シャント抵抗の抵抗値から、直流母線に流れる電流を算出し、さらに、モータへの通電状態から各相に流れる電流を分離し、検出する方式でもよい。また、3相のそれぞれの電流をセンサーやシャント抵抗などを配して、個別に電流を検出する方式でもよい。しかしながら、上記電流を検出する方法を比較した場合、直流母線の電流値から検出する方式は、安価な構成となるが、各相の電流を分離するために、波形にひずみが生じる場合がある。そのため、回転子5aの磁極の相対位置を検出する場合、電流から位置を推定する方法よりも、誘起電圧で検出する方法が、より好ましい。なぜなら、誘起電圧から検出する方式は、計算量が少なく、構成が簡単で、より安価に実現できるからである。また、3相それぞれの電流を個別に検出する方式は、回路部品が多くコストが高くなり、誘起電圧を検出する方式の方が安価に構成することができる。 In the present embodiment, the position detection unit 6 describes a method of detecting the relative position of the magnetic poles of the stator 5b of the brushless DC motor 5 by an induced voltage as an example, but the present invention is not limited to this. For example, the relative position of the magnetic poles may be detected from the current flowing through the brushless DC motor 5. In this case, for the current, the voltage generated in the shunt resistance arranged on the DC bus of the inverter 4 is detected, the current flowing through the DC bus is calculated from the resistance value of the shunt resistance, and each phase is further measured from the energized state of the motor. A method of separating and detecting the current flowing through the inverter may also be used. Further, a method of individually detecting the current of each of the three phases by arranging a sensor, a shunt resistor, or the like may be used. However, when the methods for detecting the above currents are compared, the method of detecting from the current value of the DC bus has an inexpensive configuration, but the waveform may be distorted in order to separate the currents of each phase. Therefore, when detecting the relative position of the magnetic poles of the rotor 5a, the method of detecting by the induced voltage is more preferable than the method of estimating the position from the current. This is because the method of detecting from the induced voltage requires a small amount of calculation, is simple in configuration, and can be realized at a lower cost. Further, the method of detecting the current of each of the three phases individually has many circuit parts and the cost is high, and the method of detecting the induced voltage can be configured at a lower cost.
 速度検出部7は、位置検出部6で検出した磁極の位置情報から、ブラシレスDCモータ5の、現在の駆動速度を計算する。具体的には、本実施の形態では、速度検出部7は、誘起電圧のゼロクロスの検出からの時間を測定し、測定した時間から、現在の速度の計算を行う。これにより、速度検出部7は、ブラシレスDCモータ5の駆動速度を計算する。 The speed detection unit 7 calculates the current drive speed of the brushless DC motor 5 from the position information of the magnetic poles detected by the position detection unit 6. Specifically, in the present embodiment, the speed detection unit 7 measures the time from the detection of the zero cross of the induced voltage, and calculates the current speed from the measured time. As a result, the speed detection unit 7 calculates the drive speed of the brushless DC motor 5.
 電圧検出部8は、インバータ4の直流母線間の電圧を検出する。一般的には、まず、インバータ4の直流母線間を抵抗で分圧し、検出する電圧を140V程度から5V以下の、マイコンで扱える範囲の電圧に分圧する。そして、分圧により検出した電圧から、マイコンで逆算し、元の直流母線間の電圧を算出する。なお、本実施の形態では、例えば、電圧を100分の1に分圧した値を用いる。 The voltage detection unit 8 detects the voltage between the DC bus of the inverter 4. Generally, first, the voltage between the DC buses of the inverter 4 is divided by a resistor, and the detected voltage is divided into a voltage within a range that can be handled by the microcomputer, which is about 140 V to 5 V or less. Then, from the voltage detected by the voltage division, the microcomputer back-calculates and calculates the voltage between the original DC bus. In this embodiment, for example, a value obtained by dividing the voltage by 1/100 is used.
 下死点探索部11では、外部から入力される目標速度が、0(ゼロ)から0(ゼロ)以外の値に変化した時に、ブラシレスDCモータ5を駆動し、圧縮機17のピストン17bの下死点を探索する。具体的には、下死点探索部11は、下死点を探索させるために、予め決められたパターンの駆動波形をブラシレスDCモータ5に出力し、ピストン17bを下死点近傍まで移動させる。つまり、下死点に相当する通電のパターンを、ブラシレスDCモータ5に出力し、ピストン17bを下死点へと移動させる。そして、一旦、ピストン17bを下死点へ移動させた後、下死点探索部11は、起動開始の位置までピストン17bを移動させるパターンを、ブラシレスDCモータ5に出力する。なお、本実施の形態においては、起動開始の位置を下死点とするため、下死点移動後の起動位置までピストン17bを移動させるステップを、特に、設ける必要はない。そして、下死点探索部11は、次に目標速度が0(ゼロ)から0(ゼロ)以外に変化するまで、ブラシレスDCモータ5への出力を停止する。 The bottom dead center search unit 11 drives the brushless DC motor 5 when the target speed input from the outside changes from 0 (zero) to a value other than 0 (zero), and under the piston 17b of the compressor 17. Search for the dead center. Specifically, the bottom dead center search unit 11 outputs a drive waveform of a predetermined pattern to the brushless DC motor 5 in order to search for the bottom dead center, and moves the piston 17b to the vicinity of the bottom dead center. That is, the energization pattern corresponding to the bottom dead center is output to the brushless DC motor 5 to move the piston 17b to the bottom dead center. Then, once the piston 17b is moved to the bottom dead center, the bottom dead center search unit 11 outputs a pattern for moving the piston 17b to the position where the start is started to the brushless DC motor 5. In the present embodiment, since the start-up start position is set as the bottom dead center, it is not necessary to particularly provide a step of moving the piston 17b to the start-up position after the bottom dead center is moved. Then, the bottom dead center search unit 11 stops the output to the brushless DC motor 5 until the target speed changes from 0 (zero) to a value other than 0 (zero).
 トルク決定部12は、外部から入力される目標速度が、0(ゼロ)から0(ゼロ)以外に変化した際に、まず、下死点探索部11で圧縮機17のピストン17bの下死点を探索する際に必要なトルクを出力する。なお、下死点方向への移動は、ピストン17bが圧縮の仕事を行わないため、負荷条件によって、ほとんど影響されない。そのため、下死点方向への移動に必要なトルクは、運転開始のトルクに比べて、小さく、一定のトルクとなる。そして、トルク決定部12は、最後に、ピストン17bを下死点に移動させる際において、下死点を探索するよりも大きなトルクとなるように、ブラシレスDCモータ5へ出力する。さらに、トルク決定部12は、下死点探索後において、圧縮機17のピストン17bを起動位置まで移動させる時間があれば、その期間に必要なトルクを、ブラシレスDCモータ5へ出力する。つまり、本実施の形態では、モータ駆動装置30は、ピストン17bを下死点から起動するように制御する。そのため、トルク決定部12は、下死点への出力の時間が終了した際に、下死点からの運転開始に必要なトルク(起動トルクに相当)を決定する。このとき、トルク決定部12は、ピストン17bを下死点から起動し、上死点に到達するまでの時間が、起動時に発生する振動の周期と一致するように決定した、トルクを出力する。 When the target speed input from the outside changes from 0 (zero) to other than 0 (zero), the torque determination unit 12 first uses the bottom dead center search unit 11 to find the bottom dead center of the piston 17b of the compressor 17. Outputs the torque required when searching for. The movement in the bottom dead center direction is hardly affected by the load condition because the piston 17b does not perform the compression work. Therefore, the torque required for movement in the bottom dead center direction is smaller than the torque at the start of operation and is a constant torque. Finally, when the piston 17b is moved to the bottom dead center, the torque determination unit 12 outputs the torque to the brushless DC motor 5 so that the torque is larger than that for searching for the bottom dead center. Further, the torque determination unit 12 outputs the torque required for that period to the brushless DC motor 5 if there is time to move the piston 17b of the compressor 17 to the starting position after the bottom dead center search. That is, in the present embodiment, the motor drive device 30 controls the piston 17b to start from the bottom dead center. Therefore, the torque determination unit 12 determines the torque (corresponding to the starting torque) required for starting the operation from the bottom dead center when the output time to the bottom dead center ends. At this time, the torque determining unit 12 starts the piston 17b from the bottom dead center and outputs the torque determined so that the time until reaching the top dead center coincides with the period of vibration generated at the time of starting.
 さらに、トルク決定部12は、下死点探索部11からの出力が停止する時間が経過したのちに、通常の運転を行うためのトルクも決定する。その際、トルクは、速度検出部7から入力される現在のブラシレスDCモータ5の速度と、外部から入力される目標速度とを比較して、決定される。つまり、目標速度に対して、現在の速度が不足していれば、出力するトルクを上昇させる。一方、目標速度に対して、現在の速度が上回っていれば、出力するトルクを減少させる。これにより、ブラシレスDCモータ5の速度を、目標速度に到達させる。 Further, the torque determination unit 12 also determines the torque for performing normal operation after the time when the output from the bottom dead center search unit 11 is stopped has elapsed. At that time, the torque is determined by comparing the current speed of the brushless DC motor 5 input from the speed detection unit 7 with the target speed input from the outside. That is, if the current speed is insufficient with respect to the target speed, the output torque is increased. On the other hand, if the current speed is higher than the target speed, the output torque is reduced. As a result, the speed of the brushless DC motor 5 is brought to the target speed.
 出力決定部10は、トルク決定部12で決定されたトルクからブラシレスDCモータ5のトルク定数、誘起電圧定数、および抵抗値などから、印加電圧を決定する。そして、出力決定部10は、決定した印加電圧と、電圧検出部8で検出された直流母線間の電圧に基づいて、インバータ4を駆動する、PWMデューティ幅を計算する。 The output determination unit 10 determines the applied voltage from the torque determined by the torque determination unit 12 from the torque constant, the induced voltage constant, the resistance value, and the like of the brushless DC motor 5. Then, the output determination unit 10 calculates the PWM duty width for driving the inverter 4 based on the determined applied voltage and the voltage between the DC buses detected by the voltage detection unit 8.
 また、出力決定部10は、位置検出部6および速度検出部7からの情報、または下死点探索部11からの出力に基づいて、3相のブラシレスDCモータ5の、どの相に通電するかを決定する。このとき、下死点探索部11からの入力信号がある場合、出力決定部10は、下死点探索部11から入力される信号を利用して、通電する相を決定する。一方、下死点探索部11からの入力信号がない場合、出力決定部10は、位置検出部6の位置情報と、速度検出部7の速度情報とに基づいて、出力する信号を決定する。 Further, which phase of the three-phase brushless DC motor 5 is energized by the output determination unit 10 based on the information from the position detection unit 6 and the speed detection unit 7 or the output from the bottom dead center search unit 11. To determine. At this time, when there is an input signal from the bottom dead center search unit 11, the output determination unit 10 determines the phase to be energized by using the signal input from the bottom dead center search unit 11. On the other hand, when there is no input signal from the bottom dead center search unit 11, the output determination unit 10 determines the signal to be output based on the position information of the position detection unit 6 and the speed information of the speed detection unit 7.
 ここで、ブラシレスDCモータ5を駆動する駆動波形としては、例えば、矩形波および正弦波などがあるが、特に、限定されない。矩形波の場合、単純な構成、かつ計算が簡易であるため、安価なマイコンで対応できる。そのため、出力決定部10を、低コストで実現できる。また、正弦波の場合、複雑な計算や電流検出などが必要となるが、より細かくモータの位置の検出が可能となる。そこで、本実施の形態においては、より低コストで実現可能な矩形波駆動を採用して、ブラシレスDCモータ5を駆動する。 Here, the drive waveform for driving the brushless DC motor 5 includes, for example, a rectangular wave and a sine wave, but is not particularly limited. In the case of a square wave, since it has a simple configuration and simple calculation, it can be handled by an inexpensive microcomputer. Therefore, the output determination unit 10 can be realized at low cost. Further, in the case of a sine wave, complicated calculation and current detection are required, but the position of the motor can be detected more finely. Therefore, in the present embodiment, the brushless DC motor 5 is driven by adopting a rectangular wave drive that can be realized at a lower cost.
 具体的には、本実施の形態では、モータ駆動装置30は、120度通電の矩形波で駆動される。そのため、インバータ4の上側アームのスイッチング素子4a、4c、4eに、それぞれ120度ずつ、ずらした駆動波形で通電している。同様に、インバータ4の下側アームのスイッチング素子4b、4d、4fにも、それぞれ120度ずつ、ずらした駆動波形で通電している。これにより、スイッチング素子4aと4b、4cと4d、および、4eと4fは、それぞれ、互いの通電期間の間に、60度ずつのオフ期間が存在することになる。 Specifically, in the present embodiment, the motor drive device 30 is driven by a rectangular wave energized at 120 degrees. Therefore, the switching elements 4a, 4c, and 4e of the upper arm of the inverter 4 are energized with a drive waveform shifted by 120 degrees, respectively. Similarly, the switching elements 4b, 4d, and 4f of the lower arm of the inverter 4 are also energized with a drive waveform shifted by 120 degrees, respectively. As a result, the switching elements 4a and 4b, 4c and 4d, and 4e and 4f each have an off period of 60 degrees between the energization periods of each other.
 ドライブ部9は、出力決定部10で決定されるオン比率と、ブラシレスDCモータ5の電力供給タイミングと、予め決定されているPWM周期に基づいて、インバータ4のそれぞれのスイッチング素子に、ドライブ信号を出力する。 The drive unit 9 transmits a drive signal to each switching element of the inverter 4 based on the on ratio determined by the output determination unit 10, the power supply timing of the brushless DC motor 5, and the PWM cycle determined in advance. Output.
 ドライブ信号は、インバータ4のスイッチング素子4a~4fを、オンまたはオフする。これにより、ブラシレスDCモータ5の固定子5bに最適な交流電力が印加される。その結果、ブラシレスDCモータ5の回転子5aが回転し、ピストン17bが駆動される。 The drive signal turns on or off the switching elements 4a to 4f of the inverter 4. As a result, the optimum AC power is applied to the stator 5b of the brushless DC motor 5. As a result, the rotor 5a of the brushless DC motor 5 rotates, and the piston 17b is driven.
 以上のように、モータ駆動装置30は構成される。 As described above, the motor drive device 30 is configured.
 つぎに、本実施の形態のモータ駆動装置30を用いた冷蔵庫22について、図1から図2Dを参照しながら、説明する。以下の説明では、冷蔵庫22を例に説明するが、冷凍装置でも同じである。 Next, the refrigerator 22 using the motor drive device 30 of the present embodiment will be described with reference to FIGS. 1 to 2D. In the following description, the refrigerator 22 will be described as an example, but the same applies to the refrigerating apparatus.
 冷蔵庫22は、圧縮機17が搭載される。圧縮機17は、レシプロ型で構成される。つまり、圧縮機17は、ブラシレスDCモータ5、クランクシャフト17a、ピストン17bおよびシリンダ17cなどを含む圧縮機構で構成される。ブラシレスDCモータ5の回転子5aの回転運動は、クランクシャフト17aにより、往復運動に変換される。そして、クランクシャフト17aに接続されたピストン17bは、シリンダ17c内を往復運動する。この往復動作により、シリンダ17c内に冷媒が吸い込まれ、吸い込んだ冷媒が圧縮される。 The refrigerator 22 is equipped with a compressor 17. The compressor 17 is composed of a reciprocating type. That is, the compressor 17 is composed of a compression mechanism including a brushless DC motor 5, a crankshaft 17a, a piston 17b, a cylinder 17c, and the like. The rotary motion of the rotor 5a of the brushless DC motor 5 is converted into a reciprocating motion by the crankshaft 17a. Then, the piston 17b connected to the crankshaft 17a reciprocates in the cylinder 17c. By this reciprocating operation, the refrigerant is sucked into the cylinder 17c, and the sucked refrigerant is compressed.
 なお、レシプロ型の圧縮機17は、吸入ステップおよび圧縮ステップにおいて、トルクの変動が大きく、速度および電流値が大きく変動する。 In the reciprocating compressor 17, the torque fluctuates greatly in the suction step and the compression step, and the speed and the current value fluctuate greatly.
 圧縮機17で圧縮された冷媒は、凝縮器19、二方弁18、減圧器20および蒸発器21を順に通って、再び、圧縮機17に戻るという冷凍サイクルを流れる。このとき、凝縮器19では放熱が行われ、蒸発器21では吸熱が行われる。これにより、冷蔵庫22内の冷却および加熱を行うことができる。つまり、冷蔵庫22は、上記冷凍サイクルを実現する圧縮機17を搭載して構成される。 The refrigerant compressed by the compressor 17 passes through the condenser 19, the two-way valve 18, the decompressor 20, and the evaporator 21 in this order, and returns to the compressor 17 in a refrigerating cycle. At this time, heat is dissipated in the condenser 19, and heat is absorbed in the evaporator 21. As a result, the inside of the refrigerator 22 can be cooled and heated. That is, the refrigerator 22 is configured by mounting the compressor 17 that realizes the refrigeration cycle.
 二方弁18は、通電によって開閉動作が可能な電磁弁などが用いられる。二方弁18は、圧縮機17の運転中において、開状態とし、凝縮器19と減圧器20とを連通させて、冷媒を流す。一方、圧縮機17の停止中において、二方弁18を閉状態とし、凝縮器19と減圧器20の間を閉塞させて、冷媒が流れないようにする。 As the two-way valve 18, an electromagnetic valve or the like that can be opened and closed by energization is used. The two-way valve 18 is opened during the operation of the compressor 17, and the condenser 19 and the decompressor 20 are communicated with each other to allow the refrigerant to flow. On the other hand, while the compressor 17 is stopped, the two-way valve 18 is closed and the space between the condenser 19 and the decompressor 20 is closed to prevent the refrigerant from flowing.
 以上のように、モータ駆動装置30を用いた冷蔵庫22は構成される。 As described above, the refrigerator 22 using the motor drive device 30 is configured.
 [1-2.動作]
 以上のように構成された冷蔵庫22に搭載されたモータ駆動装置30の動作について、図2A~図4Cを用いて説明する。
[1-2. motion]
The operation of the motor drive device 30 mounted on the refrigerator 22 configured as described above will be described with reference to FIGS. 2A to 4C.
 図3A~図4Cにおいて、横軸は時間を表し、縦軸はピストン17bの往復方向と垂直、かつブラシレスDCモータ5の回転軸と垂直の方向の振動振幅を表している。 In FIGS. 3A to 4C, the horizontal axis represents time, and the vertical axis represents the vibration amplitude in the direction perpendicular to the reciprocating direction of the piston 17b and perpendicular to the rotation axis of the brushless DC motor 5.
 図2Aに示すピストン17bが下死点からブラシレスDCモータ5の回転子5aが正転(時計回り)した場合、図2Bに示すように、ピストン17bの上昇に伴い、シリンダ17cの容積が減少する。これにより、シリンダ17c内に吸い込まれた冷媒が圧縮される。そこから、回転子5aが、さらに回転すると、シリンダ17c内の冷媒の圧力が、凝縮器側の圧力まで上昇する。そして、冷媒の圧力が凝縮器側の圧力まで上昇すると、図2Cに示すように、冷媒を吐き出しながら、ピストン17bが上死点へと到達する。これにより、シリンダ17cの圧縮された冷媒の吐出が完了する。その後、さらに回転子5aが回転すると、図2Dに示すように、ピストン17bが下死点方向に移動する。これにより、シリンダ17c内の容積が増加し、蒸発器21から低圧の冷媒が吸い込まれる。そして、さらに回転子5aが回転すると、再び、ピストン17bが図2Aに示す下死点に到達し、シリンダ17c内の冷媒の圧縮が始まる。以上により、冷媒の吐出および吸引の動作が、繰り返し実行される。 When the rotor 5a of the brushless DC motor 5 rotates forward (clockwise) from the bottom dead center of the piston 17b shown in FIG. 2A, the volume of the cylinder 17c decreases as the piston 17b rises, as shown in FIG. 2B. .. As a result, the refrigerant sucked into the cylinder 17c is compressed. When the rotor 5a further rotates from there, the pressure of the refrigerant in the cylinder 17c rises to the pressure on the condenser side. Then, when the pressure of the refrigerant rises to the pressure on the condenser side, as shown in FIG. 2C, the piston 17b reaches the top dead center while discharging the refrigerant. As a result, the discharge of the compressed refrigerant in the cylinder 17c is completed. After that, when the rotor 5a further rotates, the piston 17b moves toward the bottom dead center direction as shown in FIG. 2D. As a result, the volume inside the cylinder 17c increases, and the low-pressure refrigerant is sucked from the evaporator 21. Then, when the rotor 5a further rotates, the piston 17b reaches the bottom dead center shown in FIG. 2A again, and compression of the refrigerant in the cylinder 17c begins. As described above, the operations of discharging and sucking the refrigerant are repeatedly executed.
 一方、図2Aに示す下死点の状態から図2Dで示す状態へと、逆転(反時計回り)した場合においても、上記時計回りと同様に、シリンダ17cの容積は減少して、冷媒が圧縮される。そして、図2Cで示す上死点へとピストン17bが到達するまでに、冷媒の圧縮が行われる。さらに、図2Cの状態からピストン17bが逆転すると、図2Bに示す状態となる。これにより、図2Cに示す冷媒の吐出が完了した状態から、シリンダ17c内へ冷媒が吸い込まれる。その後、さらにピストン17bの逆転が継続されると、図2Aに示す下死点まで、シリンダ17c内への冷媒の吸入が継続される。そして、下死点から上死点に向かってピストン17bが移動する際に、冷媒が圧縮されることとなる。 On the other hand, even when the state of the bottom dead center shown in FIG. 2A is reversed (counterclockwise) to the state shown in FIG. 2D, the volume of the cylinder 17c is reduced and the refrigerant is compressed as in the clockwise direction. Will be done. Then, the refrigerant is compressed by the time the piston 17b reaches the top dead center shown in FIG. 2C. Further, when the piston 17b is reversed from the state shown in FIG. 2C, the state shown in FIG. 2B is obtained. As a result, the refrigerant is sucked into the cylinder 17c from the state in which the discharge of the refrigerant shown in FIG. 2C is completed. After that, when the reversal of the piston 17b is continued, the suction of the refrigerant into the cylinder 17c is continued until the bottom dead center shown in FIG. 2A. Then, when the piston 17b moves from the bottom dead center to the top dead center, the refrigerant is compressed.
 つまり、レシプロ型である圧縮機17は、回転子5aが正転、あるいは逆転でも、ピストン17bは、同様に、シリンダ17c内を往復運動する。そのため、ピストン17bが下死点の状態から正転、あるいは逆転方向に回転した場合、同様に、冷媒の圧縮・吐出ステップが実行される。また、ピストン17bが上死点の状態から正転、あるいは逆転方向に回転した場合、同様に、ピストン17b内に冷媒を吸い込む吸入ステップが実行される。 That is, in the reciprocating compressor 17, even if the rotor 5a rotates in the forward direction or in the reverse direction, the piston 17b reciprocates in the cylinder 17c in the same manner. Therefore, when the piston 17b rotates in the forward or reverse direction from the bottom dead center state, the refrigerant compression / discharge step is similarly executed. Further, when the piston 17b rotates in the forward or reverse direction from the top dead center state, the suction step of sucking the refrigerant into the piston 17b is similarly executed.
 つまり、蒸発器21と凝縮器19との間に圧力差がある状態においては、ピストン17bを上死点方向に動かすには、大きなトルクが必要となる。一方、下死点方向にピストン17bを動かす場合、わずかなトルクでの動作が可能となる。 That is, when there is a pressure difference between the evaporator 21 and the condenser 19, a large torque is required to move the piston 17b toward the top dead center. On the other hand, when the piston 17b is moved in the direction of bottom dead center, it can be operated with a small amount of torque.
 そこで、本実施の形態のモータ駆動装置30は、上記特性を利用して、まず、下死点探索部11は、上死点から下死点へと正転方向に180度回転させるパターンを、ブラシレスDCモータ5に出力する。その後、下死点探索部11は、逆転方向に、同様に、上死点から下死点へと180度回転させるパターンを、ブラシレスDCモータ5に出力する。一方、トルク決定部12は、下死点探索部11で下死点探索を行っている際のトルクを予め決定している。つまり、トルク決定部12は、冷蔵庫22の庫内が十分に冷却された状態で停止した際の圧力条件で停止し、起動した際に、ピストン17bの回転子5aが下死点から60度未満しか圧縮方向に回転しないトルクに決定している。 Therefore, the motor drive device 30 of the present embodiment utilizes the above characteristics, and first, the bottom dead center search unit 11 sets a pattern of rotating 180 degrees in the normal rotation direction from the top dead center to the bottom dead center. Output to the brushless DC motor 5. After that, the bottom dead center search unit 11 outputs a pattern of rotating 180 degrees from the top dead center to the bottom dead center in the reverse direction to the brushless DC motor 5. On the other hand, the torque determination unit 12 determines in advance the torque when the bottom dead center search unit 11 is performing the bottom dead center search. That is, the torque determination unit 12 is stopped under the pressure condition when the inside of the refrigerator 22 is sufficiently cooled, and when the refrigerator 22 is started, the rotor 5a of the piston 17b is less than 60 degrees from the bottom dead center. Only the torque that rotates in the compression direction is determined.
 例えば、ピストン17bの停止位置が上死点の手前であれば、トルク決定部12で決定したトルクは、圧縮方向であるため、正転方向へ回転できない。しかし、次の逆転方向に180度回転させる場合は、吸入ステップであるため、トルクがほぼ必要ない。そのため、トルク決定部12で決定した小さなトルクでも、ピストン17bを下死点方向へ回転させ、下死点へと移動させることができる。 For example, if the stop position of the piston 17b is before the top dead center, the torque determined by the torque determination unit 12 cannot rotate in the forward rotation direction because it is in the compression direction. However, when rotating 180 degrees in the next reverse direction, torque is almost unnecessary because it is a suction step. Therefore, even with a small torque determined by the torque determination unit 12, the piston 17b can be rotated in the bottom dead center direction and moved to the bottom dead center.
 一方、ピストン17bが上死点を乗り越えたところで停止していた場合、ピストン17bを正転方向に上死点から180度回転させる場合、吸入ステップで、回転が可能である。そのため、ピストン17bは、下死点まで移動する。しかし、逆転方向では、下死点から60度の位置まで回転して、ピストン17bが停止する。そして、最後に、出力決定部10で、下死点に相当する位相を出力する。これにより、下死点付近にある回転子5aは、ピストン17bが下死点に移動する位置まで回転する。つまり、出力決定部10が下死点に相当する位相を出力した場合、ピストン17bは、下死点に近い方向に回転する。例えば、本実施の形態のように4極構成のブラシレスDCモータ5の場合、上死点と下死点に移動するための位相が、同じ位相となる。しかし、ピストン17bは、下死点の方に近い位置にあるため、下死点側に移動することとなる。また、6極構成のブラシレスDCモータ5の場合、下死点と同じ位相は、下死点から120度、上死点方向に回転した位置となる。そのため、回転子5aは、60度未満までしか回転していないので、ピストン17bは、下死点方向に移動する。さらに、8極構成のブラシレスDCモータ5の場合、下死点からの回転可能な範囲を45度未満とするトルクを印加することにより、上記下死点方向への移動が可能となる。さらに大きな極数に関しては、回転子5aの回転の範囲、360を極数で割った値、未満とする。これにより、同様に、上記下死点方向への、ピストン17bの移動が可能となる。 On the other hand, when the piston 17b is stopped when it has passed the top dead center, and when the piston 17b is rotated 180 degrees from the top dead center in the forward rotation direction, the rotation is possible in the suction step. Therefore, the piston 17b moves to the bottom dead center. However, in the reverse direction, the piston 17b rotates to a position of 60 degrees from the bottom dead center and stops. Finally, the output determination unit 10 outputs the phase corresponding to the bottom dead center. As a result, the rotor 5a near the bottom dead center rotates to a position where the piston 17b moves to the bottom dead center. That is, when the output determination unit 10 outputs a phase corresponding to the bottom dead center, the piston 17b rotates in a direction close to the bottom dead center. For example, in the case of the brushless DC motor 5 having a 4-pole configuration as in the present embodiment, the phases for moving to the top dead center and the bottom dead center are the same. However, since the piston 17b is located near the bottom dead center, it moves to the bottom dead center side. Further, in the case of the brushless DC motor 5 having a 6-pole configuration, the same phase as the bottom dead center is a position rotated 120 degrees from the bottom dead center in the direction of the top dead center. Therefore, since the rotor 5a rotates only to less than 60 degrees, the piston 17b moves in the bottom dead center direction. Further, in the case of the brushless DC motor 5 having an 8-pole configuration, it is possible to move in the direction of the bottom dead center by applying a torque that makes the rotatable range from the bottom dead center less than 45 degrees. For a larger number of poles, the range of rotation of the rotor 5a is less than the value obtained by dividing 360 by the number of poles. As a result, the piston 17b can be similarly moved in the direction of the bottom dead center.
 ここで、圧縮機17は、振動の発生の要因として、運転開始の際に生じる振動がある。また、圧縮機17は、運転開始後、圧縮から吐出が完了し、吸入へと切り替わる動作において、トルクが急激に減少するために加速が発生し、振動が発生する場合がある。ブラシレスDCモータ5の回転子5aの運動エネルギは、角速度の2乗に比例する。そのため、回転子5aの速度が低いほど、速度の低下と上昇が大きくなるので、発生する振動が大きくなる。 Here, the compressor 17 has vibration generated at the start of operation as a factor of vibration generation. Further, in the operation of switching from compression to discharge and switching to suction after the start of operation of the compressor 17, acceleration may occur due to a rapid decrease in torque, and vibration may occur. The kinetic energy of the rotor 5a of the brushless DC motor 5 is proportional to the square of the angular velocity. Therefore, the lower the speed of the rotor 5a, the larger the decrease and increase in the speed, and the larger the vibration generated.
 一方、圧縮機17は、吸入と吐出の圧力差がある起動において、大きなトルクがかかっている。そのため、回転子5aの速度を上げて、運動エネルギを大きくすることにより、運転開始から通常運転を行う速度までに発生する振動は、ある程度抑制できる。しかし、圧縮機17の運転の開始から上死点を、初めて乗り越えた際には、回転子5aの速度が最も低くなるため、最も振動が発生しやすい。 On the other hand, the compressor 17 is subjected to a large torque at the start when there is a pressure difference between suction and discharge. Therefore, by increasing the speed of the rotor 5a and increasing the kinetic energy, the vibration generated from the start of operation to the speed at which normal operation is performed can be suppressed to some extent. However, when the top dead center is exceeded for the first time from the start of operation of the compressor 17, the speed of the rotor 5a is the lowest, so that vibration is most likely to occur.
 さらに、回転子5aは、クランクシャフト17aが連結されている。そのため、ピストン17bが下死点から回転を開始した際、イナーシャにより、ピストン17bの往復方向と垂直、かつブラシレスDCモータ5の回転軸と垂直の方向に、振動が発生する。また、ピストン17bが上死点を乗り越えた際、急激な加速が発生する。そのため、イナーシャにより、ピストン17bの往復方向と垂直、かつブラシレスDCモータ5の回転軸と垂直の方向に、振動が発生する。この場合、下死点から起動と同様に、加速により発生する振動のため、ピストン17bの下死点および上死点から回転子5aの回転方向に対して発生する振動は、同じ方向である。しかし、圧縮機17から見た場合、クランクシャフト17aは、回転子5aの回転軸を中心に対称の位置となるため、発生する振動は、逆方向となる。 Further, the crankshaft 17a is connected to the rotor 5a. Therefore, when the piston 17b starts rotating from the bottom dead center, vibration is generated by the inertia in the direction perpendicular to the reciprocating direction of the piston 17b and the direction perpendicular to the rotation axis of the brushless DC motor 5. Further, when the piston 17b gets over the top dead center, sudden acceleration occurs. Therefore, the inertia causes vibration in the direction perpendicular to the reciprocating direction of the piston 17b and in the direction perpendicular to the rotation axis of the brushless DC motor 5. In this case, since the vibration is generated by acceleration as in the case of starting from the bottom dead center, the vibration generated from the bottom dead center of the piston 17b and the rotation direction of the rotor 5a from the top dead center is in the same direction. However, when viewed from the compressor 17, the crankshaft 17a is located symmetrically with respect to the rotation axis of the rotor 5a, so that the generated vibration is in the opposite direction.
 以下、上記振動の発生について、図3Aおよび図3Bを用いて、説明する。 Hereinafter, the generation of the above vibration will be described with reference to FIGS. 3A and 3B.
 図3Aは、ピストン17bの下死点からの運転開始時に発生する振動を表す図である。図3Bは、ピストン17bの上死点を乗り越えた際に発生する振動を表す図である。つまり、図3Aおよび図3Bに示すように、ピストン17bの下死点からの回転と、ピストン17bの上死点からの回転において、振動発生開始の方向は、逆の位相となる。 FIG. 3A is a diagram showing vibration generated at the start of operation from the bottom dead center of the piston 17b. FIG. 3B is a diagram showing vibration generated when the top dead center of the piston 17b is exceeded. That is, as shown in FIGS. 3A and 3B, the directions of vibration generation start are opposite in the rotation from the bottom dead center of the piston 17b and the rotation from the top dead center of the piston 17b.
 そこで、トルク決定部12では、ピストン17bの下死点からの起動した際の振動の周期のタイミングで、上死点を乗り越えるようにトルクを決定する。このとき、ピストン17bの下死点からの起動の振動の周期は、圧縮機17を構成する部品の複合的な固有振動によって決定される。なお、固有振動は、予め、例えばハンマリング試験などで調べておく。 Therefore, the torque determination unit 12 determines the torque so as to overcome the top dead center at the timing of the vibration cycle when the piston 17b is started from the bottom dead center. At this time, the period of vibration of the start from the bottom dead center of the piston 17b is determined by the complex natural vibration of the parts constituting the compressor 17. The natural vibration is examined in advance by, for example, a hammering test.
 また、到達までの時間は、圧縮機17の圧縮仕事と、ブラシレスDCモータ5に発生するトルクと、回転子5aおよび回転子5aに連結された部品のイナーシャに基づいて、計算する。このとき、イナーシャは固定(一定)で、圧縮機17の圧縮仕事は変化する。一方、ブラシレスDCモータ5に発生するトルクは、冷蔵庫22の庫内が十分に冷却された状態の通常運転範囲において、中央となる負荷条件の選択により決定できる。具体的には、選択した負荷条件で、予め、ブラシレスDCモータ5にかかるトルクを計算し、保持する。これにより、トルクをリアルタイムで計算する制御系の負荷を、軽減できる。そのため、性能の低いマイコンでも、上記到達までの時間を容易に計算できる。その結果、制御系に関するコストを、低減できる。 The time to reach is calculated based on the compression work of the compressor 17, the torque generated in the brushless DC motor 5, and the inertia of the rotor 5a and the parts connected to the rotor 5a. At this time, the inertia is fixed (constant), and the compression work of the compressor 17 changes. On the other hand, the torque generated in the brushless DC motor 5 can be determined by selecting the central load condition in the normal operation range in a state where the inside of the refrigerator 22 is sufficiently cooled. Specifically, the torque applied to the brushless DC motor 5 is calculated and held in advance under the selected load condition. As a result, the load on the control system that calculates the torque in real time can be reduced. Therefore, even with a low-performance microcomputer, the time required to reach the above can be easily calculated. As a result, the cost related to the control system can be reduced.
 そして、上記の方法で予め決定したトルクにより、ピストン17bを下死点から起動した際の振動である図3Aの波形と、上死点を乗り越えた際の振動である図3Bの波形は、タイミング(イ)に示すように、振動周期の開始位置が一致し、逆位相となる。そのため、図3Aの振動と図3Bの振動が、互いに打ち消し合う。これにより、図3Cに示すように、運転開始時の振動と、上死点を乗り越えた時の振動の合成の振動が、図3Aに示す起動時の振動のピークと比較して、約50%程度まで、抑制される。 Then, the waveform of FIG. 3A, which is the vibration when the piston 17b is started from the bottom dead center, and the waveform of FIG. 3B, which is the vibration when the piston 17b is overcome by the torque determined in advance by the above method, are the timings. As shown in (a), the start positions of the vibration cycles coincide with each other, and the phases are opposite to each other. Therefore, the vibration of FIG. 3A and the vibration of FIG. 3B cancel each other out. As a result, as shown in FIG. 3C, the combined vibration of the vibration at the start of operation and the vibration when the top dead center is exceeded is about 50% as compared with the peak of the vibration at the start shown in FIG. 3A. To a degree, it is suppressed.
 なお、冷蔵庫22の状態が変化した場合、一定のトルクでは、振動の周期が一致しない。しかし、冷蔵庫が十分冷却された状態での負荷は、電源投入時と比較して変化が小さく、振動位相の変化は、±30度以内に収まる。 When the state of the refrigerator 22 changes, the vibration cycles do not match at a constant torque. However, the load when the refrigerator is sufficiently cooled has a small change as compared with when the power is turned on, and the change in the vibration phase is within ± 30 degrees.
 上記状態について、図4Aから図4Cを用いて、説明する。 The above state will be described with reference to FIGS. 4A to 4C.
 図4Aは、図3Aと同様に、ピストン17bを下死点から起動した際の振動振幅を表す図である。図4Bは、ピストン17bが上死点を乗り越えた際の振動を表す図である。なお、図4Bは、運転開始の振動の周期から位相が、+30度遅れた際の波形を表している。図4Cは、図4Aと図4Bの合成の振動波形を表す図である。 FIG. 4A is a diagram showing the vibration amplitude when the piston 17b is started from the bottom dead center, as in FIG. 3A. FIG. 4B is a diagram showing vibration when the piston 17b gets over the top dead center. Note that FIG. 4B shows a waveform when the phase is delayed by +30 degrees from the vibration cycle at the start of operation. FIG. 4C is a diagram showing a combined vibration waveform of FIGS. 4A and 4B.
 つまり、冷蔵庫22が温まり、負荷状態が重くなると、図4Bに示すように、ピストン17bの上死点までの到達の時間が遅れ、位相がずれる。一方、冷蔵庫22が冷却され、負荷状態が軽くなると、ピストン17bの上死点までの到達の時間が早くなる。そのため、上記位相が、マイナス側にずれることとなる。 That is, when the refrigerator 22 becomes warm and the load state becomes heavy, as shown in FIG. 4B, the time to reach the top dead center of the piston 17b is delayed and the phase shifts. On the other hand, when the refrigerator 22 is cooled and the load state is lightened, the time to reach the top dead center of the piston 17b becomes faster. Therefore, the above phase shifts to the minus side.
 例えば、図4Aのタイミング(ロ)が示すように、ピストン17bが上死点を乗り越えた際の振動の開始が、30度ずれている。しかしながら、位相のずれが30度でも、図4Cに示すように、図4Aの振動のピークの6割程度の振動ピーク値となる。そのため、位相のずれが発生しても、十分な振動の抑制効果が得ることができる。 For example, as shown by the timing (b) in FIG. 4A, the start of vibration when the piston 17b crosses the top dead center is shifted by 30 degrees. However, even if the phase shift is 30 degrees, as shown in FIG. 4C, the vibration peak value is about 60% of the vibration peak in FIG. 4A. Therefore, even if the phase shift occurs, a sufficient vibration suppressing effect can be obtained.
 以下、モータ駆動装置30の下死点探索部11が、下死点を探す制御の詳細に関して、図5を用いて、説明する。 Hereinafter, the details of the control in which the bottom dead center search unit 11 of the motor drive device 30 searches for the bottom dead center will be described with reference to FIG.
 図5は、下死点探索部11が下死点を探すフローチャートである。 FIG. 5 is a flowchart in which the bottom dead center search unit 11 searches for the bottom dead center.
 図5に示すように、まず、下死点探索部11は、前回この処理に入ってきたときの外部から入力される目標速度が0(ゼロ)であったか否かを確認する(STEP201)。このとき、目標速度が0(ゼロ)ならば(STEP201のYes)、STEP202へ、目標速度が0(ゼロ)以外ならば(STEP201のNo)、STEP203へ移行する。ここでは、前回の目標速度が0(ゼロ)であるとして、STEP202へ移行する。 As shown in FIG. 5, first, the bottom dead center search unit 11 confirms whether or not the target speed input from the outside when entering this process last time was 0 (zero) (STEP201). At this time, if the target speed is 0 (zero) (Yes in STEP201), the process proceeds to STEP202, and if the target speed is other than 0 (zero) (No in STEP201), the process proceeds to STEP203. Here, assuming that the previous target speed is 0 (zero), the process proceeds to STEP202.
 つぎに、現在の外部から入力される目標速度が、0以外か否かを確認する(STEP202)。このとき、目標速度が0以外であれば(STEP202のYes)、STEP204へ、目標速度が0であれば(STEP201のNo)、STEP203へ移行する。つまり、前回の処理から今回の処理の間に、停止状態から起動するように目標速度が変化したか否かを、判定している。ここでは、現在の目標速度が0以外であるとして、STEP204へ移行する。 Next, check whether the current target speed input from the outside is other than 0 (STEP202). At this time, if the target speed is other than 0 (Yes in STEP202), the process proceeds to STEP204, and if the target speed is 0 (No in STEP201), the process proceeds to STEP203. That is, it is determined whether or not the target speed has changed so as to start from the stopped state between the previous process and the current process. Here, assuming that the current target speed is other than 0, the process proceeds to STEP204.
 つぎに、下死点探索部11は、下死点探索のために回転子5aを、どれだけ回転させたかを記録する位相変更量に0(ゼロ)をセットし、現在の出力位相を上死点であるとして初期化する(STEP204)。 Next, the bottom dead center search unit 11 sets 0 (zero) to the phase change amount for recording how much the rotor 5a is rotated for bottom dead center search, and sets the current output phase to top dead center. Initialize as a point (STEP204).
 つぎに、下死点探索部11は、下死点探索のために回転子5aを回転させた量である位相変更量が180未満か否を判定する(STEP205)。このとき、位相変更量が180未満であれば(STEP205のYes)、STEP206へ、位相変更量が180以上ならば(STEP205のNo)、STEP207へ移行する。 Next, the bottom dead center search unit 11 determines whether or not the phase change amount, which is the amount obtained by rotating the rotor 5a for bottom dead center search, is less than 180 (STEP205). At this time, if the phase change amount is less than 180 (Yes in STEP205), the process proceeds to STEP206, and if the phase change amount is 180 or more (No in STEP205), the process proceeds to STEP207.
 つぎに、現在の出力位相から30度正転方向に回転した位相を新たな出力位相として出力する(STEP206)。さらに、下死点探索部11で回転子5aをどれだけ回転させたかを記録した位相変更量に回転させた角度と等しい30を加算する(STEP206)。そして、100ms待機した後、STEP205へ移行する。なお、100msの待機は、回転子5aが確実に回転する時間を待っている時間である。なお、この待機時間には、実際に動作を確認しながら、予め決定した値を利用する。 Next, the phase rotated 30 degrees in the forward rotation direction from the current output phase is output as a new output phase (STEP206). Further, 30 which is equal to the rotated angle is added to the phase change amount recorded by how much the rotor 5a is rotated by the bottom dead center search unit 11 (STEP206). Then, after waiting for 100 ms, the process proceeds to STEP205. The waiting time of 100 ms is the time waiting for the rotor 5a to rotate reliably. For this waiting time, a predetermined value is used while actually checking the operation.
 そして、STEP205とSTEP206を、それぞれ、6回実行する。その後、STEP205へ戻ってきた際には、位相変更量は180となっているため(STEP205のNo)、STEP205からSTEP207へ移行する。 Then, STEP205 and STEP206 are executed 6 times each. After that, when returning to STEP205, the phase change amount is 180 (No of STEP205), so the process shifts from STEP205 to STEP207.
 また、STEP204からSTEP206を実行し、STEP207へ移行するまでに、上死点から180度回転する位相が出力される。このとき、クランクシャフト17aと回転子5aの連結部が、上死点から正転時方向の下死点の間にある場合、正転は、吸入ステップに対応する。そのため、微小なトルクでも、正転方向に回転子5aを回転させることが可能となる。これにより、下死点までピストン17bが移動する。一方、クランクシャフト17aと回転子5aの連結部が、下死点から正転方向の上死点の間にある場合、圧縮・吐出ステップに対応する。そのため、ピストン17bが下死点付近にある場合を除き、ほとんど正転方向に回転することができない。これにより、ピストン17bは、下死点から上死点の間にとどまることとなる。 Also, by executing STEP204 to STEP206 and shifting to STEP207, the phase rotated 180 degrees from the top dead center is output. At this time, when the connecting portion between the crankshaft 17a and the rotor 5a is between the top dead center and the bottom dead center in the normal rotation direction, the normal rotation corresponds to the suction step. Therefore, it is possible to rotate the rotor 5a in the forward rotation direction even with a small torque. As a result, the piston 17b moves to the bottom dead center. On the other hand, when the connecting portion between the crankshaft 17a and the rotor 5a is between the bottom dead center and the top dead center in the normal rotation direction, it corresponds to the compression / discharge step. Therefore, except when the piston 17b is near the bottom dead center, it can hardly rotate in the forward rotation direction. As a result, the piston 17b stays between the bottom dead center and the top dead center.
 なお、本実施の形態では、ブラシレスDCモータ5を、4極、かつ120度の矩形波で駆動する構成としたので、出力位相の変更量を30度回転するとしている。これは、120度の矩形波は、電気的には、60度ずつ位相を変更することに相当し、6種類の出力パターンで1回転となる。また、ブラシレスDCモータ5は、4極構成であるため、回転子の1回転で、電気的に360度を極対数と等しい2周期を出力することとなる。つまり、120度の矩形波の出力位相変更は、回転子の角度に直すと、30度となるためである。一方、6極構成であれば、回転子が1回転するためには、電気的に360度を極対数と等しい3周期出力することとなる。そのため、出力位相の1回の変更に対して、回転子は、20度回転することとなる。つまり、図5に示すSTEP206の変更量は、360を、モータの極対数と転流パターンの数6で除算した結果となる。 In the present embodiment, since the brushless DC motor 5 is driven by a rectangular wave of 4 poles and 120 degrees, the amount of change in the output phase is rotated by 30 degrees. This corresponds to electrically changing the phase of a 120-degree square wave by 60 degrees, and makes one rotation with six types of output patterns. Further, since the brushless DC motor 5 has a 4-pole configuration, one rotation of the rotor electrically outputs 360 degrees in two cycles equal to the logarithm of the poles. That is, the output phase change of the 120-degree rectangular wave becomes 30 degrees when converted to the rotor angle. On the other hand, in the case of the 6-pole configuration, in order for the rotor to make one rotation, 360 degrees is electrically output for 3 cycles equal to the logarithm of the poles. Therefore, the rotor rotates 20 degrees for one change of the output phase. That is, the amount of change in STEP 206 shown in FIG. 5 is the result of dividing 360 by the number of pole pairs of the motor and the number of commutation patterns 6.
 つぎに、下死点探索部11が下死点探索のために回転子5aを逆転でどれだけ回転したかを記録するために、位相変更量を0にセットし、現在の出力位相を上死点であるとして、初期化をする(STEP207)。 Next, in order to record how much the rotor 5a is rotated in reverse for the bottom dead center search unit 11, the phase change amount is set to 0 and the current output phase is top dead. As a point, initialization is performed (STEP207).
 つぎに、下死点探索部11が下死点探索のために回転子5aを逆転でどれだけ回転したかを記録した位相変更量が180未満か否かを判定する(STEP208)。位相変更量が180未満であれば(STEP208のYes)、STEP209へ、位相変更量が180以上であれば(STEP208のNo)、STEP210へ移行する。ここでは、STEP207で位相変更量を0に初期化した直後なので、STEP209へ移行する。 Next, the bottom dead center search unit 11 determines whether or not the phase change amount, which records how much the rotor 5a is rotated in reverse for the bottom dead center search, is less than 180 (STEP208). If the phase change amount is less than 180 (Yes in STEP208), the process proceeds to STEP209, and if the phase change amount is 180 or more (No in STEP208), the process proceeds to STEP210. Here, since it is immediately after the phase change amount is initialized to 0 in STEP 207, the process shifts to STEP 209.
 つぎに、現在の出力位相から30度逆転方向に回転した位相を新たな出力位相として出力する(STEP209)。さらに、下死点探索部11で回転子5aをどれだけ逆方向に回転させたかを記録した位相変更量に回転させた角度と等しい30を加算する(STEP209)。そして、100ms待機した後、STEP208へ移行する。 Next, the phase rotated 30 degrees in the reverse direction from the current output phase is output as a new output phase (STEP209). Further, 30 equal to the rotation angle is added to the phase change amount recorded by the bottom dead center search unit 11 how much the rotor 5a is rotated in the opposite direction (STEP 209). Then, after waiting for 100 ms, the process proceeds to STEP208.
 そして、STEP208とSTEP209を、それぞれ、6回実行する。その後、STEP205へ戻ってきた際には、位相変更量は180となっているため(STEP208のNo)、STEP208からSTEP210へ移行する。 Then, STEP208 and STEP209 are executed 6 times each. After that, when returning to STEP205, the phase change amount is 180 (No of STEP208), so the process shifts from STEP208 to STEP210.
 また、STEP207からSTEP209を実行し、STEP210へ移行するまでに、上死点から逆転方向に180度回転する位相が出力される。このとき、クランクシャフト17aと回転子5aの連結部が、上死点から逆転時方向の下死点の間にある場合、逆転では吸入ステップに対応する。つまり、正転方向の圧縮・吐出ステップで、STEP204~STEP206において、ピストンが下死点に移動していない場合、逆転では吸入ステップに対応する。そのため、微小なトルクでも、正転方向に回転子5aを回転させることが可能となる。これにより、下死点までピストン17bが移動する。一方、クランクシャフト17aと回転子5aの連結部が、すでに下死点に移動している場合、圧縮・吐出ステップに対応する。そのため、ピストン17bは、ほとんど逆方向に回転することができない。これにより、ピストン17bは、下死点付近にとどまることとなる。 Also, by executing STEP 207 to STEP 209 and shifting to STEP 210, a phase that rotates 180 degrees in the reverse direction from the top dead center is output. At this time, if the connecting portion between the crankshaft 17a and the rotor 5a is between the top dead center and the bottom dead center in the reverse rotation direction, the reverse rotation corresponds to the suction step. That is, in the compression / discharge step in the forward rotation direction, when the piston does not move to the bottom dead center in STEP204 to STEP206, the reverse rotation corresponds to the suction step. Therefore, it is possible to rotate the rotor 5a in the forward rotation direction even with a small torque. As a result, the piston 17b moves to the bottom dead center. On the other hand, when the connecting portion between the crankshaft 17a and the rotor 5a has already moved to the bottom dead center, it corresponds to the compression / discharge step. Therefore, the piston 17b can hardly rotate in the opposite direction. As a result, the piston 17b stays near the bottom dead center.
 つぎに、下死点付近にあるピストン17bに、下死点に相当する位相を出力する(STEP210)。これにより、ピストン17bが、確実に下死点へと移動する。 Next, the phase corresponding to the bottom dead center is output to the piston 17b near the bottom dead center (STEP210). As a result, the piston 17b surely moves to the bottom dead center.
 つぎに、今回の目標速度を前回の目標速度として記録し、処理を終了する(STEP211)。 Next, the current target speed is recorded as the previous target speed, and the process is completed (STEP211).
 なお、上記フローが終了後、再び、図5のフローの処理が開始された場合、まず、STEP201における前回の目標速度が0(ゼロ)ではないため(STEP201のNo)、STEP203へと移行する。 When the processing of the flow of FIG. 5 is started again after the above flow is completed, first, since the previous target speed in STEP201 is not 0 (zero) (No in STEP201), the process proceeds to STEP203.
 そして、STEP203では、何も出力せず、STEP211へ移行し、STEP211において、目標速度を更新した後、処理を終了する。 Then, in STEP203, nothing is output, the process proceeds to STEP211 and the target speed is updated in STEP211, and then the process ends.
 また、冷蔵庫22は、庫内が十分に冷却されると、冷凍サイクルを止める。そのため、目標速度が0(ゼロ)となる。この状態で、図5に示す処理を、再び実行すると、前回の目標速度が0(ゼロ)ではないため、図5に示す、STEP201、STEP203、STEP211と、運転中のフローと同じ処理が実行される。そのため、STEP211において、前回の目標速度を更新する際に、目標速度を0(ゼロ)として記録する。 Further, the refrigerator 22 stops the refrigeration cycle when the inside of the refrigerator is sufficiently cooled. Therefore, the target speed becomes 0 (zero). If the process shown in FIG. 5 is executed again in this state, the previous target speed is not 0 (zero), so STEP201, STEP203, STEP211 shown in FIG. 5 and the same process as the flow during operation are executed. To. Therefore, in STEP211, when the previous target speed is updated, the target speed is recorded as 0 (zero).
 そして、再度、図5に示すフローの処理が実行されると、STEP201において、前回の目標速度が0(ゼロ)と記録されているため、STEP202へと移行する。 Then, when the flow processing shown in FIG. 5 is executed again, the previous target speed is recorded as 0 (zero) in STEP201, so the process shifts to STEP202.
 さらに、STEP202においては、今回の目標速度が0(ゼロ)であるため(STEP202のNo)、STEP203を処理後、STEP211へと移行する。つまり、STEP203では、何も出力せず、STEP211において、前回の目標速度が、再度、0(ゼロ)に更新される。 Furthermore, in STEP202, since the target speed this time is 0 (zero) (No in STEP202), after processing STEP203, the process shifts to STEP211. That is, in STEP 203, nothing is output, and in STEP 211, the previous target speed is updated to 0 (zero) again.
 以上のように、図5に示すフロー処理を定期的に呼び出して処理することにより、ブラシレスDCモータ5に流れる電流や誘起電圧を検出しない同期運転において、ピストン17bを下死点へと移動させて、起動させることができる。これにより、圧縮機17の吸入と吐出の圧力に差があっても、圧縮機17で発生する振動のピークを抑制して、振動の低減が可能となる。 As described above, by periodically calling and processing the flow process shown in FIG. 5, the piston 17b is moved to the bottom dead center in the synchronous operation in which the current flowing through the brushless DC motor 5 and the induced voltage are not detected. , Can be activated. As a result, even if there is a difference between the suction and discharge pressures of the compressor 17, the peak of the vibration generated by the compressor 17 can be suppressed and the vibration can be reduced.
 つぎに、本実施の形態のモータ駆動装置30を圧縮機17に用いて、冷蔵庫22に搭載した場合について、図1を参照しながら、説明する。 Next, a case where the motor drive device 30 of the present embodiment is used in the compressor 17 and mounted on the refrigerator 22 will be described with reference to FIG.
 まず、圧縮機17の起動と同時に、二方弁18を開状態とし、減圧器20と凝縮器19とを連通させる。なお、上記では、圧縮機17の起動と同時に、二方弁18を開状態にする例で説明としたが、時間的に多少前後しても問題とはならない。 First, at the same time as the compressor 17 is started, the two-way valve 18 is opened and the decompressor 20 and the condenser 19 are communicated with each other. In the above description, the example in which the two-way valve 18 is opened at the same time as the compressor 17 is started has been described, but there is no problem even if the time is slightly changed.
 つぎに、圧縮機17の駆動が継続されると、凝縮器19は高圧となる。一方、蒸発器21は、減圧器20で減圧されて、低圧となる。このとき、圧縮機17の凝縮器19につながる吐出側が高圧に、蒸発器21につながる吸入側が低圧となる。 Next, when the compressor 17 continues to be driven, the condenser 19 becomes high pressure. On the other hand, the evaporator 21 is decompressed by the decompressor 20 to become a low pressure. At this time, the discharge side connected to the condenser 19 of the compressor 17 has a high pressure, and the suction side connected to the evaporator 21 has a low pressure.
 ここで、冷蔵庫22の庫内温度が低下し、圧縮機17を停止させた状況を想定する。この場合、二方弁18を開状態で維持すると、徐々に、凝縮器19と蒸発器21との圧力が、バランスしていく。このとき、圧縮機17の吸入側と吐出側との間の圧力差が0.05MPa以下、すなわちバランスしたといえる状態になるまで、冷蔵庫22のシステム構成にもよるが、10分程度かかる。 Here, it is assumed that the temperature inside the refrigerator 22 drops and the compressor 17 is stopped. In this case, when the two-way valve 18 is maintained in the open state, the pressures of the condenser 19 and the evaporator 21 are gradually balanced. At this time, it takes about 10 minutes until the pressure difference between the suction side and the discharge side of the compressor 17 becomes 0.05 MPa or less, that is, a state in which it can be said that the compressor 17 is balanced, depending on the system configuration of the refrigerator 22.
 一方、圧縮機17の停止と同時に、二方弁18を開状態から閉状態に移行させると、凝縮器19と蒸発器21との圧力差が、ほぼ維持される、これにより、圧縮機17の吸入側と吐出側に圧力差が残る。 On the other hand, when the two-way valve 18 is shifted from the open state to the closed state at the same time as the compressor 17 is stopped, the pressure difference between the condenser 19 and the evaporator 21 is almost maintained, whereby the compressor 17 A pressure difference remains between the suction side and the discharge side.
 ここで、冷蔵庫22の庫内温度が上昇し、再び、圧縮機17を起動させる際に、圧縮機17の停止中に二方弁18を閉めて、圧力差が保持された状態と、圧力がバランスした状態から起動させる場合とを比較する。この場合、二方弁18を閉めて、圧力差を保持した状態で圧縮機17を起動させる方が、凝縮器19と蒸発器21との間に、再び、圧力差を設けるための電力が小さくなる。そのため、冷蔵庫22の省エネルギ化を実現できる。 Here, when the temperature inside the refrigerator 22 rises and the compressor 17 is started again, the two-way valve 18 is closed while the compressor 17 is stopped, and the pressure difference is maintained and the pressure is increased. Compare with the case of starting from a balanced state. In this case, if the two-way valve 18 is closed and the compressor 17 is started while maintaining the pressure difference, the electric power for providing the pressure difference again between the condenser 19 and the evaporator 21 is smaller. Become. Therefore, energy saving of the refrigerator 22 can be realized.
 また、圧縮機17の停止中も二方弁18を開状態のままにする場合、および、二方弁18が設けない冷蔵庫の動作について、考察する。 Further, consider the case where the two-way valve 18 is left in the open state even when the compressor 17 is stopped, and the operation of the refrigerator in which the two-way valve 18 is not provided.
 具体的には、圧縮機17の停止から圧力がバランスするまでの10分程度が経過する前に、庫内温度が上昇した場合を考察する。この場合、従来の構成であれば、圧縮機17の吸入側と吐出側との圧力差が0.05MPa以下でしか、モータ駆動装置30を起動させることができない。そのため、上記状態においては、10分が経過するまで、モータ駆動装置30の起動を待つ必要がある。 Specifically, consider the case where the temperature inside the refrigerator rises before about 10 minutes have elapsed from the stop of the compressor 17 to the balance of pressure. In this case, in the conventional configuration, the motor drive device 30 can be started only when the pressure difference between the suction side and the discharge side of the compressor 17 is 0.05 MPa or less. Therefore, in the above state, it is necessary to wait for the motor drive device 30 to start until 10 minutes have passed.
 しかしながら、本実施の形態の冷蔵庫22は、0.05MPaより大きな差圧でもモータ駆動装置30を起動させることが可能となる。そのため、庫内温度が上昇した場合、圧縮機17の運転が必要なタイミングで、モータ駆動装置30を起動させることができる。これにより、圧縮機17の吸入側と吐出側との圧力がバランスした状態で起動させる場合に比べて、凝縮器19と蒸発器21との間に圧力差を設けるための電力を低減できる。そのため、さらに、冷蔵庫22の省エネルギ化が可能となる。 However, the refrigerator 22 of the present embodiment can start the motor drive device 30 even with a differential pressure larger than 0.05 MPa. Therefore, when the temperature inside the refrigerator rises, the motor drive device 30 can be started at a timing when the compressor 17 needs to be operated. As a result, the electric power for providing a pressure difference between the condenser 19 and the evaporator 21 can be reduced as compared with the case where the compressor 17 is started in a state where the pressures on the suction side and the discharge side are balanced. Therefore, it is possible to further save energy in the refrigerator 22.
 また、二方弁18は、三方弁または四方弁に比べ、冷蔵庫などのシステム構成を簡略にできる。さらに、二方弁18は、圧縮機17の吸入側と吐出側との圧力差を、より確実に維持できる。 Further, the two-way valve 18 can simplify the system configuration such as a refrigerator as compared with the three-way valve or the four-way valve. Further, the two-way valve 18 can more reliably maintain the pressure difference between the suction side and the discharge side of the compressor 17.
 また、本実施の形態の冷蔵庫22は、圧縮機17を冷蔵庫22の上部に配置してもよい。この場合、手が届きにくい、上部のデッドスペースが小さくなるため、使いやすくなるとともに、庫内体積を拡大できる。一方、圧縮機17の上部への配置により、冷蔵庫22は、加振源である圧縮機17が最も遠い位置に配置される。そのため、冷蔵庫22は、床を支点として、てこの原理で圧縮機17の振動が伝わりやすくなる。しかし、本実施の形態の冷蔵庫22は、圧縮機17の振動のピークを、効果的に抑制できる。そのため、圧縮機17を上部へ配置しても、冷蔵庫22から発生する振動や騒音を小さくできる。 Further, in the refrigerator 22 of the present embodiment, the compressor 17 may be arranged above the refrigerator 22. In this case, since the dead space at the upper part, which is difficult to reach, becomes smaller, it becomes easier to use and the volume inside the refrigerator can be expanded. On the other hand, due to the arrangement of the compressor 17 on the upper part, the refrigerator 22 is arranged at the position farthest from the compressor 17, which is the vibration source. Therefore, in the refrigerator 22, the vibration of the compressor 17 is easily transmitted by the principle of leverage with the floor as a fulcrum. However, the refrigerator 22 of the present embodiment can effectively suppress the peak of vibration of the compressor 17. Therefore, even if the compressor 17 is arranged at the upper part, the vibration and noise generated from the refrigerator 22 can be reduced.
 [1-3.効果等]
 以上で述べたように、本実施の形態のモータ駆動装置30は、圧縮機17と、圧縮機17が圧縮動作を行うためのブラシレスDCモータ5を備える。モータ駆動装置は、圧縮機17の運転開始時の振動と、負荷トルク減少による振動とが、打ち消しあうようにブラシレスDCモータ5の起動トルクと回転開始位置を決定するように構成される。この構成により、モータ駆動装置30は、運転開始時に発生する振動振幅のピークと負荷トルクの減少による急加速によって発生する振動振幅のピークと、を打ち消すように構成される。そのため、上記それぞれの振動振幅のピークが単独で発生する場合と比べて、振動振幅のピークが小さくなる。これにより、圧縮機17から発生する振動を小さく抑制できる。
[1-3. Effect, etc.]
As described above, the motor drive device 30 of the present embodiment includes a compressor 17 and a brushless DC motor 5 for the compressor 17 to perform a compression operation. The motor drive device is configured to determine the starting torque and the rotation start position of the brushless DC motor 5 so that the vibration at the start of operation of the compressor 17 and the vibration due to the decrease in load torque cancel each other out. With this configuration, the motor drive device 30 is configured to cancel the peak of the vibration amplitude generated at the start of operation and the peak of the vibration amplitude generated by the sudden acceleration due to the decrease of the load torque. Therefore, the peak of the vibration amplitude becomes smaller than the case where the peak of each of the above vibration amplitudes is generated independently. As a result, the vibration generated from the compressor 17 can be suppressed to be small.
 また、本実施の形態のモータ駆動装置30は、圧縮機17のピストン17bの下死点を探索し移動させる下死点探索部11を備え、下死点探索部11により、ピストン17bを下死点に移動させたのち、ブラシレスDCモータ5を回転開始位置に移動させるように構成される。この構成により、モータ駆動装置30は、圧縮機17のピストン17bの位置を把握して、圧縮ステップを乗り越えるために、十分な速度を得る加速期間を確保できる。これにより、圧縮機17の安定した起動が可能となる。 Further, the motor drive device 30 of the present embodiment includes a bottom dead center search unit 11 that searches for and moves the bottom dead center of the piston 17b of the compressor 17, and the bottom dead center search unit 11 causes the piston 17b to die down. After moving to the point, the brushless DC motor 5 is configured to move to the rotation start position. With this configuration, the motor drive device 30 can grasp the position of the piston 17b of the compressor 17 and secure an acceleration period for obtaining a sufficient speed in order to overcome the compression step. As a result, the compressor 17 can be started stably.
 また、本実施の形態のモータ駆動装置30は、トルク決定部を12備え、トルク決定部12は、下死点探索部11で決定される回転開始位置を下死点とし、起動トルクを決定する。この構成により、モータ駆動装置30は、運転開始時に発生する振動の方向と、上死点で負荷トルクの減少による振動の発生開始の方向とが逆方向となる。そのため、互いの振動が相殺される。これにより、圧縮機17で発生する振動を、より効果的に抑制できる。 Further, the motor drive device 30 of the present embodiment includes 12 torque determination units, and the torque determination unit 12 determines the starting torque with the rotation start position determined by the bottom dead center search unit 11 as the bottom dead center. .. With this configuration, in the motor drive device 30, the direction of vibration generated at the start of operation and the direction of start of vibration due to a decrease in load torque at top dead center are opposite to each other. Therefore, the vibrations of each other cancel each other out. As a result, the vibration generated by the compressor 17 can be suppressed more effectively.
 また、上記構成により、モータ駆動装置30は、ピストン17bを下死点へ移動したのち、運転開始位置へ、さらに移動させる必要がない。これにより、モータ駆動装置30を、より単純な構成にできる。そのため、能力の低い安価なマイコンでの構成が可能となるため、製品のコストの低減できる。 Further, according to the above configuration, the motor drive device 30 does not need to move the piston 17b to the bottom dead center and then to the operation start position. As a result, the motor drive device 30 can have a simpler configuration. Therefore, it is possible to configure with an inexpensive microcomputer having low capacity, and the cost of the product can be reduced.
 さらに、上記構成により、モータ駆動装置30は、ピストン17bの起動開始位置が固定となる。そのため、起動トルクの決定のための計算が単純となる。これにより、事前に起動トルクを決定する場合、開発期間を短縮できる。一方、起動トルクをリアルタイムに決定する場合でも、安価なマイコンで、短時間で計算できる。 Further, according to the above configuration, the starting position of the piston 17b of the motor driving device 30 is fixed. Therefore, the calculation for determining the starting torque becomes simple. As a result, the development period can be shortened when the starting torque is determined in advance. On the other hand, even when the starting torque is determined in real time, it can be calculated in a short time with an inexpensive microcomputer.
 また、本実施の形態のモータ駆動装置30は、圧縮機17を、上死点を基準としてみた場合、正転と逆転ともに、非圧縮ステップであり、下死点を基準としてみた場合、正転と逆転ともに、圧縮ステップを含む。下死点探索部11は、ブラシレスDCモータ5を正転と逆転をさせるステップを有するように構成される。この構成により、モータ駆動装置30は、検出することが難しい低速でのブラシレスDCモータ5の位置を、電流や誘起電圧などから検出する必要がない。つまり、モータ駆動装置30は、ブラシレスDCモータ5を同期運転で回転させることにより、ピストン17bを下死点へ移動させることができる。これにより、安価なマイコンで、確実に圧縮機17のピストン17bの位置を把握できる。 Further, in the motor drive device 30 of the present embodiment, when the compressor 17 is viewed with reference to the top dead center, both forward rotation and reverse rotation are uncompressed steps, and when the compressor 17 is viewed with reference to the bottom dead center, normal rotation Both and reversal include compression steps. The bottom dead center search unit 11 is configured to have a step of rotating the brushless DC motor 5 in the forward and reverse directions. With this configuration, the motor drive device 30 does not need to detect the position of the brushless DC motor 5 at a low speed, which is difficult to detect, from the current, the induced voltage, or the like. That is, the motor drive device 30 can move the piston 17b to the bottom dead center by rotating the brushless DC motor 5 in synchronous operation. As a result, the position of the piston 17b of the compressor 17 can be reliably grasped by an inexpensive microcomputer.
 また、本実施の形態の冷蔵庫22は、上記モータ駆動装置30を備えて構成される。この構成により、負荷トルクが大きく変動する状態から、圧縮機17を起動できる。そのため、冷蔵庫22が停止と、再度、運転を再開するまで間に、圧縮機17の吸入圧力と吐出圧力がバランスするまでの待ち時間が不要となる。これにより、停電や冷蔵庫22の移動などにおける電力の供給停止から復帰した際において、即座に、冷蔵庫22の庫内の冷却の再開が可能となる。 Further, the refrigerator 22 of the present embodiment is configured to include the motor driving device 30. With this configuration, the compressor 17 can be started from a state in which the load torque fluctuates greatly. Therefore, there is no need to wait until the suction pressure and the discharge pressure of the compressor 17 are balanced between the time when the refrigerator 22 is stopped and the time when the operation is restarted again. As a result, when the power supply is restored from the power failure due to a power failure or the movement of the refrigerator 22, the cooling inside the refrigerator 22 can be restarted immediately.
 また、本実施の形態の冷蔵庫22は、圧縮機17を、筐体上部に備えて構成される。この構成により、冷蔵庫22は、筐体上部に設置される圧縮機の運転開始時に発生する振動が、てこの原理により大きくなっても、モータ駆動装置30の駆動により、筐体への振動の伝達が抑制される。これにより、静粛性の高い冷蔵庫22を提供できる。また、筐体上部のデッドスペースとなりやすい部分に、圧縮機が配置される。そのため、実際に使用できる庫内の収容容積が広がる。これにより、有効収容容積の広い、使いやすい冷蔵庫を提供できる。 Further, the refrigerator 22 of the present embodiment is configured by providing a compressor 17 on the upper part of the housing. With this configuration, in the refrigerator 22, even if the vibration generated at the start of operation of the compressor installed in the upper part of the housing becomes large due to the principle of leverage, the vibration is transmitted to the housing by driving the motor driving device 30. Is suppressed. Thereby, the refrigerator 22 having high quietness can be provided. In addition, the compressor is arranged in a portion of the upper part of the housing that tends to be a dead space. Therefore, the storage volume in the refrigerator that can be actually used is expanded. This makes it possible to provide an easy-to-use refrigerator having a large effective storage volume.
 以上、本開示の技術を、上記実施の形態を用いて説明したが、上述の実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲、またはその均等の範囲において、種々の変更、置き換え、付加、省略などを行うことができる。 The technique of the present disclosure has been described above using the above-described embodiment, but since the above-described embodiment is for exemplifying the technique of the present disclosure, it is within the scope of claims or an equivalent range thereof. , Various changes, replacements, additions, omissions, etc. can be made.
 本開示は、負荷トルクの変動が大きな圧縮機を起動するためのモータ駆動装置に使用できる。そのため、モータ駆動装置で起動される圧縮機を用いた冷蔵庫、冷凍庫、ショーケース、その他の各種冷凍装置に好適に適用できる。 The present disclosure can be used for a motor drive device for starting a compressor in which the load torque fluctuates greatly. Therefore, it can be suitably applied to refrigerators, freezers, showcases, and other various refrigerating devices using a compressor activated by a motor drive device.
 1  交流電源(電源)
 2  整流回路
 2a,2b,2c,2d  整流ダイオード
 3  平滑部
 3e  平滑コンデンサ
 3f  リアクタ
 4,205  インバータ
 4a,4b,4c,4d,4e,4f  スイッチング素子
 4g,4h,4i,4j,4k,4l  還流電流用ダイオード
 5,201  ブラシレスDCモータ
 5a  回転子
 5b  固定子
 6  位置検出部
 7  速度検出部
 8  電圧検出部
 9  ドライブ部
 10  出力決定部
 11  下死点探索部
 12  トルク決定部
 17,203  圧縮機
 17a  クランクシャフト
 17b,202  ピストン
 17c  シリンダ
 18  二方弁
 19  凝縮器
 20  減圧器
 21  蒸発器
 22  冷蔵庫
 30  モータ駆動装置
 204  制御部
1 AC power supply (power supply)
2 Rectifier circuit 2a, 2b, 2c, 2d Rectifier diode 3 Smoothing part 3e Smoothing capacitor 3f Reactor 4,205 Inverter 4a, 4b, 4c, 4d, 4e, 4f Switching element 4g, 4h, 4i, 4j, 4k, 4l Reflux current Diode 5,201 Brushless DC motor 5a Rotor 5b Fixture 6 Position detection unit 7 Speed detection unit 8 Voltage detection unit 9 Drive unit 10 Output determination unit 11 Bottom dead point search unit 12 Torque determination unit 17,203 Compressor 17a Crank Shaft 17b, 202 Piston 17c Cylinder 18 Two-way valve 19 Condenser 20 Decompressor 21 Evaporator 22 Refrigerator 30 Motor drive device 204 Control unit

Claims (6)

  1. 圧縮機と、
    前記圧縮機が圧縮動作を行う駆動源となるブラシレスDCモータと、を備え、
    前記圧縮機の運転開始時の振動と、負荷トルクの減少による振動とが、打ち消しあうように、前記ブラシレスDCモータの起動トルクと回転開始位置を決定する、
    モータ駆動装置。
    With a compressor,
    The compressor is provided with a brushless DC motor as a drive source for performing a compression operation.
    The starting torque and the rotation start position of the brushless DC motor are determined so that the vibration at the start of operation of the compressor and the vibration due to the decrease in the load torque cancel each other out.
    Motor drive.
  2. 前記圧縮機のピストンの下死点を探索し移動させる下死点探索部を備え、
    前記下死点探索部により前記ピストンを下死点に移動させたのち、前記ブラシレスDCモータを回転開始位置に移動させる、
    請求項1に記載のモータ駆動装置。
    A bottom dead center search unit for searching for and moving the bottom dead center of the piston of the compressor is provided.
    After the piston is moved to the bottom dead center by the bottom dead center search unit, the brushless DC motor is moved to the rotation start position.
    The motor drive device according to claim 1.
  3. トルク決定部を備え、
    前記トルク決定部は、前記下死点探索部で決定される回転開始位置を下死点とし、起動トルクを決定する、
    請求項1または請求項2のいずれか1項に記載のモータ駆動装置。
    Equipped with a torque determination unit
    The torque determination unit determines the starting torque with the rotation start position determined by the bottom dead center search unit as the bottom dead center.
    The motor drive device according to any one of claims 1 and 2.
  4. 前記圧縮機は、上死点を基準としてみた場合、正転と逆転ともに、非圧縮ステップであり、下死点を基準としてみた場合、正転と逆転ともに、圧縮ステップを含み、
    前記下死点探索部は、前記ブラシレスDCモータを正転と逆転をさせるステップを有する、
    請求項1から請求項3のいずれか1項に記載のモータ駆動装置。
    The compressor includes a compression step for both forward rotation and reverse rotation when viewed from top dead center, and includes a compression step for both forward rotation and reverse rotation when viewed from bottom dead center.
    The bottom dead center search unit has a step of rotating the brushless DC motor in the forward and reverse directions.
    The motor drive device according to any one of claims 1 to 3.
  5. 請求項1から請求項4のいずれか1項に記載のモータ駆動装置を備える、
    冷蔵庫。
    The motor driving device according to any one of claims 1 to 4.
    refrigerator.
  6. 前記圧縮機を、筐体上部に備える、
    請求項5に記載の冷蔵庫。
    The compressor is provided in the upper part of the housing.
    The refrigerator according to claim 5.
PCT/JP2020/038070 2019-10-29 2020-10-08 Motor drive device and refrigerator using same WO2021085066A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021554256A JPWO2021085066A1 (en) 2019-10-29 2020-10-08
CN202080053325.XA CN114175494A (en) 2019-10-29 2020-10-08 Motor driving device and refrigerator using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-196072 2019-10-29
JP2019196072 2019-10-29

Publications (1)

Publication Number Publication Date
WO2021085066A1 true WO2021085066A1 (en) 2021-05-06

Family

ID=75715142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038070 WO2021085066A1 (en) 2019-10-29 2020-10-08 Motor drive device and refrigerator using same

Country Status (3)

Country Link
JP (1) JPWO2021085066A1 (en)
CN (1) CN114175494A (en)
WO (1) WO2021085066A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114719476B (en) * 2022-03-03 2023-12-15 上海海立(集团)股份有限公司 Compressor, operation control method and system thereof, and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249967A (en) * 1988-03-30 1989-10-05 Fuji Electric Co Ltd Running controller for quantitative pump
JP2005106454A (en) * 2003-09-09 2005-04-21 Matsushita Electric Ind Co Ltd Refrigerator
JP2005214486A (en) * 2004-01-29 2005-08-11 Toshiba Corp Refrigerator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4259173B2 (en) * 2003-04-28 2009-04-30 パナソニック株式会社 Electric compressor drive device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249967A (en) * 1988-03-30 1989-10-05 Fuji Electric Co Ltd Running controller for quantitative pump
JP2005106454A (en) * 2003-09-09 2005-04-21 Matsushita Electric Ind Co Ltd Refrigerator
JP2005214486A (en) * 2004-01-29 2005-08-11 Toshiba Corp Refrigerator

Also Published As

Publication number Publication date
CN114175494A (en) 2022-03-11
JPWO2021085066A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
WO2017038024A1 (en) Motor driving device, as well as refrigerator and device for operating compressor in which said motor driving device is used
CN102282754B (en) Motor drive device and electric equipment utilizing same
JP6134905B2 (en) MOTOR DRIVE DEVICE AND ELECTRIC DEVICE USING THE SAME
JP6127275B2 (en) Motor drive device and refrigerator using the same
KR20140116728A (en) Apparatus and method for initially driving a sensorless bldc motor
CN106575930A (en) Method for braking a compressor and compressor of a refrigeration device, of an air conditioning device, or of a heat pump, and refrigeration device, air conditioning device, or heat pump having said compressor
JP2012222842A (en) Motor drive device and electric appliance using the same
WO2021085066A1 (en) Motor drive device and refrigerator using same
JP3672637B2 (en) Compressor motor control device
JP2010252406A (en) Motor drive and refrigerator using the same
WO2019244743A1 (en) Motor drive device and refrigerator using same
WO2022176615A1 (en) Motor drive and refrigerator using same
JP2004104997A (en) Brushless electric motor control equipment
JP5975830B2 (en) Motor control device and refrigeration equipment using the same
WO2021100279A1 (en) Motor drive device and refrigerator using same
WO2007116730A1 (en) Apparatus and method for controlling reciprocal compressor
WO2016170792A1 (en) Motor drive device and refrigerator employing same
JP2017046514A (en) Motor drive device, drive device of compressor using the same, and refrigerator
JP3669972B2 (en) Refrigerator control device
JP2012186876A (en) Compressor drive unit and refrigerator using the same
JP2008109722A (en) Motor drive
WO2022176614A1 (en) Motor drive device and refrigerator using same
JP7108812B2 (en) Motor drive device and refrigerator using the same
WO2019225486A1 (en) Motor driving device and refrigerator using same
KR20180086080A (en) Apparatus for controlling compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882843

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554256

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20882843

Country of ref document: EP

Kind code of ref document: A1