WO2021083430A1 - 用于冰箱的储物装置以及具有其的冰箱 - Google Patents

用于冰箱的储物装置以及具有其的冰箱 Download PDF

Info

Publication number
WO2021083430A1
WO2021083430A1 PCT/CN2020/141512 CN2020141512W WO2021083430A1 WO 2021083430 A1 WO2021083430 A1 WO 2021083430A1 CN 2020141512 W CN2020141512 W CN 2020141512W WO 2021083430 A1 WO2021083430 A1 WO 2021083430A1
Authority
WO
WIPO (PCT)
Prior art keywords
moisture
permeable
oxygen
storage device
upper cover
Prior art date
Application number
PCT/CN2020/141512
Other languages
English (en)
French (fr)
Inventor
夏恩品
李康
张�浩
李佳明
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2021083430A1 publication Critical patent/WO2021083430A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves
    • F25D25/024Slidable shelves
    • F25D25/025Drawers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves

Definitions

  • the present invention relates to a refrigerator, in particular to a storage device for the refrigerator and a refrigerator having the same.
  • Modified atmosphere preservation technology is a technology that prolongs the storage life of food by adjusting the ambient gas.
  • the electrochemical reaction consumes internal oxygen and creates a low-oxygen atmosphere, which can improve the freshness preservation effect.
  • an opening is provided on the storage container of the refrigerator, and the oxygen removal component is directly installed at the opening to reduce the oxygen content in the storage container.
  • the oxygen removal assembly is directly installed at the opening of the storage container, the entire storage container needs to be moved out of the refrigerator, which is complicated to operate and inconvenient to disassemble and assemble.
  • An object of the present invention is to provide a storage device for a refrigerator and a refrigerator that solve at least one of the above technical problems.
  • a further object of the present invention is to reduce the installation difficulty of the deoxygenating component of the storage device used in the refrigerator.
  • Another further object of the present invention is to reduce or avoid the occurrence of dripping or condensation in storage devices for refrigerators equipped with deoxygenating components.
  • the present invention provides a storage device for a refrigerator, including: a storage drawer, which includes a cylinder and a drawer body that is retractably arranged in the cylinder; the cylinder includes an upper cover and a cylinder, and the upper The cover is detachably arranged on the top of the cylinder body; the upper cover is provided with an air-permeable area; the oxygen-removing and moisture-permeable component is arranged above the air-permeable area, and is configured to consume oxygen in the storage drawer through electrolysis reaction and allow the storage drawer to The water vapor permeates and discharges.
  • the barrel includes: a bottom wall; a side wall and a back wall respectively extend upward from the edge of the bottom wall so as to form a barrel with a forward opening for arranging the drawer body together with the bottom wall; the top of the side wall A guide rail groove is provided; the edge of the upper cover is provided with a guide rail correspondingly, and the guide rail and the guide groove are matched to make the upper cover translate back and forth on the top of the cylinder body to realize a detachable connection.
  • the top of the side wall and the top of the back wall are respectively provided with a sealing strip groove, and the sealing strip groove of the side wall is located inside the guide groove;
  • the storage drawer further includes: a sealing strip embedded in the sealing strip groove, And by squeezing with the edge of the upper cover, sealing is achieved.
  • the air-permeable area includes: a deoxygenation area, which is located in the middle of the air-permeable area; a water removal area, which is located on both sides of the oxygen-removal area;
  • the oxygen-removing and moisture-permeable component includes: a pallet covering the air-permeable area, and the pallet is A first accommodating cavity is formed above the back of the deaeration zone, and a second accommodating cavity is formed on the pallet facing the upper part of the dewatering zone;
  • the proton exchange membrane group is arranged in the first accommodating cavity and faces the storage drawer
  • the inner side is configured to consume oxygen in the storage drawer through electrolysis under the action of electrolysis voltage, and the side facing the inside of the storage drawer is configured to electrolyze the water vapor outside the storage drawer under the action of electrolysis voltage;
  • the membrane group is arranged in the second accommodating cavity and configured to allow water vapor in the storage drawer to permeate and discharge.
  • the bottom wall of the first accommodating cavity is provided with an opening, the periphery of the opening extends to the side wall of the first accommodating cavity to form a pallet, and the pallet limits the proton exchange membrane assembly to the bottom of the first accommodating cavity.
  • the oxygen-removing and moisture-permeable assembly further includes: a fan assembly, arranged in the first accommodating cavity and located above the proton exchange membrane assembly, configured to promote the formation of a side facing the proton exchange membrane assembly and facing away from the inside of the storage drawer In order to provide water vapor to the proton exchange membrane group.
  • a fan assembly arranged in the first accommodating cavity and located above the proton exchange membrane assembly, configured to promote the formation of a side facing the proton exchange membrane assembly and facing away from the inside of the storage drawer In order to provide water vapor to the proton exchange membrane group.
  • the moisture-permeable membrane set includes: a moisture-permeable membrane configured to allow the water vapor in the storage drawer to pass through; and a moisture-permeable bottom plate, which is arranged close to the bottom of the moisture-permeable membrane to support the moisture-permeable membrane.
  • the oxygen-removing and moisture-permeable assembly further includes: a fixing member fixed above the moisture-permeable membrane group and clamped with the side wall of the second accommodating cavity to fix the moisture-permeable membrane group in the second accommodating cavity.
  • the oxygen-removing and moisture-permeable component further includes: a cover plate covering the upper part of the oxygen-removing and moisture-permeable component to make the shape neat; the cover plate is correspondingly provided with a clamping part that matches the shape of the fixing member, and the clamping part It is configured to be clamped with the fixing member to confine the cover plate above the oxygen-removing and moisture-permeable component.
  • a refrigerator including a box body in which a storage compartment is formed; the storage device for a refrigerator as in any one of the above, the storage device is arranged in the storage compartment .
  • the storage device for the refrigerator and the refrigerator include a storage drawer and a deoxygenation and moisture-permeable component, wherein the cylinder of the storage drawer has an upper cover detachably arranged on the top of the cylinder to remove oxygen
  • the moisture-permeable component is arranged above the air-permeable area of the upper cover, and is configured to consume oxygen in the storage drawer through an electrolysis reaction. Since the upper cover of the cylinder body can be disassembled separately, the oxygen-removing and moisture-permeable assembly can be arranged above the upper cover, so that the oxygen-removing and moisture-permeable assembly can move synchronously with the upper cover.
  • the oxygen-removing and moisture-permeable assembly needs to be installed, only the upper cover is required. Take it out, so there is no need to move the entire storage drawer out of the refrigerator, and the oxygen-removing and moisture-permeable components can be installed, which is easy to operate.
  • the storage device for the refrigerator and the deoxygenation and moisture-permeable component of the refrigerator and the storage device of the present invention are also configured to allow the water vapor in the storage drawer to permeate and discharge, thereby preventing excessive water vapor from causing condensation or Dripping water helps the storage drawer to maintain a good fresh-keeping effect.
  • the air permeable area of the upper cover is provided with a deoxygenation zone and a water removal zone, and the deoxygenation and moisture-permeable component is provided with a support plate to exchange protons with deoxygenation effect.
  • the membrane group is arranged in the first accommodating cavity of the pallet, and the moisture-permeable membrane group with moisture permeability is arranged in the second accommodating cavity of the pallet, so that the proton exchange membrane group can be confined above the deoxygenation zone, and the permeable
  • the wet membrane group is limited to the top of the dewatering area, and the proton exchange membrane group, the moisture-permeable membrane group, and the pallet are also integrated.
  • the oxygen-removing and moisture-permeable components can be easily installed above the air-permeable area, which reduces the oxygen and moisture-permeable components. The difficulty of installation.
  • Fig. 1 is a schematic perspective view of a refrigerator according to an embodiment of the present invention
  • Figure 2 is a schematic diagram of a storage device for a refrigerator according to an embodiment of the present invention.
  • Fig. 3 is a schematic exploded view of the storage device for a refrigerator shown in Fig. 2;
  • FIG. 4 is a schematic diagram of the cylinder of the storage drawer of the storage device for refrigerator shown in FIG. 3;
  • Fig. 5 is a schematic exploded view of the cylinder of the storage drawer of the storage device for the refrigerator shown in Fig. 4;
  • Fig. 6 is a schematic diagram of the cylinder body of the storage drawer of the storage device for the refrigerator shown in Fig. 5;
  • Fig. 7 is a partial enlarged view of A in Fig. 6;
  • Fig. 8 is a partial enlarged view of B in Fig. 6;
  • FIG. 9 is a schematic diagram of the upper cover of the cylinder of the storage drawer of the storage device for the refrigerator shown in FIG. 6;
  • Fig. 10 is a partial enlarged view of C in Fig. 9;
  • Fig. 11 is another schematic diagram of the upper cover of the cylinder of the storage drawer of the storage device for the refrigerator shown in Fig. 6;
  • Figure 12 is a partial enlarged view at D in Figure 11;
  • Fig. 13 is a schematic diagram of the oxygen-removing and moisture-permeable assembly of the storage device for the refrigerator shown in Fig. 3;
  • Fig. 14 is a schematic diagram of the support plate of the oxygen-removing and moisture-permeable component of the storage device for refrigerator shown in Fig. 13;
  • FIG. 15 is a schematic diagram of the proton exchange membrane assembly and the fan assembly of the oxygen-removing and moisture-permeable assembly of the storage device for refrigerator shown in FIG. 13;
  • FIG. 16 is a schematic diagram of the proton exchange membrane group of the oxygen-removing and moisture-permeable component of the storage device for refrigerator shown in FIG. 15;
  • FIG. 17 is a schematic exploded view of the proton exchange membrane assembly of the oxygen-removing and moisture-permeable component of the storage device for refrigerator shown in FIG. 16;
  • Fig. 18 is a schematic exploded view of the fan assembly of the oxygen-removing and moisture-permeable assembly of the storage device of the refrigerator shown in Fig. 15;
  • FIG. 19 is a schematic exploded view of the moisture-permeable membrane group of the oxygen-removing and moisture-permeable component of the storage device for refrigerator shown in FIG. 13;
  • Fig. 20 is a schematic diagram of the cover plate of the storage device for the refrigerator shown in Fig. 3.
  • Fig. 1 is a schematic perspective view of a refrigerator 10 according to an embodiment of the present invention.
  • the refrigerator 10 may generally include a box body 100 and a storage device 200.
  • a storage compartment is formed inside the box 100; in this embodiment, there may be multiple storage compartments, including a refrigerating compartment 110 and a freezing compartment 120. In other optional embodiments, there may be one storage compartment, and it is the refrigerating compartment 110.
  • FIG. 2 is a schematic diagram of the storage device 200 for the refrigerator 10 according to an embodiment of the present invention
  • FIG. 3 is a schematic exploded view of the storage device 200 for the refrigerator 10 shown in FIG. 2.
  • the storage device 200 is installed in the storage room, preferably, it can be installed at the bottom of the refrigerating room 110, and includes a storage drawer 210, an oxygen-removing and moisture-permeable assembly 300, and a cover 400.
  • a storage space 213 is formed inside the storage drawer 210.
  • the storage drawer 210 includes a cylinder 211, a drawer body 212 retractably disposed in the cylinder 211, and a sealing strip.
  • FIG. 4 is a schematic diagram of the cylinder 211 of the storage drawer 210 of the storage device 200 for the refrigerator 10 shown in FIG. 3
  • FIG. 5 is the storage drawer of the storage device 200 for the refrigerator 10 shown in FIG. 4
  • the cylinder 211 may be a rectangular parallelepiped with a front opening, and the drawer body 212 may be inserted into the cylinder 211 from the front opening of the cylinder 211 and close the front opening, thereby forming a closed storage space 213 .
  • the barrel 211 includes a barrel 250 and an upper cover 260.
  • the barrel 250 includes a bottom wall 251, a side wall 252 and a back wall 253.
  • the side wall 252 and the back wall 253 respectively extend upward from the edge of the bottom wall 251 so as to jointly enclose a barrel 250 with a forward opening for the drawer body 212 to be arranged with the bottom wall 251.
  • the barrel 250 may be a rectangular parallelepiped and has a forward opening and a top opening. The front opening is closed by the drawer body 212 and the top opening is closed by the upper cover 260.
  • FIG. 7 is a partial enlarged view at A in FIG. 6,
  • FIG. 8 is a partial enlarged view at B in FIG. 6,
  • FIG. 9 is a cylinder of the storage drawer 210 of the storage device 200 for the refrigerator 10 shown in FIG.
  • FIG. 10 is a partial enlarged view at C in FIG. 9, and
  • FIG. 11 is the upper cylinder 211 of the storage drawer 210 of the storage device 200 for the refrigerator 10 shown in FIG.
  • FIG. 12 is a partial enlarged view at D in FIG. 11.
  • the upper cover 260 is detachably disposed on the top of the barrel 250.
  • the upper cover 260 includes a top surface 261, and the edge of the top surface 261 extends downward to form a side connection wall 262 and a back connection wall 263 connected to the side wall 252 and the back wall 253 of the cylinder body 250.
  • the upper cover 260 is detachably disposed on the top of the cylinder body 250, the upper cover 260 can be moved out of the refrigerator 10 separately according to requirements, thereby avoiding the entire storage drawer 210 from being removed.
  • the operation is simple and easy, and it reduces the complexity of taking and placing actions. And the resulting power consumption.
  • the top of the side wall 252 of the cylinder body 250 is provided with a guide groove 255, and the edge of the side connecting wall 262 of the upper cover 260 is provided with a guide rail 265 correspondingly.
  • the guide rail 265 cooperates with the guide groove 255 so that the upper cover 260 is on the top of the cylinder body 250. Move forward and backward to realize detachable connection. That is, the upper cover 260 can be pushed and pulled on the top of the cylinder body 250, the rail groove 255 defines the movable space of the guide rail 265, and the upper cover 260 can smoothly move along the moving direction defined by the rail groove 255 to realize the separate disassembly and assembly of the upper cover 260.
  • the extension direction of the rail groove 255 may be parallel to the plane where the side wall 252 is located, and perpendicular to the plane where the back wall 253 is located, that is, extend in the front and rear directions relative to the actual use state of the refrigerator 10.
  • the extension direction of the guide groove 255 is set to extend in the front-rear direction, so that the upper cover 260 can be placed on the cylinder body 250.
  • the top is translated back and forth, for example, it slides out of the barrel 250 in a horizontal direction, and slides inward to the top of the barrel 250 in a horizontal direction, so as to prevent the inner liner and/or other structures of the refrigerator 10 and the stored items from pairing.
  • the disassembly and assembly process of the upper cover 260 causes interference, which facilitates the rapid disassembly and assembly of the upper cover 260.
  • the top of the side wall 252 and the top of the back wall 253 of the cylinder body 250 are respectively provided with a sealing strip groove 256, and the sealing strip groove 256 of the side wall 252 is located inside the guide groove 255, and the sealing strip groove 256 of the side wall 252 and the back wall
  • the weather strip groove 256 of 253 communicates with a U-shaped weather strip groove 256.
  • the sealing strip is embedded in the sealing strip groove 256, and is sealed by mutual extrusion with the edge of the upper cover 260. Since the arrangement of the sealing strip is familiar to those skilled in the art, it will not be repeated here.
  • the bottom of the side connecting wall 262 of the upper cover 260 and the bottom of the back connecting wall 263 are respectively provided with a flat connecting surface 266, wherein the flat connecting surface 266 at the bottom of the side connecting wall 262 is located inside the guide rail 265, and the flat connecting surface at the bottom of the side connecting wall 262 266 and the flat connecting surface 266 at the bottom of the back connecting wall 263 jointly form a U-shaped flat connecting surface 266.
  • the shape of the U-shaped flat connecting surface 266 matches the shape of the sealing strip groove 256.
  • a U-shaped sealing strip groove 256 is provided on the cylinder body 250, and a U-shaped flat plate connecting surface 266 of the same shape is correspondingly provided on the upper cover 260.
  • a sealing strip is provided between the sealing strip groove 256 and the U-shaped flat plate connecting surface 266, The upper cover 260 can be slid to the installation position to exactly seal the connection between the upper cover 260 and the cylinder body 250, reducing or avoiding the influence of the disassembly and assembly of the upper cover 260 on the sealing effect of the storage drawer 210, and the structure is simple and easy to implement .
  • the top surface 261 of the upper cover 260 is provided with an air-permeable area 610 and a non-air-permeable area 620; the shape of the upper cover 260 may be a rectangle, and the shape of the air-permeable area 610 may also be a rectangle.
  • the air-permeable area 610 is provided in the middle of the top surface 261 of the upper cover 260, and the area between the air-permeable area 610 and the outer periphery of the top surface 261 of the upper cover 260 is a non-air-permeable area 620.
  • FIG. 13 is a schematic diagram of the oxygen-removing and moisture-permeable assembly 300 of the storage device 200 for the refrigerator 10 shown in FIG. 3.
  • the oxygen-removing and moisture-permeable assembly 300 is disposed above the air-permeable area 610, and is configured to consume oxygen in the storage drawer 210 through an electrolysis reaction and allow the water vapor in the storage drawer 210 to permeate and discharge.
  • the oxygen-removing and moisture-permeable assembly 300 is arranged above the detachable upper cover 260, so that the oxygen-removing and moisture-permeable assembly 300 can move forward and backward synchronously with the upper cover 260 to realize disassembly and assembly.
  • the structure is simple, the operation is quick, and it has little effect on the refrigeration state of the refrigerator 10, which is beneficial to reduce installation or replacement of oxygen and moisture permeability.
  • the non-air-permeable area 620 is in a closed state.
  • the top surface 261 of the upper cover 260 is also provided with a plurality of stud holes 614, the plurality of stud holes 614 are located on the outer periphery of the air-permeable area 610, that is, the part where the non-air-permeable area 620 and the air-permeable area 610 are connected, and are used for connecting external components. The connection is fixed.
  • the air-permeable area 610 includes an oxygen removal area 611 and a water removal area 612.
  • the deaeration zone 611 can be set as an open deaeration port and is located in the middle of the air-permeable area 610; the deaeration zone 612 is close to the deaeration zone 611 and is located on both sides of the deaeration zone 611.
  • the deaeration zone 612 is provided with an array Arranged through holes 613.
  • the oxygen-removing and moisture-permeable assembly 300 includes a support plate 310, a proton exchange membrane group 320, a fan assembly 330, a moisture-permeable membrane group 340, and a fixing member 350.
  • FIG. 14 is a schematic diagram of the support plate 310 of the oxygen-removing and moisture-permeable assembly 300 of the storage device 200 for the refrigerator 10 shown in FIG. 13.
  • the pallet 310 covers the air-permeable area 610 to form the skeleton of the oxygen-removing and moisture-permeable assembly 300, and has a containing cavity for accommodating the proton exchange membrane assembly 320, the fan assembly 330, and the moisture-permeable membrane assembly 340.
  • the proton exchange membrane assembly 320, The fan assembly 330 and the moisture-permeable membrane assembly 340 may be installed in the containing cavity to be integrated with the support plate 310 respectively.
  • the integrated oxygen-removing and moisture-permeable assembly 300 includes both a proton exchange membrane group 320 with deoxygenation function and a fan assembly 330 with air-supply function, and a moisture-permeable membrane group 340 with moisture permeability, which has both deoxygenation and Moisture-permeable function; the integrated oxygen-removing and moisture-permeable assembly 300 can be installed above the air-permeable area 610 at one time, avoiding step-by-step installation, simplifying installation steps, simple operation, and low installation difficulty.
  • the support plate 310 is formed with a first accommodating cavity 311 on the back of the oxygen removal zone 611, and a second accommodating cavity 312 is formed on the back of the water removal zone 612.
  • the shape of the first accommodating cavity 311 is adapted to the shape of the deaeration zone 611 so that the first accommodating cavity 311 can be inserted into the storage drawer 210 from the deaeration zone 611 for accommodating the proton exchange membrane assembly 320 and Fan assembly 330.
  • the bottom wall 251 of the first accommodating cavity 311 is provided with an oxygen inlet 511.
  • the periphery of the oxygen inlet 511 extends to the side wall 252 of the first accommodating cavity 311 to form a pallet 512.
  • the pallet 512 limits the proton exchange membrane group 320 to The bottom of the first accommodating cavity 311.
  • the bottom of the first accommodating chamber 311 includes an oxygen inlet 511 and a pallet 512
  • the oxygen inlet 511 is configured to allow the gas escaping from the deoxygenation zone 611 to pass through
  • the pallet 512 is configured to receive the proton exchange membrane group 320
  • a screw hole is provided on the pallet 512, and the proton exchange membrane group 320 can be fixed on the pallet 512 by screw connection.
  • the bottom wall 251 of the second accommodating cavity 312 is also correspondingly provided with through holes 530 arranged in an array to allow the gas escaping from the dewatering area 612 to pass through.
  • the support plate 310 is provided with a first accommodating cavity 311 for accommodating the proton exchange membrane assembly 320 and the fan assembly 330, and a second accommodating cavity 312 for accommodating the moisture-permeable membrane assembly 340.
  • the position and shape of the first accommodating cavity 311 correspond to the position and shape of the deoxidizing zone 611
  • the position and shape of the second accommodating cavity 312 correspond to the position and shape of the dewatering zone 612
  • the pallet 310 can be directly covered
  • the upper cover 260 is above for quick installation.
  • the second accommodating cavity 312 of the pallet 310 is adjacent to the first accommodating cavity 311, so that the moisture-permeable membrane assembly 340 is adjacent to the proton exchange membrane assembly 320, and the water vapor generated by the proton exchange membrane assembly 320 through the electrolysis reaction can pass through the moisture-permeable membrane assembly 340
  • the rapid discharge can prevent excessive water vapor from staying in the storage device 200, which is beneficial to promote the humidity in the storage device 200 to be maintained within a proper range.
  • FIG. 15 is a schematic diagram of the proton exchange membrane group 320 and the fan assembly 330 of the oxygen-removing and moisture-permeable assembly 300 of the storage device 200 for the refrigerator 10 shown in FIG.
  • FIG. 17 is the proton exchange membrane assembly 320 of the oxygen-removing and moisture-permeable assembly 300 of the storage device 200 of the refrigerator 10 shown in FIG. 16 Schematic exploded view.
  • the proton exchange membrane group 320 is arranged at the bottom of the first accommodating cavity 311, and its side facing the inside of the storage drawer 210 is configured to consume oxygen in the storage drawer 210 through an electrolysis reaction under the action of electrolysis voltage, and its back faces the storage drawer 210.
  • the inner side of the storage drawer 210 is configured to electrolyze the water vapor outside the storage drawer 210 under the action of electrolysis voltage.
  • the proton exchange membrane group 320 includes a mother plate 321, an anode plate 322, a cathode plate 323, and a proton exchange membrane 324 sandwiched between the cathode plate 323 and the anode plate 322.
  • the mother board 321 forms the base of the proton exchange membrane group 320.
  • a gap 521 is provided in the middle part of the gap 521.
  • the gap 521 can be rectangular; the gap 521 is provided with internal screw holes 522 around the gap 521 to communicate with other components of the proton exchange membrane group 320.
  • the edge of the mother board 321 is also provided with an external screw hole 523 for fixing with the pallet 512 of the first receiving cavity 311 by screwing.
  • the side of the cathode plate 323 facing away from the proton exchange membrane 324 is exposed to the inside of the storage drawer 210.
  • the oxygen in the storage drawer 210 can reach the surface of the cathode plate 323 through the opening and the deoxygenation zone 611.
  • the cathode plate 323 is configured to utilize hydrogen ions and oxygen.
  • the reaction generates water and consumes oxygen in the storage drawer 210; the side of the anode plate 322 facing away from the proton exchange membrane 324 is exposed to the outside of the storage drawer 210, and is configured to electrolyze the water vapor outside the storage drawer 210 to generate hydrogen ions and oxygen;
  • the proton exchange membrane 324 is configured to transport hydrogen ions from the anode plate 322 side to the cathode plate 323 side.
  • the proton exchange membrane group 320 has at least a four-layer structure, from the outside to the inside, the anode plate 322, the proton exchange membrane 324, the cathode plate 323, and the mother plate 321 in order.
  • the cathode plate 323 consumes oxygen in the storage space 213, and on the other hand, the water vapor generated by the cathode plate 323 can increase the humidity in the storage space 213, thereby improving the freshness preservation effect of the storage device 200.
  • the chemical reaction formulas of the anode plate 322 and the cathode plate 323 are:
  • Anode plate 322 2H 2 O ⁇ O 2 + 4H + + 4e -
  • Cathode plate 323 O 2 + 4H + + 4e - ⁇ 2H 2 O
  • the proton exchange membrane assembly 320 may further include: two elastic plates 325 and at least one gasket 326.
  • Two elastic plates 325 are arranged on the outer side of the anode plate 322, and each elastic plate 325 is a rectangular thin plate, the middle part of which is hollowed out to allow gas to pass through.
  • the elastic plate 325 is provided with a fan screw hole 524, which is used to fix the fan assembly 330 of the oxygen-removing and moisture-permeable assembly 300 above the proton exchange membrane group 320 by screwing, and the edge of the elastic plate 325 is also provided with a mother plate screw hole 525
  • the position and number of the screw holes 525 of the motherboard are adapted to the position and number of the internal screw holes 522 of the motherboard 321, so as to fix the multi-layer structure of the proton exchange membrane group 320 on the motherboard 321 through screw connection.
  • the gasket 326 is located between the mother board 321 and the cathode plate 323. Each gasket 326 is a rectangular thin circle hollowed out in the middle, made of elastic material, to buffer the pressing force between adjacent layers.
  • FIG. 18 is a schematic exploded view of the fan assembly 330 of the oxygen-removing and moisture-permeable assembly 300 of the storage device 200 for the refrigerator 10 shown in FIG. 15.
  • the fan assembly 330 is arranged in the first accommodating cavity 311, above the proton exchange membrane assembly 320, that is, on the side of the anode plate 322 facing away from the proton exchange membrane 324, and is configured to promote the formation of blowing toward the proton exchange membrane assembly 320 facing away
  • the air flow on the inner side of the storage drawer 210 provides water vapor to the proton exchange membrane group 320.
  • the fan assembly 330 includes a fan 331 and a fan frame 332.
  • the fan 331 may be a miniature axial flow fan 331, the rotating shaft of which is perpendicular to the anode plate 322, and is used to blow water vapor outside the storage drawer 210 toward the anode plate 322. Since the reactant of the anode plate 322 is water vapor, the anode plate 322 needs to be continuously replenished with water so that the electrolysis reaction can continue. Since the internal temperature of the refrigerator 10 is generally low, the storage compartment has a relatively humid atmosphere, and the air contains a large amount of water vapor. Therefore, the fan 331 can prompt the air in the storage room to provide sufficient reactants for the anode plate 322, and there is no need to separately provide a water source or a water delivery device for the proton exchange membrane group 320.
  • the fan 331 and the proton exchange membrane group 320 are jointly arranged in the first accommodating cavity 311, which shortens the distance between the fan 331 and the proton exchange membrane group 320, and improves the air supply efficiency of the fan 331.
  • the fan 331 can quickly perform
  • the proton exchange membrane assembly 320 provides water vapor required for the electrolysis reaction, which is beneficial to improve the electrolysis efficiency of the proton exchange membrane assembly 320 and achieve rapid oxygen reduction.
  • the fan frame 332 is used to fix and support the fan 331.
  • the wind frame 332 is arranged on the side of the fan 331 facing the anode plate 322, for example, it may be arranged between the fan 331 and the elastic plate 325 of the proton exchange membrane group 320.
  • the fan 331 can be fixed on the fan frame 332 by screw connection.
  • the air supply area of the fan 331 is facing the circular opening 531 in the middle of the fan frame 332, and can blow the air flow to the inside of the proton exchange membrane group 320 and to the anode. ⁇ 322.
  • the fan frame 332 can fixedly support the fan 331 to prevent the fan 331 from shaking during operation, and can also form a certain distance between the fan 331 and the elastic plate 325 to facilitate gas circulation.
  • the air frame 332 is also provided with air frame screw holes 532, and the position and number of the air frame screw holes 532 are adapted to the position and number of the fan screw holes 524, so that the air frame 332 can be installed and fixed by screwing.
  • Above the proton exchange membrane group 320 Above the proton exchange membrane group 320.
  • the side of the wind frame 332 facing away from the proton exchange membrane unit 320 is used to fix the fan 331, and the side facing the proton exchange membrane unit 320 is screwed and fixed to the proton exchange membrane unit 320.
  • the air frame 332 has the function of fixing and supporting the fan 331. , It also has the function of connecting the proton exchange membrane group 320. Its dual fixation function integrates the proton exchange membrane group 320 and the fan 331, and makes the fan 331 close to the proton exchange membrane group 320, in order to shorten the distance between the fan 331 and the proton exchange membrane group 320. The distance between provides the structural basis.
  • FIG. 19 is a schematic exploded view of the moisture-permeable membrane group 340 of the oxygen-removing and moisture-permeable assembly 300 of the storage device 200 for the refrigerator 10 shown in FIG. 13.
  • the moisture-permeable membrane group 340 is disposed in the second accommodating cavity 312 and configured to allow water vapor in the storage drawer 210 to permeate and discharge.
  • the moisture-permeable membrane group 340 includes a moisture-permeable membrane 341 and a moisture-permeable bottom plate 342.
  • the moisture-permeable membrane 341 is configured to allow the water vapor in the storage drawer 210 to slowly permeate and discharge to the outside of the storage drawer 210, so that the humidity in the storage drawer 210 is always kept within a proper range, and prevents excessive moisture generation in the space. Condensation or dripping water.
  • the moisture-permeable membrane 341 may be a pervaporation membrane with a hydrophilic layer and a hydrophobic layer. The side of the hydrophilic layer facing away from the hydrophobic layer is exposed above the dewatering zone 612, that is, facing the dewatering zone 612.
  • the side of the layer facing away from the hydrophilic layer faces the dewatering area 612, and the water vapor in the storage drawer 210 can permeate and discharge to the outside of the storage drawer 210 through the moisture-permeable membrane 341. While the moisture-permeable membrane 341 transmits water vapor, it can also block the permeation of other gases and prevent gas exchange between the inside and outside of the storage drawer 210.
  • the shape of the moisture-permeable membrane 341 matches the shape of the bottom wall 251 of the second accommodating cavity 312, which can just close the second accommodating cavity 312, and the closed space formed by the moisture-permeable membrane 341 and the pallet 310 can block the dewatering zone 612
  • the gas exchange with the outside of the enclosed space can promote the storage device 200 to maintain a relatively closed state, which is beneficial to maintaining a good fresh-keeping atmosphere and improving the fresh-keeping effect.
  • the moisture-permeable bottom plate 342 is disposed in close contact with the moisture-permeable membrane 341 to fix the moisture-permeable membrane 341 and prevent the moisture-permeable membrane 341 from being deformed due to vibration. If the moisture-permeable membrane 341 is deformed, there will be a gap between the moisture-permeable membrane 341 and the bottom wall 251 of the second accommodating cavity 312, so that the moisture-permeable membrane 341 and the support plate 310 cannot form a closed space, and the freshness preservation effect of the storage device 200 is reduced.
  • the moisture-permeable bottom plate 342 is also correspondingly provided with through holes 540 arranged in an array. The position and size of the through holes 540 are adapted to the position and size of the through holes 530 of the bottom wall 251 of the second accommodating cavity 312, and are configured to allow The gas escaping from the water removal zone 612 passes through.
  • a closed space is formed by the pallet 310 and the proton exchange membrane group 320, and above the dewatering zone 612, a closed space is formed by the pallet 310 and the moisture-permeable membrane group 340, so that the storage device 200 is relatively closed.
  • the structure can maintain a suitable fresh-keeping atmosphere while reducing oxygen and moisture permeability, and improve the fresh-keeping effect.
  • the fixing member 350 is fixed above the moisture-permeable membrane group 340 and is clamped with the side wall 252 of the second accommodating cavity 312 to fix the moisture-permeable membrane group 340 in the second accommodating cavity 312, which can prevent the moisture-permeable membrane group 340 340 loose.
  • the two opposite side walls 252 of the second accommodating cavity 312 are provided with bayonet openings 513, and the fixing member 350 can be partially inserted into the bayonet opening 513 to achieve clamping connection.
  • FIG. 20 is a schematic diagram of the cover 400 of the storage device 200 for the refrigerator 10 shown in FIG. 3.
  • the cover plate 400 covers the upper part of the oxygen-removing and moisture-permeable assembly 300 to make the appearance neat.
  • the cover plate 400 is provided with a clamping portion 410 corresponding to the shape of the fixing member 350, and the clamping portion 410 is configured to be clamped with the fixing member 350 to confine the cover plate 400 above the oxygen-removing and moisture-permeable assembly 300.
  • the cover plate 400 is also provided with through holes 550 arranged in an array, wherein the through holes 550 located above the dewatering area 612 are configured to allow passage through the dewatering area 612, the bottom wall 251 of the second containing cavity 312, the moisture-permeable membrane 341, And the water vapor escaping from the moisture-permeable bottom plate 342 is discharged to the outside of the storage device 200.
  • the through hole 550 located above the deoxygenation zone 611 is configured to allow the gas outside the storage device 200 to enter the storage device 200 under the action of the fan 331. Blowing to the anode plate 322 provides water vapor for the anode plate 322 and at the same time provides an escape channel for the oxygen generated on the anode plate 322.
  • An oxygen removal zone 611 and a water removal zone 612 are provided on the upper cover 260 of the storage drawer 210, so that the first accommodating cavity 311 of the pallet 310 is partially inserted into the oxygen removal zone 611, and the proton exchange is installed in the first accommodating cavity 311
  • the moisture-permeable membrane assembly 340 is installed in the second accommodating cavity 312 of the pallet 310 above the dewatering area 612, which can prevent the oxygen-depleting and moisture-permeable assembly 300 from occupying too much storage space 213.
  • the use efficiency of the storage device 200 is improved.
  • the anode plate 322 and the cathode plate 323 of the proton exchange membrane group 320 can be connected to the control circuit through wires, and the control circuit of the refrigerator 10 provides electrolysis voltage for them.
  • the electrolysis voltage of the proton exchange membrane group 320 can also be provided by the battery.
  • the anode plate 322 and the cathode plate 323 are respectively connected to the anode and the cathode of the battery, and the proton exchange membrane group 320 enters the electrolysis working state. . If the user does not need the oxygen removal function, the oxygen removal and moisture-permeable assembly 300 can be taken out as a whole.
  • the oxygen-removing and moisture-permeable assembly 300 also includes multiple sets of fastening screws to realize the fixing and clamping of the multilayer components.
  • the first set of fastening screws successively penetrate through the screw holes at the same positions of the two elastic plates 325, anode plate 322, proton exchange membrane 324, cathode plate 323, gasket 326, and mother plate 321 to promote the formation of the proton exchange membrane group 320 Multi-layer structure;
  • the second set of fastening screws sequentially penetrate through the air frame screw holes 532, the fan screw holes 524 of the elastic plate 325 of the proton exchange membrane group 320, and are used to fix the air frame 332 on the proton exchange membrane group 320 ;
  • the third set of fastening screws successively penetrate through the external screw holes 523 of the mother board 321 of the proton exchange membrane group 320 and the screw holes of the pallet, and are used to fix the proton exchange membrane group 320 on the pallet 512.
  • the proton exchange membrane assembly 320 and the fan assembly 330 can be integrated, and they are fixed in the first accommodating cavity 311 by screws, and then the moisture-permeable membrane 341 and the moisture-permeable bottom plate 342 are clamped in sequence. In the second accommodating cavity 312, an integrated oxygen-removing and moisture-permeable assembly 300 is thus formed.
  • the assembled oxygen-removing and moisture-permeable assembly 300 is placed above the upper cover 260, so that the first accommodating cavity 311 of the support plate 310 is partially inserted into the oxygen-removing zone 611.
  • the support plate 310 can be fixed on the upper cover 260 in any manner according to actual needs, for example, can be fixed by screw connection.
  • a plurality of screw holes 614 are provided on the outer periphery of the air-permeable area 610, and screw holes 313 are respectively provided at positions corresponding to the plurality of screw holes 614 of the pallet 310 to fix the pallet 310 to the upper cover 260 by screwing.
  • the support plate 310 and the upper cover 260 are tightly attached to enhance the sealing effect.
  • the cover 400 of the storage device 200 can also be installed above the oxygen-removing and moisture-permeable assembly 300 in any manner according to actual needs.
  • the card slot 420 and the buckle 615 can be clamped and fixed.
  • a plurality of buckles 615 are provided on the top surface 261 of the upper cover 260, and a plurality of buckles 420 are correspondingly provided on the cover plate 400, so that the buckles 420 of the cover plate 400 and the buckles 615 of the upper cover 260 can be locked to fix the cover.
  • the plate 400 thus forms a storage device 200 with both deoxygenation and moisture permeability functions.
  • the storage device 200 for the refrigerator 10 and the refrigerator 10 includes a storage drawer 210 and an oxygen-removing and moisture-permeable assembly 300, wherein the cylinder 211 of the storage drawer 210 is detachably disposed at
  • the upper cover 260 on the top of the cylinder body 250 is provided with the oxygen-removing and moisture-permeable assembly 300 above the air-permeable area 610 of the upper cover 260, and is configured to consume oxygen in the storage drawer 210 through an electrolysis reaction. Since the upper cover 260 of the cylinder 211 can be detached separately, the oxygen-removing and moisture-permeable assembly 300 is arranged above the upper cover 260, so that the oxygen-removing and moisture-permeable assembly 300 can move synchronously with the upper cover 260. At this time, only the upper cover 260 needs to be taken out, so that the entire storage drawer 210 does not need to be moved out of the refrigerator 10 to install the oxygen-removing and moisture-permeable assembly 300, which is easy to operate.
  • the storage device 200 used in the refrigerator 10 and the refrigerator 10 of the present embodiment, and the oxygen-removing and moisture-permeable assembly 300 of the storage device 200 are also configured to allow the water vapor in the storage drawer 210 to permeate and discharge, thereby preventing excessive water vapor Condensation or dripping will help the storage drawer 210 maintain a good fresh-keeping effect.
  • the air-permeable area 610 of the upper cover 260 is set as an oxygen removal zone 611 and a water removal zone 612, a support plate 310 is provided in the oxygen removal and moisture-permeable assembly 300, and a proton exchange membrane group 320 with a deoxygenation effect is provided on the support plate 310
  • the moisture-permeable membrane group 340 with moisture-permeable effect is arranged in the second accommodating cavity 312 of the pallet 310, so that the proton exchange membrane group 320 can be confined above the deoxygenation zone 611, and the permeable
  • the wet membrane assembly 340 is limited above the dewatering zone 612, and the proton exchange membrane assembly 320, the moisture-permeable membrane assembly 340, and the support plate 310 are integrated.
  • the oxygen-depleting and moisture-permeable assembly 300 can be easily installed above the air-permeable area 610. The installation difficulty of the oxygen-removing and moisture-permeable assembly 300 is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

一种用于冰箱(10)的储物装置(200)以及具有其的冰箱(10),储物装置(200)包括:储物抽屉(210),其包括筒体(211)以及可抽拉地设置于筒体(211)内的抽屉本体(212);筒体(211)包括上盖(260)和筒身(250),上盖(260)可拆卸地设置于筒身(250)的顶部;上盖(260)设置有透气区域(610);除氧透湿组件(300),设置于透气区域(610)的上方,配置成通过电解反应消耗储物抽屉(210)内部的氧气,并且允许储物抽屉(210)内的水蒸气渗透排出。由于筒体(211)的上盖(260)可以单独拆卸,将除氧透湿组件(300)设置在上盖(260)上方,能够使除氧透湿组件(300)随上盖(260)同步移动,在需要安装除氧透湿组件(300)时,只需要把上盖(260)取出,从而无需将整个储物抽屉(210)移出冰箱(10),即可安装除氧透湿组件(300),操作简便。

Description

用于冰箱的储物装置以及具有其的冰箱 技术领域
本发明涉及冰箱,特别是涉及一种用于冰箱的储物装置以及具有其的冰箱。
背景技术
气调保鲜技术是通过调整环境气体来延长食品贮藏寿命的技术。在冰箱领域,通过设置除氧组件,利用其电化学反应消耗内部氧气,营造低氧气氛,可以提高保鲜效果。
现有技术中采用在冰箱的储物容器上设置开口,并将除氧组件直接安装在开口处,来降低储物容器内的氧气含量。然而,在储物容器开口处直接安装除氧组件时需要将整个储物容器移出冰箱,操作复杂,拆装不方便。
发明内容
本发明的一个目的是要提供一种至少解决上述技术问题中一方面的一种用于冰箱的储物装置以及冰箱。
本发明一个进一步的目的是要降低用于冰箱的储物装置的除氧组件的安装难度。
本发明另一个进一步的目的是减少或避免安装有除氧组件的用于冰箱的储物装置内滴水或凝露现象的产生。
特别地,本发明提供了一种用于冰箱的储物装置,包括:储物抽屉,其包括筒体以及可抽拉地设置于筒体内的抽屉本体;筒体包括上盖和筒身,上盖可拆卸地设置于筒身的顶部;上盖设置有透气区域;除氧透湿组件,设置于透气区域的上方,配置成通过电解反应消耗储物抽屉内部的氧气,并且允许储物抽屉内的水蒸气渗透排出。
可选地,筒身包括:底壁;侧壁和背壁,分别从底壁的边缘向上延伸,从而与底壁共同围成具有前向开口以供布置抽屉本体的筒身;侧壁的顶部开设有导轨槽;上盖的边缘相应设置有导轨,导轨与导轨槽配合以使上盖在筒身顶部前后平移,以实现可拆卸连接。
可选地,侧壁的顶部和背壁的顶部分别开设有密封条槽,并且侧壁的密封条槽位于导轨槽的内侧;储物抽屉还包括:密封条,嵌设于密封条槽内,并通过与上盖边缘的相互挤压,实现密封。
可选地,透气区域包括:除氧区,位于透气区域的中间部位;除水区,位于除氧区的两侧;除氧透湿组件包括:托板,覆盖在透气区域上,托板在背朝除氧区的上方形成有第一容纳腔,托板在背朝除水区的上方形成有第二容纳腔;质子交换膜组,设置在第一容纳腔内,其面朝储物抽屉内部的一面配置成在电解电压的作用下通过电解反应消耗储物抽屉内部的氧气,其背朝储物抽屉内部的一面配置成在电解电压的作用下电解储物抽屉外部的水蒸气;透湿膜组,设置在第二容纳腔内,配置成允许储物抽屉内的水蒸气渗透排出。
可选地,第一容纳腔的底壁设置有开口,开口的周缘向第一容纳腔的侧壁延伸形成有托台,托台将质子交换膜组限定于第一容纳腔的底部。
可选地,除氧透湿组件还包括:风机组件,设置在第一容纳腔内,并位于质子交换 膜组的上方,配置成促使形成吹向质子交换膜组背朝储物抽屉内部的一面的气流,以向质子交换膜组提供水蒸气。
可选地,透湿膜组包括:透湿膜,配置成允许储物抽屉内的水蒸气透过;透湿底板,贴靠设置于透湿膜的底部,以支撑透湿膜。
可选地,除氧透湿组件还包括:固定件,固定于透湿膜组的上方,并与第二容纳腔的侧壁卡接,以将透湿膜组固定在第二容纳腔内。
可选地,除氧透湿组件还包括:盖板,覆盖在除氧透湿组件的上方以使外形齐整;盖板上相应设置有与固定件外形相适配的卡接部,卡接部配置成与固定件卡接以将盖板限定在除氧透湿组件上方。
根据本发明的另一个方面,还提供了一种冰箱,包括箱体,其内部形成储物间室;如上述任一项的用于冰箱的储物装置,储物装置设置于储物间室内。
本发明的用于冰箱的储物装置及冰箱,储物装置包括储物抽屉和除氧透湿组件,其中,储物抽屉的筒体具有可拆卸地设置于筒身顶部的上盖,除氧透湿组件设置在上盖的透气区域上方,配置成通过电解反应消耗储物抽屉内部的氧气。由于筒体的上盖可以单独拆卸,将除氧透湿组件设置在上盖上方,能够使除氧透湿组件随上盖同步移动,在需要安装除氧透湿组件时,只需要把上盖取出,从而无需将整个储物抽屉移出冰箱,即可安装除氧透湿组件,操作简便。
进一步地,本发明的用于冰箱的储物装置以及冰箱,储物装置的除氧透湿组件,还配置成允许储物抽屉内的水蒸气渗透排出,从而能防止水汽过多产生凝露或滴水,有利于储物抽屉保持良好的保鲜效果。
进一步地,本发明的用于冰箱的储物装置及冰箱,上盖的透气区域设置有除氧区和除水区,除氧透湿组件中设置有托板,将具有除氧作用的质子交换膜组设置在托板的第一容纳腔内,将具有透湿作用的透湿膜组设置在托板的第二容纳腔内,从而可将质子交换膜组限定在除氧区上方,将透湿膜组限定在除水区上方,同时也将质子交换膜组、透湿膜组、托板集成一体,可以将除氧透湿组件简便地安装在透气区域上方,降低了除氧透湿组件的安装难度。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冰箱的示意性透视图;
图2是根据本发明一个实施例的用于冰箱的储物装置的示意图;
图3是图2所示的用于冰箱的储物装置的示意性分解图;
图4是图3所示的用于冰箱的储物装置的储物抽屉的筒体的示意图;
图5是图4所示的用于冰箱的储物装置的储物抽屉的筒体的示意性分解图;
图6是图5所示的用于冰箱的储物装置的储物抽屉的筒体的筒身的示意图;
图7是图6中A处的局部放大图;
图8是图6中B处的局部放大图;
图9是图6所示的用于冰箱的储物装置的储物抽屉的筒体的上盖的示意图;
图10是图9中C处的局部放大图;
图11是图6所示的用于冰箱的储物装置的储物抽屉的筒体的上盖的另一示意图;
图12是图11中D处的局部放大图;
图13是图3所示的用于冰箱的储物装置的除氧透湿组件的示意图;
图14是图13所示的用于冰箱的储物装置的除氧透湿组件的托板的示意图;
图15是图13所示的用于冰箱的储物装置的除氧透湿组件的质子交换膜组和风机组件的示意图;
图16是图15所示的用于冰箱的储物装置的除氧透湿组件的质子交换膜组的示意图;
图17是图16所示的用于冰箱的储物装置的除氧透湿组件的质子交换膜组的示意性分解图;
图18是图15所示的用于冰箱的储物装置的除氧透湿组件的风机组件的示意性分解图;
图19是图13所示的用于冰箱的储物装置的除氧透湿组件的透湿膜组的示意性分解图;
图20是图3所示的用于冰箱的储物装置的盖板的示意图。
具体实施方式
图1是根据本发明一个实施例的冰箱10的示意性透视图。冰箱10一般性地可包括箱体100和储物装置200。箱体100内部形成储物间室;在本实施例中,储物间室可以为多个,并且包括冷藏间室110和冷冻间室120。在另一些可选的实施例中,储物间室可以为一个,并且为冷藏间室110。
图2是根据本发明一个实施例的用于冰箱10的储物装置200的示意图,图3是图2所示的用于冰箱10的储物装置200的示意性分解图。储物装置200设置于储物间室内,优选地,可以设置于冷藏间室110底部,其包括储物抽屉210、除氧透湿组件300、盖板400。
储物抽屉210的内部形成储物空间213,储物抽屉210包括筒体211、可抽拉地设置于筒体211内的抽屉本体212、以及密封条。
图4是图3所示的用于冰箱10的储物装置200的储物抽屉210的筒体211的示意图,图5是图4所示的用于冰箱10的储物装置200的储物抽屉210的筒体211的示意性分解图。在本实施例中,筒体211可以为具有前向开口的长方体,抽屉本体212可以从筒体211的前向开口处***筒体211内并封闭前向开口,从而形成封闭的储物空间213。筒体211包括筒身250和上盖260。
图6是图5所示的用于冰箱10的储物装置200的储物抽屉210的筒体211的筒身250的示意图。筒身250包括底壁251、侧壁252和背壁253。侧壁252和背壁253分别从底壁251的边缘向上延伸,从而与底壁251共同围成具有前向开口以供布置抽屉本体212的筒身250。筒身250可以为长方体,并且具有前向开口和顶向开口,前向开口由抽屉本体212封闭,顶向开口由上盖260封闭。
图7是图6中A处的局部放大图,图8是图6中B处的局部放大图,图9是图6所 示的用于冰箱10的储物装置200的储物抽屉210的筒体211的上盖260的示意图,图10是图9中C处的局部放大图,图11是图6所示的用于冰箱10的储物装置200的储物抽屉210的筒体211的上盖260的另一示意图,图12是图11中D处的局部放大图。
上盖260可拆卸地设置于筒身250的顶部。上盖260包括顶面261,顶面261的边缘向下延伸形成与筒身250侧壁252和背壁253相连接的侧连接壁262和背连接壁263。
由于上盖260可拆卸地设置于筒身250的顶部,因此上盖260可以根据需求单独移出冰箱10,从而可以避免将储物抽屉210整体移出,操作简便,而且减少了因取放动作过于复杂而导致的电能消耗。
筒身250的侧壁252的顶部开设有导轨槽255,上盖260的侧连接壁262底部的边缘部位相应设置有导轨265,导轨265与导轨槽255配合以使上盖260在筒身250顶部前后平移,以实现可拆卸连接。即,上盖260可推拉地设置于筒身250的顶部,导轨槽255限定出导轨265的活动空间,上盖260可以沿导轨槽255限定的移动方向平滑移动以实现上盖260的单独拆装。导轨槽255的延伸方向可以为与侧壁252所在平面平行,并垂直于背壁253所在平面,即相对于冰箱10的实际使用状态沿前后方向延伸。
通过在筒身250侧壁252的顶部开设导轨槽255,并在上盖260的相应部位设置导轨265,将导轨槽255的延伸方向设置为沿前后方向延伸,可使上盖260在筒身250顶部前后平移,例如,沿水平方向向外平移滑离筒身250,沿水平方向向内平移滑至筒身250上方,从而可以避免冰箱10的内胆和/或其他结构、以及存放的物品对上盖260的拆装过程造成干涉,有利于上盖260的快速拆装。
筒身250侧壁252的顶部和背壁253的顶部还分别开设有密封条槽256,并且侧壁252的密封条槽256位于导轨槽255的内侧,侧壁252的密封条槽256与背壁253的密封条槽256连通形成U形状的密封条槽256。
密封条,嵌设于密封条槽256内,并通过与上盖260边缘的相互挤压,实现密封。由于密封条的设置是本领域技术人员所习知的,在此不做赘述。
上盖260的侧连接壁262底部和背连接壁263底部分别设置有平板连接面266,其中,侧连接壁262底部的平板连接面266位于导轨265的内侧,侧连接壁262底部的平板连接面266与背连接壁263底部的平板连接面266共同形成U形状的平板连接面266。U形平板连接面266的外形与密封条槽256的外形相适配。将上盖260移动至筒身250上方到达安装位置后,U形平板连接面266恰好位于密封条槽256以及密封条的上方。U形平板连接面266与密封条相互挤压,使上盖260与筒身250的连接部位密封。
在筒身250上设置U形的密封条槽256,并在上盖260上相应设置相同外形的U形平板连接面266,在密封条槽256与U形平板连接面266之间设置密封条,可使上盖260滑至安装位置时恰好密封上盖260与筒身250之间的连接部位,减少或避免了上盖260的拆装对储物抽屉210密封效果的影响,结构简单,易于实现。
上盖260的顶面261设置有透气区域610和非透气区域620;上盖260外形可以为长方形,透气区域610的外形也可以为长方形。透气区域610设置在上盖260顶面261的中间位置,透气区域610与上盖260顶面261的外周之间的区域为非透气区域620。
图13是图3所示的用于冰箱10的储物装置200的除氧透湿组件300的示意图。除氧透湿组件300,设置于透气区域610的上方,配置成通过电解反应消耗储物抽屉210 内部的氧气,并且允许储物抽屉210内的水蒸气渗透排出。
将除氧透湿组件300设置在可拆卸的上盖260上方,能使除氧透湿组件300随上盖260同步做前后平移运动以实现拆装,在需要安装或更换除氧透湿组件300时,只需要将储物抽屉210的上盖260移出而无需移动整个储物抽屉210,结构简单,操作快捷,对冰箱10的制冷状态影响较小,有利于减小安装或更换除氧透湿组件300过程对冰箱10能耗产生的影响。
非透气区域620为封闭状态。上盖260的顶面261还设置有多个螺孔柱614,多个螺孔柱614位于透气区域610的外周,即非透气区域620与透气区域610相接的部位,用于与外接的组件连接固定。
透气区域610包括除氧区611和除水区612。除氧区611可以设置为开放的除氧口,并且位于透气区域610的中间部位;除水区612,靠近除氧区611,并位于除氧区611的两侧,除水区612开设有阵列排布的通孔613。
除氧透湿组件300包括托板310、质子交换膜组320、风机组件330、透湿膜组340、固定件350。
图14是图13所示的用于冰箱10的储物装置200的除氧透湿组件300的托板310的示意图。托板310,覆盖在透气区域610上,形成除氧透湿组件300的骨架,具有容置质子交换膜组320、风机组件330、以及透湿膜组340的容纳腔,质子交换膜组320、风机组件330、以及透湿膜组340可以分别安装在容纳腔内从而与托板310集成一体。
集成后的除氧透湿组件300既包括具有除氧作用的质子交换膜组320和具有送风功能的风机组件330,又包括具有透湿作用的透湿膜组340,兼具有除氧和透湿的功能;该集成后的除氧透湿组件300可以一次性地安装在透气区域610上方,避免了分步安装,简化了安装步骤,操作简便,安装难度低。
托板310在背朝除氧区611的上方形成有第一容纳腔311,在背朝除水区612的上方形成有第二容纳腔312。
第一容纳腔311的外形与上述除氧区611的外形相适配以使第一容纳腔311能恰好从除氧区611部分地***储物抽屉210,用于容置质子交换膜组320和风机组件330。第一容纳腔311的底壁251设置有进氧口511,进氧口511的周缘向第一容纳腔311的侧壁252延伸形成有托台512,托台512将质子交换膜组320限定于第一容纳腔311的底部。即,第一容纳腔311的底部包括进氧口511和托台512,进氧口511配置成允许从除氧区611逸出的气体通过,托台512配置成承接质子交换膜组320,并且托台512上设置有螺孔,质子交换膜组320可以通过螺接固定在托台512上。
第二容纳腔312可以为两个,并位于第一容纳腔311的两侧,用于容置透湿膜组340。第二容纳腔312的底壁251也相应开设有阵列排布的通孔530,以使从除水区612逸出的气体通过。
托板310上设置有容纳质子交换膜组320、风机组件330的第一容纳腔311,以及容纳透湿膜组340的第二容纳腔312。第一容纳腔311的位置和外形与除氧区611的位置和外形相对应,第二容纳腔312的位置和外形与除水区612的位置和外形相对应,可以将托板310直接覆盖在上盖260上方以实现快速安装。托板310的第二容纳腔312紧邻第一容纳腔311,能使透湿膜组340紧邻质子交换膜组320,可以使质子交换膜组320通过 电解反应产生的水蒸气通过透湿膜组340快速排出,能够避免过多水蒸气滞留在储物装置200内,有利于促使储物装置200内的湿度保持在合适的范围内。
图15是图13所示的用于冰箱10的储物装置200的除氧透湿组件300的质子交换膜组320和风机组件330的示意图,图16是图15所示的用于冰箱10的储物装置200的除氧透湿组件300的质子交换膜组320的示意图,图17是图16所示的用于冰箱10的储物装置200的除氧透湿组件300的质子交换膜组320的示意性分解图。
质子交换膜组320,设置在第一容纳腔311的底部,其面朝储物抽屉210内部的一面配置成在电解电压的作用下通过电解反应消耗储物抽屉210内部的氧气,其背朝储物抽屉210内部的一面配置成在电解电压的作用下电解储物抽屉210外部的水蒸气。质子交换膜组320包括:母板321、阳极板322、阴极板323、以及夹持于阴极板323和阳极板322之间的质子交换膜324。
母板321,形成质子交换膜组320的底座,其中间部位设置有缺口521,缺口521可以为长方形;缺口521的四周设置有内接螺孔522,用于与质子交换膜组320的其他部件通过螺接固定,母板321的边缘还设置有外接螺孔523,用于与第一容纳腔311的托台512通过螺接固定。阴极板323背朝质子交换膜324的一面暴露于储物抽屉210内部,储物抽屉210内的氧气能经由开口、除氧区611到达阴极板323表面,阴极板323配置成利用氢离子和氧气反应生成水,消耗储物抽屉210内部的氧气;阳极板322背朝质子交换膜324的一面暴露于储物抽屉210外部,配置成电解储物抽屉210外部的水蒸气,产生氢离子和氧气;质子交换膜324,配置成将氢离子由阳极板322一侧运输到阴极板323一侧。也就是说,质子交换膜组320具有至少4层结构,由外至内依次为阳极板322、质子交换膜324、阴极板323和母板321。在电解过程中,阴极板323一方面消耗储物空间213内的氧气,另一方面其生成的水蒸气还能增加储物空间213内的湿度,提高了储物装置200的保鲜效果。
其中,阳极板322和阴极板323的化学反应式分别为:
阳极板322:2H 2O→O 2+4H ++4e -
阴极板323:O 2+4H ++4e -→2H 2O
在本实施例中,上述质子交换膜组320还可以进一步地包括:两块弹性板325和至少一个垫圈326。两块弹性板325设置在上述阳极板322的外侧,每块弹性板325为矩形的薄板,其中间部位镂空,以允许气体通过。弹性板325上设置有风机螺孔524,用于将除氧透湿组件300的风机组件330通过螺接固定在质子交换膜组320上方,弹性板325的边缘部位也设置有母板螺孔525,母板螺孔525的位置和数量与母板321的内接螺孔522的位置和数量相适配,以通过螺接将质子交换膜组320的多层结构固定在母板321上。垫圈326,位于上述母板321与阴极板323之间,每个垫圈326为中间镂空的矩形薄圈,由弹性材料制成,以缓冲相邻层之间的挤压力。
图18是图15所示的用于冰箱10的储物装置200的除氧透湿组件300的风机组件330的示意性分解图。风机组件330,设置在第一容纳腔311内,位于质子交换膜组320的上方,即位于阳极板322背朝质子交换膜324的一侧,配置成促使形成吹向质子交换膜组320背朝储物抽屉210内部一面的气流,以向质子交换膜组320提供水蒸气。风机组件330包括风机331和风机架332。在本实施例中,风机331可以为微型轴流风机331,其 转轴与阳极板322垂直,用于将储物抽屉210外部的水蒸气朝向阳极板322吹送。由于阳极板322的反应物为水蒸气,因此,阳极板322需要不断地补充水分,以使得电解反应能够持续进行。由于冰箱10内部温度一般较低,储物间室具有比较潮湿的气体氛围,其空气中包含大量的水蒸气。因此,风机331能够促使储物间室内的空气为阳极板322提供足够的反应物,无需为质子交换膜组320单独设置水源或输水装置。
将风机331与质子交换膜组320共同设置在第一容纳腔311内,缩短了风机331与质子交换膜组320之间的距离,提高了风机331的送风效率,风机331开启后能够快速为质子交换膜组320提供电解反应所需的水蒸气,有利于提高质子交换膜组320的电解效率,实现快速降氧。
风机架332,用于固定支撑风机331。风机架332设置于风机331朝向阳极板322的一侧,例如,可以设置于风机331和质子交换膜组320的弹性板325之间。风机331可以通过螺接安装固定在风机架332上,风机331的送风区域正对风机架332中间的圆形开口531,并能够将气流吹向质子交换膜组320内部,吹送至阳极板322。风机架332能够固定支撑风机331,防止风机331在运行时晃动,同时还能使得风机331和弹性板325之间形成一定的间距,以利于气体流通。风机架332上还设置有风机架螺孔532,风机架螺孔532的位置和数量与风机螺孔524的位置和数量相适配,以使风机架332可以通过螺接安装固定在质子交换膜组320上方。
风机架332背朝质子交换膜组320的一面用于固定风机331,面朝质子交换膜组320的一面与质子交换膜组320螺接固定,风机架332既具有固定支撑风机331的作用,又具有连接质子交换膜组320的作用,其双重固定作用将质子交换膜组320、风机331集成一体,并使风机331靠近质子交换膜组320,为缩短风机331与质子交换膜组320之间的距离提供结构基础。
图19是图13所示的用于冰箱10的储物装置200的除氧透湿组件300的透湿膜组340的示意性分解图。透湿膜组340,设置在第二容纳腔312内,配置成允许储物抽屉210内的水蒸气渗透排出,透湿膜组340包括透湿膜341和透湿底板342。
透湿膜341配置成允许储物抽屉210内的水蒸气缓慢地透过并排出到储物抽屉210外部,使得储物抽屉210内的湿度始终保持在合适范围内,防止空间内部水分过多产生凝露或滴水。在本实施例中透湿膜341可以为渗透汽化膜,具有亲水层和疏水层,亲水层背朝疏水层的一面暴露于除水区612的上方,即面朝除水区612,疏水层背朝亲水层的一面背朝除水区612,储物抽屉210内的水蒸气能够经由透湿膜341渗透排出到储物抽屉210外部。透湿膜341在透过水蒸气的同时,也能阻碍其他气体透过,防止储物抽屉210内外发生气体交换。
透湿膜341的外形与第二容纳腔312的底壁251的外形相适配,可以恰好封闭第二容纳腔312,透湿膜341与托板310形成的封闭空间可以阻断除水区612与封闭空间外部发生气体交换,能够促使储物装置200保持相对封闭的状态,有利于维持良好的保鲜气氛,提高保鲜效果。
透湿底板342贴靠设置于透湿膜341的上方,以固定透湿膜341,防止透湿膜341因震动而产生形变。若透湿膜341发生形变,其与第二容纳腔312的底壁251之间会出现缝隙,导致透湿膜341与托板310无法形成封闭空间,储物装置200的保鲜效果降低。 透湿底板342上也相应开设有阵列排布的通孔540,其通孔540的位置和大小与第二容纳腔312的底壁251的通孔530的位置和大小相适配,配置成允许从除水区612逸出的气体通过。
在除氧区611上方,由托板310和质子交换膜组320形成封闭空间,在除水区612上方由托板310和透湿膜组340形成封闭空间,从而使储物装置200形成相对封闭的结构,在降氧、透湿的同时能维持适宜的保鲜气氛,提高保鲜效果。
固定件350,固定于透湿膜组340的上方,并与第二容纳腔312的侧壁252卡接,以将透湿膜组340固定在第二容纳腔312内,能防止透湿膜组340松动。第二容纳腔312的相对的两个侧壁252开设有卡口513,固定件350可以部分地***卡口513内以实现卡接。
图20是图3所示的用于冰箱10的储物装置200的盖板400的示意图。盖板400,覆盖在除氧透湿组件300的上方以使外形齐整。盖板400上相应设置有与固定件350外形相适配的卡接部410,卡接部410配置成与固定件350卡接以将盖板400限定在除氧透湿组件300上方。盖板400上也开设有阵列排布的通孔550,其中,位于除水区612上方的通孔550配置成允许经由除水区612、第二容纳腔312底壁251、透湿膜341、以及透湿底板342逸出的水蒸气排至储物装置200外部,位于除氧区611上方的通孔550配置成允许储物装置200外部的气体在风机331的作用下进入储物装置200并吹向阳极板322,为阳极板322提供水蒸气,同时也为在阳极板322上产生的氧气提供逸出通道。
在储物抽屉210的上盖260上设置除氧区611和除水区612,使托板310的第一容纳腔311部分地***除氧区611,并在第一容纳腔311内安装质子交换膜组320和风机组件330,在位于除水区612上方的托板310的第二容纳腔312内安装透湿膜组340,可以避免除氧透湿组件300占用过多的储物空间213,提高了储物装置200的使用效率。
在本实施例中,可以将质子交换膜组320的阳极板322、阴极板323通过导线连接至控制电路,由冰箱10的控制电路为其提供电解电压。在另一些可选的实施例中,质子交换膜组320的电解电压也可以由电池提供,将阳极板322和阴极板323分别与电池的阳极和阴极连通,质子交换膜组320进入电解工作状态。若用户不需要除氧功能,则将除氧透湿组件300整体取出即可。
除氧透湿组件300还包括多套紧固螺丝,以实现多层部件的固定和夹持。其中第一套紧固螺丝依次贯穿两块弹性板325、阳极板322、质子交换膜324、阴极板323、垫圈326、母板321的相同位置的螺孔,用于促使质子交换膜组320形成多层结构;第二套紧固螺丝依次贯穿于风机架螺孔532、质子交换膜组320的弹性板325的风机螺孔524,用于将风机架332固定在质子交换膜组320上;第三套紧固螺丝依次贯穿质子交换膜组320的母板321的外接螺孔523、托台的螺孔,用于将质子交换膜组320固定在托台512上。
在组装除氧透湿组件300时,可以先将质子交换膜组320、风机组件330集成一体,通过螺丝固定在第一容纳腔311内,然后将透湿膜341和透湿底板342依次卡装在第二容纳腔312内,从而形成集成一体的除氧透湿组件300。
在安装除氧透湿组件300时,将组装好的除氧透湿组件300放置在上盖260上方,使托板310的第一容纳腔311部分地***除氧区611内。托板310可以根据实际需求选择任一方式固定在上盖260上,例如,可以通过螺丝连接固定。在透气区域610的外周 设置有多个螺孔柱614,托板310与多个螺孔柱614对应的位置上分别设置有螺孔313,以通过螺接方式将托板310固定于上盖260上,使托板310与上盖260贴紧,加强密封效果。
储物装置200的盖板400也可以根据实际需求选择任一方式安装于除氧透湿组件300的上方,例如,可以利用卡槽420与卡扣615卡接固定。在上盖260顶面261上设置有多个卡扣615,在盖板400上相应设置多个卡槽420,使盖板400的卡槽420与上盖260的卡扣615卡接可以固定盖板400,从而形成兼具除氧和透湿功能的储物装置200。
本实施例的用于冰箱10的储物装置200及冰箱10,储物装置200包括储物抽屉210和除氧透湿组件300,其中,储物抽屉210的筒体211具有可拆卸地设置于筒身250顶部的上盖260,除氧透湿组件300设置在上盖260的透气区域610上方,配置成通过电解反应消耗储物抽屉210内部的氧气。由于筒体211的上盖260可以单独拆卸,将除氧透湿组件300设置在上盖260上方,能够使除氧透湿组件300随上盖260同步移动,在需要安装除氧透湿组件300时,只需要把上盖260取出,从而无需将整个储物抽屉210移出冰箱10,即可安装除氧透湿组件300,操作简便。
本实施例的用于冰箱10的储物装置200及冰箱10,储物装置200的除氧透湿组件300,还配置成允许储物抽屉210内的水蒸气渗透排出,从而能防止水汽过多产生凝露或滴水,有利于储物抽屉210保持良好的保鲜效果。将上盖260的透气区域610设置为除氧区611和除水区612,在除氧透湿组件300中设置有托板310,将具有除氧作用的质子交换膜组320设置在托板310的第一容纳腔311内,将具有透湿作用的透湿膜组340设置在托板310的第二容纳腔312内,从而可将质子交换膜组320限定在除氧区611上方,将透湿膜组340限定在除水区612上方,同时也将质子交换膜组320、透湿膜组340、托板310集成一体,可以将除氧透湿组件300简便地安装在透气区域610上方,降低了除氧透湿组件300的安装难度。
本领域技术人员应理解,在没有特别说明的情况下,本发明实施例中所称的“上”、“下”“内”“外”“前”“后”等用于表示方位或位置关系的用语是以冰箱的实际使用状态为基准而言的,这些用语仅是为了便于描述和理解本发明的技术方案,而不是指示或暗示所指的装置或部件必须具有特定的方位,因此不能理解为对本发明的限制。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种用于冰箱的储物装置,包括:
    储物抽屉,其包括筒体以及可抽拉地设置于所述筒体内的抽屉本体;所述筒体包括上盖和筒身,所述上盖可拆卸地设置于所述筒身的顶部;所述上盖设置有透气区域;
    除氧透湿组件,设置于所述透气区域的上方,配置成通过电解反应消耗所述储物抽屉内部的氧气,并且允许所述储物抽屉内的水蒸气渗透排出。
  2. 根据权利要求1所述的用于冰箱的储物装置,其中,所述筒身包括:
    底壁;
    侧壁和背壁,分别从所述底壁的边缘向上延伸,从而与所述底壁共同围成具有前向开口以供布置所述抽屉本体的筒身;
    所述侧壁的顶部开设有导轨槽;所述上盖的边缘相应设置有导轨,所述导轨与所述导轨槽配合以使所述上盖在所述筒身顶部前后平移,以实现可拆卸连接。
  3. 根据权利要求2所述的用于冰箱的储物装置,其中,
    所述侧壁的顶部和所述背壁的顶部分别开设有密封条槽,并且所述侧壁的密封条槽位于所述导轨槽的内侧;
    所述储物抽屉还包括:
    密封条,嵌设于所述密封条槽内,并通过与所述上盖边缘的相互挤压,实现密封。
  4. 根据权利要求1所述的用于冰箱的储物装置,其中,
    所述透气区域包括:
    除氧区,位于所述透气区域的中间部位;
    除水区,位于所述除氧区的两侧;
    所述除氧透湿组件包括:
    托板,覆盖在所述透气区域上,所述托板在背朝所述除氧区的上方形成有第一容纳腔,所述托板在背朝所述除水区的上方形成有第二容纳腔;
    质子交换膜组,设置在所述第一容纳腔内,其面朝所述储物抽屉内部的一面配置成在电解电压的作用下通过电解反应消耗所述储物抽屉内部的氧气,其背朝所述储物抽屉内部的一面配置成在电解电压的作用下电解所述储物抽屉外部的水蒸气;
    透湿膜组,设置在所述第二容纳腔内,配置成允许所述储物抽屉内的水蒸气渗透排出。
  5. 根据权利要求4所述的用于冰箱的储物装置,其中
    所述第一容纳腔的底壁设置有开口,所述开口的周缘向所述第一容纳腔的侧壁延伸形成有托台,所述托台将所述质子交换膜组限定于所述第一容纳腔的底部。
  6. 根据权利要求5所述的用于冰箱的储物装置,其中,所述除氧透湿组件还包括:
    风机组件,设置在所述第一容纳腔内,并位于所述质子交换膜组的上方,配置成促使形成吹向所述质子交换膜组背朝所述储物抽屉内部的一面的气流,以向所述质子交换膜组提供水蒸气。
  7. 根据权利要求4所述的用于冰箱的储物装置,其中所述透湿膜组包括:
    透湿膜,配置成允许所述储物抽屉内的水蒸气透过;
    透湿底板,贴靠设置于所述透湿膜的底部,以支撑所述透湿膜。
  8. 根据权利要求7所述的用于冰箱的储物装置,其中,所述除氧透湿组件还包括:
    固定件,固定于所述透湿膜组的上方,并与所述第二容纳腔的侧壁卡接,以将所述透湿膜组固定在所述第二容纳腔内。
  9. 根据权利要求8所述的用于冰箱的储物装置,其中,所述除氧透湿组件还包括:
    盖板,覆盖在所述除氧透湿组件的上方以使外形齐整;所述盖板上相应设置有与所述固定件外形相适配的卡接部,所述卡接部配置成与所述固定件卡接以将所述盖板限定在所述除氧透湿组件上方。
  10. 一种冰箱,包括
    箱体,其内部形成储物间室;
    如权利要求1至9中任一项所述的用于冰箱的储物装置,所述储物装置设置于所述储物间室内。
PCT/CN2020/141512 2019-10-31 2020-12-30 用于冰箱的储物装置以及具有其的冰箱 WO2021083430A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911055676.XA CN112747549B (zh) 2019-10-31 2019-10-31 用于冰箱的储物装置以及具有其的冰箱
CN201911055676.X 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021083430A1 true WO2021083430A1 (zh) 2021-05-06

Family

ID=75645641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141512 WO2021083430A1 (zh) 2019-10-31 2020-12-30 用于冰箱的储物装置以及具有其的冰箱

Country Status (2)

Country Link
CN (1) CN112747549B (zh)
WO (1) WO2021083430A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113323752A (zh) * 2021-05-27 2021-08-31 杨建伟 一种高海拔环境下汽车发动机氧气助燃装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116222122A (zh) * 2021-12-03 2023-06-06 青岛海尔电冰箱有限公司 冰箱及其抽屉组件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101103236A (zh) * 2004-09-06 2008-01-09 电气联合股份有限公司 一种保鲜果菜盒
JP2013204987A (ja) * 2012-03-29 2013-10-07 Toshiba Corp 冷蔵庫
JP2015094018A (ja) * 2013-11-13 2015-05-18 株式会社東芝 減酸素装置
CN105180581A (zh) * 2015-09-29 2015-12-23 青岛海尔股份有限公司 储物装置及具有该储物装置的冰箱
CN106766622A (zh) * 2016-12-02 2017-05-31 青岛海尔股份有限公司 抽屉组件及具有该抽屉组件的冷藏冷冻装置
CN109855348A (zh) * 2017-11-30 2019-06-07 青岛海尔股份有限公司 冷藏冷冻装置
CN109855377A (zh) * 2017-11-30 2019-06-07 青岛海尔股份有限公司 冷藏冷冻装置及其储物容器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105526769B (zh) * 2016-02-05 2018-08-10 青岛海尔股份有限公司 储物装置及冰箱
CN208988046U (zh) * 2018-01-16 2019-06-18 管昌国 一种多用途场景式收纳组合柜

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101103236A (zh) * 2004-09-06 2008-01-09 电气联合股份有限公司 一种保鲜果菜盒
JP2013204987A (ja) * 2012-03-29 2013-10-07 Toshiba Corp 冷蔵庫
JP2015094018A (ja) * 2013-11-13 2015-05-18 株式会社東芝 減酸素装置
CN105180581A (zh) * 2015-09-29 2015-12-23 青岛海尔股份有限公司 储物装置及具有该储物装置的冰箱
CN106766622A (zh) * 2016-12-02 2017-05-31 青岛海尔股份有限公司 抽屉组件及具有该抽屉组件的冷藏冷冻装置
CN109855348A (zh) * 2017-11-30 2019-06-07 青岛海尔股份有限公司 冷藏冷冻装置
CN109855377A (zh) * 2017-11-30 2019-06-07 青岛海尔股份有限公司 冷藏冷冻装置及其储物容器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113323752A (zh) * 2021-05-27 2021-08-31 杨建伟 一种高海拔环境下汽车发动机氧气助燃装置

Also Published As

Publication number Publication date
CN112747549A (zh) 2021-05-04
CN112747549B (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
CN108332479B (zh) 冰箱
CN109855377B (zh) 冷藏冷冻装置及其储物容器
WO2019105311A1 (zh) 冷藏冷冻装置及其储物容器
WO2021083433A1 (zh) 冰箱
WO2021083430A1 (zh) 用于冰箱的储物装置以及具有其的冰箱
CN108278823B (zh) 冰箱
CN109855348B (zh) 冷藏冷冻装置
WO2021083431A1 (zh) 用于冰箱的储物装置以及具有其的冰箱
CN108514066B (zh) 冷藏冷冻装置
CN109855376B (zh) 冷藏冷冻装置及其除氧控制方法
CN108302861B (zh) 冰箱
CN112747527B (zh) 冰箱
CN112747531A (zh) 冰箱
WO2019105310A1 (zh) 冷藏冷冻装置及其储物容器
CN111059829B (zh) 冰箱
CN112747538B (zh) 冰箱
JP6242586B2 (ja) 減酸素装置
CN214537052U (zh) 用于冰箱的储物装置以及具有其的冰箱
CN109855340B (zh) 冷藏冷冻装置及其储物容器
WO2021083434A1 (zh) 用于冰箱的储物装置以及具有其的冰箱
WO2021083432A1 (zh) 用于冰箱的储物装置以及具有其的冰箱
CN109855349B (zh) 冷藏冷冻装置
CN112747530B (zh) 冰箱
CN112747537A (zh) 冰箱
CN211823361U (zh) 冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880656

Country of ref document: EP

Kind code of ref document: A1